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Abstract

Since the discovery of fullerenes, the C60 molecule has attracted considerable
attention because of its high level of symmetry and its ability to act as a platform
for studying interacting electrons. It can be created as a doubly negatively
charged ion in vacuum, which has raised the question of whether it is stable or
meta stable. In this thesis we use a simple model to calculate the lifetime of
the C2−

60 molecule. Through tunneling calculations, it is found that the lifetime
should be measurable if the dianions can be stored for up to a minute.
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Chapter 1

Introduction

Before the discovery of buckminsterfullerene, or simply fullerene, there were two
known allotropes of carbon; diamond and graphite. The discovery of fullerene
in 1985, awarded the scientists Sir Harold W. Kroto, Richard E. Smalley and
Robert F. Curl, Jr., with the Nobel prize in Chemistry in 1996.[1]

The C60 molecule is probably the most iconic of the fullerenes, with its high
level of symmetry and the resemblance of a soccer ball. It has attracted consid-
erable interest, since it has a number of interesting properties. For example, it
can be created as a doubly negatively charged ion, or simply dianion, in vacuum.

Lifetime measurements of C2−
60 have been conducted at the ELISA storage

ring at the University of Aarhus. The lifetime was measured to be in the range
of 2 to 200 seconds [2]. The large uncertainty is due to that the ELISA storage
ring is at room temperature. This makes it impossible to directly measure the
lifetime of the molecule without support from modeling, because of excitation
from black body radiation.

Low temperature experiments are therefore to be performed at the DESIREE
facility at Stockholm University. The DESIREE facility is a storage ring for ions
at the temperature of 10 K. Because of the low temperature, the black body
radiation will not have enough energy to excite the molecules. In addition, the
dianions can be stored for up to minutes, since the DESIREE storage ring is at
extremely high vacuum.

In this thesis we do theoretical calculations of the emission rate of vibra-
tionally hot C2−

60 and its inherent lifetime. These calculations are aimed for
direct comparison with measurements of C2−

60 at the DESIREE facility, allowing
for a detailed understanding of the cooling mechanisms.
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Chapter 2

Background

In this chapter, we begin with a simple explanation of the C2−
60 experiment and

we follow this discussion with an outline of the theoretical model.

2.1 DESIREE: The C2−
60 experiment

At DESIREE in Stockholm, experiments are carried out to further understand
the decay dynamics of C2−

60 in the gas phase.

In figure 2.1, we show a schematics of the DESIREE storage ring that is
used in the experiment. The molecules are injected at the bottom left and
stored in the ring for a period of time. These molecules are created in a hot
environment and therefore comes out with different temperatures, giving rise to
a temperature distribution among them.

During each circulation some molecules decay by electron emission. The
resulting C−60 will not stay in the storage ring since it is deflected less by the
electrostatic deflectors. The emission rate can be deduced by monitoring the
number of molecules that decay. This is done by counting the molecules that
decay within in the region indicated in figure 2.1, by putting a sensor where the
C−60 molecules are deflected.

2.2 The C2−
60 model

To aid in the interpretations of the experimental results, we use a simple theo-
retic model to estimate the lifetime and the cooling dynamics. The lifetime is
calculated from the tunneling probabilities through the potential barrier that
traps the second electron on the C2−

60 molecule.

We begin by thinking of C2−
60 as a single electron orbiting C−60. It has been

argued that the potential seen by the orbiting electron is well approximated by
modeling C−60 as a charged metal sphere [3]. In figure 2.2, this potential is shown
to illustrate its nature and we will derive this potential in section 3.2.
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Figure 2.1: A schematic figure of the DESIREE storage ring. The molecules
enter on the bottom left and circulate the storage ring. Those molecules that
decay inside the dashed box are counted by the sensor.

Figure 2.2: A schematics over the potential used in the model. The dotted lines
are illustrations of the four energy levels. The dashed line is an illustration of
the vibrational assisted tunneling.

The potential barrier has four low lying electronic states, where we use the
numerical values recorded in Ref. [2]. See table 2.1. The energy levels are
positioned as illustrated in figure 2.2.

The population of these energy levels depends on the internal temperature.
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Table 2.1: The four energy levels assumed in the model with their corresponding
degeneracy.

