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Abstract

There exist over 300 firm characteristics that provide significant information
about average asset return. John Cochrane refers to this as a “factor zoo”
and challenges researchers to find the independent characteristics which can
explain average return. That is, to find the unsubsumed and non-nested
firm characteristics that are highly predictive of asset return. In this thesis
we act on the posed challenge by using a data driven approach. We apply
two machine learning methods to create sparse factor models composed by
a small set of these characteristics. The two methods are one unsupervised
learning method, the Principal Component Analysis, and one supervised
learning method, the LASSO regression. The study is done using the S&P
500 index constituents and 54 firm characteristics over the time period 2009-
07-01 to 2019-07-01. The performance of the factor models is in this study
measured using out-of-sample measurements. Using established methods of
post-LASSO regression and new developed techniques for variable selection
based on PCA, we generate four new factor models. The latter mentioned
variable selection method based on PCA is, to our knowledge, an origi-
nal contribution of this thesis. The generated factor models are compared
against the Fama French factors in the out-of-sample test and are shown to
all outperform. The best performer is a LASSO generated factor model con-
taining 6 factors. By analysing the results we find that momentum factors,
such as price relative to 52-week-high-price, are highly predictive of return
and are commonly selected factors, which confirms the results of previous
responses to the same challenge.

Keywords: Asset pricing, Factor models, Machine learning, PCA, LASSO,
Variable selection, Dimension reduction, Fama French Three Factor model,
Fama French Five Factor model.
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1 Introduction

1.1 Background

The field of asset pricing is concerned with trying to understand prices and values
of claims with uncertain payments. In essence, a valuation of an asset assesses
two factors; time and risk. The factor of time represent the delay of the pay-
ment. This effect is not hard to calculate. However, the factor of risk plays a
greater role in valuation and is much harder to assess (Cochrane 2005). In the
context of valuation of equity assets, factor models is often used as a proxy for
risk in order to calculate expected return. With the Capital Asset Pricing The-
ory (CAPM) (Sharpe 1964, Litner 1965, Mossin 1966) began the research of these
models. CAPM provides investors with the expected return of an asset, based on
the market risk of the asset (Bodie et al. 2018). However, it did not take long
until anomalies were discovered. Anomalies are defined as empirical results that
are inconsistent with maintained theories (Schwert 2003).

Based on these findings came the Fama French Three Factor model (Fama &
French 1993), which included the market factor of the CAPM, a size factor and
a value factor. Since then a great amount of new factors has been developed and
been found to have predictive power for cross-sectional expected return (Frey-
berger et al. 2016). Harvey et al. (2016) identify more than 300 factors in this
category. John Cochrane addresses this issue in his presidential address Cochrane
(2011), and calls the current state of asset pricing research of significant factors
a “factor zoo”. To clarify, there might be some small number of factor that are
highly predictive on return and that the large number of other factors that has
shown to affect return are simply a product of this small set of highly predictive
factors. That is, it exist factors that are nested in other variables. An example of
this might be cash, when asset it the predictive factor. There will exist correlations
between these but the challenge of distinguishing which factors that are the highly
predictive factors still remain. This is the challenge that Cochrane brings forth to
the asset pricing research field in his presidential address. As factor models are
used to explain market movements and market phenomenons, the task at hand is of
great importance. Furthermore, as the explanation given by factor must work out-
of-sample, for prediction purposes, the importance of parsimoniousity is of essence.

There have been many attempts to address this challenge. Some notable examples
are Freyberger et al. (2016) with the method of adaptive group LASSO, Green
et al. (2017) with the method of Fama-Macbeth with avoidance of overweighting
microcap and adjusted for data-snooping bias, and Kelly et al. (2019) with the
method of Instrumental Principal Component Analysis. In this thesis, we will
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continue in these examples’ footsteps and try to find independent factors with the
methods of Principal Component Analysis (PCA) and Least Absolute Shrinkage
and Selection Operator (LASSO) Regression.

PCA was first developed by Karl Pearson (1901), and is a common tool in dimen-
sionality reduction and has previously been applied in finance, see for example
Feeney et al. (1964), Schneeweiss & Mathes (1995) and Zhong & Enke (2017).
PCA is a unsupervised learning method (James et al. 2013) and by applying PCA
to a large data set, one summarize the variability of the data with a small set of
components generated by the PCA. When using a set of firm characteristics that
has already shown to affect returns, it is reasonable to assume that PCA could be
used to select components that explain asset returns. This comes as a handy tool
for the mentioned objective.

The LASSO regression on the other hand, popularized by Robert Tibshirani
(1996), is a supervised learning method that uses shrinkage, meaning to reduce
coefficients. LASSO has the ability to force coefficients to zero (James et al. 2013),
with the help of a penalty term. The non-zero coefficient variables can then be
extracted and applied elsewhere, which commonly refers to as post-LASSO (Hastie
et al. 2009). In the financial literature, LASSO has been used both for variable
selection and for prediction, see for example Freyberger et al. (2016) and Feng
et al. (2017).

To summaries, the field of asset pricing research is filled with a vast amount of dis-
covered factors with significant effect on asset returns. This has become a problem
for generalizing huge market movements and phenomenons (Cochrane 2011), and
in prediction of out-of-sample data. By using the methods of PCA and LASSO,
we will in this thesis extract the most predictive factors of average asset return
and create sparse factor models.

1.2 Purpose

Factor models can help investors to evaluate if an asset is too cheap or too ex-
pensive and help academics in the pursuit of understanding market phenomenons
and market movements. Although the “factor zoo” offer a great way of analyzing
anomalies of the efficient market hypothesis, it lacks the ability to understand large
coordinated market movements (Cochrane 2005). Sparse factor models have the
advantage of being parsimonious and simple. This makes the explanation intuitive
and simple. Furthermore, the ability to make out-of-sample prediction are most
likely increased in sparse models.
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The aim of this thesis is find predictive sparse factor models and answer Cochrane
(2011)’s question of which firm characteristics can provide independent, non-
nested, information about average asset return. Furthermore, the validity of Prin-
cipal Component Analysis (PCA) and LASSO regression as methods for identifying
independent characteristics is tested.

As mentioned before, previous researchers have used other methods such as the
Fama-MacBeth regression (Green et al. 2017) and the Instrumental Principal Com-
ponent Analysis (Kelly et al. 2019). With 54 firm characteristics of each company
in the S&P 500 index and the usage of PCA and LASSO in our thesis, we will
contribute with further research in firm characteristics to the factor literature.

