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ABSTRACT 

Neuroblastoma (NB) is the most frequently diagnosed extracranial tumour in children, 

which arises from transient embryonal tissue of the neural crest that fails to complete 

terminal differentiation into neurons. Even after completion of successful therapy, high 

risk neuroblastoma patients typically suffer from post-treatment induced toxicity which 

impacts on their ability to lead a normal life. Traditional protocols including 

chemotherapeutic and radiation therapy treatments are associated with toxic side 

effects due to a lack of specificity for malignant cells. Therefore, a rapidly expanding 

panel of targeted therapy agents are actively being explored. One example of targeted 

therapy is the use of small-molecule tyrosine kinase inhibitors (TKIs), a number of 

which have been developed and FDA approved as cancer therapeutics. Anaplastic 

lymphoma kinase (ALK) is one such TKI target in NB, where genetic analysis has 

identified ALK mutations in both sporadic and inherited NB, and at a higher frequency 

in relapsed cases. ALK TKIs are currently employed in adult ALK-positive cancer 

patients where they elicit good responses, prior to development of resistance.  

In this thesis, we have focused on improving our understanding of known and novel 

molecular pathways involved in NB progression for further targeting (study I and III). 

We also tested a recently developed novel ALK TKI (study II) in a preclinical setting as 

an alternative strategy to treat NB patients in the future.  
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SAMMANFATTNING PÅ SVENSKA 

Neuroblastoma (NB) är den oftast diagnostiserade extrakraniella tumören hos barn, 

vilken härrör från tillfällig embryonal vävnad i neurallisten som inte nått slutgiltig 

differentiering till nervceller. Även efter framgångsrikt avslutad behandling drabbas 

patienter med hög risk av neuroblastom vanligtvis av toxicitet som påverkar deras 

förmåga att leva ett normalt liv. Traditionella behandlingsmetoder inklusive cellgifts- 

och strålbehandlingar är förknippade med toxiska biverkningar på grund av bristande 

specificitet för maligna celler. Därför utforskas en snabbt växande panel av medel för 

målinriktad terapi. Ett exempel på målinriktad terapi är användningen 

av småmolekylära tyrosinkinashämmare (TKI), av vilka ett antal har utvecklats och 

FDA-godkänts för cancerbehandling. Anaplastiskt lymfomkinas (ALK) är ett sådant 

TKI-mål i NB, där genetisk analys har identifierat ALK-mutationer i både sporadisk och 

ärftlig NB, och vid en högre frekvens i återfall. ALK-TKI används för närvarande hos 

vuxna ALK-positiva cancerpatienter där de framkallar goda resultat före 

resistensutveckling. 

I denna avhandling har vi fokuserat på att förbättra vår förståelse för kända och nya 

molekylära signaleringsvägar delaktiga i NB-progression för vidare studier (studie I och 

III). Vi undersökte också en nyligen utvecklad ALK TKI (studie II) i prekliniska miljöer 

som alternativ strategi för att bota NB-patienter i framtiden. 
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1. INTRODUCTION: 

1.1. Cancer 

Cancer is one of the major causes of morbidity and mortality worldwide. Cancer refers 

to a heterogeneous group of diseases that share biological properties such as 

uncontrolled growth and abnormal cellular phenotypes as well as the potential to 

spread to other parts of the body. The transformation of normal cells into tumour cells 

is usually caused by series of events, including somatic mutation, and/or hereditary 

predisposition, as well as involving activation of oncogenes and inactivation of tumour 

suppressor genes or altering DNA repair genes. Therefore, each patient’s tumour is 

characterised by a unique combination of genetic and epigenetic changes (Vogelstein 

et al., 2013). The transformation process of normal cell into a cancer cell is called 

carcinogenesis and typically progresses from a pre-cancerous lesion (neoplastic 

transformation) to a malignant tumour. Increased incidence of developing cancer is 

also associated with exposition to carcinogenic agents (physical, chemical, biological) 

as well genetic predispositions (Fig. 1). Untreated tumours eventually affect 

surrounding tissues, penetrating the organs and cause tremendous damage to 

patients’ health. 

 

Fig. 1 Cancer initiation and progression. 

The neoplastic transformation of adult cancer is usually an effect of life-lengthening accumulative 

exposure to environmental causes and inherited genetic predispositions. 
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The carcinogenic cascade is usually irreversible, often resulting in chronic 

inflammation (which causes immune system malfunction due to persistent activation) 

or pain due to increased pressure on nerves. Early diagnosis of cancer is a key factor 

in patient outcome. In many cases, delayed cancer diagnosis reduces patient survival, 

however progression varies greatly between types of cancer and between individual 

patients (Vogelstein et al., 2013).  

 

1.2. Hallmarks of cancer 

In 2000, Hanahan and Weinberg defined six characteristics associated within 

processes that transforms normal cells into cancer including self-sufficiency for growth 

signals, insensitivity to growth inhibition signals, evasion of apoptosis, limitless 

replicative potential, sustained angiogenesis, tissue invasion and metastasis, which 

are briefly described below:  

(1) Self-sufficiency for growth signals 

Normal cells are dependent on growth-promoting signaling, both autocrine and 

paracrine, that controls the tightly-regulated cell cycle machinery to actively proliferate 

and maintain tissue homeostasis. In contrast, cancer cells reduce their dependence 

on paracrine signals, therefore staying independent of the cellular microenvironment. 

The autocrine signaling includes growth ligands, their receptors as well as cytosolic 

signaling molecules which play important role in cancer self-sufficient maintenance.  

(2) Insensitivity to inhibitory growth signals 

Maintaining a high level of cellular homeostasis is a main goal for healthy cells. Tumour 

suppressor genes (TSG) induce quiescence or differentiation in cells and ensure that 

they are ready to divide or to halt division when DNA damage occurs. In contrast, 

cancer cells perturb cellular homeostasis and alter tumour suppressor functions, which 

lead to inefficient prevention of abnormal cell division. Cancer cells are also insensitive 

to contact inhibition and are able to continue growth and division, regardless of their 

surroundings. 

(3) Evasion of apoptosis 

Apoptosis is a naturally occurring cellular mode of cell death that organisms have 

evolved to eliminate unnecessary or unhealthy cells. This process is highly regulated 

upon extra- or intracellular signals, however cancer cells acquire resistance to escape 

apoptotic programs. 
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(4) Limitless replicative potential 

The replicative potential of most mammalian cells is limited by the length of the 

telomeres. Telomeres are specialized structures of repetitive DNA at the end of 

chromosome that are involved in the cell replication. They are also extremely important 

to maintain chromosomal stability and protect the ends of the chromosomes against 

degradation. Each replication event leads to degradation between 50-200 base pairs 

of telomeric DNA (Zhao et al., 2009). Shortening of telomeres is associated with aging 

and when telomeres are critically short, a process called ‘crisis’ takes place and this 

eventually leads to cell death (Shay, 2016). Cancer cells are able to disturb this 

dynamic equilibrium and maintain high levels of telomerase activity to achieve limitless 

replication potential and avoid telomere shortening. 

(5) Sustained angiogenesis 

Growth of blood vessels, in a process called angiogenesis, helps cancer cells to build 

a potent network that provides better access to nutrients and facilitate metastasis. 

(6) Tissue invasion and metastasis 

In order (for tumours) to acquire metastatic properties, an ability to spread throughout 

the body, two crucial mechanisms are involved: invasion and metastasis. Invasive 

cancers are those which directly expand and penetrate the neighbouring tissues, 

whereas the process of metastasis is highly complex, involving migration of the 

malignant cells from the origin site which are able to invade blood and/or lymph vessels 

in order to spread at distal sites. 

Weinberg and Hanahan (Hanahan and Weinberg, 2011) later proposed two additional 

hallmarks: (7) abnormal metabolic pathways and (8) evasion of the immune system, 

and two supportive characteristics: genome instability, and tumour-promoting 

inflammation that facilitates neoplasia (Fig. 2) (Hanahan and Weinberg, 2000). 

(7) Abnormal metabolic pathways  

In contrast to normal cells, which produce energy by glycolysis followed by oxidation 

of pyruvate in mitochondria, tumour cells have a much higher rate of glucose 

consumption and largely relay on glycolysis followed by lactic acid fermentation in the 

cytosol (the Warburg effect).  

(8) Evasion of the immune system 

The immune system possesses a capacity to identify abnormal and damaged cells and 

destroy them before they can develop into malignancy. Cancer cells acquire the ability 

to evade destruction by the body’s immune system. Tumour cells produce several 
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immune suppressing cytokines that interfere with checkpoint pathways of the immune 

system so that they cannot be recognised and eliminated (Hanahan and Weinberg, 

2011). 

 

 

Fig. 2 Hallmarks of cancer. 

Eight biological capabilities of cancer cells: 1. Self-sufficiency in growth signals, 2. Insensitivity to anti-

growth signals, 3. Evasion of apoptosis, 4. Limitless replicative potential, 5. Sustained angiogenesis, 6. 

Tissue invasion and metastasis, 7. Abnormal metabolic pathways, 8. Evading the immune system. 

Based on (Hanahan and Weinberg, 2011). 
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1.3. Genome heterogeneity and instability 

The complexity of heterogeneous interactions of different cell types in tumour can 

create a favourable microenvironment for neoplasia. Tumour DNA is characteristically 

more fragile than DNA in normal cells, leading to an elevated replication stress (Dillon 

et al., 2010). The majority of cancers accumulate somatic mutations over time. Among 

these mutations we can distinguish so called “driver gene” mutations, which give a 

selective advantage to a clone in its microenvironment and “passenger” mutations that 

confer no selective growth advantage (Vogelstein et al., 2013). Those changes 

influence the signaling pathways which determine cell fate by dysregulating 

proliferation through loss of checkpoint control or elevated level of oxidative damage 

(Wiseman and Halliwell, 1996). Intra-tumour heterogeneity can lead to expansion of 

particular subpopulation. Such tumour cells can be insensitive to the treatment 

regimen, and able to infiltrate surrounding tissue and spread to nearby as well as distal 

organs and glands causing metastasis (Negrini et al., 2010). Genomic instability has 

been described as a “supportive feature” of cancer cells and is caused by errors in 

DNA replication and repair machinery (Hanahan and Weinberg, 2011). 

 

1.4. Adult versus childhood cancers 

One difference between childhood and adult solid tumours is that adult tumours arise 

from differentiated adult tissues (such as epithelia of gastrointestinal tract and skin) 

after accumulation of multiple sequential mutations due to increasing life span and 

exposure to dietary, lifestyle, hereditary predisposition and others previously 

mentioned in section 1.2. In contrast, paediatric malignancies often originate in 

precursor cells of non-self-renewing tissues and have less single nucleotide variant 

(SNV) and nucleotide insertions/deletions than most adult malignancies (Rahal et al., 

2018). Comprehensive analysis of various paediatric tumours identified at least one 

significantly mutated gene in 47%, with most tumours having only one. In contrast, the 

majority of adult cancer (76%) harbour recurrent mutations in multiple genes. In 

addition, TP53 was identified as the most frequently somatically mutated gene in both 

childhood and adulthood malignancies (Gröbner et al., 2018). Development of cancer 

early in life is associated with specific (rare) birth defects, that are consequences of 

perturbations in certain cellular signaling processes during development and 

neuroblastoma is one such example. 
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1.5. Neuroblastoma 

Neuroblastoma (NB) is the most common extracranial solid tumour in children. After 

leukaemia and cranial tumours, it is the third most common paediatric malignancy 

worldwide (Park et al., 2013). This relatively rare disease affects 1 in 8,000 live births 

(20-25 individual per 1 million) and accounts for 6-10% of all childhood tumours. Sadly, 

that makes NB the most deadly tumour of childhood, which accounts for 12-15% of all 

paediatric cancer related deaths (Brodeur, 2003; Park et al., 2010). The majority (90%) 

of NB tumours arise in children younger than 10 years (including 40% of children 

younger than a year) with a median age at diagnosis of 17–18 months (London et al., 

2005; Maris, 2010; Stiller and Parkin, 1992). Almost all NB arises sporadically, with the 

familial form of neuroblastoma being rare and accounting for only 1% of cases.  

Several genetic alterations are often observed in NB, including gains and losses of 

chromosomal parts as well as whole karyotype near diplo- and tetraploid aberrations 

which are correlated with poor patient survival (discussed in section 1.6). Histologically, 

this solid tumour of infancy has been described as a small blue round cell tumour 

(SBRCT) characterised by high heterogeneity and poorly differentiated cells. NBs are 

localised along the sympathetic chain with the mass originating in the adrenal medulla 

of the adrenal gland (47%), nerve tissues of abdomen (24%), thoracic (15%) or in the 

pelvis (3%) or neck (2.7%), or other sympathetic ganglia near the spine in the chest 

(7.9%), (Maris, 2010; Tolbert and Matthay, 2018; Vo et al., 2014). Genome-wide 

association studies (GWAS) describe NB as a complex genetic disease, characterised 

by presence of common polymorphic alleles that can influence tumour formation and 

patient status at diagnosis (Manolio et al., 2009; Ritenour et al., 2018). 