Energy [eV] 0.200 0.222 0.305 0.335
Degeneracy 1 5 9 9

This means that the spontaneous decay of C2−
60 will have a contribution from

the four energy levels.
In addition, because of rapid decay for high internal temperature, there will

be an additional decay from vibrational assisted tunneling [2]. The vibrational
assisted tunneling will consist of a single energy level that acts as a decay channel
for high temperature molecules. This energy level is positioned as illustrated in
figure 2.2.

In the experiment, the molecules are produced internally hot where the tem-
perature of the individual molecules are distributed according to an internal
temperature distribution. The information held by the internal temperature
distribution is the number of molecules of temperature T that has not yet de-
cayed. Hence the distribution has a time dependence since when the molecules
decay they are no longer in the ion beam.

In aggregate we calculate the emission rate by summing the decay over the
entire ensemble. The emission rate is important since it is the quantity measured
within the experiment.
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Chapter 3

Theoretical Background

As described in the previous chapter, the C2−
60 emission rate is of interest since

it is what is measured in the experiment. By calculating the emission rate we
can get a better understanding of the decay dynamics.

In order to do so we first have to calculate the tunneling rate. We therefore
derive the tunneling rate within the WKB approximation. When calculating
the tunneling rates within this approximation, we need an expression for the
potential barrier. We therefore derive the potential assumed by the model.

We also described in section 2.2 that the molecules are created in a hot
environment. The molecules are vibrationally hot, which led to the notion of
an internal temperature distribution where each of the molecule has its own
internal temperature. The internal temperature distribution will depend on the
vibrational heat capacity of C60. We therefore calculate the vibrational heat
capacity using calculated vibrational frequencies.

3.1 Semiclassical approximation

We derive the WKB approximation, which finds approximate solutions to the
time independent Schrödinger equation in slowly varying potentials. Motivated
by classical physics, we introduce a local momentum accompanied with a local
de Broglie wavelength. We find approximate wave functions in the regions far
from the classical turning points. Using these approximate solutions together
with the so called connection formulae we find the WKB tunneling rate of a
particle through a barrier. The derivations of this section are based on the
lecture notes written by Barton Zwiebach [4].

3.1.1 The WKB approximation

Motivated by classical mechanics we think of a particle of mass m with energy
E, moving in a potential V (~x). This particle can be thought of as having a local
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momentum p(~x), given by

p2(~x) = 2m(E − V (~x)). (3.1)

For future reference, we introduce the functions k2(~x) > 0 and κ2(~x) > 0, given
by

h̄2k2(~x) = 2m(E − V (~x)) = p2(~x) when E > V (~x), (3.2)

h̄2κ2(~x) = 2m(V (~x)− E) = −p2(~x) when E < V (~x), (3.3)

where E > V (~x) and E < V (~x) denote the classically allowed and classically
forbidden regions, respectively. Using the local momentum in (3.1) we can define
a local de Broglie wavelength as

λ(~x) =
h

p(~x)
=

2πh̄

p(~x)
. (3.4)

We know that quantum effects become less relevant as the de Broglie wave-
length becomes small, compared to the relevant size of the system (think of
the slit experiment as the slit becomes large). We can think of h̄ as a small,
variable parameter, as if having a set of parallel universes with different values
of h̄. In these parallel universes, quantum mechanical effects becomes relevant
for different length scales of our system. Note from (3.4) that λ→ 0 as h̄→ 0,
and quantum effects are gradually removed. We can hence expand our wave
function in a power series of h̄, thinking of h̄ as a small parameter. We discuss
the validity of this approximation in section 3.1.2.

So far we have introduced some notation as well as the concept of the local
de Broglie wavelength. In order to connect with quantum mechanics, we recall
the time-independent Schrödinger equation

− h̄2

2m
∇2ψ(~x) = (E − V (~x))ψ(~x). (3.5)

We can write this, using the local momentum, as

p̂2∇2ψ(~x) = p2(~x)ψ(~x), (3.6)

where p̂ is the quantum mechanical momentum operator. Without any loss of
generality, we write the complex valued wave function as

ψ(~x) =
√
ρ(~x)e

i
h̄S(~x), (3.7)

where S(~x) is a real function and ρ(~x) is the probability density function. Ab-
sorbing

