
Master thesis

An experimental study on
combining automated and

stochastic test data generation

Patrick Haverkate - rickh@student.chalmers.se

Marufa Binte Mostafa - binte@student.chalmers.se

June 4, 2020

Acknowledgements

We would first like to thank our thesis advisor Dr. Francisco Gomes Oliveira
Neto of the IT faculty at Göteborgs Universitet for his immense support and
guidance throughout the whole thesis period. Also we would like to express our
heartiest gratitude to our examiner Prof. Robert Feldt for his valuable reviews
and advices.

Patrick Haverkate and Marufa Binte Mostafa, Gothenburg, June 2019

1

Abstract

Test data plays an important role in improving the quality and effectiveness of
test cases and automatic generation of meaningful test data saves a lot of human
effort. There are several automatic test data generation approaches; stochastic
test data generation is one of them. To investigate the benefits and challenges of
using a stochastic test data generation technique, this study presents JuliaTest,
an automatic test data generation tool integrating stochastic test data gener-
ation framework with the unit testing framework JUnit5. Using JuliaTest

two empirical studies were conducted on open-source projects to compare dif-
ferent automatic test generation techniques and to investigate the behavior of
JuliaTest in different settings (e.g., varied number of data generated, different
generators used). Performed experiments of limited scope showed promising
results indicating test data generated by stochastic technique is able to provide
better mutation coverage and detect more faults when compared to other exist-
ing alternatives. These experiments aims at being used as a baseline for future
work with broader scope and setup. Moreover, the study discusses different
design choices made during the implementation of the tool. Finally, a num-
ber of future research concepts are discussed to open the door for researchers
interested in this field.

keywords: Test automation, Automatic test data generation, Stochastic
test data generation, GödelTest

2

Contents

1 Introduction 5

2 Background and Related Work 9
2.1 Test data generation . 10

2.1.1 Stochastic Test data generations 10
2.1.2 Diversity-based Test data generations 12

2.2 Automated unit test generation tools 13
2.3 Oracle Problem . 14

3 Proposed Solution 16
3.1 Our proposed architecture . 16

3.1.1 Usage . 19
3.2 JSON generator . 19
3.3 Unit test example . 21
3.4 Limitations of the tool . 22
3.5 Architectural choices and lessons learned 22

4 Methodology and Evaluation 25
4.1 Scoping and Planning . 25
4.2 Context . 26
4.3 Variable selection . 26

4.3.1 Experimental Study 1 - ES1 26
4.3.2 Experimental Study 2 - ES2 27

4.4 Hypothesis formulation . 29
4.5 Selection of subjects and objects 31
4.6 Instrumentation . 32

5 Result and Analysis 34
5.1 Experiment 1 . 34
5.2 Experiment 2 . 35

5.2.1 Different sizes of generated data 35
5.2.2 Different types of generators used 38

6 Discussion 40

3

6.1 Answer to the RQs . 40
6.2 Validity evaluation . 45

7 Conclusion 47

References 49

Appendix 55

4

Chapter 1

Introduction

Software testing is a crucial part of software development, such that the cre-
ation and the quality of test cases affect the quality of the software product
itself. Since manual creation of test cases is often costly and time consuming
in complex systems [1], current research propose several approaches to auto-
matically generate test cases (e.g., Evosuite [2], Randoop[3], Quickcheck [4]).
However, there are also challenges in test automation such as selecting the right
tool, demanding skilled resources, getting the developers to trust the generated
test and so on. Moreover, to automatically validate the correctness of the test
cases there needs to be a mechanism which takes input and determines the cor-
rectness of the test by comparing the generated output with expected one. This
mechanism is called test oracle. To make the comparison between actual and
expected output a test oracle uses artifacts like source code, specifications etc.
These kind of artifacts are often not available to the test engineers or are very
expensive which makes test automation more challenging. This research will
try to investigate and advance test automation techniques, with a particular
contribution to automated and stochastic test data generation.

In software testing there are several different techniques and tools being
used for automated test generation, some of these are: Randoop[3], Evosuite [2]
and GödelTest [5] [6]. All of these test data generators use random or meta-
heuristic data generation. In random data generation, data is randomly gener-
ated and used to test the software, e.g., if a method requires a string value, a
string with random characters and random length is generated. Such techniques
are easy to implement, but has as a disadvantage that it can lead to a lot of
test data testing the same or similar cases.

On the other side of this scale, there are systematic approaches to test
generation, where the drawn samples follow a predefined structure and don’t
have any randomness. In the middle of these techniques would be stochastic

5

test generation where the test engineer would define a ”distribution” on one or
more properties of the System Under Test (SUT), or the test cases and sample
from that distribution, this allows her to have some influence on the test data,
while not completely being structural.

These tools also differ on whether they require knowledge or some instru-
mentation of the source code (white-box) or if they don’t (black-box). With
white-box techniques most techniques try to create a graph of the different
”paths” (e.g., control flow graph) through the software in an attempt to create
test cases covering as much of the code as possible[2]. Conversely, black-box
techniques uses the specifications of the program (e.g., which inputs are ex-
pected) to see if the executed test cases actually provide the expected output.

