
Thesis for The Degree of Doctor of Philosophy

Learning Language (with) Grammars

From Teaching Latin to Learning Domain-Specific Grammars

Herbert Lange

Division of Functional Programming
Department of Computer Science & Engineering

University of Gothenburg
Gothenburg, Sweden, 2020

Learning Language (with) Grammars:
From Teaching Latin to Learning Domain-Specific Grammars

Herbert Lange

Copyright ©2020 Herbert Lange
except where otherwise stated.
All rights reserved.

ISBN:
978-91-7833-986-0 (Print)
978-91-7833-987-7 (PDF)
http://hdl.handle.net/2077/65453

Technical Report No 185D
Department of Computer Science & Engineering
Division of Functional Programming
University of Gothenburg
Gothenburg, Sweden

Cover image:
Pottery Fan: Douris Man with wax tablet,
modified by Herbert Lange and Catharina Jerkbrant
Source: Wikimedia
https://de.wikipedia.org/wiki/Datei:Douris_Man_with_wax_tablet.jpg
License: CC-BY-SA 3.0
https://creativecommons.org/licenses/by-sa/3.0

Author photo:
Anneli Andersson

This thesis has been prepared using LuaLATEX.
Printed by Chalmers digitaltryck,
Gothenburg, Sweden 2020.

ii

http://hdl.handle.net/2077/65453
https://de.wikipedia.org/wiki/Datei:Douris_Man_with_wax_tablet.jpg
https://creativecommons.org/licenses/by-sa/3.0

iii

— Introibo ad altare Dei.
Halted, he peered down the dark winding stairs
and called out coarsely:

— Come up, Kinch! Come up, you fearful jesuit!
James Joyce, Ulysses

Telemachus

Abstract

This thesis describes work in three areas: grammar engineering, computer-
assisted language learning and grammar learning. These three parts are
connected by the concept of a grammar-based language learning application.
Two types of grammars are of concern. The first we call resource grammars,
extensive descriptions a natural languages. Part I focuses on this kind of
grammars. The other are domain-specific or application-specific grammars.
These grammars only describe a fragment of natural language that is determined
by the domain of a certain application. Domain-specific grammars are relevant
for Part II and Part III. Another important distinction is between humans
learning a new natural language using computational grammars (Part II) and
computers learning grammars from example sentences (Part III).

Part I of this thesis focuses on grammar engineering and grammar testing. It
describes the development and evaluation of a computational resource grammar
for Latin. Latin is known for its rich morphology and free word order, both
have to be handled in a computationally efficient way. A special focus is on
methods how computational grammars can be evaluated using corpus data.
Such an evaluation is presented for the Latin resource grammar.

Part II, the central part, describes a computer-assisted language learning
application based on domain-specific grammars. The language learning appli-
cation demonstrates how computational grammars can be used to guide the
user input and how language learning exercises can be modeled as grammars.
This allows us to put computational grammars in the center of the design of
language learning exercises used to help humans learn new languages.

Part III, the final part, is dedicated to a method to learn domain- or
application-specific grammars based on a wide-coverage grammar and small
sets of example sentences. Here a computer is learning a grammar for a
fragment of a natural language from example sentences, potentially without
any additional human intervention. These learned grammars can be based e.g.
on the Latin resource grammar described in Part II and used as domain-specific
lesson grammars in the language learning application described Part II.

Keywords: Latin, Latin syntax, Latin morphology, Grammar engineering,
Grammar testing, Corpus-based evaluation, Computer-Assisted Language
Learning, Grammar learning, Constraint-satisfaction, Constraint-optimization

v

Acknowledgment

So many people have helped me on my way to finish my PhD, not all can be
mentioned here by name and I am sure I will forget someone. If you, dear
reader, feel that your name is missing from this list, be assured that it is not
due to malice.

I have to thank my PhD supervisor Peter Ljunglöf. He allowed me to be as
independent as I wanted to be, but still was always there with a helping hand,
when I needed it. I also want to thank my co-supervisor Koen Claessen, who
in the end managed to pull me over to the dark side and use constraint solvers.
Finally, I am very grateful for my examiner Aarne Ranta, who also helped me
a lot in my research with his incredible knowledge about grammars, languages
and and everything else.

I also want to thank my opponent Johanna Björklund and my committee:
Torsten Zesch, Gunhild Vidén, Elena Volodina and Richard Johannson.

Next, I want to thank my family: my parents, my brother and my aunt,
who supported the crazy idea to move to Sweden to pursue my PhD studies.

Finally I have to thank a long list of friends and colleagues, specifically:
Aljoscha (a great person to hang out with and play German card games),
Arianna (who kept me company during a pandemic by cycling around Delsön
and shares an interest in computer science and languages), David (who taught
me the important skills of knitting and crocheting), Inari (with whom I shared
an office, a boat, the love for languages and grammars and from time to time a
sauna), Klondike (who dragged me into Gothenburg hackerspace and started
his own PhD despite all my efforts), Linnea (without whom I probably would
have given up on learning Swedish and who helped me to get used to Swedish
culture), Pavol (who helped me to stay in touch with the humanities), Prasanth
(who used to “live” in our office), Thomas (who also enjoys playing cards, a
fellow ham amateur, and even owner of a sailing boat), and Víctor (with whom
I spent most of my lunches and who was always interested in joining for various
activities).

I am also in debt to all the people I had interesting conversations with,
either over lunch or at an afterworks, my colleagues in the CSE PhD Council
and at GUDK, all the people at CLASP and Språkbanken, people who shared
my interests and hobbies, e.g. my fellow fencers who like to beat me up or
sometimes even get beaten, and the choir that accepted my singing skills.

The MUSTE project is funded by the Swedish Research Council (Veten-
skapsrådet) under grant number 621-2014-4788.

vii

List of Publications

This thesis is based on the following publications:

[A] Herbert Lange: “Implementation of a Latin Grammar in Grammatical
Framework”, Published in Proceedings of the 2nd International Conference
on Digital Access to Textual Cultural Heritage (DATeCH2017), Göttingen,
Germany, 2017

[B] Herbert Lange: “An Open-Source Computational Latin Grammar:
Overview and Evaluation”, Submitted to Proceedings of the 20th Inter-
national Colloquium on Latin Linguistics (ICLL 2019), Las Palmas de
Gran Canaria, 2019

[C] Herbert Lange and Peter Ljunglöf: “MULLE: A Grammar-Based Latin
Language Learning Tool to Supplement the Classroom Setting”, Pub-
lished in Proceedings of the 5th Workshop on Natural Language Processing
Techniques for Educational Applications (NLPTEA ’18), Melbourn. Aus-
tralia, 2018

[D] Herbert Lange and Peter Ljunglöf: “Putting Control into Language
Learning”, Published in Proceedings of the 6th International Workshop
on Controlled Natural Languages (CNL 2018), Maynooth, Ireland, 2018

[E] Herbert Lange and Peter Ljunglöf: “Learning Domain-Specific Grammars
From a Small Number of Examples”, Submitted to Special Issue: Natural
Language Processing in Artificial Intelligence - NLPinAI 2020, in: Series
“Studies in Computational Intelligence” (SCI), Springer

Not included are:

• Herbert Lange and Peter Ljunglöf “Demonstrating the MUSTE Language
Learning Environment” Published in Proceedings of the 7th Workshop
on NLP for Computer Assisted Language Learning (NLP4CALL 2018),
Stockholm, 2018

• Herbert Lange and Peter Ljunglöf “Learning Domain-Specific Grammars
From a Small Number of Examples” Published in Proceedings of the 12th
International Conference on Agents and Artificial Intelligence (ICAART
2020) – Volume 1: NLPinAI, Valetta, Malta, 2020

ix

Contributions

[A] This paper (Chapter 5) is the first description of the Latin resource
grammar which has been developed sinced 2013 by the author of the
thesis. It presents language learning as one of the possible applications
of computational grammars.

[B] This paper (Chapter 6) extends the description of the Latin resource
grammar to include extensions that have been added by the author since
the previous publication. A major new contribution is the description of
evaluation methods for resource grammars in general and applied to the
Latin grammar.

[C] This paper (Chapter 7) presents an application for computer-assisted
language learning using compuational grammars. These grammars are
used both for guiding the user input and for defining the learning output.
The implementation is based on previous work by Peter Ljunglöf but has
been reimplemented by the author of this thesis. Furthermore, the author
of this thesis contributed the focus on Latin language learning, ideas on
how to model lessons using grammars and the addition of gamification.

[D] This paper (Chapter 8) extends the idea of grammar-based CALL and
places it in the context of controlled natural languages. The author of this
thesis contributes the focus on properties of lesson grammars, including
a classification within the hierarchy of controlled natural languages using
the PENS classification system.

[E] This paper (Chapter 9) adds a new perspective of grammar inference
and grammar learning. It focuses on a method to extracting a domain-
specific subgrammar from a resource grammar using example sentences.
The method has been implemented by the author of the thesis and he
designed experiments for evaluation. The basic method is extended in
two ways and for both extensions the effect on learnability of phenomena
is presented.

xi

Contents

Abstract v

Acknowledgement vii

List of Publications ix

Personal Contribution xi

List of Acronyms xvii

I Introduction and Overview 1

1 Introduction 3
1.1 Research Questions and Contributions 4
1.2 Main Results . 5

2 Background 7
2.1 Latin Language and Latin NLP 7
2.2 Computer-Assisted Language Learning 9
2.3 Grammatical Framework . 10
2.4 Grammar Learning . 15
2.5 Constraint Satisfaction and Optimization 18

3 Overview 21
3.1 Part I: Latin Resource Grammar 21
3.2 Part II: Grammar-Based CALL 33
3.3 Part III: Learning Domain-Specific Grammars 43

4 Conclusion 55
4.1 Summary . 55
4.2 Discussion . 56
4.3 Future Work . 57

xiii

xiv CONTENTS

II The Latin Resource Grammar 59

5 Paper I: Implementation of a Latin Grammar in Grammatical
Framework 61
5.1 Introduction . 63
5.2 Implementation of the Grammar 66
5.3 Conclusion . 73

6 Paper II: An Open-Source Computational Latin Grammar:
Overview and Evaluation 75
6.1 The Role of Grammars . 77
6.2 Overview of the Grammar . 78
6.3 Evaluation . 84
6.4 Conclusion . 94

III Grammar-Based CALL 95

7 Paper III: MULLE: A Grammar-Based Latin Language Learn-
ing Tool to Supplement the Classroom Setting 97
7.1 Introduction . 99
7.2 Previous and related work . 99
7.3 Creation of interactive exercises from a Latin textbook 100
7.4 Implementation . 101
7.5 User interaction . 102
7.6 Evaluation . 103
7.7 Discussion . 104
7.8 Future work . 104

8 Paper IV: Putting Control into Language Learning 105
8.1 Introduction . 107
8.2 Related Work . 107
8.3 Application: Language Learning using CNLs 108
8.4 Evaluation . 115
8.5 Discussion . 116
8.6 Conclusions and Future Work 117

CONTENTS xv

IV Learning Domain-Specific Grammars 119

9 Paper V: Learning Domain-Specific Grammars From a Small
Number of Examples 121
9.1 Introduction . 123
9.2 Background . 124
9.3 Learning a Subgrammar . 130
9.4 Bilingual Grammar Learning 134
9.5 Implementation . 135
9.6 Evaluation . 136
9.7 Results . 139
9.8 Extension 1: Negative Examples 142
9.9 Extension 2: Extracting Subtrees as Basic Units 146
9.10 Discussion . 152
9.11 Conclusion . 154

Bibliography 157

List of Acronyms

ACE Attempto Controlled English. 40, 108

API application programming interface. 99, 129

CALL computer-assisted language learning. 3–5, 7, 9, 10, 15, 17, 18, 21, 33,
35, 40, 41, 48, 55–57, 99, 106, 107, 116, 122, 124, 154

CCG combinatory categorial grammar. 8

CFG context-free grammar. 15–17, 64, 125, 126

CNL controlled natural language. 4, 21, 40, 55, 57, 106–108, 115–117

COP constraint optimization problem. 18, 19, 46, 50, 129, 142, 146, 153

CSP constraint satisfaction problem. 18, 44, 46, 49, 50, 122, 129, 131, 132,
146, 153

DOP data-oriented parsing. 16, 17, 125, 126, 146

EM Expectation Maximazition. 16, 126

GF Grammatical Framework. 4, 5, 10–12, 14, 15, 17, 22–25, 27, 29–32, 38–40,
44, 48, 49, 56, 64, 65, 67, 68, 77–80, 83, 84, 86–91, 94, 99, 100, 108–110,
114, 123, 126–129, 137–139, 144, 145

GPSG generalized phrase structure grammar. 12, 72

HPSG head-driven phrase structure grammar. 12, 123, 126

ILP integer linear programming. 18, 44, 130, 135, 136, 153

LAS labeled attachment score. 138

LFG lexical-functional grammar. 12, 123

LTAG lexicalized tree-adjoining grammar. 123

xvii

xviii List of Acronyms

MULLE MUSTE language learning environment. 98–101, 107

NLP natural language processing. 3–5, 7, 8, 19, 21, 31, 56, 62, 63, 123

PCFG probabilistic context-free grammar. 16, 17, 125, 126

PMCFG parallel multiple context-free grammar. 64

POS part of speech. 23, 29, 31, 32, 89, 90

RGL resource grammar library. 5, 15, 17, 24, 26, 29, 31, 48, 65, 77, 79, 84,
86, 89, 91, 92, 99–101, 110, 123, 129, 137–139, 144–146, 150, 151

SAT Boolean satisfiability. 17–20, 126, 153, 154

UD Universal Dependencies. 5, 8, 9, 29–32, 78, 86–90, 92, 94

Part I

Introduction and Overview

1

Chapter 1

Introduction

The book you are holding in your hands is the result of five years of my PhD
research. And this chapter in particular is supposed to summarize the work
done and the results achieved.

Latin
Resource
Grammar

Grammar
Learning

Computer-Assisted
Language Learning

Grammatical Framework

Figure 1.1: The areas relevant to this thesis

The research included in this thesis touches on three different areas and are
held together by one application (Figure 1.1). The areas are natural language
processing (NLP) approaches to Latin by means of grammar engineering,
computer-assisted language learning (CALL) and grammar learning. This
research led to the development of a computer-assisted language learning
application for Latin.

These areas are already well established, but I was able to both combine
them and contribute to them in a new and meaningful way. The results of
these efforts are collected in this thesis. Our most obvious contribution is
the creation of an intelligent CALL application for Latin, filling a gap that
existed for many years. The main focus for Latin has been on traditional
learning methods such as memorizing vocabulary and word inflection. But
other absorbing applications suitable for practicing more complex aspects of the

3

4 CHAPTER 1. INTRODUCTION

language have been absent until Duolingo released its Latin course in August
2019.

One more aspect that surrounds, connects and permeates everything, is the
use of one particular grammar formalism for computational formal grammars.
We make use of the Grammatical Framework (GF) in all parts of our work.
We are very fond of this grammar formalism developed in Gothenburg. GF is
well suited for all our needs, but it can be replaced by other formalisms as well.

1.1 Research Questions and Contributions
Each of the three areas leads to research questions I investigated in my PhD
and present the research results in this thesis. The main research questions,
one for each area, are:

Q1 – Latin NLP and grammar development How can a computational
grammar, especially for Latin, be implement and how can the quality of
such a grammar be evaluated?

Q2 – Computer-assisted language learning How can grammar-based and
multilingual controlled natural languages be used in the context of
computer-assisted language learning?

Q3 – Subgrammar extraction and grammar learning Is there a (semi-)
automatic way of generating domain- and application specific grammars?

In the following paragraphs I will summarize the major contributions based
on these research questions.

My work on Latin NLP and grammar development involved the creation of
a computational grammar for the Latin language, that provides an extensive
description of its linguistic features. The grammar is described in detail in
the paper in Chapter 5. The grammar has a sufficient extent to be useful in
practical applications, such as our language learning application. A broader
contribution that goes beyond just a Latin grammar, is the work on testing
and evaluating the grammar, which is a major part of the paper in Chapter 6.

In the area of CALL we explored the use of computational grammars in
language learning. We build on previous research on grammar-based text
editing (Ljunglöf, 2011) and explore how this intuitive way of text input can
be combined with specific grammars modeling the learning objectives. The
first paper in this area (Chapter 7) describes the architecture and features
of our application in general. It also describes how common CALL features
such as gamification can be included to create a more immersive learning
experience. The other CALL paper in Chapter 8 focuses more on the structure
and properties of grammars suitable for our CALL application. The major
contribution is the exploration of how controlled natural languages (CNLs) and
computational grammars can be used as a central point in CALL applications,
controlling the user input, allowing the automatic generation of translation
exercises and modeling the learning objectives for language learning lessons.

1.2. MAIN RESULTS 5

The final part of the thesis contains contributions to general grammar
learning from examples. Unlike related approaches such as grammar inference
and data-oriented parsing, we created a method to learn a subgrammar from
a larger resource grammar. It is described in Chapter 9 together with two
extensions. We cannot only learn a suitable subgrammar from a set of positive
examples but also from negative examples. And we can merge grammar rules
to get an even more domain- and application-specific grammar.

1.2 Main Results
The main result of this work is the creation of the three jigsaw pieces seen
in Figure 1.1. We created and implemented three different components: a
computational Latin grammar, a grammar-based CALL application and a
method to learn domain-specific grammars from example sentences.

The computational Latin grammar is released as free and open source and
included in the Grammatical Framework resource grammar library. It can be
used as a linguistic resource for building NLP applications, such as our CALL
application. Moreover, I evaluated the coverage of the Latin grammar on a
corpus taken from the Universal Dependencies treebank and showed that its
coverage can still be improved but already covers a majority of the syntactic
constructions that were identified in the corpus.

The CALL application is also released as free and open source. It combines
grammar-based text input, grammar-based translation exercises and features
of gamification in a web application. The nature of this application allows
its use in language classes. A preliminary evaluation with Latin students and
teachers did not yet give significant results but resulted at least in interest and
positive feedback.

Finally, we implemented and released a framework to learn domain-specific
grammars from a GF resource grammar and a set of example sentences. Our
evaluation shows that already between 5 and 10 example sentences are sufficient
to learn an accurate grammar. With the two additional extensions we also
show that we can disambiguate constructions such as PP attachment in specific
and restricted contexts.

This thesis shows that all the pieces of the separate jigsaw puzzle are
constructed and work independently. For future work, theses pieces have to be
fitted together and the whole system has to be evaluated.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Background

The work in this thesis touches on various areas and can be called interdisci-
plinary, and justifiably so. For that reason I will try to use this chapter to put
the work into context. The relevant background includes Latin linguistics and
NLP for Latin, computer-assisted language learning, grammar learning and
inference as well as the basics of constraint-satisfaction techniques.

2.1 Latin Language and Latin NLP

The first part of this thesis describes a computational grammar for the Latin
language. The Latin language is linguistically classified as an Italic language,
which is part of the Indo-Germanic language family. This means that similarities
for example in the vocabulary of various languages of this family can be found.
Examples of that can be seen in Table 2.1.

Latin Ancient Greek German Swedish English

pater πατήρ (=patḗr) Vater fader
(shortened to far)

father

ager άγρóς (=agrós) Acker åker acre
(obsolete for field)

trēs τρει̃ς (=treîs) drei tre three
decem δέκᾰ (=déka) zehn tio ten

Table 2.1: Similarities within Indo-Germanic languages

7

8 CHAPTER 2. BACKGROUND

2.1.1 Latin Language
Latin is supposed to have developed from the regional dialect of the city Rome,
along other rural dialects of the Latium region. Over the time it overtook the
other Italic languages when the Roman empire expanded.

The history of the language can be divided into three major epochs: the
early epoch (about 240-80 BC), the classic epoch (about 80 BC to 117 AD,
starting with the first public speeches of Cicero) and the post-classic epoch.
Usually, the main focus is put onto the classic epoch with a large corpus of
well-known literature. The post-classic epoch reaches until the beginning of the
20th century, when Latin was still a relevant language in science and religion.

Relevant for the work on a Latin grammar are two features of the language:

• Latin is a morphologically rich, inflected language

• Latin has an extensive case system and strict agreement between con-
stituents which allow for rather free word order

The first point means that in Latin many linguistic features are directly encoded
in a particular word form, where other languages use other means, such as
syntactic constructions. For example Latin has an extensive case system and
subject as well as direct object are marked with a respective case, nominative
for the subject and accusative for the direct object. Because of these case
markings, the word order is not as important and can be handled in a more
flexible way. These two points will be explained in more detail in Section 3.1.

2.1.2 Latin NLP
The Latin language only plays a minor role in the NLP community and NLP
only a minor role within Latin linguistics. However, within the related field of
generative grammars, there was already some interest in Latin in the 1960s
(Mateu and Oniga, 2017). Furthermore, various theories of formal linguistics
have been tested on Latin, including combinatory categorial grammars (CCG,
Steedman, 2016).

Besides that, computational approaches to certain aspects of Latin have
been presented over the time. The main focus has been on morphological
analysis. As a result, several morphological analyzers for Latin are available
(LEMLAT, Passarotti, Budassi, et al., 2017; LatMor, Springmann, Schmid,
and Najock, 2016). Furthermore, digital corpora and lexical resources are
available. An earlier approach is the project Perseus (Crane, 2018) which later
got included in the well-known Universal Dependencies project (UD, Nivre
et al., 2019). A project to collect and combine linguistic resources and NLP
tools for Latin is LiLa: Linking Latin (Passarotti, Cecchini, et al., 2019).

The biggest gap which I try to fill with my work, is the lack of a compu-
tational grammar for Latin, or any means of syntactic analysis on a wider
scale in general. There have been experiments showing that in principle it is
possible to use Chomsky’s minimalist program to analyze Latin syntax (Sayeed
and Szpakowicz, 2004) but it has never been scaled up. In general it is also

2.2. COMPUTER-ASSISTED LANGUAGE LEARNING 9

possible to train a dependency parser such as the Stanford parser (Chen and
Manning, 2014) on the Latin treebanks available in UD, but there seem to be
no pre-trained models so far. However, a hybrid approach between rule-based
and statistical approach has been suggested by Win Berkelmans.1

With our grammar we hope to provide an important resource that can
be included both in specific applications and in general research about Latin
linguistics by e.g. helping to bootstrap new treebanks.

2.2 Computer-Assisted Language Learning
The history of computer-assisted language learning (CALL) goes back almost
as far as the history of modern computers, at least to the middle of the 20th
century, some people even choose earlier dates (Computer History Museum,
2010). Its relevance increased in the same way as technology got more accessible,
now with ubiquitous computing it has arrived in the mainstream.

2.2.1 History of CALL

It is almost impossible to give a full account of the history of CALL. An
overview for the earlier periods of CALL ranging from the 60s to the 90s of the
previous century is given by Levy (1997). For each of the three periods 60s/70s,
80s and 90s he presents major projects, their technological background and
their influence on the field. Most of these historic developments are described in
a similar way by Warschauer (2004), whose classification of the CALL history
can be found in Table 2.2. However, Bax (2003) opposes this classification
pointing out that most of the systems survived their own epochs in one way or
another.

Stage 1970s-1980s:
Structural CALL

1980s-1990s:
Communicative CALL

21st Century:
Integrative CALL

Technology Mainframe PCs Multimedia and
Internet

English-Teaching
Paradigm

Grammar Translation
& Audio-Lingual

Communicate
Language Teaching

Content-Based,
ESP/EAP

View of Language Structural (a formal
structural system)

Cognitive (a mentally
constructed system)

Socio-cognitive
(developed in social
interaction)

Principal Use of
Computers

Drill and Practice Communicative
Exercises

Authentic Discourse

Principal Objective Accuracy Fluency Agency

Table 2.2: Epochs of CALL from the 1960s to the 1990s according to Warschauer
(2004)

1Unpublished presentation at the International Colloquium on Latin Linguistics (ICLL)
2019, Las Palmas de Gran Canaria

10 CHAPTER 2. BACKGROUND

2.2.2 Modern CALL
A look both at the recent publications in CALL-related conferences and work-
shops such as NLP4CALL,2 BEA3 and NLPTEA4, as well as at the popular
apps in the app stores, can give a picture of the current CALL landscape.
Besides full-fledged language learning systems like the one presented in this
thesis, a lot of current research is in specific sub-problems like learner modeling,
automatic essay grading, and many more.

One of the most popular apps, which now is a commercial system that
started with a clear crowd-sourcing approach, is Duolingo (Garcia, 2013).
Furthermore, a variety of specific systems for different languages and language
concepts using different technologies developed in recent years:

• Morphology training with finite state methods (Kaya and Eryiğit, 2015)

• Linguistic resources such as annotated data or semantic resources com-
bined with rule-based exercise generation (Moritz et al., 2016; Michaud,
2008; Redkar et al., 2017)

• Linguistic resources combined with both machine learning and rule-base
approaches (Volodina et al., 2014)

• Crowd-sourcing in combination with machine learning (Kenji Horie, 2017)

On the other hand, there is a lot of research in supporting technology. These
include learner proficiency level prediction (Pilán, Volodina, and Zesch, 2016),
assessing complexity levels for vocabulary (Alfter and Volodina, 2018) and
collection of learner corpora (Stemle et al., 2019). This kind of research is
relevant to CALL in general and can also influence future work in connection
with our current approach, but is at the moment of less relevance than the
comparison with applications similar to ours.

2.3 Grammatical Framework
A piece of technology that is present in all parts of this thesis is the Grammatical
Framework (Ranta, 2009a; Ranta, 2011). Grammatical Framework (GF)
is a grammar formalism and grammar development framework suitable for
developing computational grammars for natural languages.

The use of GF is by far not a strict requirement and we show in the
respective papers under what conditions it can be replaced by equivalent
grammar formalism. However, in our work it seemed the most suitable choice.

2Natural Language Processing for Computer-Assisted Language Learning
https://spraakbanken.gu.se/eng/research/icall/nlp4call

3Workshop on Innovative Use of NLP for Building Educational Applications
https://sig-edu.org/bea/current

4Workshop on Natural Language Processing Techniques for Educational Applications
http://www.nlptea.org/

https://spraakbanken.gu.se/eng/research/icall/nlp4call
https://sig-edu.org/bea/current
http://www.nlptea.org/

2.3. GRAMMATICAL FRAMEWORK 11

2.3.1 Abstract and Concrete Syntax
From a linguistic point of view, GF is a grammar formalism that describes
languages on two levels: on phenogrammatic and on tectogrammatic level, two
terms borrowed from logic by Haskell Curry (1961). The phenogrammatic
level describes the surface structure of a language while the tectogrammatic
level describes an underlying, more abstract level, of the language. Languages
can have different surface forms but share the same underlying structure. An
example is prefix, postfix and infix notations for arithmetic expressions. They
are different on the surface but have the same underlying structure. In a similar
way we can express cross-linguistic phenomena for natural languages.

On the other hand, from a computer science point of view GF is a special
purpose programming language, syntactically similar to functional programming
languages like Haskell, and based on a type system related to constructive type
theory (Ranta, 2015). What was called tectogrammatic before is called the
abstract syntax and what was phenogrammatic is called a concrete syntax.
The abstract syntax provides just the grammatical categories and the type
definition for the syntactic functions. For each abstract syntax, which defines an
abstract interface, several concrete grammars can be created, that implement
this common interface.

The abstract syntax looks similar to context free grammars, with two major
differences. There is no clear distinction between terminal and non-terminal
symbols and all the rules, also called functions, are labeled. This makes
equivalent to many-sorted algebras5 where the syntactic categories are the sorts
and the syntactic functions are functions defined on these sorts.

The concrete syntax on the other hand is a lot like typical functional
programs. Each abstract syntactic category is assigned a concrete data type.
The most important basic types are strings and string tuples, i.e. compile-time
and run-time strings. Besides that, the developer can define finite parameter
types by enumerating all values. Finally, complex data types can be created.
The two kinds of complex data types are tables and records. Tables are total
functions from a parameter type to any other type. And records are labeled
unions of types. Typical use of tables is for inflection tables and records can
be used to store inherent grammatical features such as noun gender. As
mentioned before, we do not define terminal symbols separately. Instead we
define constant functions, i.e. functions without a parameter such as green_A
or Chomsky_PN.

Here I present GF using the syntax that is used to write grammars and
is directly understood by the GF compiler. In several of the articles we used
various levels of abstraction and various syntactic approaches to describe GF
grammars. For example, treating the abstract syntax as a many-sorted algebra
allows us to reason about the grammar similar to reasoning about algebras
in mathematics in general. A different syntactic approach is to express GF
grammars as attribute-value matrices. This representation is well known within

5Many-sorted algebras (Wirsing, 1990, pp. 680) can be defined given a signature Σ = 〈S, F 〉
where S is a set of sorts and F is a set of function symbols with a mapping type : F : S∗ 7−→ S
which expresses the type of each function symbol.

12 CHAPTER 2. BACKGROUND

linguistics and can be easily used for record types and modified to also cover
tables. This syntax allows us to present GF to an audience that is more used
to other formalisms expressed as attribute-value matrices such as generalized
phrase structure grammar (GPSG, Gazdar, 1985), head-driven phrase structure
grammar (HPSG, Pollard, 1994) and lexical-functional grammar (LFG, Kaplan
and Bresnan, 1982; Bresnan, 2001)

2.3.2 An Example Grammar
Because the previous description of the grammar formalism is very abstract if
you are not used to these concepts, I will illustrate it with an example.

1 abstract Chomsky = {
2 cat S ; NP ; VP ; PN ; N ; V ; A ; Adv ;
3 fun
4 mkS : NP -> VP -> S ;
5 mkNP : N -> NP ;
6 mkNP' : PN -> NP ;
7 adjNP : A -> NP -> NP ;
8 mkVP : V -> VP ;
9 advVP : VP -> Adv -> VP ;

10 colorless_A : A ;
11 green_A : A ;
12 idea_N : N ;
13 book_N : N ;
14 sleep_V : V ;
15 furiously_Adv : Adv ;
16 Chomsky_PN : PN ;
17 }

Listing 2.1: Example of an abstract syntax

Listing 2.1 defines a new abstract syntax with the grammar name Chomsky.
In line 2 a list of syntactic categories is defined. These categories are then used
in the definition of syntactic functions. The first function, for example, defines
that noun phrases and verb phrases can be combined to a sentence.

Based on the abstract syntax in Listing 2.2 we can define a concrete
implementation for English. For each of the syntactic categories in the abstract
syntax we have to define a concrete data type representing constituents of this
category. A basic choice is a string representation { s : Str }. To be precise
this is a string value contained in a record with the only record field s. For
other categories we can extend this record with additional fields.

One example where we add additional record fields is the proper noun PN
which also contains an inherent number feature in a record field with the
name n. As soon as we encounter inflection we can use table types, for example
for nouns. Nouns are not constant strings, but their form, in this simple case,
depend on number. For that reason we use a table type Number => Str.
Tables can even be combined to form several levels, such as in the definition of
verbs and verb phrases. These concrete category definitions are used in the
definitions of our syntactic functions.

2.3. GRAMMATICAL FRAMEWORK 13

1 concrete ChomskyEng of Chomsky = {
2 param
3 Number = Sg | Pl ;
4 Person = P1 | P3 ;
5 lincat
6 S = { s : Str } ;
7 N = { s : Number => Str } ;
8 PN = { s : Str ; n : Number } ;
9 NP = { s : Str ; n : Number ; p : Person } ;

10 V, VP = { s : Person => Number => Str } ;
11 A, Adv = { s : Str } ;
12 lin
13 mkS np vp = { s = np.s ++ vp.s ! np.p ! np.n } ;
14 mkNP n = { s = n.s ! Pl ; n = Pl ; p = P3 } ;
15 mkNP' pn = { s = pn.s ; n = pn.n ; p = P3 } ;
16 adjNP adj np = { s = adj.s ++ np.s ; p = np.p ; n = np.n } ;
17 mkVP v = v ;
18 advVP vp adv = {
19 s = table { p => table { n => vp.s ! p ! n ++ adv.s }}
20 } ;
21 colorless_A = { s = "colorless" } ;
22 green_A = { s = "green" } ;
23 idea_N = { s = table { Sg => "idea" ; Pl => "ideas" }};
24 book_N = { s = table { Sg => "book" ; Pl => "books" }};
25 sleep_V = { s = table {
26 P1 => table { Sg => "sleep" ; Pl => "sleep" } ;
27 P3 => table { Sg => "sleeps"; Pl => "sleep" }}} ;
28 furiously_Adv = { s = "furiously" } ;
29 Chomsky_PN = { s = "Chomsky" ; n = Sg } ;
30 }

Listing 2.2: Concrete implementation of the Chomsky grammar

14 CHAPTER 2. BACKGROUND

Some lexical items, such as the adjectives and adverbs, which are not
inflected, are defined in a straight-forward way by giving the string literal.
Proper names also include an inherent number feature; there is just one
singular Chomsky. Nouns and verbs can be inflected, nouns by number
and verbs by person as well as number. They are defined using the table
keyword followed by a mapping from all possible parameter values onto the
resulting values, in the case of nouns from both number values onto string
literals. In the case of verbs, two levels of tables are stacked. Verb forms in
English depend both on person and number. To be precise, only the third
person singular has a different form, usually just adding a "s". So we can
first analyze the person and then we can analyze the number parameter
and determine the string literal. For the first person, the number does not
matter and we end up with redundant strings. This can be avoided by using a
wildcard matching all remaining cases: the underline character _, such as in
table { _ => "sleep" }.

Finally, we want to combine lexical items, as well as phrases, to form new
phrases up to the sentence level. Simple examples are mkVP which just copies
the value of the verb because verbs and verb phrases are assigned the same
data type and mkNP as well as mkNP' where the information in the lexical items
only has to be extended by constant values. Nouns, in our example, are always
plural and noun phrases are always in the third person. The rules mkVP,
mkNP and mkNP' form phrases from lexical items.

The remaining rules combine constituents to form larger constituents. To
do so we have to be able to access values in records and select values from
tables. For example, in mkS we need to combine the string of the noun phrase
with the correct form of the verb phrase. So we need to select the s field
in both phrases, which we can do by using the record selection operator .
(=period), such as in np.s and vp.s. To combine two strings we can use the
concatenation operator ++6. And finally we need to get the correct string
literal from the verb phrase. The s field in a verb phrase is a table from
person to number to string. Both pieces of information are included in the
noun phrase, in the p and n field. We can use this information together with
the table selection operator ! (=exclamation mark) to retrieve the correct
form by writing vp.s ! np.p ! np.s. Here we chain two selections because
after the first selection vp.s ! np.p we end up with a table from number
to string. The two remaining rules adjNP and advVP extend a phrase with a
lexical item. That means we have to keep the structure of the phrase while
modifying the string literals. In the case of adjNP, this is rather trivial. We
just have to update the string in the s field. A shorter solution for this is
np ** { s = adj.s ++ np.s } using the record extension operator ** to
use the np value and only updating the s field. A bit more advanced is the
case of advVP because here we need to change the string literals within a
table. That means, for the result we need to build the same tables, but we
do not actually care about the parameter values at this point. So, instead of

6This operator always introduces a space between the two concatenated strings. This
is due to GF’s internal handling of compile-time and run-time strings. See Ranta (2011,
chapter C.4.8 and C.4.9) for details.

2.4. GRAMMAR LEARNING 15

matching the values directly, we can assign to them variable names to reuse
later, in this case to select the correct value from the verb phrase. In this
situation writing out the complete table keyword can be tedious; we can again
take a shortcut writing { s = \\p,n => vp.s ! p ! n ++ adv.s } instead
of { s = table { p => table { n => vp.s ! p ! n ++ adv.s } } }.

In a similar way to this English concrete syntax, we can also add a concrete
syntax for German or Latin and use GF to translate between these languages.

2.3.3 The Resource Grammar Library
A final, and very important, feature of GF is the resource grammar library (RGL,
Ranta, 2009b), which is part of the GF distribution. The resource grammar
library consists of an extensive abstract syntax and concrete grammars in more
than 40 languages implementing it7. One of the languages included is the Latin
grammar which will be described in detail in this thesis.

The RGL provides a high-level and language independent access to the
linguistic information in the various language grammars. For example, in the
resource grammar there are various ways to form sentences. One of them is
called PredVP, the equivalent to mkS in our example, forming a sentence from a
noun phrase and a verb phrase. But there is also e.g. ConjS, which forms a new
sentence by forming the conjunction of two or more sentences. On the higher
abstraction layer of the RGL both functions are accesible under the name mkS
with differing parameters. These functions can be used in domain-specific or
application grammars without having to know the underlying implementation.

With our grammar we contribute to the GF ecosystem and add Latin to
the languages that can be added to applications using the resource grammar
library.

2.4 Grammar Learning
In the final part of this thesis we want to learn grammars that we can use in
our approach to CALL. There have been, over the time, quite a few approaches
to learning grammars. Which of these methods is the most suitable depends on
the use case. However, we tried to approach the topic from a broad perspective
and narrow it down by checking our requirements. But first I want to present
all the approaches we had under consideration.

2.4.1 Grammar Inference
There has been a lot of work on general grammar inference, both using su-
pervised and unsupervised methods (see, e.g. overviews by Clark and Lappin,
2010 and D’Ulizia, Ferri, and Grifoni, 2011). Most of these approaches focused
on context-free grammars, but there has also been work on learning grammars
in more expressive formalisms (e.g. Clark and Yoshinaka, 2014).

7http://www.grammaticalframework.org/lib/doc/status.html

16 CHAPTER 2. BACKGROUND

In traditional grammar inference, one starts from a corpus and learns a
completely new grammar. Because the only input to the inference algorithm
is an unannotated corpus, it can require a larger amount of data to learn a
reasonable grammar. Clark reports results on the ATIS corpus of around 740
sentences for one of his experiments (Clark, 2001).

2.4.2 Data-Oriented Parsing
Data-oriented parsing (DOP) (Bod, 1992) is an alternative approach to grammar
inference. The grammar is not explicitly inferred, but instead a treebank is
seen as an implicit grammar which is directly used by the parser. This parser
tries to combine subtrees to find the most probable parse tree. Results are
reported in a similar fashion for the Penn Treebank ATIS corpus with 750 trees
(Bod and Scha, 1997).

2.4.3 Probabilistic Context-Free Grammars
Another approach that could come to mind when thinking about learning
grammars is using probabilistic context-free grammars (PCFG), an extension
of context-free grammars where each grammar rule is assigned a probability.
Parsing with a PCFG involves finding the most probable parse tree (Manning
and Schütze, 1999, Chapter 11). The probabilities for a PCFG can be learned
from annotated or unannotated corpora using the Inside-Outside algorithm, an
instance of Expectation Maximazition (EM) algorithms (Lari and Young, 1990;
Pereira and Schabes, 1992). However, the PCFG approach does not make any
statement where the initial grammar is coming from. As a result it also requires
the presence of a grammar in the first place or has to be combined with a
general grammar inference method. PCFGs work for both formal and natural
languages. Experiments include the palindrome language and a subset of the
Penn treebank. Pereira and Schabes (1992) show that training on bracketed
strings results in significantly better results than training on raw text. They
report results on 100 input sentences for the palindrome language and on the
ATIS corpus using 700 bracketed sentences.

2.4.4 Subgrammar Extraction
There has also been, in limited scale, previous work on subgrammar extraction
(Henschel, 1997; Kešelj and Cercone, 2007). These articles present approaches to
extract an application-specific subgrammar from a large-scale grammar focusing
on more or less expressive grammar formalisms: CFG, systemic grammars
(equivalent to typed unification based grammars) and HPSG.