√
ρ(~x) into S(~x), we have that

ψ(~x) = e
i
h̄S(~x), (3.8)

where S(~x) is now a complex valued function. Substituting this into (3.6), we
have that

−h̄2

(
i

h̄
∇2S(~x))− 1

h̄2 (∇S(~x))2

)
e

i
h̄S(~x) = p2(~x)e

i
h̄S(~x), (3.9)
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and by canceling the exponentials, we are left with

(∇S(~x))2 − ih̄∇2S(~x) = p2(~x). (3.10)

At this point, we have rewritten the Schrödinger equation in an unusual form,
without changing the physics. The change in physics comes from expanding the
S(~x) in a power series of h̄, where we think of h̄ as a small parameter. We write

S(~x) = S0(~x) + h̄S1(~x) +O(h̄2), (3.11)

where S0(~x) has units of h̄ and S1(~x) has no units. Substituting into (3.10), we
have that(

∇S0(~x) + h̄∇S1(~x) +O(h̄2)
)2 − ih̄ (∇2S0(~x) +O(h̄)

)
= p2(~x), (3.12)

and by rearranging in powers of h̄, we are left with(
(∇S0(~x))2 − p2(~x)

)
+ h̄

(
2∇S0(~x)∇S1(~x)− i∇2S0(~x)

)
+O(h̄2) = 0. (3.13)

For this equation to be identically zero for all values of h̄, each coefficient must
be identically zero. Continuing with the one dimensional equation, we have for
the first two coefficients that

S′0(x) = ±p(x), (3.14)

S′1(x) =
i

2

S′′0 (x)

S′0(x)
=
i

2

p′(x)

p(x)
=
i

2

d

dx
ln(p(x)), (3.15)

where primes denote derivatives with respect to the argument. By integrating
from x0 to x, we have that

S0(x) = ±
∫ x

x0

p(x′)dx′, (3.16)

S1(x) =
i

2
ln(p(x)) + C, (3.17)

where C is a constant of integration. Combining these expressions with (3.11)
and (3.8), and by ignoring orders of h̄2, we have that the approximate wave
function can be written as

ψ(x) = exp

(
i

h̄

(
±
∫ x

x0

p(x′)dx′ + h̄
i

2
ln(p(x)) + C

))
, (3.18)

=
A√
p(x)

exp

(
± i
h̄

∫ x

x0

p(x′)dx′
)
. (3.19)

Using this result with (3.2) and (3.3), we have the two general solutions

ψ(x) =
A√
k(x)

exp

(
i

∫ x

x0

k(x′)dx′
)

+
B√
k(x)

exp

(
−i
∫ x

x0

k(x′)dx′
)
, (3.20)

ψ(x) =
C√
κ(x)

exp

(∫ x

x0

κ(x′)dx′
)

+
D√
κ(x)

exp

(
−
∫ x

x0

κ(x′)dx′
)
, (3.21)

(3.22)
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in the classically allowed and classically forbidden regions, respectively. Note
how the solution in the classically allowed region looks like an ordinary plane
waves, whereas the solution in the classically forbidden region looks like growing
and decaying exponentials. In order to solve a particular problem, we are faced
with the problem of connecting the coefficients A,B,C, and D. Since the local
de Broglie wavelength becomes infinite near the turning points, the connection
cannot be achieved by usual boundary approach. This connection is instead
accomplished through the so called connection formulae, which is described in
section 3.1.3.

When we have found our solutions, we are often interested in the probability
current in different regions of space. We begin by recalling the usual form of
the probability current, namely

J =
h̄

m
Im

(
ψ∗(x)

dψ(x)

dx

)
. (3.23)

Later in this chapter, we will be particularly interested in the probability current
of right going waves in the classically allowed regions. Hence from (3.20), we
have that

dψ(x)

dx
=

A√
k(x)

(
− k
′(x)

2k(x)
+ ik(x)

)
exp

(
i

∫ x

x0

k(x′)dx′
)
, (3.24)

or by substitution in (3.23), we have that

J =
h̄|A|2

m
. (3.25)

3.1.2 Validity of the approximation

We noted in the the previous section that the local de Broglie wavelength be-
comes infinite at the turning points. Hence for the approximate solution to be
valid, we will have to restrict ourselves to regions of space far enough from the
turning points. Furthermore, we can argue from looking at (3.13), that the sec-
ond order term must be much smaller than the first order term. We can express
this by writing

h̄|S′0(x)S′1(x)| � |S′0(x)|2 (3.26)

or by recalling (3.14) and (3.15), we have that

h̄

∣∣∣∣p′(x)

p(x)

