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Abstract 

Salinity data are an important component of the climate models that seek out to predict the climate 

variability. This data, of direct measurements, are scattered and needs to be assembled. This thesis 

set out to gather salinity data from the fjord and shelf area around Svalbard, to find out how the 

temporal and spatial distribution of data looked like. The waters around Svalbard are affected by 

both warm Atlantic water from the West Spitsbergen current, and colder Arctic water, flowing in a 

coastal current. Also, runoff from glaciers provides freshwater. Data were collected from the UNIS 

HD and EN4 database and were visualized. In addition, the gathered data were visually examined for 

anomalies and changes in the halocline depth over time. The resulting maps showed sparser amount 

of salinity data in the 1920’s onwards with a major increase available data taking place in 1990’s and 

from there on. The majority of the data are located on the west side of Svalbard. When investigating 

the change in Halocline over time, the visual method used, left room open for subjective 

interpretation. For this reason, this part was abandoned. Both low- and high salinity anomalies that 

stood out visually were selected. The high salinity anomalies are probably connected to the water 

intruding from the West Spitsbergen current, while one of the low salinity anomalies might be 

related to the melting of sea ice. 
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1. Introduction 
 

The Arctic sees a higher change in temperature compared to other northern latitude areas. This is 

the result of climate forcing and the effects are increased by positive feedback mechanisms. (Miller 

et al. 2010). The most important of these feedback mechanisms are the decrease in sea ice-, snow 

cover- and ice sheet extent. (Miller et al., 2010). Sea ice and fresh snow have a high albedo and thus, 

will reflect a large portion of the incoming solar radiation. When sea ice- and snow cover decreases, 

there is an increase in the amount of solar radiation absorbed, thus amplifying the warming even 

further. Furthermore, when sea ice is formed salt is rejected, which increases the salinity of the 

waters below; with this process being less frequent (Miller et al., 2010), it will add to the sea being 

less enriched with salt. The runoff of arctic glaciers and ice caps, especially the Greenland Ice sheet, 

has increased in recent years, providing more freshwater to the ocean (Dyurgerov et al., 2010; Hanna 

et al., 2005). In addition, anomalous years have caused extreme amounts of melting. (Tedesco et al., 

2013). Where anomaly, in this respect, means something that stands out from the ordinary. Also, the 

river discharge into the Arctic Ocean has also been observed to increase (Peterson et al., 2002). To 

add to this, a freshening of the upper layer of the Arctic Ocean is predicted to continue in future 

years, creating a stronger stratification to the underlying halocline (Nummelin et al., 2016; Qi et al., 

2017). These changes in salinity will likely have effects on water living organisms (Melnikov, 2005; 

Węsławski et al., 2010). Furthermore, if freshwater input into the Arctic Ocean and the north Atlantic 

increases, this might slow down the convection of the Meridional Overturning Circulation, possibly 

having global effects on the climate (Miller et al. 2010 and references therein). In addition, ocean 

salinity can be used to track changes in the water cycle, where evaporation and precipitation changes 

salinity of the water (Durack et al., 2012). 

 

Salinity data can be used to evaluate the accuracy of climate models (Flato et al., 2013). However, 

long term salinity measurements in the Arctic Ocean is lacking. (Rhein et al., 2013 and reference 

therein). The available data of direct measurements need to be put together. Moreover, temporal 

and spatial gaps in this data need to be identified. Direct measurements are generally made with a 

Conductivity Temperature and Depth (CTD). A CTD is a device that can be sent down into water and 

measures the conductivity temperature and pressure throughout the water column, where the 

parameters for conductivity and pressure can be converted to salinity and depth.  

 

The archipelago of Svalbard is located in the Arctic (Fig. 1), to the north of Norway and east of 
Greenland. The largest island in the archipelago is called Spitsbergen and its shelf and fjord areas are 
affected by a variety of water masses from different sources. The west coast of Spitsbergen is a place 
where exchange and mixing of waters originating from the Atlantic- and Arctic Ocean take place 
(Saloranta & Svendsen., 2001). In addition, the formation and melting of sea ice influence the water 
masses, along with runoff from glaciers and land. All these factors, mentioned above, will have an 
effect on the salinity of the waters on shelf and in fjord (Svendsen et al. 2002).  
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Fig. 1: Shows the Svalbard Branch of the West Spitsbergen Current, Spitsbergen Polar Current and 

Spitsbergen Trough Current. Also, the study area in blue and position of Longyearbyen Airport. 

Currents are modified from (Nilsen et al, 2016). (Sources: Svalbard map, ©Norwegian Polar Institute. 

Light Gray Map: Esri, DeLorme, HERE, MapmyIndia.)  
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1.1 Water masses around Svalbard 
The Fram strait (Fig. 1), situated between Greenland and Svalbard is an important pathway for water-

masses entering and exiting out of the Arctic Ocean. It contributes a great deal to the salt and heat 

exchange between the Atlantic- and Arctic Ocean (Gascard et al., 1995). In the eastern part of the 

strait, the West Spitsbergen Current (WSC) brings warm and salty Atlantic Water (AW) into the Arctic 

Ocean (Fig. 1). This current is a continuation of the Norwegian Atlantic current and follows the 

continental slope of Spitsbergen. When the current reaches the Yermak Plateau northwest of 

Spitsbergen its splits into two branches; where one of these, the Svalbard branch follows the upper 

continental slope, bypassing the plateau (Aagaard et al. 1987; Cokelet et al., 2008).  

While the previously mentioned WSC runs along the slope of Spitsbergen, the Spitsbergen Polar 

Current flows upon the shelf (Fig. 1). This current transports Arctic Waters (ArW) from Storfjorden 

and the Barents Sea, to the west around the southern point of Spitsbergen and from there on north 

(Nilsen et al., 2016). On its way northwards, the ArW will be freshened by water exiting from the 

neighbouring fjords (Nilsen et al. 2008). The boundary between the warmer and more saline Atlantic 

water in the WSC on the continental slope and the colder and fresher ArW on the shelf mark out an 

oceanic front. This front is located in proximity to the shelf break where it occupies the near full 

depth of the water column, (Saloranta & Svendsen, 2001 and references therein) and is linked to the 

Polar Front that extends over the Barents Sea (Loeng, 1991).  