2.4.5 Logic Approaches
To our knowledge, there have been surprisingly few attempts to use logic
or constraint-based approaches, such as theorem proving or constraint opti-
mization, for learning grammars from examples. One exception is work by

2.4. GRAMMAR LEARNING 17

Imada and Nakamura (2009), who experiment with Boolean satisfiability (SAT)
constraint solvers to learn context-free grammars. However, they report results
only for formal languages over {a, b}∗.

2.4.6 Discussion
The techniques presented in the previous section are more or less closely related
to the work in the third part of this thesis. However, there are also more or
less strong differences. First we need to specify our use-case: We want to learn
a compact grammar from a very small set of examples sentences. The resulting
grammar should be suitable for our own, specific computer-assisted language
learning system. Instead of starting completely from scratch, we can assume
that we already have a comprehensive, suitable resource grammar.

Most of the methods I just presented, require no or very little linguistic
information besides the training examples. As a result they tend to require
more and more training data to learn more expressive grammars.

• Traditional grammar inference does not expect any additional input
besides the example corpus and produces a completely new grammar. A
usual approach to grammar inference is to use context distributions as
categories in the grammar (Clark, 2000). Given the results by e.g. Clark
(2001), it seems very unlikely that we can get satisfactory results from
between 10 and 20 input sentences.

• The DOP model is not using explicit grammars at all. This makes it most
likely unsuitable for our application. It is still an interesting approach
because it has some similarities with our ideas about subgrammar learning
presented in this thesis, especially about using subtrees in the learning
process. For DOP, using subtrees considerably improved the accuracy.
When using unbounded subtrees the parsing accuracy rose from 27% to
64% and the bracketing accuracy increased from 88.1% to 94.8% on the
ATIS corpus (Bod and Scha, 1997).

• Both previous approaches to subgrammar extraction either take different
kinds of input or enforce different constraints on the resulting grammar.
This again means that, even though the idea seems very close to ours,
these methods are not really suitable for our use case.

• The previous logic-based technique only focuses on formal languages.
Furthermore, it encodes the learning problem as Boolean expression. As
a result it is not directly possible to judge if a solution is optimal.

• The PCFG approach, albeit modified, is actually very promising. One
issue is the initial grammar, but GF has built-in support for probabilities,
so it would be possible to use the RGL. Another thing missing is the
algorithm to estimate the probabilities from the examples. There are
potentially other issues, including how to choose the rules for the resulting
grammar based on their probabilities.

18 CHAPTER 2. BACKGROUND

After surveying many of these techniques, we settled on our own approach
that fits our use-case perfectly. To our knowledge, no other method would
directly provide what we need: a reliable way to restrict a grammar to a
subgrammar that has the desired properties. Our requirements are quite
specific, however, our approach could also be useful outside our use case within
computer-assisted language learning and of general interest.

2.5 Constraint Satisfaction and Optimization
In mathematics, a constraint satisfaction problem is a problem where a set of
objects have to fulfill certain constraints. These constraints can, e.g. depending
on the problem, be phrased in as expressions of formal logic or as mathematical
equations. Constraint satisfaction problems can be extended to constraint
optimization problems by adding a measure for optimality.

2.5.1 Constraint Satisfaction
A popular family of constraint problems are SAT (Boolean SATisfiability)
problems. The problem is phrased as Boolean expressions involving logic
variables and a SAT solver tries to find an assignment of truth values for
all variables that makes all formulas true. These problems can be called a
constraint satisfaction problem (CSP) because the objective is to find any
solution to the problem if one exists.

A simple problem with its solution can be seen in Figure 2.1. The formula
(1) requires S1 and S2 to be true. Because S1 is true, so has to be T1 according
to (2). Line (3) forces either T2 or T3 to be true, because S2 is true. We do
not know which of them so we can choose randomly and end up with one of
the possible solutions.

The variable names are arbitrary at the moment but chosen similarly to
the ones we encounter when describing our approach to grammar learning.

2.5.2 Constraint Optimization
Related to CSPs are constraint constraint optimization problems (COP). In
addition to the constraints, they also contain an objective function. An objective
function is a criterion that tells the solver how “good” a solution is. Instead
of finding just any solution, the solver now tries to find an optimal solution
based on the measure given by the objective function. The constraints are
usually formulated as linear inequalities. Here the variables can have various
shapes, including real-valued, integer-valued or 0/1 integer-valued. Depending
on the range that is allowed for the variables, the problem can be more or less
difficult to solve. The Simplex algorithm (Cormen, 2009, pp. 864–879), to solve
real-valued problems, often has polynomial run-time and to find a solution for
integer linear programmings is NP-hard. This means that it is considerably
easier to find a solution for a real-valued problem than for an integer-valued
problem.

2.5. CONSTRAINT SATISFACTION AND OPTIMIZATION 19

In the case of 0/1 integers, i.e. integers that can only either have the value
0 or 1, the similarity to Boolean variables is quite obvious. This similarity also
means that Boolean formulas can be expressed as linear inequalities.

A translation of the problem in Figure 2.1 into a COP can be seen in Figure
2.2. Each of the Boolean formulas has been translated into linear inequalities
and we assume that every variable can either have the value 0 or 1. In addition
to solving the constraint, we want to minimize the sum of the variables R1, R2

and R3. As a result, we get a different solution than before. Instead of T2, T3

is now selected. The reason is, that if we choose T2 we have to choose R2 and
R3 in addition to R1 for T1, which leads to an objective value of 3, but if we
instead select T3 we only have to choose R3 for T3 in addition to R1 for T1.
This gives an objective value of 2, which is preferable.

Constraint problems are not that common within NLP. However, certain
tasks such as word alignment or morphological segmentation (Lillieström,
Claessen, and Smallbone, 2019) can be modeled as such.

In the third part of this thesis we will be using constraint optimization
techniques to create a domain-specific grammar from a resource grammar and
a set of examples. The problem can be expressed as SAT, however we also
want to add an objective function to get an optimal solution.

20 CHAPTER 2. BACKGROUND

Problem:

S1 ∧ S2 (1)
S1 ⇒ T1 (2)
S2 ⇒ T2 ∨ T3 (3)
T1 ⇒ R1 (4)
T2 ⇒ R2 ∧R3 (5)
T3 ⇒ R1 ∧R3 (6)

Solution:

f(S1) = f(S2) = true

f(T1) = f(T2) = true

f(T3) = false

f(R1) = f(R2) = f(R3) = true

Figure 2.1: Example of a SAT problem

Minimize: R1 +R2 +R3

Subject to:

S1 + S2 ≥ 2 (≡ S1 ∧ S2) (1)
T1 − S1 ≥ 0 (≡ S1 ⇒ T1) (2)
T2 + T3 − S2 ≥ 0 (≡ S2 ⇒ T2 ∨ T3) (3)
R1 − T1 ≥ 0 (≡ T1 ⇒ R1) (4)
R2 +R3 − 2T2 ≥ 0 (≡ T2 ⇒ R2 ∧R3) (5)
R1 +R3 − 2T3 ≥ 0 (≡ T3 ⇒ R1 ∧R3) (6)

Solution:

f(S1) = f(S2) = 1

f(T1) = f(T3) = 1

f(T2) = 0

f(R1) = f(R3) = 1

f(R2) = 0;

Figure 2.2: Constraint optimization problem based on the SAT problem in
Figure 2.1

Chapter 3

Overview

In the introduction in Chapter 1 I presented a quick outline of the work
contained in this thesis, followed by the background necessary to put the work
in this thesis into context in Chapter 2. In this chapter I will dive deeper
into the different topics relevant to the three parts of this thesis and give an
overview of the work as well as the results and contributions.

Part I focuses on the Latin resource grammar. It contains both a description
of how the grammar was implemented and how such a grammar can be tested
and evaluated using other language resources. The grammar itself forms the
foundation of our Latin language learning application. It provides the necessary
language description that can be used in formalizing language learning lessons.
Consequently, this part aims at answering the first research question about
Latin NLP and grammar development.

The second part is dedicated to the description of the CALL application
we designed. It demonstrates how CNLs and computational grammars can be
utilized in language learning applications. This includes how grammars can
be used to steer the user input and how they can be employed to formalize
learning objectives for translation exercises. The aim of this part is to answer
the second research about Computer-assisted language learning.

Finally, Part III ties in between the other two, even though it presents
a potentially more generally applicable technique. It describes a method to
learn domain- and application-specific grammars from a small set of example
sentences. It does so by extracting relevant linguistic information from a
resource grammar. Part I describes such a resource grammar and Part II an
application that is based on domain-specific grammars. So, it is a fit for our
application and as such answers the third research question about Subgrammar
extraction and grammar learning.

3.1 Part I: Latin Resource Grammar
The first, and oldest, part included in the thesis is the description of a com-
putational Latin grammar. The implementation of this grammar has been
ongoing work, already starting in 2013, well before the start of my PhD studies.

21

22 CHAPTER 3. OVERVIEW

However, the effort put into it increased when we started using it as a language
resource in our language learning application. The most recent contribution
is in the form of an evaluation to assess the quality of the grammar. The
evaluation also provides a prototype for general testing of resource grammars,
which has been an open issue within the GF community.

3.1.1 Implementation
The implementation of a resource grammar consists of several parts, some of
which are more or less important and challenging, depending on the language.
The three most relevant parts for Latin are: morphology, lexicon and syntax.
The morphology takes a large part of the work, the lexicon only poses some
challenges involving modern concepts and the main challenge of the syntax is
the handling of free word order phenomena.

3.1.1.1 Morphology

Previously we identified Latin as an inflected language, also called a fusion
language. That means that, other than with agglutinative languages, each
inflectional morpheme can encode several features at the same time. For
example for the verb audire we can have the verb form audi-o with the stem
audi- and the suffix -o. In this case, the suffix encodes the following features:
first person, singular, present, indicative, active.

Latin morphology is considered quite difficult because most of the parts of
speech are inflected and can have many different forms. On the other hand
these inflections are quite regular and there are fewer exceptions compared to
other languages.

To start with nouns, they are inflected by number and case and have
an inherent gender. The Latin cases are nominative, genitive, dative,
accusative, ablative and traces of a vocative, which is only expressed by
some male nouns of the second noun declension. Number can be singular
and plural.

First Declension (Feminine) Second Declension (Masculine)
Case Singular Plural Singular Plural

Nominative grammatica grammaticae liber librī
Genitive grammaticae grammaticārum librī librōrum
Dative grammaticae grammaticīs librō librīs
Accusative grammaticam grammaticās librum librōs
Ablative grammaticā grammaticīs librō librīs
Vocative grammatica grammaticae liber librī

Table 3.1: Example for the first two declension classes

Nouns in Latin are grouped into declension classes, depending on the
inflection pattern used, i.e. which suffixes are used for each number and case
combination. The noun grammatica is in first declension class, which contains

3.1. PART I: LATIN RESOURCE GRAMMAR 23

almost exclusively female nouns. The noun liber belongs to the second class,
which contains both masculine and neuter nouns. Both classes contain
mostly regular nouns, the same as the fourth and fifth declension. The third
class is a collection of more irregular nouns.

Adjectives are inflected similar to nouns, except that they do not have
an inherent gender but instead are also inflected by gender to be able to
agree with the noun that is modified. Most adjectives also have three different
comparison levels (positive, comparative, superlative).1

A more complex part of speech is verbs. Verb inflection involves many
more parameters. In total there can be more than 96 finite verb forms, depend-
ing on person (first, second, third), number (singular, plural), tense
(present, imperfect, perfect, future), voice (active, passive) and mood
(indicative, subjunctive). Besides the finite verb form there are various
nominal forms including infinitive, participles, etc. Despite that, most of the
verb inflection is very regular. There are three different inflection classes for
verbs, two of which contain mostly regular verbs.

Morphology is usually presented in grammar books as inflection tables. We
can use the table constructs in GF to implement morphology in a similar way
and define the noun grammatica in the way seen in Listing 3.12.

1 grammatica_N =
2 table {
3 Sg => table {
4 Nom => "grammatica" ;
5 Gen => "grammaticae" ;
6 Dat => "grammaticae" ;
7 Acc => "grammaticam" ;
8 Abl => "grammatica" ;
9 Voc => "grammatica"

10 } ;
11 Pl => table {
12 Nom => "grammaticae" ;
13 Gen => "grammaticarum" ;
14 Dat => "grammaticis" ;
15 Acc => "grammaticas" ;
16 Abl => "grammaticis" ;
17 Voc => "grammaticae" ;
18 }
19 }

Listing 3.1: GF table representation for the lexical item grammatica_N

And we could do the same for liber, and for any other noun in our lexicon.
But a better way would be to have a generic function that automatically
generates such a table for a noun. To accomplish this we can first rely on the
inflection classes that determine which suffixes have to be attached to the word
stem to form a certain inflected form. And on top of the inflection classes
we can have some heuristics that chooses the correct inflection class for each

1Some adjectives form comparison levels with the help of adverbials
2In the Latin grammar we don’t mark vowel length

24 CHAPTER 3. OVERVIEW

noun in the lexicon. Such heuristics is called a smart paradigm in the GF
terminology (Détrez and Ranta, 2012).

For a start we can define a function that implements the first declension,
the inflection class the noun grammatica belongs to. We want a function that
takes the string "grammatica" and returns the GF table in Listing 3.1.

Such a function is the function declension1 in Listing 3.2. This function
uses pattern matching on the string to first check if the noun qualifies to be in
the first declension and at the same time removes the nominative singular
suffix "a". The resulting stem is stored in the variable grammatic which then
can be used to form the whole table.

The second step is to add the smart paradigm that automatically recognizes
the declension class based on the information in the lexicon. Such a function is
smartNoun in Listing 3.3. It uses noun suffixes of nominative singular forms
to decide which declension should be used to generate the paradigm. However,
except for declension one, two and five, the suffixes are not sufficiently unique
to decide if for example casus belongs to the second or fourth class. Also,
only for the first two classes it is possible to reliably infer the predominant
gender of the declension class from the noun form. For the fourth and fifth
declension class the gender can be inferred in many cases but not in all. The
text following the double-dash (--) are comments that are only intended to
clarify the code to the reader and are ignored by GF.

For the third and fourth declension class and all disgressive nouns, we need
to include more information in the lexicon to infer the paradigm and gender
correctly. For nouns we can cover almost all remaining cases by looking at the
nominative singular form, genitive singular form and the gender. So
we need to add a second function such as smartNoun2 (Listing 3.4) that does
exactly that job.

In a very similar way we can handle all others lexical items such as verbs
and adjectives. In some cases it is even possible to reuse parts of inflections
of different parts of speech, such as noun inflection for regular adjectives and
both noun and adjective inflection for participles and gerundives.

3.1.1.2 Lexicon

The RGL includes a basic lexicon consisting of about 250 concepts. These
concepts are mostly based on a list of most common words in the English
language.

It is a challenge in general to translate concepts between different languages.
What makes this task even more challenging is when one of the languages is a
modern language and the other is a historic languages.

Sometimes it is possible to find equivalent or sufficiently close concepts such
as calceus for eng. boot, which is the closer candidate than soleae, eng. sandals
because they cover the whole foot and not just the soles. But other candidates
would be possible as well and potentially more appropriate.

An even bigger issue is when we need to translate modern concepts into
a historic language. This basically leaves us with two options: paraphrasing
or inventing a “new” word in the historic language, which could either be a

3.1. PART I: LATIN RESOURCE GRAMMAR 25

1 declension1 noun =
2 case noun of {
3 grammatic + "a" =>
4 table {
5 Sg => table {
6 Nom => grammatic + "a" ;
7 Gen => grammatic + "ae" ;
8 Dat => grammatic + "ae" ;
9 Acc => grammatic + "am" ;

10 Abl => grammatic + "a" ;
11 Voc => grammatic + "a"
12 };
13 Pl => table {
14 Nom => grammatic + "ae" ;
15 Gen => grammatic + "arum" ;
16 Dat => grammatic + "is" ;
17 Acc => grammatic + "as" ;
18 Abl => grammatic + "is" ;
19 Voc => grammatic + "ae" ;
20 }
21 } ;
22 _ => error "Not first declension"
23 } ;

Listing 3.2: GF function to apply first declension

1 smartNoun noun =
2 case noun of {
3 terr + "a" => declension1 noun ; -- Gender feminine
4 hort + "us" => declension2 noun ; -- Gender masculine
5 verb + "um" => declension2 noun ; -- Gender neuter
6 ag + "er" => declension2 noun ; -- Gender masculine
7 -- Already covered by hort + "us":
8 -- cas + "us" => declension4 noun ;
9 corn + "u" => declension4 noun ; -- Gender neuter

10 r + "es" => declension5 noun -- Gender feminine
11 }

Listing 3.3: Simplified smart paradigm for nouns based on nominative sin-
gular form. Some nouns of the fourth declension cannot be handled here

1 smartNoun2 nounNom nounGen gender =
2 case <nounNom ,nounGen > of {
3 <pat + "er", patr + "is"> =>
4 declension3consonant nounNom nounGen gender
5 <nav + "is", nav + "is"> =>
6 declension3i nounNom nounGen gender
7 <cas + "us", cas + "us"> =>
8 declension4 nounNom nounGen gender
9 }

Listing 3.4: Second smart paradigm based on nominative and genitive
singular forms

26 CHAPTER 3. OVERVIEW

back-translation from a related modern language or a completely new invention.
When developing a grammar, like I did with the Latin grammar, none of this
should be directly our job. Studying lexical items is the focus of lexicographers.
Instead we would like to rely on suitable external resources.

These lexical resources can be historic Latin dictionaries, modern dictio-
naries published for students (e.g. Vilborg, 2009) or modern online resources.
The best online resources available are crowd-sourcing-based project such as
Wiktionary and Wikipedia. The English Wiktionary offers translations for
many concepts that often also include Latin translations. Wikipedia on the
other hand has a complete instance available in Latin with more than 130 000
pages (Vicipaedia, 2020). By cross-referencing between the various languages,
Wikipedia can be a useful lexical resource as well.

The problem with both resources is that they are user created for human
use and it can be challenging to automatically extract the intended information.
For example in Wiktionary, markup is almost exclusively used to make the
entries human readable, not to make them machine readable. Another problem
is the reliability of the information found in user-generated content. Besides
the named problems, these two projects provide invaluable resources. And it
can be quite surprising how many modern concepts have a Latin Wikipedia
page.

One remaining challenge is the case where we cannot give a translation in
a single word but have to paraphrase a concept using a larger phrase. The
major problem with that kind of paraphrase is that the types for lexical items
and phrases are often not directly compatible and ways to make them work
together have to be found.

3.1.1.3 Syntax

The third and final step in implementing a resource grammar is the implemen-
tation of the syntactic rules that build larger phrases and constituents from
more basic ones.

The implementation of the Latin syntax is guided by two aspects, the Latin
language and the syntactic functions defined in the RGL abstract syntax. As a
consequence, certain concepts have to be implemented in the Latin resource
grammar which are not explicitly expressed in Latin. This is for example
the case for definitive and indefinite article. Despite Latin not making any
distinction and not even expressing the concept, it is necessary to implement
empty placeholders for both to be compliant with the RGL.

The big challenge of Latin syntax is its comparatively free word order. In
reality the word order is very much restricted by factors or pragmatics. And
there usually have been predominant word orders, depending on the epoch and
the genre. But looking at it from a purely syntactic point of view we have to
be able to cover all word orders that are possible, both in theory and practice.

The reason why more free word order is possible in Latin than in other
languages is that Latin encodes relevant information using morphology and
enforces agreement between all components of a phrase. While, for example,
in some languages the subject of a sentence has to be in a certain position, in

3.1. PART I: LATIN RESOURCE GRAMMAR 27

Latin it is marked with nominative case. And usually the nominative noun
phrase is the subject of a sentence, no matter where it appears. In addition it
is often possible to see to which noun an adjective belongs, because they have
to agree in gender, number and case. This feature, however, is limited by
potentially ambiguous word forms.

If we look at the sentence imperator vetus imperium Romanum imperat
(eng. the old emperor rules the Roman empire), imperator is unambigu-
ously nominative singular and agrees with vetus in all features. The noun
imperium could either be nominative, accusative or vocative singular.
The adjective Romanum shows agreement features for accusative singular
neuter. The verb imperat is a transitive verb that requires a singular subject
and a direct object in accusative. The only way to resolve all these constraints
is to treat imperator vetus as the subject and imperium Romanum as the direct
object. That also means we can reshuffle the words, for example reorder to
imperator imperat Romanum vetus imperium and there is still only one possible
reading. However, this word order is highly unlikely because there is no seman-
tic or pragmatic reason for it and it would make it unnecessarily difficult to
understand the sentence. On the other hand vetus imperat imperator imperium
Romanum would be more acceptable because it puts a focus on vetus (eng. old).

Free word order phenomena can occur on several levels, but they can be
handled in a very similar way. The most common kind of free word order
is the reordering of top-level constituents. Latin had, in the classic epoch, a
preference of subject-object-verb. However, almost any other order was possible
and can be found, depending on the epoch and author (Bamman and Crane,
2006). As a side note, we also have simpler word orders such as verb-object,
object-verb, subject-verb and verb-subject. This is possible because Latin is a
pro-drop language, i.e. a language where pronouns in subject position can be
dropped since the information is already encoded in the verb. Furthermore,
implied or repeated objects can be dropped.

Another free word order phenomenon is the overlapping and interleaving of
phrases, called Hyperbaton. A short example can be found in Caesar’s Gallic
War: dies appetebat septimus (Caesar, B.G. 6.35.1). Here the verb appetebat
(eng. it was approaching), appears in the middle of the subject noun phrase dies
septimus (eng. the seventh day). In this simple example only a single word is
put in the middle of another phrase, making it discontinuous. It is also possible
to have two phrases overlap in a way that both phrases become discontinuous.

Currently there is no easy way to handle free word order phenomena in GF.
A generic interleave operator (Ljunglöf, 2004, Section 5.4) would be desirable
but has not been implemented yet . The most common way to handle free
word order is to introduce a new parameter that determines the word order on
a higher level and use record fields to store constituents separately until they
can be concatenated in the way defined by the parameter.

On the top level subject, verb and direct objects can be reordered (Listing
3.5). We first define the new parameter with all the possible word orders listed.
We introduce two linearization categories, S for sentence and Utt for utterance.
While sentence has the three separate fields s for subject, v for verb and o
for object, an utterance is just a single string. To form an utterance from a

28 CHAPTER 3. OVERVIEW

1 param Order = SVO | SOV | VSO | VOS | OVS | OSV ;
2

3 linat
4 S = { s : Str ; v : Str ; o : Str } ;
5 Utt = { s : Str } ;
6

7 lin
8 mkUtt s = combineSentence s SOV ;
9 mkUttSVO s = combineSentence s SVO ;

10

11 oper
12 combineSentence : S -> Order -> { s : Str } ;
13 combineSentence snt order =
14 { s = table {
15 SVO => snt.s ++ snt.v ++ snt.o ;
16 SOV => snt.s ++ snt.o ++ snt.v ;
17 VSO => snt.v ++ snt.s ++ snt.o ;
18 VOS => snt.v ++ snt.o ++ snt.s ;
19 OVS => snt.o ++ snt.v ++ snt.s ;
20 OSV => snt.o ++ snt.s ++ snt.v ;
21 } ! order ;
22 } ;

Listing 3.5: Functions to reorder subject, verb and direct object depending on
a word order parameter

sentence we have to combine the sentence and determine the word order. In
the function mkUtt we use a helper function called combineSentence and set
the default word order to subject-object-verb. To also allow for other word
orders we can add additional rules such as mkUttSVO.

The helper function combineSentence is defined with a slightly different
syntax. It is defined as an oper, a helper function, similar to our more informal
smartNoun. The definition consists of the name followed by its type. It takes
two parameters, a sentence and a word order. The function body first contains
the definition of a table, where for each possible value of the word order
parameter, the constituents of the sentence are concatenated in the proper
order. In the end the function argument is used to select the correct string
value from this table.

This combination of parameters to control the word order, records to keep
parts separately and tables to finally assemble the parts can be used for basically
every aspect of free word order. However, as a result, it requires a large amount
of parameters and separate record fields within all the phrase categories to
make them potentially discontinuous. So, in theory it is possible to handle
every kind of free word order phenomenon, but in practice some compromises
between relaxing and restricting the word order have to be taken.

Besides the free word order, we have to take care of agreement between
various parts of the sentence. Nouns and adjectives agree in gender, number
and case; verbs and noun phrases agree in number and person. In every
sentence we need some component that determines these features for the rest
of the sentence.

3.1. PART I: LATIN RESOURCE GRAMMAR 29

Nouns have inherent gender which is passed on to the noun phrase. Num-
ber of a noun phrase is in the syntactic theory employed by GF, determined
by the determiner, which works well for many languages. The case of a noun
phrase is determined either by its syntactic function or by the verb involved.
Subject noun phrases are in nominative and the case of object noun phrases
is determined by the verb, in most cases it is accusative.

Finally, we can once again come back to the topic of articles in Latin. These
most common determiners are not expressed in Latin but are still necessary to
determine the number of the noun phrase. This adds to the level of ambiguity
when analyzing a sentence because e.g. the sentence vir vetus est can mean
both the man is old or a man is old.

3.1.2 Evaluation
In the previous sections I presented important aspects of the implementation of
the Latin grammar as part of the RGL. The resulting grammar in its current
state can be used in various applications, with our main focus on computer-
assisted language learning. This shows its basic practicality but does not
necessary say anything about its overall quality.

To fix this issue, I created experiments to assess the quality using available
language resources. When analyzing the quality of a resource grammar we can
focus on the same three components I presented in the implementation section:
morphology, lexicon and syntactic rules. Here the order is slightly different.
To be able to properly test a grammar we need access to a sufficiently large
lexicon. Based on this lexicon and a corpus we can evaluate the quality of our
description of morphology. Finally, we can also conduct some evaluation on
the syntactic function.

The primary resource used in the evaluation is the Latin part of the PROIEL
treebank (Eckhoff et al., 2018), that is included in the Universal Dependencies
(UD) project3. For the lexical and morphological analysis we can ignore the
dependency trees and only focus on the lexical tokens. For the evaluation of
the syntactic rules we can use the dependency trees from the treebank. This
can be done in a lexicalized or in a delexicalized way. That means we can
replace lexical items by their part of speech (POS) tags or lexical categories
before testing the syntax to avoid problems involving lexical coverage and
out-of-vocabulary errors.

3.1.2.1 Lexicon and Morphology

To begin the evaluation, it is necessary to add additional lexical resources to
the resource grammar, to be able to analyze a reasonable fragment of real-world
language data. There are a few lexical resources available for Latin, Wiktionary
and Wikipedia have been mentioned before. Another resource would be the
historic Latin dictionaries included in the Perseus project (Lewis Ph.D. and
Short LL.D., 1879). One drawback all these resources have in common is
that they have been created for human users and not necessarily for machine

3https://universaldependencies.org/treebanks/la_proiel/index.html

https://universaldependencies.org/treebanks/la_proiel/index.html

30 CHAPTER 3. OVERVIEW

newdoc id = Commentarii_belli_Gallici,_Caes.,_Gall._1.1
source = Commentarii belli Gallici, Caes., Gall. 1.1
text = Gallia est omnis divisa in partes tres [...]
sent_id = 52548
1 Gallia Gallia PROPN Ne Case=Nom|Gender=Fem|[...] 4 nsubj:pass
2 est sum AUX V- [...] 4 cop
3 omnis omnis DET Px [...] 1 det
4 divisa divido VERB V- [...] 0 root
5 in in ADP R- [...] 6 case
6 partes pars NOUN Nb Case=Acc|Gender=Fem|[...] 4 obl
7 tres tres NUM Ma Case=Acc|Gender=Fem,Masc|[...] 6 nummod
[...]

Figure 3.1: Simplified fragment from the Universal Dependencies PROIEL
Latin treebank in CONLL format

readability. This means it would involve significant work to adopt the resource
to our needs.

On the other hand, there is at least one suitable digital resource. It is
a lexicon included in a Latin dictionary lookup and translation tool called
Whitacker’s Words (Whitaker, 2006). The software is in the public domain and
the lexicon is available as a plain text file that can be automatically converted
into a GF-compatible lexicon. The resulting lexicon contains 37 404 lemmas
out of 39 225 contained in the original lexicon.

After the addition of the large lexicon, it is possible to both analyze the
lexical coverage and the quality of the morphology. The information contained
in the Universal Dependencies treebank (Listing 3.1) includes both the word
forms and the lemmas (second and third column). To test the lexical coverage
we can see if we can analyze all the lemmas. To get a basic idea about the
quality of the morphological description we can see how many of the word
forms we can analyze.

For a more in-depth analysis we need some means of comparison. One
solution would be to use the morphological tags that are in included in the
treebank (fifth column) as a gold standard. Instead, I also compared against
the two state-of-the-art morphological analyzers LEMLAT and LatMor.
That way it is possible to compare both the coverage and quality of the
morphological analysis. In the cases where my analysis failed I also did a more
in-detail analysis. Some obvious flaws could be identified, but in general the
results were comparable to the other systems.

3.1.2.2 Syntax

The final part of the analysis was on the level of syntactic functions. Here we
can treat the dependency trees as our gold standard. Thanks to the work of
Kolachina and Ranta (Kolachina and Ranta, 2016; Ranta and Kolachina, 2017)
it is possible to convert between dependency trees and GF abstract syntax
trees.

3.1. PART I: LATIN RESOURCE GRAMMAR 31

An example can be seen in Figure 3.2. The process involves, as a first step,
to replace the POS tags in the UD tree by GF categories. A major problem is
that GF categories tend to be more fine-grained than UD POS tags (Figure
3.2b). That means for one UD tree we have to try several candidates for the GF
abstract syntax tree. From the categories and the dependency labels involved
we can reconstruct abstract syntax functions. For example in the tree we have
the categories AP and CN connected by an edge labeled amod which means we
can recover the abstract function AdjCN (see Figure 3.2c). This conversion can
either work on lexicalized or delexicalized trees.

I used this method to convert the trees in the UD treebank into GF abstract
syntax trees and analyzed the syntactic functions occurring in these trees. I
compared the most commonly occurring functions with the functions missing
in the Latin grammar, which currently implements 284 out of 357 functions
defined in the resource grammar library. The results show that all of the 20
most frequent functions are already implemented. Besides this result, this
experiment also produces a list of most promising rules to be added in a further
extension of the grammar.

3.1.3 Results and Contributions
The most obvious result is the existence of a freely available computational
grammar. However, building a grammar can be seen as a purely engineering
effort. But in addition I conducted a corpus-based evaluation of the grammar.
The evaluation shows that there is space for extensions, however, the Latin
morphology is able to compete with other morphological analyzers and also the
syntactic coverage seems already very well developed. Only a small number of
the syntactic rules I could identify in the corpus are missing from the grammar.
The evaluation both shows which are the most promising points for future
improvement and gives a point of reference for these improvements. All effects
of changes to the grammar can be evaluated against the previous version. This
allows for an iterative and data-driven improvement of the grammar.

This leads to the contribution in the form of a language resource for Latin, a
language outside mainstream NLP. Furthermore, the method used to evaluate
the grammar based on other language resources, especially treebanks, can act
as a blueprint for testing similar grammars. The evaluation method fills a gap
within grammar engineering that has been an issue for years.

32 CHAPTER 3. OVERVIEW

the black cat sees us today
DET ADJ NOUN VERB PRON ADV

' $
?

det � �
?

amod ��
?

subj � �
?

obj

' $
?

adv

?

root

(a) The original dependency tree

UD GF

DET Det
ADJ A,AP,…
NOUN CN,N,…
VERB V,V2,…
PRON Pron
ADV Adv,AdV,…

(b) Mapping between UD POS
tags and GF categories

Name Type Label

AdjCN AP -> CN -> CN amod head
AdVVP AdV -> VP -> VP adv head
DetCN Det -> CN -> NP det head
ComplSlash VPSlash -> NP -> VP head obj
PredVP NP -> VP -> Cl subj head
…

(c) UD labels for GF abstract syntax functions

the black cat sees us today
Quant A N V2 Pron Adv

' $
?

det � �
?

amod ��
?

subj � �
?

obj

' $
?

adv

?

root

(d) The dependency tree with correct GF categories
UseCl : S

PredVP : Cl

DetCN : NP

DetQuant: Det

DefArt: Quant

the

AdjCN : CN

PositA : AP

black_A : A

black

UseN : CN

cat_N : N

cat

AdvVP : VP

ComplSlash : VP

SlashV2a : VPSlash

see_V2 : V2

sees

UsePron : NP

we_Pron : Pron

we

today_Adv : Adv

today

subj

det

amod
obj

adv

(e) The abstract syntax tree annotated with UD labels

Figure 3.2: Example for the connection between UD trees and GF abstract
syntax trees (Kolachina, 2019, p. 11)

3.2. PART II: GRAMMAR-BASED CALL 33

3.2 Part II: Grammar-Based CALL
The second part of this thesis, and the part that binds the two other parts
together, is a grammar-based application for computer-assisted language learn-
ing. The application itself is language-independent and agnostic, however it
seemed an obvious choice to test it with Latin based on the Latin grammar
described in the previous section.

Our approach to CALL combines an intuitive user input method based on
grammars, a theory how to model language learning using specific grammars
and other modern features such as gamification. I will present the user input
method and the use of grammars for language learning in detail in the following
sections.

3.2.1 Grammar-Based User Input
An essential part of our approach to grammar-based language learning is the
user interface, especially the input method. It is based on previous work by
Ljunglöf (2011). The basic idea is pretty simple. We don’t let the user input any
text but the system only allows input that is correct according to a grammar.
To do that, we do not start from an empty string, but instead start from some
grammatically correct sentence. The user can then step by step change the text
until it meets their expectation. The usual editing operations are insertion,
deletion and substitution, but not on a character level but on a word or
phrase level. These operations are implemented by mapping interaction on the
surface onto an underlying syntax tree.

insertion One or several words can be inserted by replacing a subtree by a
larger tree with more leaf nodes

deletion One or several words can be deleted by replacing a subtree by a
smaller tree with fewer leaf nodes

substitution One or several words can be replaced by other words by replacing
a subtree by a different tree with the same number of leaf nodes

Subtrees can only be substituted by compatible trees, i.e. the category of the
root node of the trees has to be the same. We can demonstrate the method
using an example. We start with the almost-Chomskyan sentence colorless
ideas sleep furiously. It has the abstract syntax tree in Figure 3.3 according to
the grammar in Listing 2.1. By clicking onto words we can traverse the tree
with a pointer to one of the nodes. The grammar together with the selected
node determines the editing operations possible.

In Figure 3.3 we see the movement of the pointer when clicking on the
word ideas on the surface (blue arrow and circle). This causes the creation of a
pointer (red circle) in the tree pointing to the immediate parent introducing
the word on the surface, in this case idea_N. The system is now looking for all
other trees with the same root category N. The only other noun in the lexicon
is the noun book_N. We can now replace idea with book. If that is not what we

34 CHAPTER 3. OVERVIEW

want, we can click on the same word again. This causes the pointer to move
one level up to the mkNP node. Here the system can offer more alternatives.

mkS : S

adjNP : NP

colorless_A : A

colorless

mkNP : NP

idea_N : N

idea

advVP : VP

mkVP : VP

sleep_V : V

sleep

furiously_Adv : Adv

furiously

Figure 3.3: Abstract syntax tree for colorless ideas sleep furiously. The user
clicks on the surface word ideas (blue), a pointer in the tree is moved upwards
with recurring clicks (red)

In theory there are infinitely many subtrees of category NP but the system
filters out certain kinds of subtrees. For example, the original tree will be
removed, because it does not cause any change. Also, all trees that can be
reached by a sequence of editing steps as well as all trees that can be reached
from a node further down are removed.

At the first NP node we can get three different subtrees (Figure 3.4b) as
replacement for the original tree (Figure 3.4a). They represent the editing op-
erations insertion and substitution. At this position, no deletion is possible
because only one word is highlighted on the surface and removing it would
make the sentence ungrammatical.

When substituting the subtrees we get the trees shown in Figure 3.5. The
result is equivalent to either inserting the adjective colorless, inserting the
adjective green or substituting the proper name Chomsky for the noun phrase
ideas.

The user can now choose one of these edit operations or continue climbing
up the tree by clicking onto the same word again. This moves the pointer to
the parent node in the tree and starts the process over again. Now we have a
larger subtree, covering more words, in focus. This means we can potentially
delete words, assuming the grammar allows this. Here it is the case, because
we have a smaller subtree with category NP. This is equivalent to deleting the
adjective colorless (Figure 3.6). All other possible subtrees of category NP are
already covered by the previously covered child and are for that reason ignored
here.

In a similar way the user can click on any word on the surface to traverse
the tree in the background to find the changes necessary to form the new text

3.2. PART II: GRAMMAR-BASED CALL 35

mkNP : NP

idea_N : N

ideas

(a) The original subtree
adjNP : NP

colorless_A : A

colorless

mkNP : NP

idea_N : N

ideas

adjNP : NP

green_A : A

green

mkNP : NP

idea_N : N

ideas

mkNP’ : NP

Chomsky_PN : PN

Chomsky

(b) Three potential substitute subtrees

Figure 3.4: The original tree and the accessible subtrees with category NP

they want to create. The user themself does not have insight into the tree
but just selects one of the editing suggestions presented by the system (Figure
3.7). After clicking on a word, the system suggests a list of phrases that can
be used in the same place. When selecting one of the suggestions, the phrase
is replaced and the process starts over again.

Starting from the sentence, the user can click on any word any number of
times. When clicking on the word ideas once, the word is highlighted and they
get the list of possible replacements, in this case only the word books. Clicking
on it a second time gives instead: colorless ideas, green ideas and Chomsky.
Selecting one of the options changes the sentence accordingly. The grammar
guarantees that the resulting sentence remains grammatically correct. For
example when choosing Chomsky, the system updates the verb form to agree
with the third person singular subject. When clicking on the same word
several times, the highlighted area expands and new replacement options are
possible. When clicking on a different word instead, the process starts from
this selection.

This method provides a generic and intuitive way of editing an input text
while at the same time guaranteeing that the result is still within the language
defined by a grammar. This makes it a perfect fit for our grammar-based CALL
application.

36 CHAPTER 3. OVERVIEW

mkS : S

adjNP : NP

colorless_A : A

colorless

adjNP : NP

green_A : A

colorless

mkNP : NP

idea_N : N

ideas

advVP : VP

mkVP : VP

sleep_V : V

sleep

furiously_Adv : Adv

furiously

(a) Tree after substituting the first subtree in Figure 3.4, i.e. an insertion
mkS : S

adjNP : NP

colorless_A : A

colorless

adjNP : NP

green_A : A

green

mkNP : NP

idea_N : N

ideas

advVP : VP

mkVP : VP

sleep_V : V

sleep

furiously_Adv : Adv

furiously

(b) Tree after substituting the second subtree in Figure 3.4, i.e. an insertion

mkS : S

adjNP : NP

colorless_A : A

colorless

mkNP’ : NP

Chomsky_PN : PN

Chomsky

advVP : VP

mkVP : VP

sleep_V : V

sleeps

furiously_Adv : Adv

furiously

(c) Tree after substituting the third subtree in Figure 3.4, i.e. a substitution

Figure 3.5: The resulting trees after substituting subtrees

3.2. PART II: GRAMMAR-BASED CALL 37

mkNP : NP

idea_N : N

ideas

(a) The new subtree

mkS : S

mkNP : NP

idea_N : N

ideas

advVP : VP

mkVP : VP

sleep_V : V

sleep

furiously_Adv : Adv

furiously

(b) Tree after substituting the subtree, i.e. a deleteion

Figure 3.6: Editing operation after stepping up in the tree

colorless ideas sleep furiously (Original sentence)

colorless ideas sleep furiously (One click on ideas)
Suggestions: Results:
books colorless books sleep furiously

colorless ideas sleep furiously (Two clicks on ideas)
Suggestions: Results:
colorless ideas colorless colorless ideas sleep furiously
green ideas colorless green ideas sleep furiously
Chomsky colorless Chomsky sleeps furiously

colorless ideas sleep furiously (Three clicks on ideas)
Suggestions: Results:
ideas ideas sleep furiously

Figure 3.7: System interface from the user’s perspective when clicking on ideas

38 CHAPTER 3. OVERVIEW

Figure 3.8: The exercise view for a Latin exercise

3.2.2 Grammar-Based Language Learning
Based on the input method described in the previous section, we designed a
language learning application. It uses grammars to automatically generate
translation exercises on the sentence level.