∣∣∣∣� p(x). (3.27)

By using (3.4), we have that

h̄

∣∣∣∣ p′(x)

p2(x)

∣∣∣∣ =

∣∣∣∣ ddx h̄

p(x)

∣∣∣∣ =

∣∣∣∣dλ(x)

dx

∣∣∣∣� 1. (3.28)
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Multiplying both sides by λ(x) we arrive at the final expression

λ(x)

∣∣∣∣dλ(x)

dx

∣∣∣∣� λ(x). (3.29)

We also have from (3.1) that |p(x)p′(x)| = mV ′(x), which can be used in (3.27),
giving us

1

m

h̄

p(x)

∣∣∣∣ p′(x)

p2(x)

∣∣∣∣ ' λ(x)

∣∣∣∣dV (x)

dx

∣∣∣∣� p2(x)

2m
. (3.30)

We see from (3.28) that the approximation is valid as long as the local de
Broglie wavelength is slowly varying. Similarly from (3.29), we see that the
local de Broglie wavelength should not change significantly over a length of the
local de Broglie wavelength. In terms of the potential in (3.30), we see that the
potential energy should not change significantly in comparison to the kinetic
energy over a length of the local de Broglie wavelength.

3.1.3 Connection formulae

As mentioned in section 3.1.1, in order to find a solution to a given problem, we
have to connect the coefficients in (3.22) and (3.20). This is done by the con-
nection formulae that are asymptotic solutions to the Airy differential equation.
We will not derive the connection formulae but merely state the result that is
needed in the next section. However, a derivation of the result can be found in
the reference [4].

We will need the connection formulas that connect through a potential bar-
rier from right to left given by

2√
k(x)

cos

(∫ a

x

k(x′)dx′ − π

4

)
⇐=

1√
κ(x)

exp

(
−
∫ x

a

κ(x′)dx′
)
, (3.31)

1√
k(x)

sin

(∫ x

b

k(x′)dx′ − π

4

)
=⇒ − 1√

κ(x)
exp

(∫ b

x

κ(x′)dx′

)
. (3.32)

The first equation says that if we have a decaying exponential, as we move
to the right, inside the barrier it can be connected to an oscillatory solution to
the left of the turning point with the cosine behavior. The second equation says
that if we have a sinus behavior to the right of the turning point we can connect
it to a growing exponential, as we move to the right, inside the barrirer.

3.1.4 Tunneling rate from WKB

We know from classical mechanics that for a particle with energy E, trapped
in a potential V (x), the particle oscillates between the two classical turning
points a and b. See figure 3.1. However, from quantum mechanics, we know
that for a localized wave function inside the barrier, there will be a leakage over
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time, resulting in a wave function to the right of c. We denote the incident and
reflected wave functions at b as ψi(x) and ψr(x), respectively. In addition, we
denote the wave function inside the barrier ψb(x) and the transmitted wave to
the right of the barrier ψt(x).

Since the wave function ψt(x) for x� c is a wave traveling to the right, we
have from (3.20) that

ψt(x) =
F√
k(x)

exp

(
i

∫ x

c

k(x′)dx′ − iπ
4

)
, (3.33)

where we have added a constant phase for convenience. By expanding the
complex exponential, we can write this as

ψt(x) =
F√
k(x)

[
cos

(
i

∫ x

c

k(x′)dx′ − iπ
4

)
+ i sin

(
i

∫ x

c

k(x′)dx′ − iπ
4

)]
.