A test data generator for the more primitive types (strings,numbers etc)
can easily be created by using random numbers/strings, whereas some testing
frameworks (e.g., GödelTest[5], EvoSuite[2]) also support the generation of more
complex or structured data such as XML files or trees [7], [8]. These tend to
have very specific requirements and require configuration info such as schemes.
One promising technique for software testing is diversity-based testing, where a
diverse set of test data is used to test the software [9], [10].

These techniques for automated test generation have been evaluated in
industrial cases but technology transfer and adoption is limited [11], particularly
since there should be a clearer link between automated test generation and
manual testing.

In summary, there are several dimensions when considering automated test
generation. One can consider automated techniques that can generate data
using more random, stochastic or systematic approaches, either using differ-
ent software artifacts such as the source code (white-box) or the specification1

(black-box) of the System Under Test (SUT). Consequently, the challenges lie
on using those dimensions to generate test data that adds value to software
testing as well as the tester responsible for analyzing the outcome of the tests.

The purpose of this thesis is to investigate how test automation can be
improved to be used in combination with current test frameworks. Research
literature have come up with advanced and complex testing techniques but most
of the common tools that are used today do not support these new mechanisms.
We aim to bridge this gap, make testing activities (e.g., test instrumentation)
easier and enable human testers benefit from automated and stochastic test
generation.

We propose an extension to unit testing frameworks where test generation
can be combined with manual testing. Particularly, we extend JUnit52 to use

1Note that specification does not necessarily refer to a documentation (e.g., requirements
documents), rather we mean the definition of input and the expected output of the program.

2https://junit.org/junit5/

6

https://junit.org/junit5/

GödelTest3 [5] generated test data and differential test oracle with support for
both local and CI environment with a view to improving the quality of the source
code by reducing test case preparation time for designing or instrumenting,
dependency on source code. We evaluate our proposed approach by conducting
an experiment on open source data (e.g., JFreeChart from Defects4J4) where
stochastic test generation approaches will be compared to existing manual tests.
We focus on answering the following research questions:

RQ1: How can we instrument xUnit Frameworks to enable automated and
stochastic test generation?

RQ2: What are the challenges in applying stochastic test data generation
to unit testing frameworks?

RQ2.1: What are the challenges in instrumenting test frameworks for
stochastic test generation?

RQ2.2: What are the characteristic of xUnit Frameworks that can foster
usage of stochastic test generation?

RQ3: What are the trade-offs between different test generation techniques
for unit testing?

RQ3.1: How do different test generation techniques compare in terms of
fault detection?

RQ3.2: How do different test generation techniques compare in terms of
line coverage?

RQ4: What are the effects of different settings/setups in stochastic test
generation?

RQ4.1: How do stochastic test generation technique change in terms of
fault detection for different number of data generated?

RQ4.2: How do stochastic test generation technique change in terms of
line coverage for different number of data generated?

RQ4.3: How do stochastic test generation technique change in terms of
fault detection for different type of generator used?

RQ4.4: How do stochastic test generation technique change in terms of
line coverage for different type of generator used?

The expected contributions of our study are the following:

3https://github.com/robertfeldt/DataGenerators.jl
4https://github.com/rjust/defects4j

7

https://github.com/robertfeldt/DataGenerators.jl
https://github.com/rjust/defects4j

• C1: Identification of challenges in extending Unit testing framework to
enable automated and stochastic test generation approaches. These chal-
lenges comprise mainly, our lessons learned, and aim to support future
advances in this field by leading to different design choices on how to
integrate xUnit frameworks and automated test generation.

• C2: Creation of a prototype extension to JUnit, a popular xUnit frame-
work for Java programs and support for generating JSON from Gödeltest.
The prototype is an addition to the existing options of tools combining
automated test generation and unit testing.

• C3: An experimental study comparing manual test suites, stochastic test
generation approaches and other automated test generation techniques
(e.g., Evosuite), in open source data. The comparison reveals trade-off for
the investigated techniques.

• C4: An experimental study investigating deeper into stochastic test gen-
eration approach with different settings/setups, in open source data. The
experiment is automated and reproducible artifacts are available online5

for future replications and validation of our findings.

As a consequence, C1, C3 and C4 compose our scientific contributions,
whereas C2 comprise our technical contributions.

5https://github.com/evpxregu/TRAM

8

https://github.com/evpxregu/TRAM

Chapter 2

Background and Related
Work

In this chapter we present the background theories and existing techniques of
automated test generation. Moreover we discuss the works related to the con-
cepts of our study, such as stochastic and diversity based test data generation,
existing tool support in automated test generation, the challenges in addressing
the oracle problem.