The surface mixed layer is the uppermost layer of the ocean where various mixing processes make 

the temperature and salinity within the layer close to uniform. In the Arctic Ocean, the depth of the 

mixed layer is also influenced by the formation and melting of sea ice (Peralta-Ferriz & Woodgate, 

2015). In the wintertime, as sea ice is formed, brine is rejected to the underlying water masses. This 

increases the density and leads to convection of these water masses, creating a deeper mixed layer.  

While in the summer, the melting of sea ice will create a thinner mixed layer. Although, during ice 

free conditions the winds can cause further mixing of this layer, deepening it (Peralta-Ferriz & 

Woodgate, 2015). However, strong stratification towards the underlying layer can inhibit this 

deepening from taking place (Peralta-Ferriz & Woodgate, 2015).  

 

1.2 Fjord hydrography 
The western part of Spitsbergen has an indented coastline, with a quite a few of these indentations 

being fjords. Three of these fjords are of interest in this study - Isfjorden, Kongsfjorden and 

Krossfjorden (Fig. 1), with the latter two sharing the same fjord entrance. These fjords have no 

shallow sills at the entrance and are connected to the shelf edge by troughs. All three fjords have 

glaciers that terminates into the sea and on land nearby. In Kongsfjorden the majority of the 

freshwater input comes from melting of snow and ice (Svendsen et al. 2002) and Nilsen et al. (2016) 

assume that most of the freshwater input into Isfjorden will be of glacial origin. This meltwater forms 

a low saline layer of Surface Water (SW), which often decreases in thickness in direction of the fjord 

mouth (Nilsen et al., 2008; Svendsen et al. 2002). This creates a stronger stratification during summer 

and autumn, than in spring and winter, when the stratification is often less defined. In Kongsfjorden, 

as meltwater is added into the fjord it will create a flow of surface water out of the fjord, which in 

turn, leads to water of Atlantic Water (AW) or Intermediate Water (IW) masses entering the fjord at 

a greater depth. (Sundfjord et al., 2017). Intermediate Waters often form through mixing of SW with 

the underlying water and thus often occupies the space between the SW and more dense water 

masses. (Svendsen et al., 2002) 
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Cooling of the SW results in Local Water (LW) being produced (Nilsen et al., 2008). As LW freezes and 

sea ice is formed, brine is rejected to the underlying waters and dense Winter Cooled Water (WCW) 

is created. This will lead to convection of the dense water and further mixing of the water column. 

For this process the fjord polynyas (open waters surrounded by sea ice) are important, as they 

function as ice factories (Nilsen et al., 2008). 

 

1.3 Intrusions of Atlantic Water upon the shelf 
Winds from the south will cause an Ekman transport to east and lead to water piling up against the 

west Spitsbergen coastline, raising the sea surface elevation. As a result, it will cause the barotropic 

driven WSC to speed up and shift eastwards (Nilsen et al., 2016). When this happens AW from the 

WSC will be topographically guided upon the west Spitsbergen shelf in system of troughs, 

Spitsbergen Trough current, that eventually ends up in the Arctic Ocean (Nilsen et al., 2016). If the 

shift is small AW will run in and out of the Isfjorden trough; when the shift is greater AW will also 

flow through Kongsfjorden trough, and the entire west Spitsbergen shelf can be affected by the 

warm water (Nilsen et al., 2016). However, the flow of the SPC is strengthened during these 

circumstances and will act as barrier from AW entering Isfjorden, and occasionally Kongsfjorden 

(Nilsen et al., 2016; Sundfjord et al., 2017). When the wind dies or changes direction to northerly, the 

surface water that have been piled up at the coast from the southerly winds will move west. This will 

lead to a compensation current and upwelling from deeper waters with AW (Cottier et al., 2007; 

Nilsen et al., 2016). Under these conditions with northerly winds it will be possible for AW to enter 

Isfjorden (Fraser et al. 2018). When AW enters shelf and fjord environment it will mix with ArW, 

creating Transformed Atlantic Water. This is slightly colder than the original water and has a lower 

salinity due to mixing (Nilsen et al 2008; Svendsen et al. 2002). 

Nilsen et al. (2016) relates the intrusion of AW upon the shelf to cyclones passing by in the Fram 

Strait, these giving rise to the southerly winds. These intrusions will influence the coverage of sea ice 

in shelf and fjord areas (Cottier et al., 2007; Nilsen et al., 2016). Also, Luckman et al. (2015) found sea 

water temperature at depth to be the most important factor for frontal ablation of, studied Svalbard 

glaciers that terminates in the sea. 

 

1.4 Aims and research questions 
The aim of this thesis is to evaluate the distribution of historical salinity recordings in coastal waters 

around Svalbard. I have gathered data from available databases and used relevant literature to 

detect potential variations in the salinity. This material has been used to answer the following 

research questions: 

- How has the halocline distribution within fjord and shelf area shifted in the last 

century? 

- Where can we find spatial or temporal gaps in the recordings? 

- Can any specific salinity anomalies be identified during this period, if so, what 

can they be related to? 
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2. Methods 

2.1 Data sources 
Data for CTD-measurements, with salinity readings, were acquired from two different sources. The 

majority gathered from the UNIS Hydrographic Database (UNIS HD), (Skogseth et al., 2019) and a 

minor part collected from the EN4 Database (Good et al., 2013). The UNIS HD is collaboration 

between several different contributors. These include Norwegian Universities and authorities, among 

others. This dataset covers measurements from all around Svalbard between 0-34˚E and 75-83˚N. 

The EN4 Database is constructed by the Met Hadley Centre of Observations, mainly with data from 

World Ocean Database. Data used from this database are made up of measurements in the area 

around Isfjorden (Fig. 1). Meteorological data from Longyearbyen Airport was collected from the 

Norwegian Meteorological Institute (Norwegian Meteorological Institute, 2020). A map of Svalbard 

(©Norwegian Polar Institute) was downloaded from the Norwegian Polar Institute (Norwegian Polar 

Institute, 2020). 

 

2.2 Data management  
The data from UNIS HD were in NetCDF format, where each file corresponds to a CTD profile at a 

certain time, latitude, and longitude. Accompanying these values are multiple recordings of salinity, 

temperature, and pressure. There was a considerable amount of data to go through, and doing it 

manually was not an option. For this reason, several scripts were created, using MATLAB R2019B, to 

help with – data import, sorting, and visualisation. For greater detail, the four scripts mainly used can 

be found in the appendix of this report, with comments.  