 

1.5.1. Origin of neuroblastoma 

Neuroendocrine NB tumours arise from sympathoadrenal cells during foetal 

development of sympathetic nervous system. The sympathoadrenal lineage originates 

from multipotent migratory neural crest cells (NCCs) that are localised in the dorsal 

part of the neural tube (NT) (Takahashi et al., 2013). Early migration of undifferentiated 

NCCs (Fig. 3, left panel) depends on chemoattraction, and is followed by a later 

migration that relies on sympathetic neurons (Baker et al., 1997). In the initial early 

migratory pathway, the dorsal aorta provides chemoattractant signals to the SOX10 

positive early NCC via aortic bone morphogenetic proteins (such as BMP4 and BMP7) 

which induce the expression of the chemokine stromal cell-derived factor 1 (SDF1) and 
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neuregulin 1 (NRG1) (Saito et al., 2012). Both receptors, C-X-C motif chemokine 

receptor 4 (CXCR4) and epidermal growth factor receptor (EGFR) can be stimulated 

by their ligands SDF1 and NRG1. The active secretion of SDF1 and NRG1 ligands by 

the para-aortic mesenchyme direct the SOX10 positive early NCCs expressing CXCR4 

and EGFR to start their migration towards the dorsal aorta. After reaching the vicinity 

of the dorsal aorta, migrating neural crest cells are no longer called SOX10 positive 

early NCCs, but are instead known as sympathoadrenal precursor cells (SAPs). In the 

so called dorsoventral split, SAPs commit to further differentiation in distinct regions of 

the embryo. 

The late migratory event of NCCs (Fig. 3, right panel) starts when the neural crest cells 

start to migrate on the sympathetic neurons, from which moment they are known as 

Schwann cell precursors (SCPs). To reach the cortex and invade the developing 

adrenal medulla, SCPs migrate on the sympathoadrenal neurites which distinguish 

them from free migrating NCC. After reaching the medulla, SCPs differentiate to 

become catecholamine-secreting cells of the adrenal gland called chromaffin cells. 

Lineage tracing experiments in mice have estimated that 80% of chromaffin cells of 

the adrenal medulla originate from late migratory NCC Schwann cell precursors, while 

20% are due to migration and differentiation of sympathoadrenal precursor cell. (Furlan 

et al., 2017). 

The exact origin of NB is still enigmatic, however a better understanding of the 

sympathoadrenal differentiation is crucial as NB are considered to arise due to failure 

of differentiation, growth and migration of the emerging sympathetic lineage. This 

failure to complete terminal differentiation into neurons or chromaffin cells in the 

adrenal medulla and instead transform to become malignant is thought to involve 

abnormal maintenance of stemness signals, which arise from genetic and epigenetic 

lesions. Due to the observed lack of differentiation features, NB has been called a 

malignancy with differentiation block (Huber et al., 2009; Maris, 2010).  
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Fig. 3 Neural crest cells migration  

NCC migration in humans takes place in week 4. Left panel: Early migration of chemoattractant-

dependent NCCs. Right panel: Late migration of nerve dependent migratory neural crest cells. Adapted 

with permission from (Furlan et al., 2017; Tsubota and Kadomatsu, 2018). 
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1.6. Genetic aberrations in neuroblastoma 

While mutation poor, high-risk NB characteristically exhibits a high number of somatic 

chromosomal lesions at the genomic level, including structural variations (SVs) and 

copy number alterations (CNAs) (De Brouwer et al., 2010; Gröbner et al., 2018; Pugh 

et al., 2013). Besides MYCN amplification which is found in 20% of NB overall, and 

about 50% in high-risk patients, the most frequently mutated gene in NB is ALK 

followed by PTPN11, ATRX, PHOX2B, NRAS, TERT, CHEK2, PINK1, and BARD1 (De 

Brouwer et al., 2010; Molenaar et al., 2012; Pugh et al., 2013). Below, some of the 

most important segmental chromosomal alterations (SCA) in NB are described:  

 

1.6.1. Chromosome 1p deletions 

Segmental chromosomal loss of the distal short arm of chromosome 1p is reported in 

one-third of all NB cases (approximately 35%) and with even higher frequency in high 

risk NB where it correlates with MYCN amplification and poor patient survival (Ejeskär 

et al., 2001; Fong et al., 1989; Mora et al., 2000). Investigation of the importance of 

chromosome 1 in NB by transferring 1p arm of chromosome into the NB cell line (with 

deletion of distal arm 1p) showed that cells induced neuronal differentiation, 

suppressed proliferation and caused major cell death (Bader et al., 1991). This 

observation, and many others in a range of human malignancies (Bagchi and Mills, 

2008; Schwab et al., 1996) indicated the existence of tumour suppressors encoded in 

this region. Several tumour suppressor genes are localised in the 1p36 region 

including: CAMTA1, CHD5, KIF1B, CASZ1 and ARID1A. Those genes are associated 

with reduction of cell proliferation and activation of apoptosis (Bagchi et al., 2007; 

Fransson et al., 2007; García-López et al., 2020; Henrich et al., 2012; Katoh and Katoh, 

2003; Liu et al., 2011; Yang et al., 2001). 

  

1.6.2. Chromosome 2p gain (MYCN, ALK and ALKAL2) 

The p arm of chromosome 2 is a location of three key players of the ALK signaling 

pathway: ALK itself, MYCN, and one of the ALK ligand - ALKAL2. Moreover, this SCA 

is associated with unfavourable outcome in NB patients (Javanmardi et al., 2019; 

Jeison et al., 2010). Located at 2p23.2-2p23.3, the ALK locus spans 728 kb, and with 

MYCN (6.4kb at 24.3), coding for a downstream transcriptional target and ALKAL2 

(8.7kb at 25.3) all are found in the distal 2p arm (Fig. 4). Oncogenic ALK mutations 

have been described in both familial and sporadic NB and are observed in 7-10% of 
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patients (Carén et al., 2008; Chen et al., 2008; George et al., 2008; Janoueix-Lerosey 

et al., 2008; Mossé et al., 2008). The amplification of MYCN, which is localised at 

2p24.3 remains a valid and critical prognostic marker for NB diagnosis. Approximately 

20-30% of all primary NB express high levels of MYCN, and this percentage increases 

in high risk NB cases to around 50%, where it is associated with advanced disease 

stage and poor prognosis (Maris and Matthay, 1999). Amplification of MYCN greater 

than 10 copies per haploid genome is associated with poor prognosis regardless of 

other strategic factors (Maris and Matthay, 1999). The MYCN gene encodes for its 

product, MYCN, which is transcription factor with a short half-life that is involved in a 

range of cellular process like cell proliferation and differentiation (Brodeur, 2003; Eilers 

and Eisenman, 2008; Maris et al., 2007). MYCN activates targets such as ODC and 

MCM7, which leads to cell cycle progression (Hogarty et al., 2008; Shohet et al., 2002). 

The oncogenic association of ALK and MYCN together with ALKAL2 represent a 

growth control loop that could potentially be involved in the development and 

progression of NB (Javanmardi et al., 2019). 

 

1.6.3. Chromosome 11q loss 

Loss of parts of the long arm of chromosome 11 (11q) are observed in about 43% of 

tumours, making this one of the most common chromosomal aberration in NB. 11q 

deletion is generally mutually exclusive to MYCN amplification and is a marker of an 

unfavourable phenotype for patients (Carén et al., 2008; Carén et al., 2010). The loss 

of part of chromosomes in cancer cells often indicates the sites where important tumour 

suppressor genes reside. Deletion of part of a chromosome or gene or even point 

mutations in tumour suppressor genes can lead to carcinogenesis (Maris and Matthay, 

1999). Recently, a strong tumour suppressor gene candidate Disc Large Homolog 2 

(DLG2), localised on this high-risk deletion region was identified by Siaw et al. DLG2 

is located at chromosome 11q14.1 and is a part of the ‘bridge signature’ which 

characterises the transcriptional transition of SCPs towards adrenal chromaffin cell 

differentiation (Furlan et al., 2017). Overexpression of DLG2 induces differentiation of 

NB cells and inhibits tumour growth in xenograft models. DLG2 was also found as 

downregulated target of oncogenic ALK signaling (Siaw et al., 2020). Also at 11q, 

Lopez et al., identified the postsynaptic adaptor protein-coding gene SHANK2 (located 

at 11q13.3-13.4) as associated with high-risk NB. Overexpression of SHANK2 results 

in significant reduction of cellular proliferation and stimulates differentiation of NB cells 



11 
 

upon RA treatment (Lopez et al., 2020). The inactivation of tumour suppressor genes 

such as DLG2 and SHANK2 could lead to disturbance in neurodevelopmental 

processes and enhance tumorigenesis in NB (Keane et al., 2020; Lopez et al., 2020; 

Siaw et al., 2020). In keeping with the complexity of tumour suppressor regions in NB, 

deletion of parts of chromosome arm 11q, result in loss of DNA damage response 

(DDR) genes that are known drivers of NB, such as ATM, CHK1, MRE11 and H2AFX 

representing an additional important chromosomal aberrations in NB for diagnostic 

approach to separate high- and low-risk cases (Brodeur, 2003; Carén et al., 2008; 

Carén et al., 2010).  

 

1.6.4. Chromosome 17q gain 

The gain of a fragment of the long arm of chromosome 17q (17q25) is common genetic 

alteration in primary NB, detected in about 50% of tumours and correlated with adverse 

outcome (Abel et al., 1999). Unbalanced translocation of chromosome 17q involves 

many different chromosomes and in particular short arm of chromosome 1p (Bown et 

al., 1999). This translocation leads to loss of distal 1p arm with simultaneous gain in 

chromosome 17q and is found often in primary NB (Savelyeva et al., 1994; Van Roy 

et al., 1994). The genomic region of unbalanced chromosome 17q contains genes 

such as: BIRC5 (at 17q25.3), NM23A (at 17q21.33) and PPM1D (at 17q23.2) that 

contribute to the growth advantage of tumour cells (Godfried et al., 2002; Islam et al., 

2000; Saito-Ohara et al., 2003). Baculoviral inhibitor of apoptosis repeat-containing 5, 

BIRC5 encodes survivin protein, that is an inhibitor of apoptosis associated with poor 

patient outcome and therefore is useful for patient stratification (Caron, 1995; Islam et 

al., 2000). 
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Fig. 4 Schematic representation of SCV in NB patients. 

Segmental chromosomal gains (indicated in green) and losses (in red). Italics represent of genes which 

are reported to be mutated in NB, and bold italics symbolise genes that have been identified as 

amplified in NB. Adapted with permission from (Maris and Matthay, 1999) based on (De Brouwer et al., 

2010; Pugh et al., 2013). 

 

1.6.5. Aneuploidy 

Ploidy of genetic materials represents the number of complete sets of chromosomes, 

and in NB, genome ploidy is an important prognostic marker. Near diploid or near-

tetraploid DNA content correlates with more aggressive primary tumours and 

correlates with chromosomal aberrations including: segmental amplification, deletion 

and unbalanced translocations. In contrast, less aggressive tumours and more 

favourable prognosis is associated with hyperploid and near-triploid DNA state, where 

whole chromosome gains and very few structural rearrangements are present 

(Brodeur, 2003; Maris and Matthay, 1999). 
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1.7. Diagnosis of NB 

The majority of neuroblastoma patients present diseases at an advanced stage, due 

to symptoms including: lumps or swellings in the abdomen, neck, pelvis or chest region 

(main primary tumor location), enlarged belly, weight loss and problems with breathing 

or swallowing. After physical examination, urine and blood tests are performed. If 

increased levels of catecholamines (hormones released by chromaffin cells of adrenal 

medulla, such as epinephrine/adrenaline and norepinephrine) are found, then a 

positive identification of tumor cells in a bone marrow sample is enough to diagnose 

NB. Imaging tests may include an ultrasound, magnetic resonance imaging (MRI), X-

ray, computerized tomography (CT) scan, followed by metaiodobenzylguanidine 

(MIBG) if NB was diagnosed. MIBG contains a minimum required amount of 

radioactive iodine, which is intravenously given to patients and is the most sensitive 

metastatic investigation to detect NB cells in skeletal/soft tissue. If imaging identifies a 

suspicious mass, biopsy of the tumour tissue and/or bone marrow is performed to 

confirm the diagnosis.  

 

1.8. Risk stratification and current treatment options in NB 

Precise NB staging is critical to choose the most effective treatment protocol. NB 

staging has evolved dramatically and has been extensively reviewed by Sokol and 

Deasi (Sokol and Desai, 2019). According to the International Neuroblastoma Staging 

System (INSS) neuroblastoma is classified into 5 stages (1-4 and 4S) to evaluate the 

risk assessment. Stage 1 and 2 are usually characterized as a mild form of NB without 

metastasis into the bone marrow whereas stage 3 and 4 mainly metastasize and 

display resistance to chemo- and radiotherapies. The first line of treatment for patients 

with stage 1 NB is surgery following chemotherapy and/or radiotherapy. For patients 

with stage 2-4 NB treatment is more complex. 

Patients diagnosed with stage 4S NB (mostly children under 1 year old) have a better 

prognosis, and in these cases NB can spontaneously regress without any treatment 

(Uemura et al., 2019). Risk of relapse in low/intermediate NB patients is between 5-

15%, whereas in high-risk neuroblastoma this risk is around 50-60%. Currently, despite 

highly aggressive therapy, only approximately half of patients with high-risk 

neuroblastoma survive 5 years. Therefore, there is an unmet need for new therapeutic 

strategies in this NB patient subgroup (Brisse et al., 2011; Cohn et al., 2009). 
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1.9. Treatment strategies in neuroblastoma 

1.9.1. Surgery 

In solid tumors such as NB, surgery is an efficient way to eliminate carcinogenic tissue. 