1.3 Research Question

The purpose of answering Cochrane (2011)’s presidential address, leads us to the
formulation of the thesis’ research question. The answer to the following research
question will be sought in this thesis:

Which firm characteristics should be included in a sparse factor model that
predict asset return?

To answer this research question we will use a sample of listed companies on the
New York Stock Exchange (NYSE) and NASDAQ which are included in the S&P
500 index. The firm characteristics are all included in Freyberger et al. (2016) and
Green et al. (2017) and are calculated with help from S&P Capital IQ.
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2 Literature Review

The early asset pricing research field had no direction until CAPM was devel-
oped (Cochrane 2011). Then came anomalies and the field lost its direction again.
Cochrane (2011) notes that the traditional way of examining excess return, that is,
portfolio sorting, see Fama & French (1993), Carhart (1997) and Fama & French
(2015), works poorly when the number of included factors are excessive and re-
searchers should find other methods. With the challenge from Cochrane (2011)
began the research of alternative methods for finding and evaluating which inde-
pendent characteristics explain average return. These methods will be presented
now together with the corresponding results.

When Green et al. (2017) compute their Fama-Macbeth regressions with 94 char-
acteristics during the years 1980 to 2014, they find that only 12 characteristics
provided significant independent information about average return before 2003.
After 2003 the predictability of returns fell and only two factors have been viable
since 2003. Green et al. (2017) also test their 12 factor model with control for the
benchmark models Carhart Four Factor Model (Carhart 1997), Fama French Five
Factor Model (Fama & French 2015) and the q-Factor Model (Hou et al. 2015).
First off, they find that 11 of out the 12 significant factors differ from the factors
included in the benchmark models. Secondly, they find that when controlling for
the benchmarks, their results does not differ much. Their factors offer new infor-
mation (Green et al. 2017).

With their adaptive group LASSO Freyberger et al. (2016) get a higher explana-
tory power out-of-sample than linear regressions. Freyberger et al. (2016) uses 36
characteristics and finds that between 7 and 15 factors provide independent in-
formation about average returns. Factors extracted from Freyberger et al. (2016)
include market capitalization, investments and various momentum factors.

Unlike Green et al. (2017) and Freyberger et al. (2016), in their effort to an-
swer Cochrane (2011), Kelly et al. (2019) try to identify latent characteristics
that provide independent information. They find that the own developed Instru-
mental Principal Component Analysis (IPCA) model outperform existing factor
models such as the Fama French Five Factor Model (Fama & French 2015) in de-
livering accurate predictions, both in-sample and out-of-sample. The factors with
most predictive power are 12-month momentum and size. IPCA does also deliver
higher out-of-sample “mean-variance” efficiency than other methods (Kelly et al.
2019).
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Another previous work in the factor literature in order to distinguish anomalies in
asset pricing is Hou et al. (2015), which examines 35 firm characteristics, such as
momentum (Jegadeesh & Titman 1993, Carhart 1997), return on equity & capital
turnover (Haugen & Baker 1996) and market equity (Banz 1981) for naming a
few. Hou et al. (2015) work results in the q-Factor Model, which includes a market
factor, a size factor, an investment factor and a profitability factor.

The usage of machine learning in the field of asset pricing has in the last years in-
creased greatly. Rapach et al. (2013) use LASSO for predicting international equity
market returns and in their comparative analysis of machine learning methods Gu
et al. (2020) finds that neural networks and other machine learning based methods
can help to understand empirical asset pricing. In Feng et al. (2017)’s effort of
“taming the factor zoo”, one once again see the usage of a LASSO based method,
namely the double LASSO, as a tool for explaining return.

As presented, various researchers have tackled the challenge of identifying inde-
pendent characteristics that provide information about average return. For more
existing literature in the field of firm characteristics and cross-sectional returns,
see the notable work of Haugen & Baker (1996), Daniel & Titman (1997), Light
et al. (2017), Kozak et al. (2018) and Kozak et al. (2020).
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3 Theory

3.1 Asset Pricing

This section introduces the reader to the fundamental challenges of asset pricing
and to the current state of the research field. In this section we start off with
an utility function expressed in terms of consumption and derive a general asset
pricing function, which then is used to express price as a function of factors (firm
characteristics). Note that this section is vastly based on the explanations made
in Cochrane (2005).

3.1.1 Asset Pricing Function

In his book (Cochrane 2005), John Cochrane outlines that the basic objective
in asset pricing is to figure out the value of an uncertain stream of cash flows.
This can be seen as figuring out the value of the asset at time t with an payoff
xt+1. The payoff is different depending on the asset type, if considering a stock
then the payoff equals the price in the future plus dividend, xt+1 = pt+1 + dt+1.
Although xt+1 is a random variable, investors can asses probabilities of outcomes.
Asset pricing is more concerned with what the typical investor is willing to pay
for some future payoff. To answer this, an utility function, expressed in terms of
consumption, is used,

U(ct, ct+1) = u(ct) + βEt[u(ct+1)], (1)

where ct denotes consumption in time t and ct+1 in time t + 1, u(·) denotes some
increasing and concave utility function and β denotes the subjective discount which
reflects the fact that the investor is impatient and values consumption today higher
than consumption tomorrow. If one again consider the payoff and assume that the
investor can buy and sell as much as he/she likes at price pt, then the choice of
the investor can be written as

max
ξ
u(ct) + Et[βu(ct+1)] (2)

subject to

ct = et − ptξ,
ct+1 = et+1 + xt+1ξ

(3)

where e denotes the consumption level with no purchase of the asset, and ξ denotes
the amount that the investor chooses to buy. By substituting in the constraints
one gets,

max
ξ
u(et − ptξ) + Et[βu(et+1 + xt+1)]. (4)
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By then setting the derivative with respect to ξ to zero one gets,

u′(ct)(−pt) + E[βu′(ct+1)xt+1] = 0, (5)

and then finally end up with,

pt = Et

[
β
u′(ct+1)

u′(ct)
xt+1

]
. (6)

Equation (6) is referred to as the central asset pricing formula and can also be
written as

pt = Et [mxt+1] , (7)

where

m ≡ β
u′(ct+1)

u′(ct)
.

The interpretation goes as follows. Price at time t, pt, is the expected value of the
discount factor, m, times the payoff at time t+ 1, xt+1.