 

2.3 Spatial distribution of data  
The study area was decided to extend 22 km from land, being the same as the Territorial sea. This 

area was marked as a surface and CTD-profiles outside of this area were removed. 

2.3.1 Density Maps 
To look at differences in the spatial distribution of CTD-measurements trough the last century, point 

density maps were created in ArcGIS 10.7.1. The tools used in the process of making these maps are 

described below. To start with, data were imported from both data sets. The data from the UNIS HD 

came in the format per CTD-profile. While the data from the EN4 database were provided as a 

continuous list of depth and salinity values, and there was no easy way to distinguish between the 

CTD-profiles. Instead, every 10 m value was extracted to represent a CTD-profile, because this 

seemed to be a common depth present in the profiles. The data were divided into three time 

periods, this was done on the basis that the periods shared some spatial characteristics. The data 

were converted to a projected coordinate system and the points that extended more than 22 km 

from land were removed. Afterwards, kernel density tool was used, and search radius was set to 8 

km. This amount of generalization seemed like a reasonable choice for getting a good overview. 

However, some amount of detail will be lost. Finally, area extended outside the study area was 

removed.  

2.3.2 Areas with CTD-profiles throughout the period of 1950-2019 
To help find the places where CTD-profiles were available from year 1950-2019 - ArcGIS 10.7.1 was 

used. This was a rather computer-heavy task, and for this reason year 1920-1949 were excluded from 

the analysis, as previous visual examination had shown the amount of CTD-profiles sparse from this 
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period. Instead, year 1950-2019 was divided in to 10-year periods and the output of the analysis, 

were the areas, where at least one CTD-profile from each ten-year period had been taken. To deal 

with problem of CTD profiles not being taken exactly in the same location, a circle with a certain 

radius is drawn, forming a surface. This was done prior to running the analysis. The workflow of all 

these steps can be seen in Fig. 2.  

 

Fig. 2: Workflow used in GIS. 

The next step was to create a Latitude and Longitude interval from the analysis output, the 

overlapping areas for the 10-year periods between 1950-2019. An explanatory picture of this 

workflow can be seen in Fig. 3. To begin with, a point was placed on each of the output surfaces. If 

the chosen radius (previously mentioned above) had been 2 km, a circle with a radius of 2 km is 

created around the points. These circles contained all of the CTD-profiles from the analysis output. 

After this, a square was fitted to the edges of the circle. From now on, these areas will be referred to 

as Intersect areas. Finally, points were placed in the southwest and northeast corner. This gave a 

latitude and longitude interval of the area in the square and was exported as a table with 

coordinates. 
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Fig. 3: Shows the steps to create the latitude and longitude intervals. This was done by creating a 

buffer that includes CTD-profiles from the Analysis output. To be able to export these as coordinates 

a square was fitted around the circle and marked with points at the ends. (Sources: Created using 

ArcMap 10.7.1) 

 

2.4 Visualisation of Data 
The coordinates with the latitude and longitude intervals were used with the scripts to extract the 

corresponding CTD-data within this interval (MATLAB R2019B). There were 11 different areas, 

defined by the intervals from the previous analysis and the scripts were run on each of these 

successively.  When converting decibars into depth in meters, using equations from Fofonoff & 

Millard (1983) the difference from converting decibars straight into meters, were relatively small at 

shallower depth, around 1 m difference at 100 m depth. For this reason, a conversion between 

decibar and depth [m] was done at a 1:1 ratio.  

Script #2 generated 2D-graphs of salinity (or temperature) against depth for every CTD-profile inside 

the interval and saved each of these as an image with latitude, longitude, and date as a title. 

Script #3 selected data inside the latitude and longitude interval and plotted it as surface plot of 

time, depth, and salinity (or temperature). To be able to handle the issue with time and depth 

variables for the CTD-profiles not being evenly spaced, meshgrid and griddata functions were used 

before plotting it as a surface. Meshgrid creates a grid for a specified interval of chosen time and 

depth. Griddata will create an interpolated surface using the meshgrid-output and time, depth and 

salinity variables. On the interpolated surface every time- and depth value from the meshgrid will 
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correspond to an interpolated salinity value. The interpolated surface will always run through the 

actual values. (Mathworks, 2020) To show where these actual values are located a 3D scatter plot 

was placed upon the surface plot. This helps to interpret the areas where the interpolation is likely to 

be more correct and where it is probably wrong, with longer distance from an actual value. 

Both surface plots and 2D plots (MATLAB R2019B) were created and used to identify anomalies, 

within the 11 different areas. These were selected from the values that stood out the most visually, 

from the surface waters. When an anomaly was identified, the date of it happening was inserted into 

Script #4. This script collects all the profiles from a date within a chosen latitude and longitude 

interval. Afterwards, the acquired CTD-profiles were plotted as transects in Ocean Data Viewer 5.2.0. 

with maps created in ArcGis 10.7.1 using the Svalbard map (©Norwegian Polar Institute). This was 

done to be able to see if the anomalies were of local o larger scale. To classify the water masses 

shown in the transects the classification from Nilsen et. (2008) and Svendsen et al. (2002) was used.  

Table 1: Classification of water masses according to (Nilsen et al., 2008; Svendsen et al. 2002).  

Water mass Salinity [psu] Temperature [°C] 

Atlantic Water (AW) >34.9 >3 

Intermediate Water (IW) 34-34.7 >1 

Local Water (LW) ~34 <1 

Surface Water (SW) 28-34 >1 

Transformed Atlantic Water (TAW) >34.7 >1 

Winter Cooled Water (WCW) >34.4 <-0.5 

 

2.4.1 Halocline distribution 
To evaluate the change of the halocline distribution over time a slightly smaller area was used, 

compared to when looking for anomalies. This area was a square with an area of around 10km^2. 

The reason for this was to keep variations due to location relatively small, but still have enough CTD-

profiles too look at. This yielded six intersected areas and script #2 was run at all of these to generate 

2D plots of salinity and depth. To avoid mixing in the seasonal halocline changes into the calculations, 

profiles taken during September-October were chosen. Also, profiles with a resolution greater than 5 

m was discarded. Since the halocline often extended for many meters vertically, the top of the 

halocline for each plot was recorded. Due to sparse coverage of CTD-profiles and low vertical 

resolution from the earlier years of the studied period, this analysis was abandoned.  