(3.34)

Using the connection formula (3.32), we can connect the sin-term to the wave
function ψb(x) (an exponential growing as we move to the left), giving us

ψb(x) = − iF√
κ(x)

exp

(∫ c

x

κ(x′)dx′
)

, b� x� c. (3.35)

Figure 3.1: An illustration of a wave function localized in a potential barrier
with a wave leaking through the barrier.
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We can rewrite this as

ψb(x) = − iF√
κ(x)

exp

(∫ c

b

κ(x)dx−
∫ x

b

κ(x′)dx′
)
, (3.36)

by separating the integral. We define

θ =

∫ c

b

κ(x)dx, (3.37)

and note that (3.36) can be written as

ψb(x) = − iFeθ√
κ(x)

exp

(
−
∫ x

b

κ(x′)dx′
)

b� x� c. (3.38)

Now looking from inside the barrier, ψb(x) is a decaying exponential as we are
move to the right. This can be connected to the wave function ψ(x) on the left
of b by the connection formula (3.31), giving us

ψ(x) = − i2Feθ√
k(x)

cos

(∫ b

x

k(x′)dx′ − π

4

)
(3.39)

= − iFeθ√
k(x)

[
exp

(
i

∫ b

x

k(x′)dx′ − iπ
4

)
+ exp

(
−i
∫ b

x

k(x′)dx′ − iπ
4

)]
.

(3.40)

We recognize that the wave function ψ(x) inside the barrier is now in the form
of ψ(x) = ψi(x) + ψr(x), giving us that

ψi(x) = − iFeθ√
k(x)

exp

(
−i
∫ b

x

k(x′)dx′ + i
π

4

)
. (3.41)

We are now in the position of calculating the transmission coefficient by taking
the ratio of currents from the transmitted and incident wave functions, Jt and
Ji, respectively. Comparing (3.33) and (3.41) to (3.20), and by using (3.25), we
have that

T =
Jt
Ji

=
|F |2

| − iFeθ|2
= e−2θ, (3.42)

or by recalling (3.37), we have the well known result

T = exp

(
−2

∫ c

b

κ(x)dx

)
, (3.43)

for the WKB transmission coefficient. We can think of this transmission co-
efficient as the probability that the particle transitions each time the particle
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reaches the turning point b. The time it takes for a classical particle to go from
b to a and back to b is given by

∆t = 2

∫ b

a

dx

v(x)
= 2m

∫ b

a

dx

p(x)
. (3.44)

The reciprocal of this is the number of time per unit time the particle reaches
b. Multiplying by T, we have the WKB tunneling rate, given by the relation

1

R
=

∆t

T
= 2m

∫ b

a

dx

p(x)
exp

(
2

∫ b

a

κ(x)dx

)
. (3.45)

3.1.5 Tunneling: The Coulomb Barrier

We can use (3.45) to find a closed form formula for the tunneling rate of the
Coulomb barrier, illustrated in figure 3.2. We do this since the potential we are
interested in have no such form. Hence the Coulomb barrier is used as a sanity
check for our numerical calculations.

The Coulomb barrier is given by

V (r) =

{
V0, 0 < r < r1,
ke
r , r ≥ r1,

(3.46)

in SI units. Since the potential is constant on the left of the barrier the time
∆t is given by

∆t = 2m

∫ b

0

dr√
2m(E − V0)

= b

√
2m

(E − V0)
. (3.47)

We use (3.37) inside the barrier where E = ke
c , giving us

θ =

√
2m

h̄2

∫ c

b

dr

√
ke
r
− E, (3.48)

=

√
2mE

h̄2

∫ c

b

dr

√
c

r
− 1, (3.49)

=

√
2mE

h̄2

[
c cos−1

(
b

c

)
−
√
b(c− b)

]
. (3.50)

Substituting (3.47) and (3.50) in (3.45) we have the tunneling rate

1

R
= b

√
2m

(E − V0)
exp

(√
2mE

h̄2

[
c cos−1

(
b

c

)
−
√
b(c− b)

])
. (3.51)
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Figure 3.2: The Coulomb barrier with a localized particle with energy E.

3.2 Charged particle near a charged conducting
sphere

As described in section 2.2, we model the molecule as an electron that is cir-
culating a charged conducting sphere. We now want to derive the potential of
such a system.