3.2.2.1 Exercise Type

The next step from the user input to the language learning applications is to
define a goal. So far we only looked at editing a single sentence. By using
the inherent multilinguality of GF we can add a second sentence in a different
language, both sentences being covered by the same abstract syntax. This
allows us to easily create translation exercises.

Usually, when learning a second or foreign language, two languages are
involved, one already known language used in the learning process and the new
language to be learned. Borrowing from logic, we can call the first language
the metalanguage and the second language the object language in the learning
process.

We start from two different sentences, one in the metalanguage and one
in the object language (Figure 3.8). One of the two sentences is fixed, the
other one can be edited by the student. Now the task is to change the sentence
to make it a proper translation of the other sentence. In the simplest case,
each of the two sentences has exactly one abstract syntax tree according to
the grammar and the two sentences are translations of each other when the
abstract syntax trees match. In fact, because of inherent structural ambiguity,
it is more likely that each sentence can be caused by several abstract syntax
trees. That means, we have to assign to each sentence the set of all its valid
syntax trees. To find out if a sentence is a proper translation of another, we
have to check the intersection of the two sets. If the intersection is non-empty,
they are translations.

As an additional feature we add color highlighting to show the progress in

3.2. PART II: GRAMMAR-BASED CALL 39

Figure 3.9: The lesson selection screen for a Latin course

the translation task. Already matching parts of the surface string, determined
by the same subtree in both trees, can be highlighted to show what parts are
already translated and which still need to be translated. In addition, we can
highlight different constituents in different colors to highlight the alignment of
phrases.

Another important aspect of a language learning exercises is a scoring
system. The simplest possible scoring system is simply a timer. The less time
it takes to solve an exercise the better. An alternative solution would be to
start from a maximum score and subtract points both for time spent and for
clicks used. This would encourage both solving the task quickly and accurately.

3.2.2.2 Lesson Structure

Language learning is traditionally subdivided into units, usually lessons and
exercises. We can mimic this division by modeling lessons as distinct grammars.
An example lesson selection screen can be seen in Figure 3.9. Based on each
grammar, a lesson consists of a list of exercises. And each exercise is a pair
of two sentences, in different languages, as well as the direction of translation,
i.e. which of the two sentences can be changed by the user. A color indicator
in the lesson view shows the learner’s progress within a lesson, i.e. how many
of the exercises are solved successfully. The lesson Prima is completely solved
(marked in green), Secunda is partially solved (marked in yellow) and the other
lessons have not been attempted yet.

We want to put a special focus on these grammars that are used to define
the lessons. In the GF literature one can often find a distinction between
syntactic or resource grammars and semantic or application grammars. The
first kind follows the tradition of phrase structure grammars to describe large
parts of a language. The categories and functions are linguistically motivated
and describe the syntax of the language. Application grammars, on the other
hand, use semantically motivated, application specific categories and rules.
While the resource grammar might make statements how verbs and nouns can

40 CHAPTER 3. OVERVIEW

be combined, an application grammar might speak about combining objects
and actions into commands. Application grammars are related to the concept of
controlled natural languages (CNLs). CNLs are fragments of natural language
with restricted syntax and well-defined semantics. One of the more well known
and ambitious CNLs is Attempto Controlled English (ACE) (Fuchs et al.,
2005), a large fragment of the English language that can unambiguously be
translated into discourse representation structures (Kamp and Reyle, 1993).
By definition, each GF grammar can be seen as a controlled natural language
because it can only describe a limited fragment of a natural language but at
the same time always includes a well-defined semantic representation in the
form of the abstract syntax.

We place our lesson grammars between resource grammars and application
grammars. They are small compared to both resource grammars and usual
application grammars. Their structure is closer to syntactic grammars but we
have strong requirements about their semantics. To not confuse the student we
want to avoid as much ambiguity as possible, be it structural or lexical. And
from our point of view it seems also counter-productive to include completely
nonsensical sentences.

It is a challenge to create useful lesson grammars. They can be created
manually and particular focus can be put on what grammatical features should
be taught in the lesson. This requires an in-depth knowledge of the language,
pedagogics and grammar engineering.

A different approach is to adopt the lesson structure from an existing
language course. In many language learning contexts, traditional text books
are still in use. They are already separated into lessons and each lesson consists
of several components: an exercise text, a vocabulary list, some explanation of
vocabulary and grammar and some additional exercises. We can base our own
lesson grammars on both the text fragments and vocabulary lists provided for
each lesson. These grammars can either be created manually or, as shown in
the third part of this thesis, learned automatically. By describing exactly the
lesson text, we guarantee for a similar level of syntactic complexity. The biggest
advantage is that the translation exercises we can create from such a grammar
seem familiar to the student, because they share structure and vocabulary with
the content of the text book. Located in this familiar setting we can create an
arbitrary number of translation exercises by recombining syntactic structures
and vocabulary.

This particular focus on mirroring the text book structure also allows for
an easier integration of our application into an existing language class in a
traditional classroom setting.

3.2.2.3 Gamification

A final step to a proper CALL application is the inclusion of gamification
features. After reviewing some literature on the topic we settled on adopting
features of GameFlow (Sweetser and Wyeth, 2005) with some modifications
inspired by MICE by Lafourcade (described in Fort, Guillaume, and Chastant,
2014, section 4).

3.2. PART II: GRAMMAR-BASED CALL 41

The main features of gamification included in our language learning appli-
cation are the following:

Concentration by minimizing the distraction from the task

Challenge by giving a scoring schema

Control by providing an intuitive way to modify the sentence,

Clear goals by providing a lesson structure

Immediate feedback by using a color schema to highlight progress.

These features allow for a more involving and entertaining language learning
experience. This is especially useful for languages which are considered boring
by students and where no other computational language learning application
exists. Cases have been reported where students attempting to learn Latin or
Ancient Greek even suffered from anxiety (A. Takahashi and H. Takahashi,
2015). In these situation a more game- and play-like access to language learning
could prevent this issue.

All these techniques, the grammar-based user input, the lesson grammars,
and the methods of gamification, were combined into a working prototype for
which we received positive feedback from both Latin teachers and students.

3.2.3 Evaluation
I designed an experimental evaluation for our approach to computer-assisted
language learning. The experiment design has already been covered in some
length in my licentiate thesis (Lange, 2018, chap. 5.3). There I also presented
a pilot for this experiment, which did not provide any statistically significant
results. For that reason we cannot present any published results about it.
However, time moves on, and I can give an updated summary of the experiment
design here as well.

The experiment is both within-subject and between-subject and focuses
within the language learner on the change in language skills and learner’s
attitude over the time of the experiment and compares the results from a
treatment group with the change in one or more control groups. The questions
we want to answer with the experiment are:

• Does using our CALL application have a positive effect on the translation
competence of students, compared to traditional teaching techniques and
competing computer systems.

• Does using our CALL application have a positive effect on the attitude
towards learning a language, here Latin, compared to traditional teaching
techniques and competing computer systems.

The original design focused on teaching and learning Latin, but in general
the choice of the language does not really influence the design. However, the
choice of language has an influence on the potential population of participants.

42 CHAPTER 3. OVERVIEW

Relevant aspects for a valid experiment are identified variables, a general
setup, the sampling of candidates and the evaluation of relevant factors.

The most informative independent variable is the use of our application
compared to just the traditional teaching approach. Other variables are also
possible, including the choice of language learning application in general, user
input method or user interface.

One problem can be dislike of computers which is influenced by the pop-
ulation and can depend on the choice of language. For Latin we noticed an
increased reluctance to use computers among the students.

The dependent variables are difficult to measure: The change in learner
motivation is very subjective and for measuring a change in learning outcomes
a longitudinal study is required. Other language learning systems like Duolingo
have been evaluated over a longer period in a closed setting under strongly
controlled conditions and supervision (Vesselinov and Grego, 2012). Instead
my experiment was planned to be available online and to take four weeks for
four lessons.

The participants are asked to answer two questionnaires, one in the begin-
ning to control for the background variables and to give a point of reference
for the development of the dependent variables about learner attitude, and
another in the end to change in the dependent variables. Additionally, a quick
translation test gives indications about the participant’s translation competence
in the beginning and the end.

For a between-subject evaluation, we have to add control groups. They
take part in the same experiment but the usage of our application is replaced
by other activities. When I designed the experiment in the first place, it was
difficult to find suitable replacement activities. In the meantime Duolingo
released its Latin course in August 2019. As a result, even for Latin, we can
use Duolingo as a means of comparison.

Depending on the location and the languages involved, the sampling ques-
tion, i.e. the selection of a suitable group of participants, can be solved differently.
With a very limited population, e.g. beginner’s students of Latin at a university,
we have to use the whole population. Depending on the size of the group, it
might even be impossible to split into treatment and control groups. When
several similar language classes are at hand, each class can be used as one of
the groups. For fairness reasons the groups can also be reshuffled after some
time, but that also increases the time necessary for the evaluation.

Preferably, we want to create three groups of participants. One treatment
group and two control groups. The treatment group uses our application while
the control groups spend the same amount of time with other activities. To see
if the usage of computers in general contributes to improvements, one of the
control groups only uses the traditional learning approach and uses the time
for additional written exercises. A second control group can be used to test
if our own approach has advantages over comparable approaches. This group
could for example use Duolingo or other competing systems.

For a meaningful experiment we have to guarantee for its suitability: This
external and internal validity as well as reliability and replicability (Bryman,
2012, p. 69).

3.3. PART III: LEARNING DOMAIN-SPECIFIC GRAMMARS 43

Important for this are:

• Use of control groups

• Control for background variables

• Suitable sampling methods

• Suitable measures for variables and stability of these measures

In experiments involving humans, stability is a challenge. Some measures
are by their very nature more stable than others: Translation speed usually
only varies within a certain range, but subjective self-assessment can vary a lot
between two measurements, depending on external factors. So the challenge is
to find a balance between stability and applicability.

Finally, this more quantitative research evaluation can be extended by
qualitative methods mostly based on individual interview. The interviews can
be supported by stimulated recall (Fox-Turnbull, 2009) together with some of
the quantitative information collected.

3.2.4 Results and Contributions
The main result of this work is the creation of a prototype language learning
application. It is innovative in the way it uses grammars as the central
component and provides interesting features. These include a novel way of
user interaction, gamification and adaptability to teaching requirements. Even
though I designed an experimental evaluation (Section 3.2.3) I cannot provide
any published results here. The pilot I conducted only had less than 10
participants, of which only two finished the experiment.

The contributions go far beyond our attempt to create a completely new
language learning application from scratch. Instead the two most relevant
contributions are the development of our own type of translation exercises. It
is related to Cloze tests (W. L. Taylor, 1953), but also more flexible while on
the other hand lacking the practice of language use in a wider context. The
second, and probably more important contribution, is our work on the use
of computational grammars in language learning in general. This allows to
have a single source controlling the user input, the exercise generation and the
modeling of the broader learning objective.

3.3 Part III: Learning Domain-Specific Gram-
mars

The final major part of this thesis is a method to automatically learn a domain-
or application-specific grammar from few example sentences. This provides
a second connection between the Latin grammar and the language learning
application. It allows to automatically learn the previously described lesson
grammars by selecting the necessary constructions from the Latin resource
grammar.

44 CHAPTER 3. OVERVIEW

We present two methods, the first one is the basic approach to use constraint
solving techniques to select the required constructions to cover examples from
a resource grammar. This can be described as subgrammar extraction and
there has been some related work discussed previously. For the second method
we extend the basic method in two ways: we include negative examples in
the learning process and we allow the merging of rules. Especially the second
extension moves us away from plain subgrammar extraction towards learning
even more specific application grammars.

3.3.1 Subgrammar Extraction
We start from a very general grammar, e.g. a GF resource grammar, and a set
of example sentences. We want to learn a new grammar which is an optimal
subset of the original grammar that still covers all the examples. The constraint
solving techniques used are the ones described in Section 2.5, specifically 0/1
integer linear programming. A schema of the learning process can be seen in
Figure 3.10.

parse

extract
grammar

S1
...
Sn

GR

T11 . . . T1t1
...

Tn1 . . . Tntn

CSP

G

Figure 3.10: The outline of our grammar learning system

3.3.1.1 Modeling as CSP

First we need to describe how we can translate our problem into a constraint
satisfaction problem. We use a GF resource grammar as our base grammar.
That means we can parse the example sentences with this grammar and get
a set of abstract syntax trees for each sentence. Each abstract syntax tree
consists of nodes containing the abstract function name and category. We only
care about the set of rules used in the tree and ignore both the tree structure
and the syntactic categories.

We want to model constraints saying that the set of rules in the resulting
grammars still has to cover all the examples. To cover an example at least one
of the trees has to be covered and to cover a tree all its syntactic functions have
to be covered. We introduce logic variables for sentences, trees and syntactic
rules. These variables are used in constraints similar to the ones shown in
Figure 3.12.

3.3. PART III: LEARNING DOMAIN-SPECIFIC GRAMMARS 45

S1

S2

...
(a) Sentences

T11 =

T12 =

T21 =

...

r0

r1 r2

r3 r4

r0

r5 r3

r1 r4

r0

r5 r6

r7 r8

(b) Trees

T11 = {r0, r1, r2, r3, r4}

T12 = {r0, r5, r3, r1, r4}

T21 = {r0, r5, r6, r7, r8}

...
(c) Flattened representations

Figure 3.11: Sentences and tree representations

All sentences have to be covered:
S1 ∧ S2 ∧ . . .

At least one tree per sentence has to be covered:
S1 → T11 ∨ T12

S2 → T21

. . .

All rules in a tree have to be covered:
T11 → r0 ∧ r1 ∧ r2 ∧ r3 ∧ r4

T12 → r0 ∧ r5 ∧ r3 ∧ r1 ∧ r4

T21 → r0 ∧ r5 ∧ r6 ∧ r7 ∧ r8

. . .

Figure 3.12: Encoding Figure 3.11 as logical constraints

46 CHAPTER 3. OVERVIEW

As a result we have a conjunction of all sentences, for each sentence a
disjunction of trees and for each tree a conjunction of rules. The syntax rules
we are using as the atomic units actually are a special case of splitting the tree
into subtrees, using subtrees of size 1. Larger subtrees will be a separate topic.
These are the logic constraints we use to extract a subgrammar. On top of this
constraint satisfaction problem, we can add an optimality criterion to turn it
into a constraint optimization problem.

To decide which solution should be considered an optimal solution we
experimented with various objective functions. The most promising candidates
include:

rules: The sum of rule variables included in the new grammars

trees: The sum of tree variables covered by the new grammar

rules+trees: The sum of both above

weighted rules: The sum of rule variables included in the new grammars
weighted by number of occurrences in all trees, preferring more frequently
occurring rules

3.3.1.2 Evaluation

To evaluate our method and test the various objective functions we follow
D’Ulizia, Ferri, and Grifoni (2011), who present three different evaluation
strategies

• “Looks-Good-to-me”

• “Compare-Against-Treebank”

• “Rebuilding-Known-Grammars”

The first one is purely superficial and only checks if the resulting grammars
look reasonable. We mostly skipped this test because it is hard to define what
reasonable means, which makes this test very subjective. Instead we focused
on the other two strategies.

The second strategy uses a treebank to evaluate the grammar inference
(Figure 3.13). The sentences in the treebank are used to infer a grammar
and the trees are used as gold standard to test the quality of the resulting
grammar. There are various ways how one can measure the quality of the
inferred grammar based on gold standard trees. We chose the simplest case
where we just check if the gold standard is among the analyses we get from
the new grammar. A more fine-grained analysis would include to also compare
subtrees in cases where no complete tree matches. The handcrafted treebanks,
contain between 10 and 22 sentences and are available for Finnish, German,
Swedish and Spanish.

The final strategy starts from a known subgrammar and tests if we can
re-learn the grammar from a set of examples which we can create from it (Figure
3.14). There are again different ways possible to compare two grammars. The

3.3. PART III: LEARNING DOMAIN-SPECIFIC GRAMMARS 47

(S1, T1)
...

(Sn, Tn)

T1
...
Tn

compare
trees

T ′
11…T ′

1t1
...

T ′
n1…T ′

ntn

S1
...
Sn GR

Learning
component

parse
sentences G

Figure 3.13: Evaluation by comparing the learned grammar to a treebank

G0

generate
sentences

S1
...
Sn

compare
grammars

GR

Learning
component

G

Figure 3.14: Evaluation by rebuilding a known grammar G0

48 CHAPTER 3. OVERVIEW

easiest is to use the measures precision and recall from information retrieval.
We compare the original rules to the inferred rules and determine false positives
and false negatives. This gives us an appropriate measure for the quality of
the learned grammar. We tried this evaluation with a non-trivial subgrammar
of the RGL and English, Finnish, German, Spanish and Swedish.

In general we can learn good grammars from around 10 sentences in average,
independent of language and objective functions. However, in the evaluation
we encountered some problems with languages such as Finnish, which tend to
be more ambiguous and cause more analyses per sentence. In these cases it
proved useful to extend from monolingual grammar learning to multilingual
grammar learning.

In multilingual subgrammar learning we use translation tuples of sentences
as well as the corresponding resource grammars as the input. The learning
component is mostly the same. But we take the for each sentence sets of
abstract syntax trees for each of the languages and only consider the trees
in the intersection. This helps to disambiguate cases of language-specific
ambiguity. In our treebank-based evaluation we used translation pairs with
English translations and registered improvements for all languages involved.

Despite this evaluation using methods taken from related literature and
giving very promising results, we also have to state the limits of our evaluation
methods. We evaluated the learning component only with a very limited set of
grammars.

For the “Rebuild-Known-Grammar” we used one grammar that is an au-
thentic subset of the GF RGL. The grammar was previously used in some
example exercises for the CALL application. We tried to keep this grammar
as general as possible while restricting its size. We did not select the rules
to improve the results in any way. For the “Compare-Against-Treebank” we
basically used whole RGL extended with the necessary lexicon to cover the
treebank examples.

As a result, it is difficult to claim that our grammar learning approach is
independent from the shape of the grammar and works for all grammars equaly
well. However, in our use-case we focus on learning subgrammars of the RGL.
And for this we have convincing results.

3.3.2 Beyond Simple Subgrammars
In the previous section I showed how one can learn a application-specific
subgrammar from a set of example sentences. This method can be extended
in two ways. Before, we were using only positive examples to extract a
subgrammar. Our experiments showed that the method provides reasonable
results. However, there are good reasons to not just stop there.

3.3.2.1 Negative Examples

The next step is to include negative examples. This allows for an iterative,
human-centric learning method. Previously the learning component was ba-
sically a black box and it was difficult to directly influence the output. It is

3.3. PART III: LEARNING DOMAIN-SPECIFIC GRAMMARS 49

only possible to change the output by providing more examples and hope that
this will push the resulting grammar in the right direction. This is fine for a
fully-automatic learning method. But to put a human in the loop we need to
give them more control over the result.

From a technical point of view it is easy to formulate additional constraints to
handle negative examples. Previously we had constraints for positive examples
enforcing the presence of all rules to cover at least one tree:

S1 ⇒ T11 ∨ · · · ∨ T1n

. . .

T11 ⇒ r1 ∧ · · · ∧ rm

. . .

For negative examples we want the opposite. For each negative example,
none of the trees should be covered, i.e. for each tree at least one rule has to
be excluded:

¬r1 ∨ ¬r2 ∨ · · · ∨ ¬rm ≡ ¬(r1 ∧ r2 ∧ · · · ∧ rm)

As a linear constraint it can be formulated as r1 + · · ·+ rm < m. Adding
these kinds of constraints to the problem is no problem at all.

Our experiments, both with formal languages and natural language frag-
ments, have shown that negative examples allow us to learn more precise
grammars more quickly. This addition also allows us to solve a more general
problem, the challenge of including humans in the learning process by creating
a process of iterative refinement. In this new process we start with the same
automatic process to infer a subgrammar from a list of positive examples we had
previously. But now we can use this new grammar to generate new examples
and let the person in the loop judge if an example is acceptable or not. This
provides us with additional examples, both positive and negative, from which
we can learn a new and more accurate grammar.

3.3.2.2 Merging Rules

The second major extension brings us beyond strict subgrammars. From a
theoretical point of view, syntactic functions in GF are closely related to the
concept of functions in mathematics and computer science. In mathematics if
we have compatible functions f : A → B and g : B → C we can compose them
to a new function g ◦ f : A → C. In a similar way we can compose syntactic
functions into new syntactic functions.

The next question is, which functions do we want to merge? To find good
candidates we can change the basic units in our learning technique from syntax
rules to subtrees. This is possible because syntax rules are a special case of
subtrees of size 1. Instead of modeling syntactic rules as logic variables we can
use the variables to represent subtrees.

Previously, we used three levels to model our constraint satisfaction problem:
sentences, trees and rules. Now we add new levels of splits and subtrees. We

50 CHAPTER 3. OVERVIEW

split the syntax trees into subtrees up to a certain size in such a way that the
subtrees in a split can be reassembled into the original tree. As a result we
have the levels: sentence, tree, split and subtrees.

mkS : S

adjNP : NP

colorless_A : A

colorless

adjNP : NP

green_A : A

green

mkNP : NP

idea_N : N

ideas

advVP : VP

mkVP : VP

sleep_V : V

sleep

furiously_Adv : Adv

furiously

Figure 3.15: Abstract syntax tree for the sentence colorless green ideas sleep
furiously

If we for example split the tree in Figure 3.15 into subtrees up to a maximum
size of 3, we end up with 378 splits, some of which are shown in Figure 3.16.
As you can see, the first split is into subtrees of size 1 which is equivalent to
splitting into syntactic rules as we did before. This shows that our previous
approach is equivalent to subtrees of size 1.

Now we have to integrate the splits into our CSP. Previously, a tree was
covered when all it’s syntactic functions are covered. Now a tree is covered
when at least one of its splits, also called partitions, is covered. The extended
CSP can be seen in Figure 3.17.

After solving the COP, based on these new constraints, we can use the
subtrees from the solution to merge rules. We testes this method both on formal
and natural language fragments and achieved interesting results. For example
we could learn the language of balanced parentheses from an over-generating
grammar and resolve some attachment ambiguities concerning adverbials.

3.3.2.3 Restricting the Number of Subtrees

In theory, this extension is no problem at all, unfortunately in practice the
problem size easily grows beyond what could be considered feasible (Figure
3.18a). For example at subtree size 3 we get 378 splits and 2774 subtrees in
total for a tree of size 11. Each subtree has to be represented by a logic variable
which means, we quickly and up with millions of variables for longer sentences
and several parse trees per sentence.

A working solution is to limit the number of subtrees per split. If we would
only allow at most one subtree with size larger than 1 per split in the example

3.3. PART III: LEARNING DOMAIN-SPECIFIC GRAMMARS 51

P1 =

{
mkS , advVP , furiously_Adv , mkVP , sleep_V , adjNP ,

adjNP , mkNP , idea_N , green_A , colorless_A

}
P2 =

{
mkS , advVP , furiously_Adv , mkVP , sleep_V , adjNP ,

adjNP , mkNP

idea_N

, green_A , colorless_A

}

P3 =

{
mkS , advVP , furiously_Adv , mkVP , sleep_V , adjNP ,

adjNP

? mkNP

?

, idea_N , green_A , colorless_A

}

...

Pk =

{
mkS

adjNP

?

?

, advVP

? mkVP

?

, adjNP

green_A mkNP

?

,

furiously_Adv , sleep_V , idea_N , colorless_A

}
...

Pn =

{
mkS

adjNP

colorless_A ?

?

, advVP

? mkVP

sleep_V

, adjNP

green_A mkNP

?

,

furiously_Adv , idea_N

}

Figure 3.16: Splits into subtrees of maximum size 3 of the tree in Figure 3.15

52 CHAPTER 3. OVERVIEW

All sentences have to be covered:
S1 ∧ S2 ∧ . . .

At least one tree per sentence has to be covered:
S1 → T11 ∨ T12

S2 → T21

. . .

At least one partition per tree has to be covered:
T11 → P111 ∨ · · · ∨ P11k

T12 → P121 ∨ · · · ∨ P12l

T21 → P211 ∨ · · · ∨ P21m

. . .

All subtrees in a partition have to be covered:
P111 → st1 ∧ · · · ∧ stn

P112 → sto ∧ · · · ∧ stp

. . .

Figure 3.17: The constraints including partitions and subtrees

in Figure 3.16, the first three partitions P1, P2 and P3 would be okay but for
example partitions Pk and Pn would be discarded because they contain two
respectively three larger subtrees.

If we apply this method to the problem of a maximum subtree size of 3 for
the same tree in Figure 3.15, we get the resulting graph in Figure 3.18b. It
shows that if we allow one or two larger subtrees per split we get substantially
lower numbers of partitions and subtrees, and with four or five we get similar
numbers as if we would not restrict the number of subtrees.

When restricting the number of larger subtrees to 1, we get much more
feasible problem and if we run the algorithm repeatedly with this limit, we can
merge one subtree into a new rule in each iteration. This can be integrated
into the iterative learning method I described previously.

3.3.2.4 Evaluation and Discussion

For the extensions of our grammar learning method we don’t have an evaluation
in the same style as we did for the basic technique. Instead we show on four
examples that we can learn interesting grammars. Even though the results are
promising, that is more like anecdotal evidence than a proper evaluation.

We can assume that some of the assumption about the basic technique hold,
because it is a special case of the extended techniques. One very interesting
aspect would be to see how the additions change the learning effect.

The extension of the previous experiments to subtrees is, in theory, trivial.

3.3. PART III: LEARNING DOMAIN-SPECIFIC GRAMMARS 53

(a) Number of subtrees and partitions of the tree in Figure 3.15 (tree
size 11)

(b) Number of subtrees and partitions when limiting the number of
subtrees per partition (tree size 11, subtree size 3)

54 CHAPTER 3. OVERVIEW

In practice, however, we have to deal with the aforementioned performance
issues. And the mitigation we suggest can again influence the automatic
grammar learning method.

To also utilize negative examples would require larger changes to the
evaluation methods. One solution would be to modify the “Rebuild-Known-
Grammar” in such a way that instead of using two grammars G0 and G ⊂ G0

also using G = G0\G as a third grammar. This third grammar can be used to
generate negative examples to be used in the automatic learning experiment.
At the moment it is hard to predict how exactly adding negative examples and
merging rules will influence the learning of grammars.

3.3.3 Results and Contributions
We implemented the subgrammar extraction method and the evaluation shows
that already with about ten input sentences we can learn a reasonable subgram-
mar. In addition, we can show on examples, using both formal and natural
language fragments, that we can learn even more interesting phenomena.

The major contribution as a novel approach to learning grammars by first
extracting a domain-specific subgrammar and then optionally merge rules to
get an even more specific grammar for a domain given by a small set of example
sentences.

Chapter 4

Conclusion

To conclude this first part of the thesis, it is time to summarize and discuss the
results. Furthermore, we can give a glimpse at future work and perspectives.

4.1 Summary
The work in this thesis can be seen from two different angles. A narrow angle
would be to focus only on our work on Latin and Latin CALL. From this angle,
it is easier to answer the research questions.

Grammar development and testing I implemented a computational Latin
grammar suitable as a resource for language learning. The thesis contains
a description of the necessary steps and methods and demonstrated how
its quality can be evaluated using corpus-based methods.

Computer-assisted language learning We created a grammar-based CALL
application that uses multilingual controlled natural languages to generate
translation exercises. It is based on an intuitive input method that guides
the user in the translation task and incorporates features of gamification.
The thesis discusses the relevance of grammars and controlled natural
languages in the CALL context.

Subgrammar extraction and grammar learning We created a semi-au-
tomatic method to generate domain- and application-specific grammars
from example sentences. This allows non-linguists to create grammar-
based language learning exercises. The thesis demonstrates the feasibility
of the learning method.

Some of these results could be criticized for being too much engineering and
lacking scientific depth. But there is also a broader perspective to it. Each of
the three questions leads to more general contributions in various areas. And
each of these contributions help research to progress. Especially the second
perspective is relevant to a broader discussion of the results.

55

56 CHAPTER 4. CONCLUSION

4.2 Discussion
Besides just developing a Latin grammar I also explored an approach to handle
free-word order languages in general. Together with the experience from
handling complex morphology we get closer to best practices for handling
languages that are outside the NLP mainstream. And even more importantly,
I worked on methods to use treebanks and other linguistic resources to test
and evaluate similar computational grammars. This helps move grammar
engineering away from the temptation of armchair linguistics towards a stable
and empirical foundation of such important resources.

Our contribution to computer-assisted language learning is not just that
we worked on Latin, a language that has been outside the mainstream and was
in danger of being neglected, even though there is still a significant number
of students studying it more or less voluntarily. It is a major undertaking to
create a new CALL application from scratch and we did not have the time and
manpower to release a nice and polished version. Instead it is still more in the
state of a research prototype. But we hope we were still able to enrich the
CALL landscape in general.

Our approach nicely fits between purely handcrafted exercises with limited
scope and strongly data-driven approaches that provide wide scope but can
lead to annoying problems concerning reliability. Also, our exercise type is
more interesting than plain vocabulary repetition and more flexible than the
related kind of Cloze tests. On the other hand, our approach only focuses on
the sentence level and lacks the feature to practice language in a larger context.

Finally, one more relevant point of our approach is its adaptability and
flexibility. Our own interest led us to use multilingual grammars implemented
in Grammatical Framework and to focus on creating language learning exercises
for Latin. But the language learning system is build in a way that the kind of
grammars used is not relevant as long as the tree manipulation is possible in a
similar way and it is possible to have some form of multilinguality to implement
the translations. And even though some challenges are to be expected when
adapting the system to other languages, that are conceptually too different,
in general it is possible to use any language pairs as long as computational
grammars exists for these languages.

For the third part, we of course had our own use case in mind, when we
developed it. And we implemented the methods using our favorite grammar
formalism. But we also kept the approach as general as possible. This again
includes the attempt to minimize the requirements for the grammars involved.
As a result, everything that can be formulated as a many-sorted algebra can
directly be used as an input grammar.

Still, the importance of this research is hard to estimate. It seems to be
more of a corner case compared to other methods of grammar learning such as
general grammar inference. Still this does not mean that it is of no scientific
interest. And in practice, grammar based applications are not as uncommon
as it might seem in a NLP landscape that is mostly dominated by IT giants
such as Google, Apple, Facebook and Microsoft. And for everyone involved in
developing this kind of applications our research should be very valuable.

4.3. FUTURE WORK 57

4.3 Future Work
It is no surprise that there are still dangling tasks, but many things have
already been accomplished. The Latin grammar can still be extended and
the corpus-based evaluation has shown where the most relevant errors and
omissions lie.

The CALL application can be extended by adding more features, e.g. fea-
tures of gamification such as competitive features and communication within a
class. Or by including related research for learner modeling, example generation,
etc. The major remaining endeavor is a proper evaluation of our approach to
computer-assisted language learning on a broader scale.

With our method to first learn domain-specific subgrammars and then even
merge rules to automatically infer application grammars, a more thorough
evaluation seems appropriate. And especially the iterative learning process
using negative examples, which we sketched, has to be properly implemented
and evaluated.

In general, the majority of the remaining work is to actually assemble
the jigsaw puzzle. That means properly hook together the separate pieces
of software to build be system we envision. Building and evaluating such a
complete system is a separate project on its own.

All this work is again within a narrow perspective. In a broader perspective,
I am sure that both our approaches to CALL using CNLs and to learning
(sub)grammars are only the start and can lead to interesting lines of future
research.

58 CHAPTER 4. CONCLUSION

Part II

The Latin Resource
Grammar

59

Chapter 5

Paper I: Implementation of
a Latin Grammar in
Grammatical Framework

Herbert Lange

Published in , Proceedings of the 2nd International Con-
ference on Digital Access to Textual Cultural Heritage
(DATeCH2017),
Göttingen, Germany, 2017

61

62
CHAPTER 5. PAPER I: IMPLEMENTATION OF A LATIN GRAMMAR IN GRAMMATICAL

FRAMEWORK

Abstract
In this paper we present work in developing a computerized grammar for the
Latin language. It demonstrates the principles and challenges in developing a
grammar for a natural language in a modern grammar formalism. The grammar
presented here provides a useful resource for natural language processing
applications in different fields. It can be easily adopted for language learning
and use in language technology for cultural heritage like translation applications
or to support post-correction of document digitization.

5.1. INTRODUCTION 63

5.1 Introduction
In recent years, the standard approach to natural language processing has been
based on statistical methods. Some of the reasons for this focus are that the
computing power has increased and, with access to the internet, large amounts
of linguistic data have become available. Also statistical approaches already
give good results with comparably less effort compared to classic formal and
rule-based approaches. But under some circumstances, a manual, rule-based
approach might still be considered, e.g. in the creation of language resources for
under-resourced languages. Given the fact that languages that are relevant for
research in cultural heritage, especially in the Classical Antiquity, still belong
to the rather under-resourced languages we present our work in formalizing
one of these languages, Latin.
The need for computerized processing for these languages is growing. And our
approach can help to achieve that both as a complement and an alternative to
statistical methods. Especially a formal grammar can provide some additional
insight how a certain language works.
Besides that a grammar gives a stable foundation for different useful applications
like Language Learning and providing access to resources in the area of cultural
heritage.
One valid point is the question of todays relevance of Latin. But besides the
research in cultural heritage, Latin is still seen as the “mother of all Romance
languages”. Furthermore Latin has a strong relevance since it can be used
as a “default” language for linguistic comparisons (“tertium comparationis”)
(Müller-Lancé, 2006).
Several possible applications can be imagined. A grammar can also be used to
generate exercises for language learning applications. That way it is possible
to focus on specific characteristics to support the learner in learning certain
kinds of syntactic and grammatical constructions.
Another interesting application seems to be the translation of Latin inscriptions
and epigraphs. A computerized Latin grammar can be extended with the
vocabulary and probably a small set of additional constructions to cover the
Epigraphic Database Heidelberg1. Together with the possibility to build a
Smartphone App, an application can be developed that gives tourists and other
interested people the ability to understand Latin inscriptions without having
to know Latin.
These applications can also be implemented based on statistical methods, but
due to different requirements different kind of models would have to be adopted
and trained while the grammar can be adopted without bigger changes.
This paper describes the principle ideas applied in developing this grammar.
It starts with some information about the grammar formalism (Section 5.1.1)
and the Latin language (Section 5.1.2). The main part of the work is the
description of the implementation of the grammar based on a common Latin
grammar book (Bayer and Lindauer, 1994). The implementation (Section 5.2)
consists of a lexicon (Section 5.2.1), morphology (Section 5.2.2) and syntax
(Section 5.2.3). The conclusion (Section 5.3) discusses some future work.

1http://edh-www.adw.uni-heidelberg.de/home/

http://edh-www.adw.uni-heidelberg.de/home/

64
CHAPTER 5. PAPER I: IMPLEMENTATION OF A LATIN GRAMMAR IN GRAMMATICAL

FRAMEWORK

5.1.1 Grammatical Framework
The Grammatical Framework (GF) is a modern grammar formalism and a
specialized software system for developing of grammars as well as parsing and
translation. It is developed as free and open source software at the University
of Gothenburg by Aarne Ranta et al. The grammar formalism adopts the style
of modern functional programming languages in computer science like Haskell
to formalize natural languages (Ranta, 2011).
It is not possible to present a full description of the formalism, so interested
readers should be referred to a more comprehensive description e.g. in the book
by Ranta (Ranta, 2011). For now it should be sufficient that it implements
a variant of context-free grammars extended by additional constructs, most
importantly so called tables and records2. Adding these increases the expres-
sivity to be equivalent to parallel multiple context-free grammar (PMCFG)
(Ljunglöf, 2004).
Tables can be used for parametric features like the noun cases while additional
record fields can be used for inherent grammatical features like the noun gender.
Parametric features in lexical items usually give rise to inflection tables. In

1 -- Possible Number values: Sg (= Singular), Pl(ural)
2 -- Possible Case values: Nom(inative), Acc(usative), Dat(ive),
3 -- Abl(ative) and Voc(ative)
4 -- Possible Gender values: Masc(uline), Fem(inine), Netr (= Neuter)
5 -- Type for Nouns: N = { s : Number => Case => Str ; g : Gender } ;
6 lin
7 man_N = {
8 s = table {
9 Sg => table {

10 Nom => "vir"; Acc => "virum"; Gen => "viri";
11 Dat => "viro"; Abl => "viro"; Voc => "vir" };
12 Pl => table {
13 Nom => "viri"; Acc => "viros"; Gen => "virorum";
14 Dat => "viris"; Abl => "viris"; Voc => "viri"; }
15 } ;
16 g = Masc
17 }

Listing 5.1: An example for a noun in this grammar

Listing 5.1 you can see a possible full lexical entry of a noun in this grammar.
It shows examples of both tables and records. In the top there is an informal
definition of all possible values for several finite features such as number, cases,
and genders. This definition is followed by the type for the values that represent
nouns in this grammar. It is a record with two fields, the first one, with the
label s, contains the inflection table for the noun forms and the second field,

2Tables types have the form {Type1 => Type2} with Type1 a finite type and Type2 an
arbitrary type and values of these types have the form table { k1 => V1; . . . ; kn => Vn }
with ki of type Type1 and Vi of type Typ2. Record types have the form {l1 : T1; . . . ; ln : Tn}
with l1, . . . , ln different labels and T1, . . . , Tn arbitrary types. Records values of these types
have the form {l1 = v1; . . . ; ln = vn} wit vi a value of type Ti for every i with 1 ≤ i ≤ n.
cmp. (Ranta, 2011, pp. 279-282)

5.1. INTRODUCTION 65

with the label g stores the inherent gender of a noun.
The inflection table in this implementation is a table of tables, defining that a
noun form is dependent both on the number and case.
Finally the full formal definition of a certain noun, the Latin noun vir, is given.
Here man_N is basically an arbitrary identifier, but it is common practice in
GF to use a specific format for lexical items. These identifiers have the form
of a word-identifying part, usually the English translation, followed by an
underscore and the grammatical category.
To this identifier the record value with the two labels g and s is assigned. The
value for the label g is simply the gender value Masc for masculine. The value
for the label s however is first a table over the possible number values. Each of
this values is again assigned a table over the possible case values. The patterns
in the tables must be exhaustive, i.e. there must be an entry in the table for
every possible value of the finite feature. The combination of a number and a
case value together then determine the word form.
The whole construct after the label man_N is the value of a specific noun in this
implementation of a GF grammar. The values for other word classes are built
in a similar way.
Another characteristic of this formalism is the distinction between so-called
abstract and concrete syntax. While the abstract syntax only specifies the
rules and their parameters on an abstract level, the concrete syntax gives it a
concrete form and specifies how strings are formed according to the grammar.
Multiple concrete syntaxes can share the same abstract syntax and the abstract
syntax tree can be used as an intermediate representation between the different
languages of the concrete syntaxes. The most extensive abstract syntax is
the one defined by the resource grammar library (RGL) distributed with GF
(Ranta, 2009b). It is already implemented for many languages including the
Latin grammar presented here.