 

3. Results 

3.1 Spatial and temporal distribution of CTD-profiles 
As can be seen in Fig. 4 there is noticeable difference in the amount of CTD-profiles taken between 

year 1920-1959 and 1960-1989. While the difference of these two periods compared to 1990-2019 is 

even more pronounced with a major increase in CTD-profiles in the latter one. In the two earlier time 

periods the location with most frequent measurements is the area around Isfjorden and Sørkapp. In 

the 90’s there is a shift towards more CTD-profiles in Isfjorden-, Kongsfjorden area. A major 

difference in the amount of profiles taken can also be seen between the east and west side, 

throughout all time periods. In fig. 5 this also noticeable for the areas with CTD-profiles from year 

1950-2019, as all these locations are on the west coast of Spitsbergen. The figure shows the results 

with the 2 km radius, as was described in methods.  
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Fig. 4: Shows sample density in CTD-profiles per square kilometre during three different time periods 

– 1920-1959, 1960-1989, and 1990-2019. (Sources: Svalbard Map, ©Norwegian Polar Institute.) 
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Fig. 5: Shows the Intersect Areas, which are the locations where CTD-profiles from 10-year periods 

between 1950-2019 overlap . (Sources: Svalbard Map, ©Norwegian Polar Institute.) 

Salinity anomalies 

 

 

3.2 Anomalies - When and where 
 

Surfaceplots with identified salinity anomalies can be seen below. To be able to see anomalies more 

clearly, the view is zoomed in, which results in some profiles disappearing out of view. Also, note that 

the scale of the colorbar for salinity will change between the figures. Only the anomalies that stood 

out the most visually were selected. 

 

Low salinity anomalies can be seen in August 1993 and 2004. The 1993 anomalies is visible in 

Isfjorden(Fig. 6c) but also to the north (Fig. 5, two northern most points) In 2004 anomalies can be 

seen in Isfjorden (Fig. 6c) and Kongsfjorden (Fig. 6a) at the same time (It is not the anomaly extending 

all the way down in Fig. 6a, this anomaly was only found in one CTD-profile and therefore was not 

included in the report.) 

 

High salinty anomalies were found in September 1973, may 2007 and 2014. The 1973 anomaly is 

visible NW of Prins Karls Forland (Fig. 6b). The 2007 anomaly is visible in Kongsfjorden(Fig. 6a) and 
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NW of Prins karls forland (Fig. 6b) at the same time. The 2014 anomaly can be seen at Sørkapp (Fig. 

1) and in Kongsfjorden about the same time. 

 
Fig. 6: Change in salinity with depth and over time, with salinity as a coloured surface, time at x-axis, 

and depth at y-axis. Black dots show positions of actual CTD-measurements and red arrows points 

toward identified anomalies. Anomalies shown for a) Kongsfjorden(from August 2004, May 2007 and 
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June 2014. b) NW of Prins Karls Forland from September 1973, august 2004 and may 2007 c) 

Isfjorden from August 1993 and August 2004  

3.3 Transects 

The following transects are linked to the anomalies shown above, from CTD-profiles in the same 

areas and dates when the anomalies were found. These were made to visualize the extent of the 

anomalies and see if they were of larger or smaller scale, when seen in the context of other CTD-

profiles nearby. Anomalies that only were found in a single CTD-profile are were discarded and are 

not shown below. 

3.3.1 High salinity events 
Atlantic Water occupies near the full depth of the water column to west in Fig. 7, freshening towards 

the coast is observed. Additionally, in the eastern part of the profile a shift towards TAW and 

followed by IW can be seen. 

 

Fig. 7: Transect of CTD-profiles taken north west of Prins Karls Forland 1973-09-22 showing Salinity 

[psu] in the upper chart and Temperature [°C] in the lower chart. In the lower left corner is map 

showing the transect and the CTD-profiles as points. 
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Atlantic Water and Transformed Atlantic water can be seen occupying the majority of the water 

column (Fig. 8), generally AW is found closer to the surface with TAW beneath. A fresher spot that 

also stands out temperature-wise can be seen at close to the entrance of Kongsfjorden, this water 

still qualifies as TAW though, because of relatively high temperature and salinity. 

 

Fig. 8: Transect of CTD-profiles taken in west of and in Kongsfjorden 2007-05-13 – 05-16, showing 

Salinity [psu] in the upper chart and Temperature [°C] in the lower chart. In the lower left corner is 

map showing the transect and the CTD-profiles as points. 
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The SW reaches down to about 20 m below the surface and the upper layer becomes fresher into the 

fjord (Fig. 9). Below is gradual transition from IW, to TAW into AW. Beneath the AW in the western 

part of the transect, close to the bottom, the water defines as TAW again, this is due to lowering in 

temperature. The water still retains a salinity over 35. 

 

 

Fig. 9: Transect of CTD-profiles taken in Kongsfjorden 2014-07-23, showing Salinity [psu] in the upper 

chart and Temperature [°C] in the lower chart. In the lower left corner is map showing the transect 

and the CTD-profiles as points. 
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3.3.2 Low Salinity events 
The Surface waters roughly occupies the upper 60 m of the water column (Fig. 10) and a gradual 

decrease in salinity can be seen. It can also be noted that the water is fresher in the middle of 

transect and furthermost to east. Below this at the eastern side, are masses of LW and WCW at the 

temperature minimum. On the western below the SW, masses of IW and TAW are observed with the 

higher temperature compared to LW and WCW. TAW can also be seen the deepest part of the 

transect. 

 

Fig. 10: Transect of CTD-profiles taken in Isfjorden in 1993-08-15, showing Salinity [psu] in the upper 

chart and Temperature [°C] in the lower chart. In the lower left corner is map showing the transect 

and the CTD-profiles as points. 
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Surface Waters occupies the water column down to roughly 30-50 m depth (Fig. 11) and a gradual 

decrease in salinity is observed vertically. Also, freshening towards the north shore can be seen. 

Below the SW a layer of LW can be seen throughout the entire transect. Beneath this along the 

southern shore are layer of IW. In contrast to this, there is a layer of WCW in the northern part. The 

bottom waters hold IW, more saline than the waters above. 