To derive this potential, we start with the situation illustrated in figure 3.3.
We have a charge q at a distance x from the center of a conducting sphere.
When the charge approaches the sphere, there will be an induced charge on the
surface of the sphere, so as to keep the potential constant on the surface of the
sphere. This can be achieved by putting an imaginary image charge qi at a
distance D from the center of the sphere. The potential at r is then given by

Φ(~r) =
keqi
r1

+
keq

r2
, (3.52)

where ke the electrostatic constant. By setting the potential to zero, we have
that

r2

r1
= − q

qi
, (3.53)

which says that the ratio of distances are constant on the equipotential. This is
the equation of a circle if the charges are of different signs. Using this for the
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Figure 3.3: Schematics of the situation with a particle of charge q at a distance
x from a charged conducting sphere.

points A and B, we force the potential to be zero at the surface of the sphere.
This gives us that

x−R
R−D

=
x+R

R+D
, (3.54)

or by solving for D, we have that

D =
R2

x
. (3.55)

We also have from applying (3.53) to the point A that

qi = −q r1

r2
= −qR−D

x−R
, (3.56)

or by using (3.55), we have that

qi = −q
R− R2

x

x−R
= −qR

x
. (3.57)

In order to adjust the potential on the surface of the sphere, we introduce
another imaginary charge q0 at the center of the sphere, given by

q0 = q − qi, (3.58)

where we have defined q0 in such a way that the total charge of the sphere equals
q. We now have that the electric field can be written as

E(x) =
keq0

x2
+

keqi
(x−D)2

, (3.59)

along the x-axis, where we have left out the electric field of the charge q at x.
By substituting (3.55), (3.57) and (3.58), we have that

E(x) =
keq

x2
+
keqR

x3
− keqRx

(x2 −R2)2
. (3.60)
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We can integrate the electric field in order to find the potential at x, giving us
that

V (x) = −
∫ x

∞
E(x′)dx′ (3.61)

= −
∫ x

∞

(
keq

x′2
+
keqR

x′3
− keqRx

′

(x′2 −R2)2

)
dx′ (3.62)

=
keq

x
+
keqR

2x2
− keqR

2(x2 −R2)
, (3.63)

or by rearranging we have

V (x) =
keq

x
− keqR

3

2x2(x2 −R2)2
. (3.64)

In order to get the effective potential Veff(x), we add the centrifugal barrier,
giving us

Veff(x) =
keq

x
− keqR

3

2x2(x2 −R2)2
+
h̄2`(`+ 1)

2mx2
. (3.65)

This potential is illustrated in figure 3.4 for ` = 0, 1, 2, 3 along with the dotted
Coulomb barrier for comparison.

3.3 Electron emission

If the C2−
60 molecule had had only one electron state, we would have found the

rate constant directly from (3.45). However, since we have multiple electron
states, we take into account the probability distribution as a function of tem-
perature. If we for now ignore the contribution from the vibrational assisted
tunneling, the total rate is then given by the expectation value.

We begin by recalling the Boltzmann distribution. We have that for a state
with energy Ei, the probability is given by

pi(T ) =
gi
Z
e
− Ei

kBT , (3.66)

where gi is the degeneracy and Z is the partition function given by

Z =
∑
i

gie
− Ei

kBT . (3.67)

In order to arrive at the total rate constant, we use (3.45) to calculate a rate
Ri for each energy level. Combining the tunneling rate Ri with the probability
pi(T ), we have that the total rate k(T ) is given by

k(T ) = E[R] =
∑
i

Ripi

=
∑
i

Rigi
Z

e
− Ei

kBT .
(3.68)
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Figure 3.4: The effective potential in (3.65) for ` < 4. The dotted line is the
Coulomb barrier in (3.46).

3.4 Heat capacity from vibrational frequencies

In the next section when we introduce the internal temperature distribution, it
will depend on the vibrational heat capacity of the C60 molecule.

Therefore we now derive the vibrational heat capacity of the C60 molecule.
We begin by considering the vibrational modes of the molecule. The molecule
consists of N = 60 carbon molecules, each having three degrees of freedom.
Subtracting the three translational and the three rotational degrees of freedom
we are left with 3N−6 = 174 modes of vibration. These vibrational frequencies
can be calculated and are tabulated in various places. Using Bose-Einstein
statistics, we can then evaluate the heat capacity Cv(T ) associated with these
vibrational frequencies.

In Bose-Einstein statistics the expected number of particles in a state of
energy εi and degeneracy gi is given by

〈N〉i =
gi

eβεi − 1
, (3.69)

where β−1 = kBT is given by the Boltzmann’s constant kB and the absolute
temperature T . Multiplying by the energy εi and summing over i, we have the
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expected energy given by

〈E〉 =
∑
i

giεi
eβεi − 1

. (3.70)

In order to reach the heat capacity we simply take the derivative with respect
to the temperature, giving us

Cv(T ) =
∂〈E〉
∂T

=
∂〈E〉
∂β

∂β

∂T
(3.71)

=
1

kBT 2

∑
i

giε
2
i

(eβεi − 1)2
. (3.72)

Using tabulated frequencies, we have plotted the heat capacity in figure 3.5
where the dashed line is a linear fit from reference [5].