However, complete resection is problematic in NB due to high vascularization of 

primary tumors and encasement of surrounding nerves by the tumor. Surgery is usually 

followed by chemo- or/and radiation therapy targeting the remaining cancer cells. In 

cases where surgical restriction is not recommended based on size, localization and 

observed metastasis, surgery is limited to collect enough tumor tissue for diagnostic 

analyses. Presurgical chemotherapy is often administrated to debulk the tumour and 

allow safe tumour resection (Günther et al., 2011; Lim et al., 2016; Monclair et al., 

2015). A small group of patients, usually very young (especially in infants below 18 

months of age) categorized as 4S group, are exempt from surgery, as tumors 

spontaneously regress and patients require no further treatment (Maris, 2010; Maris et 

al., 2007). 

 

1.9.2. Chemotherapy 

One of the most common treatment options for many cancers is chemotherapy. 

Chemotherapeutics can be a single compound or combination of drugs which are 

highly toxic to dividing cells, leading to cell death or growth inhibition. While effective 

in killing uncontrollably dividing cancer cells, this toxicity also affects the normal cells 

of the body, which typically include cells of the immune system, gut, and hair follicles 

with common side effects of neutropenia, anemia, diarrhea, hair loss and vomiting. 

Chemotherapy can be given to downsize the tumour (so called pre surgical) or after 

surgery to eliminate remaining cancer cells. The chemotherapy treatment protocol is 

based on size and location of the tumour, whether it has spread, the age of the child 

and biopsy results. Cytotoxic chemotherapy includes DNA-binding drugs such as 

carboplatin/cisplatin, which can be combined with etoposide (a topoisomerase type II 

inhibitor) or vinorelbine (an anti-mitotic). Children in intermediate risk groups often 

receive carboplatin, cyclophosphamide, doxorubicin or etoposide whereas high-risk 

NB patients often receive cisplatin, cyclophosphamide, etoposide, topotecan, 

vincristine or melphalan (Matthay, 2008; Pearson et al., 1992). 
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1.9.3. Haemopoietic stem cell transplantation 

Heavy chemotherapy and/or radiotherapy destroys not only cancer cells but causes 

extensive damage to the patient’s body. The bone marrow harbours hematopoietic 

stem cells (HSC), which give rise to specialized blood cells as a result of 

haematopoiesis. High-risk NB patients commonly undergo either an autologous (self-

transplantation), (or sometimes allogeneic- from a donor) bone marrow transplantation 

after chemotherapy. (Fish and Grupp, 2008).  

 

1.9.4. Radiation 

131I-metaiodobenzylguanidine (131I-MIBG), which is used in the diagnosis of NB, is a 

radionuclide that is also employed as a therapeutic agent in NB. 131I-MIBG, similar to 

norepinephrine, is taken up by sympathomedullary tissues (mainly by a norepinephrine 

transporter system) and into intracytoplasmic vesicles (through a vesicular transporter 

system). Accumulation of MIBG takes place within the adrenergic tissues and is 

associated with severe side effects (Garaventa et al., 1999; Ilias et al., 2011). 

 

1.9.5. Retinoic acid treatment 

NB is a disease characterized by poorly differentiated cells. Introducing retinoid 

derivatives of vitamin A is known to be impact to process of differentiation. Retinoid 

therapy is widely employed in clinical oncology as a treatment option in NB to 

differentiate cells into postmitotic neuroendocrine cells. In vitro induction of cell 

differentiation with 13-cis retinoic acid (13-cis-RA, isotretinoin) and all-transretinoic 

acid (ATRA, tretinoin) has been reported in several studies (Matthay et al., 1999; 

Reynolds et al., 2003; Sidell et al., 1983). Patients with less severe disease follow a 

retinoid-induced differentiation protocol, that is also employed as maintenance therapy 

in high risk patients, for treatments of minimal residual disease (Smith and Foster, 

2018). For NB patients, 13-cis-retinoic acid is more preferential (clinically effective) 

than ATRA, firstly because of its higher half-life time (more than 5 times in comparison 

to ATRA) and higher level of plasma peak 13-cis-RA (ATRA peak level= 0.62-1 µM 

and 13-cis-RA is 7.4 µM) (Reynolds et al., 1994). 

 

1.9.6. Immunotherapy 

Early investigation of NB cells revealed the enrichment of sialic acid and gangliosides 

on their surface (Shochat et al., 1977). Disialoganglioside (GD2) is a sialic acid-
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containing glycosphingolipid whose high expression level is mainly limited to the 

surface membrane of neuroectodermal origin cell with examples of neurons, 

astrocytes, skin melanocytes, and peripheral pain fibers of normal human tissues 

(Graus et al., 1984). Functionally, they are important for attachment capacity of 

neuroblastic cells and are required for migration, metastasis and adhesion (Hakomori 

and Igarashi, 1995). NB patients have elevated free GD2 levels in serum compared 

with normal children and children with other tumour types however expression does 

not correlate with patient prognosis (Shochat et al., 1977). In 1985, Cheung and 

colleagues produced for the first time four monoclonal antibodies (three 

immunoglobulin M and one immunoglobulin G3) against a human NB cell surface 

glycolipid antigen (Cheung et al., 1985). Currently, immunotherapy using anti-GD2 

monoclonal antibodies has been integrated as a frontline treatment of patient with high 

risk NB starting with the first drug Dinutuximab (Unituxin) approved by FDA in 2015 

(2015; Dhillon, 2015; Yang and Sondel, 2010). 

 

1.10. Novel approaches for cancer treatment in neuroblastoma 

High-risk NB patients that complete therapy successfully typically suffer from post-

treatment induced toxicity which leads to growth and mental retardation and affects 

their ability to lead a normal life. Traditional protocols containing chemotherapeutics 

and radiation therapy demonstrate additional harmful effects due to a lack of specificity 

for malignant cells. Therefore an important aim of targeted therapy (TT) is to identify 

less toxic compounds in comparison to conventional chemotherapeutics and highly 

potent and specific therapeutic molecularly targeted drugs (Tsubota and Kadomatsu, 

2018). The ideal example of TT is a compound (or combination of compounds) that 

eliminates only the cancerous cells while leaving normal cells intact before drug-

resistance occurs (Amoroso et al., 2018; Ladenstein et al., 2017).  

The development of novel therapeutic strategies in paediatric cancer remains limited, 

especially in childhood neuroblastoma, which is relatively uncommon. Despite 

increasing preclinical research efforts with a wide spectrum of inhibitors, phase III 

clinical trials in NB are still largely limited due to rarity of this malignancy 

(https://clinicaltrials.gov/). 
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1.10.1. Inhibition of ALK 

Targeting tyrosine kinases, such as ALK, by using a small inhibitors has been shown 

to inhibit the growth of NB cell in vitro and in vivo models in preclinical studies (Alam 

et al., 2019; Cervantes-Madrid et al., 2019; Guan et al., 2016; Infarinato et al., 2016; 

Schönherr et al., 2011; Siaw et al., 2016; Trigg et al., 2019). Targeting ALK, the most 

frequently mutated gene in NB is only one, well advanced example of targeted therapy 

in NB. ALK and its inhibition is described in more detail in section 1.11. 

 

1.10.2. Inhibition of ATR 

Clinical studies targeting Ataxia telangiectasia and Rad3 related (ATR) in adult patients 

are ongoing with four different compounds study as monotherapeutics, as well in 

combination with other drugs (NCT03188965, NCT02264678, NCT02157792, 

NCT02278250). ATR has been identified in ‘omics’ analysis as a target of ALK 

signaling and is one interest of this thesis described in section 1.15. (Van den Eynden 

et al., 2018). 

 

1.10.3. Inhibition of Aurora A kinase 

Despite its key role, the MYCN oncogene is currently considered clinically 

undruggable, prompting approaches that target MYCN indirectly (Maris and Matthay, 

1999). Otto and colleagues used a synthetic-lethal screening strategy in NB cell to 

identify genes overexpressed in MYCN-amplified tumours and/or genes with direct 

evidence for being a MYCN target. One out of 17 genes was AURKA which showed 

selective growth-halted effects in the knockdown of MYCN in MYCN-amplified cells 

(Otto et al., 2009). They also demonstrated that Aurora A protects MYCN from 

ubiquitin-mediated proteolytic degradation (Otto et al., 2009). On the other hand, to 

initiate transcription, MYCN interacts with MAX, uA4, BPTF, p400 and PAF1 to 

assemble the specific effector complex with its specific interaction partners:  TFIIIC, 

TOP2A and RAD21. During S phase oncogenic Aurora A kinase (AURKA) displaces 

specific interaction partners of MYCN to bind to the amino-terminus domain of MYCN, 

which as a consequence, avoids the release of POL II and stabilizes MYCN 

transcription. Inhibition of the MYCN dependent pause release of POL II prevents 

activation of the ATR checkpoint kinase (Büchel et al., 2017). The stabilisation of 

MYCN by AURKA contributes to development of NB malignancies. Increased 

expression of AURKA is correlated with unfavourable outcome for NB patients (Shang 
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et al., 2009). Otto et al. postulated that stabilisation of MYCN is independent of AURKA 

kinase activity therefore the application of small molecules such as kinase inhibitors 

could not be the ideal therapeutic strategy (Otto et al., 2009). Several AURKA inhibitors 

have been developed such as: LY3295668, alisertib (MLN8237), ZM447439 (Ditchfield 

et al., 2003; Gong et al., 2019; Sloane et al., 2010). Nonetheless, the Paediatric 

Preclinical Testing Program demonstrated that the AURKA inhibitor MLN8237 

abrogated proliferation in NB cell lines in a MYCN-independent manner. Moreover, 

studies with MLN8237 showed promise in cell line and in vivo xenograft experiments 

(Maris et al., 2010). Inhibition of Aurora A with alisertib has been currently enrolled in 

phase II of clinical trials in combination with irinotecan and temozolomide for patients 

with recurrent NB (DuBois et al., 2018). Erbumine (LY3295668) clinical phase I 

(NCT04106219) has just opened. Based on mechanistic evidence, Aurora A kinase 

inhibitors may synergise with ATR inhibitors (Büchel et al., 2017; Moreno et al., 2017). 

 

1.10.4. Inhibition of CDK4/6 

The cyclin-dependent kinases 4 and 6 (CDK4/6) encode cyclin-dependent serine-

threonine kinases which tightly regulate cell cycle progression. Upon mitogenic or pro-

proliferative stimuli, once cells commit their re-entry into cell cycle and by exiting G0 

phase, followed by replication and resulted in cell division, the elevated Cyclin D1- 

cyclins form catalytic heterodimers with CDK4 and CDK6. The assembled complex 

mediates phosphorylation of retinoblastoma (RB) tumour suppressor via 

phosphorylation of threonine 821 by CDK4 and threonine 826 by CDK6 (Takaki et al., 

2005). Phosphorylation of RB leads to its inactivation and this event triggers cell 

proliferation. Phosphorylated RB releases the E2F transcription factor and this event 

leads to transcription of genes involved in the G1/S cell cycle progression to continue 

cell proliferation. Preventing the phosphorylation of RB (RB is active when bound to 

E2F) helps to keep the cell cycle under control (Narasimha et al., 2014). Therefore, 

CDK4/6 inhibitors have been identified as potential candidates for targeted therapy in 

NB with mechanism of action targeting the activity of retinoblastoma tumour 

suppressor in cancer (Harbour et al., 1999). Additionally, homozygous deletion of 

CDKN2A and amplification of CCND1 (Cyclin D1) and CDK4 have been identified in a 

subset of NB (Mosse et al., 2005). CDK4 and CCND1 are major oncogenic drivers 

among members of the CDK superfamily with the CCND1 genomic locus most 

frequently amplified among all tumour types. The cyclin D1 – CDK4/6 complex is strictly 

https://en.wikipedia.org/wiki/ZM447439
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reliant on MAPK/ERK signaling to mediate G1 phase progression to a stage which 

does not need mitogen induction. (Choi and Anders, 2014). Rader and colleagues 

performed a successful study using ribociclib (LEE011), a small molecule inhibitor of 

both CDK4 and CDK6, in a NB setting. Upon treatment with LEE011, reduction in cell 

proliferation was observed in 12 out of 17 human NB cell lines and tumour growth was 

delayed in in vivo xenografts (Rader et al., 2013). Ribociclib efficiently reduced the 

phosphorylation of RB and Forkhead Box M1 transcription factor (FOXM1) and this 

event lead to cell cycle arrest followed by cellular senescence (Anders et al., 2011). 

Ribociclib is currently in two clinical trials: ESMART (NCT02813135) in combination 

with topotecan and temozolomide for mainly children and young adults with refractory 

or recurrent malignancies and NEPENTHE (NCT02780128) where it is tested in 

combination with ceretinib in children with ALK positive relapsed NB.  