5.1.2 The Latin Language

The Latin language belongs to the Indo-Germanic language family and its
development spans almost from 240 b.c. to the beginning of the 20th century
(Glück, 2004) and in certain fields even continues today.3 The main focus of
this work lies on the Classic Latin period, i.e. the period from the first public
speeches of M. Tullius Cicero (ca. 80 b.c.) to ca. 117 a.d., which is also the
main focus of common grammar books like the (Bayer and Lindauer, 1994),
which was used as the main guideline of this work.
Latin is a language with strong inflection. It belongs to the class of synthetic
languages that express syntactic classes and relations through suffixes. In Latin
an affix can express several features at once.
Another distinctive feature of Latin is the tendency to a rather free word order.
Even though there is still a strong tendency to Subject-Object-Verb word order,
it can vary a lot between different text classes and time epochs.

3One interesting late instance of Latin in the field of mathematics is Latino sine Flexione
(Glück, 2004)

66
CHAPTER 5. PAPER I: IMPLEMENTATION OF A LATIN GRAMMAR IN GRAMMATICAL

FRAMEWORK

5.2 Implementation of the Grammar

5.2.1 Lexicon

The first part of the grammar implementation described here is a lexicon.
The general plan was to follow the structure of the Latin grammar book (Bayer
and Lindauer, 1994). So this section is a bit of an exception since the lexicon
is not based on that book, but instead takes the RGL into account, which
provides the description of a minimal lexicon containing about 350 lexicon
entries.
There are usually a few typical challenges when working with lexicography,
most of which we still encounter in this small-scale lexicon.
The first problem is homonymy, i.e. words that share the same spelling but
have different meanings. The most common example might be the word bank,
that has ambiguous meanings in several languages. In this implementation
we decided for just one of the possible meanings. Usually other meanings are
added to the lexicon with a different abstract identifier. So the translation of
bank_N would be e.g. the Latin word argentaria, the bank that handles money,
while the word for the second identifier bank2_N would be ripa, the bank of a
river.
Another challenge are words that have no direct equivalent in the target
language so they have to be circumscribed. That leads to larger phrases in the
lexicon, that still have to behave like simple words of the appropriate category.
So e.g. the translation of the abstract identifier camera_N is paraphrased with
the Latin phrase camera photographica.
The last challenge to be mentioned here is that most of the dictionary entries
denote modern concepts. Here the problem is to find plausible translations
without inventing new ones. Fortunately there are several collaborative projects
like Wikipedia and Wiktionary that provide many useful resources, even for
Latin. So e.g. the Latin Wikipedia has more than 100.000 pages (Vicipaedia,
2018) which provide useful information in this task.
Besides adding simple translations, some further decisions have to be made
about the lexicon. The most important question is what information has to be
spelled out explicitly and what information can be inferred. Our implementation
uses a lexicon containing mostly base forms and grammatical information and
applies morphological rules to generate the whole paradigms. So in the best
case, the lexicon entry just consists of the identifier, one base word form and
the grammatical category. However, sometimes it is necessary to add more
word forms to generate the whole paradigm for a word or to specify further
grammatical information such as case restrictions for the object position of
transitive verbs.

5.2. IMPLEMENTATION OF THE GRAMMAR 67

5.2.2 Morphology

Word class Inherent Parametric No. of Inflection
classes

Noun Gender Number, Case 5
Adjective Degree, Gender, Number, Case 3
Verb
(finite,active)

Anteriority, Tense, Number,
Person

4 regular,
4 deponent

Determiner Number Gender, Case

Table 5.1: Inherent and parametric features for some lexical categories

Feature Values

Gender Feminine, Masculine, Neuter
Number Singular, Plural
Case Nominative, Genitive, Dative, Accusative, Ablative, Vocative
Degree Positive, Comparative, Superlative
Anteriority Anterior, Simultaneous
Tense Present Indicative, Present Subjunctive, Imperfect Indicative,

Imperfect Subjunctive, Future Indicative, Future Subjunctive
Person 1, 2, 3

Table 5.2: Domains of the finite features

This section describes techniques to cope with the challenge of strong
inflection in the Latin language and how to generate the whole paradigm, i.e.
all possible word forms, for each word from as little information as possible.
The main reason for implementing a rule-based morphology rather than just
using a full-form lexicon, is that a lexicon with just base forms is smaller and
easier to create and to maintain. It is much more reasonable to store as few as
possible forms for each entry and give a set of rules to create the missing word
forms.
In Latin there exist several inflection classes4 for each lexical category. To
find the right class for a lexicon entry it is possible to do pattern matching on
the base form and apply the rules for the inflection class accordingly. In the
terminology of GF this is called a smart paradigm (Ranta, 2011). An example
for a smart paradigm for Latin nouns can be seen in Listing 5.2.
Given the great regularity of the Latin morphology, it is possible to reduce the
word forms needed in the lexicon to one or just a few. From these the whole
paradigm of up to 2605 forms can be computed. Only for a few exceptions
significantly more forms have to be listed, either in the lexicon or hard-coded
in the morphological rules.

4Classes of words of the same category that construct word forms by a similar schema
5All possible verb forms include substantivic and adjectivic forms like gerund, gerundive

and supine

68
CHAPTER 5. PAPER I: IMPLEMENTATION OF A LATIN GRAMMAR IN GRAMMATICAL

FRAMEWORK

The main idea for the implementation of the Latin morphology is to use
the construct of tables in GF to list the word forms in tables dependent on
grammatical features that are specific for the different word categories. An
overview of the parametric features in this grammar can be seen in Table 5.1.
The domains of these features are presented in Table 5.2. The inflection tables
are created by computing stem forms or other intermediate base forms. To
these forms the right suffix according to the features is attached. These suffixes
are mostly regular with only a few exceptions.

5.2.2.1 Noun inflection

1 noun : Str -> Noun = \lexform ->
2 case lexform of {
3 -- noun1, noun2us/um/er, noun4 and noun5 are the functions
4 -- for the different declension classes. The 2nd class is
5 -- split into three subclasses
6 _ + "a" => noun1 lexform ;
7 _ + "us" => noun2us lexform ;
8 _ + "um" => noun2um lexform ;
9 -- "Predef.tk n word" removes a suffix of length n from word

10 _ + ("er" | "ir") =>
11 noun2er lexform ((Predef.tk 2 lexform) + "ri") ;
12 _ + "u" => noun4u lexform ;
13 _ + "es" => noun5 lexform ;
14 -- Predef.error stops with a given error message
15 _ => Predef.error ("3rd declinsion cannot be applied " ++
16 "to just one noun form " ++ lexform)
17 } ;

Listing 5.2: A smart paradigm for nouns in the grammar

Nouns in Latin are, as seen in Table 5.1 declined6 by case and number
while they have an inherent gender. The Latin cases are given in Table 5.2.
To enforce vocative as a separate case is an arguable decision since it usually
shares the nominative singular form (Bayer and Lindauer, 1994, p. 21).
But the decision to keep all cases has mostly historic reasons.
Given the parametric features and their domains we know that nouns in Latin
can have 12 different forms. These forms are created according to five declension
classes.
In this grammar we try to use as few word forms as possible. So we implement
the smart paradigm for nouns for the first two declension classes, which already
cover the majority of the Latin nouns, in a way that one form in the lexicon
suffices. The nominative singular forms of these two classes are quite distinct
from the nominative singular forms which makes it easy to extract the noun
stem from them. From this stem we generate all other forms.
The same approach mostly works for nouns of the fourth and fifth declension
class, even though some nouns in the fourth declension class have the same
suffix in nominative singular as nouns of the second class. This leads to

6Latin noun inflection is called declension

5.2. IMPLEMENTATION OF THE GRAMMAR 69

problems in the automatic detection of the declension class but this can be
solved by adding additional information to the lexicon.
The most complex case of noun inflection are the nouns of the third declension
class. It is so irregular that it is not possible to infer all the important
information for inflection and gender from just one noun form. In addition
we need to explicitly give more forms as well as the gender of the noun in
the lexicon. So we specify not only the nominative singular but also the
genitive singular form as well as the gender.
Only in rare cases some nouns have so irregular forms that it is easier to list all
forms instead of formalizing rules to describe the behavior. On of these nouns
we have encountered is the Latin noun bos – eng. cow.

5.2.2.2 Adjective inflection

The inflectional behavior of adjectives is comparable to the one of nouns. One
of the differences is that the inflected word forms are dependent on two more
parameters, the gender and the comparison degree. Also there are only three
declension classes for Latin adjectives.
In general we reuse rules for noun inflection to create the adjective forms. This
is possible since adjectives usually mirror the form of the nouns they agree
with. The main difference is that adjectives have to be inflected for all three
genders.
Only the comparison levels adds some complexity since some of the adjectives
use comparison adverbs instead of dedicated forms for the different levels. That
can be handled using a separate record field for these adverbs.

5.2.2.3 Verb inflection

The most challenging word class in terms of inflection are verbs. The basic finite
verb forms depend on several features (see Table 5.1). Most of the features
shown are well known in Latin linguistics except for the tense system with the
distinction into tense and anteriority. This tense system is based on the work
of Reichenbach (Reichenbach, 1947, pp. 287-298) and can be uniquely mapped
to the traditional Latin tenses.
The number of features involved already leads to a large amount of word forms.
Additionally, there are forms derived from verbs that are used in a substantivic
or adjectivic way like gerund or gerundive.
The usual way to describe the inflection table for verbs is to use three different
verb stems, present stem, perfect stem and participle stem (Bayer and
Lindauer, 1994, p. 68), modify them according to tense and mood and then
attach a suffix that is dependent on person, number and voice. To avoid some
complexity we use not only these stems, but also several “base forms” that can
be computed directly from the verb form in the lexicon.
Our implementation starts with verbs that can be represented with one verb
form in the lexicon. For this base form we decided for the present active
infinitive form. Analogue to the noun inflection the smart paradigm mostly

70
CHAPTER 5. PAPER I: IMPLEMENTATION OF A LATIN GRAMMAR IN GRAMMATICAL

FRAMEWORK

works with just one base form for all conjugation7 classes except for the irregular
third class.
To handle the complexity of this remaining class as well as special cases in
any of the other classes, we again require more verb forms in the lexicon. We
decided on 1st person singular indicative active forms in present and
perfect tense as well as the perfect passive participle, since these are verb
forms listed for irregular verbs in the grammar book.
So we compute the three stems plus base forms for basically every combination
of tense and mood. Afterwards the correct suffix for person, number and voice
has to be attached.
For the verb forms, that are used like adjectives or nouns, we again reuse the
rules for noun and adjective declension.
A special case are the so called deponent verbs, verbs that are used in active
voice while their forms are similar to verb forms in passive voice. For these
verbs the suffixes have to be adjusted accordingly. Also, since they use passive
forms for active voice, they are missing the forms for passive voice (Bayer
and Lindauer, 1994, pp. 85-88). The missing verb forms then are marked as
non-existent in the paradigm. It is a quite common case that some verbs do
not appear in all possible forms.

5.2.2.4 Other Word Classes

Besides these three major word classes which have been presented here the
implementation also contains morphological rules for additional word classes.
These classes consist mostly of different kinds of pronouns, as well as determiners
and quantifiers. Their implementation follows the same principles as we
described so far, namely inflection tables and reusage of morphological rules
from the other classes if possible.

5.2.3 Syntax
After finishing the morphology we are able to generate all word forms for

the entries in the lexicon. The next step is to add syntax rules that use these
basic parts to assemble larger parts up to the sentence level. Latin is well
known for the flexibility in word order, so we have to consider what parts of a
sentence already have to be put together in a fixed order and what should be
kept apart.
The technique we can use to keep parts apart as long as necessary are records
again. In a record we can keep multiple parts of a phrase separate until we can
fix their order. Also we will apply tables again for features that are not fully
specified yet and have to be passed on in the syntax tree.
The types of different phrase categories can be seen in the Listing 5.3 together
with the necessary parametric features. The keyword param indicates the
definition of finite features by listing all possible values. In Listing 5.1 we
have listed them informally. The first two definitions are special cases because
they define new types that depend on values of other finite types. Since

7Verb inflection in Latin is called conjugation

5.2. IMPLEMENTATION OF THE GRAMMAR 71

1 param
2 Agr = Ag Gender Number Case ;
3 VActForm = VAct VAnter VTense Number Person ;
4 Anteriority = Simul | Anter ;
5 Tense = Pres | Past | Fut | Cond ;
6 Polarity = Pos | Neg ;
7 VQForm = VQTrue | VQFalse ;
8 Order = SVO | VSO | VOS | OSV | OVS | SOV ;
9 lincat

10 AP = { s : Agr => Str } ;
11 CN = { s : Number => Case => Str ;
12 preap : AP ; postap : AP ;
13 g : Gender ;
14 } ;
15 NP = { s : Case => Str ;
16 g : Gender ; n : Number ; p : Person
17 } ;
18 VP = { s : VActForm => VQForm => Str ;
19 obj : Str ; adj : Agr => Str
20 } ;
21 Cl = { s : Tense => Anteriority => Polarity =>
22 VQForm => Order => Str } ;
23 S = { s : Str } ;

Listing 5.3: Types adjective phrases (APs), common nouns (CNs), noun phrase
(NPs), verb phrases (VPs), clauses (Cls) and sentences (S)

Gender has three, Number two and Case five possible values, the parameter
Agr for the noun agreement has 3 x 2 x 5 = 30 possible values. Ag is not
a grammatical feature. It is called a type constructor that binds values of
the other three features together as a value of type Agr. The verb form
VActForm is constructed in a similar way.

5.2.3.1 Common Nouns and Adjective Phrases

To form further phrases we start with basic nouns. They can be extended to
common nouns (CNs) that can be modified by adjectives.
Since adjectives can be added before and after the noun in Latin, we add
fields to store adjectives in the different positions. So CNs can store the noun
paradigm, the noun gender as well as several adjective phrases (APs). APs
behave just like adjectives except that their comparison level already is fixed.

5.2.3.2 Noun phrases

To create noun phrases (NPs) from CNs we have to add a determiner. Latin in
general does not apply the concept of definite or indefinite articles, so these
determiners have no surface representation but are still necessary because
according to the grammar theory that finds its application in this grammar
the determiner determines the grammatical number of a NP (Glück, 2004).
We create the NP by combining the different parts. We first start with a
record field that keeps the string the phrase represents. It contains a table

72
CHAPTER 5. PAPER I: IMPLEMENTATION OF A LATIN GRAMMAR IN GRAMMATICAL

FRAMEWORK

with the parametric feature of Case. The NP consists of a determiner, several
possible APs and a CN. We first decide that the order of these parts will be the
determiner followed by the APs we need to place in front of the noun, then the
common noun and finally the APs placed after the noun. We do not enforce
that all parts have to exist on the surface. So e.g. there can be a NP that does
not contain any APs.
After we fixed the order we have to fix the agreement between these parts.
The determiner and the APs have to agree with the noun in gender. The
agreement of the determiner is only relevant when we use certain pronouns like
e.g. lat. omnes – eng. all – as determiners. Determiners agree with the noun
in gender. Furthermore the noun and the APs must agree with the inherent
number feature of the determiner. All parts must agree in the case that is not
yet determined but a parametric feature of the NP.
In two other record fields we save the inherent number feature of the determiner
and the inherent gender of the CN. Additionally we add a field for the person
feature that is fixed to third person. This last feature is necessary for the
agreement with the verb form.

5.2.3.3 Verbs and VPs

Now we can take a look at verbs. Verbs can usually be transitive or intransitive.
As we have seen before they contain information about lots of possible verb
forms. Most of this information is not necessary to build simple verb phrases
(VPs).
To construct a VP from a verb we only keep finite active verb forms. VPs
contain two more record fields, one for a direct object and one for an AP.
The field for an AP is used when we want to use an adjective predicatively.
The direct object is meant for transitive verbs. For intransitive verbs we do not
need the object field and can keep it empty. Also the adjective field will stay
empty as long as we do create a VP with an auxiliary verb and an adjective in
predicative use.
To fill the remaining fields for the verb forms in a VP we add a parametric
feature to the finite forms. It determines if the question suffix "-ne" has to be
added.
For transitive verbs we do not create VPs directly. Instead we first create an
element of the so-called VPSlash-category, i.e. a category that is becomes a
VP when a NP is added.8 So if we combine a VPSlash with a NP we get a
complete VP by filling the record field for the direct object.

5.2.3.4 Clauses and Sentences

To form clauses (Cls) we combine a subject NP and a VP. A clause is already
quite sentence-like, but several parameters are still flexible. The tense and
polarity as well as the word order and the feature about the question suffix of
the verb are not fixed yet. These features are again introduced as parametric
feature.

8in GPSG notation VP/NP, (Ranta, 2011) p. 217

5.3. CONCLUSION 73

The order of the single parts depends on the feature of the word order. For
example in the case of Subject-Verb-Object order we start with the subject
NP. It is followed by a negation particle, the AP from the VP and the finite
verb form. The last part is the direct object. Again several of this parts can
be empty. Other word orders are just reorderings of these parts.
The final step is to ensure the correct forms of all parts. That includes the
agreement between several of them. The subject NP has to be in nominative
case. The presence of a negation particle depends on the parametric feature
of polarity. The AP must agree with the subject NP in case, number, and
gender. The verb form must agree with the subject NP in number. Also the
person feature of the verb is decided by the NP. Tense, anteriority, as well as
the presence of the question suffix are determined by the parametric features.
The object NP is already fixed in all possible features at this point.
As a final step we can fix the remaining parametric features to create a
complete sentence (S). In this step we also differentiate into questions and
regular sentences. With this step we come to the point where we can analyze
or generate Latin sentences with our grammar, the goal we have set for this
work.

5.2.3.5 Results

The implementation covers about 530 out of 847 constructions defined in the
abstract syntax of the RGL. It consists of 475 lexical rules and 55 syntactic
rules. The missing constructions consist of 92 lexical and 225 syntactic rules.
The main work was done by one person over a period of about six month.
A full evaluation of the grammar was not possible yet. It is planned for a later
point by extending the lexicon with additional resources like Latin-English
Dictionary Program Words by William Whitaker9 and evaluating the coverage
of classic Latin texts like Caesar’s Commentarii de Bello Gallico.

5.3 Conclusion
This work demonstrates the foundations of a rule-based, computerized grammar
for the Latin language. We started with a basic lexicon, added a comprehensive
implementation of Latin morphology and finally presented rules to assemble
larger phrases and sentences from simpler parts.
The grammar can be used to analyze several kinds of sentences including
prepositions and questions with a high flexibility in the word order. As usual
for grammar development there is always work left to do but the current state
is already sufficient to be included in the MUSTE project10 about word-based
text editing.
In the context of this project some of the mentioned applications of the Latin
grammar will be explored. A special focus will be on language learning but
several other application seem as promising.

9http://archives.nd.edu/whitaker/words.htm
10http://www.cse.chalmers.se/~peb/muste.html

http://archives.nd.edu/whitaker/words.htm
http://www.cse.chalmers.se/~peb/muste.html

74
CHAPTER 5. PAPER I: IMPLEMENTATION OF A LATIN GRAMMAR IN GRAMMATICAL

FRAMEWORK

Chapter 6

Paper II: An Open-Source
Computational Latin
Grammar: Overview and
Evaluation

Herbert Lange

Submitted to, Proceedings of the 20th International Col-
loquium on Latin Linguistics (ICLL 2019),
Las Palmas de Gran Canaria, Gran Canaria, 2019

75

76
CHAPTER 6. PAPER II: AN OPEN-SOURCE COMPUTATIONAL LATIN GRAMMAR:

OVERVIEW AND EVALUATION

Abstract
Grammars have, at all times, played an important role in understanding,
documenting and teaching languages. This still holds in modern, computer-
dominated times, even though the shape of grammars has changed. We present
an open source computational grammar, providing a formal description of
the Latin language. It covers Latin morphology and syntactic constructions
and contains a large lexicon. It is part of a large multilingual grammar
framework and based on a modular design, which makes it possible to use it
in various application. Examples for such applications are computer-based
systems handling Latin language data, including language learning systems and
systems for digital access to cultural heritage. Another potential application of a
computational grammar is formalizing a linguistic theory that can immediatelly
be tested, either by analyzing and but also by generating language data. This
article contains both an overview of the grammar itself as well as a description
of corpus-based methods usesd to evaluate its quality and coverage. One of the
intentions behind this articles is to present the work done in computational
linguistics on Latin also to an audience in Latin linguistics, in the hope that
they might find it interesting and relevant. The corpora used are Julius Caesar’s
Commentarii de Bello Gallico as well as all other texts that are included in the
PROIEL Latin treebank. This choice determines the epoch of Latin in focus
to be mostly Classical Latin with the addition of some later texts.

Keywords: Computational linguistics, Latin syntax, Latin morphology,
Language resource, Corpus-based evaluation

6.1. THE ROLE OF GRAMMARS 77

6.1 The Role of Grammars
Teaching and studying Latin has been an important topic for centuries. In this
context, the importance of grammars, i.e. more or less formal descriptions of
languages, is generally acknowledged. For the languages of the classical antiquity
such as Latin we have traditional grammars that go back for centuries. Over
time, many language descriptions have been written and published, traditionally
in the form of grammar books. These books have had many roles including
teaching the language and defining a “good” style for writers, touching even
on the topic of rhetoric. Well-known examples of Latin grammars include
Ars minor and Ars major by Donatus as well as Institutio grammatica by
Priscian (Murphy, 1980). Other relevant authors include Quintilianus and
Varro (Gwynn, 1926; Lehmann, 1934; D. J. Taylor, 1970). The tradition of
this kind of language description continues and there are plenty of modern
descriptions of the Latin language, of which we can only present a selection (e.g.,
Pinkster, 1984; Pinkster, 2015; Baños Baños, 2011; Baldi and Cuzzolin, 2009;
Baldi and Cuzzolin, 2010a; Baldi and Cuzzolin, 2010b; Baldi and Cuzzolin,
2011). Handling the topic on a smaller scale compared to some of the other
grammars mentioned before, school grammar books for Latin are usually used
in teaching in combination with a Latin textbook, such as Bayer and Lindauer
(1994).

In the 20th century, new formal approaches to linguistics were established,
leading to Noam Chomsky’s work on generative grammar (Chomsky, 1957).
In this movement formalisms were created to describe languages in a rigorous,
almost mathematical way. Already from the early days on, formal syntacticians
have also been interested in Latin, for example Lakoff as early as 1965 (Mateu
and Oniga, 2017). The closeness of these formalisms to mathematics, and
consequently computer science, allows for such grammars to be translated into
a computer-readable form.

However, there has been a lack of computational grammars for Latin, which
have sufficient coverage of the language to be of general use. There has, to the
best of our knowledge, only been one computational attempt to handle Latin
syntax by Sayeed and Szpakowicz (2004). It tests methods to parse Latin, as
an example of a free word-order language, based on Chomsky’s Minimalist
Program. However, it does not provide a wide-coverage resource and has not
been properly evaluated on corpus data on a larger scale.

We fill this gap by providing a computational grammar for Latin imple-
mented in Grammatical Framework (GF), a modern grammar formalism (Ranta,
2009a; Ranta, 2011). The grammar is available as free and open source software
in the GF resource grammar library1, a multilingual grammar resource (Ranta,
2009b). The grammar follows a modular design, combining a morphological
subsystem, syntactic rules and lexical resources.

The grammar described in this paper provides a starting point both for
building concrete applications and to test linguistic hypotheses about Latin.
Following the tradition of grammar use in language teaching and learning, one
of the first concrete applications of our grammar is a computer program to

1https://github.com/GrammaticalFramework/gf-rgl/tree/master/src/latin

https://github.com/GrammaticalFramework/gf-rgl/tree/master/src/latin

78
CHAPTER 6. PAPER II: AN OPEN-SOURCE COMPUTATIONAL LATIN GRAMMAR:

OVERVIEW AND EVALUATION

practice Latin translation knowledge (Lange and Ljunglöf, 2018a; Lange, 2018).
By including a large lexicon, we can use corpus data to evaluate the grammar.

A corpus-based evaluation helps to put the grammar onto a stronger foundation
and guarantees that it provides a reliable resource that can be used in various
applications. We look at two corpora separately: one is the whole Latin part of
the PROIEL treebank (Eckhoff et al., 2018) as it is included in the Universal
Dependencies (UD) project (Nivre et al., 2019); the other one is only the part
of Julius Caesar’s Commentarii de Bello Gallico contained in the PROIEL
part of the UD treebank.

6.2 Overview of the Grammar
We provide a high-level overview of the grammar and introduce the main
concepts used to describe Latin syntax and morphology. It would go beyond
the scope of this article to describe both the grammar formalism and the
complete grammar in detail. A detailed description of the formalism is given
in (Ranta, 2011). Previous descriptions of the Latin grammar include (Lange,
2013), (Lange, 2017) and (Lange, 2018, chap. 4).

6.2.1 The Grammar Formalism
Grammatical Framework (GF) is both a grammar formalism and a special-
purpose programming language to describe natural languages (Ranta, 2009a).
Grammars are separated into two parts, an abstract syntax and a number
of concrete syntaxes. This separation allows for multilingual grammars and
consequently for out-of-the-box machine translation.

The abstract syntax describes, on a high level, how smaller parts can be
combined to form larger phrases in general, e.g., a noun phrase can be formed
from a noun and an adjective. The abstract syntax is language independent.

The concrete syntax is language-specific. For each language that is to be
included in a grammar, a concrete syntax has to be defined. It contains the
concrete instantiation of the abstract syntax, for example if the adjective should
appear before or after the noun.

vīlla f (genitive vīllae); first declension

case singular plural
nominative vīlla vīllae
genitive vīllae vīllārum
dative vīllae vīllīs
accusative vīllam vīllās
ablative vīllā vīllīs
vocative vīlla vīllae

Figure 6.1: Lexical information and paradigm for the noun vīlla

6.2. OVERVIEW OF THE GRAMMAR 79

The basic operation in the grammar formalism is simple string concatenation,
i.e. combining a sequence of words to form phrases and sentences. To be able to
model more advanced linguistic phenomena, the formalism provides, additional
constructions, called tables and records. Tables are mappings from grammatical
features to values. The resulting values can either be strings, i.e. words or word
forms, or nested tables and records again. An example of the use of tables
are inflection tables such as Table 6.1, where noun forms depend on case and
number. They can also be very useful to control the word order (Figure 6.5
in Section 6.2.3).

Records are collections of labeled values. They are conceptually similar
to feature structures in other formalisms and are used to store and retrieve
separate pieces of information using assigned names. This information can
take the form of inherent features, e.g., nominal gender, or store parts of
discontinuous constituents and allow reordering of words and phrases.

The Latin grammar described in this article is one of many concrete syntaxes
that implement the same abstract syntax. Together these concrete syntaxes
form the resource grammar library (RGL) (Ranta, 2009b) which contains an
extensive abstract syntax and the concrete syntax for more than 30 languages.

6.2.2 Morphology
Latin morphology is considered difficult to handle because Latin encodes many
features on the morpho-syntactic level. It has for example an extensive case
system for nouns and inflects verbs by number, person, tense, mood and
voice. As a result, many parts of speech have paradigms, i.e. sets of all possible
word forms, ranging from eight to ten forms for nouns to more than 100 for
verbs including participle forms. Despite the vast amount of forms, many of
them are created in very regular ways.

The traditional way of presenting Latin morphology is by using tables for
each inflection class. With the tools provided by GF, a similar approach is
possible. To give an example, we can have a look at nouns: Nouns in Latin
are inflected by case and number and have an inherent gender. For the
noun vīlla the full paradigm can be seen in Figure 6.1. It is feminine and
follows the first declension class, as can be seen in the lexical information above
the table in the figure. All forms are given in a two-dimensional table, one
dimension representing the number and the other the case. Exactly the same
information contained in Figure 6.1 can be encoded in GF using tables and
records (Figure 6.2). The result is a record with two fields, Form and Gender,
one containing the paradigm and one containing the inherent gender.

Based on this encoding, we want to define a general pattern that creates all
correct word forms for a given lemma. To do this, we can define a similar table,
but mapping from case to the suffix that has to be attached to the stem to
give the correct form (Figure 6.3). Here lemma is a placeholder for an arbitrary
noun lemma.

To use this kind of inflection schema in our lexicon we can use the name
declension1lemma as a function, i.e. as a placeholder for the whole construct
in Figure 6.3. To be able to use it, we have to get the stem from the lemma

80
CHAPTER 6. PAPER II: AN OPEN-SOURCE COMPUTATIONAL LATIN GRAMMAR:

OVERVIEW AND EVALUATION

villa_N =



Form



singular ⇒



nominative ⇒ vīlla
genitive ⇒ vīllae
dative ⇒ vīllae
accusative ⇒ vīllam
ablative ⇒ vīllā
vocative ⇒ vīlla



plural ⇒



nominative ⇒ vīllae
genitive ⇒ vīllārum
dative ⇒ vīllīs
accusative ⇒ vīllās
ablative ⇒ vīllīs
vocative ⇒ vīllae




Gender female


Figure 6.2: GF paradigm for vīlla

declension1(lemma) = get stem from lemma and use in

Form



singular ⇒



nominative ⇒ stem+a
genitive ⇒ stem+ae
dative ⇒ stem+ae
accusative ⇒ stem+am
ablative ⇒ stem+ā
vocative ⇒ stem+a



plural ⇒



nominative ⇒ stem+ae
genitive ⇒ stem+ārum
dative ⇒ stem+īs
accusative ⇒ stem+ās
ablative ⇒ stem+īs
vocative ⇒ stem+ae




Gender female


Figure 6.3: Generalization of the first declension class for nouns. The + operator
attaches a suffix directly to a string

6.2. OVERVIEW OF THE GRAMMAR 81

contained in the lexicon. This part is straightforward for regularly inflected
words. For example, for many nouns it is sufficient to split off the nominative
singular suffix. If we apply declension1 to the lemma vīlla, it will be converted
to the stem vīll by removing the suffix, and we get the same result as in
Figure 6.2, i.e. villa_N = declension1(vīlla). Here we assume feminine
gender for nouns of the first declension. This assumption is valid for the
majority of nouns in this inflection class. For all nouns in this class that
have a different inherent gender, such as agricola, which is masculine, we
can explicitly give this diverging information in the lexicon. However, in the
majority of the cases, the inferred gender is correct and does not have to be
given explicitly. This reduces the information that has to be given in the
lexicon.

smartnoun(lemma) = get suffix from lemma and use in

suffix is -a ⇒ declension1(lemma) Comment: e.g., terra, gender feminine
suffix is -us ⇒ declension2(lemma) Comment: e.g., hortus, gender masculine
suffix is -um ⇒ declension2(lemma) Comment: e.g., verbum, gender neuter
suffix is -er ⇒ declension2(lemma) Comment: e.g., ager, gender masculine
suffix is -ū ⇒ declension4(lemma) Comment: e.g., cornū, gender neuter
suffix is -ēs ⇒ declension5(lemma) Comment: e.g., rēs, gender feminine


Figure 6.4: Example of a smart paradigm for the noun inflection classes. Nouns
of the fourth declension, e.g., cāsus cannot be handled here because they conflict
with the second case, e.g., hortus

In the end we have many similar functions, one for each inflection class. To
select the correct function, we can use some heuristics which automatically
selects the appropriate function based on the lemma. This kind of heuristics is
called a smart paradigm (Détrez and Ranta, 2012). An example for a smart
paradigm for nouns is shown in Figure 6.4. For regular words the lemma is
sufficient to unambiguously determine the inflection class and based on it, the
whole paradigm as well as the default gender. For irregular words or words
that diverge from the assumed standard features, additional information is
required, for example for nouns the genitive singular form as well as the
gender. The use of smart paradigms allows us to use compact lexica, usually
only consisting of a small number of word forms for each lexicon entry.

6.2.3 Syntax
The Latin syntax is often considered very flexible and allows for free word
order. This is facilitated by the fact that a lot of the syntactic information
is already encoded in the morphological forms. Instead of requiring a fixed
sequence of constituents, agreement of morphological forms can be used to
define the phrase structure.

Latin allows for multiple levels of free word order phenomena. The most
obvious one is the reordering of top-level constituents. This means that usually
there is a predominant word order, e.g., Subject-Object-Verb, for each author or
period, basically any other combination is considered grammatical as well. The

82
CHAPTER 6. PAPER II: AN OPEN-SOURCE COMPUTATIONAL LATIN GRAMMAR:

OVERVIEW AND EVALUATION

literature mentions limitations on the word order, but they usually are motivated
by semantics and pragmatics (Pinkster, 1984, chap. 9.3.2.2). However, our
focus is purely on syntax, so we have to be able to model all orders. Some of
these word orders are rarely used, but not impossible, as Bamman and Crane
(2006) show in an analysis of Latin treebanks.

It is possible to implement flexible word order using records and tables.
Records can be used to store parts of a phrase, and tables, together with
complementary features, can be used to decide the order on a higher level.

exampleSentence =


Subject

[
“imperator”

]
Verb

[
“tenet”

]
Object

[
“imperium”

]


combineSentence(sentence) =

SVO =>
[
Subject ++ Verb ++ Object

]
VSO =>

[
Verb ++ Subject ++ Object

]
VOS =>

[
Verb ++ Object ++ Subject

]
OSV =>

[
Object ++ Subject ++ Verb

]
OVS =>

[
Object ++ Verb ++ Subject

]
SOV =>

[
Subject ++ Object ++ Verb

]


combineSentence(exampleSentence) =

SVO =>
[
imperator tenet imperium

]
VSO =>

[
tenet imperator imperium

]
VOS =>

[
tenet imperium imperator

]
OSV =>

[
imperium imperator tenet

]
OVS =>

[
imperium tenet imperator

]
SOV =>

[
imperator imperium tenet

]



Figure 6.5: Function combining parts of a sentence depending on a parameter
controlling constituent order. The ++ operator combines words into a sequence.

To just handle the top-level word order we can create a new parameter
controlling for it and use it in a table to organize the constituents we have in
separate record fields (Figure 6.5). This makes it easy to encode all possible
word orders for three constituents, e.g., with the exampleSentence we can form
imperator imperium tenet and imperator tenet imperium, but also imperium
tenet imperator. We also immediately handle the special cases SV ,VS,VO
and OV , because both the Subject and Object field can be empty, e.g., when
the subject pronoun is dropped or the direct object is only implied. This is
of course a very simplified view on Latin word order, but this is also just a
starting point.

Another free word order phenomenon is the interleaving of phrases, called
hyperbaton. A phrase can be made discontinuous by inserting other words
of the same sentence they are part of. In general, discontinuous phrases can
be created using records with record fields for each part of the discontinuous

6.2. OVERVIEW OF THE GRAMMAR 83

phrase. For example, a sentence consists not just of a subject, verb and object
as constituents, but it is further separated into additional parts, which can be
placed independently. This includes for example splitting the subject noun
phrase into the noun phrase without any potential determiner or quantifier
and the separate determiner. The additional parts on the sentence level, and
where they can be placed, are shown in Table 6.1. The order of these parts is
controlled using additional parameters that allow exactly the positions named
in the table.

As a result, in the current version of the grammar, six parameters control the
word order, one of which is the top-level word order described before. Besides
that, the position of adjectives, verb-modifying adverbs, sentence adverbials
and the sentence complement, e.g., the direct object, can be determined by
independent parameters . These parameters already allow for a broader range
of word orders than just the top-level orders. Being able to separate parts of
the noun phrase and having a parameter that decides that the verb can be put
between the subject noun and the determiner, allows handling the hyperbaton
in the beginning of the Bellum Gallicum: Gallia est omnis [...] (Caes. Gall. 1,
1, 1). In Section 6.3.2.2 we will have a closer look at the sentence starting with
this phrase.

However, it is still just an approximation of all word order phenomena
possible. To handle hyperbaton in a more general way, it has been suggested
to extend the grammar formalism with a general interleave operator (Ljunglöf,
2004, Section 5.4). Until it is included in the canonical GF, interleaving has
to be implemented using discontinuous constituents and tables to control the
word order.

Constituent Placement

Verb Verb in regular position
Subject noun phrase interleaved with verb

Sentence adverb Sentence adverb before subject
Sentence adverb before verb
sentence adverb before object
Sentence adverb before negation particle

Subject determiner Determiner before subject noun
Determiner after subject noun

Verb complement Verb complement before the verb
Verb complement after the verb

Table 6.1: Additional parts of a sentence and their placements

Reordering words in a sentence is only part of the solution to Latin syntax.
Another important aspect is agreement between words in various parts of a
sentence. This agreement can even span long distances. Agreement in our
Latin grammar can be enforced by using the right features, stored in record
fields, to select the correct word forms from tables. This way of handling
agreement is similar to passing features through the syntax tree from the point
where they are defined to the place where the information is needed. One

84
CHAPTER 6. PAPER II: AN OPEN-SOURCE COMPUTATIONAL LATIN GRAMMAR:

OVERVIEW AND EVALUATION

example is the the object case or preposition used with a transitive verb, which
is an inherent feature of the verb. This information is passed on until the verb
is combined with the direct object where it enforces the correct noun form.
Another example is the noun gender, inherent to the noun, that is passed on in
a specific record field until it is used to determine the gender of the adjective
forms in the noun phrase.

6.2.4 Lexicon
The RGL itself only includes a very limited lexicon consisting of 350 lemmata,
based on the Swadesh list (Swadesh, 1952; Swadesh, 1955) consisting of 207
primitive concepts, with some more modern concepts added (Ranta, 2011, p.
233). To provide translations for the modern concepts into Latin, the Latin
Wikipedia (Vicipaedia, 2018) proved a useful resource.

However, for most applications additional lexical resources are necessary.
We created a large lexicon based on Whitacker’s Words (Whitaker, 2006) which
contains 39,225 entries of which 37,404 were automatically converted into a
format suitable to be integrated into the Latin GF grammar. The lexical
information provided by Whitacker’s Words includes, for each entry, one or
many base forms, part of speech, as well as information about the inflection.
Most of this information is used in the GF lexicon to improve the result
when generating the full forms. Adding this lexicon broadens the potential
applications of the grammar by broadening the available vocabulary and only
with the extended lexicon the evaluation in the following section was possible.

6.3 Evaluation
One important aspect of this paper is the assessment of the quality of the Latin
grammar. Even though it already proved to be a useful resource for a language
learning application (Lange and Ljunglöf, 2018a; Lange, 2018), the grammar
has never been evaluated on authentic language data.

We designed four experiments to fill this gap. The experiments are designed
to give direct results about the quality of the grammar, but they are also general
prototypes of how to evaluate similar grammars. We evaluate morphology and
syntax under both quantitative as and qualitative aspects, in order to get a
clear idea of the coverage, and at the same time to provide a more in-depth
analysis of the reasons that lead to errors.

For the first three experiments, we use two corpora: the complete PROIEL
treebank as well as the parts of Caesar’s Commentarii de Bello Gallico included
in the Universal Dependency treebank, which itself is a subset of the PROIEL
treebank. We report the results for both corpora separately and attempt an
error analysis on the smaller Caesar corpus. We release all data and code used
in the evaluation to the public, which allows everyone interested to reproduce
the results or adjust and reuse the methodology for their own needs.2

2https://doi.org/10.17605/OSF.IO/UWJ59 (Lange, 2020)

https://doi.org/10.17605/OSF.IO/UWJ59

6.3. EVALUATION 85

6.3.1 Morphology
We present two methods to test our description of Latin morphology. The
first approach tests what ratio of Latin lemmata and word forms occurring
in the corpus can be analyzed by the Latin grammar. To provide means of
comparison we also show the results for two other morphological analyzers for
Latin.

To test the quality of the analyses, in the second part, we compare the
results of our morphological analyzers to the morphological annotation in the
treebank. We assume that this mostly manual annotation is correct and can
be used as a gold standard. For both approaches we provide an error analysis.