Unit testing is the most fundamental method in the software testing pro-
cess. Main goal of unit testing is to test individual units of a software (e.g.
source code, modules with associated data and procedures) for determining the
fitness for use [12]. However, it is nearly impossible to capture all test combi-
nations manually in a fairly large application and the situation becomes even
worse in case of regression testing. Unit test automation is therefore consid-
ered to be less expensive in terms of time, cost and labor and more reliable for
covering larger amount of test cases. JUnit [13] is a Java unit test framework
for automated, repeatable, self-verifying tests and is widely adopted in orga-
nizations using Java. The framework allows test engineers to compare output
values with expected values using methods from the assert class. Since the con-
text of our study is unit testing, our focus is to improve testing capabilities with
a tool which hooks up GödelTest generated data to JUnit and evaluating the
effectiveness of that.

9

Figure 2.1: GödelTest Framework Architecture [5]

2.1 Test data generation

2.1.1 Stochastic Test data generations

In test automation, data generators are used to feed test cases with generated
test data. Generating test data randomly is one of the simplest way but not
very effective if the generated random data distribution is not similar to the real
data. [14].

Feldt and Poulding proposed the GödelTest [5] [6] framework consisting of
generators and choice models that generates stochastic test data. Figure 2.1
shows the architecture of the GödelTest Framework. In GödelTest data gener-
ators create specific data structures and choice models control the distribution
of test data through parameters [5]. The ’choice model’ concept introduces
non-determinism by deciding values or execution paths to be taken during each
choice point [5]. Therefore using GödelTest framework it is possible to tune the
distribution of generated test data so that it has the desired bias objectives [5].
GödelTest uses metahuristic search with differential evolution algorithm [15] to
meet the global bias objectives which has shown promising results compared to
Botlzman sampler or QuickCheck [5].

Figure 2.2 shows an example how data generators of GödelTest written
in Julia look. The generator example shows four different generators being

10

Figure 2.2: persongenerator example

defined. The first three generators are used to generate individual values and
the fourth one is used to generate a person object which contains a value of each
of the generators. The regex on FirstNameGen states that the first character
should be capital. After the first character, any number of lower case characters
between the range 2 to 10 can be generated which means there is a limit of at
least 3 characters to the first name. LastNameGen also follows similar structure.
SalaryGen generator generates a Integer number between the range 25000 to
70000. Finally the PersonGen generates a person object that has the properties-
first name, last name and salary. Figure 2.3 shows the result of calling the
choose() method on the person generator a number of times.

Figure 2.3: example persongenerator results

Quickcheck [4] [14] is another popular framework for randomly generating

11

complex and varied test data. Using some libraries of QuickCheck it is possible
to automatically derive generators for specific algebraic data types [16] [17].

SmallCheck and Lazy SmallCheck [18] libraries follows the lead of QuickCheck
but differs in data generation technique. While QuickCheck uses a sample of
randomly generated values, SmallCheck and Lazy SmallCheck use all values
upto a limiting depth. Claessen et al. [19] improved this mechanism by using
size instead of depth and allowing random search in large sets and proposed an
algorithm for generating uniformly distributed test data. Combining the algo-
rithm with a backtracking-based generator, they presented a hybrid generator
that produces almost uniform test data and satisfy given boolean predicates. In
case of generating large test case the performance of their proposed generator is
however still an issue. EasyCheck [20] is another library for generating random
test data written in curry functional logic programming language. By narrowing
it can satisfy given predicates but has the problem of generating data of similar
values for the same test run.

Mista and Russo [21] extended DRAGEN to DRAGEN2 that can gener-
ate algebraic data types by synthesizing QuickCheck generators. It allows the
test engineers to adjust the distribution of the random values at compile-time.
Simple combinatorial structures (graphs and trees) can be created using Boltz-
mann sampling [22] or using the tool proposed by de Oliveira Neto et al. which
randomly selects baseline graph constructs and combines them. [23]. Basing on
Boltzmann model Bendkowski et al. [24] proposed boltzmann-brain framework
that specifies and synthesizes standalone Haskell random generators. To acquire
desired distribution of values it allows tuning of parameters and discards the
samples of unwanted sizes.

2.1.2 Diversity-based Test data generations

There are several test data generation techniques that ensures diversity within
the input domain implicitly or explicitly. When each data point in an input
domain has the same probability of being selected, some sort of implicit diversity
is achieved [25]. Another example of implicit diversity technique is to have data
partitions based on different properties of the data and then make sure to select
data from each of the partitions [26]. Among the test data generation techniques
that imposes diversity explicitly, some (e.g., Anti random testing [27], Adaptive
random testing [28]) use Euclidean distance metric between two test inputs
as the measure of diversity. Taking spatial distribution of the test cases into
consideration Mao et al. [29] presented a distance-aware forgetting strategy for
adaptive random testing that reduces the cost of computing distance by ignoring
out of ”sight” test cases. The techniques proposed by Bueno et al. [30], Cartaxo
et al. [31], Hemmati et al. [32] define their diversity metric taking consideration
of the test input set as a whole.

12

Based on information theory and using the normalized compression dis-
tance diversity metric [33], Feldt et al. introduced test set diameter diversity
metric that can be used to create diverse test sets [9].

In their research Feldt and Poulding [34] found a hill climbing search to be
efficient for feature-diversity. A method for finding boundary between valid and
invalid regions of the input space was proposed in another research of Marculescu
and Feldt [35].