3.1.2 Risk

Let’s consider the risk-free rate given by

Rf =
1

E(m)
, (8)

and gross-return of an asset is given by

Rt+1 ≡
xt+1

pt
. (9)

The return of an asset can be thought of as the payoff of an asset with price 1,
that is,

1 = E(mR). (10)

If one were to go back to the original pricing function, p = E(mx), apply the
decomposition of the covariance, cov(m,x) = E(mx)−E(m)E(x), and substituting
in the risk-free rate equation given in Equation (8), then one gets

p =
1

E(x)
+ cov(m,x). (11)

One can then see that price can be expressed as the sum of a discounted present
formula and a risk adjustment term. One might think that the volatility of the
asset determines the risk and consequently determines part of the price. However,
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as one can see, if there is no correlation between the discount factor and the payoff,
then the volatility has no effect on the price. Furthermore, the covariance term’s
affect on the price can be interpreted as that the investor does not like uncertainty.
The discount factor m is large when the utility function is stable. If the covariance
of m and x is positive, then this means that when x increases, m increases as well.
Since u′(ct+1) is the only term that is not fixed, it must mean that this is what
increases with x. Considering that u(·) is increasing and concave, an increase in
u′(ct+1) comes from a decrease in u(ct+1), i.e. decrease in ct+1. The conclusion is
that if cov(m,x) > 0 then cov(ct+1, x) > 0. The fact that this increases the price
of the asset stems from the fact that an investor prefers to own an asset which
payoff increases when he/she is feeling poor over an asset which payoff increases
when he/she is already feeling wealthy.

One can now move on by rewriting the formula in Equation (11) and moving into
the realm of returns by applying the case in which price equals 1, as in Equation
(10), and using the the risk-free rate given by Equation (8),

E(Rei) = E(Ri)−Rf = −Rfcov(m,Ri). (12)

One end up with an equation for calculating the expected excess return of an
asset. One can see that the expected excess return will be lower for assets with
return that covaries with the discount rate, i.e. have a negative covariance with
consumption. If the investor is willing to take the risk, the expected excess return
will be higher (Cochrane 2005).

3.1.3 Beta Pricing Models

Equation (12) can be rewritten as

E(Ri) = Rf +

(
cov(m,Ri)

var(m)

)(
−var(m)

E(m)

)
, (13)

which one then can express as a beta pricing model,

E(Ri) = Rf + βi,mλm, (14)

by defining βi,m ≡ cov(m,Ri)
var(m)

and λm ≡ −var(m)
E(m)

. This is useful as the βi,m is the
regression coefficient of the return on the discount factor, and will come in handy
later.

3.1.4 Factor Pricing Models

So far, we have concluded that consumption should be able to determine price and
expected return of a portfolio. Unfortunately, the model lacks empirical support
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(Cochrane 2005). This might have to do with uncertainty concerning the utility
function. Motivated by the lack of empirical support, the concept of factor pricing
models was developed as a modification of the beta pricing model by adding more
variables in order to increase the predictive power of the model. Factor pricing
models are models that try to explain the discount factor as a linear function
composed by combinations of factors that act as proxies

mt+1 = a+ bAf
A
t+1 + bBf

B
t+1 + · · · . (15)

3.1.5 Expected Return-Beta Representations

By using the methodology of factor-pricing models, one can construct expected
return-beta representations. This is done by combining Equation (14) and (15),
which results in the following equation,

E(Ri) = γ + βi,aλa + βi,bλb + · · · , i = 1, 2, · · · , N. (16)

The βs are defined as the coefficients in the time-series regression

Ri
t = ai + βi,af

a
t + βi,bf

b
t + · · ·+ εit, t = 1, 2, · · · , T. (17)

The interpretation of these variables are as follows. β is the amount of exposure
that an asset has to a risk factor, and λ is the price of that exposure.

There is an enormous amount of research that is focused on the average return
across assets that is outlined in Equation (16). One of the most notable of such
research is the Capital Asset Pricing Model (CAPM). CAPM was originally de-
veloped from Modern Portfolio Theory (Markowitz 1952), which showed that it
is possible for an investor to maximize returns by diversifying the portfolio, in a
sequence of papers (Sharpe 1964, Litner 1965, Mossin 1966). The CAPM model
proxies return of the market portfolio for marginal utility growth,

E(Ri) = γ + βi(E(Rm)− γ), i = 1, 2, · · · , N (18)

where E(Ri) denotes the expected return for asset i and E(Rm) is the expected
return of the market portfolio, and γ denotes the risk free rate and is usually prox-
ied by the one-month US Treasury bill rate (Fama & French 2004). The sensitivity
of return for asset i to the market return can be represented by βi. The market
risk premium is represented by the difference between the return of the the market
portfolio E(Rm) and the risk free rate γ (Fama & French 2004).

Although developed 56 years ago, CAPM is still widely used in various areas,
such as the evaluation of portfolio performance (Fama & French 2004). However,
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no model is perfect and throughout the times there have been studies that present
anomalies related to a large amount of factors and characteristics.

A notable example is Banz (1981), which finds evidence for risk premium rep-
resented by a size factor. Influenced by this, Fama & French (1992) studied the
relationship between a firms book-to-market value and its returns, which resulted
in the discovery of the value premium. Fama and French based a new model on
these studies, presented in Fama & French (1993). This model is often referred to
as the Fama French Three Factor Model, and is given by

E(Rei) = α + β1,i(E(Rm)−Rf ) + β2,iE(RSMB) + β3,iE(RHML) + εi, (19)

RSMB denotes the difference in expected return between small and big size firm
portfolios, and RHML denotes the difference in expected return between high and
low book-to-market ratio portfolios (Bodie et al. 2018). Close to a decade later,
Fama and French found proof for new anomalies and designed the Fama French
Five Factor Model to address these anomalies Fama & French (2015),

E(Rei) = α + β1,i(E(Rm)−Rf ) + β2,iE(RSMB) + β3,iE(RHML)

+β4,iE(RRMW ) + β5,iE(RCMA) + εi,
(20)

where E(RRMW ) is the difference in expected return between robust operating
profitability and weak operating profitability firm portfolios, and E(RCMA) the
difference in expected return between conservative investment and aggressive in-
vestment firm portfolios.

The Fama French Three Factor model and Fama French Five Factor model are just
two examples of factor models that has been developed since CAPM. Harvey et al.
(2016) has identified over 300 published factors that describe the expected excess
return of assets. John Cochrane in Cochrane (2011) refers to this as a “factor
zoo” and challenges researchers to, instead of researching new potential factors,
find which factor independently explains return.
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4 Data & Methodology

4.1 Model comparison and evaluation

We select sparse sets of firm characteristics by applying Principal Component
Analysis and Least Absolute Shrinkage and Selection Operator techniques. The
choice of using PCA and LASSO is not only based on the fact that these two
methods has been used earlier to similar problem as a lot of methods fall into this
category. The choice was also influenced by the fact that it offers a comparison
analysis between unsupervised and supervised learning. Lastly, the methods were
chosen based on their relative simplicity compared to other methods listed in the
literature review, which offers greater interpretability of the results. To be able
to measure if these techniques are successful we need a model evaluation procedure.