(a) (b)

Figure 3.5: (a) Shows the expected energy where the dashed line is a linear fit
in the range 1000-2000 K. (b) Shows the heat capacity.

3.5 The Emission Rate

Here we derive the emission rate by combining the results derived in this chapter.
To do so we first have to define the effective rate constant keff(T ).

The effective rate constant will consist of two terms. The first term is k1(T )
and it comes from the tunneling rates of the four energy levels, as derived
in section 3.3. The second term is k0(T ) and it comes from the vibrational
assisted tunneling, which is added to account for the high temperature decay.
The vibrational assisted tunneling is calculated in a similar way as for the four
energy levels, by assuming an energy level that acts as a decay channel for high
temperature molecules.

As described in section 2.2, we assume a temperature distribution over the
molecules. This temperature distribution describes the number of molecules of
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temperature T that has not yet decayed. We use the distribution given by [2][6]

g(T, Ti, t) = exp (−α(T − Ti))

×
[
1 + erf

(
T − Ti − f2ασ2

√
2fσ

)]
e−keff(T )t,

(3.73)

where α = 1 eV(Cv(T ))−1, σ = α
√
kBCv(Ti)Ti, Ti is the initial temperature

when the molecules are created, f is a function of Ti and Cv(T ) is the heat
capacity in (3.72) in units of eV.

By multiplying the temperature distribution with the effective rate constant,
we get the contribution to the emission rate as a function of temperature. To
account for the molecules of the entire cluster, we sum over the temperature
giving us the final expression [6]

I(t) =

∫
dTkeff(T )g(T, Ti, t). (3.74)
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Results and Discussion

In the previous chapter, we derived the theoretical expressions that are needed
to model the decay of C2−

60 and we now use these results to look at predictions
of this theory.

4.1 Tunneling rates of C2−
60

We first want to calculate the tunneling rates for the ground state and the three
electronically excited states. To do so we first specify the parameters of the
potential in (3.65). It has been suggested that ` < 3 [7][8], and that R = 4.55 Å
[3] and we plot the potential using these values in figure 4.1. In table 4.1, we
tabulate the tunneling rates for the four energy levels and the three different
potential forms, which has been calculated using (3.45).

Table 4.1: Calculated tunneling rates in units of s−1 for the four energy levels
and ` < 3.

E = 0.200 eV 0.222 eV 0.305 eV 0.335 eV
` = 0 1.52 2.20× 10 3.34× 104 2.34× 105

1 6.06× 10−1 8.79 1.35× 104 9.54× 104

2 1.01× 10−1 1.47 2.34× 103 1.67× 104

The decay rate for the first excited state is roughly one order of magnitude
larger than that of the ground state. Furthermore, the decay rate for the second
and third excited states are roughly four and five orders of magnitude larger than
that of the ground state, respectively. We also see that the decay rate depends
on the ` value, where larger ` gives lower decay rate. This is expected since the
potential barrier is higher for higher ` value.

21
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Figure 4.1: The potential in (3.65) for R = 4.55 Å and ` < 3.

4.2 Emission rate of C2−
60 for fixed `

To understand the emission rate, we begin by looking at the potential with ` = 1
as was also done in reference [2]. For this reason, we begin by looking at the
two contributions to the effective rate constant as described in section 3.5.

The contribution from the vibrational assisted tunneling can be understood
by plotting the product of the room temperature Boltzmann e−βE and the
tunneling rate in (3.45). See figure 4.2b. We approximate the peak by a single
energy level, since the overwhelming contributing to the high temperature decay
comes from the energies around E = 0.452 eV. To model this process, we follow
reference [2] and assume an Arrhenius type decay, which is calculated using

k0(T ) = Rve
−βEa , (4.1)

where Rv is the tunneling rate of the energy level of the vibrational assisted
tunneling, and Ea is the activation energy given by the energy level relative to
the ground state. We have that Ea = 0.452−0.200 = 0.252 eV and using (3.45)
we have that Rv = 2.73× 107 s−1.