6.3.1.1 Experiment 1: Morphological Coverage

We want to evaluate our own implementation of Latin morphology on both
the smaller Caesar corpus and the complete PROIEL treebank. To put the
results of our morphological analyzers into context, we compare them to both
LEMLAT (Passarotti, Budassi, et al., 2017) and LatMor (Springmann, Schmid,
and Najock, 2016).

LatMor uses finite state technology for the morphological analysis, which
allows it to both analyze word forms as well as generate word forms from a
lemma and a list of features. LEMLAT uses lists of morphemes and rules
how to combine them to analyze word forms. LEMLAT’s approach is limited
to analysis and does not provide means of generation. Both LEMLAT and
LatMor are purely morphological analyzers for Latin and exist as standalone
applications. Our morphological analyzer uses an approach called functional
morphology (Forsberg and Ranta, 2004) and provides both means of analysis
and generation. More importantly, it is one of the components of a larger
grammar system.

Caesar PROIEL
Lemmata Wordforms Lemmata Wordforms

Caesar 2,162 5,308 8,519 29,560
LEMLAT Analyzed 2,127 (98%) 5,260 (99%) 8,189 (96%) 29,066 (98%)

Missing 34 48 330 494

LatMor Analyzed 2,108 (97%) 5,012 (94%) 7,944 (92%) 26,599 (89%)
54 296 575 2467

GF Analyzed 1,956 (90%) 4,460 (84%) 6,884 (80%) 23,771 (80%)
Missing 206 848 1,635 5,789

Table 6.2: Result of the coverage in the first experiment

As a first step, we extract from the corpora both a list of all lemmata and
of the word forms that occur. We then separately analyze the forms in the
lists with the three tools. The results can be seen in Table 6.2. LEMLAT
is able to analyze the most word forms and the numbers for lemmata and
word forms are close to each other. For LatMor the results are quite similar
concerning lemmata, but substantially more word forms are missing. Our
system covers 90% of the lemmata in Caesar and 80% of the lemmata in the

86
CHAPTER 6. PAPER II: AN OPEN-SOURCE COMPUTATIONAL LATIN GRAMMAR:

OVERVIEW AND EVALUATION

Lemmata Word forms

Total missing lemmata 206 Total missing word forms 848
Lemmata missing in lexicon 134 Word form missing due to miss-

ing lemma
357

Lemmata missing due to error in
grammar

47 Wrong word form 491

Spelling variations 24
Annotation errors 22

Table 6.3: Error analysis for the first experiment on the Caesar corpus

whole of PROIEL. In both cases, about four times the amount of word forms
is missing, as compared to the number of missing lemmata.

A closer analysis of the missing lemmata shows various reasons why the
analysis failed (see Table 6.3). In certain cases, several reasons can occur at
the same time. As a consequence, the sum for the subcategories for lemmata is
larger than the number of all errors. The most common reason is items missing
from the lexicon. This can be explained by comparing the lexical resources
used by the three tools. LEMLAT uses a lexicon compiled from three lexical
resources with 40,014, 26,250 and 82,556 entries respectively. LemLat includes
a lexicon based on an updated version of the Berlin Latin Lexicon, consisting of
ca. 70,000 entries. Our lexicon, based on Whitacker’s Words is the smallest of
the three with 37,404 entries. Other reasons involve spelling variations like i/j
and annotation errors in the treebank, where for a word form a wrong lemma
is given.

If we only focus on errors caused by our grammar and ignore all 357 word
forms that are missing as a consequence of missing lemmata, we end up with a
list of 47 lemmata and 491 word forms. These numbers are comparable to the
results of LatMor. The remaining errors can directly guide efforts for improving
the morphology in the grammar.

6.3.1.2 Experiment 2: Quality of the Morphological Analysis

The second experiment assesses the quality of the analyses produced by the
Latin grammar. To do this, we compare the output of our morphological
analyzers with the morphological features that are included in the treebank.

Universal Dependencies uses a universal set of features3, which is intended
to provide a uniform way to describe various languages. GF has some uniform
features defined by the RGL, but other GF features can be very specific, both
depending on the language and the author of the grammar. To test the quality
of the morphological analysis we need to be able to translate between UD and
GF features.

Although some of the features are easy to map because they are directly
equivalent to features in the other formalism, other translations are more
difficult, e.g., because one formalism is more fine-grained than the other. One
such example is parts of speech. While Universal Dependencies uses just the

3https://universaldependencies.org/u/feat/index.html

6.3. EVALUATION 87

label VERB for all verbs, independent of the verb valency, GF uses categories
depending on valency, e.g., V for intransitive verbs, V2 for transitive verbs,
VQ for question-complement verbs and VS for sentence-complement verbs. All
these variants of verbs have to be mapped to the same representation.

Features Values

POS Adj, Adv, N, Num, PN, V, Prep, Det, Pron, Conj, Interj
Case Nom, Gen, Dat, Acc, Abl, Voc
Number Sg, Pl
Gender Masc, Fem, Neutr
Degree Positive, Comparative, Superlative
Voice Active, Passive
Mood Indicative, Subjunctive, Imperative
Tense Present, Imperfect, Perfect, Future, PluPerfect, FuturePerfect, Past
Person Person1, Person2, Person3
Reflexivity Reflexive, NonReflexive
VerbForm Infinitive, Finite, Participle, Supine, Gerundive, Gerund
PronType Relative, Personal, Possessive, Interrogative, Reciprocal
Polarity Negative

Table 6.4: Common features and values used to compare GF analyses and UD
annotation

To test the quality of our analysis, for each token in the corpus, its analysis
and the annotation in UD have to be translated into a common representation.
The list of all features and values used in this common representation can be
seen in Table 6.4. Each analysis is represented as a list of features, and for each
feature there is a list of values. The word forms of the tokens can be lexically
or morphologically ambiguous, which leads to several candidate analyses, both
using GF and within UD.

Total word forms Matched Missing

Caesar 4,460 3,957 (88%) 503
PROIEL 23,771 20,380 (86%) 3,391

Table 6.5: Results of the coverage in the second experiment

For each token we acknowledge that the analysis matches the annotation if
one of the candidates provided by GF matches a candidate provided by UD.
The numeric result of the matching can be seen in Table 6.5. For Caesar 88% of
the morphological analyses match with the Universal Dependencies annotations
and for the whole of PROIEL 86% of analyses match. As a result, for 88% of
all tokens, GF provides an analysis which matches one of the annotations used
in UD.

We conducted a closer analysis of the cases where we failed to match
analyses with annotation in the Caesar corpus. It shows various reasons for
mismatches (Table 6.6). The errors can be caused by problematic annotations
in the treebank, or in the implementation of the grammar, or by missing
information in the lexicon. It can even have several reasons at the same time,

88
CHAPTER 6. PAPER II: AN OPEN-SOURCE COMPUTATIONAL LATIN GRAMMAR:

OVERVIEW AND EVALUATION

UD GF Lexicon

Errors 228 206 138
Part of Speech 91 52 137
Case 4 18 1
Tense 4 12 -
Deponent verbs 77 0 -
Numerals 17 3 -
Participles 3 34 2

Pronouns 77 -

Table 6.6: Detailed error analysis for the second experiment on the Caesar
corpus

such as errors both in the grammar and the lexicon. Again, the sum of the
errors in the subcategories can be larger than the total number of errors.

The most common problem is when the parts of speech do not match. For
example, when a word form can be both analyzed as a noun and an adjective,
then it can happen that the gold standard requires the analysis as an adjective
but the grammar analyses it as a noun. This can also be caused by missing
information in the lexicon. Sometimes only one of the two lexical items, the
noun or the adjective, is in the lexicon.

Sometimes there is a mismatch in other grammatical features like case,
number or tense. Case mismatches are most common in the grammar,
especially in connection with gerund forms. Also, problems with tense occur
in the grammar, usually in cases where a verb form can be analyzed both as
present and perfect tense. In these cases, the grammar fails to provide one
of the two analyses.

In some cases, the UD annotations cause problems, e.g., all deponent verbs
are annotated as passive forms while the grammar analyses them as active
forms. Also, numerals are often not annotated as such, but instead as adjectives.
There can be different motivations for different annotation styles. This can be
handled in annotation guidelines. When these guidelines are missing, it is up
to the annotator to decide on the annotation. Concerning deponent verbs, the
morphological forms match passive verb forms, so annotation as passive voice
can be justified and in UD the syntactic function follows the morphological
form.4 However, some kind of annotation to denote deponent verbs would be
useful as well.

Especially pronouns and participles suffer from potential inconsistencies
in the annotation. Participles tend to be annotated either as adjectives or
as verb forms. There often exist separate dictionary entries for verbs and
their participles and the annotation in the treebank can vary between the
two choices. More problematic, however, are pronouns, under which we also
subsume adjectives and adverbs with pronominal function. They can be
annotated and analyzed in many different ways, and with the current method
we cannot properly compare their features between GF and UD. For that

4Discussion of the issue: https://github.com/UniversalDependencies/docs/issues/713.
Accessed June 29th, 2020

6.3. EVALUATION 89

reason, we do not distinguish error cases for UD and GF for pronouns and only
report 77 cases where problems occurred when matching pronoun analyses.

6.3.2 Syntax
To test the quality of the syntax rules is more challenging than to test the
morphology morphology. We tested the morphology in a context-independent
manner while for syntax we have to take larger context into account.

The strength of GF as a grammatical framework is, among other things, its
flexibility. GF grammars can be used both to analyze and to generate natural
language data. Also, the grammars can easily be adapted for specific use
cases. UD on the other hand is mostly used to train models for specific natural
language processing tasks. In itself it can neither be used to analyze nor to
generate new text. Besides this limitation, UD provides a valuable resource for
linguistic research, based on its corpus data.

General syntactic analysis is a challenge for GF because natural language
in an unrestricted setting tends to be very ambiguous, which leads to a large
number of analyses. This makes syntactic analysis computationally expensive;
the generative capabilities are not impacted as much. To solve this issue, a
combination of the features of GF and UD can be used to test GF grammars,
circumventing the challenges of unrestricted syntactic analysis.

6.3.2.1 Experiment 3: Coverage of Syntactic Constructions

The core of the GF resource grammar library contains 357 functions5 plus
language and application-specific extensions. Out of the 357 core functions, 284
functions are included in the Latin grammar and 73 have not been implemented
yet.

In the context of an evaluation the relevant questions are: which of these
rules are actually used in the Latin corpus, which rules are the most commonly
used and how many of them are not covered by the Latin grammar.

To answer these questions, we can translate the UD dependency trees found
in the treebank into GF phrase structure trees. Such a translation method was
presented by Ranta and Kolachina (Ranta and Kolachina, 2017; Kolachina,
2019). It is based on the assumption that syntax rules of a phrase structure
grammar can be recovered from the dependency label and the parts of speech
in the dependency tree. An example can be seen in Figure 6.6. To achieve this,
several challenges have to be overcome.

• Dependencies usually are binary but GF rules can combine more than
two constituents

• GF has a finer-grained distinction of lexical categories than the parts of
speech used by Universal Dependencies (Figure 6.6b). As a consequence,
POS tags have to be expanded to all possible lexical categories, which
can lead to a combinatorial explosion

5In the context of GF, the terms (syntactic) functions and (grammar) rules can be used
interchangeably

90
CHAPTER 6. PAPER II: AN OPEN-SOURCE COMPUTATIONAL LATIN GRAMMAR:

OVERVIEW AND EVALUATION

the black cat sees us today
DET ADJ NOUN VERB PRON ADV

' $
?

det � �
?

amod ��
?

subj � �
?

obj

' $
?

adv

?

root

(a) The original dependency tree
UD GF

DET Det
ADJ A,AP,…
NOUN CN,N,…
VERB V,V2,…
PRON Pron
ADV Adv,AdV,…

(b) Mapping between UD POS
tags and GF categories

Name Label

AdjCN amod head
AdVVP adv head
DetCN det head
ComplSlash head obj
PredVP subj head
…

(c) UD labels for GF abstract syntax functions

the black cat sees us today
Quant A N V2 Pron Adv

' $
?

det � �
?

amod ��
?

subj � �
?

obj

' $
?

adv

?

root

(d) The dependency tree with correct GF categories
UseCl : S

PredVP : Cl

DetCN : NP

DetQuant: Det

DefArt: Quant

the

AdjCN : CN

PositA : AP

black_A : A

black

UseN : CN

cat_N : N

cat

AdvVP : VP

ComplSlash : VP

SlashV2a : VPSlash

see_V2 : V2

sees

UsePron : NP

we_Pron : Pron

we

today_Adv : Adv

today

subj

det

amod
obj

adv

(e) The abstract syntax tree annotated with UD labels

Figure 6.6: Example for the connection between UD trees and GF abstract
syntax trees (Kolachina, 2019, p. 11)

6.3. EVALUATION 91

• We don’t want to fail completely when we have problems translating a
subtree. To recover from an error, generic “Backup” rules, that construct
subtrees of a certain category even when they are not covered by the
grammar, can be used.

We converted both the complete PROIEL treebank and the Caesar fragment
from dependency trees into GF abstract syntax trees. Based on these trees
and the assumption about revovering phrase-structure rules from dependency
trees, we extracted the list of RGL functions that are used in the trees. When
we compare these lists with the list of all RGL functions implemented in our
grammar, we get the results shown in Table 6.7.

Caesar PROIEL

Occurrences syntactic functions in all trees 79,361 779,630
Occurrences Backup functions in all trees 36,988 338,730
Occurrences RGL functions in all trees 36,050 361,607
Occurrences other functions in all trees 6,323 79,293
Occurrences Latin RGL functions in all trees 35,221 353,031
Occurrences missing Latin RGL Functions in all trees 829 8,576
Number of distinct syntactic functions in all trees 249 318
Number of distinct Backup and other functions in all trees 118 156
Number of distinct RGL functions in all trees 131 162
Number of distinct Latin RGL functions 108 132
Number of distinct missing Latin RGL functions 23 30

Table 6.7: Results of the third experiment: number of abstract and “Backup”
functions occurring in the treebanks

Converting all trees of the Caesar corpus into GF trees results in trees
containing in total 79,361 syntactic functions, out of which 47% are “Backup”
functions and 45% are RGL functions. The remaining 8% of functions are not
part of the core RGL. When looking only at distinct functions, we encounter
249 different ones, out of which 131 are part of the RGL. The whole PROIEL
treebank offers similar numbers.

We see that 23 of the constructions not implemented in the Latin grammar
are used in the treebank. In the whole PROIEL treebank the number of
unimplemented rules increases to 30. However, these rules make up only a
small fraction of all rule occurrences, around 0.1% in both corpora. Also, when
ranking the RGL rules that can be found in the corpora, none of the missing
functions is among the top 20 rules.

A relevant issue is the high number of “Backup” nodes. To investigate why
the “Backup” nodes occur and how they can be avoided remains for future
work.

6.3.2.2 Experiment 4: Generative Expressivity of the Syntax

Finally, we want to show the generative expressivity of our grammar. To do
so, we selected a sentence and show how it can be constructed based on our
Latin grammar. The sentence we selected is the first sentence of the Bellum
Gallicum (Caes. Gall., 1, 1, 1):

92
CHAPTER 6. PAPER II: AN OPEN-SOURCE COMPUTATIONAL LATIN GRAMMAR:

OVERVIEW AND EVALUATION

Gallia est omnis divisa in partes tres, quarum unam incolunt Belgae, aliam
Aquitani, tertiam, qui ipsorum lingua Celtae, nostra Galli appellantur.6

This sentence provides several challenges for a syntactic analysis. The
verb est is placed in the middle of the subject noun phrase, thus forming a
hyperbaton. It contains two relative clauses, one specifying the three parts
of the country and one specifying the name of the people living in the third
part. In several parts we find ellipsis where either the subject or the verb is
not mentioned explicitly. However, agreement has to be guaranteed, even in
cases where words are left out and between nouns and pronouns, e.g., between
lingua and nostra. Finally, we can see various high-level word orders including
Subject-Verb and Verb-Subject.

Figure 6.7: Dependency tree for Caes. Gall., 1, 1, 1

For comparison the dependency structure from the UD treebank can be
seen in Figure 6.7. In contrast, we created the phrase structure tree describing
this sentence based on the Latin resource grammar. The complete syntax tree
for the sentence is presented in Figure 6.8. This tree, for example, clearly shows
the discontinuous subject noun phrase Gallia omnis with the verb est in the
middle.

Some of the complexities in the tree are due to the structure of the RGL
and some language specific extensions to the core RGL are necessary to cover
all aspects of the sentence. However, the main point of this experiment is to
show that it is feasible to use our grammar to generate authentic sentences,
similar to sentences that can be found in a real-world corpus.

6Translation following McDevitte & Bohn (Caesar, 1869): All Gaul is divided into three
parts, one of which the Belgae inhabit, the Aquitani another, those who in their own language
are called Celts, in our Gauls, the third.

6.3. EVALUATION 93

Utt

S

Cl

NP VP

NP Det Comp

est

PN

omnis

AP

Gallia

VPSlash

VPSlash Adv

V2 Prep NP

divisa in

NP RS

,

CN Det ListRS Conj

N Num RS ListRS

,,partes

Card RCl RS RS

Numeral RP ClSlash RCl RCl

Sub1000000 RP NP VPSlash NP RP ClSlash RP ClSlash

Sub1000

quarum

Det V2 PN NP NP NP NP

Sub100 Num

incolunt Belgae

AP PN AP RS

,

Sub10 Card A

Aquitani

Ord RCl

Digit Numeral

aliam

Numeral RP VP

tres

Sub1000000 Sub1000000

qui

VPSlash

Sub1000 Sub1000 NP V3

Sub100 Sub100 ListNP Conj

appellatur

Sub10 Sub10 NP NP

,unam

Digit Adv NP Adv NP

tertiam

NP PN NP PN

Det CN

Celtae

Det

Galli

Quant N Quant

NP

lingua

Pron

Det

nostraipsorum

Figure 6.8: Parse Tree for Caes. Gall., 1, 1, 1

94
CHAPTER 6. PAPER II: AN OPEN-SOURCE COMPUTATIONAL LATIN GRAMMAR:

OVERVIEW AND EVALUATION

6.4 Conclusion
This article gives an overview over an open source computational Latin grammar.
The intended use is to provide a linguistically motivated resource for a wide
range of computational applications. Besides the use in applications, it can also
be used to test linguistic hypotheses. The strength of this grammar, besides
syntactic analysis, is in language generation. One applications that makes use
of our grammar and its strength is a language learning application for Latin
(Lange and Ljunglöf, 2018a; Lange, 2018). Other applications are imaginable,
e.g., translation systems based on GF’s inherent multilinguality as well as
various systems to provide access to cultural heritage. These other applications
remain, however, for future work.

Furthermore, we present four experiments to evaluate the quality of this
Latin grammar. The results of this evaluation are relevant to show both the
current quality of the grammar and to provide a benchmark which can be used
to measure improvements. This is helpful for future efforts in developing this
grammar.

Besides these direct results, this article describes methods to evaluate
GF resource grammars in general. This has never been done before in any
comparable way. The main reason for the lack of evaluation of resource
grammars is the challenge of syntactic analysis in unrestricted settings, suffering
from a high degree of ambiguity. Only with the methods to translate between
UD and GF trees (Kolachina and Ranta, 2016; Ranta and Kolachina, 2017;
Kolachina, 2019) it became possible to evaluate syntactic quality on a large
scale.

Future work includes the use of the results from our evaluation to improve
the grammar and fix the issues uncovered by the experiments. For example,
the first experiment identified errors in our formalization of the third verb
inflection class. The second experiment showed problems in various places,
including problems with verb tenses and gerund forms. The third experiment
shows which of the missing functions are most relevant to improve syntactic
coverage. The results of the experiments can server as a point of reference for
future improvements.

Another option to solve the problems with our morphology would be to
integrate an external morphological analyzer. Both LEMLAT and LatMor are
analyzers with a high level of accuracy. Using these external resources would be
possible but would, at the same time, require some restructuring of the grammar,
making it less self-contained. The idea to use external morphological analyzers
in GF grammars has come up before, but remains for future considerations for
our Latin grammar.

Part III

Grammar-Based CALL

95

Chapter 7

Paper III: MULLE: A
Grammar-Based Latin
Language Learning Tool to
Supplement the Classroom
Setting

Herbert Lange and Peter Ljunglöf

Published in , Proceedings of the 5th Workshop on Nat-
ural Language Processing Techniques for Educational
Applications (NLPTEA ’18),
Melbourne, Australia, 2018

97

98
CHAPTER 7. PAPER III: MULLE: A GRAMMAR-BASED LATIN LANGUAGE LEARNING TOOL

TO SUPPLEMENT THE CLASSROOM SETTING

Abstract
MULLE is a tool for language learning that focuses on teaching Latin as a
foreign language. It is aimed for easy integration into the traditional classroom
setting and syllabus, which makes it distinct from other language learning tools
that provide standalone learning experience. It uses grammar-based lessons
and embraces methods of gamification to improve the learner motivation. The
main type of exercise provided by our application is to practice translation,
but it is also possible to shift the focus to vocabulary or morphology training.

7.1. INTRODUCTION 99

7.1 Introduction
Computer-assisted language learning (CALL) is a growing field that is also
more and more in the focus of the general public thanks to popular tools such as
Duolingo1 or Rosetta Stone.2 In combination with the rise of the smartphone
it has become possible to learn languages almost any time and anywhere in an
entertaining way.

Text input on mobile devices equiped with touch screens as the primary
input device can be difficult, but is relevant to language learning tasks. This
general problem led to the development of several alternative input methods
(Ward, Blackwell, and Mackay, 2002; Kumar, Paek, and Lee, 2012; Felzer,
MacKenzie, and Rinderknecht, 2014; Shibata et al., 2016) including Ljunglöf’s
method of grammar-backed word-based text editing (Ljunglöf, 2011).

We present the MUSTE3 Langueage Learning Environment (MULLE)4, an
application for language learning that combines several techniques: tree-based
sentence modification, controlled natural language grammars for the exercise
creation as well as concepts of gamification.

The goal of our system is to provide a tool that enriches the traditional
language learning setting in an enjoyable way and helps to avoid problems with
learner motivation that can be encountered in language classes.

7.2 Previous and related work
MULLE is based on an underlying theory of word-based grammatical text
editing by Ljunglöf Ljunglöf (2011).

The software used to translate between the surface text and the syntax
trees is the Grammatical Framework (GF) (Ranta, 2009a; Ranta, 2011). It is
a grammar formalism and parsing framework based on type theory. On top
of this formalism, a multilingual library of grammars is build, the so-called
resource grammar library (RGL) (Ranta, 2009b) which covers more than 30
languages including Latin (Lange, 2017). It provides an interface that can be
used to implement more application-specific grammars similar to an application
programming interface (API) in computer programming.

An important aspect of CALL is the factor of both long and short-term
motivation for which the concept of gamification is relevant (Deterding et al.,
2011). Several approaches are possible, of which we focus on GameFlow by
Sweeter and Wyeth Sweetser and Wyeth (2005) and MICE by Lafourcade
(described in Fort, Guillaume, and Chastant (2014, section 4)). GameFlow
translates the more general Flow approach (Csikszentmihalyi, 1990) to computer
games.

Finally, comparison to other language systems is relevant for our work.
Most language systems share common features, especially translation exercises
seem quite similar across different systems. Still there are major differences in

1https://www.duolingo.com/
2http://www.rosettastone.eu/
3http://www.cse.chalmers.se/~peb/muste.html
4https://github.com/MUSTE-Project/MULLE

https://www.duolingo.com/
http://www.rosettastone.eu/
http://www.cse.chalmers.se/~peb/muste.html
https://github.com/MUSTE-Project/MULLE

100
CHAPTER 7. PAPER III: MULLE: A GRAMMAR-BASED LATIN LANGUAGE LEARNING TOOL

TO SUPPLEMENT THE CLASSROOM SETTING

the way these systems work and the use cases they are developed for. Duolingo
for example heavily relies on text input created by the user, uses a mixture of
user-generated content and machine learning techniques (Kenji Horie, 2017)
and is meant for open independent online learning mostly for modern languages.
MULLE on the other hand uses resources created by experts, does not require
text input created by the user, and is intended for, but not restricted to,
accompanying language classes in a closed classroom setting.

7.3 Creation of interactive exercises from a Latin
textbook

The idea of grammar-based text modification led us to the creation of MULLE.
It is game-like and the player solves language learning exercises focusing on
translation. Each exercise consists of two sentences in different languages, one
language that the user already knows (i.e. the metalanguage), and the language
to be learned (i.e. the object language). Both sentences differ in some respect,
depending on the grammatical features that the lesson is focusing on.

Using GF together with the RGL helps us to create domain-specific gram-
mars in a straightforward way. Such grammars can be designed to catch exactly
the complexity of the lessons in a classic textbook. That way we can mirror
the same lesson structure in MULLE, at the same time adding more flexibility
and giving the possibility of generating a large supply of interactive exercises
with plenty of variation using vocabulary and concepts familiar from class and
textbook.

A textbook for language learning is usually split into a sequence of lessons
with texts and exercises of growing syntactical complexity. This is the case for
textbooks both at high-school and university levels (e.g. Lindauer, Westphalen,
and Kreiler (2000) and Ehrling (2015)). Typically, each chapter consists of
a text part, a vocabulary list, some grammatical explanation and additional
exercises. The growing vocabulary and increase in complexity helps the student
learn the whole of a language in a slow pace. This approach is also common in
language learning applications and can readily be implemented in MULLE.

Each grammar lesson in MULLE covers a set of interactive exercises. So
we need lesson-specific grammars that use the same lexicon and grammatical
constructions as the corresponding parts of the textbook. For that we can use
the RGL, when writing a new grammar for a lesson we already have access to
an extensive description of the languages we want to cover and only have to
select the concepts we want to include.

First a lexicon is created that covers exactly the vocabulary of a lesson.
Extensive lexical resources are already available for GF and they can easily be
extended by the author of the grammar relying on the morphological component
of the grammar to generate the correct word forms.

Next the grammatical constructions that will be used in this lesson are
selected by exposing only the parts that are relevant to the planned learning
outcomes. The RGL can be seen as a collection of grammatical constructions,
and each lesson uses a subset of these concepts. So by only providing a

7.4. IMPLEMENTATION 101

restricted subset together with the selected vocabulary it is possible control
the complexity of the lessons.

Finally every grammar we create needs to be multilingual for at least two
languages: the metalanguage (e.g. Swedish), and the object language (e.g.
Latin). Since the RGL is inherently multilingual it is straightforward to provide
the lessons in multiple languages; With only minimal adjustments we can cover
as many languages as we want as long as they are already included in the RGL.

The usual size of the lesson grammars we encountered so far was between
50 and 100 lexical items and about 20 syntax rules.

The main focus of our work is on one form of translation exercises but other
forms of exercises are also useful in the context of language learning. That
usually includes explicit vocabulary exercises and, in the case of languages with
a strong morphology like Latin, some exercise for practicing word forms.

Practicing vocabulary is possible either by using lexical categories as top-
level categories of the syntax trees or by using sentences that are almost correct
except for a lexical mismatch in one position.

Exercises for morphology involve slightly more work since our grammar
formalism by default only creates grammatical sentences including correct word
agreement. So to be able to practice morphology in our setup have to relax
these morphological constraints in the grammars. That gives us a way to create
exercises where the user has to both identify wrong morphological forms in a
sentence and find the right form to replace them with.

7.4 Implementation
Based on these ideas we have implemented MULLE which can already be used
in language classes. In order to be independent of certain kinds of devices and
operating systems we provide the whole application as a browser-based online
application.

The application is developed independent of the grammars that can be used.
That means that the whole system can be set up by providing the application
with a set of lesson grammars and a fully usable language learning environment
is available.

7.4.1 User interface
The user interface is kept minimalist, as can be seen in Figure 7.1, and only
provides the user with the most essential information, including the current
score count, the sample sentence in the metalanguage and the modifiable
sentence in the object language that has to be altered to match the sample,
and the time elapsed since starting the exercise as well as clicks spent on the
exercise.

Colours are an important aspect of the interface because they indicate
progress in solving the exercise. The background colours of the words highlight
which parts of the two sentences already match up with each other. In the
example kejsaren is a proper translation of Caesar which is shown by high-
lighting them in the same colour. The same is the case for both occurrences of

102
CHAPTER 7. PAPER III: MULLE: A GRAMMAR-BASED LATIN LANGUAGE LEARNING TOOL

TO SUPPLEMENT THE CLASSROOM SETTING

Figure 7.1: Screenshot of the exercise view

Augustus as well as the pair vincit and erövrar. The meaning of the colours is
that phrases in the same colour are translations of each other. Only one pair of
words, Africam and Gallien, is not highlighted, so here some user intervention
is needed.

This current design reduces the possible distractions while supporting the
learner. Depending on the target age group a more elaborate graphics design
could have a more positive effect on the acceptance of the system.

7.4.2 Gamification
We presented two approaches for gamification in Section 7.2, based on which we
selected certain aspects to be included in our application. For our application
the following features of GameFlow seem most relevant: Concentration, i.e.,
minimising the distraction from the task, Challenge by giving a scoring schema,
Control by providing an intuitive way to modify the sentence, Clear goals by
providing a lesson structure, and Immediate feedback with the colour schema.

The concept of lessons and exercises is essential for this kind of language
learning because it makes the learning progress explicit. The completed lessons
are presented to the student together with the scores, so that they can see their
own progress on the way to reaching their final goal of learning the language.

By applying methods from GameFlow, we positively influence the motivation
while learning a new language. Adding more features of gamification, especially
involving social aspects, is a possible extension for the future.

7.5 User interaction
After logging into the system the user is presented with a list of lessons and
the current status, i.e. the number of finished exercises for each lesson and the
current score. Some lessons might be disabled because they require previous
lessons to be completed first. Now the user can choose one of the enabled
lessons to start the exercises.

7.6. EVALUATION 103

Cl

NP

CN

N

PN

VP

V2 NP

PN

+ click

+ click

click
kejsaren Augustus erövrar Gallien

Figure 7.2: Syntax tree including the path through the tree after several clicks
on the word Gallien

As soon as a user starts a lesson a set of exercises is selected. These exercises
are chosen from a list of exercises in a database. The exercises consist of two
syntax trees that different in certain grammatical aspects. Associated with
each syntax tree is one sentence, one in the metalanguage and one in the
object language. The syntax trees are hidden from the user and only implicitly
influence the user experience.

The exercises are presented in the form shown in Figure 7.1. The background
colours of the words show the state of the translation. When the user clicks
on one of the words in the bottom sentence, they are presented with a list of
potential replacements. This selection is based on where in the tree the word
is introduced. In the example the user clicked on the word Gallien, which is a
proper name, so all proper names contained in the grammar are presented. By
clicking several times on the same word the focus can be expanded to cover
larger phrases, e.g. from proper name to noun phrase, and so on, by traversing
upwards through the tree (Figure 7.2). The menu contains all phrases of the
syntactic category selected by clicking on words. That means that suggestions
can contain more or less words than currently in focus. So for example if a
noun phrase is in focus, both noun phrases with and without adjectives appear
in the list. Selecting a longer phrase is the same as inserting words in the
sentence and selecting shorter phrases corresponds to deleting words from the
phrase.

With these operations, i.e. substitution, insertion, and deletion, the user
can modify the sentence to finish their task. When the two sentences are
proper translation of each other, i.e. the two syntax trees are similar, the user
is congratulated on the success and presented the final score.

Lessons can be interrupted and resumed at any time as well as repeated to
improve the score.

7.6 Evaluation
For the evaluation of our approach we have designed an experiment setup. The
full setup includes a basic placement test in the beginning that is repeated at
the end of the test period to provide information about the learning outcome.
The placement test consists of a fixed set of exercises from all lessons that will

104
CHAPTER 7. PAPER III: MULLE: A GRAMMAR-BASED LATIN LANGUAGE LEARNING TOOL

TO SUPPLEMENT THE CLASSROOM SETTING

be covered during the experiment period. Both error rate and completion time
are measured. A questionnaire controls for factors like learner background,
previous knowledge, etc. It also gives insight into the learner motivation in
the beginning so it can be repeated in the end to see any development in this
relevant aspect. Then over the span of the experiment the students can use the
software independently online. The lessons are kept in sync with the syllabus
of the course that is accompanied by the experiment. In the end the collected
data consists of changes in learning outcome and learner motivation as well as
activity of the student in the system.

In a pilot experiment we tried aspects of this experimental evaluation. The
results were not yet statistical significant because the course size was very small
and the dropout rate was high. From the initial 10 Students only 4 finished the
course so we only received complete feedback from two students out of initially
6 participants. Anyways, the general interest, both by teachers and students,
in this kind of application is strong.

A larger scale follow-up experiment will focus on the change in the learner
attitude, which is relevant for showing that our tool is suited for tackling poten-
tial anxiety in learners, a problem Latin teachers have pointed out (Dimitrijevic,
2017). With more participants different kinds of control and test conditions
can be introduced.

7.7 Discussion
One challenge with the user interface is the semantics of clicks, especially
concerning word insertion. Clicking on a gap between two words to insert
words seems more intuitive than clicking on a word. But where to click might
also depend on the languages involved.

Another important question for the current application is the influence of
the grammar design both on the learning experience and the learning outcome.
It is possible to vary the design of the grammar to change the behaviour of our
system.

Related is the role of semantics in the lesson grammars. The lessons and
exercises are meant for learning the syntax of a language but nonsensical
semantics can be an obstacle for the learning process. For example the fa-
mous sentence Colorless green ideas sleep furiously (Chomsky, 1957, p. 15) is
considered grammatical but would probably distract the learner.

7.8 Future work
This project is work in progress and we plan to extend the system in several
ways. First, we will repeat the experiment from Section 7.6 on a larger scale.
Furthermore we plan to extend our implementation to become more feature-rich
with a special focus on investigating the points addressed in the discussion
section. Finally we want to continue collaborating both with teachers and
students to improve the system in order to enrich teaching and learning Latin.

Chapter 8

Paper IV: Putting Control
into Language Learning

Herbert Lange and Peter Ljunglöf

Published in, Proceedings of the 6th International Work-
shop on Controlled Natural Languages (CNL 2018),
Maynooth, Ireland, 2018

105

106 CHAPTER 8. PAPER IV: PUTTING CONTROL INTO LANGUAGE LEARNING

Abstract
Controlled Natural Languages (CNLs) have many applications including docu-
ment authoring, automatic reasoning on texts and reliable machine translation,
but their application is not limited to these areas. We explore a new application
area of CNLs, the use of CNLs in computer-assisted language learning. In this
paper we present a web application for language learning using CNLs as well
as a detailed description of the properties of the family of CNLs it uses.

8.1. INTRODUCTION 107

8.1 Introduction
Controlled Natural Languages (CNLs) are an active field of research in compu-
tational linguistics. Their definition usually is vague, but the general consensus
is that they are constructed languages placed somewhere between full natural
languages on the one hand and formal languages on the other. Kuhn discusses
the definition in (Kuhn, 2014) and presents typical applications for CNLs,
such as machine translation and document authoring. He also expects other
applications without going into detail about these possibilities. In this paper
we present one new application of CNLs, the use in computer-assisted language
learning (CALL).

We present the MUSTE language learning environment (MULLE)1, a tool
for learning languages as a second or foreign language which can use CNLs for
the description of learning objectives, and automatically generate translation
exercises from formal grammars of these languages. The application itself uses
methods similar to conceptual authoring (Hallett, Scott, and Power, 2007) to
edit sentences in natural languages in order to make them proper translations
of each other. By using CNL grammars as the basis for the exercises, and
using textbook lessons as the basis of the grammars, it is possible to create a
learning environment that complements the traditional classroom setting.

This article is structured as follows: In Section 8.2 we present related
work, both in CNLs and CALL. Section 8.3 describes the language learning
application we designed. It describes the interface provided to the user and
gives details about the grammars used. In Section 8.4 we sketch an experimental
method to evaluate our system and describe a small-scale pilot. Finally in
Section 8.5 we discuss further questions and conclude the article in Section 8.6
with a look to possible future work.

8.2 Related Work
The use of CNLs for language learning seems to be a new application in this
field that has not yet been broadly discussed. For this reason, the amount of
directly related work is rather limited with the exception of (Abolahrar, 2011).
However, this application can also be viewed as a combination of two tasks that
have been popular among the CNL community: reliable machine translation
and user support for text edition and creation.

8.2.1 Related CNL work
Quite often the motivation for the use of Controlled Natural Language is their
proximity to formal language. This allows, e.g. automatic reasoning within
and reliable translation of these languages. To guarantee that the language
used by an author is covered by a CNL, special editors have been proposed.
Two approaches are conceptual editing (Hallett, Scott, and Power, 2007) and
predictive editing (Kuhn and Schwitter, 2008; Angelov and Ranta, 2010).

1https://github.com/MUSTE-Project/MULLE

https://github.com/MUSTE-Project/MULLE

108 CHAPTER 8. PAPER IV: PUTTING CONTROL INTO LANGUAGE LEARNING

Predictive editing uses chart parsers and compatible grammars to suggest only
valid continuations in the process of writing. Some systems only support a
fixed vocabulary while other systems support the extension of the vocabulary
while the document is authored.

Conceptual editing instead refines the underlying representation by manip-
ulating the surface presentation, i.e. the natural language sentence. In this
process so called “holes” are created and filled.

Angelov and Ranta (Angelov and Ranta, 2010) not only present a predictive
editor, but also suggest a translation system based on Attempto Controlled
English (ACE) (Fuchs et al., 2005). It provides reliable machine translation
via abstract syntax trees in the Grammatical Framework (GF) (Ranta, 2009a;
Ranta, 2011).

Some CNLs were designed to aid learning languages at a time before
computers were considered a tool for it. One example is Basic English (Ogden,
1930), an auxiliary language created to help people learn English as a second
or foreign language, invented at the beginning of the 20th century.

8.2.2 Related work within language learning
In the field of language learning applications several approaches can be observed.
They range from finite-state technology for morphology training (Kaya and
Eryiğit, 2015) over annotated text data, or semantic resources combined with
rule-based algorithms (Moritz et al., 2016; Michaud, 2008; Redkar et al., 2017)
to user-generated content in combination with machine learning (Kenji Horie,
2017). The aim and scope of theses systems also varies broadly, including
the learning environment they target. The systems (Michaud, 2008; Redkar
et al., 2017) target a closed classroom setting with specific language classes
while (Kaya and Eryiğit, 2015; Moritz et al., 2016) aim at a broader learning
environment and are applicable outside a specific course. Modern general-
purpose systems like Duolingo2 target independent language learners.

Reliability also varies between these systems. The smallest scale systems
provide the most reliable examples while the most general systems being the
least reliable.

8.3 Application: Language Learning using CNLs
In this paper we describe a web-based language learning tool which takes
advantage of CNL grammar features. It is intended for use in a closed, classroom-
related learning environment and provides reliable translation exercises by using
fully formalised grammars. The tool presents exercises grouped into lessons
where the user is presented with sentences in two different languages.

Usually two languages are involved in language learning: one language
the user already knows is used for instructions in the language classes (the
meta language) and one language the user is learning (the object language) by

2https://www.duolingo.com

https://www.duolingo.com

8.3. APPLICATION: LANGUAGE LEARNING USING CNLS 109

discussing it in the meta language . So the meta language and object language
in the classroom determine the two languages used in our exercises.

The task of the user is to edit one of the sentences to make it a proper
translation of the other. Currently, this means that the underlying GF abstract
syntax trees for both sentences have to be the same. As a future development,
we imagine an extension where we consider not single trees but sets of trees, in
order to be able to handle ambiguous parses. In this case it would be sufficient
to have at least one abstract tree in the intersection of the two sets.

The tool has been used in an introductory course in Latin for Swedish
students. So in all examples given here Swedish acts as the meta language and
Latin as the object language. We implemented the first four lessons of (Ehrling,
2015) and conducted the pilot of a user study that is described in more detail
in Section 8.4.