We apply our different techniques of variable selection and compare their pre-
dictive performance on an independent test sample. Following the examples of
Freyberger et al. (2016), Green et al. (2017) and Kelly et al. (2019), the perfor-
mance of out-of-sample predictions will act as a basis. Our data will be divided into
two samples, one training sample and one test sample. The firm characteristics
of the Fama French Three Factor model and the Fama French Five Factor model
will be used as a performance benchmark. That is, we will not use the portfolio
sorting approach that is used by Fama and French, instead we will include the
same firm characterising that Fama and French uses to construct portfolios and
model these. The factors from the Fama French Factor models are beta, size,
book-to-market, investments and profitability (Fama & French 1993, 2015).

The model comparison procedure contains the following steps and is done for
each model.

1. Perform the specific technique for variable selection on the training set data.

2. Regress log-return on the factors using the training set, with OLS regression.

3. Generate predicted values on the test set.

4. Measure deviation of predicted values from observed values in the test set.

As measurement, we will use mean squared prediction error (MSPE) which is
calculated by

MSPE =
1

n

n∑
i=1

(yi − ŷtraini )2, (21)

where n is the number of observations in the test sample, yi is the log-return of
observation i, where i = 1, 2, · · · , n and are all in the test set, and ŷtraini denotes
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the predicted value of log-return based on model done on the training set.

To put this in the context of asset pricing theory the model comparison proce-
dure has the following steps.

1. Select which risk factors are of interest.

2. Estimate the corresponding average exposure that risk factor has on each
stock, as in Equation (17).

3. Use this exposure to predict asset returns on new data.

4. Measure the difference between predicted and real returns.

The following parts of this section will cover the necessary information of how
these results will be gathered. First off, the required data will be covered, together
with sample selection and data trimming. Then both PCA and LASSO regression
will be covered.

4.2 Data

Our data consist of quarterly observations of 54 variables for 500 constituents of
the S&P 500 index, all of which are listed companies in New York Stock Exchange
(NYSE) or NASDAQ. A vast majority of the firms characteristics are derived from
quarterly reports, hence; we use quarterly observations. The variables consists of
54 firm characteristics and a dependent variable. Just as our precursor Green et al.
(2017), the logreturn variable (log(pit) − log(pit−1)) is used as dependent variable.
The 54 chosen firm characteristics are listed in Freyberger et al. (2016) and Green
et al. (2017) and were all the characteristics that we were able to collect using
the database of Capital IQ. Each of the characteristics has proved to significantly
explain return in past research. Every firm characteristic is listed in Appendix
1 together with corresponding explanation and calculation. For more informa-
tion regarding theses characteristics, see Freyberger et al. (2016) and Green et al.
(2017). The observations range from 2009-07-01 to 2019-07-01, and are, as men-
tioned, gathered quarterly.

Before starting the analysis, some data cleaning needs to be done. The data
include some missing values (N/A), which, in most cases, are due to limitations
in the database. These values will be set to the post-standardized mean of zero,
which has been done in Green et al. (2017) as well. Some of our variables has a
large number of missing values. In cases of over 100 missing values, the variable
is removed as the amount of missing values will affect the results. After dropping
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these variables, we have 48 variables left. The dropped variables are listed in Ap-
pendix 1. This conclude our data cleaning. Next up is the data screening process.
After looking at the distributions of the variables, which were highly skewed and
contained a lot of outliers in almost all the cases, we decided to use a technique
called winsorizing, just as Green et al. (2017). Winsorizing set the values that are
smaller than the 5th percentile to the value of the 5th percentile and the values
that are larger than the 95th percentile to the value of the 95th percentile. This
is done on each factor.

Since the selected firms were taken from the list of constituents of the S&P 500
index as of today, the firms might not have been listed for the entire period that
is used. For this reason we chose to drop the firms that have not been listed the
entire 10 year period. 39 firms were removed based on this.

When the data is ready to use, it is divide into two parts, a training set and
a test set. The training set contains data from 2009-07-01 to 2016-07-01 and the
test set contains data from 2016-10-01 to 2019-07-01. The training set contains
the data which all models are constructed by. The LASSO regression is conducted
on the entire training set. The PCA is conducted on the firm characteristics of
all firms on the last day in the training set, that is, 2016-07-01. In the model
comparison stage the test data is used to calculate the MSPE-values.

4.3 Principal Component Analysis

Principal Component Analysis (PCA), developed by Pearson (1901), is a widely
used tool that enables the user to transform high dimension data into a small set
of factors that manages to sustain the representation of the variability of the data.
In simple terms, it can be seen as a tool for removing repetitive and redundant
dimensions. PCA falls into the category of unsupervised learning (James et al.
2013). This means that it conducts a dimension reduction without taking the
effect on return predictability into account.

That a method which falls into the category of unsupervised learning is applied in
a prediction context might raise suspicion. The following examples illustrates how
PCA can be useful for finding relevant factors even though it does not directly
target returns. Let us consider some asset characteristics that co-move with the
market in some systematic way. These characteristics exhibit covariance, i.e. if
x1 goes up one can expect x2 to also go up. But this is because they both are
driven by an unobserved factor “market”. If one were to know how the market
factor maps into x1 and x2, one can construct proxies of x1 and x2 using infor-
mation about the unobserved factor the “market” factor. PCA plays it’s part by
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extracting the unobserved market factor from the covariance matrix of x1 and x2
and explaining it as a linear function of x1 and x2. The characterisation is easy
and intuitive, but this is not true for most cases.

PCA provides us with independent unobserved factors, which are hard to interpret
since they contain loadings of all independent variables. The objective of this the-
sis contain variable selection. This will not be fulfilled by just stating the loadings
of the unobserved factors. Instead, our approach is to try to “proxy” the most
important PCs by factors. We have chosen two different methods for the task of
deciding which variables should act as proxies. The technique of choosing these
factors is an original contribution by this thesis.

To use PCA to extract variables that explains a dependent variable is highly
dependent on the assumption that what explains most of the variation of the
independent variables also explains the most of the variation of the dependent
variables. This is, of course, something that one can not know beforehand. Al-
though, since all of our independent variables are selected based on the fact that
it has been shown to significantly explain return in one or more research papers
(Freyberger et al. 2016, Green et al. 2017), we believe it to be correct to argue
that that assumption is correct in this case.