As the mechanism to achieve diverse test input in our extension of the JUnit
Framework, we have used the GödelTest framework and it’s implicit diversity
from the distributions used to sample datums.

2.2 Automated unit test generation tools

A number of automatic test generation tools are available for Java, both com-
mercial and open-source. Main test data generation methods used in these tools
are- random, search based and symbolic execution based [36].

Randoop1 is a tool for generating feedback-directed unit tests by creating
method sequences randomly [3]. Randoop creates assertions by using the results
from the execution [3]. Its random but smart test generation techniques has been
claimed to be highly effective in finding bugs and generating regression tests[37].

Evosuite2 use search-based test data generation method with the special
evolutionary algorithm - Genetic Algorithm [2]. Evosuite offers optimization
based on different coverage criteria (e.g., lines, branches, outputs and mutation
testing)[38]. Evosuite also minimizes tests based on which ones are contributing
to achieve coverage[38].

Parasoft Jtest3, Agitar AgitarOne4 and Jcute5 use the symbolic execution
based method for Java unit test data generation which is popular among other
methods for high code coverage [39]. Some other tools for automatic java unit
test generation are CodePro Analytix, Jwalk, CATG, GRT, JTExpert, Symbolic
Path Finder, T3, Jcrasher, PET [36].

Lakhotia et al. [40] introduced a search based software testing tool AUSTIN
for C language that uses stochastic meta–heuristic search algorithms. Using sim-
ilar algorithms Papadakis and Malevris [41] proposed an automatic mutation
based test data generation framework Metallaxis for Java. However, GödelTest

1https://randoop.github.io/randoop/
2http://www.evosuite.org/
3https://www.parasoft.com/products/jtest
4http://www.agitar.com/solutions/products/agitarone.html
5http://osl.cs.illinois.edu/software/jcute/

13

https://randoop.github.io/randoop/
http://www.evosuite.org/
https://www.parasoft.com/products/jtest
http://www.agitar.com/solutions/products/agitarone.html
http://osl.cs.illinois.edu/software/jcute/

framework has not been implemented in any tool yet.

2.3 Oracle Problem

One of the challenges of implementing a unit test framework is distinguishing
the desired/correct behavior of the SUT from potential incorrect behavior which
is addressed as the oracle problem [42]. The difficulty lies in making the test
framework automatically ”guess” the expected output while the test input is
being automatically generated in parallel. As this is a bottleneck in the appli-
cability and effectiveness of most test case selection strategies, the unavailability
and expensiveness of test oracles makes it a fundamental problem in software
test automation [43]. It is very difficult to make software testing fully automated
unless this problem is solved [44].

Barr et al. [42] addressed the issue of automation of test oracle generation
getting less attention than required and presented a comprehensive survey of
approaches in test oracle problem. In their survey they divided test oracles
in three categories: specified test oracle, derived test oracle and implicit test
oracle. Specified test oracles being heavily dependant on software specification,
some challenges of specified test oracles are: 1. the lack of formal specifications
2. possibility of specifications being imprecise, including unfeasible behavior or
not capturing all the relevant behavior 3. possibility of misinterpreting model
output and the challenge of equating it to concrete program output [42].

On the other hand, derived test oracles use information derived from Soft-
ware properties or different software artifacts related to the SUT [42]. Some
different versions of derived test oracles are: pseudo-oracle [45] or N-version
programming [46], [47] that can be produced using genetic programming [48]
but is considered very expensive [49], metamorphic testing [50] in which still
remains the challenge of discovering metamorphic relations automatically [42],
test oracles from system execution traces [51] using invariant detection tech-
nique [52], [53] (where inferring perfect invariant is very challenging [54]) or
specification mining technique [42] etc.

Implicit test oracles distinguish between a SUT’s correct or incorrect be-
havior basing on implicit knowledge such as system crush or execution failure
[55]. Moreover, there are AI based test oracles where the system learns the cor-
rect behavior from running with known answers using artificial neural networks,
support vector machines and decision trees [49].

Regression test oracle is another type of derived test oracle [42]. A regres-
sion test oracle assumes that the previous version of the SUT is correct and is
used as the oracle for the existing one in order to find disruptions due to modi-
fication in the new version [42]. Regression testing can be expensive in practice

14

[56]. There have been a number of studies on different approaches for test case
minimization, selection and prioritization in regression testing [57].

However, regression testing is complemented with differential testing which
compares exhaustive test results of two or more version of a system in order to
find potential candidate for bugs [58]. Basing on the black box differential test-
ing Jung et al. proposed ”Privacy Oracle” that is used to discover information
leaks in an application [59]. To overcome the oracle problem in our proposed
solution we intend to use differential test oracle as a solution.

15

Chapter 3

Proposed Solution

Automated test data generation tends to be better at finding specific corner
cases of which humans are unaware, however this can be costly to execute or
implement in practice [60]. Conversely, knowledge about the system also helps
testers in identifying, e.g., severe defects. For instance, if we were to give an
experienced tester some sort of control over test cases generation she could use
her experience to find more meaningful defects then just using general diversity
tests [61]. This is where stochastic test data generation technique comes into
play.