 

1.10.5. Inhibition of WEE1 and Chk1 

WEE1 and CHK1 are kinases which are vital in regulation of cell cycle checkpoints and 

mediate cell cycle arrest when DNA damage occurs (Otto and Sicinski, 2017). The 

main function of the serine/threonine specific protein kinase Chek1 is to coordinate the 

cell cycle arrest due to DNA damage or unreplicated DNA. Wee1 kinase controls cell 

size by restricting mitotic entry via CDK1 inhibition. Loss of Wee1 function results in 

smaller than normal progeny, because cell division occurs prematurely. Wee1 inhibits 

Cdk1 by phosphorylating it on two different sites, Tyr15 and Thr14. Silencing of CHK1 

or WEE1 blocks cell cycle arrest during S or G2 phase thereby allowing cell cycle 

progression in spite of DNA damage accumulation, which leads to mitotic cell death 

catastrophe (Castedo et al., 2004). The CHK1 inhibitor CCT244747 displayed 

antitumor activity in NB cell lines and in a MYCN-driven NB transgenic mice model 

(Walton et al., 2012). Currently, a phase I trial of prexasertib (CHK1/2 inhibitor) is 

ongoing (NCT02808650). Clinically, AZD1755, a WEE1 inhibitor is combined with 

irinotecan and carboplatin in paediatric phase I trials by COG (NCT02095132) and 

ITCC (ESMART) and in phase II for other malignancies in adult patients. 

 

1.10.6. Alterations in ATRX, TERT and ALT 

Cancer cells are able to disturb cellular equilibrium by increasing telomerase activity to 

achieve limitless replication potential (Fig. 5) (Hanahan and Weinberg, 2011). The 

whole-genome sequencing analysis of NB patients specimen identified a loss-of 
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function (LOF) genetic alterations in the alpha thalassemia/mental retardation 

syndrome X-linked RNA helicase (ATRX), in approximately 10% of NB patients and 

rearrangements of the reverse transcriptase telomerase (TERT) leading to increased 

telomerase activity in approximately 25% of NB patients (Peifer et al., 2015; Valentijn 

et al., 2015). Both genetic aberrations are mutually exclusive to MYCN amplification 

(Cheung et al., 2012; Pugh et al., 2013). Additionally, TERT rearrangements are 

associated with the alternative lengthening of telomeres (ALT), a telomerase-

independent mechanism used by many cancers to elongate the telomere via 

homologous recombination (Cesare and Reddel, 2010). Rearrangement in TERT, a 

target of MYCN has been correlated with high-risk NB and used as a marker for poor 

outcome NB (Ackermann et al., 2018; Lundberg et al., 2011; Ohali et al., 2006). 

Zeineldin et al., showed that inactivation of tumour suppressor ATRX and activation of 

oncogenic MYCN are incompatible and lead to synthetic lethality (Zeineldin et al., 

2020). An important function of ATRX is complex formation with death-domain 

associated protein (DAXX) which recruits histone H3.3 within telomeric DNA of PML 

nuclear bodies to maintain proper replication. In the absence of ATRX, the MRN 

complex co-localise with PML nuclear bodies and a failure of telomeric histone H3.3 

deposition results in guanine (G)-rich stretches of DNA called quadruplex, which can 

block DNA replication by formation of DNA-RNA hybrids (called R-loops) leading to 

replication dysfunction, telomeric DDR and ALT (George et al., 2020; Zeineldin et al., 

2020). Both alterations: MYCN amplification and TERT rearrangements, lead to 

telomere maintenance, therefore targeting telomerase activity and ALT can serve as a 

novel therapeutic strategy for treating a high-risk NB patient, however no clinical trial 

is currently ongoing (George et al., 2020; Matthay et al., 2016; Peifer et al., 2015). So 

far, only imetelstat (GRN163L), a telomerase enzymatic activity inhibitor has entered 

paediatric clinical trials, but due to excessive toxicity the trial was suspended (Salloum 

et al., 2016; Thompson et al., 2013). 6- thio-20-deoxyguanosine is a promising agent 

to target telomerase activity in cells expressing telomerase (Moreno et al., 2020). On 

the other hand, Tetra-Pt (bpy), structurally similar to cisplatin, inhibits strand 

invasion/annealing step during ALT and specifically halts proliferation of ALT 

dependent cell. However, production of this compound has been discontinued (Zheng 

et al., 2017). 
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Fig. 5 Telomere biology in cells.  

In normal cells every division decreases the length of the distal chromosomal fragments called 

telomeres. Cancer cells can hijack this by increasing telomerase activity and avoiding telomere 

shortening. 

 

1.10.7. Inhibition of mTORC1/2 

MYCN amplification is associated with poor outcome of NB patients (Maris and 

Matthay, 1999). Vaughan et al., aimed to find a compound which can destabilise and 

kill MYCN expressing cells. They showed that PI3K/mTOR inhibitors selectively 

eliminated MYCN-expressing tumour cells by apoptosis induction. They highlighted the 

NVP-BEZ235 as a compound which degraded MYCN via inhibiton of mTOR signaling 

but not PI3 kinase activity (Vaughan et al., 2016). Also, Xu et al. showed that acquired 

resistance against AZD8055 in NB cell lines correlated with activation of MEK/ERK 

signaling pathway, leads them to combine AZD8055 with the MEK inhibitor U0126, 

observing cellular growth inhibition in both in vitro and in vivo models. Further 

optimization of AZD8055 (Pike et al., 2013), resulted in the discovery of the more 

potent candidate AZD2014 which was accessed in the clinical trial ESMART 

(NCT02813135), but has since been discontinued (Moreno et al., 2020). 

 



22 
 

1.10.8. Targeting BIRC5 

An interesting candidate for targeted therapy in NB treatment is BIRC5, an inhibitor of 

apoptosis, which is associated with poor patient outcome. The therapeutic agent 

YM155 (sepantronium bromide) is a potent suppressant which inhibits survivin 

promoter activity. YM155 suppressed expression of survivin leading to apoptotic cell 

death in human retinal progenitor cell (HRPC) lines (Nakahara et al., 2007). YM155 

was also shown to sensitize NSCLC cells to radiation both in vitro and in vivo, followed 

by induction of apoptosis and resulting in downregulation of survivin expression (Iwasa 

et al., 2008). 

 

1.11. Targeting anaplastic lymphoma kinase in neuroblastoma 

The protein kinase (PK) family is a large family of enzymes that facilitate the transfer 

of the γ phosphate of ATP to specific amino acids such as: tyrosine or serine/threonine 

residues on protein substrates (Hubbard and Till, 2000; Hunter, 2014). Among the 

tyrosine protein kinases there are two subclasses: the receptor tyrosine kinases 

(RTKs) and non-receptor tyrosine kinases (NTRKs). 

 

1.11.1. Receptor tyrosine kinases (RTK) 

Receptor tyrosine kinases (RTKs) are crucial for cell proliferation and differentiation as 

well as share a common structure architecture consisting of an extracellular ligand-

binding domain (ECD), a protein tyrosine kinase domain (PTK), and a transmembrane 

domain (TMD) (Schlessinger, 2000). Binding of the ligand to the ECD induces receptor 

dimerization and leads to tyrosine trans-auto-phosphorylation and activation of 

signaling (Brognard and Hunter, 2011; Heldin, 1995). Humans have 58 known RTKs, 

which fall into 20 subfamilies (Manning et al., 2002; Robinson et al., 2000). Additionally, 

RTKs exhibit oncogenic properties when their kinase activity is permanently enhanced 

and uncontrollably potentiated due to point mutations, amplification or rearrangements. 

Constant activation of RTKs can lead to uncontrolled cell proliferation, influence cell 

motility, migration or invasion, as well cause angiogenesis and inhibit apoptosis 

(Robertson et al., 2000). 
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1.11.2. Anaplastic lymphoma kinase (ALK) 

Anaplastic Lymphoma Kinase (ALK) was originally reported in 1994 when it was first 

identified as truncated and fused to nucleophosmin (NPM) in the t(2;5) chromosomal 

rearrangement (t(2;5)(p23:q35)23,24) associated with non-Hodgkin's lymphoma 

(Fujimoto et al., 1996; Morris et al., 1994; Shiota et al., 1995). The ALK protein is 

encoded by the ALK gene located at 2p23. Further characterisation of the full-length 

ALK receptor was first described in 1997 by two independent groups (Iwahara et al., 

1997; Morris et al., 1997) and ALK expression was detected in the developing central 

and peripheral nervous system. Full-length human ALK consist of 1620 amino acids 

and the unmodified protein has molecular weight of 180 kDa. Upon post-translation 

modification such as N-linked glycosylation, can increase up to 220 kDa (Iwahara et 

al., 1997; Morris et al., 1997). The homology of the ALK kinase domain to insulin-like 

growth factor receptor 1 (IGF-1R) and insulin receptor (InR) is 47%, placing ALK within 

the family of insulin RTKs (Morris et al., 1994). ALK expression was identified in the 

define area of the developing brain, with highest expression observed in regions such 

as: thalamus, mid-brain, olfactory bulb and selected cranial, peripheral ganglia of mice 

(Iwahara et al., 1997; Morris et al., 1997; Vernersson et al., 2006). Knockdown of ALK 

strongly reduced sympathetic neuron proliferation (Reiff et al., 2011). The ALK loss of 

function mice are viable and do not show any gross phenotypes however defects in 

neurogenesis (the number of neurons, regeneration of myelinated axons) and delayed 

testosterone production, as well as the behavioural responses to ethanol have been 

reported (Bilsland et al., 2008; Lasek et al., 2011; Weiss et al., 2012; Witek et al., 

2015). A lesson learnt from gain-of-function ALK mice highlights its role in 

neurogenesis and neuroblastoma progression in combination with oncogenic MYCN 

(Berry et al., 2012; Cazes et al., 2014; Ueda et al., 2016). Taken together, those data 

suggest the importance of ALK in behaviour, fertility and development of both brain 

and testis. To date, many chromosomal rearrangements resulting in ALK activation 

have been reported, and are involved in a variety of cancer types (Hallberg and Palmer, 

2016; Li et al., 2007; Turner and Alexander, 2005). The discovery in 2007 of the EML4-

ALK oncoprotein in non-small cell lung cancer (NSCLC) (Rikova et al., 2007; Soda et 

al., 2007), and in late 2008 of ALK gain-of-function mutations in paediatric NB (Carén 

et al., 2008; Chen et al., 2008; George et al., 2008; Janoueix-Lerosey et al., 2008; 

Mossé et al., 2008) has focused attention on ALK as a prominent target for drug 

development (Chiarle et al., 2008; Hallberg and Palmer, 2010; Palmer et al., 2009). 
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Fig. 6 Architecture of ALK receptor. 

The RTK ALK consist of 1620 aa. The ECD of ALK carry a two MAM (meprins, A-5 protein and receptor 

protein tyrosine phosphatase mu) domains separated by LDLa (Low density lipoprotein class A) domain 

and those are followed by a glycine-rich region (GR). ALK kinase domain include a conserved small N-

terminal lobe and a large C-terminal lobe. In the top box, crystal structure of ALK kinase domain (PDB: 

3LCT) consists of: glycine-rich loop (green), alfa C helix (magenta), catalytic loop (yellow) and activation 

loop (blue). Hot spot mutations: Phe1174, Arg1275, Phe1245 (red balls). Adapted with permission from 

(Hallberg and Palmer, 2013). 
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1.11.3. Activation of ALK 

Similar to all other RTKs, ALK possesses a ligand binding extracellular region, 

transmembrane domain and intracellular region which harbours the protein tyrosine 

kinase domain (PTK) (Fig. 6) (Iwahara et al., 1997; Morris et al., 1997). In ALK, the 

extracellular domain consists of 1020 aa, followed by a transmembrane-spanning 

region of 21 aa and an intracellular domain of 561 amino acids (Hallberg and Palmer, 

2013). Ligand interaction with the extracellular domain of the receptor is thought to 

effectively crosslink them in a dimeric complex. Ligand induced dimerization results in 

trans-autophosphorylation and activation. In both familial and sporadic NB, full-length 

ALK is activated by point mutations, almost exclusively in the kinase domain (Carén et 

al., 2008; Chen et al., 2008; George et al., 2008; Hallberg and Palmer, 2013; Janoueix-

Lerosey et al., 2008; Matthay et al., 2016; Mossé et al., 2008). Recently described 

ligands of ALK, named ALKALs, can also potently lead to the activation of wildtype 

ALK in NB cell (Guan et al., 2015; Reshetnyak et al., 2015), as well as in vertebrate 

neural crest tissues (Fadeev et al., 2018; Mo et al., 2017). 

 

1.11.4. ALK in neuroblastoma 

Oncogenic ALK mutations has been identified in primary and relapsed NB tumours. 

(Martinsson et al., 2011; Schleiermacher et al., 2014). Sporadic NB is more common 

than familial NB with heritable mutations (Knudson and Strong, 1972). Patients with a 

family history of NB inherit the disease in an autosomal dominant Mendelian fashion 

and these patients represent 1-2% of all NB cases with their tumours mostly harbouring 

mutations in ALK. Overall, ALK point mutations are observed in 7-10% of NB patients 

(Bresler et al., 2014; De Brouwer et al., 2010) and a higher percentage, 26%, in 

relapsed NB cases (Martinsson et al., 2011; Schleiermacher et al., 2014).The “hotspot” 

residues- Phe1174, Arg1275, or Phe1245 in the ALK kinase domain account for of 

85% of all ALK point mutations (Eleveld et al., 2015; Martinsson et al., 2011; Mossé, 

2016; Schleiermacher et al., 2014). There is now ample mechanistic evidence of 

oncogenic cooperation between ALK and MYCN to promote NB pathogenesis and the 

combined occurrence of ALK mutations and MYCN amplification is associated with 

poor prognosis (Berry et al., 2012; Cazes et al., 2014; De Brouwer et al., 2010; 

Heukamp et al., 2012; Schönherr et al., 2012). This implies that targeting of ALK with 

tyrosine kinase inhibitors (TKIs) may provide therapeutic benefits in NB. Studies in cell 

lines and transgenic mouse models have shown that multiple intracellular signal 
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cascades are triggered by ALK and mutated forms of the receptor (Emdal et al., 2018; 

Gouzi et al., 2005; Sattu et al., 2013; Turner and Alexander, 2005; Van den Eynden et 

al., 2018). 