 

 

 

 

Fig. 11: Transect of CTD-profiles taken south of Isfjorden 2004-08-29 , showing Salinity [psu] in the 

upper chart and Temperature [°C] in the lower chart. In the lower left corner is map showing the 

transect and the CTD-profiles as points. 
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4. Discussion 

4.1 Spatial Distribution of CTD-profiles 
From what can be seen in Fig. 4, it is noticeable that data are scarce before year 1950, afterwards the 

number of CTD-profiles increases slightly, but it is not until the early 90’s when major increase in 

CTD-profiles taken can be seen. The studies that spans over longer time periods seems to be few in 

numbers and in one of them that do, (Pavlov et al. 2013), data is observed to be sparse before the 

mid 80’s. While many of the studies, using salinity data, have a study period that last for a couple of 

years, e.g. (Cottier et al., 2007; Nilsen et al., 2008; Svendsen et al., 2002). Generally, it seems to be 

difficult to find locations with many available CTD-profiles, through a longer time period, before year 

1990. This might cause difficulties since salinity measurements are of importance for climate 

modelling (Delcroix et al., 2011 and reference therein; Durack et al., 2012).  Also, in Fig. 5 it is visible 

that all the areas where CTD-profiles have been taken throughout year 1950-2019, are all on the 

west side. This might be because of the major settlements on Svalbard all being located on the west 

side, along with sea ice often being present on the eastern side. Where the western coast is often 

free of ice due to the WSC (Svendsen et al., 2002) so it is likely more accessible. Data is also more 

concentrated off the coast with relatively few points within a Nautical mile from the shore. Possibly, 

because it is difficult for the ships, that do these measurements, to navigate closer to the shore.  

Also, it is important to mention that only data from two databases, UNIS HD and EN4 databases, 

have been examined closer. The search for data was stopped there due to the large amount of data 

found within these databases. 

What was seen when looking at the CTD-profiles from these places, of CTD-profiles throughout year 

1950-2019; was that there in many cases only was one or two measurement for a certain 10-year 

period, which was often the case in earlier years. This was a problem with the method used, because 

there only needed to be one CTD-profile, within each 10-year interval between year 1950-2019, for it 

to pass as an intersect area. However, this might also mean that areas that have CTD-profiles in 6 out 

of 7 time periods were disregarded, which possibly could have made good areas for study. Aside 

from the problem with the earlier CTD-profiles being less in number, these also have lower vertical 

resolution between the measurements. Many of the earlier CTD-profiles have 10 m or more between 

the measurements, and this continues into the 80’s on some profiles.  

 

4.2 Change in Halocline Depths 
Due to the difficulties when trying to assess the change in halocline depth, throughout the last 

century, I decided not to go through with analysis. Many of the earlier CTD-profiles was discarded 

because of the low vertical resolution (>5m) between measurements, this made the difference even 

more pronounced between earlier- and late CTD-profiles. Deciding where the halocline starts was 

also more difficult with 5 m vertical resolution compared to 1 m, and left a lot of room for subjective 

interpretation, possibly making the error even greater. To be able to remove this subjective 

judgement, with a choice of a different method would have been beneficial. When assessing the 

depth of the mixed layer throughout the arctic ocean, Peralta-Ferriz & Woodgate (2015) used an 

increase-in-density criterion for defining the mixed layer depth. Generally, for the arctic ocean the 

mixed layer is overlying a cold halocline (Rudels et al., 1996).  While for the shelf area Saloranta & 

Svendsen (2001) describes the uppermost layer of the water column as fresher layer that thickens 

towards the shore, overlying a halocline. For these reasons, it seems likely that the mixed layer depth 

will coincide with the halocline and that Peralta-Ferriz & Woodgates (2015) method also can be used 
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for halocline depth. If that is not the case, maybe a certain amount of increase in salinity could be 

used to define the halocline instead. 

 

4.3 Salinity Anomalies 

4.3.1 High Salinity events 

From what can be seen in Fig. 7, almost the entire water column is filled with Atlantic Water (AW), 

salinity over 34.9 and temperature above 3°C. This water is very likely to origin from the WSC judging 

by its high salinity and temperature, as defined in (Svendsen et al. 2002) and has probably been 

transported upon the shelf by Spitsbergen Trough Current (STC) (fig. 1) (Nilsen et al., 2016), which 

runs nearby from where the transect was taken. A similar situation can be seen in May 2007 (Fig. 8) 

where TAW is occupying the Kongsfjorden trough. The reason for it to be classified as TAW was 

because the lower temperature compared to AW, the salinity was still very high which made it stand 

out as an anomaly. This water mass is generally created due to mixing between AW and Arctic Water 

(Arw) (Nilsen et al., 2008) Nilsen et al. (2016) describes a correlation between strong cyclones passing 

through Fram Strait and AW being topographically steered into the STC, from the WSC.  On the 23 

March of 2007, such a cyclone passed through the Fram Strait going north (Lammert et al., 2009) One 

could speculate that these events were linked together and that it was the cyclone that caused the 

AW the flow up on the shelf in the STC, mixing with with Arw and forming the TAW present on the 

shelf and in Kongsfjorden. Furthermore, in 2014 this was observed again when AW could be seen in 

Kongsfjorden(Fig. 9) and at the southern point of Spitsbergen, Sørkapp (Fig. 1) With these places 

being widely apart, it can be speculated that this is likely a major intrusion of AW from the WSC. 

There is data with CTD-profiles from the mid may in Kongsfjorden, showing TAW occupying most of 

the Water Colum. There has likely been an exchange of water since AW makes out a big part of the 

water column shown in Fig. 9, from the end of July.  

These events with intrusions of AW entering shelf and fjord have been described because the salinity 

values (above 35) stood out visually from the “ordinary”. However, there are many other events of 

AW and TAW intruding upon the shelf and into both Isfjorden and Kongsfjorden. These does not have 

the same visually striking salinity values as the events that have been mentioned but will stand in 

strong contrast to the colder water that is otherwise present in fjord and on shelf, as mentioned in 

Nilsen et al. (2002). These intrusions are also well described in several papers. (Cottier et al., 2007; 

Nilsen et al., 2008, 2016; Saloranta & Svendsen, 2001; Svendsen et al., 2002)  

 4.3.2 Low Salinity Events 
In 1993 a low salinity anomaly was found in Isfjorden (Fig. 10) and on two stations to the north. In 