8.3.1 The editing interface
Our application uses a method for word-based text-editing (Ljunglöf, 2011),
which is in principle related to conceptual editing. It uses syntax trees as
formal representations and provides editing operations like insertion, deletion,
and substitution on the surface by mapping them onto tree operations. In our
application we only look at complete syntax trees, that means we do not use
“holes” for incremental creation, but instead modify complete syntax trees.

The editing operations work in the following way: the user clicks on a
word in the sentence or on the gap between two words in the sentence. The
click position is translated to the node in the syntax tree in which the word is
introduced or the closest node covering the space that was clicked. Based on the
subtree below this node, all subtrees with the same root category are computed
and their linearisations, i.e. their surface representations, are collected and
presented to the user.

To clarify this process a set of screenshots with the corresponding syntax
tree can be seen in Figures 8.1a–8.1e. In the screenshot one can see the two
sentences in different languages. The sentence at the top is fixed and the
sentence at the bottom can be changed by the user. The syntax tree beside
the screenshot describes the sentence at the bottom. Figure 8.1a shows the
start of the system before any click. Clicks on words in the sentence are then
translated to pointers into the tree. For example clicking on the word “Gallien”
will set the pointer (circled node) to the node introducing this string, in this
case the rightmost PN node (Figure 8.1b). Then the category in the focus of
the pointer is used to compute all similar trees of with the same category in
the root. These trees are used to suggest potential replacements which are
shown to the user in the form of a menu. Clicking on the same word several
times moves the pointer up in the tree which changes the root category of the
candidate trees from PN to NP, VP and so on, and suggests different changes
to the sentence (Figure 8.1c–8.1d) before finishing in the root of the tree with
category Cl (Figure 8.1e) where the menu does not change anymore. In this
way larger phrases can be changed at the same time of more global features like
sentence negation can be modified. When instead the user clicks on a different

110 CHAPTER 8. PAPER IV: PUTTING CONTROL INTO LANGUAGE LEARNING

position than before, then the system is reset and the pointer again points to
the node indicated by the new click.

8.3.2 Lessons and exercises
The application provides of a set of lessons, each consisting of a number of
exercises. A lesson is defined by a multilingual GF grammar which is derived
from a part of a textbook. These parts usually consist of text fragment (a
sample can be seen in Figure 8.2), a vocabulary list, some explanation of
grammatical phenomena, as well as some exercises that are supposed to be
solved on paper.

We adopt this structure in our system by using the same text fragments
presented in the textbook lessons and formalising them in separate grammars
that cover the vocabulary as well as the syntactic constructions used in the
corresponding parts of the textbook.

Given a lesson grammar, an exercise consists of two syntax trees and their
surface representations. With the task described before a score is calculated
based on both the number of clicks and the time spent before finishing the
exercise. After finishing a certain number of exercises, the lesson is considered
finished.

8.3.3 Creating the lesson grammars
We create a GF grammar for each textbook lesson in the following way. This
work should be automated as much as possible but the basic procedure can
also be executed manually.

1. The first step is to adapt a lexicon for the textbook lesson, which is given
as an explicit vocabulary list in the book. We can use existing reliable
lexical resources or GF smart paradigms (Détrez and Ranta, 2012) to
implement it in our grammar.

2. The next step is to create syntax trees for all sentences in the text (Fig-
ures 8.3a–8.3b). This can either be done manually or semi-automatically.
To automate this process, we parse each sentence using the GF resource
grammar library (RGL) (Ranta, 2009b) augmented with the lexicon from
step 1. Because of syntactic ambiguities this might result in several
possible trees, so afterwards we have to manually select the correct syntax
tree, i.e. the desired analysis of the sentence. This involves some linguistic
knowledge from the person creating the grammar.

3. Finally, we formulate the grammar that describes the text fragment in
the textbook. This can be done straightforwardly by reading off the
grammar rules from the internal nodes in the trees (see Figure 8.3c). This
will usually result in an over-generating grammar, so we use different
techniques to reduce the over-generation such as merging two or more
generated rules into one.

8.3. APPLICATION: LANGUAGE LEARNING USING CNLS 111

Cl

NP

CN

N

PN

VP

V2 NP

PN

kejsaren Augustus erövrar Gallien

(a) System before any click

Cl

NP

CN

N

PN

VP

V2 NP

PN
click

kejsaren Augustus erövrar Gallien

(b) System after one click on “Gallien”

112 CHAPTER 8. PAPER IV: PUTTING CONTROL INTO LANGUAGE LEARNING

Cl

NP

CN

N

PN

VP

V2 NP

PN
+ click

click
kejsaren Augustus erövrar Gallien

(c) System after second click on “Gallien”

Cl

NP

CN

N

PN

VP

V2 NP

PN

+ click

+ click

click
kejsaren Augustus erövrar Gallien

(d) System after third click on “Gallien”

8.3. APPLICATION: LANGUAGE LEARNING USING CNLS 113

Cl

NP

CN

N

PN

VP

V2 NP

PN

+ click

+ click

+ click

click
kejsaren Augustus erövrar Gallien

(e) System after fourth click on “Gallien”

Prima scripta Latina

[...] Imperium imperatorem habet. Imperator imperium tenet.
Caesar Augustus imperator Romanus est. Imperium Romanum tenet.
Multas civitates externas vincit. Saepe civitates victae
provinciae deveniunt.
[...]

Figure 8.2: Sample from the text fragment in the first lesson in (Ehrling, 2015)

8.3.4 Making the lesson grammars ungrammatical

The above process yields a grammar which only accepts syntactically correct
sentences. However, we also wish to train the morphology in the object language,
e.g. noun-verb agreement, number/gender inflection, affixation, etc.

It is possible to semi-automatically transform a lesson grammar into a
grammar that accepts some grammatical errors, e.g. sentences where nouns
and verbs disagree in number. What has to be done manually is to indicate
which inflection parameter(s) in which grammar rule(s) should be loosened.
Then it is possible to automatically transform the grammar into a grammar
that accepts sentences where that specific inflection parameter is violated.

The user’s task still is to edit a sentence in the object language to make
it a translation of the meta language, but now they will have the additional
complexity of allowing ungrammatical sentences. It is possible to control the

114 CHAPTER 8. PAPER IV: PUTTING CONTROL INTO LANGUAGE LEARNING

Caesar Augustus imperator Romanus est.

(a) Example sentence
Cl

VP

NP NP

N PN N A VA

Caesar Augustus imperator Romanus est

(b) Syntax tree derived from sentence in Figure 8.3a
NP --> N PN
NP --> A N
VP --> VA NP
Cl --> NP VP
S --> Cl
...

(c) Derived abstract grammar

level of ungrammaticality by deciding how many inflection parameters should
be loosened.

8.3.5 Characterisation of the lesson grammars
We identified relevant criteria that characterise grammars that are suitable
to be used by our application. The two most relevant criteria are a layer of
semantics in the grammars as well as making some implicit features of the
syntax explicit.

Grammars in GF usually are distinguished between resource grammars and
application grammars. The main difference is that resource grammars just
describe the syntax of a language without any semantic considerations while
application grammars are used for a specific application and include semantic
aspects necessary for that domain.

The grammars that are used in our system also have a strong focus on
syntax, but require at least some semantic restrictions. From a purely syntactic
point of view, adjectives can be combined with any noun, but language use
only allows certain combinations. This can be solved by including semantic
knowledge in different ways, of which the inclusion of FrameNet-style semantics
in the grammars (Gruzitis and Dannélls, 2017) seems the most natural.

The second point is, that natural languages might employ syntactic features
that are not visible on the surface. One example are romance languages that
allow the dropping of pronouns in the subject position because the relevant
information is already present in the verb form. But to keep the grammars
multilingual, these pronouns still have to be present in the grammar as empty

8.4. EVALUATION 115

tokens, which is an obstacle in language learning. This has to be changed in a
way to make this information explicit on the surface for our application to be
useful.

8.3.5.1 PENS classification

Given this description of the family of grammars we designed we want to render
this definition more precisely in the PENS classification scheme (Kuhn, 2014).
PENS stands for Precision, Expressiveness, Naturalness, and Simplicity and is
typically used to classify CNLs. Each of these scales ranges from 1 to 5 with 1
being the least and 5 the highest level of strictness possible.

Our grammars are fully specified in a computational grammar formalism
and each sentence can be mapped to a set of abstract syntax trees. We do not
insist on completely unambiguous interpretations but the set of interpretations
will always be finite. According to the PENS classification that places our
languages in the field of Deterministically interpretable languages (P 4).

The sentences generated by our grammars should be syntactically correct
and in this aspect be considered as Languages with natural sentences (N4).
Because we focus just on sentences in our application, an extension to Languages
with natural texts is not necessary.

The scope of our grammars is very limited, both by the text fragments
and the explicit vocabulary, which makes it possible to formalise the language
fragments in compact grammars. Even though they rely on external resources
in the form of the RGL, the fragments can be considered as Languages with
short descriptions (S4).

The only problematic dimension is Expressivity, because we do not really
focus on a translation to a specific logic interpretation, but remain on the level
of the abstract syntax tree and its expressiveness. But because this is not
relevant for our application we decide to ignore this dimension and set it to
E− That places our languages in the family of P 4E−N4S4 languages.

This classification is not just some characterisation of the grammars we use
in our system now and the languages defined by them, but instead a general
requirement for all grammars and languages that can be used in our framework.

8.4 Evaluation
To test the acceptance of our application, as well as the desired change in
learning outcome and learner motivation, we designed an empirical evaluation
which we partially conducted as a pilot in connection with an introductory
course for Latin at university level.

The full experiment consists of a prepared set of four lessons with a runtime
of about four weeks. At the beginning, the students are asked to answer
a questionnaire to control for aspects of the learner background and give
some insight into the motivation at the beginning of the course. A simple
timed placement test with eight exercises, four from each lesson, estimates the
language skills before taking the class. The participants then are split into
one treatment group and one or several control groups. In the following four

116 CHAPTER 8. PAPER IV: PUTTING CONTROL INTO LANGUAGE LEARNING

weeks the students in the treatment group get access to lessons matching the
progress in class while one control group only gets access to the traditional
learning material in the text book. After the experiment period the students
are given a slightly modified version of the questionnaire from the beginning to
test for a change in motivation and a second placement test to see if there is a
change in speed to solve the exercises.

In the pilot, due to lack of students, we could only ask for general feedback
without gaining relevant insight into change in learner motivation or learning
outcome. From ten students in class six volunteered to try the application and
answer the first questionnaire. But due to a general drop out from this class,
only four students were present in the end, of which only two had volunteered
to participate. Still, the general feedback from both teachers and students
was very positive which encourages us to aim for a full scale version of the
evaluation.

8.5 Discussion
In the related work we pointed out several different technical approaches for
systems in the field of foreign and second language learning. The different
systems differ not only in the expressivity of the underlying technology but
also in their intended use case.

Systems which employ technology with limited expressivity like finite-state
technology aim at a closed setting in a very specific classroom setting but
provide a high reliability. Other systems that employ very expressive machine
learning methods can be used in a very open and classroom-independent setup
but suffer from a lack of reliability.

With our system, which uses a very expressive syntax formalism, we cur-
rently target a closed classroom setting where we can profit from the reliability
of our grammar-based approach but we also believe it is possible to widen the
focus to provide a completely open language-learning application.

We claim that our system employs controlled natural languages for language
learning. Some might disagree, and we admit that the PENS classification
fails in the point of expressivity. But the application we sketch is grammar-
agnostic, which means one can use almost any multilingual grammar to generate
translation exercises from it. The grammars we used so far might not really
be seen as controlled languages because they are defined too implicitly, even
though textbook lessons usually are created with clear concepts in mind. Still it
can be used with any grammar that fulfils the PENS requirements we identified
as characteristic for our grammars. This also gives a chance for further research
looking into the application of CNLs in CALL far beyond the scope of this
work.

Finally it is possible to discuss the combination of the underlying technology
with other CNLs to build different applications. We think that there is some
potential, especially given the similarity of conceptual editing and the word-
based text editing, to have a fruitful exchange between the CNL community
and other disciplines.

8.6. CONCLUSIONS AND FUTURE WORK 117

8.6 Conclusions and Future Work
We presented a working application usable for language learning that uses fully
formalised grammars to define language learning lesson. According to some
definition of controlled natural languages these lessons can be seen as CNLs,
even there might be problems with this claim.

In the future we want to investigate how the design of the grammars
influences the learning experience. This mostly concerns the structure of the
grammars with varying focus on syntax and semantics. But that also includes
additional ideas for different kinds of language learning exercises.

Another relevant topic of research is automatic generation of “good” ex-
ercises. This in entangled with the questions which kind of exercises besides
translation exercises we want to include in our application. It also seems
connected to a different topic, the selection of good examples in the creation of
lexica (Kilgarriff et al., 2008), even though features of good translation exercises
are not exactly the same as for good lexicon examples. Still this would give an
opportunity for further interdisciplinary research.

118 CHAPTER 8. PAPER IV: PUTTING CONTROL INTO LANGUAGE LEARNING

Part IV

Learning Domain-Specific
Grammars

119

Chapter 9

Paper V: Learning
Domain-Specific Grammars
From a Small Number of
Examples

Herbert Lange and Peter Ljunglöf

Submitted to , Special Issue: Natural Language Process-
ing in Artificial Intelligence - NLPinAI 2020, in:
Series “Studies in Computational Intelligence” (SCI),
Springer

121

122
CHAPTER 9. PAPER V: LEARNING DOMAIN-SPECIFIC GRAMMARS FROM A SMALL

NUMBER OF EXAMPLES

Abstract
In this chapter we investigate the problem of grammar learning from a perspec-
tive that diverges from previous approaches. These prevailing approaches to
learning grammars usually attempt to infer a grammar directly from example
corpora without any additional information. This either requires a large train-
ing set or suffers from bad accuracy. We instead view learning grammars as
a problem of grammar restriction or subgrammar extraction. We start from
a large-scale grammar (called a resource grammar) and a small number of
example sentences, and find a subgrammar that still covers all the examples.
To accomplish this, we formulate the problem as a constraint satisfaction
problem, and use a constraint solver to find the optimal grammar. We created
experiments with English, Finnish, German, Swedish and Spanish, which show
that 10–20 examples are often sufficient to learn an interesting grammar for
a specific application. We also present two extensions to this basic method:
we include negative examples and allow rules to be merged. The resulting
grammars can more precisely cover specific linguistic phenomena. Our method,
together with the extensions, can be used to provide a grammar learning system
for specific applications. This system is easy-to-use, human-centric and can
be used by non-syntacticians. Based on this grammar learning method we
can build applications for computer-assisted language learning and interlin-
gual communication, which rely heavily on the knowledge of language and
domain experts who often lack the competence to develop required grammars
themselves.

9.1. INTRODUCTION 123

9.1 Introduction
Many currently common trends in natural language processing (NLP) are
aiming at general purpose language processing for tasks such as information
retrieval, machine translation and text summarization. But there are use cases
where it is not necessary to handle language in general. Instead, it is possible to
restrict the language which such a system needs to recognize or produce. The
reason for restricting the language can be in requirements of very high precision,
e.g., in safety-critical systems, or in order to build domain-specific systems,
e.g., special-purpose dialogue systems. In this context, domain-specific means
that an application is used in a specific application domain, and is unrelated
to the concept from cognitive science.

One common aspect of these high-precision applications is that they can
be built using computational grammars to provide the required reliability and
interpretability. These domain-specific grammars often have to be developed
by grammar engineers who are not always experts in the application domain.
Domain experts on the other hand usually lack the skills necessary to create
the grammars themselves.

We present a method to bridge the gap between the two parties. Starting
from a general-purpose resource grammar, we use example sentences to auto-
matically infer a domain-specific grammar. We apply constraint satisfaction
methods to ensure that the examples are covered. It is also possible to apply
various objective functions to guarantee that the result is optimal in a certain
way.

This chapter is an extension of our paper from the Special Session on
Natural Language Processing in Artificial Intelligence at the 12th International
Conference on Agents and Artificial Intelligence (ICAART 2020) (Lange and
Ljunglöf, 2020). In addition to the technique presented in the original paper,
in this chapter we extend the basic method in two ways. Firstly, we account for
negative examples. Besides sentences that have to be included in the language of
the new grammar, it is also possible to give sentences which the grammar should
not be able to parse. This allows for an iterative refinement process. Secondly,
we generalize the method, which uses grammar rules as the basic units, to
subtrees of size1 larger than 1, as the basic units. In combination with the ability
to merge rules, we move away from extracting pure subgrammars, towards
learning modified grammars. The resulting grammars can more precisely cover
specific linguistic phenomena.

For our experiments we use the Grammatical Framework (GF) (Ranta,
2009a; Ranta, 2011) as the underlying grammar formalism, but the main
ideas are transferable to other formalisms such as head-driven phrase structure
grammar (HPSG) (Pollard, 1994), lexical-functional grammar (LFG) (Kaplan
and Bresnan, 1982; Bresnan, 2001) or lexicalized tree-adjoining grammar
(LTAG) (Joshi and Schabes, 1997). The main requirements are that there is
a general purpose resource grammar, such as GF’s resource grammar library
(RGL) (Ranta, 2009b), and that parse trees can be translated into logic
constraints in a way similar to what we present in this chapter.

1The size of a tree is the number of nodes in the tree

124
CHAPTER 9. PAPER V: LEARNING DOMAIN-SPECIFIC GRAMMARS FROM A SMALL

NUMBER OF EXAMPLES

9.1.1 Use Case: Language Learning
Our primary use case is language learning. We have developed a grammar-based
language learning tool for computer-assisted language learning (Lange, 2018;
Lange and Ljunglöf, 2018b; Lange and Ljunglöf, 2018a), which automatically
generates translation exercises based on multilingual computational grammars.

Each exercise topic is defined by a specialized grammar that can recognize
and generate examples that showcase a topic. Creating those grammars requires
experience in grammar writing and knowledge of the grammar formalism.
However, language teachers usually lack these skills.

Our idea is to let the teacher write down a set of example sentences that
show which kind of language fragment they have in mind, and the system
will automatically infer a suitable grammar. One exercise topic could focus
on gender and number agreement, another one on relative clauses, while yet
another could focus on inflecting adjectives or the handling of adverbs.

The optimal final grammar should cover and generalize from the given ex-
amples. At the same time it should not over-generate, i.e., cover ungrammatical
expressions, and instead reduce the syntactic ambiguity, i.e., the number of
syntactic analyses or parse trees, as much as possible. Completely covering the
examples, generalize from the examples and not being over-generating usually
are mutually exclusive and contradictory requirements. So the best we can
hope for is a balance between these requirements.

9.1.2 Use Case: Interlingual Communication
Another use case for our research is domain-specific applications, such as
dialogue systems, expert systems and apps to support communication in
situations where participants do not share a common language. These situations
can, for example, be found in the healthcare sector, especially when involving
immigrants (Ranta, Angelov, et al., 2017). Here misunderstandings can cause
serious problems.

In the development of such systems, the computational linguists who are
specialists on the technological side have to collaborate with informants who
have deep knowledge of the language and domain. A common domain is estab-
lished by discussing example sentences. These sentences can be automatically
translated into a domain-specific grammar, which can be refined by generating
new example sentences based on the initial grammar and receiving feedback
about them from the informants.

Such an iterative, example-based, development of application-specific gram-
mars allows for close collaboration between the parties involved. The result is
a high quality domain-specific application.

9.2 Background
We want to give some insight into the related work and relevant background
here. There is a long history of approaches to grammar learning. Our grammar
learning technique makes use of computational grammar resources, some of

9.2. BACKGROUND 125

which are presented here. An essential part for our work is the concept of
an abstract grammar, which we will define and explain. Furthermore, using
constraint solving is a common computational approach to problem solving.

9.2.1 Previous Work on Grammar Learning
Grammar inference, i.e., the generation of a grammar from examples, has been
a field of active research for quite some time. Common grammar learning
approaches are:

• grammar inference, where a grammar is inferred from unannotated corpus
data,

• data-oriented parsing (DOP), where subtrees from an example treebank
are used as an implicit grammar,

• probabilistic context-free grammar (PCFG), where, for each rule of a
context-free grammar (CFG) a probability is learned from a corpus, and

• subgrammar extraction, where a subset of syntactic rules is extracted
from a more general grammar.

We draw inspiration from DOP and several of the other approaches. Most
of these methods require no or very little linguistic information besides the
training examples. As a result they tend to require more training data to learn
more expressive grammars. The main difference of our method is, that it, in
addition, requires linguistic knowledge in the form of a wide-coverage resource
grammar. However, this fact allows the method to learn reasonable grammars,
usually from less than 10 examples.

Grammar Inference:

There has been a lot of work on general grammar inference, both using super-
vised and unsupervised methods (see, e.g., overviews by (Clark and Lappin,
2010) and (D’Ulizia, Ferri, and Grifoni, 2011)). Most of these approaches have
focused on CFGs, but there has also been work on learning grammars in more
expressive formalisms (e.g., (Clark and Yoshinaka, 2014)).

In traditional grammar inference one starts from a corpus and learns a
completely new grammar. Because the only input to the inference algorithm
is an unannotated corpus, it can require a larger amount of data to learn a
reasonable grammar. Clark reports results on the ATIS corpus of around 740
sentences (Clark, 2001).

DOP:

In DOP (Bod, 1992; Bod and Scha, 1997), the grammar is not explicitly inferred.
Instead a treebank is seen as an implicit grammar which is used by the parser.
It tries to combine subtrees from the treebank to find the most probable parse
tree. The DOP model is interesting because it has some similarities with
our approach, especially with the second extension where we use subtrees in

126
CHAPTER 9. PAPER V: LEARNING DOMAIN-SPECIFIC GRAMMARS FROM A SMALL

NUMBER OF EXAMPLES

grammar learning (see Section 9.9). Bod also reports results for DOP on the
Penn Treebank ATIS corpus with 750 trees (Bod and Scha, 1997).

PCFGs:

Another approach that could come to mind when thinking about learning gram-
mars is PCFGs, an extension of context-free grammars where each grammar
rule is assigned a probability. Parsing with a PCFG involves finding the most
probable parse tree (Manning and Schütze, 1999, Chapter 11). The probabili-
ties for a PCFG can be learned from annotated or unannotated corpora using
the Inside-Outside algorithm, an instance of Expectation Maximazition (EM)
algorithms (Lari and Young, 1990; Pereira and Schabes, 1992). The approach
works for both formal and natural languages, as Pereira and Shabes Pereira
and Schabes (1992) show. They present experiments involving the palindrome
language L = {wwR | w ∈ {a, b}∗} and the Peen treebank and show that
training on bracketed strings results in significantly better results than training
on raw text. The results they report are based on 100 input sentences for the
palindrome language and on the ATIS corpus using 700 bracketed sentences.

Subgrammar Extraction:

There has been some previous work on subgrammar extraction (Henschel, 1997;
Kešelj and Cercone, 2007). Both articles present approaches to extract an
application-specific subgrammar from a large-scale grammar focusing on more
or less expressive grammar formalisms: CFG, systemic grammars (equivalent
to typed unification based grammars) and HPSG. However, both approaches
are substantially different from our approach, either in the input they take or
in the constraints they enforce on the resulting grammar.

Logic Approaches:

To our knowledge, there have been surprisingly few attempts to use logic or
constraint-based approaches, such as theorem proving or constraint optimiza-
tion, for learning grammars from examples. One exception is (Imada and
Nakamura, 2009), in which the authors experiment with Boolean satisfiability
(SAT) constraint solvers to learn context-free grammars. They report results
similar to ours, but only focus on formal languages over {a, b}∗.

9.2.2 Abstract Grammars
In our work we use the Grammatical Framework (GF). However, the way in
which we state our problem allows us to substitute the grammar formalism
used by any other that fulfills some basic requirements.

Grammatical Framework (Ranta, 2009b; Ranta, 2011) is a multilingual
grammar formalism based on a separation between abstract and concrete syntax.
The abstract level is meant to be language-independent, and every abstract
syntax can have several associated concrete syntaxes, which act as language-
specific realizations of the abstract rules and trees. In this chapter we only make

9.2. BACKGROUND 127

use of the high-level abstract syntax. This high-level view makes it possible
to transfer our approach to other grammar formalisms with a comparable
level of abstraction. An abstract syntax can be expressed as a many-sorted
algebra (Definition 9.2.1). We build the techniques in this chapter on top of
the concept of many-sorted algebras. As a consequence, the techniques work
for all grammar formalisms that can be expressed as a many-sorted algebra as
well.

Definition 9.2.1 (Many-sorted Algebras). A many-sorted algebra (Wirsing,
1990, pp. 680) can be defined given a signature Σ = 〈S, F 〉 where S is a
set of sorts and F is a set of function symbols, together with a mapping
type : F 7−→ S∗ × S which expresses the type of each function symbol.

Notation: Instead of giving the two sets and the type function separately,
Wirsing Wirsing (1990) gives a signature in the following form:

1 signature ΣBool ≡
2 sort Bool
3 functions
4 true : → Bool
5 false : → Bool
6 and : Bool,Bool → Bool
7 or : Bool,Bool → Bool
8 endsignature

For the function types for the function symbols in a many-sorted algebra
(Definition 9.2.1) the type on the right-hand side of the arrow is the result type
of the function and the types on the left-hand side are the parameter types.

In this chapter we can look at grammars from various perspectives. From a
linguistic point of view we talk about syntax rules, syntactic rules or grammar
rules. From the perspective of algebras we talk about function. For that reason
the terms rules and functions are used interchangeably. The same is the case
for categories and sorts, because sorts in many-sorted algebras are used to
express syntactic categories.

1 signature ΣExample ≡
2 sorts Cl, CN, VP, N, V
3 functions
4 PredVP : NP, VP → Cl
5 DetCN : Det, CN → NP
6 UseN : N → CN
7 man_N : → N
8 sleep_V : → V
9 detSg_Det : → Det

10 endsignature

Figure 9.1: Signature of a many-sorted algebra for an example abstract grammar

The many-sorted algebra defined by the signature in Figure 9.1 can be
expressed in GF syntax as shown in Figure 9.2. We do not want to go into
detail about the GF abstract syntax (see e.g. (Ranta, 2011) for more details).

128
CHAPTER 9. PAPER V: LEARNING DOMAIN-SPECIFIC GRAMMARS FROM A SMALL

NUMBER OF EXAMPLES

1 abstract Example = {
2 flags startcat = Cl ;
3 cat Cl; VP; Det; N; V;
4 fun PredVP : NP -> VP -> Cl ;
5 DetCN : Det -> CN -> NP ;
6 UseN : N -> CN ;
7 UseV : V -> VP ;
8 man_N : N ;
9 sleep_V : V ;

10 theSg_Det : Det ;
11 }

Figure 9.2: Example abstract syntax in Grammatical Framework for the
abstract grammar in Figure 9.1

Instead we will express all relevant grammars in this chapters as signatures of
many-sorted algebras.

To make the grammar in Figure 9.1 more accessible, we give a short
explanation of the rules. This grammar has three constant functions: man_N
representing the noun man, sleep_V representing the intransitive verb sleep and
detSg_Det representing the definite article in singular the. The function UseN
converts a noun into a common noun, i.e., a noun phrase without determiner,
and DetCN adds the determiner to form a complete noun phrase. The function
UseV forms a verb phrase from an intransitive verb. Finally, PredVP combines
a subject noun phrase and a verb phrase into a declarative clause.

Base on such abstract grammars we can define abstract syntax trees (Defi-
nition 9.2.2). There is no formal difference between leaves and internal nodes,
but a leaf is just a node without any children. The trees are therefore similar
to abstract syntax trees as they are used in, e.g., computer science (Ranta,
2012, Chapter 2.5).

Definition 9.2.2 (Abstract Syntax Tree). Given a signature of a many-sorted
algebra Σ = 〈S, F 〉, an abstract syntax tree is either

• A node n : C without children and with n ∈ F , C ∈ S and type(n) = C

• A node n : C with n ∈ F , T ∈ S and type(n) = (C1, . . . , Ci, T), and the
node has i valid abstract syntax trees with root nodes c1 : C1, . . . , ci : Ci

as children

As an example, an abstract representation of the English sentence The man
sleeps can be seen in Figure 9.3. The tree is valid according to the grammar
ΣExample (Figure 9.1) because it follows Definition 9.2.2.

9.2.3 Wide-Coverage and Resource Grammars
For various grammar formalisms there exist large grammars describing sig-
nificant parts of natural languages. Examples include the HPSG resource
grammars developed within the DELPH-IN collaboration (DELPH-IN, 2020)
or grammars created for the XMG metagrammar compiler (XMG, 2017) .

9.2. BACKGROUND 129

PredVP : Cl

DetCN : NP

theSg_Det : Det

the

UseN : CN

man_N : N

man

UseV : VP

sleep_V : V

sleeps

Figure 9.3: Abstract syntax tree for the example sentence the man sleeps –
note that the English surface words and the dotted edges are not part of the
abstract syntax

The resource grammar available in GF is called the GF resource grammar
library (RGL) (Ranta, 2009b), which is a general-purpose grammar library for
more than 30 languages which covers a wide range of common grammatical
constructions. The main purpose of the RGL is to act as a application program-
ming interface (API) when building domain-specific grammars. It provides
high-level access to the linguistic constructions, facilitating development of
specific applications. The inherent multilinguality also makes it easy to create
and maintain multilingual applications.

However, it is necessary to learn the GF formalism as well as to write
grammars in general to use the RGL for developing GF grammars. This limits
the user group drastically. In contrast, the methods presented in this chapter
allow non-grammarians to create grammars for their own domain or application
without the knowledge of the grammar formalism and methods of grammar
writing.

9.2.4 Constraint Satisfaction Problems

Many interesting problems can be formulated as constraint satisfaction problems
(CSP) (Russell and Norvig, 2009, chapter 6). For a CSP, one targets to find
an assignment of a number of variables that respect some given constraints.
CSPs are classified depending on the domains of the variables, and the kinds
of constraints that are allowed.

If an objective function is added to a CSP to add a judgment of optimality,
we talk of a constraint optimization problem (COP) instead. In this chapter
we formulate our problem based on Boolean variables in the constraints, but
require integer operations in the objective functions. An objective function is
the function whose value has to be maximized or minimized while solving the
constraints.

130
CHAPTER 9. PAPER V: LEARNING DOMAIN-SPECIFIC GRAMMARS FROM A SMALL

NUMBER OF EXAMPLES

We use the IBM ILOG CPLEX Optimization Studio2 to find solutions to
this integer linear programming (ILP) restricted to 0/1 integers. Other solvers
such as the free and open source solver GLPK (GNU Linear Programming
Kit)3 can be used as well, but, currently the free alternatives suffer from larger
performance issues.

9.3 Learning a Subgrammar
In this section we will describe the task and the problem to be solved. We start
from a large, expressive, but over-generating, resource grammar and a small
set of example sentences. From this input we want to infer a subgrammar that
covers the examples and is optimal with respect to some objective function. One
possible objective function would be, e.g., to reduce the number of syntactic
analyses per sentence.

9.3.1 Subgrammar Extraction by Tree Selection
We assume that we already have a parser for the resource grammar that returns
all possible parse trees for the example sentence. That means we can start from
a set of trees for each sentence. From the syntax trees we can extract the list of
syntactic functions involved (Definition 9.3.1). The grammar we want to learn
still has to be able to cover all these sentences and should be optimal according
to some optimality criterion. We formulate our problem in Definition 9.3.3.

Definition 9.3.1 (Flattened Abstract Syntax Tree). Given an abstract syntax
tree T , we can define a flattened representation as the set

Tflat = {n | n : T is a node in the abstract syntax tree}

The resulting representation loses all structural and type information but is
sufficient for our purposes (see Lemma 1 in Section 9.3.2).

Definition 9.3.2 (Subgrammar). Given a many-sorted algebra with signature
Σ = 〈S, F 〉, a subgrammar is a many-sorted algebra given by the signature
Σ′ = 〈S′, F ′〉 with S′ ⊆ S, F ′ ⊆ F and for all f ∈ F ′ : typeΣ′ = typeΣ =
(C1, . . . , Cn)

Definition 9.3.3 (Subgrammar Learning Problem).

• Given: F = {F1, . . . , Fn}, a set of forests where each forest Fk =
{Tk1, ..., Tktk}, tk is the number of trees in Fk, and each forest Fk is a
syntactic representation of the example sentence sk.

• Problem: select at least one Tkik from each Fk, while minimizing the
objective function.

2http://www.cplex.com/
3https://www.gnu.org/software/glpk/

http://www.cplex.com/
https://www.gnu.org/software/glpk/

9.3. LEARNING A SUBGRAMMAR 131

Possible objective functions for our problem include:

rules the number of rules in the resulting grammar (i.e., reducing the grammar
size);

trees the number of all initial parse trees Tki that are, intended or not, valid
in the resulting grammar (i.e., reducing the syntactic ambiguity);

rules+trees the sum of rules and trees;

weighted a modification of rules+trees where each rule is weighted by the
number of occurrences in all Fk.

The problem we describe here is an instance of a set covering problem. A
related problem is the Hitting Set problem (Garey and Johnson, 1979, section
A3.1), which is NP-complete (Karp, 1972). Since our problem is a generalization
of the Hitting Set problem, it is NP-complete as well.

parse

extract
grammar

S1
...
Sn

GR

T11 . . . T1t1
...

Tn1 . . . Tntn

CSP

G

Figure 9.4: The outline of our grammar learning system

9.3.2 Modeling Subgrammar Extraction as a Constraint
Problem

Even though there exist other solutions to the related class of set covering
problems, a natural approach to this problem is to model it as a constraint
satisfaction problem.

An outline of the system architecture is shown in Figure 9.4. Given the
set of trees for each sentence, there are various possible ways to model the
problem, depending on the choice of the atomic units we want to represent by
the logic variables. The logic variables can encode subtrees of various sizes,
ranging from subtrees of size 1, i.e., single nodes or syntactic functions, to
subtrees of arbitrarily larger sizes. There are also different ways to split a tree
into these larger subtrees. In the following, we use subtrees of size 1, but see
Section 9.9 for an extension to larger subtrees.

As a result, we can represent an abstract syntax tree Tki as the set of labels
in the tree, Tflatki

= {r1, . . . rn} (Definition 9.3.1). This results in a loss of
structural information but does not have any negative effect on the outcome of

132
CHAPTER 9. PAPER V: LEARNING DOMAIN-SPECIFIC GRAMMARS FROM A SMALL

NUMBER OF EXAMPLES

our approach. Another possible representation would be multi-sets, but it can
be easily shown that this would not result in any improvement (Lemma 1).

An example can be seen in Figures 9.5–9.6. We start with Figure 9.5 and
go from left to right, starting with the sentences. Each sentence results in
one or several syntax trees, which than can be represented in a flattened form
(Definition 9.3.1).

Lemma 1. For an abstract syntax tree T , when encoding it as a conjunction
of variables representing rules, the result is the same when flattening according
to Definition 9.3.1 using a set or when encoding it as a multi-set instead.

Proof.

• In a disjunction of variables, variables can be reordered and repeating
variables can be eliminated, i.e., x1 ∨ x2 ≡ x2 ∨ x1 and x ∨ x ≡ x.

• When translating a multi-set into a disjunction, variables for rules that
occur several times can be eliminated.

• The resulting formula is equivalent to the translation of the set represen-
tation.

The resulting constrains can be seen in Figure 9.6. We have variables for
each sentence, each tree and all the syntax rules occurring in the trees. First
we enforce that all sentences have to be covered, then we describe for each
sentence what trees have to be covered and finally for each tree, if it should be
covered, what rules have to be covered.

The solution to this problem gives rise to a new grammar, which, following
the definition of our subgrammar learning problem (Definition 9.3.3), also
covers all examples. Lemma 2 shows that the resulting grammar is again a
many-sorted algebra and according to Lemma 3 it is also valid subgrammar of
the original grammar following Definition 9.3.2.

Lemma 2. From the solution to the CSP and the original grammar GR

(defined by ΣGR
), a new grammar G, i.e., a new many-sorted algebra ΣG, can

be constructed

Proof. The CSP solution is the union of the sets of variables with value 1 for
sentences (S), trees (T) and rules (R). We are only interested in the set R
representing the rules included in the solution.
The new grammar has the signature ΣG = 〈SG, FG〉, where:
(1) The set of sorts can be defined as

SG =
⋃
r∈R

{C1, . . . , Cn | typeGR
(r) = (C1, . . . , Cn)}

(2) The set of functions can be simply defined as FG = R.
(3) The typing function is defined as typeG = typeGR

�FG
, i.e. the restriction

of the original typing function typeGR
to the set FG.

9.3. LEARNING A SUBGRAMMAR 133

S1

S2

...
(a) Sentences

T11 =

T12 =

T21 =

...

r0

r1 r2

r3 r4

r0

r5 r3

r1 r4

r0

r5 r6

r7 r8

(b) Trees

T11 = {r0, r1, r2, r3, r4}

T12 = {r0, r5, r3, r1, r4}

T21 = {r0, r5, r6, r7, r8}

...
(c) Flattened representations

Figure 9.5: Sentences and tree representations

All sentences have to be covered:
S1 ∧ S2 ∧ . . .

At least one tree per sentence has to be covered:
S1 → T11 ∨ T12

S2 → T21

. . .

All rules in a tree have to be covered:
T11 → r0 ∧ r1 ∧ r2 ∧ r3 ∧ r4

T12 → r0 ∧ r5 ∧ r3 ∧ r1 ∧ r4

T21 → r0 ∧ r5 ∧ r6 ∧ r7 ∧ r8

. . .

Figure 9.6: Encoding of Figure 9.5 as logical constraints

134
CHAPTER 9. PAPER V: LEARNING DOMAIN-SPECIFIC GRAMMARS FROM A SMALL

NUMBER OF EXAMPLES

Lemma 3. The new grammar G described by the signature ΣG is a subgrammar
of the original grammar GR given by the signature ΣGR

Proof. By definition, G is a subgrammar of GR if the following holds:

FG ⊆ FGR
By definition of FG in Lemma 2 (2) and the definition of the learning

problem (Definition 9.3.3) and abstract syntax trees (Definition 9.2.2)

SG ⊆ SGR
By definition of SG in Lemma 2 (1) and the definition of the typing

function on GR, typeGR
: F 7−→ SG ∗ ×SG (Definition 9.2.1)

∀f ∈ FG : typeG(f) = typeGR
(f) By definition of typeG(f) and function

restriction

laula laulu
sing a song
PhrUtt NoPConj (UttImpSg PPos (ImpVP (ComplSlash (SlashV2a sing_V2)

(DetCN (DetQuant IndefArt NumSg) (UseN song_N))))) NoVoc

laulakaa laulu
sing a song
PhrUtt NoPConj (UttImpPl PPos (ImpVP (ComplSlash (SlashV2a sing_V2)

(DetCN (DetQuant IndefArt NumSg) (UseN song_N))))) NoVoc
...
minä haluan laulaa laulun suihkussa
I want to sing a song in the shower
PhrUtt NoPConj (UttS (UseCl (TTAnt TPres ASimul) PPos (PredVP

(UsePron i_Pron) (ComplVV want_2_VV (AdvVP (ComplSlash
(SlashV2a sing_V2) (DetCN (DetQuant IndefArt NumSg) (UseN song_N)))
(PrepNP in_Prep (DetCN (DetQuant DefArt NumSg) (UseN shower_N)))))))) NoVoc

Figure 9.7: Excerpt from the Finnish treebank used in the “Comparing-Against-
Treebank” experiment. The Finnish example is followed by the English trans-
lation and the abstract syntax tree. Sources of (morpho)syntactic ambiguity
are highlighted.