Aiming at further investigating the applicability of stochastic test genera-
tion frameworks using unit testing frameworks we created a tool for testers to
easily use GödelTest generated test data in JUnit 5 with support for doing this
both locally as well as in a CI environment using differential test oracles. We
believe this would allow for: saving time in designing test cases, reducing the
instrumentation or dependency on source code to create tests, and ultimately,
improve the quality of the SUT. Further in this chapter we discuss different
elements of our proposed tool along with the architecture and design decisions
which is the technical contribution of this study.

3.1 Our proposed architecture

The created toolchain consists of four modules- 1. JuliaTest, 2. juliatest-

maven-plugin 3. Junit5 4. A SUT. Figure 3.1 shows how they relate to each
other. Most of the functionalities are in the JuliaTest project, which are:

• Calling GödelTest for the generation of test data

16

Figure 3.1: Communication between the modules of the tool

• Passing test data onto Julia 5

• Functionality for the support of differential oracle testing

• Code for running the test with the data

Automatic execution of tests can be done without using the juliatest-

maven-plugin as well- by just calling maven test. It contains the functionality
which allows for CI integration and easier running of the tests.

When JuliaTest is used, all test annotated with @juliasourceparameter

are checked for having already generated test data for the specific annotated
method. If this is not the case test data is generate and stored in the output
folder and stored in a simple CSV format. Complex data with relations of sub-
entities are saved as JSON and then read in the JUnit code. When JuliaTest

17

Figure 3.2: Data flow of the JuliaTest

is executed via maven a unit test run is generated for each test data. There
is support for using a differential oracle in the form of the JuliaAssert class
which takes an actual1 and an expected value. The actual value is the result of
an operation (in the given example in figure 3.4 the code in figure 3.5 is called.
It calculate taxes which is depended on the input value salary). If a test is run
for the first time, the JuliaAssert class writes the actual value to a file and on
the run it is passed on by JuliaTest to the unit test in the form of a variable
of an instance of the Output<T> class. The instance of the Output<T> is then
passed on to the JuliaAssert class for checking if is correct.

Figure 3.2 shows the flow of information through the system when the
system is called once from Maven. First, the Test code will invoke GödelTest
and Julia to generate test data that will then, write it in an input file. The file is
read by JuliaTest an ran as individual unit tests by JUnit. The JuliaAssert

class writes the output value of a test to a file which is loaded on sequential runs
as the expected value by JuliaTest. If the expected value and the actual output
value are not same the test fails according to differential testing approach.

1By actual we refer to the value returned by invoking a method on the SUT

18

3.1.1 Usage

Following are the steps a tester needs to follow to use JuliaTest:

1. Add JuliaTest to the project’s project’s dependencies (i.e., the pom.xml

file if using Maven).

2. Create a generator for the previously mentioned unit test (e.g. figure 2.2).

3. Create a TestAdapter unit test according to the earlier mentioned struc-
ture(see figure 3.4).

4. Run the unit test for the first time so it generates both the input data
as well as the values for the expected output which is used for differential
testing.

5. Refactor the SUT

6. Rerun the system and see if the test failed due to a change in the values
for the expected output.

3.2 JSON generator

As an extension to GödelTest, a JSON2 data generator was developed, which
takes a JSON schema3 as input and generate JSON according to the schema
using GödelTest. For GödelTest there are already several generators for other
schema formats such as XSD4 and juliatype for GödelTest these are maintained
in the DataGeneratorTranslation github repository5.

The reason for generating JSON instead of another format is that JSON
nowadays is commonly used by webservices and for storage by a wide array of
applications, furthemore the size of JSON is quite small compared with older
types like XML which makes for more efficient transport and it’s easier to read
compared to XML. This comes at a cost though, JSON has less features e.g no
namespaces or built-in support for inheritance.

JSON schema has been under ongoing development since 2009 and has
gained traction as a format for describing responses of web services and other
applications,

Since JSON schema is intended for validation and documentation of the

2https://www.json.org/
3https://json-schema.org/
4https://www.w3.org/XML/Schema
5https://github.com/robertfeldt/DataGeneratorTranslators.jl

19

Figure 3.3: JSON schema example

data, generating proper data for all schemes can be hard, for instance when
a property is just denoted as a string, what kind of length and what kind
of characters should be generated for the string? We have tried to find sane
defaults for such situations, but they might still give a poor representation of
production data. In order to solve this problem, JSON schema defines some
limitations to the data, for the most part these are implemented, e.g. patteren
and max length, min length for string minItems and maxItems for an array etc.