Isfjorden Local Waters (LW) are overlain by warm Surface Waters (SW). The salinity of the SW 

increases seawards out of the fjord. Most of the glaciers that run into Isfjorden are located on the 

north side of the fjord, and Nilsen et al. (2008) assumed that glacier ablation and calving are the most 

important freshwater suppliers to the fjord. Regarding that it seems likely that freshwater input from 

these glaciers should be of importance. Weather data from Longyearbyen airport (Fig. 1) was 

examined for temperature, wind, and precipitation (Norwegian Meteorological Institute, 2020) to 

see if these factors could be the cause of the anomaly. None of these seem to be that far out of the 

ordinary. Temperature for the first 15 days of august did stand out though, when compared with 

values from the 1980-2019. There also was quite a bit of wind during these days. However, this was 

not likely the cause of the anomaly, because CTD-profiles were also available from 1st of august and 

the situation looked very similar to how it was on the 15th, apart from the surface temperature which 

had increased.  
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In 2004 anomalies were found in both Isfjorden and Kongsfjorden at the same time, within a few 

days from each other. In isfjorden (Fig. 11) a freshening of the SW towards the north side can be 

seen. The LW and Winter Cooled Water (WCW) that lies beneath the SW has possibly formed during 

winter or as it runs by the glacier face and cools, as suggested by (Nilsen et al., 2008; Svendsen et al., 

2002)  This might have caused some melting, but with this cool water at the glacier face frontal 

ablation will likely be kept relatively small compared to Fig. 9 for example, where AW extends all the 

way to the glacier front, as suggested by Luckman et al. (2015). In addition, the temperature data 

from Longyearbyen Airport did not stand out of the ordinary either (Norwegian Meteorological 

Institute, 2020). What apparently did stand out from the ordinary this summer, was the distribution 

of sea ice. According to Promiska et al. (2017) this anomaly may be related with a sea ice event in july 

2004. In addition, the amount of fast ice in Isfjorden really stands out during this year, compared to 

the other years between 2000-2014 (Muckenhuber et al., 2016). Possibly this contribution of 

meltwater from the sea ice was enough to cause this anomaly in both Isfjorden and Kongsfjorden. 

 

From what been describe above in regards to the low salinity events, these share some common 

characteristics: In three out of four transects freshening towards the fjord is observed and in one 

transect freshening towards the side with tidewater glaciers can be seen. This seems to be events 

that operate on a local scale, but since both 1993 and 2004 anomalies were happening at 2 separate 

places with relatively great distance from each other, this implies that some larger scale process are 

causing them.  

5. Conclusions 
 

- From the UNIS HD and EN4 database within a distance of 22 km from land, it has been shown 

that data is sparse from the earlier years and increases towards the end of studied period. A 

lack of data from the eastern side of Svalbard, compared to the west side, can be seen. Also, 

data available over a longer period of time for a location, is generally only seen at the 

western side of Spitsbergen. 

 

- The method used for determining halocline depth was probably not a reliable method for 

this dataset, because it left a lot of room for subjective interpretation when assigning the 

depth. 

 

- Salinity anomalies that stood out visually from the norm were observed. Three of these were 

seen to take place at the same time in locations relatively far away from each other, 

indicating that the cause of these anomalies were of larger scale. 
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Appendix 
Data Import 

%                       Script #1 - Importing data 

%   (Green text at the right side of a percent sign are comments) 

mappinfo = dir( fullfile('C:\YourFolder', '*.nc') ); % Info about all files 

in folder ending with .nc 

[antal_filer,~]= size(mappinfo); % total number of files in folder 

 

 

%   Preallocation of memory (for script to run faster) by creating cell 

arrays before looping through all files. 

lat = cell(antal_filer, 1);  

long = cell(antal_filer, 1); 

salinitet = cell(antal_filer, 1); 

tryck = cell(antal_filer, 1); 

tid = cell(antal_filer, 1); 

kalibrering = cell(antal_filer, 1); 

temperatur = cell(antal_filer, 1); 

djup = cell(antal_filer, 1); 

 

%    The part below loops over all the files and reads the varibels of each 

file 

%    and add these variabels to cell arrays. 

 

%   Try,catch,and end was added in order to stop error from ocurring when  

%   salinity, temperature or depth variables were not included in the file. 

 

for K = 1 : antal_filer  % for loop iterates over every hole number from 1 to 

total number of files. 

fil_nr = fullfile((mappinfo(K).folder),(mappinfo(K).name)); 

 

  try  

  salinitet{K} = ncread(fil_nr,'PSAL');% for each file (fil_nr) reads the 

values of variabel and put them in cell array in row K.  

  temperatur{K} = ncread(fil_nr,'TEMP'); 

  djup{K} = ncread(fil_nr,'FDEP'); 

  catch 

  end 

  lat{K} = ncread(fil_nr,'LATITUDE'); 

  long{K} = ncread(fil_nr,'LONGITUDE'); 

  tryck{K} = ncread(fil_nr,'PRES'); 

  tid{K} = ncread(fil_nr,'TIME'); 

  kalibrering{K} = ncread(fil_nr,'CALIBRATION'); 

end 

 

 

%   This part deals with  having cell arrays of different sizes; where 

%   salinity, temperature and pressure would have XX-XXXX measuremnts while 
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%   Longitude,Latitude and Date only have 1 entry per cell. This adds 

%   the number of Longitude,Latitude and Date values in cells to the 

%   corresponding values of salinity, temperature and pressure. This is done 

to be 

%   able to use the function cell2mat; which converts cell format to 

%   double. Both cell and double formats have their benefits working with 

this data and will be used in 

%   seperate scripts. 

 

[L,W] = size(salinitet); % gives the length of the cell array salinitet 

tid_x = cell(L,1); %preallocating memory 

long_x = cell(L,1); 

lat_x = cell(L,1); 

djup_x = cell(L,1); 

kalibrering_x = cell(L,1); 

 

for i = 1: antal_filer % for loop, iterates over every hole number from 1 to 

number of files. 

lengd = size(salinitet{i}); %give the length of the array inside cell 'i' 

value_time = tid{i}; % value for time in cell 'i'. 

tid_x{i} = (zeros(lengd)+ value_time); %creates an array of zeros with a 

length of columns in 'lengd' and adds time value for each row 

value_long = long{i}; 

long_x{i} = (zeros(lengd)+ value_long); 

value_lat = lat{i}; 

lat_x{i} = (zeros(lengd)+ value_lat); 

value_kalibrering = kalibrering{i}; 

value_djup = djup{i}; 

try 

kalibrering_x{i} = (zeros(lengd)+ value_kalibrering); 

djup{i} = (zeros(lengd)+ value_djup); 

catch 

 kalibrering_x{i} = zeros(lengd); 

 djup_x{i} = zeros(lengd); 

end 

end 

 

 

%                   In preparation of script #2 

 

nydata = [salinitet,temperatur,tryck,lat,long,tid]; % Creating a matrix with 

variables from the imported data. 

tomma_rader = any(cellfun(@isempty, nydata), 2);  %Finding the cells that 

doesn't have any data 

nydata(tomma_rader,:) = [];   % Delete these rows 

 

% The part beneath deletes the nan values inside the cells of salinity and 

% then removes the corresponding values for pressure. 