 

1.12. Oncogenic ALK signaling 

Oncogenic ALK signaling mediates downstream signaling cascades via the complex 

interactions of various protein molecules. A vast majority of the knowledge about ALK 

signaling is a result of genetic abnormalities leading to constitutive activation of this 

oncogenic kinase. There are three main ways to activate ALK: (1) via translocation and 

dimerization with the fusion partner, (2) gain of function mutation in the ALK kinase 

domain, or (3) ALK receptor amplification identified in many malignancies. It is 

important to know that the network of interacting proteins and downstream signaling of 

any receptor is complex and may involve multiple feedback loops and association with 

other oncogenes. 

Phosphorylated ALK leads to activation of multiple downstream pathways such as: 

Janus kinase (JAK)–signal transducer and activator of transcription (STAT), sonic 

hedgehog (SHH), JunB Proto-Oncogene signaling (JUNB), Mitogen Activated Protein 

Kinase (MAPK) signaling cascades, mTOR PI3K–AKT, CRKL-C3G-RAP1 and 

phospholipase Cγ (PLCγ) among others. Molecular events in these signaling pathways 

lead to activation of transcription factors such as MYCN, HIF1α, ETV’s and FOXO’s 

resulting in stimulation of a range of cell-specific responses  such as cell growth, 

differentiation or anti-apoptotic signaling (Fig. 7) (Barreca et al., 2011; Chiarle et al., 

2008; Mossé et al., 2009; Palmer et al., 2009). Understanding of oncogenic ALK 

signaling comes mainly from study of the ALK fusions: NPM-ALK and EML4-ALK in 

ALCL and NSCLC as well as from the mutated full length receptor (Hallberg and 

Palmer, 2016; Mazot et al., 2011; Mossé, 2016). 
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Fig. 7 Signaling downstream of ALK. 

Anaplastic lymphoma kinase (ALK) mediates signaling via many pathways including the RAS–MAPK, 

PI3K–mTOR, phospholipase Cγ (PLCγ), RAP1, Janus kinase (JAK)–signal transducer and activator of 

transcription (STAT) and JUN pathways activated during cell growth, transformation, differentiation and 

anti-apoptotic signals. Adapted with permission from (Hallberg and Palmer, 2013). 
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1.13. ALK positive cancers 

Activation of ALK in NB generally occurs due to mutation in the kinase domain of 

receptor, however ALK overexpression has also been described. Oncogenic ALK 

aberrations are also associated with many types of cancers. Apart from mutation and 

overexpression, ALK also exists as a fusion partner in many malignancies such as: 

anaplastic large cell lymphoma, non-small cell lung cancer, inflammatory 

myofibroblastic tumours, diffuse large B-cell lymphomas and squamous cell carcinoma 

of the esophagus. Here the four first malignancies are described: 

 

1.13.1. Anaplastic large cell lymphoma 

Anaplastic large cell lymphoma (ALCL), a subtype of human non-Hodgkin lymphoma, 

was originally described as a neoplasm with predisposition to invade lymph node 

sinuses that expresses Ki-1 (CD30) antigen (Stein et al., 1985). ALCL is the 

malignancy in which ALK translocation was first described and to which also owes its 

name. In ALCL, activation of oncogenic ALK signaling is a direct result of its fusion to 

nucleophosmin (NPM) as a result of NPM-ALK t(2;5)(p23;q35) translocation (Fujimoto 

et al., 1996; Morris et al., 1994; Shiota et al., 1995). This genetic rearrangement is 

extremely common in ALCL and occurs almost in 80% of cases (Amin and Lai, 2007). 

The comprehensively studied NPM-ALK oligomeric fusion consists of the first 117 aa 

from NPM followed by 563 aa residues including the kinase domain of ALK. The 

translocations of the amino-terminal part of the fusion partner lead to dimer formation 

that facilitate autophosphorylation of ALK kinase domain and result in tumorigenic 

potential of fusion oncogene. The common characteristic among the fusion partners of 

ALK is that they determine the cellular localisation of their complex and drive the 

transcription of fusion genes via own promotor. Besides NPM, several other fusion 

partner genes for ALK have been identified in ALCL: moesin (MSN), ALK lymphoma 

oligomerization partner on chromosome 17 (ALO17), TRK fused gene (TFG), 

Tropomyosin 3 and 4 (TPM3, TPM4), non-muscle myosin heavy chain 9 (MHY9), 5-

aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase 

(ATIC), clathrin heavy chain (CLTC), TRAF1 (Boi et al., 2015).  

 

1.13.2. Non-small cell lung cancer (NSCLC) 

Lung cancer is associated with the highest mortality among both men and women 

worldwide, accounting for approximately 1.7 million (in 2019) deaths per year, and can 
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be classified into two histologically distinguishable subgroups: non-small cell lung 

cancer (NSCLC) and small cell lung cancer (SCLC), with 85% and 15% occurrence, 

respectively. The main risk factor in relation to developing NSCLC is cigarette smoking 

(Collins et al., 2007; Zappa and Mousa, 2016). Approximately 4-6% of NSCLCs carry 

ALK rearrangements and given the high incidence of lung cancer cases worldwide this 

accounts for 40,000 ALK dependent NSCLC new cases every year (Bayliss et al., 

2016; Shaw and Engelman, 2013). ALK-positive NSCLC patients are mainly younger 

and light or non-smokers (Rodig et al., 2009; Sasaki et al., 2010). The most frequent 

ALK fusion in NSCLC is the translocation with a cytoplasmic protein echinoderm 

microtubule associated protein-like 4 (EML4). Like ALK, EML4 is located on 

chromosome 2, and to date, at least 15 different EML4-ALK chimeric variants have 

been identified (Bayliss et al., 2016; Soda et al., 2007). Other ALK fusion partners in 

NSCLC include are TFG (Rikova et al., 2007), kinesin light chain 1 (KLC1) (Togashi et 

al., 2012), kinesin family member 5B (KIF5B) (Takeuchi et al., 2009; Wong et al., 

2011), protein tyrosine phosphate non-receptor type 3 (PTPN3) (Jung et al., 2012) and 

striatin (STRN) (Yang et al., 2017).  

 

1.13.3. Inflammatory myofibroblastic tumours (IMT) 

IMT is a rare myofibroblastic soft tumour composed of malignant myofibroblasts with 

prominent inflammatory components, such as lymphocytes, eosinophils, and plasma 

cells that commonly originate in soft tissue of lung, abdomen, pelvis and retroperitoneal 

region and mostly found in children and young adults (Gleason and Hornick, 2008; 

Meis and Enzinger, 1991). IMTs were the first reported non-haematological tumours 

with ALK aberration. ALK rearrangement has been identified in 50% of IMT cases with 

the TPM3 gene localised on chromosome 1 that encodes for a non-muscle 

tropomyosin being the most common fusion (Griffin et al., 1999). Several other fusion 

partners of ALK identified in IMT are: TPM4-ALK (Griffin et al., 1999), ATIC-ALK 

(Debiec-Rychter et al., 2003), CLTC1-ALK (Bridge et al., 2001; Patel et al., 2007), 

cysteinyl-tRNA synthetase, CARS-ALK (Debelenko et al., 2003), Ras-related nuclear 

protein-binding protein 2 (RANBP2), RANBP2-ALK (Ma et al., 2003; Patel et al., 2007), 

protein-tyrosine phosphatase receptor-type F polypeptide-interacting protein-binding 

protein 1, PPFIBP1-ALK (Takeuchi et al., 2011b), SEC31 homologue A, SEC31L1-

ALK (Panagopoulos et al., 2006).  
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1.13.4. Diffuse large B-cell lymphoma (DLBCL) 

DLBCL is a B-cell type neoplasm which is the most common among all lymphomas 

and accounts for 30-40% of all lymphoma cases with primary tumours localised among 

lymph nodes and infrequently at sites such as tongue, nasopharynx, and stomach 

(Laurent et al., 2009; Lenz and Staudt, 2010). However aberrations in ALK are very 

rare, representing less than 1% of all DLBCL, and are associated with unfavourable 

prognosis and ineffective response to chemotherapeutics (Beltran et al., 2009; Laurent 

et al., 2009). Therefore, targeted therapy against ALK would be a good strategy for 

ALK positive DLBCL patients (Tanaka et al., 2020). The most common ALK 

rearrangement is the t(2; 17) (p23; q23) translocation leading to a fusion CLTC gene 

localised on the chromosome 17q23 (Gascoyne et al., 2003). Other ALK fusions in 

DLBCL include NPM-ALK, SEC31A-ALK (Van Roosbroeck et al., 2010), 

sequestosome -1 SQSTM1-ALK (Adam et al., 2003; Onciu et al., 2003; Takeuchi et 

al., 2011a) 

 

1.14. ALK inhibitors 

Since the first report of ALK in the pathogenesis of ALCL in 1994 (Fujimoto et al., 1996; 

Morris et al., 1994; Shiota et al., 1995), oncogenic ALK signaling has been implicated 

in a number of cancer forms (Hallberg and Palmer, 2016; Prokoph et al., 2018; Shaw 

and Engelman, 2013; Trigg and Turner, 2018). ALK positive cells are strongly 

dependent on the ALK kinase activity, therefore targeting ALK is a good strategy to 

inhibit tumour cell proliferation. Additionally, in non-cancerous tissue expression of ALK 

is restricted to the early stages of development and then retained at low levels in few 

specific tissues. This makes ALK an ideal target to be used in clinic because its 

inhibition is catastrophic for cancer cells. 

A spectrum of small-molecule TKI inhibitors (TKIs) selectively inhibiting ALK have been 

designed and investigated in ALK positive cancers. NVP-TAE684 was one of the first 

ALK inhibitors shown to reduce cell proliferation in ALCL and NSCLC (Galkin et al., 

2007; McDermott et al., 2008). To date, several ALK inhibitors have been through 

clinical trials and are clinically employed for ALK-positive cancer. Crizotinib was the 

first generation ALK specific inhibitor approved by FDA (FDA, 26 August 2011, date 

last accessed). After crizotinib, a second generation of inhibitors was developed 

including: ceritinib, alectinib and brigatinib and entrecitinib. Here highlighted are a few 

that have been used in my studies: 
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1.14.1. Crizotinib 

The first generation ALK TKI to enter clinical trials that was approved for treatment in 

ALK-positive NSCLC in 2011 was crizotinib (Fig. 8). Crizotinib (PF-2342066 or 

XalkoriTM), is an orally bioavailable, ATP competitive TKI (Christensen et al., 2007). 

Initially, this drug was developed as a potent c-Met kinase inhibitor, but later studies 

showed that crizotinib was an effective inhibitor of other RTKs, such as ALK and ROS-

1, at pharmacologically relevant concentrations. Based on the remarkable success in 

Phase I and II of clinical trials in ALK-positive NSCLC and since ALK was implicated 

in other malignancies (ALCL and IMT) crizotinib was proposed as a candidate 

treatment option for NB patients (Kwak et al., 2010; Mossé et al., 2013). Currently, 

crizotinib has been evaluated in an ongoing COG phase III trial (COG ANBL1531, NCT 

number NCT03126916) for paediatric patients. However the initial phase I of clinical 

trial shows that only 1 out of 11 NB patient with mutated or amplified ALK had objective 

response (9%) (Mossé et al., 2013). In contrast to NB, treatment with crizotinib resulted 

in robust responses in other paediatric cancers such as IMT, NSCLC and ALCL (Mossé 

et al., 2017). The phase II study with crizotinib as a single agent and in combination 

with chemotherapy are yet to be reported (NCT00939770 and NCT01606878) (Moreno 

et al., 2017). 

 

Fig. 8 Crystal structure of crizotinib binding to the KD of ALK. 

The figure represents the tyrosine kinase inhibitor crizotinib (orange) in the ATP‐binding site of the ALK 

kinase domain. Generated with PyMol using published coordinates (Protein Data Bank code: 2XP2). 
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1.14.2. Lorlatinib 

The third generation inhibitor, PF-06463922 with the molecular formula C21H19FN6O2 

known as lorlatinib (Fig. 9), is a third generation inhibitor and one of the most recent 

additions to the list of ALK TKIs. This ATP-competitive molecule is a highly selective 

and highly potent ALK/ROS1 inhibitor capable of CNS penetration. Lorlatinib, is rather 

unique as it possesses a macrocyclic structure developed mainly to overcome ALK-

TKI resistant mutations, in addition with improved CNS activity (Johnson et al., 2014). 

In biochemical assays, lorlatinib inhibited wild-type ALK, represented by Ki value 

(mean inhibitory constant) of less than 0.07 nM. In addition, lorlatinib potently inhibits 

crizotinib-resistant ALK mutants such as L1196M, G1269A, 1151Tins, and F1174L 

with Ki value in a range between 0.1-0.9 nM (Zou et al., 2015). Preclinical investigation 

of lorlatinib in NB shows that this inhibitor is capable of inhabiting almost all ALK 

mutants including those previously described to be resistant to other ALK TKIs. 