At the time of writing the JSON schema format is still in the drafting phase
and properties and validators are still being added, we have tried to implement
generators for the more stable functionalities, the following types and validators
for them have been implemented:

Types Validators
Object Properties
String Pattern, minLength and maxLength
Integer Minimum and maximum
Number Minimum and maximum
Array MinItems, maxItems and properties

The implementation could be extended by using other functionality from
the JSON schema standard, such as reference to other objects which would

20

Figure 3.4: JuliaTest unit test example

Figure 3.5: The method called by the test in figure 3.4

allow for generation of recursive structures. Another example would be adding
support for the required properties allowing the ability to define which property
to always generate and which properties to leave out, unlike the current system
where all properties are always generated. Furthermore, support for arrays
where the contained items are not always the same entity could also be added,
these we see as future work since they are more advanced functionality that
seems like something that is used by every schema.

3.3 Unit test example

A unit test written with JuliaTest looks similar to a regular JUnit parame-
terized unit test but with an added @JuliaParameterSource which annotates
the generator to be use. Figure 3.4 shows an example of a unit test written
with JuliaTest which test the method shown in figure 3.5. in figure 3.6 the
generator which is used by the test is shown.

After running the unit tests for the first time in the src/test/resources/input
folder a file named after the unit test is created with the input values for the
test adapter, an example of the contents of this file are shown in figure 3.7a in

Figure 3.6: The generator used by the test in figure 3.4

21

(a) contents input file (b) contents output file

Figure 3.7: Created files from JuliaTest

the src/test/resources/objects for an output file is created for this input,
an example of this is shown in figure 3.7b the contents of this file are used on
the second run of the unit test by the test oracle as the value to compare to.

3.4 Limitations of the tool

The tool is only the first step in integrating GödelTest with existing unit testing
framework and is still in its initial phase. With further development it is possible
to make it fully matured and more efficient. Some limitations of the current
version are:

• No support for writing exceptions to the output file i.e., in case the gen-
erated datum would cause an exception in the SUT, the current version
of JuliaTest does not log such failures.

• Referenced generators needs to be instantiated, passing the name of a non
instantiated generated does not work yet, hence, has to be invoked during
the Maven build process, which adds a small during the process, which
adds a small overhead (seconds per test) to the execution process. This
can hinder usability of the tool, and could be improved in future work.

3.5 Architectural choices and lessons learned

This section explains the architecture choices that were made while creating our
proposed tool.

For the integration with a unit testing tool two things are needed: 1)

22

the test class variables need to be bound to the generated variables 2) the
tests needs to run N times where N is the number of samples. For the first
point the generated values can be bound to the parameters of the test method
which is easily done with the JUnit framework. However, generally using class
variables is seen as a best practice. To accomplish this these variables needs
to be annotated somehow and mapped to the generated datums. Because of
the added complexity of this we chose the first solution, for further research it
might be interesting to find a solution to this problem.

We solved the second point by extending a JUnit "parametersource"

which are responsible for supplying the variables of a test method to call. By
returning an array of more then one element JUnit run the same test multiple
times. Another solution for running a a test for each datum is to automatically
create at est case for each generated test datum, we decided not to do this
since it would lead to extremely large test classes. After deciding on the way to
supply the data to the unit test, a decision needs to be made about how to get
the data from the generator to the unit testing framework. There are several
options, such as:

• passing the data straight from the generator to the unit testing framework
without storing it in an intermediate format somewhere

• storing the data first in some format somewhere and then passing it along.

The first option has as an advantage of being simpler, the data does not need
to be saved in a format to a file storage and then loaded and parsed and then
parsed to the testing framework. On the other hand the second option has the
advantage of rerunning the tests with the same data without having to wait to
generate the data again. This would also make the tests be more reproducible
and controllable since they would be run with the same test data after the gen-
eration of the data, and would not have to handle new data unless the file was
removed. Note that for differential oracles, one would have to re-generate the
oracles every time new data is generated, hence option one would need a differ-
ent approach to solving the oracle problem (e.g., pseudo-oracle, metamorphic
testing, test oracles from system execution traces etc.). Storing the test data
also means that a regression test oracle can be used, since the results of the first
test run can be saved and then be reused after the code is refactored whereas
the first option would require a non regression test oracle which tends to add
complexity.

GödelTest supports the use of choice models where the generation mecha-
nisms (i.e., methods and distributions to sample datums) can be changed. For
example, the size of the resulting element when calling the mult, plus or reps

choice points, for this a custom choice model could be used, these can be writ-
ten in Julia themselves. It might be interesting to give some feedback to the
choice model from the testing framework, to ”steer” GödelTest generations to

23

sample datums differently (e.g., more interesting test data), either by choice
of the tester or by some automatic process. To accomplish this some feedback
mechanism could be made where the unit testing software sends information
back to the generator to change the choice model depending on the results of
the previously generated test data.

24

Chapter 4

Methodology and
Evaluation

The evaluation of our implemented tool is conducted via an experimental
study. Our study covers two experiments using the tool- the first experiment
(ES1) investigates the efficiency and effectiveness of our tool compared to other
test generation techniques; the second experiment (ES2) captures the efficiency
and effectiveness of different settings/configurations of the test generation (e.g.
different number of test data generated and test data from differently written
generators).