The contribution from the energy levels are calculated using (3.68) and the
decay rates for ` = 1 in table 4.1. In figure 4.3a, we plot the effective rate
constant and its two contributions. To better understand where each rate is
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dominant we have plotted the contributions relative to keff(T ) in figure 4.3b.
We clearly see that the vibrational assisted tunneling is dominant for high in-
ternal temperature whereas the four energy levels are dominant for low internal
temperatures.

(a) (b)

Figure 4.2: (a) The potential with ` = 1 and R = 4.55 Å. The dotted lines are
the four energy levels, and the dashed line is the vibrational assisted tunneling.
(b) The product of the room temperature Boltzmann e−βE and the tunneling
rate.

(a) (b)

Figure 4.3: (a) The effective rate constant as well as its two contributing factors.
(b) Shows the two contributing factors relative to the effective rate constant.

In figure 4.4, we show the emission rate calculated using (3.74) and the
effective rate constants in figure 4.3a. Note that we have normalized the emission
rate to the initial emission rate I0 = I(t = 0). The intensity of the beam is
significantly reduced within the first second. This could have been anticipated,
since the lifetime of the vibration assisted tunneling and the two highest energy
levels are less than a millisecond. Hence, the resulting beam after a few seconds
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essentially consists of molecules in the ground state and the first excited state.

We also see in figure 4.4 that the emission rate is asymptotically approaching
the emission rate of the ground state. However, the higher the initial tempera-
ture the longer it takes to reach the asymptotic behavior. This is as expected
since higher initial temperature gives a broader internal temperature distribu-
tion, hence more particles with high internal temperature.

Figure 4.4: The intensity as a function of time for three initial temperatures.
The dashed lines show the ground state decay rate normalized to visualize the
asymptotic behavior.

4.3 Emission rate of C2−
60 for different ` values

To better understand how the emission rate depends on the angular quantum
number, we focus on ` < 3 for a fixed initial temperature Ti = 300 K. In
table 4.2, we have tabulated the energy levels and the decay rates used in the
Arrhenius decay for the vibrational assisted tunneling, as described in 4.2.

We calculate the emission rate for Ti = 300 K and ` < 3. See figure 4.5. The
behavior is similar to that in figure 4.4 where we have a rapid initial decay and
the asymptotic behavior for t→∞, where the emission rate is approaching the
emission rate of the ground state.
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Table 4.2: The vibrational assisted tunneling levels for the different potentials
and their individual decay rate.

Energy [eV] Decay rate [s−1]
` = 0 0.450 6.08× 107

1 0.452 2.73× 107

2 0.456 5.84× 106

The slope of the asymptot depends heavily on the ` value which is expected
from the large variation of the decay rate for the ground state in table 4.1. We
also see that the time it takes to reach the asymptotic behavior depends on the
` value, where larger ` results in a longer time before reaching the asymptotic
behavior.

Figure 4.5: Emission rate as a function of time for Ti = 300 K and ` < 3.
The dashed lines show the ground state emission rates for each of the different
potentials.
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Chapter 5

Conclusion

In this thesis, we used a simple theoretic model to calculate the emission rate
of C2−

60 . We found that the decay rate of the two highest excited states are
four to five orders of magnitude larger than that of the ground state. This
leads to a rapid decay within the first second and an asymptotic approach to
the emission rate of the ground state as t → ∞. The time it takes to reach
the asymptotic behavior depends on the initial temperate, where higher initial
temperature leads to longer times before reaching the asymptotic behavior.

We also found that the asymptotic behavior depends heavily on the angular
quantum number `, where larger ` value leads to smaller decay rate. The time it
takes to reach the asymptotic behavior of the emission rate of the ground state
also depends on the ` value, where larger ` value leads to longer times before
reaching the asymptotic behavior. However, the asymptotic behavior is reached
within a minute and it should therefore be possible to measure the decay rate
of the ground state at the DESIREE facility.

In summary, we have mainly focused on the asymptotic behavior of the
emission rate as it approaches the emission rate of the ground state. However,
for future work it would be interesting to take a closer look at the initial behavior
for times much less than a second. In this region it is thought that the emission
rate has an approximate 1

t dependence [6].

27
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