Furthermore, lorlatinib was superior to crizotinib and alectinib in ALK- dependent in 

vitro and in vivo xenograft mice models (Guan et al., 2016; Infarinato et al., 2016; Lin 

et al., 2017). Lorlatinib is currently in paediatric phase I/II clinical trials for NB (NANT, 

NCT03107988) (Moreno et al., 2017). 

 

Fig. 9 Crystal structure of lorlatinib binding to the KD of ALK. 

The figure represents the tyrosine kinase inhibitor lorlatinib (orange) in the ATP‐binding site of the ALK 

kinase domain. Generated with PyMol using published coordinates (Protein Data Bank code: 4CLI). 
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1.14.3. Repotrectinib 

Repotrectinib (TPX-0005) is a novel rationally designed ATP-competitive TKI 

developed by TP Therapeutics. This inhibitor was designed based on the structure of 

lorlatinib (Fig. 10). Repotrectinib possesses a low-molecular weight and three-

dimensional macrocyclic structure that precisely anchors in the adenine-binding site. It 

is selective and highly potent against ROS1, TRKA-C, and ALK. Repotrectinib can 

overcome resistance acquired due to solvent-front mutation (G1202R rearrangement), 

thanks to its small structure which helps to avoid steric hindrance. Repotrectinib is 

currently in phase I and phase II clinical trials for adult cancer patients (NCT03093116). 

Preliminary data shows that is well tolerated, and has low side effects in patients with 

TRK and ROS1 mutations (Adult patients: ETV6–NTRK3-rearranged MASC with 

NTRK3G623E-mediated resistance to entrectinib and CD74–ROS1-rearranged NSCLC 

with ROS1G2032R-mediated resistance to crizotinib. It has been shown that this inhibitor 

can overcome multiple resistance mechanisms by targeting SRC/FAK signaling (Drilon 

et al., 2018).  

 

Fig. 10 Comparison of the structures of crizotinib, lorlatinib and repotrectinib. 

Repotrectinib has been designed based on macrocyclic structure of lorlatinib. The crystal structure of 

repotrectinib binding to the KD of ALK is not available yet. 
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1.15. Targeting ATR in neuroblastoma 

1.15.1. Cell cycle and its regulation 

The eukaryotic cell cycle is a highly evolutionary conserved chain of events by which 

a mother cell replicates its genome, grows and segregates into two daughter cells. It 

is therefore very important that this process is performed with great precision to avoid 

cellular damage and to prevent potential errors to be transferred to the progeny. The 

majority of the cells in adult tissues are in G0 phase and cells in this phase consist of 

two different cellular states: transient (quiescence) or permanent (upon terminal 

differentiation or senescence). However, to proliferate they need to commit to re-enter 

the cell cycle in response to mitogenic factors (Otto and Sicinski, 2017). The 

mammalian cell cycle comprises of interphase which consists of three active phases: 

gap 1 phase (G1), DNA synthesis phase (S) and gap 2 phase (G2) and is followed by 

mitosis (M) phase (Blagosklonny and Pardee, 2002). Cellular reprograming relies on 

the complex communication between three groups of signaling proteins that ensure 

that the cell cycle is performing properly. Cyclin-dependent kinases (CDKs) are 

members of the serine/threonine kinase family and their catalytic activities are 

modulated by interactions with cyclins and cyclin-dependent kinase inhibitors (CKIs) 

which control kinase activity and substrate specificity during cell cycle progression. 

CDKs are recognised as the engine that drives cell cycle progression, while CKIs and 

cyclins are considered to be the gears and their presence or absence strictly controls 

the smooth transition between cell cycle phases (Lim and Kaldis, 2013). Any alteration 

in the genes controlling the cell cycle progression can lead to reproduction of progeny 

with defective genetic material and therefore increased genetic instability. In malignant 

cells, the restriction points that control cell cycle progression often become non-

functional for various reasons, leading to uncontrolled proliferation (Wenzel and Singh, 

2018). Therefore, it is critical that cells possess intact mechanistic checkpoints that 

ensure the proper progression of cell cycle and generate defect-free progeny. The cell 

cycle progression is nonlinear network of multiple proteins and pathways that create 

various feedback loops creating a scenario in which downstream events lie upstream 

of themselves briefly described below (Fig. 11). 
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Fig. 11 Simplified illustration of a complex network regulating the cell cycle. 

After re-entering the cell cycle, cells follow a sequential activation and deactivation of many cyclin-CDK 

complexes. This multilevel process is accompanied by CKI as well as controlled by tumour suppressor 

proteins, checkpoint kinases, and involves activation of many transcription factors. Adapted from 

(Blagosklonny and Pardee, 2002; Otto and Sicinski, 2017). 

 
 

1.15.2. Cell cycle checkpoints 

Cell cycle progression is orchestrated by checkpoints that are surveillance 

mechanisms to ensure that every step of the cell cycle is performed correctly and 
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completed prior to progression to the next phase of the cycle. Regulatory checkpoints 

comprise the G1/S “restriction checkpoint”, the G2/M- “DNA replication checkpoint” and 

the “metaphase/anaphase” or “spindle apparatus checkpoint”. 

After re-entering the cell cycle, cells upregulate cyclin D1 by four distinct mechanisms: 

(1) induction of transcription, (2) protein stabilisation, (3) re-localisation to nucleus, and 

(4) assembly complex with CDK-4 and CDK-6. Assembly of cyclin D-CDK4/6 

complexes is strictly regulated by the INK4 protein that can immediately cause cell 

cycle block by inhibition of CDK4/CDK6 monomers and lead to cyclin-D degradation. 

In unperturbed cells, the cyclin D-CDK4/6 complex phosphorylates the RB protein and 

causes E2F nuclear re-localisation and transcriptional activation of genes involved in 

nucleotide metabolism and DNA synthesis and also increases levels of cyclins E and 

A. Activated cyclin E-CDK2 complexes are essential to allow cell transition to S phase. 

During S phase cells assemble a multiprotein complex named the replisome, to 

perform DNA replication. This process is strictly controlled the by ATR kinase. In case 

of any DNA damage occurred upon DNA synthesis ATM/ATR signals via 

CHEK1/CHEK2 which primes protein phosphatase CDC25A for degradation. Upon 

DNA damage, ATM recognises double break strands (DBS) and phosphorylates p53. 

ATM phosphorylation of p53 leads to release a p53 negative regulator factor MDM2. 

Furthermore, p21 and p27, major targets of p53 transcriptional activation, can interact 

with cyclin-CDK complexes and result in cell cycle arrest at any stage. The presence 

of errors during replication such as lesions or stalled replication forks, prevents cells 

from entering G2 and starting preparation for mitosis. Cyclin B-CDK1 complex drives 

cells forward towards the M phase. WEE1 kinase controls cell size and can inhibit the 

mitotic entry by inhibitory phosphorylation of cyclin CDK1. The activation of polo-like 

kinase 1 (PLK1) toward the end of G2 executes mitotic entry associated with events 

such as centrosome maturation, Aurora phosphorylation, chromosome condensation 

and cytokinesis. In mitosis, cells proceed through 4 stages: prophase, metaphase, 

anaphase, and telophase, followed by cytokinesis. Cells need to ensure that equal 

distribution of sister chromatid took place and the chromosomes are properly attached 

to the mitotic spindle (Fig. 11) (Blagosklonny and Pardee, 2002; Otto and Sicinski, 

2017). Recently, in 2018, Saldivar et al. proposed a fourth, intrinsic “S/G2 transition 

checkpoint” (Saldivar et al., 2018). 
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Fig. 12 Cell cycle checkpoints 

Cell cycle progression is strictly regulated at the critical checkpoints by cyclins and CKI. 

 

1.15.3. An intrinsic S/G2 checkpoint enforced by ATR 

Upon completion of G1 phase, the conserved domain of ETAA1 potently and directly 

stimulates the ATR checkpoint kinase to block the S/G2 switch until S phase ends. 

During S phase, activated ATR assists ongoing DNA replication and blocks the CDK1-

dependent FOXM1 phosphorylation switch. Upon the completion of DNA replication, 

ATR activity is no longer required, releasing CDK1 to rapidly phosphorylate and 

activate FOXM1 at the beginning of G2 phase. FOXM1 phosphorylation results in 

upregulation of a spectrum of mitotic genes involved in cell cycle progression to enter 

mitosis. ATR is responsible for ensuring that the G2/M progression is dependent upon 

the completion of S phase to preserve genome integrity, Salvador et al., refer to this 

pathway as the “intrinsic S/G2 checkpoint” (Fig. 12) (Saldivar et al., 2018). 
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1.15.4. The DNA damage response 

DNA damage (DD) is defined as an alteration in DNA structure which occurs naturally 

as a result of cellular metabolism or is caused by factors such as exposure to genotoxic 

agents, such as ionizing radiation and chemotherapy. The damaged DNA can exist as 

single or multiple base damage, single strand breaks (SSBs) and less commonly as 

double strand breaks (DSBs). Observed damages are bases missing from the 

backbone of DNA, or chemically changed base/bases. Tens of thousands of such 

events occur every day in our cells, and indeed DD accumulation can lead to genomic 

instability, however this damage is simultaneously repaired by complex molecular 

machinery (Lindahl, 1993). To overcome DNA lesions cells have developed 

mechanisms to prevent it. The DNA damage response (DDR) is a multi-complex 

signaling cascade which consists of collection of different intra- and inter-cellular 

signaling events involving proteins that can detect and mediate the repair of damaged 

DNA, thereby ensuring that any perturbations are repaired and not transferred to the 

next generation (Ciccia and Elledge, 2010; Jackson and Bartek, 2009). The process of 

DDR is orchestrated by over 700 proteins which are involved in processes that cause 

cell cycle arrest and control of DNA replication (Matsuoka et al., 2007). If the DNA 

damage is too massive and repair machinery cannot cope with DNA repair, the DDR 

impacts on downstream cell fate so that damaged cells are directed to cell death 

(apoptosis) or senescence (d'Adda di Fagagna et al., 2003; Freund et al., 2010; Kang 

et al., 2015). The efficiency of DNA repair appears to decrease with advancing age 

and leads to accumulation of DNA damage in tissues (Lombard et al., 2005). DDR 

defects are associated with human diseases such as cancer (Sancar et al., 2004). 

 

1.15.5. Ataxia Telangiectasia Mutated and Rad3-related kinase 

Ataxia Telangiectasia Mutated and Rad3-related belongs to the phosphatidylinositol 3-

kinase-related (PIKK) serine/threonine kinase family which includes 5 other members 

such as: ATM (ataxia-telangiectasia mutated), PRKDC (DNA-PKcs, DNA-dependent 

protein kinase catalytic subunit), SMG1 (suppressor of morphogenesis in genitalia), 

TRRAP (transformation/transcription domain-associated protein) and MTOR 

(mammalian target of rapamycin) (Lempiäinen and Halazonetis, 2009). All PIKK 

kinases share similarities in their structure and in particular all contain a C-terminal 

FAT domain (Fig. 13). They are involved in cellular events such as proliferation, 

survival, metabolism, and differentiation (Ciccia and Elledge, 2010; Jackson and 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/dna-replication
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Bartek, 2009; Lempiäinen and Halazonetis, 2009). ATR is a key player in a cellular 

response to ssDNA damage, a lesion frequently caused by replication stress (RS) at 

stalled replication forks. Single strand DNA damage can also occur due to exposure to 

anticancer chemotherapy and ionizing radiation (IR). The ATR phosphorylation 

cascade signals via CHK1 phosphorylation and controls cellular processes such as 

cell cycle arrest through stimulation of intra-S and G2/M checkpoints to orchestrate 

DNA damage repair (Reinhardt and Yaffe, 2009). 

 

 

Fig. 13 PIKK family 

The PIKK family consists of six members: ATM, ATR, DNA-PK, SMG1, MTOR and TRRAP. All PIKK 

possess a conserved kinase domain (PIKK), FRAP-ATM-TRRAP (FAT) domain, and an additional C-

terminal, FRAP-ATM-TRRAP-C-terminal (FATC) domain. Adapted with permission from (Weber and 

Ryan, 2015).  
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1.15.6. Mutations in DDR related genes 

Many cancers rely on DDR pathways to survive genomic instability, however many 

mutated DDR genes are frequently associated with diseases caused by developmental 

defects (Ruzankina et al., 2007). ATR knockout is lethal (Brown and Baltimore, 2000) 

and mice die early in development, subsequent to the blastocyst stage. In humans, 

reduced ATR function leads to developmental disorders, manifest as Seckel 

syndrome, characterised by microcephaly and short stature. (O'Driscoll et al., 2004). 

Inducible knockout of ATR in adult mice is tolerable with no major consequences 

(Murga et al., 2009; Ruzankina et al., 2007; Schoppy et al., 2012). Depletion of ATR in 

adult mice results in an age related phenotype characterised by hair graying, alopecia, 

osteoporosis, kyphosis, as well as stem cell loss (Ruzankina et al., 2007). These age-

related phenotypes are unique in mice and humans with mutations in DDR genes. The 

list expands to pathologies associated with metabolic and cardiovascular 

abnormalities, increased incidences of malignancies and shortened lifespan (Hasty et 

al., 2003; Lombard et al., 2005). The tumour suppressor p53 plays a vital role in the 

cell intrinsic response to DNA damage (downstream phosphorylation of ATM), and its 

activation drives cell-cycle arrest, apoptosis, and senescence. Patients with tumours 

lacking specific DDR functions, such as mutations in p53, become more dependent on 

the S and G2/M checkpoints and therefore hypersensitive to inhibitors of ATR (Stewart 

and Weinberg, 2006). 