Both experiments consist in: i) creating test generators in the implemented
platform, ii) instrumenting the SUTs with a set of faults (e.g., seeded by mu-
tation) as well as monitoring the generation procedure, iii) collect quantitative
data on efficiency and effectiveness of the investigated approaches, iv) ana-
lyze and present results. The steps of our experimentation process is designed
following the guideline mentioned in the book ”Experimentation in Software
Engineering” [62]. Each step is described in detail in this chapter.

4.1 Scoping and Planning

In order to define the scope of our experiments we use the template proposed
by Wohlin et al.[62]. There, our experiments aims to: Analyze automated
test generation technique; for the purpose of comparing the trade-offs between
automated and manual testing; in terms of fault detection rate and coverage of
test input; from the point of view of a test engineer or developer; in the context
of unit testing.

25

Figure 4.1: Adapted experiment principles for the first experiment [62]

4.2 Context

Since this thesis is not done in collaboration with a company, a lab based ex-
perimental study is done consisting of a quantitative approach for checking the
efficiency and effectiveness of the developed test data generation tool compared
to other techniques.

4.3 Variable selection

4.3.1 Experimental Study 1 - ES1

ES1 has one factor (unit testing technique), with three levels: i) stochastic test
generation using GödelTest, ii) unit tests written manually by human devel-
opers, and iii) test generating using EvoSuite. Efficiency and effectiveness of
stochastic test generation technique implemented in our tool are measured in
terms of two dependent variables: i) percentage of mutation detection rate, ii)
percentage of line coverage of the test cases. We chose mutation score and line
coverage since they have been widely used in literature as constructs to measure
effectiveness and efficiency [63]–[65]. Namin and Andrews showed that there is
an influence of coverage on the effectiveness of a test suite [66].

Figure 4.1 shows the cause-effect relationship of our first experiment ac-

26

cording to the basic principles of experiment suggested by Wohlin et al. [62].
Through this experiment we find out how different test generations techniques
affect the efficiency and effectiveness of the generated test data which reflects
the benefits (if any) of stochastic test data generation and eventually answers
our RQ3.

4.3.2 Experimental Study 2 - ES2

Our second experiment aims at finding out if there is any effect of varying
number of generated data points or generators designed/written differently on
the efficiency and effectiveness and answer to our RQ4. There are two factors
in the experiment- different sizes of sampled datums and different designs of
generators.

Our hypotheses is whether increasing the number of generated datums
would allow the stochastic generation to explore the different areas of the input
space. Therefore, our first factor ”different sizes of sampled datums” has eight
levels- 1, 5, 10, 20, 50, 100, 200 and 500. The specific values were chosen in
order to see a progression by nearly doubling the size of the pool. This is an
initial investigation, but future studies can include different strategies on how
to define the sample sizes.

Our another hypothesis is that the design of the generator affects perfor-
mance since choice points specified in the generator (choose, mult, plus) trigger
the choice models implemented in GödelTest. Consequently, the sampling of
datum is affected, however, we aim to observe to what extent that affects the
actual testing. Therefore, the second factor ”different designs of generators” has
three levels- type A, type B and type c which corresponds to three differently
written generators generating same type of data. For this run, we did arbitrary
design decisions when writing the generators, such as changing the range of
types, or choice points. Figure 4.2 shows the three type of generator used for
generating an array of Integer numbers. The first one chooses the numbers
with a range of -10000 to 10000. The second one generates the numbers without
any range which means any value can be generated within the minimum and
maximum limit of INT type. Finally the third has three different methods for
generating a number from which it randomly chooses one while generating each
of the numbers. Figure 4.3 shows the cause-effect relationship of the second
experiment.

According to Juristo et. al. [67] this experiment design is termed as 8x2
factorial design (eight alternatives/levels for one variable/factor and two for

27

Figure 4.2: Example of different designs of generators for generating same type
of data

Figure 4.3: Adapted experiment principles for the second experiment [62]

28

another) which can be described by means of the linear statistical model

yijk = µ+ αi + βj + (αβij) + eijk

where µ is the grand mean, αi is the effect of the ith alternative of the row factor
(different sizes of sampled datums), βj is the jth alternative of the column factor
(different designs of generators), αβij is the effect of the interaction between αi

and βj and eijk is the error associated with the unitary experiment concerned
with the ith and jth alternatives.

However, Since we are not exploring the interaction effects of the factors in
this study, this experiment is considered as two separate one-factor analysis with
K alternatives/level. Mathematical model for one-factor experimental design
according to Juristo et. al. [67] is-

yij = µ+ αj + eij

where yij is the value of the response variable in the ith observation with the
factor valued j (that is, the jth alternative), µ is the mean response, αj is the
effect of the alternative j, and eij is the error.

10 observations are taken while executing the experiments with each alter-
native. Due to the call to Julia, each run takes at least several seconds, such
that more executions per level could lead to prohibitive experimental execution
cycles.

First part of the experiment analyzes the effect of different sizes of sampled
datums on line coverage mutation coverage keeping the designs of generators
fixed, second part of the experiment analyzes the effect of different designs of
generators on line coverage and mutation coverage keeping the sizes of sampled
datums constant.