We now cover the technical aspects of PCA. Suppose one have a data matrix
X consisting of n observations and m variables,

X =


x11 x12 · · · x1m
x21 x22 · · · x2m
...

...
. . .

...
xn1 xn2 · · · xnm

 . (22)

Assume that one have insufficient economical arguments for characterisation and
grouping of the data. PCA constructs a number of independent n-sized eigen-
vectors called principal components (PC), earlier referred to as unobserved factors
(James et al. 2013). The first PC explains the most variability of X out of all PCs,
the second PC explains the second most, and so on. As the investigation of the
variability of X is desired, one can use V ar(X), and in matrix form, this is called
the covariance matrix, Σx. If the variables are in different units of measurement,
the magnitude might affect the outcome of the PCA. It is therefore a common
practice to standardize the elements, which is done by taking the difference be-
tween the value of the element and the mean, divided by the standard errors. If
this is done on X to get Xs the result is that the covariance matrix ΣXs is equal
to a correlation matrix.
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Every PC is associated with a positive numbered eigenvalue. With the help of
the eigenvalue the total variance explained by that PC can be calculated. Next,
one have to decide how many PCs that should be kept to still be able to efficiently
explain the variability. Common rules of thumb for the selection of the number of
PCs are Kaiser’s Rule (Kaiser 1960), cumulative variability and inflection point
(James et al. 2013). By using the Kaiser’s rule, the number of PCs selected should
be based on the number of PCs with eigenvalues over 1. The cumulative rule in-
stead bases the selection on the cumulative variability of the selected PCs, based
on a arbitrarily chosen threshold. The inflection point method uses a scree plot
with eigenvalues on the y-axis and the PCs on the x-axis. The number of PCs
should then be based on the the inflection point of the scree plot, that is where
the plot goes from convex to concave (James et al. 2013).

We now move on to the techniques of variable selection. The first method that we
use to decide which factors should act as proxies contain the procedure to choose
proxies for each PC. We will regress each PC on each variable and pick the fac-
tors which model receive the highest R2 value. We will not limit the proxy to
just a single variable for each PC, instead, we will pick three variables as prox-
ies. This choice is based on weighting the explanatory power of the proxy on the
corresponding PC, which increases with more variables, and simplicity of the end
model. The approach for picking proxies is closely related to stepwise selection, for
more information see James et al. (2013). We are aware of the potential local min-
imum that it may return. The methodology is presented in the Algorithm 1 below.
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Algorithm 1: Pseudo code for the selection of variables

For each PC, i, selected , select the variable xc that has the highest
absolute correlation with i, j = 1;

while j < K do
Select variable xj;
if xj 6= xc then

regress i = xc + xj if R2 is higher then previously seen, save R2 as
R2
sec and xj as xsec;

set j = j + 1
else

set j = j + 1

set j = 1;
while j 6= K do

Select variable xj;
if xj 6= xc and xj 6= xsec then

regress i = xc + xsec + xj if R2 is higher then previously seen, save
R2 as R2

third and xj as xthird;
set j = j + 1

else
set j = j + 1

This algorithm provides the factors which can explain the most for each PC and
further the highest explanatory power for our data set. As one can see from the
Algorithm 1, this procedure continues for each PC until one gets the three variables
with the highest R2 in each regression. The reason we do not use more variables
in our regression is that our goal is dimension reduction; hence, we should try with
as few variables possible to get explanatory power.

We will also conduct a second variable selection based on PCA, which also uses a
method influenced by stepwise selection. Our first approach select variables which
act as proxies for each of a number of PCs. This second approach will instead
be based on the explanatory power of the variables on the entire data set. Recall
that each PC has a corresponding percentage explanation of the total variation in
the data. With the help of OLS regression, which is used in the first approach as
well, one can receive a R2 value of each variable on each PC. Let us use variable
x1 and principal component PC1 as an example. If one denotes the percentage
explanation of the total variation given by PC1 by PC%

1 and the R2 value from
the regression PC1 = α+βx1+ε as R2

1,PC1
. Then one can calculate the percentage

explanation of the total variation given by variable x1 through PC1 by

x%1,PC1
= PC%

1 ·R2
1,PC1

. (23)
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Since each of the principal components are independent of each other, the cumu-
lative variance explained of the PCs is equal to 1. The PCs independence also
means that

x%j,PCi
+x%j+1,PCi

+· · ·+x%K,PCi+1
+· · · = 1 for j = 1, 2, · · · , K and i = 1, 2, · · · , K

(24)
where K is the total number of variables, and, hence, total number of principal
components. Furthermore, one can conclude that the total variance explained by
variable xi is given by

x%i =
K∑
j=1

(
PC%

j ·R2
i,PCj

)
. (25)

Equation (25) is what this second approach is based upon. Instead of pursuing
a stepwise selection to proxy some variables for each principal component, the
stepwise selection is pursued to proxy the entire set of principal component. This
stepwise selection is presented in Algorithm 2 below.

Algorithm 2: Pseudo code for the selection of variables

while j =< K do
Select variable xj;

calculate x%j ;

if x%j is higher than any previously seen then
save xj as xfirst;

else

set j = j + 1

The algorithm is then applied to include multivariate regression. That is, we will
do the steps taken in Algorithm 2 and include xfirst and then save the xj which
has the highest x%j -value in combination with xfirst, then save that xj and include

it, together with xfirst to calculate a x%j again. This is repeated for some number
of variables.
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4.4 LASSO Regression

A relatively recent developed method, compared to PCA, is the LASSO regression.
First popularized by Tibshirani (1996) because of its ability to generate interpre-
tive results by using shrinkage. Shrinkage, according to Everitt & Skrondal (2002),
refers to the reduction of model prediction when fitted on a new model. More par-
ticularly, it refers to a shrinkage in a variable coefficient. LASSO can also be used
for dimension reduction where it performs variable selection. By using a shrinkage
method LASSO receives a lower prediction error. To be able to understand the
theory of LASSO, its advantages and applications, one will need to first cover the
bias-variance tradeoff.