 

1.15.7. ATR inhibitors 

Accumulation of DNA damage contributes to genomic instability that is linked to the 

vast majority of human cancers. Cancer are dependent on DDR pathways to mitigate 

genomic instability by activating the ATR checkpoint kinase (Halazonetis et al., 2008). 

Therefore, targeted therapy against ATR will lead to impairment of DNA repair 

mechanisms but also halt checkpoint activation leading to premature cell cycle 

progression which can result in mitotic catastrophe. The fast proliferation of malignant 

cells compared to normal cells make the former more sensitive to DDR based therapies 

(Foote et al., 2018). 

ATR kinase has recently become an interesting drug target because of its crucial 

function in repair of ssDNA damage since unrepaired damage can lead to fatal DSB. 

The process of developing ATR inhibitors started in 1990, however the first attempts 

resulted in neither potent nor specific compounds such as caffeine (IC50= 1,1mM), 
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which also targets other PIKK family members like ATM (IC50= 0.2 mM) (Cortez, 2003; 

Sarkaria et al., 1999) and a low potent wortmannin (with IC50= 1.8 uM) (Knight et al., 

2006). In recent years, highly potent and selective compounds have been synthesised 

and four of them, based on promising preclinical data, have entered human clinical trial 

assessment. ATR inhibitors such as AZD6738 (ceralasertib), M6620/VX-970 

(berzosertib), M4344/VX-803, BAY1895344 entered human studies (Fig. 14). 

Currently, AZD6738, BAY1895344, VX-970 are in the clinical trials in 29, 6 and 16 

different studies respectively, including monotherapies as well as combinatory 

therapies. M4344/VX-803 has been enrolled in one clinical study NCT02278250, 

however a second study including a PARP inhibitor niraparib is planned 

(https://clinicaltrials.gov/). 

 

Fig. 14 ATR inhibitors in I/II phase clinical trials. 

ATR inhibitors which are currently in clinical trials as a monotherapy as well as in combination 

treatments. 
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1.15.7.1. AZD6738, ceralasertib 

AZD6738, ceralasertib, is an orally bioavailable, ATP competitive ATR kinase inhibitor 

developed by Astra Zeneca. AZD6738 inhibits ATR substrate CHK1 Ser345 

phosphorylation in cells with IC50= 74 nM (Foote et al., 2018). Ceralasertib is potent 

and selective against ATR kinase activity (Foote et al., 2018). Vandetti et al., showed 

that treatment with AZD6738 leads to cell death and senescence in NSCLC cell lines. 

Another study showed that, AZD6378 enhanced the cytotoxic effect in combination 

with gemcitabine in NSCLC cell lines. Ceralasertib treatment revealed a synergistic 

effect in combination with cisplatin to induce a rapid cell death in ATM-deficient 

NSCLC. Additionally, NSCLC cells with ATM knockdown were shown to demonstrate 

increased sensitivity to combination of cisplatin and AZD6738. Vandetti et al., tested 

two NSCLC grafts: H460 and H23 in in vivo studies. The treatment with AZD6738 

resulted in tumour growth inhibition in the nude mice bearing H460 tumours. Also the 

treatment of mice with ATM- deficient H23 NSCLC grafts with AZD6738 in combination 

with cisplatin was well tolerated and caused rapid regression of ATM-deficient NSCLC 

tumours (Vendetti et al., 2015). Checkley et al., developed a cell-based model for 

predicting a tumour growth, as a supporting tool currently employed in phase I clinical 

trial design of AZD6738 monotherapy and combination with ionizing radiation 

(Checkley et al., 2015). Ceralasertib is at the moment in numerous phase II clinical 

studies as a single agent  therapy and in combination with carboplatin (NCT02264678), 

paclitaxel (NCT02630199), radiotherapy (NCT02223923), and PARP inhibitor, 

olaparib (NCT03462342, NCT03330847), acalabrutinib (NCT03328273), and 

durvalumab (NCT03334617) (Dillon et al., 2018; Foote et al., 2018). 

 

1.15.7.2. BAY1895344 

BAY1895344 is an orally available, potent and highly selective ATR protein kinase 

inhibitor designed by Bayer AG. BAY1895344 selectively binds to and inhibits the 

activity of ATR kinase leading to abrogation downstream signaling molecules such as 

Chek1. BAY1895344 demonstrated potent inhibition in in vitro biochemical assays with 

IC50= 7 nM and also inhibits hydroxyurea-induced H2AX phosphorylation in HT-29 cell 

with IC50=36nM. This inhibitor also showed a potent, antineoplastic activity among a 

broad spectrum of human tumour cell lines, with median IC50 = 78 nM (Lücking et al., 

2020). A study performed by Wengner et al., demonstrated a potent antiproliferative 

activity of BAY1895344 in vitro and in vivo. BAY1895344 inhibits cell growth of a panel 
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of 38 human cancer cell lines covering various types of cancer. As a single agent, 

BAY1895344 strongly abrogated the growth of cancer xenografts carrying DNA 

damage repair deficiencies. BAY1895344 exhibits synergistic antitumor efficacy in 

combination with external beam radiotherapy (EBRT) in colorectal cancer. The 

combination of BAY1895344 with olaparib in PARPi-sensitive BRCA1-deficient breast 

cancer and in PARP-inhibitor resistant prostate cancer showed synergistic antitumour 

growth in vitro and in vivo. In this comprehensive study, combination of BAY1895344 

with the novel, nonsteroidal androgen receptor antagonist darolutamide showed 

significant reduction of the tumour growth in comparison to monotherapy treatment in 

hormone-dependent prostate cancer. Additional exposure to EBRT resulted in even 

further increased antiproliferative capability of the treatment (Wengner et al., 2020).  

A recent study performed by the thorium conjugate research group from Bayer AS, 

employed targeted alpha therapy (TAT) in the combination with monoclonal antibodies 

of fibroblast growth factor receptor 2 (FGFR2). Several cancers including: triple 

negative breast cancer, gastric cancer, colorectal cancer exhibit overexpression of 

receptor tyrosine kinase FGFR2 (Wickstroem et al., 2019). The advantage of TAT is to 

deliver the radiobiological particle to the tumour via tumour-specific ligand, such as a 

monoclonal antibody, which in the case of this study was conjugated of fibroblast 

growth factor receptor 2 with targeted thorium-227 (FGFR2-TTC). In vitro analysis 

showed increased potency of FGFR2-TTC in combination with BAY1895344 with 

elevated level of histone H2AX that caused cell cycle arrest. Wickstroem et al., also 

performed in vivo study on MFM-223 breast cancer xenograft models and observed a 

synergistic effect of the FGFR2-TTC combination with BAY1895344 whereas single 

agent showed no effect (Wickstroem et al., 2019). 

 

1.15.7.3. M6620 (formerly VE-822, VX-970 berzosertib) 

VX-970 was identified by high-throughput screening as potent ATR inhibitor (Charrier 

et al., 2011). VX-970 sensitised cells to chemo- and radiotherapies in both in vivo and 

in vitro models of pancreatic ductal adenocarcinoma (PDAC). VX-970 significantly 

reduces survival of pancreatic cancer cells in combination with XRT and gemcitabine in 

vitro and in vivo and did not increased toxicity in healthy cells and tissues (Fokas et al., 

2012). This inhibitor also significantly sensitized breast cancer PDXs to radiotherapy 

(Tu et al., 2018). In clinical trials, VX-970 performed safely and was well tolerated as a 

monotherapy leading to complete response in patient with colorectal cancer. Yap et 
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al., also tested VX-970 in combination with carboplatin, however this required a dose 

reduction of VX-970 in compare to monotherapy (Yap et al., 2020). In clinical studies, 

VX-970 in combination with topotecan seems particularly active and decreased the 

tumour size of platinum-refractory small-cell lung cancer, in contrast to single treatment 

with topotecan which was not that efficient (Thomas et al., 2018). Currently evaluated 

in clinical trials, VX-970 shows anticancer activity, both as a single agent and in the 

combination with chemotherapy or radiotherapy (NCT02157792, NCT02567409). 

 

1.15.7.4. M4344 (VX-803) 

VX-803 is an oral bioavailable, adenosine triphosphate (ATP)-competitive, highly 

specific and potent inhibitor of ATR. M4344 potently inhibits ATR-driven 

phosphorylation of direct downstream target CHEK1 kinase with an IC50 of 8 nM. This 

inhibitor is currently under clinical trial as a mono-therapeutic as well as in combination 

with carboplatin, gemcitabine and cisplatin.  To date, there are no clinical data available 

(Moreno et al., 2020).  

The range of ATR inhibitors enrolled into the clinical trials such as: AZD6738, M6620, 

M4344 and BAY1895344 present novel therapeutic strategies for treating patients with 

malignancies carrying defects in DDR genes, both in  monotherapy as well in the 

combination with spectrum of DNA damage–inducing or –compromising cancer 

therapies (Wengner et al., 2020). 
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2. AIMS: 

To better understand ALK signaling in NB, as well as to investigate potential novel 

therapeutic strategies, for NB treatment, we:  

 

Paper I: 

Performed comprehensive analysis of ALK signaling of by proteomic and RNAseq 

analysis to identify novel targets for treatment.  

 

Paper II: 

Investigated the potential of a recently developed ALK inhibitor, repotrectinib, in NB 

setting.  

 

Paper III:  

Explored ATR in NB, testing the effect of the BAY1895344 ATR kinase inhibitor on NB 

growth. 
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3. MATERIALS AND METHODS: 

A brief introduction of the most commonly used methods to generate data are included. 

More details can be found in the papers and manuscript. 

 

3.1. Cell culture 

NB cells were cultured in RPMI-1640 medium supplemented with 10% FBS and grown 

at 37°C, 5% CO2, 95% humidity. All ALK-addicted cell lines were cultured on collagen 

pre-coated dishes. PC-12 cells were maintained in MEM/EBSS medium supplemented 

with 3% FBS and 7% horse serum and a mixture of 1% penicillin/streptomycin at 37°C 

and 5% CO2. 

 

3.2. Inhibition of ALK activity in neuroblastoma cell lines 

NB cells were seeded and treated with inhibitor as indicated. Cell lysates were 

collected after 1h of treatment and protein concentration was determined by BCA 

assay. Protein lysates were analysed by immunoblotting. 

 

3.3. Immunoblotting 

Cells were lysed on ice with RIPA buffer for 15 min and then centrifuged for 10 min at 

4°C. Proteins were separated on 7.5% bis-acryl-tris gels, transferred to membranes, 

blocked in 5% bovine serum albumin (BSA) and immunoblotted with primary antibodies 

overnight at 4°C. Secondary antibodies were diluted 1:10 000 and incubated with 

shaking at room temperature for 1 hour. Enhanced chemiluminescence substrates 

were used for detection and membranes were scanned. 

 

3.4. Immunofluorescence 

NB cell lines were seeded on collagen precoated cover glasses. After 24 hours, cells 

were treated with inhibitor as indicated. Cells were fixed in 4% formaldehyde for 15 

min at room temperature and then rinsed three times in PBS for 5 min each. 

Membranes were permeabilized with 1% Triton X-100 for 5 min and rinsed three times 

in PBS with Tween20 (PBST) for 5 min each. Samples were blocked in blocking buffer 

for 60 min (5% BSA in PBS) before application of primary antibody overnight at 4°C. 

Samples were rinsed three times in PBST (with 0.5% BSA) for 5 min each and 

incubated with fluorochrome-conjugated secondary antibody for 1 to 2 hours at room 
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temperature in the dark, then rinsed twice with PBST (with 0.5% BSA) for 5 min each, 

and rinsed once in 1. PBS for 5 min. Specimens were mounted with Fluoromount-G. 

 

3.5. Apoptosis assay 

Cells were seeded and treated with inhibitor at the indicated concentrations for 24 h. 

Cell lysates were collected using RIPA buffer and protein concentration was 

determined. Samples were immunoblotted with PARP antibody, which recognizes both 

full length and cleaved PARP1. Actin was used to normalize cleaved PARP1. 

 

3.6. Proliferation assay 

NB cell lines were seeded on 48-well plates. Next day, cells were treated for 5 days 

with increasing concentration of inhibitor. The experiment was analysed in either an 

Incucyte instrument, where images were taken every 24 hours, or by resazurine assay 

performed at day 5. 

 

3.7. Neurite outgrowth assay 

ALK constructs, either mutant or wild type, and pEGFPN1 were co-transfected into PC-

12 cells. After transfection, cells were diluted in culture medium and seeded into 24-

well plates. The next day cells were treated with inhibitor as indicated. Neurite 

outgrowth was analysed 48 h post transfection. 

 

3.8. ALK phosphorylation in PC-12 cells 

Cells were transfected by electroporation with ALK mutant constructs or the wild type 

ALK construct. After 48 h, cells were treated with serial dilutions of inhibitor for four 

hours. Cell lysates were collected and analysed by immunoblotting. Actin, phospho-

ALK- 1604 and pan-ALK band intensity were determined. 