[langd,bredd] = size(nydata); 



28 
 

bada_kolumner = cell(langd,2); % creating cell array with same amount of rows 

as in nydata and 2 columns. 

for i = 1 : langd 

    kolumn1 = nydata{i,1}; % defining kolumn1 as an array with the contents 

of the cell in row i, column 1 of nydata. 

    kolumn2 = nydata{i,2}; % defining kolumn2 as an array with the contents 

of the cell in row i, column 2 of nydata. 

    nan_varden = isnan(kolumn1); % locating NaN values 

kolumn1(nan_varden) = [];    % remove NaN values from kolumn1 

kolumn2(nan_varden) = [];    % remove corresponding NaN values from kolumn1 

bada_kolumner{i,1} = kolumn1;  

bada_kolumner{i,2} = kolumn2; 

 

end 

Script3_data = [bada_kolumner,nydata(:,3:5)]; 

 

%                   In preparation of Script #3 

 

latlongtime = [salinitet,tryck,lat_x,long_x,tid_x]; %puts cell arrays 

together in a matrix 

 

rad_tomma_varden = any(cellfun(@isempty, latlongtime), 2);  %Find rows with 

empty values 

latlongtime(rad_tomma_varden,:) = [];   %Delete these rows 

Skript2_data = cell2mat(latlongtime); %converts cell array in to double 

array. 

 

rader_nan = any(isnan(Skript2_data),2); % Finds the rows with nan values. 

(lots of the salinity measurements where listed as NaN (not a number))   

Skript2_data(rader_nan,:) = []; % removes rows with nan values. 

 

Script #2 

%                Script #2 - 2D diagrams of salinity and depth. 

close all 

 

Innehall_mapp = 

dir(fullfile('C:\Users\darin\Documents\MATLAB\Analysdata2D_medtemp', 

'*.mat')); %info about files in folder that end in .mat 

spara = cell(length(Innehall_mapp),1); 

 

%loops trough all data for all files in folder and selects data that fits 

%in latitude and longitude interval. 

for k = 1:length(Innehall_mapp) 

 data1 = struct2cell(load(Innehall_mapp(k).name));%Loads 'k' file and 

converts it to cell format. 

 data = data1{1,1}; %getting contents of cell 

[l, ~] = size(data); % size of rows and column 
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Z = cell(l,6); 

for i = 1 : l 

  x = data{i,4};  

  y = data{i,5}; 

  if (Co(1,1) <x)&& (x< Co(1,2)) && (Co(1,3) < y)&&(y < Co(1,4))% 

Lat.min<x<Lat.max AND Lon.min<y<Lon.max. Determines if a point is within these 

intervals. 

  Z{i,1} = data{i,1};%if it is within the interval it adds the data to Z 

  Z{i,2} = data{i,2}; 

  Z{i,3} = data{i,3}; 

  Z{i,4} = data{i,4}; 

  Z{i,5} = data{i,5}; 

  Z{i,6} = data{i,6}; 

  end 

   

end 

 

Q= any(cellfun(@isempty, Z), 2);%Finds empty rows(There will be empty rows 

where the data didn't fall inside the interval.)   

Z(Q,:) = [];  %Delete empty rows.  

spara{k} = Z; %saves data in 'spara' for each iteration of K 

 

end 

 

a = spara{1,1}; 

b = spara{2,1}; 

c = spara{3,1}; 

d = spara{4,1}; 

e = spara{5,1}; 

f = spara{6,1}; 

 

X =[a;b;c;d;e;f]; 

 

D = X(:,3);%depth 

S = X(:,1); %salinity 

t1 = cell2mat(X(:,6)); %days since 1950-01-01 

t2 = 19500101; 

t3 = datetime(t2,'ConvertFrom','yyyymmdd'); 

t4 = juliandate(t3); 

t5 = t1 + t4; 

T = datetime(t5,'convertfrom','juliandate'); % in datetime format 

 

Lat = round(cell2mat(X(:,4)),2); 

Long =round(cell2mat(X(:,5)),2); 

[l,W] = size(X); 

 

 

% For loop that makes a 2D plot and saves it to a file for each 

% iteration(with Date,Lon and Lat). 
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for i = 1 : l 

    x = S{i,1}; 

    y = D{i,1}; 

%     y = (-1) * y1; 

h = plot(x,y,'r-o','DisplayName','CTD-Measurements'); 

lgd = legend(h,'Location','southwest'); 

xlabel('Salinity [psu]') 

ylabel('Depth [m]') 

xlim([27 36]); 

set(gca, 'YDir','reverse') 

grid on 

grid minor 

title(sprintf('Date:%s Lat:%.2f  Long:%.2f', string(T(i)), Lat(i), Long(i))); 

saveas(gcf, ['Salthalt_i' num2str(i) '.png'])%saves image 

end 

 

 

Script #3 

%                       Script #3 - Surface plots 

 

close all 

Innehall_mapp = dir(fullfile('C:\Users\darin\Documents\MATLAB\analysdata_3D', 

'*.mat')); %info about files in folder that end in .mat 

spara = cell(length(Innehall_mapp),1); 

 

for k = 1:length(Innehall_mapp) 

  fil_innehall = cell2mat(struct2cell(load(Innehall_mapp(k).name)));%Loads 

'k' file and converts it to double format. 