When creating models to be able to predict some dependent variables based on
some independent variables the objective is to reduce the deviance of the fitted
value ŷ from the real value y (James et al. 2013). Consider the desired model
y = f(x) + ε. Our objective is to find the best model ŷ(x) ≈ f(x). Since the
model concerns predictions, one would want to look at how well the data performs
on new data. Let us consider a test set for this task. To evaluate the performance
of ŷ one can use,

E(y0 − f̂(x0)) =
1

N

N∑
i=1

(yi − f̂(xi))
2, (26)

where E(y0− f̂(x0)) denotes the expected test MSE. The test MSE can be shown
to be a result of three essential properties in statistical learning according to James
et al. (2013). One can decompose the MSE, given data x0, into

E(y0 − f̂(x0)) = V ar(f̂(x0)) +Bias(f̂(x0))
2 + V ar(ε). (27)

The bias of f̂ refers to the systematic error of that is contributed by f̂ . The vari-
ance of f̂ is the amount that f̂ changes when using new data. Since the variance
of the error term ε is irreducible, the minimization of expected test MSE is only
achieved by simultaneously minimizing the variance and bias of f̂(x0). This is
what is commonly referred to as the bias-variance tradeoff (Hastie et al. 2009).

As mentioned in the data section, we have a great amount of variables. In these
cases, the bias is relatively low but the variance is high since the more variables
included in a model, the more adaptive the model is to the training set. A great
way of decreasing the variance, according to James et al. (2013) is to shrink the
coefficients to some mean. One of the most used shrinkage methods is, again ac-
cording to James et al. (2013), the LASSO regression.
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The advantage of LASSO regressions compared to other shrinkage models is the
fact that it can force coefficients to zero (James et al. 2013). This means that
in a multivariate regression including various variables LASSO perform variable
selection because it has the ability to force coefficients with low predictable power
to zero. A LASSO regression yields a sparse model which means that only some
variables from the original ones set will be used (James et al. 2013). The LASSO
regression is defined as

β̂LASSO = argmin
β

N∑
i=t

(yi − β0 −
p∑

j=1
xijβj)

2 subject to

p∑
j=1
|βj| ≤ t

(28)
Or in Lagrangian form as

β̂LASSO = argmin
β

{
1

2

N∑
i=t

(yi − β0 −
p∑

j=1
xijβj)

2 + λ

p∑
j=1
|βj|

}
(29)

One can notice the penalty term, λ
∑

j |βj|, in the LASSO regression on the right
hand side of Equation (29). LASSO is, compared to another shrinkage method,
the Ridge Regression, easier to interpret because of its variable selection. The
difference between LASSO and Ridge regression are presented in Figure 1.

Figure 1: Figure on the right illustrates the Ridge regression penalty term. The
figure on the left illustrates the LASSO regression penalty term. Source: James
et al. (2013) p. 222.
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The blue circle represents the Ridge regression constraint and the blue diamond
the LASSO constraint. As one can see that they differ by the way that LASSO
has a corner solution. The ellipse represents the least squared error function where
all points on the same ellipse represent the same error (James et al. 2013). Both
methods will identify where the ellipse tangents the constraint. Since Ridge has
a circular constraint the coefficient estimates will exclusively be non-zero as they
can not intersect at the axis. In contrast, LASSOs diamond constraint has cor-
ners at both axes, the ellipse can intersect at those regions, which results in the
coefficients equal zero. LASSO also tends to do better in reducing variance at a
small expense of bias compared to Ridge when dealing with high variance data
sets (James et al. 2013).

LASSO regression contains a penalty term which is dependent on the variable
λ. λ will be selected based on the best fitted model, call this λmin. In order to
select a more parsimonious model, one can select the λ that is one standard error
away, the λ1se (James et al. 2013). We will use both and construct two models. To
determine λmin and λ1se, we will use k-fold cross-validation, a method that uses
two sets of temporary chosen in-sample and out-of-sample data, both are still part
of the training set, with k folds. With k-fold cross-validation, the data is divided
into k sets. Then, for each k, k− 1 of the sets form the training set and 1 set form
the test set. A model is then fitted on the training set and then predicted on the
test set. Lastly, the model is evaluated by summarizing these k iterations (Hastie
et al. 2009). An illustration of the fold and sets are illustrated in Figure 2 with
k = 5. We will use a 10-fold cross-validation procedure in our LASSO regression.
This will be done in R using the package glmnet.
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Figure 2: 5-fold cross-validation sample setup. Source: De Prado (2018) p. 104.

The extracted optimal λs is then used in LASSO regressions. The factors with
non-zero coefficients in these LASSO regression are the selected factors, which can
be expressed as using the post-LASSO method. Our LASSO regression will be
applied to a OLS model. This means that the same assumption that applies to
OLS applies to LASSO regression. Our main concern, as we use time series data,
is the assumption of stationarity, i.e., that the distribution does not change over
time (Tsay 2010).

For times series regression one needs to take into account two key assumption,
stationarity and weak time dependence. Stationarity is the foundation in time se-
ries analysis where one assumes that the joint distribution is identical over time.
In the financial literature, it is common to assume the asset return to be weak
stationary (Tsay 2010). Weak time dependence on the other hand means that a
variable at time t0 can not predict the value for the variable at t1. In the financial
literature one assume that a stock follows a random walk (Cochrane 2005), which
implies weak time dependence.
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5 Results

5.1 Principal Component Analysis

The scree plot of the eigenvalues for the respective PC on the y-axis and the PC on
the x-axis are displayed in Figure 3 and the cumulative variability plot is displayed
in Figure 4.
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Figure 3: Scree plot of percentage of variance explained for each PC.

As one can see in Figure 3 the first PC has a relatively high eigenvalue when
compared to the following PC. The same marginal drop is also seen after PC 5,
which also seems to be the inflection point. If we instead look at the cumulative
variability we get the sum of the explained total variance in the data for each PC
and its precursors. The cumulative variability is presented in Figure 4.
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Figure 4: Cumulative percentage of variance explained by each PC.

Based on the findings presented in Figure 4 one can note that the five PCs with
the highest eigenvalues explain around half the variance in the data set. The third
way of choosing PCs is to select all PCs with eigenvalues over 1. In our case,
the PCs with eigenvalues over 1 is in total 16. As our objective is dependent on
picking a few independent factors, we decided to not use this approach. Instead we
use the inflection point method, while considering adequate cumulative explained
variability. This result in the selection of 5 PCs. The firm characteristics were
extracted using our two methods. Algorithm 1 creates the first PCA model, later
called PCA1. With the procedure of PCA1 we extract three factors for each cho-
sen PC that will act as proxies for these PCs. Each chosen PC, the corresponding
factors and the R2 are presented in Table 1.
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Selected factors

PC 1 2 3 R2

1 roaq a2me sgr 0.89
2 quick rel.to.high salecash 0.79
3 ep agr mom36m 0.71
4 chcsho gma agr 0.75
5 betasq mve gma 0.63

Table 1: The PCs, the corresponding factors that result in a regression with the
highest R2 from the method of stepwise regression, and the corresponding R2.