 

3.9. RNA-seq sample preparation 

For RNA-seq experiments, CLB-BAR, CLB-GE, cell lines were treated for 24 and 48 

hours with BAY1895344 (50 nM). Total RNA was isolated using the Promega Total 

RNA Isolation Kit (Promega), and RNA samples were sent to Novogene for analysis. 

n = 1 biological replicate for each cell line and treatment condition. 
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3.10. RNA-seq data analysis 

The quality of the data was examined with fastqc (version 0.11.2). TrimGalore (version 

0.4.0) was used to trim away any remaining sequencing adapters together with ends 

with a lower quality phredscore than 20. Reads shorter than 30nt after the trimming 

were removed in the same step.  The reads were aligned towards the human reference 

genome (GRCh38.90) using STAR (version 2.5.2b). The amount of reads mapped 

towards annotated features were quantified using featureCounts (version 1.6.4). The 

count matrix was imported into R (version 3.5.1) where the statistical analysis was 

performed using DESeq2. 

 

3.11. Proteomic/Phosphoproteomic sample preparation: 

Cells were seeded in FBS free media, next day treated with ATR inhibitor- 

BAY1895344 (ATRi) 50 nM for the indicated time. Prior to harvesting, cells were 

washed with cold PBS, then gently removed from the dish. Media with cells were pour 

into 50ml tube and centrifuge at 1500 rpm, for 5 min. Supernatant was poured off and 

pellets moved and suspended again in 1 ml of ice-cold PBS in 1.5 ml tube and repeated 

for 5 times, 1400 rpm, 4 degree. After the last wash, cells were suspended and aliquots 

were taken to perform western blotting. After last spin, supernatants were discarded 

and cell pellets frozen and stored at -80 degree.   

 

3.12. Proteomic/Phosphoproteomic sample analysis: 

Identification and relative quantification were performed using Proteome Discoverer 

version 2.4 (Thermo Fisher Scientific). The database search was performed using the 

Mascot search engine v. 2.5.1 (Matrix Science, London, UK) against the Swiss-Prot 

Homo sapiens database. Trypsin was used as a cleavage rule with no missed 

cleavages allowed; methylthiolation on cysteine residues, TMTpro at peptide N-termini 

and on lysine side chains were set as static modifications, and oxidation on methionine 

was set as a dynamic modification. For the total proteome analysis, precursor mass 

tolerance was set at 5 ppm and fragment ion tolerance at 0.6 Da. For the 

phosphopeptide analysis, precursor mass tolerance was set at 5 ppm and fragment 

ion tolerance at 30 mmu; phosphorylation on serine, threonine, and tyrosine was set 

as an additional dynamic modification. Percolator was used for PSM validation with the 

strict FDR threshold of 1% in both cases. Quantification was performed in Proteome 

Discoverer 2.4. TMT reporter ions were identified with 3 mmu mass tolerance in the 
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MS2 HCD spectra for the phosphopeptide experiment or in the MS3 HCD spectra for 

the total proteome experiment, and the TMT reporter S/N values for each sample were 

normalized within Proteome Discoverer 2.4 on the total peptide amount. Only the 

unique identified peptides were taken into account for the protein quantification. 

 

3.13. Xenograft neuroblastoma model 

Female BALB/cAnNRj-Foxn1nu mice 4-6 weeks old were subcutaneously injected into 

the left flank with 1 × 106 CLB-BAR cells. Once the tumour reached a volume of 150 

mm3, mice were randomized to orally administrated inhibitor treatment. Xenograft 

tumours were harvested after 14 days of treatment and fixed in 4% paraformaldehyde 

for 72 h. Fixed tumour tissue was imbedded in paraffin blocks for sectioning. 

 

3.14. Software for data presentation 

To analyse data we used different software packages. Western blotting membranes 

were visualized with immobilon Forte Western HRP substrate in an Odyssey Fc 

system, and band intensity was determined using Image Studio Lite software. Images 

were cropped using Adobe Photoshop CS6 and the final version generated in 

Illustrator CS6. Neurite formation was determined with a Zeiss Axiovert 40 CFL 

microscope. GraphPad Prism 7 was used to represent all numeric data sets: cell 

proliferation curves, determination of IC50 values, combination treatment and calculate 

statistic. 

 

3.15. Statistical analysis 

One way-ANOVA followed by the appropriate post hoc test for multiple comparisons 

were used to determine differences in apoptosis, immunohistochemistry and in the 

xenograft experiments at significance level of 0.05. 
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4. RESULTS AND DISSCUSION: 

 

4.1. Paper I: 

“Phosphoproteome and gene expression profiling of ALK inhibition in neuroblastoma 

cell lines reveals conserved oncogenic pathways.”  

 

In Paper I we established both phospoproteomic and gene signature profiles of ALK 

activity from several different NB cells comparing treatment with the first and third 

generation ALK inhibitors. Crizotinib was one of the first ALK TKIs to be described; 

however the response in patients with ALK positive NB was poor (Mossé et al., 2013). 

Lorlatinib is a third generation ALK TKI with very positive responses in NSCLC 

(Solomon et al., 2018). We treated two ALK-addicted cell lines, CLB-BAR and CLB-

GE, as well one ALK non-addicted (SKNAS) NB cell line with either crizotinib or 

lorlatinib and performed phosphoproteomic and RNAseq profiling to identify targets for 

future combinational treatment for patients. The profiling of CLB-BAR and CLB-GE NB 

cell lines led to the identification of 3345 and 2252 phosphoproteins, respectively. In 

ALK-addicted cells phosphoproteomic analysis revealed more than 50 proteins that 

were dephosphorylated upon treatment with ALK TKIs. Phosphorylation of the ALK 

receptor itself and its downstream targets was decreased in both lines upon treatment 

with crizotinib or lorlatinib. In parallel, RNAseq profiling was performed at 24 hrs of NB 

cells. Comparison with non-treated controls revealed 19 232 differently expressed 

genes. More than 400 genes were downregulated, and more than 600 were 

upregulated, upon treatment with either crizotinib or lorlatinib. As an outcome we 

obtained a list of predicted targets for further analysis. We focused on validation of 

downstream signaling molecules such as: transcription factors FOXO3a/4, a member 

of the dual specificity protein phosphatase subfamily DUSP4 and the transcriptional 

repressors ETV3/4 which modulates, ALK signaling. This analysis has unveiled a 

number of important leads for novel combinatorial treatment strategies for NB patients 

as well as an increased understanding of ALK dependant signaling processes.  
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Fig. 15 Workflow of project I. 

Advance analysis of oncogenic ALK signaling events in neuroblastoma. 
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4.2. Paper II: 

“Repotrectinib (TPX-0005), effectively reduces growth of ALK driven neuroblastoma 

cells.”  

 

A spectrum of small-molecule TKI inhibitors (TKIs) has been FDA approved for use in 

ALK-driven cancers including NSCLC and ALCL. Most ALK-dependent tumors initially 

respond to TKIs, but drug resistance often develops (Choi et al., 2010; Rotow and 

Bivona, 2017). In the present study we investigated the effects of repotrectinib (TPX-

0005), a novel TKI, in an NB setting in vitro and in vivo. This rationally designed 

selective and highly potent TKI against ROS1, TRKA-C, and ALK possesses low-

molecular weight and a three-dimensional macrocyclic structure that precisely anchors 

in the adenine binding site. Repotrectinib overcomes resistance acquired due to 

solvent-front mutation G1202R and is currently in clinical trial for adult patient with solid 

tumours. To investigate the effect of repotrectinib in an NB setting, a range of NB cells 

were treated to test if the drug can inhibit ALK and to determine its effect on 

proliferation. PC12 cells transfected with different ALK mutant variants indicated the 

efficacy of repotrectinib to block ALK activation/signaling. We also tested the effect of 

repotrectinib in vivo in a NB xenograft model. Our results show that repotrectinib is 

capable of inhibiting signaling activity of a range of ALK mutant variants and importantly 

it exhibits strong antitumour effects in xenograft NB models. Repotrectinib is superior 

to crizotinib in abrogating xenograft tumour growth, likely due to its pharmacology 

properties, and also perhaps reflecting that repotrectinib is a potent inhibitor with a 

broader target kinase range despite similar IC50 cell proliferation values in cell culture 

models. To conclude, our experimental analysis supports repotrectinib as a new potent 

ALK inhibitor with potential for clinical use in NB. 
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Fig. 16 Workflow of project II. 

Preclinical analysis of the novel tyrosine kinase inhibitor repotrectinib in a neuroblastoma setting. 
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4.3. Paper III: 

“Modulation of SUN2 phosphorylation downstream of ALK pathway identifies a role for 

ATR in neuroblastoma cell survival” 

 

Further investigation of ALK downstream targets pathways performed in the study I 

identified ATR as a potential candidate. In study III, we investigated ATR and its 

therapeutic potential in NB. ATR protein kinase is one of the key mediators in 

maintaining genome integrity and coordination of the DDR. Inhibition of ATR prevents 

Chk1 pathway from stalled replication forks and enhances replication stress and 

premature mitotic entry.  First, we tested two independent ATR inhibitors, AZD6738 

and BAY1895344, noting that the BAY1895344 compound exhibited lower IC50 values 

on both CLB-BAR and CLB-GE NB cell lines leading us to choose this inhibitor for 

further study. In addition, BAY1895344 is the first ATR kinase inhibitor in clinical trial 

NCT03188965. BAY1895344 was highly effective in preventing growth of both ALK- 

addicted and non-addicted NB cell lines, exhibiting an apoptotic response and reduced 

proliferation. These findings suggest that ATR signaling is required for survival in NB 

cells. We also confirmed that the ATR intrinsic regulation mechanism observed and 

published by Saldivar in S/G2 is conserved in an NB setting. To better understand the 

mechanism of action of the BAY1895344 inhibitor we performed proteomic, 

phosphoproteomics and RNAseq analysis. Our ‘omnix’ analysis identified a broad 

landscape of DDR related genes which were both downregulated and upregulated, 

including Chk1 and p53 tumour suppressor as well as FANC genes, and apoptotic 

regulatory proteins. In this study we also show that BAY1895344 is effective in 

xenograft models of NB. 
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Fig. 17 Workflow of project III. 

Investigation of ATR in neuroblastoma signaling. 
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5. CONCLUSIONS: 

 

5.1. Paper I: 

- In this study we established and compared phosphoproteomic and gene 

signature profiles of ALK activity in NB cells employing first and third generation 

ALK TKIs. 

- Phosphoproteomic analysis of CLB-BAR and CLB-GE NB cells pointed to 

identification of 3345 and 2252 phosphoproteins, respectively. 

- Phosphorylation of the ALK receptor itself was decreased in both CLB-BAR and 

CLB-GE lines upon treatment with crizotinib or lorlatinib.  

- In ALK addicted cells, phosphoproteomic analysis revealed more than 50 

proteins that were dephosphorylated upon treatment with ALK TKIs. 

- RNAseq comparison with non-treated controls revealed 19 232 differently 

expressed genes.  

- RNAseq profiling of ALK addicted CLB-BAR and CLB-GE cell lines led to the 

identification of more than 400 downregulated genes and more than 600 

upregulated genes, upon treatment with either crizotinib or lorlatinib. 

- Omics analysis lead to successful identification of well-known downstream 

signaling partners of ALK as well as a novel for further validation such as: ETS 

family, FOXO family and DUSP4. 

- Validation of ETS family member ETV3 and ETV4 shows that they are regulated 

by oncogenic ALK. 

- ALK inhibition reduces DUSP4 protein levels in an ALK-dependant manner 

- ALK regulates subcellular localization of FOXO3a. 

- This comprehensive analysis has increased our understanding of the ALK 

signaling pathway and revealed a number of important targets, including ATR 

as a novel treatment strategy for NB patients.  

 

5.2. Paper II: 

- We showed that repotrectinib inhibits cell proliferation in NB cells that are 

dependent on ALK for growth such as CLB-BAR, CLB-GE and Kelly cell lines. 

- Repotrectinib abrogates ALK activity in in vitro biochemical assays in a manner 

comparable to crizotinib. 
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- Repotrectinib induces an apoptotic response in ALK-addicted cell lines in 

contrast to ALK-non-addicted cell lines. 

- Our results show that repotrectinib is capable of inhibiting signaling activity of a 

range of ALK mutant variants. 

- Repotrectinib inhibits ALK driven neurite outgrowth in PC-12 cell line. 

- Treatment with repotrectinib as a single agent in human ALK-addicted NB 

xenografts resulted in robust tumour growth reduction. 

- The antitumor effect of repotrectinib was stronger than that observed with a first 

generation TKI crizotinib in a xenograft model of NB. 

- Repotrectinib treatment of NB xenografts leads to a decrease in the proliferation 

marker Ki-67 in histochemically stained tumour samples.  

- We confirmed that repotrectinib is a potent ALK TKI for further exploration in NB 

settings. 

 

5.3. Paper III: 

- Phosphoproteomic and RNAseq analysis identified ATR as a target of ALK 

signaling in NB cells. 

- BAY1895344 is a potent (IC50 in a range of 50-60nM) and specific ATR inhibitor 

for both ALK-addicted and non-addicted cell lines. 

- A wide range of NB cell lines are sensitive to ATR inhibition, exhibiting an 

apoptotic response and reduced proliferation. 

- ATR signaling is required for survival in NB cells. 

- ATR regulates the S/G2 checkpoint in NB cells. 

- RNAseq analysis of NB cells upon treatment with BAY1895344 identified a 

broad landscape of the DDR related genes which were both downregulated and 

upregulated and will be in used for further validation. 

- Proteomic and phosphoproteomic analysis lead to identification of p53 and DDR 

pathway enrichment.  

- BAY1895344 inhibits tumour growth in an NB xenograft model. 
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