  [langd, bredd] = size(fil_innehall); % size of rows and columns 

addera = zeros(langd,6); % preallocates memory 

    for i = 1 : langd 

    x = fil_innehall(i,4); 

    y = fil_innehall(i,5); 

    La_min = Co(1,1); 

    La_max = Co(1,2); 

    Lo_min = Co(1,3); 

    Lo_max = Co(1,4); 

     

    if ( La_min <x)&& (x< La_max) && (Lo_min < y)&&(y < Lo_max) 

    addera(i,:) = fil_innehall(i,:); 

    end 

    end 

 

 omrade = addera(any(addera,2),:); % export rows that is not all zero 

 cell = num2cell(omrade); %converts to cell format 

 spara{k} = cell; % saves output of each file as a cell in row 'k'. 
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end 

 

a = cell2mat(spara{1,1}); %convert each cell back to a matrix in double 

format. 

b = cell2mat(spara{2,1}); 

c = cell2mat(spara{3,1}); 

d = cell2mat(spara{4,1}); 

e = cell2mat(spara{5,1}); 

f = cell2mat(spara{6,1}); 

g = cell2mat(spara{7,1}); 

h = cell2mat(spara{8,1}); 

x = [a;b;c;d;e;f;g;h];       

 

datum1 = 19500101; 

datum2 = datetime(datum1,'ConvertFrom','yyyymmdd'); 

datum = juliandate(datum2); 

bada_datum = x(:,6) + datum; %adds julian time to 1950101 and days since 

1950101(wich the data was deliverd in) together to be able to convert time 

gregorian calendar. 

 

tid2 = datetime(bada_datum,'convertfrom','juliandate'); %converts time 

Datetime format. 

 

tid_v = datevec(tid2);%datevector format 

vektortid = tid_v(:,1:3); % time in year months and days 

tid_y = yyyymmdd(tid2); %yyyymmdd format 

tid_d = datenum(tid2); %datenum format 

y = [x(:,1:5),tid_d(:,1),tid_v(:,2)]; %adds the converted datenum time to a 

new matrix with the other variables. 

% % For loop below removes profiles taken inte wintermonths 

 

 

for j = 1 : length(y)  

    manad = y(j,7); 

    if ( 0<manad)&& (manad< 13) %Select months between interval 

         ym(j,:) = y(j,:); 

    end 

 end 

 Ym = ym(any(ym,2),:); 

    

  

  

  

  

X1 = Ym(:,6); 

X2 = (-1) * Ym(:,3); 

X3 = Ym(:,1); 

 

tryck_mesh = 0 :-1:min(X2) ;  

datum_mesh = min(X1) :20: max(X1) ; 
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tryck_mesh_t = tryck_mesh'; % Transposing to a columnvector. 

X4 = X3 + 2  ; % Elevates the scatterplot above the surface. 

 

 

[xq,yq] = meshgrid(datum_mesh,tryck_mesh_t); % creates a grid with input 

variables, in which datum_mesh is copied for all the rows in xq and 

tryck_mesh_t is copied for all columns in yq. 

 

vq = griddata(X1,X2,X3,xq,yq);% Creates a surface that is interpolated 

between the query points, xq and yq. The interpolated surface always passes 

through the X1,X2 and X3 points. 

mesh(xq,yq,vq),hold on % Plots vq as surface in relation to xq and yq in a 

diagram. 

 

h = scatter3(X1,X2,X4,'fill','black','SizeData',7,'DisplayName','CTD-

Measurements'); hold off %adds a scatterplot to the diagram 

datetick('x','yyyy','keeplimits') 

cb = colorbar; 

title(cb,'Salinity [psu]') 

xlabel('Year') 

ylabel('depth [m]') 

zlabel('Salinity [psu]') 

set(gca,'FontSize',20) 

lgd = legend(h,'Location','southeast'); 

 

Script #4 

%                       Script #4 - Intersect Area 

 

close all 

Innehall_mapp = dir(fullfile('C:\Users\darin\Documents\MATLAB\analysdata_3D', 

'*.mat')); %info about files in folder that end in .mat 

spara = cell(length(Innehall_mapp),1); 

 

for k = 1:length(Innehall_mapp) 

  fil_innehall = cell2mat(struct2cell(load(Innehall_mapp(k).name)));%Loads 

'k' file and converts it to double format. 

  [langd, bredd] = size(fil_innehall); % size of rows and columns 

addera = zeros(langd,6); % preallocates memory 

    for i = 1 : langd 

    x = fil_innehall(i,4); 

    y = fil_innehall(i,5); 

    La_min = Co(1,1); 

    La_max = Co(1,2); 

    Lo_min = Co(1,3); 

    Lo_max = Co(1,4); 

     

    if ( La_min <x)&& (x< La_max) && (Lo_min < y)&&(y < Lo_max) 
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    addera(i,:) = fil_innehall(i,:); 

    end 

    end 

 

 omrade = addera(any(addera,2),:); % export rows that is not all zero 

 cell = num2cell(omrade); %converts to cell format 

 spara{k} = cell; % saves output of each file as a cell in row 'k'. 

 

end 

 

a = cell2mat(spara{1,1}); %convert each cell back to a matrix in double 

format. 

b = cell2mat(spara{2,1}); 

c = cell2mat(spara{3,1}); 

d = cell2mat(spara{4,1}); 

e = cell2mat(spara{5,1}); 

f = cell2mat(spara{6,1}); 

g = cell2mat(spara{7,1}); 

h = cell2mat(spara{8,1}); 

x = [a;b;c;d;e;f;g;h];       

 

datum1 = 19500101; 

datum2 = datetime(datum1,'ConvertFrom','yyyymmdd'); 

datum = juliandate(datum2); 

bada_datum = x(:,6) + datum; %adds julian time to 1950101 and days since 

1950101(wich the data was deliverd in) together to be able to convert time 

gregorian calendar. 

 

tid2 = datetime(bada_datum,'convertfrom','juliandate'); %converts time 

Datetime format. 

tid_v = datevec(tid2);%datevector format 

vektortid = tid_v(:,1:3); % tiden i år, månad, dagar 

tid_y = yyyymmdd(tid2); %yyyymmdd format 

tid_d = datenum(tid2); %datenum format 

Ym = [x(:,1:5),tid_d(:,1),tid_v(:,2),tid_y]; %adds the converted datenum time 

to a new matrix with the other variables. 

% % For loop below removes profiles taken inte wintermonths 

 

   Ymd = zeros(length(Ym),8); 

 for p = 1 : length(Ym) 

     datumet = Ym(p,8); 

     if (20140509 <datumet)&& (datumet<20140511)% Searches for the profiles 

within a specific date interval. 

         Ymd(p,:)= Ym(p,:); 

     end 

 end 

      Intersect_area = Ymd(any(Ymd,2),:); 