From Table 1 we can see that three factors for each PC seem to explain each PC
by a sufficient amount by looking at the R2. One can also see how both agr and
gma has been selected for two PCs. This leaves us with 13 factors selected from
this method. Notable is that roaq, a2me and sgr explain 89% of PC 1 which was
the PC with the highest eigenvalue. These three factors seem to capture a lot of
the variability. The regression on PC 5 has the lowest R2. From Equation (25) we
calculate the total variance explained by the model that contain these 13 factors
and end up with 43.96%.

The second model, later called PCA2, uses the total explained variability step-
wise method, explained in Algorithm 2. In Figure 5 the total explained variability
is presented.
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Figure 5: Total explained variability by a number of factors.

We can in Figure 5 see how a small set of factors manage to generate explanatory
power close to 50% of the total variability. Figure 5 compared to Figure 4 shows
real factors instead of generated PCs. From this, we choose to extract 8 factors as
the marginal explanation drops after 8 factors. Again, the objective of the thesis
requires us to weight explanation and simplicity. As these 8 factors explain 49.75%
of the variability, which is sufficient, and the marginal explanation drops, we make
the decision of choosing 8 factors. The factors extracted are: a2me (assets-to-
market capitalization), agr (asset growth), cto (capital turnover), quick (quick
ratio), roaq (return on assets), rd sale (R&D to sale), rel.to.high (price to 52
week high price) and tb (tax income to book income).
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5.2 LASSO Regression

First off, the λs are chosen using 10-fold cross-validation and the result are pre-
sented in Figure 6 below.
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Figure 6: Cross validated λ with corresponding MSE. The bottom x-axis shows
the log(λ) value and the top x-axis shows the corresponding number of non-zero
coefficients. The two dotted lines are the λmin and λ1se values.

Figure 6 shows the selected tuning parameter (λ) from the cross-validation. One
can see how the MSE increases when the variable selection generate fewer char-
acteristics. The red dots represent the MSE for corresponding log λ and the grey
bars represent the confidence interval. The λmin generated a model containing 12
factors and the λ1se generates a model containing only 6 factors.

The characteristics generated from LASSO λmin is agr (asset growth), beta (beta),
currat (current ratio), dy (dividend to price), lev (leverage), mom12m (12-
month momentum), mom1m (1-month momentum), mom36m (36-month mo-
mentum), mom6m (6-month momentum), quick (quick ratio), rel.to.high (price
to 52 week high price) and tang (debt capacity/firm tangibility).

The characteristics generated from LASSO λ1se is dy (dividend to price), mom12m
(12-month momentum), mom1m (1-month momentum), mom36m (36-month
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momentum), mom6m (6-month momentum) and rel.to.high (price to 52 week
high price).

5.3 Model comparison

The result from out-of-sample prediction by each of the four created models and
two benchmark models are presented in Table 2 below.

Method MSPE Number of factors
PCA1 0.009964 13
PCA2 0.009938 8
LASSOλmin

0.005006 12
LASSOλ1se 0.005003 6
FF3 0.017297 3
FF5 0.017323 5

Table 2: Mean square prediction error values. Calculated with out-of-sample set
of quarterly log-returns from 461 firms in 2016-10 to 2019-07.

With the measure of MSPE, LASSOλ1se is the best performing model. All con-
structed model also outperforms the two benchmark models. Overall, the two
LASSO models outperform both the benchmark and the PCA models.
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6 Discussion

Both LASSO and PCA are successful in the context of minimizing the mean
squared prediction error as the four models based on these techniques outperform
the benchmark. However, as a part of the objective is to build sparse models, the
value of parsimoniousity should not be ignored. Each of our models are larger
than the two benchmark models. On the other hand, these results might indicate
that the two established models are too parsimonious and more factor should be
included. Still, a key takeaway from the in-group results, meaning the difference of
results in the technique models, is that in each technique, the more sparse model
outperforms the less sparse model; PCA2 outperforms PCA1 and LASSOλ1se out-
performs LASSOλmin

. This is most likely a consequence of reduction in variance
of the models.

Our main concern with the results are the lack of similarity of selected factors
between the methods. The only variable that is included in all four models is price
relative to 52-week-high-price (rel.to.high). The 36-month momentum is included
in three out of four models. In total, the four models have extracted 23 unique
firm characterises. These results indicate that there are no distinguished patterns
found and suggests that the factors selected in the best model does not have to
be superior to any other model. That is, the selection is not stable. However, it
could indicate that the unsupervised learning method of PCA is not adequate for
the task at hand and should not be included in such an analysis.

When comparing the extracted characteristics from our PCA and LASSO methods
to existing factor models such as Fama French Three Factor model, Carhart Four
Factor model, Fama French Five Factor model and the q-Factor model, one can
see that out of the 7 factors included in these existing models, 4 are included in at
least one of our four models. These are, market beta, momentum, size and prof-
itability. Missing are the factors book-to-market (Fama & French 1993, Carhart
1997, Fama & French 2015, Hou et al. 2015), return on equity (Hou et al. 2015)
and investments (Hou et al. 2015, Fama & French 2015).

Freyberger et al. (2016) receives significant power for market capitalization and
investments as mention earlier. The only model which extracts market capitaliza-
tion is PCA1, none of our other models extract these variables. As Green et al.
(2017), we extract the size factor. The size factor from Green et al. (2017) is to-
gether with 12-month momentum the most powerful predictors in their paper but
we only extract it from one of our four models, the PCA1.

Looking at the apparent superior technique of LASSO regression one can see that
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various variables which falls in the category of momentum are represented. This
is in line with Jegadeesh & Titman (1993)’s argument for a momentum factor in
1993 and confirms the validity of inclusion of the momentum factor in the factor
model of Carhart (1997). Our results also reaffirm the results of Freyberger et al.
(2016), Green et al. (2017) and Kelly et al. (2019) which all find the momentum
factor as a highly predictable characteristic of average asset return. To put this
into the context of asset pricing, momentum seems, from the results, to proxy
marginal utility growth well.

When considering the research question of this thesis, an obvious answer to it
could be the constituents of LASSOλ1se : dy (dividend to price), mom12m (12-
month momentum), mom1m (1-month momentum), mom36m (36-month mo-
mentum), mom6m (6-month momentum) and rel.to.high (price to 52 week high
price). However, this would not be correct as, as mentioned earlier, the results lack
consistency in variable selection. Moreover, as with all empirical work, one has to
be careful before drawing any conclusion. The findings are always the result of the
used data, the method and the design of the tests. We have used an out-of-sample
test which estimates the βs (the risk exposure) of the factors and then keep them
constant to be able to predict asset prices over a period of over two years. Hence,
the result of the predictive power of momentum factors might benefit from the
fact that the risk exposure towards momentum perhaps are more stable over time
compared to other factors.