9.4 Bilingual Grammar Learning
If our example sentences are translated into another language, and the resource
grammar happens to be bi- or multilingual4, we can use that knowledge to
improve the learning results.

This can be relevant because various languages express different features
explicitly. As an example, consider Figure 9.7: Finnish does not express definite
or indefinite articles, so laula laulu can be translated to both sing a song and
sing the song. On the other hand, the verb sing in the English imperative phrase
sing a song is morphosyntactically ambiguous – it can be singular or plural,

4The same abstract grammar is used to describe multiple languages in parallel

9.5. IMPLEMENTATION 135

while Finnish makes the distinction into laula laulu (singular) and laulakaa
laulu (plural). This example shows how English can be used to disambiguate
Finnish and vice versa.

For each sentence pair (Si, S
′
i), we parse each sentence separately using the

resource grammar into the forests Fi = {Ti1 . . . Titi} and F ′
i = {T ′

i1 . . . T
′
it′i
}.

We then only keep the trees that occur in both forests, i.e., Fi ∩ F ′
i . These

filtered tree sets are translated into logical formulas, just as for monolingual
learning.

The intersection of the trees selects the (morpho)syntactically disambiguated
reading. The disambiguation makes the constraint problem smaller and the
extracted grammar more likely to be the intended one.

9.5 Implementation
We have implemented the system we outlined in Figure 9.4 and the previous
section as well as all aspects of the following evaluation and extensions. The
implementation is done in Haskell and released as open source.5 As constraint
solvers both GLPK and, if available, CPLEX can be used.

The system can be treated as a black box that takes a set of sentences
S1 . . . Sn as an input and produces a grammar G as output, doing so by relying
on a resource grammar (labeled GR).

First the sentences are parsed using the resource grammar GR and the
syntax trees translated into logical formulas, in the way described in Section
9.3.2. The logical formulas are then translated into ILP constraints and handed
over to the constraint solver, which returns a list of rule labels that form
the basis for the new restricted grammar G. The output of the solver is
influenced by the choice of the objective function (candidates are described in
Section 9.3.1).

The translation between logical formulas and linear inequalities is well
established and an example can be seen in Figure 9.8. Conjunctions and
disjunctions are converted into sums. The direction of the inequality as well
as the multiplication constant are chosen accordingly, depending on if it is an
implication, a conjunction or a disjunction.

In fact, the solver does not necessarily only return one solution. In case of
several solutions, they are ordered by the objective value. Choosing the one
with the best value is a safe choice even though there might be a solution with
a slightly worse score that actually performs better on the intended task.

5https://github.com/MUSTE-Project/subgrammar-extraction

https://github.com/MUSTE-Project/subgrammar-extraction

136
CHAPTER 9. PAPER V: LEARNING DOMAIN-SPECIFIC GRAMMARS FROM A SMALL

NUMBER OF EXAMPLES

All sentences have to be covered:
S1 ∧ S2 ∧ · · · ∧ Sn

Each sentence has at least one tree:
S1 → T11 ∨ T12

S2 → T21

. . .

All rules in a tree have to be covered:
T11 → r0 ∧ r1 ∧ r2 ∧ r3 ∧ r4

T12 → r0 ∧ r5 ∧ r3 ∧ r1 ∧ r4

T21 → r0 ∧ r5 ∧ r6 ∧ r7 ∧ r8

. . .

(a) Logical formulas

All sentences have to be covered:
n ≤ S1 + S2 + . . . Sn

Each sentence has at least one tree:
S1 ≤ T11 + T12

S2 ≤ T21

. . .

All rules in a tree have to be covered:
5× T11 ≤ r0 + r1 + r2 + r3 + r4

5× T12 ≤ r0 + r5 + r3 + r1 + r4

5× T21 ≤ r0 + r5 + r6 + r7 + r8

. . .

(b) ILP constraints

Figure 9.8: Translation between logical formulas and ILP constraints

9.6 Evaluation
Related literature (D’Ulizia, Ferri, and Grifoni, 2011) suggests several measures
for the performance of grammar inference algorithms, most prominently the
methods “Looks-Good-To-Me”, “Rebuilding-Known-Grammar” and “Compare-
Against-Treebank”. Our inferred grammars passed the informal “Looks-Good-
To-Me” test, so we designed two experiments to demonstrate the learning
capabilities of our approach following the other two methods.

9.6.1 Rebuilding a Known Grammar

G0

generate
sentences

S1
...
Sn

compare
grammars

GR

Learning
component

G

Figure 9.9: Setup for an evaluation by rebuilding a known grammar G0

The evaluation process is shown in Figure 9.9. It is based on the learning
component (Figure 9.4), which is highlighted. To evaluate our technique in
a quantitative way we start with two grammars GR and G0, where G0 is a
subgrammar of GR. We use G0 to generate random example sentences S1, …,

9.6. EVALUATION 137

Sn. These examples are then used to learn a new grammar G as described
in Section 9.5. The aim of the experiment is to see how similar the inferred
grammar G is to the original grammar G0. To measure this similarity, we
compute precision and recall in the following way, where FG0 are the rules of
the original grammar and FG the rules of the inferred grammar:

Precision =
|FG0 ∩ FF|

|FG|
Recall = |FG0 ∩ FG|

|FG0 |
We can analyze the learning process depending on, e.g., the number of examples,
the size of the examples and the language involved.

We conducted this experiment for Finnish, German, Swedish, Spanish and
English. For each of these languages we used the whole GF RGL as the resource
grammar GR and a small subset containing 24 syntactic and 47 lexical rules
as our known grammar G0 (Figure 9.10).

1 signature ΣExample ≡
2 sorts
3 A, Adv, Ant, AP, Cl, Comp, CN, Conj, CN, Det, ListNP,
4 N, N2, Num, PN, Prep, Pron, Quant, S, Temp, Tense,
5 Utt, V, V2, VA, VP, VPSlash
6 functions
7 UseN : N → CN
8 UseN2 : N2 → CN
9 AdjCN : AP, CN → CN

10 UsePN : PN → NP
11 UsePron : Pron → NP
12 DetCN : Det, CN → NP
13 AdvNP : NP, Adv → NP
14 ConjNP : Conj, ListNP → NP
15 BaseNP : NP, NP → ListNP
16 PositA : A → AP
17 PrepNP : Prep, NP → Adv
18 UseV : V → VP
19 ComplSlash : VPSlash , NP → VP
20 SlashV2a : V2 → VPSlash
21 ComplVA : VA, AP → VP
22 AdvVP : VP, Adv → VP
23 PredVP : NP, VP → Cl
24 UseCl : Temp, Pol, Cl → S
25 UttS : S → Utt
26 AdvS : Adv, S → S
27 UseComp : Comp → VP
28 CompAP : AP → Comp
29 TTAnt : Tense, Ant → Temp
30 DetQuant : Quant, Num → Det
31 endsignature

Figure 9.10: Signature of many-sorted algebra used as G0

We tested the process with an increasing number of random example
sentences (from 1 to 20), an increasing maximum depth of the generated syntax
trees (from 6 to 10), five languages (Finnish, German, Spanish, Swedish and
English), and our four different objective functions from Section 9.3.1.

138
CHAPTER 9. PAPER V: LEARNING DOMAIN-SPECIFIC GRAMMARS FROM A SMALL

NUMBER OF EXAMPLES

9.6.2 Comparing Against a Treebank
Our second approach to evaluate our grammar learning technique has a more
manual and qualitative focus, and is depicted in Figure 9.11 (again with the
highlighted learning component). Instead of starting from a grammar which
we want to rebuild, we start from a treebank (S1, T1), …, (Sn, Tn), i.e., a set of
example sentences in a language and one gold-standard tree for each sentence.

(S1, T1)
...

(Sn, Tn)

T1
...
Tn

compare
trees

T ′
11…T ′

1t1
...

T ′
n1…T ′

ntn

S1
...
Sn GR

Learning
component

parse
sentences G

Figure 9.11: Setup for an evaluation by comparing the learned grammar to a
treebank

We use the plain sentences S1, …, Sn from the treebank to learn a new
grammar G, using the GF RGL, extended with the required lexicon, as the
resource grammar GR. Then the system parses the sentences with the resulting
grammar G, and compares the resulting trees with the original trees in our
gold standard. If the original tree Ti for sentence Si is among the parsed trees
T ′
i1, …, T ′

in, it is reported as a success.
If the gold standard tree is not covered, we could use a more fine-grained

similarity score, such as labeled attachment score (LAS) or tree edit distance.
However, because of the limited size of the treebanks we decided against this
evaluation measure.

The data we used for testing the grammar learning consists of hand-crafted
treebanks for the following languages: Finnish, German, Swedish and Spanish
(see Table 9.1 for statistics and Listing 9.7 for a fragment of the Finnish
treebank). We exclude English here because we use it as the second language
in bilingual learning on the treebank in the next section.

9.7. RESULTS 139

9.6.3 Comparing Against a Bilingual Treebank
Our final experiment is a repetition of the “Compare-Against-Treebank” exper-
iment, but using a bilingual treebank instead of a monolingual one.

The treebanks we created contain English translations of all sentences. This
means we have access to four bilingual treebanks Finnish-English, Spanish-
English, Swedish-English and German-English. We used the bilingual learning
component described in Section 9.4, using the GF RGL which is a multi-lingual
resource grammar covering all these languages.

9.7 Results
We conducted the experiments described in the previous section and got very
promising results. In this section we will discuss the results in detail.

9.7.1 Results: Rebuilding a Known Grammar
We ran the first experiment, described in Section 9.6.1, and a selection of the
results can be seen in Figures 9.12–9.14. Out of the many possible experiments
(5 languages, 4 objective functions and 5 different tree depths for generating
examples) we present 3 representative samples:

• the same objective function and tree depth with various languages,

• the same language and tree depth with various objective functions, and

• the same language and objective function with various tree depths.

We report precision and recall for a sequence of experiments, where for each
experiment we generated sets of random sentences with increasing size.

All three graphs (Figure 9.12, 9.13 and 9.14) resemble typical learning curves
where the precision stays mostly stable while the recall rises strongly in the
beginning and afterwards approaches a more or less stable level. The precision
rises slightly between 1 and 5 input sentences. The recall remains almost
constant after input of about 5 sentences. With larger input the precision
starts to drop slightly when the system learns additional rules that are not
part of the original grammar. These curves are pretty much stable across all
languages (see Figure 9.12), objective functions (see Figure 9.13) and maximum
tree depth used in sentence generation (see Figure 9.14), and show that we get
the best results with about 10 examples.

One exception can be seen in Figure 9.14. With a maximum tree depth of
5 the system can only achieve a recall of about 0.7, which means that for this
tree depth it does not encounter all grammar rules.

These results confirm that our method is very general and provides good
results, especially for really small training sets of only a few to a few dozen
sentences. By starting from a linguistically sound source grammar, which our
learning technique recovers by extracting a subgrammar, we can show that the
learned grammar is sound in a similar way.

140
CHAPTER 9. PAPER V: LEARNING DOMAIN-SPECIFIC GRAMMARS FROM A SMALL

NUMBER OF EXAMPLES

Figure 9.12: Results for objective function rules, maximum tree depth 9 and
various languages

Figure 9.13: Results for Finnish, maximum tree depth 9 and various objective
functions

Figure 9.14: Results for English with objective function rules and various
generation depths

9.7. RESULTS 141

9.7.2 Results: Comparing Against a Treebank
We used the treebanks and the process described in Section 9.6.2 to further
evaluate our learning method. Table 9.1 shows the results of running our
experiment on monolingual and bilingual treebanks of four different languages,
and with two objective functions, rules+trees and weighted. The table
columns are:

Size the number of sentences in the treebank

Accuracy the accuracy, meaning the percentage of sentences where the correct
tree is among the parse trees for the new grammar

Ambig. the syntactic ambiguity, i.e., the average number of parse trees per
sentence

The system can cover all the sentences of the treebank with our learned grammar
and, as the table shows, in most cases the results include the gold standard
tree. We inspected more closely the sentences where the grammar fails to find
the gold standard tree, and found that the trees usually differ only slightly, so
if we used attachment scores instead we would get close to 100% accuracy in
every case.

A clear exception is the case of the monolingual Finnish treebank. When
we use the rules+trees objective function, we have serious problems learning
the correct grammar, with only 1 correct sentence out of 22. This is due to
a high level of morphosyntactic ambiguity among Finnish word forms. If we
instead use the weighted objective function, we get a decent accuracy, but
the grammar becomes highly syntactic ambiguous with 115 parse trees per
sentence on average. The second part of the experiment, using a bilingual
treebank, solves most of the problems involving Finnish while also improving
results for other languages.

9.7.3 Results: Using Bilingual Treebanks
When we repeated the previous experiment using translation pairs as described
in Section 9.6.3 we got very similar results for most of the languages, as
can be seen on the right side of Table 9.1. The main difference is that the
resulting grammars are more compact for the weighted objective function,
resulting in fewer analyses. Notably, for Finnish the average number of trees
per sentence drops by one order of magnitude. This is because the high level of
syntactic ambiguity of Finnish sentences is reduced when disambiguated using
the English translations.

142
CHAPTER 9. PAPER V: LEARNING DOMAIN-SPECIFIC GRAMMARS FROM A SMALL

NUMBER OF EXAMPLES

rules+trees weighted
Size Accuracy Ambig. Accuracy Ambig.

Finnish 22 5% 1.0 91% 115
German 16 75% 1.1 100% 2.0
Swedish 10 100% 1.1 100% 2.8
Spanish 13 100% 1.2 92% 3.7

(a) Monolingual treebank

rules+trees weighted
Size Accuracy Ambig. Accuracy Ambig.

Finnish 22 86% 4.9 96% 8.7
German 16 94% 1.1 100% 1.5
Swedish 10 100% 1.1 100% 1.2
Spanish 13 100% 1.2 100% 2.3

(b) Bilinguallingual treebank

Table 9.1: Results for comparing against a treebank. Accuracy means the
percentage of sentences where the correct tree is found, and Ambig(uity) means
the average number of parse trees per sentence.

9.8 Extension 1: Negative Examples
The first addition to the original grammar learning method, to which we
dedicated the previous sections, is to add negative examples to the learning
process. Negative examples can speed up the learning process for certain
syntactic constructions by narrowing down the grammar, e.g., by using positive
and negative examples that are minimal pairs concerning the intended linguistic
phenomenon.

To allow for negative examples, i.e., example sentences that should not be
parsable in the new grammar, we have to add additional constraints. These
new constraints have to express that, for each of the syntax trees we get from
the negative example sentences, at least one rule, of those involved in the
parse of the negative example, has to be excluded in the learned grammar. Or
conversely, that not all rules can be included. As a logic formula, this results
in the negation of the conjunction of all rules for a tree, i.e.,

¬r1 ∨ ¬r2 ∨ · · · ∨ ¬rn ≡ ¬(r1 ∧ r2 ∧ · · · ∧ rn)

This simple addition allows negative examples in the basic constraint optimiza-
tion problem described in Section 9.3.2. We will demonstrate in two examples
how this feature can be used.

9.8. EXTENSION 1: NEGATIVE EXAMPLES 143

9.8.1 Examples

We can demonstrate how positive and negative examples can be used together,
in general, by having a look at both formal languages and fragments of natural
languages.6

9.8.1.1 Dyck Language

The Dyck language is a language of balanced opening and closing parentheses,

LDyck = {w ∈ V ∗ | Each prefix of w contains no more)’s than (’s
and there are exactly as many (’s as)’s in w}

with V = {(,)}7 In our example we extend this to two kinds of bracketing
symbols, parenthesis “()”, and brackets “[]”, i.e., VDyck = {(,), [,]}. The
language LBracket = {w | w ∈ V ∗

Dyck}, the language of all strings over the
alphabet VDyck, can be expressed with the grammar in Figure 9.15. The
semantics of the rules is the following:

Empty introduces an empty string

LeftP (or RightP) introduces a single left (or right) parenthesis

LeftS (or RightS) introduces a single left (or right) square bracket

BothP (or BothS) wraps a balanced pair of parentheses (or square brackets)
around a string

Conc concatenates a pair of strings

Learning the Dyck language of balanced parentheses from the grammar
in Figure 9.15, using examples, can be either quite trivial or pretty tricky.
With the objective function minimizing the number of rules, the grammar
learning technique immediately outputs the intended grammar from just the
positive examples “()”, “[]” and “() ()”. However, with the objective function
minimizing the number of parse trees the technique learns a wrong grammar,
allowing unbalanced parentheses.

By adding the negative examples “(]” and “[)” as well as “(” and “[” we
solve the issue and the learning component provides the correct grammar.
The resulting grammar in Figure 9.16 is a subset of the original grammar in
Figure 9.15.

This example demonstrates how sometimes adding negative examples can
help us learn a grammar in a quick and immediate way.

6The examples are in English but the problems we approach are language independent.
7Usually the alphabet is denoted with the letter Σ. to avoid naming conflicts with

signatures, we use the letter V instead.

144
CHAPTER 9. PAPER V: LEARNING DOMAIN-SPECIFIC GRAMMARS FROM A SMALL

NUMBER OF EXAMPLES

9.8.1.2 Adverbials

In the previous section we showed how negative examples can help to learn
artificial formal languages. The next step is to show that the same applies to
natural languages.

To show how quickly the proposed technique of grammar learning can learn
a desired subgrammar, we have to start from a wide-coverage grammar. We
use the full GF RGL again.

One of the problems that can be solved with negative examples is the
handling of adverbials in the RGL. A relevant fragment of the RGL is shown
in Figure 9.17. Various syntactic constructions such as prepositional phrases,
created by the function PrepNP, are assigned the syntactic category Adv. Fur-
thermore, almost every part of speech can be modified by adverbials, such as
noun phrases using AdvNP and verb phrases using AdvVP

This can lead to syntactic ambiguity when an adverb or adverbial, potentially
modifying two different parts of speech, appears in the same position of the
sentence. Despite human intuition, the sentence the boy reads a book today is,
according to the syntactic functions in the RGL, syntactically ambiguous and
has two different readings (see Figure 9.18).

One solution to the problem would be to add more positive examples to
learn only one of the alternatives. Another solution is to add a negative example
that simply rules out one of the readings.

In this case such a negative example could be ∗a book today arrives. It only
has the undesired reading of attaching the adverb to the noun phrase. Together
with the positive example it can be used to disambiguate the readings and only
the intended first reading where the adverb modifies the verb phrase remains.

In a similar way simple cases of syntactic ambiguity can be resolved using
negative examples. For more advanced cases, e.g., to distinguish between lexical
adverbs as adverbials and prepositional phrases in the same context, we need
other mechanisms (see, e.g., Section 9.9).

9.8.2 Iterative Grammar Learning Process
The inclusion of negative examples allows us to create a human-centric and
example-based grammar learning and refinement system.

Starting from a wide-coverage grammar, the user can give a set of example
sentences. From these examples a first version of the domain-specific grammar
can be learned. This domain-specific grammar will then be extended and
refined iteratively.

The user can either give more examples to extend the grammar or ask
the system for example sentences. These examples can either be marked as
acceptable or as erroneous. When a sentence is marked as wrong, it is added as
a negative example and the learning process starts again with the new examples.
This way negative examples can be used to step-wise refine the grammar.

Because this process is purely example-based, no knowledge about grammar
engineering is required. This means that a wide range of people can use the
system, not only linguists. This is especially relevant in use-cases where the

9.8. EXTENSION 1: NEGATIVE EXAMPLES 145

1 signature ΣDyck
2 sort Dyck
3 functions
4 Empty : Dyck
5 LeftP, RightP, LeftS, RightS : → Dyck
6 BothP, BothS : Dyck → Dyck
7 Conc : Dyck, Dyck → Dyck
8 endsignature

Figure 9.15: Signature of the over-generating Dyck language

1 signature ΣDyck' ≡
2 sort Dyck
3 functions
4 Empty : → Dyck
5 BothP, BothS : Dyck → Dyck
6 Conc : Dyck, Dyck → Dyck
7 endsignature

Figure 9.16: Signature of the resulting grammar to cover the Dyck language

1 signature ΣRGL ≡
2 sorts
3 Adv, NP, Prep, VP, …
4 functions
5 AdvNP : NP, Adv → NP
6 AdvVP : VP, Adv → VP
7 PrepNP : Prep, NP → Adv
8 …
9 endsignature

Figure 9.17: Signature of a fragment of the GF RGL concerning adverbials

146
CHAPTER 9. PAPER V: LEARNING DOMAIN-SPECIFIC GRAMMARS FROM A SMALL

NUMBER OF EXAMPLES

PredVP

DetCN

Def
Sg

the

UseN

boy_N

boy

AdvVP

ComplSlash : VP

SlashV2a

read_V2

reads

DetCN

Indef
Sg

a

UseN

book_N

book

today_Adv

today

(a) The adverb attached to the verb
phrase

PredVP

DetCN

Def
Sg

the

UseN

boy_N

boy

ComplSlash

SlashV2a

read_V2

reads

AdvNP

DetCN : NP

Indef
Sg

a

UseN

book_N

book

today_Adv

today

(b) The adverb attached to the object
noun phrase

Figure 9.18: The two syntactic analyses according to the RGL for the boy reads
a book today

people who are involved in creating grammars are specialists in other fields, such
as teachers in a language learning setup or healthcare professionals building
communication support in their field.

9.9 Extension 2: Extracting Subtrees as Basic
Units

The second modification is the generalization from syntactic rules as the atomic
units to subtrees. Together with a method to merge syntactic rules into new,
more specific rules, this allows to address some shortcomings of the technique
presented in the previous sections. The idea behind this extension is similar
to the approach used by Bod Bod (1992) for data-oriented parsing (DOP). In
DOP, the use of larger subtrees resulted in significantly better learning results
(Bod and Scha, 1997).

To be able to use subtrees as basic units, we need to be able to create
a constraint satisfaction problem of a similar structure as we used before to
formulate our original constraint optimization problem, i.e., similar to a many-
sorted algebra (see Section 9.2.2). Instead of converting the syntax trees into
lists of syntax rules to be converted into logical variables, we can split the
syntax trees into all possible subtrees up to a certain size. The splitting happens
in a way that we get a list of splits and each split contains only subtrees that
can be reassembled to the original tree. This is necessary to guarantee that
the inferred grammar can still cover all the example sentences (Figure 9.19).

Because our grammars are equivalent to many-sorted algebras and our
syntax rules are similar to functions in mathematics, we can combine several
of them to a new function using function composition. For example, if we have

9.9. EXTENSION 2: EXTRACTING SUBTREES AS BASIC UNITS 147

the two rules PredVP : NP, VP → Cl and UseV : V → VP. we can combine
them into a new rule PredVP#?#UseV : NP, V → Cl. The resulting structure
is again a many-sorted algebra.

The main motivation for using subtrees as the basic units is that when
merging subtrees into new grammar rules, we can create more precise and
specific grammars than the wide-coverage grammar. This also means that we
step away from pure subgrammar extraction into creating more independent
grammars.

Having the splits into subtrees, we can translate the splits into logical
variables. The procedure follows along the same lines as it worked for syntax
rules. However, one additional level has to be introduced. Previously, to cover
a tree, all its rules had to be covered. Now we have the additional level of
splits. That means, to cover a tree, at least one of the splits has to be covered,
and to cover a split, all its subtrees have to be covered. So for the example in
Figure 9.19, to cover the tree, we end up with the following constraint involving
the splits:

(PredVP ∧ DetCN ∧ UseV ∧ UseN ∧ theSg_Det ∧ man_N ∧ sleep_V)
∨ (PredVP#DetCN#? ∧ theSg_Det ∧ UseN#man_N ∧ UseV#sleep_V)
∨ (PredVP#?#UseV ∧ DetCN#theSg_Det#? ∧ UseN#man_N ∧ sleep_V)
∨ . . .

The labels for the subtrees are depth-first concatenations of the subtree nodes
using the delimiter “#” between the function names, and the question mark
character “?” to mark the nodes where the tree has been split. After solving
the constraint problem we can either recover the rules from the subtrees in the
solution or we can merge the subtrees into new grammar rules.

9.9.1 Handling Combinatorial Explosion
The previous section shows that we can easily extend the basic technique to
include subtrees or arbitrary size. However, a major challenge is the exponential
explosion. If we include all splits into subtrees up to the maximum size of 2
for the tree in Figure 9.19, we already end up with 19 splits and a total of 133
subtrees and if we include subtrees up to a size of 3 we end up with 40 splits
and 280 subtrees.

One way to tackle the problem is to limit the number of subtrees with size
larger than 1 per split. As we have just seen, if we allow any split into subtrees
up to a maximum size, we get a large number of splits, quickly growing with
the maximum size of subtrees. When limiting the number of subtrees we can
significantly reduce this number of splits. For example, if we would allow at
most one subtree of a size up to 2, for the example in Figure 9.19, the first split
into only subtrees of size 1 would be allowed. The other two splits given as an
example would be, however, disallowed. After starting with a subtree of size 2,
only subtrees of size 1 would be allowed for the rest of the split. This solves
some of the combinatorial problems but leads to the introduction of additional
parameters that influence the learning process.

148
CHAPTER 9. PAPER V: LEARNING DOMAIN-SPECIFIC GRAMMARS FROM A SMALL

NUMBER OF EXAMPLES

PredVP

DetCN

theSg_Det

the

UseN

man_N

man

UseV

sleep_V

sleeps

(a) Original tree{
PredVP , DetCN , UseN , UseV , theSg_Det, sleep_V, man_N

}

{
PredVP

DetCN

, theSg_Det, UseN

man_N

, UseV

sleep_V

}

{
PredVP

UseV

, DetCN

theSg_Det

, UseN

man_N

, sleep_V

}

...

(b) Splitting into subtrees

Figure 9.19: Splitting into subtrees for the example tree (Figure 9.3)

9.9. EXTENSION 2: EXTRACTING SUBTREES AS BASIC UNITS 149

9.9.2 Examples
With the addition of using subtrees to the learning process, we can revisit
the Dyck language and the handling of adverbials. We show how the learning
method profits from using subtrees and merging rules to solve the problems in
a more powerful and elegant way.

9.9.2.1 Dyck Language

In Section 9.8.1.1 we presented the Dyck language with two types of brackets.
We demonstrated how the Dyck language can be learned using positive and
negative examples. This was possible because of the structure of the grammar
we defined. With a different definition of the base language the previous
technique cannot learn the desired grammar just using positive and negative
examples.

We can define this alternative grammar in Figure 9.20. With this grammar
we cannot just exclude rules to learn the intended language. Instead we need
to merge the wrap rule with either the rules to add parentheses or with the
rules to introduce square brackets.

To learn the grammar we used only positive examples and a moderate
subtree size. The examples involved were just the two strings “[()]” and
“[] ()”, a subtree size of 3 and allowed at most 2 subtrees in each split. To
guarantee for an optimal grammar we used the objective function minimizing
the number of rules. The resulting grammar is shown in Figure 9.21.

9.9.2.2 Adverbials

In a similar way we can return to adverbials. Here a major remaining problem
is the fact that various phrases are mapped onto the syntactic category of
adverbials (Adv). And not all phrases make sense in every position an adverbial
can appear. For example, prepositional phrases can both modify verbs and
nouns. This leads to well-known cases of prepositional phrase (PP) attachment
ambiguity. Sometimes the different readings are equally plausible,8 but usually
there is one preferred reading, which can be inferred from the lexical semantics
of the involved words.

To give an example, the sentence I eat pizza with pineapple is structurally
ambiguous but the meaning is completely clear to a human. The same is true
for the sentence I eat pizza with scissors, even though it would be possible
to put scissors on top of a pizza.9 So the main difference between the two
sentences is more an aspect of semantics. In the first case clearly the noun is
modified by the prepositional phrase while in the second case it is the verb
phrase that is modified.

One potential learning task is to learn a grammar that only allows prepo-
sitional phrases modifying nouns but allowing for regular adverbs modifying
verbs.

8e.g., I saw the building with the telescope has again two syntactic analyses, and each one
has a plausible semantic interpretation

9For some people that would even be as likely as pineapple as a topping.

150
CHAPTER 9. PAPER V: LEARNING DOMAIN-SPECIFIC GRAMMARS FROM A SMALL

NUMBER OF EXAMPLES

We start from the grammar in Figure 9.22, which again is a subset of the
RGL. With this grammar and the correct examples, the technique can learn a
new grammar that disambiguates the attachment ambiguity by allowing only
the modification of noun phrases by prepositional phrases.

To learn the new grammar, we use the first sentence as a positive example
and the second sentence as a negative example. We add additional sentences
to the positive examples to reinforce the prepositional attachment to the noun
and to allow for regular verbs modifying verbs.

The positive examples we use for training are:

• I eat pizza with pineapple

• pizza with pineapple is delicious

• I run today

• I sleep now

• I run

And the only negative example is:

• ∗I eat pizza with scissors

We combine these examples with the following training parameters: max-
imum subtree size of 2 and at most 3 merges per split. As a result we end
up with a new grammar that fulfills our expectation about the prepositional
attachment. The resulting grammar rules are given in Figure 9.23.

The first rule (AdvNP#?#PrepNP) allows prepositional phrases to modify
noun phrases. The subsequent two rules allow the two regular adverbs to
modify verb phrases. This grammar meets our expectation about the behavior
of adverbial. On the other hand it is in some cases overly-specific and in other
cases more general than expected. The second (AdvVP#?#now_Adv) and third
rule (AdvVP#?#today_Adv) could be split to make the grammar more general
and the rules UseN and MassNP could be merged because they are the only two
rules with matching types. These issues could probably be solved by fine-tuning
the parameters. Despite that, this example shows how learning from subtrees
and merging to form new grammar rules can be used to deal with a common
attachment ambiguity problem.

9.9. EXTENSION 2: EXTRACTING SUBTREES AS BASIC UNITS 151

1 signature ΣDyck2 ≡
2 sorts
3 Dyck, Open, Close
4 functions
5 Empty : → Dyck
6 LeftP, LeftS : → Open
7 RightP, RightS : → Close
8 Wrap : Open, Dyck, Close → Dyck
9 Conc : Dyck, → Dyck

10 endsignature

Figure 9.20: Second over-generating grammar for the Dyck language

1 signature ΣDyck2' ≡
2 sort Dyck
3 functions
4 Empty : → Dyck
5 Wrap#LeftP#?#RightP : Dyck → Dyck
6 Wrap#LeftS#?#RightS : Dyck → Dyck
7 Conc : Dyck, Dyck → Dyck
8 endsignature

Figure 9.21: Resulting grammar for the Dyck language

1 signature ΣAdverb ≡
2 sorts
3 A, Adv, AP, Cl, CN, Comp, NP, Prep, Pron, V, V2, VPSlash
4 functions
5 AdvNP : NP, Adv → NP
6 AdvVP : VP, Adv → VP
7 CompAP : AP → Comp
8 ComplSlash : VPSlash , NP → VP
9 MassNP : CN → NP

10 PositA : A → AP
11 PredVP : NP, VP → Cl
12 PrepNP : Prep, NP → Adv
13 SlashV2a : V2 → VPSlash
14 UseComp : Comp → VP
15 UseN : N → CN
16 UsePron : Pron → NP
17 UseV : V → VP
18 delicious_A : → A
19 now_Adv , today_Adv : → Adv
20 cheese_N , pineapple_N , pizza_N , scissors_N : → N
21 with_Prep : → Prep
22 I_Pron : → Pron
23 run_V, sleep_V : → V
24 eat_V2 : → V2
25 endsignature

Figure 9.22: Signature of a RGL fragment exposing PP attachment ambiguity

152
CHAPTER 9. PAPER V: LEARNING DOMAIN-SPECIFIC GRAMMARS FROM A SMALL

NUMBER OF EXAMPLES

1 signature ΣAdverb ≡
2 sorts
3 Adv, AP, Cl, CN, NP, Prep, V2
4 functions
5 AdvNP#?#PrepNP : NP, Prep, NP → NP
6 AdvVP#?#now_Adv , AdvVP#?#today_Adv : VP → VP
7 ComplSlash#SlashV2a : V2, NP → VP
8 MassNP : CN → NP
9 PositA#delicious_A : A → AP

10 PredVP : NP, VP → Cl
11 UseComp#CompAP : AP → VP
12 UseN : N → CN
13 UsePron#I_Pron : → NP
14 UseV#run_V, UseV#sleep_V : V → VP
15 pineapple_N , pizza_N : → N
16 with_Prep : → Prep
17 eat_V2 : → V2
18 endsignature

Figure 9.23: Resulting grammar rules for adverbials including merged rules

9.10 Discussion
In the previous sections we described the technical details of our system.
Furthermore, we describe two extensions of the basic technique. All these
aspects are implemented and can be tested and evaluated. However, the work
described here is only the beginning of an interesting line of research and there
are still topics open for discussion.

Influence and Handling of Parameters

There are a few open issues involving the choice and effect of the parameters
such as subtree size and how to split trees into subtrees. A serious consequence
of starting from the wrong parameters is, that it makes it difficult to learn the
intended grammar in the iterative process sketched above.

Some of the parameters lead to the process becoming too slow to be
feasible. The number of variables involved in the process, especially in the
objective function, slow down the solving of the problem. The objective function
reducing the number of trees is usually unproblematic but the objective function
minimizing the number of rules can lead to serious problems. This is especially
the case when including subtrees because each distinct subtree will be treated
as a separate rule.

Another issue is a consequence of restricting the number of subtrees included
in a split in combination with negative examples. Because positive and negative
examples are treated slightly differently, it can happen, that positive and
negative trees are split differently. This means that not all parts of a negative
example can be used to eliminate solutions.

These observations are not overly surprising. The more complex a system
grows, the more parameters can be tuned. And tuning parameters has a
growing effect on the results. In our case, a way to approach this problem is

9.10. DISCUSSION 153

to start from the most simple system, in our case learning from only positive
examples and only add more features when necessary. Another approach is
to automatically and iteratively increase the parameter values until a suitable
solution can be found.

Handling Larger Problem Sizes

With the basic learning algorithm we did not encounter any performance issues,
even though the problem itself is NP-complete. However, one potential problem
is the number of parse trees involved, which can grow exponentially in the
length of the sentences (Ljunglöf, 2004, p. 7). If we also split the trees into all
possible subtrees, the number grows even more. We currently solve this problem
by limiting the number of subtrees, but there are other ways to approach this
problem as well.

One possible solution is to move away from the formulation of the problem
of grammar learning, as covered in this chapter, in terms of parse trees and
instead refer to the states in the parse chart. The chart has a polynomial size
(Ljunglöf, 2004, p. 87), compared to the exponential growth of the trees, and it
should be possible to translate the chart directly to a complex logical formula
instead of having to go via parse trees.

Another approach is to use a different constraint solving method. Instead of
modeling a constraint optimization problem that requires more effort to solve
we can model it as a plain constraint satisfaction problem such as Boolean
satisfiability (SAT). This saves us the additional effort in solving a more chal-
lenging problem and in translating between logic formulas and ILP constraints,
but we lose the guarantee of an optimal solution. However, there are methods
to approximate optimal solutions using off-the-shelf SAT solvers, e.g., MiniSAT
(Eén and Sörensson, 2003) or SAT+ (Claessen, 2018).

Interaction Between Iterative Process and Merging Rules

Another open question is how exactly the merging of rules can be included in
the iterative grammar generation process. To also take advantage of learning
from subtrees, it is also possible to include, in each learning step, singular
subtrees to occasionally merge rules in cases where the rule-based learning
method is not sufficiently powerful.

How well this works in practice is not yet established. Our intuition is that
merging rules in a meaningful way requires additional user interaction besides
judging positive and negative examples because merging rules could make a
grammar more restrictive than intended and might have to be rolled back.

Multilingual Learning

Finally, a very interesting topic we could only touch on shortly is the influence
of combining languages in bilingual or multilingual learning. In the preliminary
results of the modified “Compare-Against-Treebank” experiment (Section 9.7.2)
and an example from the used treebank (Section 9.4), we could show that
Finnish and English can be paired up in a meaningful way to disambiguate

154
CHAPTER 9. PAPER V: LEARNING DOMAIN-SPECIFIC GRAMMARS FROM A SMALL

NUMBER OF EXAMPLES

features of both languages. However, we did not research the influence of the
choice of languages involved more thoroughly.

Another interesting aspect of pairing languages is when encountering lexical
ambiguity. The same kind of lexical ambiguity can span across languages, e.g.,
bank is ambiguous in many Germanic languages, not always with the same
meanings. But in many cases it is possible to disambiguate the meaning of
words by using translations.

9.11 Conclusion

In this chapter we have shown how it is possible for a computer to learn an
application- or domain-specific grammar from a very limited number of example
sentences. When making use of a large-scale resource grammar, in most cases
only around 10 example sentences are enough to get a suitable domain-specific
grammar.

We evaluated this method in two different ways with good results that
encouraged us to work on the extensions.

Based on the results of the initial method, we also present two modifications.
The first one, including negative examples, gives an easy way for humans to
influence the learned grammar by giving both sentences that should and should
not be included. The second, learning from subtrees and merging rules, allows
for more fine-grained domain-specific grammars.

We demonstrated that the procedure developed by our method can learn
interesting languages or features using even fewer positive and negative example
sentences on two examples involving both formal languages and natural language
phenomena. Already five sentences were often sufficient to achieve the intended
result.

In Section 9.10 we discussed some of the remaining issues of this method.
Notwithstanding, we accomplished to present a framework that can be used
for human-centric, iterative grammar learning for domain- and application-
specific grammars. There is still work left to be done, including performing
more evaluations on different kinds of grammars and example treebanks. But
we hope that this idea can find its uses in areas such as computer-assisted
language learning, domain-specific dialogue systems, computer games, and
more. In our future work, We will especially focus on ways to use this method
in computer-assisted language learning. However, a thorough evaluation of the
suitability of the extracted grammars has to be conducted for each of these
applications and remains as future work.

Furthermore, we plan to explore the use of SAT to model the grammar
learning problem. This should help to avoid performance issues but requires a
redesign of the whole process to approximate an optimal solution.

Finally, we want to include the iterative learning process in a computer-
assisted language learning application and evaluate it thoroughly, both with
students and language teachers.

9.11. CONCLUSION 155

Acknowledgement
We want to thank Krasimir Angelov and Thierry Coquand for pointing us
in the direction of many-sorted algebras as a means of formalizing abstract
grammars.
This chapter is an extended version of the article (Lange and Ljunglöf, 2020)
presented at the Special Session NLPinAI at ICAART 2020.
The work reported in this chapter was supported by the Swedish Research
Council, project 2014-04788 (MUSTE: Multimodal semantic text editing).

156
CHAPTER 9. PAPER V: LEARNING DOMAIN-SPECIFIC GRAMMARS FROM A SMALL

NUMBER OF EXAMPLES

Bibliography

Abolahrar, Elnaz (2011). “Multilingual Grammar-based Language Training:
Computational Methods and Tools”. MA thesis. Gothenburg, Sweden:
Chalmers University of Technology. url: https://hdl.handle.net/
20.500.12380/148140.

Alfter, David and Elena Volodina (2018). “Towards Single Word Lexical Com-
plexity Prediction”. In: Proceedings of the Thirteenth Workshop on Innovative
Use of NLP for Building Educational Applications (BEA 2018). New Orleans,
Louisiana: Association for Computational Linguistics (ACL), pp. 79–88.
doi: 10.18653/v1/W18-0508.

Angelov, Krasimir and Aarne Ranta (2010). “Implementing Controlled Lan-
guages in GF”. In: Proceedings of the 2009 Conference on Controlled Natural
Language (CNL 2009). Marettimo Island, Italy: Springer, pp. 82–101. url:
http://dl.acm.org/citation.cfm?id=1893475.1893482.

Baldi, Philip and Pierluigi Cuzzolin (2009). New perspectives on historical
Latin syntax. 1, Syntax of the sentence. eng. Trends in linguistics. Studies
and monographs, 180.1. Berlin ; New York: Mouton de Gruyter. isbn:
9783110190823.

— (2010a). New perspectives on historical Latin syntax. 2, Constituent Syntax ;
Adverbial Phrases, Adverbs, Mood, Tense. eng. Trends in linguistics. Studies
and monographs, 180.2. Berlin ; New York: Mouton de Gruyter. isbn:
9783110205633.

— (2010b). New perspectives on historical Latin syntax. 3, Constituent Syntax ;
Quantification, Numerals, Possessions, Anaphora. eng. Trends in linguistics.
Studies and monographs, 180.3. Berlin ; New York: Mouton de Gruyter.
isbn: 9783110207545.

— (2011). New perspectives on historical Latin syntax. 4, Complex Sentences,
Grammaticalization, Typology. Trends in linguistics. Studies and mono-
graphs, 180.4. Berlin ; New York: Mouton de Gruyter. isbn: 9783110253405.

Bamman, David and Gregory Crane (2006). “The Design and Use of a Latin
Dependency Treebank”. In: Proceedings of the Fifth International Treebanks
and Linguistic Theories Conference. Ed. by Jan Hajic and Joakim Nivre.
Institute of Formal, Applied Linguistics, Faculty of Mathematics, and
Physics, Charles University. Prag, pp. 67–78. url: http://hdl.handle.
net/10427/42684.

Baños Baños, José M., ed. (2011). Sintaxis del latı́n clásico. Madrid, Spain:
Liceus. isbn: 9788498228441.

157

https://hdl.handle.net/20.500.12380/148140
https://hdl.handle.net/20.500.12380/148140
https://doi.org/10.18653/v1/W18-0508
http://dl.acm.org/citation.cfm?id=1893475.1893482
http://hdl.handle.net/10427/42684
http://hdl.handle.net/10427/42684

158 BIBLIOGRAPHY

Bax, Stephen (2003). “CALL — Past, Present and Future”. In: System 31.1,
pp. 13–28. doi: 10.1016/S0346-251X(02)00071-4.

Bayer, Karl and Josef Lindauer, eds. (1994). Lateinische Grammatik. 2. Edition,
auf der Grundlage der Lateinischen Schulgrammatik von Landgraf-Leitschuh
neu bearbeitete. Bamberg and Munich: C.C. Buchners Verlag, J. Lindauer
Verlag, and R. Oldenburg Verlag.

Bod, Rens (1992). “A Computational Model of Language Performance: Data
Oriented Parsing”. In: Proceedings of the 14th International Conference on
Computational Linguistics (COLING 1992). Nantes, France: Association
for Computational Linguistics (ACL). url: https://www.aclweb.org/
anthology/papers/C/C92/C92-3126/.

Bod, Rens and Remko Scha (1997). “Data-Oriented Language Processing”. In:
Corpus-based Methods in Language and Speech Processing. Ed. by Steve
Young and Gerrit Bloothooft. Text, Speech, and Language Technology 2.
Dordrecht: Springer. Chap. 5, pp. 137–174. doi: 10.1007/978-94-017-
1183-8_5.

Bresnan, Joan (2001). Lexical-Functional Syntax. Blackwell Textbooks in Lin-
guistics. Malden, Massachusetts: Blackwell. isbn: 0631209735.

Bryman, Alan (2012). Social Research Methods. 4th edition. Great Clarendon
Street, Oxford, UK: Oxford University Press.

Caesar, C. Julius (1869). Caesar’s Gallic War. Trans. by W. A. McDevitte
and W. S. Bohn. 1st. Harper’s New Classical Library. New York, NY, USA:
Harper & Brothers.

Chen, Danqi and Christopher D. Manning (2014). “A Fast and Accurate Depen-
dency Parser using Neural Networks”. In: Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP’14). Doha,
Qatar: Association for Computational Linguistics (ACL), pp. 740–750. doi:
10.3115/v1/D14-1082.

Chomsky, Noam (1957). Syntactic Structures. Reprint 2002. Berlin and New
York: Mouton de Gruyter.

Claessen, Koen (2018). SAT+. https://github.com/koengit/satplus.
accessed 25-June-2020.

Clark, Alexander (2000). “Inducing Syntactic Categories by Context Distri-
bution Clustering”. In: Proceedings of the 4th Conference on Computa-
tional Natural Language Learning (CoNNL 2000). Lisbon, Portugal: As-
sociation for Computational Linguistics (ACL), pp. 91–94. url: https:
//www.aclweb.org/anthology/W00-0717/.

— (2001). “Unsupervised Induction of Stochastic Context Free Grammars
with Distributional Clustering”. In: Proceedings of 5th Conference on Com-
putational Natural Language Learning (CoNNL 2001). Toulouse, France:
Association for Computing Machinery (ACM), pp. 105–112. doi: 10.3115/
1117822.1117831.

Clark, Alexander and Shalom Lappin (2010). “Unsupervised Learning and
Grammar Induction”. In: The Handbook of Computational Linguistics and
Natural Language Processing. Ed. by Alexander Clark, Chris Fox, and
Shalom Lappin. Oxford, UK: Wiley-Blackwell. Chap. 8, pp. 197–220. doi:
10.1002/9781444324044.ch8.

https://doi.org/10.1016/S0346-251X(02)00071-4
https://www.aclweb.org/anthology/papers/C/C92/C92-3126/
https://www.aclweb.org/anthology/papers/C/C92/C92-3126/
https://doi.org/10.1007/978-94-017-1183-8_5
https://doi.org/10.1007/978-94-017-1183-8_5
https://doi.org/10.3115/v1/D14-1082
https://github.com/koengit/satplus
https://www.aclweb.org/anthology/W00-0717/
https://www.aclweb.org/anthology/W00-0717/
https://doi.org/10.3115/1117822.1117831
https://doi.org/10.3115/1117822.1117831
https://doi.org/10.1002/9781444324044.ch8

BIBLIOGRAPHY 159

Clark, Alexander and Ryo Yoshinaka (2014). “Distributional Learning of Paral-
lel Multiple Context-free Grammars”. In: Machine Learning 96.1–2, pp. 5–31.
doi: 10.1007/s10994-013-5403-2.

Computer History Museum (2010). PLATO@50: PLATO Computer Learning
System 50th Anniversary. https://www.youtube.com/watch?v=THoxsBw-
UmM. accessed 08-June-2018.

Cormen, Thomas H (2009). Introduction to Algorithms. 3rd edition. The MIT
Press. Cambridge, MA, USA. isbn: 9780262270830.

Crane, Gregory R., ed. (2018). Perseus Digital Library. http://www.perseus.
tufts.edu. accessed 09-June-2018.

Csikszentmihalyi, Mihaly (1990). Flow: The Psychology of Optimal Experience.
New York, NY, USA: Harper & Row.

Curry, Haskell B. (1961). “Some Logical Aspects of Grammatical Structure”.
In: Structure of Language and its Mathematical Aspects. Proceedings of
Symposia in Applied Mathematics. Ed. by Roman Jakobson. Vol. 12. New
York, NY, USA: American Mathematical Society.

D’Ulizia, Arianna, Fernando Ferri, and Patrizia Grifoni (2011). “A Survey
of Grammatical Inference Methods for Natural Language Learning”. In:
Aritifical Intelligence Review 36, pp. 1–27. doi: 10.1007/s10462-010-
9199-1.

DELPH-IN (2020). Deep Linguistic Processing with HPSG (DELPH-IN). http:
//moin.delph-in.net/GrammarCatalogue. accessed 25-June-2020.

Deterding, Sebastian, Dan Dixon, Rilla Khaled, and Lennart Nacke (2011).
“From Game Design Elements to Gamefulness: Defining ’Gamification’”.
In: Proceedings of the 15th International Academic MindTrek Conference:
Envisioning Future Media Environments. Tampere, Finland: Association for
Computing Machinery (ACM), pp. 9–15. doi: 10.1145/2181037.2181040.

Détrez, Grégoire and Aarne Ranta (2012). “Smart Paradigms and the Pre-
dictability and Complexity of Inflectional Morphology”. In: Proceedings
of the 13th Conference of the European Chapter of the Association for
Computational Linguistics (EACL’12). Avignon, France: Association for
Computing Machinery (ACM), pp. 645–653. url: http://dl.acm.org/
citation.cfm?id=2380816.2380895.

Dimitrijevic, Dragana (2017). “Latin Curricula, Attitudes and Achievement:
An Empirical Investigation”. In: Proceedings of the 19th International Col-
loquium on Latin Linguistics (ICLL 2017). Munich, Germany.

Eckhoff, Hanne M., Kristin Bech, Gerlof Bouma, Kristine Gunn Eide, Dag T.
Haug, Odd Einar Haugen, and Marius L. Jøhndal (2018). “The PROIEL
Treebank Family: A Standard for Early Attestations of Indo-European
Languages”. In: Language Resources and Evaluation 52.1, pp. 29–65. doi:
10.1007/s10579-017-9388-5.

Eén, Niklas and Niklas Sörensson (2003). “An Extensible SAT-solver”. In:
Proceedings of the 6th International Conference on Theory and Applications
of Satisfiability Testing (SAT 2003). Portofino, Italy: Springer, pp. 502–518.
doi: 10.1007/978-3-540-24605-3_37.

Ehrling, Sara (2015). Lingua Latina novo modo – En nybörjarbok i latin för
universitetsbruk. Gothenburg, Sweden: University of Gothenburg.

https://doi.org/10.1007/s10994-013-5403-2
https://www.youtube.com/watch?v=THoxsBw-UmM
https://www.youtube.com/watch?v=THoxsBw-UmM
http://www.perseus.tufts.edu
http://www.perseus.tufts.edu
https://doi.org/10.1007/s10462-010-9199-1
https://doi.org/10.1007/s10462-010-9199-1
http://moin.delph-in.net/GrammarCatalogue
http://moin.delph-in.net/GrammarCatalogue
https://doi.org/10.1145/2181037.2181040
http://dl.acm.org/citation.cfm?id=2380816.2380895
http://dl.acm.org/citation.cfm?id=2380816.2380895
https://doi.org/10.1007/s10579-017-9388-5
https://doi.org/10.1007/978-3-540-24605-3_37

160 BIBLIOGRAPHY

Felzer, Torsten, Ian Scott MacKenzie, and Stephan Rinderknecht (2014).
“Efficient Computer Operation for Users with a Neuromuscular Disease
with OnScreenDualScribe”. In: Journal of Interaction Science 2.2. doi:
10.1186/s40166-014-0002-7.

Forsberg, Markus and Aarne Ranta (2004). “Functional Morphology”. In: Pro-
ceedings of the 9th ACM SIGPLAN International Conference on Functional
Programming (ICFP 2004). Snow Bird, UT, USA: Association for Comput-
ing Machinery (ACM), pp. 213–223. doi: 10.1145/1016850.1016879.

Fort, Karën, Bruno Guillaume, and Hadrien Chastant (2014). “Creating Zom-
bilingo, a Game with a Purpose for Dependency Syntax Annotation”. In:
Proceedings of the 1st International Workshop on Gamification for Informa-
tion Retrieval (GamifIR ’14). Amsterdam, The Netherlands: Association for
Computing Machinery (ACM), pp. 2–6. doi: 10.1145/2594776.2594777.

Fox-Turnbull, Wendy (2009). “Stimulated Recall using Autophotography. A
Method for Investigating Technology Education”. In: Proceedings PATT-22
Conference. Strengthening the Position of Technology Education in the
Curriculum, pp. 204–217. url: https://www.iteea.org/File.aspx?id=
86963&v=46b05ce9.

Fuchs, Norbert E., Stefan Höfler, Kaarel Kaljurand, Fabio Rinaldi, and Gerold
Schneider (2005). “Attempto Controlled English: A Knowledge Repre-
sentation Language Readable by Humans and Machines”. In: Reasoning
Web, 1th International Summer School 2005. Ed. by Norbert Eisinger and
Jan Małuszyński. Lecture Notes in Computer Science 3564. Msida, Malta:
Springer. doi: 10.1007/11526988_6.

Garcia, Ignacio (2013). “Learning a Language for Free while Translating the
Web. Does Duolingo Work?” In: International Journal of English Linguistics
3.1, p. 19. doi: 10.5539/ijel.v3n1p19.

Garey, Michael R. and David S. Johnson (1979). Computers and Intractability:
A Guide to the Theory of NP-Completeness. New York, NY, USA: W. H.
Freeman & Co. isbn: 0-7167-1045-5.

Gazdar, Gerald (1985). Generalized Phrase Structure Grammar. Oxford, UK:
Blackwell. isbn: 0631132066.

Glück, Helmut, ed. (2004). Metzler Lexikon Sprache. 2nd edition. Digitale
Bibliothek 34. Berlin, Germany: Directmedia.

Gruzitis, Normunds and Dana Dannélls (2017). “A Multilingual FrameNet-
based Grammar and Lexicon for Controlled Natural Language”. In: Language
Resources and Evaluation 51.1, pp. 37–66. doi: 10.1007/s10579-015-9321-
8.

Gwynn, Aubrey (1926). Roman Education from Cicero to Quintilian. Oxford,
UK: Clarendon Press.

Hallett, Catalina, Donia Scott, and Richard Power (2007). “Composing Ques-
tions through Conceptual Authoring”. In: Computational linguistics 33.1,
pp. 105–133. doi: 10.1162/coli.2007.33.1.105.

Henschel, Renate (1997). “Application-Driven Automatic Subgrammar Extrac-
tion”. In: Computational Environments for Grammar Development and Lin-
guistic Engineering. Stroudsburg, PA, USA: Association for Computational
Linguistics (ACL). url: https://www.aclweb.org/anthology/W97-1507.

https://doi.org/10.1186/s40166-014-0002-7
https://doi.org/10.1145/1016850.1016879
https://doi.org/10.1145/2594776.2594777
https://www.iteea.org/File.aspx?id=86963&v=46b05ce9
https://www.iteea.org/File.aspx?id=86963&v=46b05ce9
https://doi.org/10.1007/11526988_6
https://doi.org/10.5539/ijel.v3n1p19
https://doi.org/10.1007/s10579-015-9321-8
https://doi.org/10.1007/s10579-015-9321-8
https://doi.org/10.1162/coli.2007.33.1.105
https://www.aclweb.org/anthology/W97-1507

BIBLIOGRAPHY 161

Imada, Keita and Katsuhiko Nakamura (2009). “Learning Context Free Gram-
mars by Using SAT Solvers”. In: Proceedings of the 8th International Confer-
ence on Machine Learning and Applications (ICMLA 2009). Miami Beach,
FL, USA: IEEE, pp. 267–272. doi: 10.1109/ICMLA.2009.28.

Joshi, Aravind K. and Yves Schabes (1997). “Tree-Adjoining Grammars”. In:
Handbook of Formal Languages: Volume 3 Beyond Words. Ed. by Grzegorz
Rozenberg and Arto Salomaa. Berlin and Heidelberg: Springer, pp. 69–123.
doi: 10.1007/978-3-642-59126-6_2.

Kamp, Hans and Uwe Reyle (1993). From Discourse to Logic: Introduction to
Model-theoretic Semantics of Natural Language, Formal Logic and Discourse
Representation Theory. Vol. 42. Studies in Linguistics and Philosophy.
Dordrecht: Springer. isbn: 978-0-7923-1028-0. doi: 10.1007/978-94-017-
1616-1.

Kaplan, Ronald M. and Joan Bresnan (1982). “Lexical-Functional Grammar:
A Formal System for Grammatical Representations”. In: The Mental Repre-
sentation of Grammatical Relations 47, pp. 173–281.

Karp, Richard M. (1972). “Reducibility Among Combinatorial Problems”.
In: Complexity of Computer Computations. Ed. by R. E. Miller, J. W.
Thatcher, and J.D. Bohlinger. New York, NY, USA: Plenum, pp. 85–103.
doi: 10.1007/978-1-4684-2001-2_9.

Kaya, Hasan and Gülşen Eryiğit (2015). “Using Finite State Transducers for
Helping Foreign Language Learning”. In: Proceedings of the 2nd Workshop on
Natural Language Processing Techniques for Educational Applications (BEA
2015). Stroudsburg, PA, USA: Association for Computational Linguistics
(ACL), pp. 94–98. doi: 10.18653/v1/W15-4414.

Kenji Horie, André (2017). Rewriting Duolingo’s Engine in Scala. http :
//making.duolingo.com/rewriting-duolingos-engine-in-scala.
accessed 04-April-2018.

Kešelj, Vlado and Nick Cercone (2007). “A Formal Approach to Subgram-
mar Extraction for NLP”. In: Mathematical and Computer Modelling 45.3,
pp. 394–403. doi: 10.1016/j.mcm.2006.06.001.

Kilgarriff, Adam, Miloš Husák, Katy McAdam, Michael Rundell, and Pavel
Rychlý (2008). “GDEX: Automatically Finding Good Dictionary Examples
in a Corpus”. In: Proceedings of the 13th EURALEX International Congress.
Barcelona, Spain: EURALEX, pp. 425–432. url: https : / / euralex .
org/publications/gdex-automatically-finding-good-dictionary-
examples-in-a-corpus/.

Kolachina, Prasanth (2019). “Multilingual Abstractions: Abstract Syntax Trees
and Universal Dependencies”. PhD thesis. Gothenburg, Sweden: University
of Gothenburg. url: http://hdl.handle.net/2077/60331.

Kolachina, Prasanth and Aarne Ranta (2016). “From Abstract Syntax to
Universal Dependencies”. In: Linguistic Issues in Language Technology
(LiLT). Vol. 13. 3. CSLI, Stanford.

Kuhn, Tobias (2014). “A Survey and Classification of Controlled Natural
Languages”. In: Computational Linguistics 40.1, pp. 121–170. doi: 10.
1162/COLI_a_00168.

https://doi.org/10.1109/ICMLA.2009.28
https://doi.org/10.1007/978-3-642-59126-6_2
https://doi.org/10.1007/978-94-017-1616-1
https://doi.org/10.1007/978-94-017-1616-1
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.18653/v1/W15-4414
http://making.duolingo.com/rewriting-duolingos-engine-in-scala
http://making.duolingo.com/rewriting-duolingos-engine-in-scala
https://doi.org/10.1016/j.mcm.2006.06.001
https://euralex.org/publications/gdex-automatically-finding-good-dictionary-examples-in-a-corpus/
https://euralex.org/publications/gdex-automatically-finding-good-dictionary-examples-in-a-corpus/
https://euralex.org/publications/gdex-automatically-finding-good-dictionary-examples-in-a-corpus/
http://hdl.handle.net/2077/60331
https://doi.org/10.1162/COLI_a_00168
https://doi.org/10.1162/COLI_a_00168

162 BIBLIOGRAPHY

Kuhn, Tobias and Rolf Schwitter (2008). “Writing Support for Controlled
Natural Languages”. In: Proceedings of the Australasian Language Technology
Association Workshop 2008, pp. 46–54. url: https://www.aclweb.org/
anthology/U08-1007/.

Kumar, Anuj, Tim Paek, and Bongshin Lee (2012). “Voice Typing: A New
Speech Interaction Model for Dictation on Touchscreen Devices”. In: Pro-
ceedings of CHI 2012, SIGCHI Conference on Human Factors in Computing
Systems. Austin, Texas: Association for Computing Machinery (ACM). doi:
10.1145/2207676.2208386.

Lange, Herbert (2013). “Erstellung einer Grammatik für das Lateinische
im ’Grammatical Framework’”. MA thesis. Munich, Germany: Ludwig-
Maximilians-Universität.

— (2017). “Implementation of a Latin Grammar in Grammatical Framework”.
In: Proceedings of the 2nd International Conference on Digital Access to
Textual Cultural Heritage (DATeCH 2017). Göttingen, Germany: Association
for Computing Machinery (ACM), pp. 97–102. doi: 10.1145/3078081.
3078108.

— (2018). “Computer-Assisted Language Learning with Grammars. A Case
Study on Latin Learning”. Licentiate thesis. Gothenburg, Sweden: University
of Gothenburg. url: https://gup.ub.gu.se/file/207536.

— (2020). GF Latin Resource Grammar Evaluation. doi: 10.17605/OSF.IO/
UWJ59.

Lange, Herbert and Peter Ljunglöf (2018a). “MULLE: A Grammar-based
Latin Language Learning Tool to Supplement the Classroom Setting”. In:
Proceedings of the 5th Workshop on Natural Language Processing Tech-
niques for Educational Applications (NLPTEA 2018). Melbourne, Aus-
tralia: Association for Computational Linguistics (ACL), pp. 108–112. doi:
10.18653/v1/W18-3715.

— (2018b). “Putting Control into Language Learning”. In: Proceedings of the
6th International Workshop on Controlled Natural Languages (CNL 2018).
Vol. 304. Frontiers in Artificial Intelligence and Applications. Maynooth,
Ireland: IOS Press, pp. 61–70. doi: 10.3233/978-1-61499-904-1-61.

— (2020). “Learning Domain-Specific Grammars from a Small Number of
Examples”. In: Proceedings of the 12th International Conference on Agents
and Artificial Intelligence (ICAART 2020) - Volume 1: NLPinAI, Valletta,
Malta: SciTePress, pp. 422–430. doi: 10.5220/0009371304220430.

Lari, Karim and Steve J. Young (1990). “The Estimation of Stochastic Context-
free Grammars Using the Inside-Outside Algorithm”. In: Computer Speech
& Language 4.1, pp. 35–56. doi: 10.1016/0885-2308(90)90022-X.

Lehmann, Paul (1934). “Die Institutio oratoria des Quintilianus im Mittelalter”.
In: Philologus 89.1-4, pp. 353–387. doi: 10.1524/phil.1934.89.14.353.

Levy, Michael (1997). Computer-Assisted Language Learning. Context and Con-
ceptualization. Oxford, UK: Clarendon Paperback. isbn: 978-0198236313.

Lewis Ph.D., Charlton T. and Charles Short LL.D. (1879). A Latin Dictionary.
Founded on Andrews’ edition of Freund’s Latin dictionary. Revised, enlarged,
and in great part rewritten. Oxford, UK: Clarendon Press. url: http://www.
perseus.tufts.edu/hopper/text?doc=Perseus:text:1999.04.0059.

https://www.aclweb.org/anthology/U08-1007/
https://www.aclweb.org/anthology/U08-1007/
https://doi.org/10.1145/2207676.2208386
https://doi.org/10.1145/3078081.3078108
https://doi.org/10.1145/3078081.3078108
https://gup.ub.gu.se/file/207536
https://doi.org/10.17605/OSF.IO/UWJ59
https://doi.org/10.17605/OSF.IO/UWJ59
https://doi.org/10.18653/v1/W18-3715
https://doi.org/10.3233/978-1-61499-904-1-61
https://doi.org/10.5220/0009371304220430
https://doi.org/10.1016/0885-2308(90)90022-X
https://doi.org/10.1524/phil.1934.89.14.353
http://www.perseus.tufts.edu/hopper/text?doc=Perseus:text:1999.04.0059
http://www.perseus.tufts.edu/hopper/text?doc=Perseus:text:1999.04.0059

BIBLIOGRAPHY 163

Lillieström, Ann, Koen Claessen, and Nicholas Smallbone (2019). “Inferring
Morphological Rules from Small Examples Using 0/1 Linear Programming”.
In: Proceedings of the 22nd Nordic Conference on Computational Linguistics
(NoDaLiDa 2019). Turku, Finland: Linköping University Electronic Press,
pp. 164–174. url: https://www.aclweb.org/anthology/W19-6118.

Lindauer, Josef, Klaus Westphalen, and Bernd Kreiler (2000). Roma, Ausgabe
C für Bayern, Bd.1. Bamberg, Germany: C.C. Buchner.

Ljunglöf, Peter (2004). “Expressivity and Complexity of the Grammatical
Framework”. PhD thesis. Gothenburg, Sweden: University of Gothenburg.
url: http://hdl.handle.net/2077/16377.

— (2011). “Editing Syntax Trees on the Surface”. In: Proceedings of the 18th

Nordic Conference of Computational Linguistics (NoDaLiDa 2011). Rı̄ga,
Latvia: Association for Computational Linguistics (ACL). url: https:
//www.aclweb.org/anthology/W11-4619/.

Manning, Christopher D. and Hinrich Schütze (1999). Foundations of Statistical
Natural Language Processing. Cambridge, MA, USA: The MIT Press. isbn:
9780262312134.

Mateu, Jaume and Renato Oniga (2017). “Latin Syntax in Fifty Years of
Generative Grammar / La sintaxi llatina al llarg de cinquanta anys de
Gramàtica Generativa”. In: Catalan Journal of Linguistics 16, pp. 5–17.
doi: 10.5565/rev/catjl.213.

Michaud, Lisa N. (2008). “King Alfred: A Translation Environment for Learn-
ers of Anglo-Saxon English”. In: Proceedings of the Third Workshop on
Innovative Use of NLP for Building Educational Applications (BEA 2008).
Columbus, Ohio: Association for Computational Linguistics (ACL), pp. 19–
26. url: http://www.aclweb.org/anthology/W08-0903.

Moritz, Maria, Barbara Pavlek, Greta Franzini, and Gregory Crane (2016).
“Sentence Shortening via Morpho-syntactic Annotated Data in Historical
Language Learning”. In: Journal on Computing and Cultural Heritage
(JOCCH) 9.1, pp. 1–9. doi: 10.1145/2810040.

Müller-Lancé, Johannes (2006). Latein für Romanisten. Ein Lehr- und Arbeits-
buch. 1st edition. Tübingen: Gunter Narr Verlag.

Murphy, James J. (1980). “The Teaching of Latin as a Second Language in
the 12th Century”. In: Historiographia Linguistica 7.1-2, pp. 159–175. doi:
10.1075/hl.7.1-2.12mur.

Nivre, Joakim et al. (2019). Universal Dependencies 2.4. url: http://hdl.
handle.net/11234/1-2988.

Ogden, Charles Kay (1930). Basic English: A General Introduction with Rules
and Grammar. London, UK: Paul Treber.

Passarotti, Marco, Marco Budassi, Eleonora Litta, and Paolo Ruffolo (2017).
“The Lemlat 3.0 Package for Morphological Analysis of Latin”. In: Proceed-
ings of the NoDaLiDa 2017 Workshop on Processing Historical Language.
Gothenburg, Sweden: Association for Computational Linguistics (ACL),
pp. 24–31. url: https://www.aclweb.org/anthology/W17-0506/.

Passarotti, Marco, Flavio Massimiliano Cecchini, Greta Franzini, Eleonora
Litta, Francesco Mambrini, and Paolo Ruffolo (2019). “LiLa: Linking Latin
– A Knowledge Base of Linguistic Resources and NLP Tools for Latin”. In:

https://www.aclweb.org/anthology/W19-6118
http://hdl.handle.net/2077/16377
https://www.aclweb.org/anthology/W11-4619/
https://www.aclweb.org/anthology/W11-4619/
https://doi.org/10.5565/rev/catjl.213
http://www.aclweb.org/anthology/W08-0903
https://doi.org/10.1145/2810040
https://doi.org/10.1075/hl.7.1-2.12mur
http://hdl.handle.net/11234/1-2988
http://hdl.handle.net/11234/1-2988
https://www.aclweb.org/anthology/W17-0506/

164 BIBLIOGRAPHY

Proceedings of the 2nd Conference on Language, Data and Knowledge (LDK
2019). Leipzig, Germany: Zenodo. doi: 10.5281/zenodo.3358550.

Pereira, Fernando and Yves Schabes (1992). “Inside-Outside Reestimation
From Partially Bracketed Corpora”. In: 30th Annual Meeting of the As-
sociation for Computational Linguistics (ACL 1992). Newark, Delaware,
USA: Association for Computational Linguistics (ACL), pp. 128–135. doi:
10.3115/981967.981984.

Pilán, Ildikó, Elena Volodina, and Torsten Zesch (2016). “Predicting Proficiency
Levels in Learner Writings by Transferring a Linguistic Complexity Model
from Expert-written Coursebooks”. In: Proceedings of the 26th International
Conference on Computational Linguistics (COLING 2016): Technical Papers.
Osaka, Japan: The COLING 2016 Organizing Committee, pp. 2101–2111.
url: https://www.aclweb.org/anthology/C16-1198.

Pinkster, Harm (1984). Latijnse syntaxis en semantiek. Revised 1988 Lateinische
Syntax und Semantik, Tübingen: Francke, 1990 Latin Syntax and Semantics,
London: Routledge. Amsterdam: Grüner.

— (2015). The Oxford Latin Syntax. Volume I: The Simple Clause. Great
Clarendon Street, Oxford, UK: Oxford University Press. isbn: 9780199283613.

Pollard, Carl Jesse (1994). Head-driven Phrase Structure Grammar. Stud-
ies in Contemporary Linguistics. Chicago: Univ. of Chicago Press. isbn:
0226674460.

Ranta, Aarne (2009a). “Grammatical Framework: A Multilingual Grammar
Formalism”. In: Language and Linguistics Compass 3.5, pp. 1242–1265.

— (2009b). “The GF Resource Grammar Library”. In: Linguistic Issues in
Language Technology 2(2). url: https://journals.linguisticsociety.
org/elanguage/lilt/article/view/214/158.html.

— (2011). Grammatical Framework: Programming with Multilingual Grammars.
Stanford: CSLI Publications. isbn: 978-1575866260.

— (2012). Implementing Programming Languages. An Introduction to Compil-
ers and Interpreters. College Publications. isbn: 978-1848900646.

— (2015). “Constructive Type Theory”. In: The Handbook of Contemporary
Semantic Theory. Ed. by Shalom Lappin and Chris Fox. Second edition.
Blackwell Handbooks in Linguistics. John Wiley & Sons, pp. 345–374. isbn:
9780470670736.

Ranta, Aarne, Krasimir Angelov, Robert Höglind, Christer Axelsson, and
Leif Sandsjö (2017). “A Mobile Language Interpreter App for Prehospi-
tal/Emergency Care”. In: Medicinteknikdagarna. Västerås, Sweden. url:
http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-13366.

Ranta, Aarne and Prasanth Kolachina (2017). “From Universal Dependencies
to Abstract Syntax”. In: Proceedings of the 1st Workshop on Universal
Dependencies. Linköping University Electronic Press, pp. 107–116. url:
https://www.aclweb.org/anthology/W17-0414.

Redkar, Hanumant, Sandhya Singh, Meenakshi Somasundaram, Dhara Gora-
sia, Malhar Kulkarni, and Pushpak Bhattacharyya (2017). “Hindi Shab-
damitra: A WordNet-based E-Learning Tool for Language Learning and
Teaching”. In: Proceedings of the 4th Workshop on Natural Language Pro-
cessing Techniques for Educational Applications (NLPTEA 2017). Taipei,

https://doi.org/10.5281/zenodo.3358550
https://doi.org/10.3115/981967.981984
https://www.aclweb.org/anthology/C16-1198
https://journals.linguisticsociety.org/elanguage/lilt/article/view/214/158.html
https://journals.linguisticsociety.org/elanguage/lilt/article/view/214/158.html
http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-13366
https://www.aclweb.org/anthology/W17-0414

BIBLIOGRAPHY 165

Taiwan: Asian Federation of Natural Language Processing, pp. 23–28. url:
http://aclweb.org/anthology/W17-5904.

Reichenbach, Hans (1947). Elements of Symbolic Logic. New York, NY, USA:
The Macmillan Company.

Russell, Stuart and Peter Norvig (2009). Artificial Intelligence: A Modern
Approach. 3rd edition. Prentice Hall. isbn: 978-0136042594.

Sayeed, Asad and Stan Szpakowicz (2004). “Developing a Minimalist Parser
for Free Word Order Languages with Discontinuous Constituency”. In:
Proceedings of the 4th International Conference on Advances in Natural
Language Processing (EsTAL). Lecture Notes in Computer Science 3230.
Alicante, Spain: Springer. doi: 10.1007/978-3-540-30228-5_11.

Shibata, Tomoki, Daniel Afergan, Danielle Kong, Beste F. Yuksel, I. Scott
MacKenzie, and Robert J.K. Jacob (2016). “Text Entry for Ultra-Small
Touchscreens Using a Fixed Cursor and Movable Keyboard”. In: Proceedings
of CHI 2016: The ACM SIGCHI Conference Extended Abstracts on Human
Factors in Computing Systems. Santa Clara, California: Association for
Computing Machinery (ACM), pp. 3770–3773. doi: 10.1145/2851581.
2890230.

Springmann, Uwe, Helmut Schmid, and Dietmar Najock (2016). “LatMor:
A Latin Finite-State Morphology Encoding Vowel Quantity”. In: Open
Linguistics 2.1, pp. 386–392. doi: 10.1515/opli-2016-0019.

Steedman, Mark (2016). “Combinatory Categorial Grammar. An Introduction”.
Draft August 25th, 2016.

Stemle, Egon W., Adriane Boyd, Maarten Jansen, Therese Lindström Tiede-
mann, Nives Mikelić Preradović, Alexandr Rosen, Dan Rosén, and Elena
Volodina (2019). “Working Together Towards an Ideal Infrastructure for
Language Learner Corpora”. In: Widening the Scope of Learner Corpus
Research. Ed. by Andrea Abel, Aivars Glaznieks, Verena Lyding, and Lionel
Nicolas. Corpora and Language in Use. France: Presses universitaires de
Louvain. isbn: 9782875588685.

Swadesh, Morris (1952). “Lexico-Statistic Dating of Prehistoric Ethnic Con-
tacts: With Special Reference to North American Indians and Eskimos”. In:
Proceedings of the American Philosophical Society 96.4, pp. 452–463. url:
http://www.jstor.org/stable/3143802.

— (1955). “Towards Greater Accuracy in Lexicostatistic Dating”. In: Inter-
national Journal of American Linguistics 21.2, pp. 121–137. url: http:
//www.jstor.org/stable/1263939.

Sweetser, Penelope and Peta Wyeth (2005). “GameFlow: A Model for Evaluating
Player Enjoyment in Games”. In: Computers in Entertainment (CIE) 3.3.
doi: 10.1145/1077246.1077253.

Takahashi, Ayumi and Hideki Takahashi (2015). “Anxiety and Self-confidence
in Ancient Language Studies”. In: Niigata University Language and Culture
Research Department Bulletin.

Taylor, Daniel J. (1970). “A Study of the Linguistic Theory of Marcus Terentius
Varro”. PhD thesis. Seattle, Washington: University of Washington, pp. 1–
158.

http://aclweb.org/anthology/W17-5904
https://doi.org/10.1007/978-3-540-30228-5_11
https://doi.org/10.1145/2851581.2890230
https://doi.org/10.1145/2851581.2890230
https://doi.org/10.1515/opli-2016-0019
http://www.jstor.org/stable/3143802
http://www.jstor.org/stable/1263939
http://www.jstor.org/stable/1263939
https://doi.org/10.1145/1077246.1077253

166 BIBLIOGRAPHY

Taylor, Wilson L. (1953). “’Cloze Procedure’: A New Tool for Measuring
Readability”. In: Journalism Quarterly 30.4, pp. 415–433. doi: 10.1177/
107769905303000401.

Vesselinov, Roumen and John Grego (2012). Duolingo Effectiveness Study.
Tech. rep. accessed 16-October-2017.

Vicipaedia (2018). Libera Enceclopaedia. https://la.wikipedia.org/wiki/
Vicipaedia:Pagina_prima. accessed 09-July-2018.

— (2020). Libera Enceclopaedia: Census. https://la.wikipedia.org/wiki/
Specialis:Census. accessed 09-July-2020.

Vilborg, Ebbe (2009). Norstedts Svensk-Latinska Ordbok. 2nd edition. Stock-
holm, Sweden: Norstedts akademiska förlag. isbn: 9789172275720.

Volodina, Elena, Ildikó Pilán, Lars Borin, and Therese Lindström Tiedemann
(2014). “A Flexible Language Learning Platform Based on Language Re-
sources and Web Services”. In: Proceedings of the 9th International Con-
ference on Language Resources and Evaluation (LREC’14). Reykjavik,
Iceland: European Language Resources Association (ELRA), pp. 26–31.
url: https://www.aclweb.org/anthology/L14-1684/.

Ward, David J., Alan F. Blackwell, and David J. C. Mackay (2002). “Dasher:
A Gesture-Driven Data Entry Interface for Mobile Computing Human-
Computer Interaction”. In: Human-Computer Interaction: Text Entry for
Mobile Computing 17.2–3, pp. 199–228. doi: 10.1080/07370024.2002.
9667314.

Warschauer, Mark (2004). “Technological Change and the Future of CALL”. In:
New Perspectives on CALL for Second and Foreign Language Classrooms. Ed.
by Sandra Fotos and Charles M. Brown. Mahwah, NJ: Lawrence Erlbaum
Associates. Chap. 2, pp. 15–25.

Whitaker, William (2006). Words. Latin-English Dictionary Program. http:
//archives.nd.edu/whitaker/words.htm. accessed 15-July-2018.

Wirsing, Martin (1990). “Algebraic Specification”. In: Handbook of Theoretical
Computer Science. Ed. by Jan van Leeuwen. Amsterdam et al.: Elsevier;
The MIT Press. Chap. 13, pp. 677–788.

XMG (2017). eXtensible MetaGrammar (XMG). http://xmg.phil.hhu.de/.
accessed 25-June-2020.

https://doi.org/10.1177/107769905303000401
https://doi.org/10.1177/107769905303000401
https://la.wikipedia.org/wiki/Vicipaedia:Pagina_prima
https://la.wikipedia.org/wiki/Vicipaedia:Pagina_prima
https://la.wikipedia.org/wiki/Specialis:Census
https://la.wikipedia.org/wiki/Specialis:Census
https://www.aclweb.org/anthology/L14-1684/
https://doi.org/10.1080/07370024.2002.9667314
https://doi.org/10.1080/07370024.2002.9667314
http://archives.nd.edu/whitaker/words.htm
http://archives.nd.edu/whitaker/words.htm
http://xmg.phil.hhu.de/

	Abstract
	Acknowledgement
	List of Publications
	Personal Contribution
	List of Acronyms
	I Introduction and Overview
	Introduction
	Research Questions and Contributions
	Main Results

	Background
	Latin Language and Latin NLP
	Computer-Assisted Language Learning
	Grammatical Framework
	Grammar Learning
	Constraint Satisfaction and Optimization

	Overview
	Part I: Latin Resource Grammar
	Part II: Grammar-Based CALL
	Part III: Learning Domain-Specific Grammars

	Conclusion
	Summary
	Discussion
	Future Work

	II The Latin Resource Grammar
	Paper I: Implementation of a Latin Grammar in Grammatical Framework
	Introduction
	Implementation of the Grammar
	Conclusion

	Paper II: An Open-Source Computational Latin Grammar: Overview and Evaluation
	The Role of Grammars
	Overview of the Grammar
	Evaluation
	Conclusion

	III Grammar-Based CALL
	Paper III: MULLE: A Grammar-Based Latin Language Learning Tool to Supplement the Classroom Setting
	Introduction
	Previous and related work
	Creation of interactive exercises from a Latin textbook
	Implementation
	User interaction
	Evaluation
	Discussion
	Future work

	Paper IV: Putting Control into Language Learning
	Introduction
	Related Work
	Application: Language Learning using CNLs
	Evaluation
	Discussion
	Conclusions and Future Work

	IV Learning Domain-Specific Grammars
	Paper V: Learning Domain-Specific Grammars From a Small Number of Examples
	Introduction
	Background
	Learning a Subgrammar
	Bilingual Grammar Learning
	Implementation
	Evaluation
	Results
	Extension 1: Negative Examples
	Extension 2: Extracting Subtrees as Basic Units
	Discussion
	Conclusion

	Bibliography