6.1 Robustness

Hou et al. (2015) notes the alleviation of the impact of microcaps. Even though
the number of microcap stocks are a majority of the stocks in the index, the total
value of these stocks are insignificant. As transaction costs and the probability of
illiquidity are much greater in these stocks, anomalies are less likely to be exploited
in practice. Even though our set of firms does not include any microcaps, the con-
cern might still be the same in our study. As a test for not overweighing smaller
firms in our research, we conduct a robustness test for verifying the variable selec-
tion but only use the 100 largest companies in the S&P 500 index. The technique
of PCA1 resulted in 12 selected factors. 8 out of these factors were included in the
original model as well. The originally chosen factors which were now excluded are
the following: quick, rel.to.high, ep, mve. The technique of PCA2 resulted in
7 selected factors. Only 3 out of these were included in the original model. These
are a2me, agr and cto.

The discovery of momentum being a highly predictive factor category is shown
to be robust. In both LASSO regressions various momentum factors were se-
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lected. When conducting the model comparison the LASSO regression once again
outperformed, and once again LASSOλ1se was the best model. For more details
of the results of the robustness test, see Appendix 2.

6.2 Limitations

There are many areas in which we had to limit our research, both in aspects of
limited data but also to limit the magnitude of the thesis. The fact that we only
use 54 variables instead of a larger sample for analysis, as Harvey et al. (2016),
which was a result of limited data, may influence our results. The set of not se-
lected variables might contain variables with stronger predictive power. It might
also affect the size of our created models. For example, the required number for
selected PCs might be larger as the variability would most certainly increase. By
increasing the time period one may also receive different results of independent
characteristics.

Furthermore, our time series runs over 10 years, which, compared to other pa-
pers for example Freyberger et al. (2016) whose data consist of the time period
1964 to 2014, is a small amount of time. This may affect the results since market
fluctuations affect our analysis more because of the shorter time.

In the context of comparing supervised and unsupervised learning methods, one
has to consider the limitation of just one model of each are used. To be able to
make these results more robust more methods would have to be added. This is also
true for the overall results. To draw more certain conclusions about the selected
variables, one can add more methods for factor selection. This is always true as
one can always do more.

6.3 Future research

In the up to date literature of asset pricing theory, Cochrane (2011)’s question
still remains; “which firm characteristics provide independent information about
average return?” Our approach with PCA and LASSO resulted in characteristics
that still needs a lot of verification before drawing conclusions. By including more
variables and conduct the analysis on a larger random sample and over different
markets for comparison one can yield more interesting results.

There are also improvements in our used techniques that could be employed. An
obvious example is to improve the method used in PCA1 and PCA2. Instead
of looking at the independent variable’s variance explained by each PC, one may

33



instead first run a Principal Component Regression on log return and base the
selection of PCs on that and then proxy them.

7 Conclusion

We have proposed two different machine learning methods to be applied to the
challenge posed by Cochrane (2011). One unsupervised method (PCA) and one
supervised method (LASSO) for variable selection. Our results are twofold. First,
the model comparison shows how LASSO tend to do better then PCA in both se-
lecting fewer variables and perform better out-of-sample. Second, the predictable
power of momentum factors has been further supported. Furthermore, even though
the usage of the unsupervised learning method of PCA applied on a supervised
learning problem is not obvious, we have managed to show that the method is
viable as it outperformed the benchmark.

The scope of this thesis has been to use two different methods to generate sparse
factor models in order to predict asset returns. What we have found is how LASSO
tend to choose various momentum factors while PCA choose more diversified char-
acteristics. In order to minimize MSPE the predictable power of momentum has
shown to work best. Our contribution to the literature of asset pricing is a further
reaffirmation of the predictable power of momentum factors, which is in line with
previous studies (Freyberger et al. 2016, Green et al. 2017, Kelly et al. 2019).

In the method of PCA, we have created an original contribution for proxying fac-
tors for PCs. Although the technique of unsupervised learning seems to be inferior
to the supervised learning at hand, our method can be adjusted to a supervised
learning method, as proposed in the previous section.
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9 Appendix

The following tables and figures shows the variables that’s been used in this thesis
and robustness test.

Appendix 1

Acronym Definition of characteristic
a2me Assets-to-market cap
agr Asset growth
ato Net sales over lagged net operating assets
beta Beta

betasq Beta squared
bm Book-to-market
c* Ratio of cash and short-term
cto Capital turnover

cash Cash holdings
cashdebt Cash flow to debt
cashpr Cash productivity
chscho Change in shares outstanding
chinv Change in inventory
chtx Change in tax expense

cinvest Corporate investment
currat Current ratio
d2a Capital intensity
depr Depreciation / PP&E
dy Dividend to price
egr Growth in common shareholder equity
ep Earnings to price

hire* Employee growth rate
gma Gross profitability

grCAPX Growth in capital expenditures
invest Investments

lev Leverage
lgr Growth in long-term debt

mom12m 12-month momentum
mom1m 1-month momentum
mom36m 36-month momentum
mom6m 6-month momentum

mve Natural log of market capitalization at end of month t-1

(continued)
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operprof Operating profitability
pchcurrat % change in current ratio
pchdepr % change in depreciation
pchquick % change in quick ratio

pchsale pchrect % change in sales - % change in A/R
pchsale pchxsga % change in sales - % change in SG&A
pchsale pchinvt* % change in sales - % change in inventory

pchsaleinv* % change sales-to-inventory
quick Quick ratio

rd mve R&D to market capitalization
rd sale R&D to sales

realestate* Change in real estate
rel.to.high Closeness to 52-week high is the ratio of stock price

roaq Return on assets
roeq Return on equity

salecash Sales to cash
saleinv* Sales to inventory
salerec Sales to receivables

sgr Sales growth
sp Sales to price

tang Debt capacity/firm tangibility
tb Tax income to book income

* = removed
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Figure 7: Scree plot of percentage of variance explained for each PC with 100
firms.
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Figure 8: Cumulative percentage of variance explained by each PC with 100 firms.
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Figure 9: Total explained variability by a number of factors with 100 firms.
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Figure 10: Cross validated λ with corresponding MSE with 100 firms.
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