In both experiments, for all the levels, different objects are used to allow
the execution of the techniques, and hence the experimental study. Different
parts of the SUT is chosen to be tested, since exhaustive coverage requires the
creation of too many generators which would compromise the time of the thesis.
We decided to control these variables, so that the results can be evaluated in
terms of varying the unit testing techniques, as opposed to differences due to
using different projects for each technique.

4.4 Hypothesis formulation

Our first experiment (ES1) focuses on the comparison of the line coverage and
mutation coverage among different test data generation techniques. The general
hypothesis behind the experiment is that the investigated test generation tech-
niques differ in terms of efficiency and effectiveness. However, trial runs during

29

setup revealed that the performance of different tools is quite stable, hence little
to no variance on efficiency and effectiveness was seen during data collection.
Consequently, for ”ES1” we do not perform statistical tests, rather we provide
a comparative analysis of our experiment result.

Our second experiment (ES2) investigates the effect of different sizes of
sampled datums and different designs of generators on the efficiency and effec-
tiveness of the generated test data; therefore, the null hypothesis and alternative
hypothesis for our second experiment are:

Analysing different numbers for sampling datums:

H01: There are no differences in GödelTest’s line coverage (LC) when
using various numbers of generated datums;

µ(LC1) = µ(LC5) = µ(LC10) = µ(LC20) = µ(LC50) = µ(LC100) = µ(LC200) = µ(LC500)

HA1: There are differences in GödelTest’s line coverage (LC) when
using various numbers of generated datums;

µ(LC1) 6= µ(LC5 6= µ(LC10) 6= µ(LC20) 6= µ(LC50) 6= µ(LC100) 6= µ(LC200) 6= µ(LC500)

H02: There are no differences in GödelTest’s mutation coverage (MC)
when using various numbers of generated datums;

µ(MC1) = µ(MC5) = µ(MC10) = µ(MC20) = µ(MC50) = µ(MC100) = µ(MC200) = µ(MC500)

HA2: There are differences in GödelTest’s mutation coverage (MC)
when using various numbers of generated datums;

µ(MC1) 6= µ(MC5 6= µ(MC10) 6= µ(MC20) 6= µ(MC50) 6= µ(MC100) 6= µ(MC200) 6= µ(MC500)

Analysing different designs of generators:

H03: The fact that different type of data generators are used makes
no difference to the line coverage of the stochastic test data generation
technique;

µ(LCTypeA) = µ(LCTypeB) = µ(LCTypeC)

HA3: The fact that different type of data generators are used makes
a difference to the line coverage of the stochastic test data generation
technique;

µ(LCTypeA) 6= µ(LCTypeB) 6= µ(LCTypeC)

H04: The fact that different type of data generators are used makes
no difference to the mutation coverage of the stochastic test data gener-

30

ation technique;

µ(MCTypeA) = µ(MCTypeB) = µ(MCTypeC)

HA4: The fact that different type of data generators are used makes
a difference to the mutation coverage of the stochastic test data generation
technique;

µ(MCTypeA) 6= µ(MCTypeB) 6= µ(MCTypeC)

There could be more hypothesis addressing the confounding aspects of
the factors (size of generated data and generator design) but considering the
complexity of two-factor multi-level test analysis and the time constraint of the
thesis, instead of running a two factor analysis we decided to do a fractional
factorial analysis by analyzing each factors individually. We leave the analysis
of interaction effect of the factors for future work.

4.5 Selection of subjects and objects

Since our implemented tool automatically generates test data and runs the
test cases, the experiments are conducted without any human intervention i.e.
without the involvement of any subject. The objects for the experiments are
software projects which we call our systems under test i.e. our SUTs. Suitable
candidates for our SUTs are selected basing on the following qualities:

• An Open-source project: Since the experiment is done in a lab environ-
ment and companies often lack reliable fault/failure information to run
experimental studies

• A Java project: Since currently the tool has support for Java projects only

• Existing unit test suite: Since we need to compare the efficiency of our
tool with manual unit test writing

• Reasonable SUT size: Since we need to instrument the TestAdapters, the
test and production code should be understandable to use in a relatively
short time span

To observe the usability impact and generalizability of our tool we decided
to select SUTs of different complexities. We wanted to see if we get similar
results by running the experiment with a small, simple SUT and with a com-
paratively large, complex SUT. Considering all the selection criteria we came

31

up with two different projects- 1. sorting-algorithms1 2. JFreeChart from De-
fects4J2 [68]

Our first SUT is comparatively simple with test cases accepting only array

of integer numbers. The test suite consists of one test class with six different
test methods. Our second SUT JFreeChart have been widely used to validate
software testing techniques. Since it has too many test classes, we chose specific
test classes for our experimentation instead of the whole project. We selected
the whole org.jfree.data.statistics package containing 13 different test
classes for the experiment. The chosen test classes have 86 test methods that
accept arrays, tuples of double numbers. However, for some of these classes
no JuliaTest tests has been written due to limited complexity of the CUT(class
under test), for these we leave in the normal Junit test as to get a fair comparison
in coverage sizes.

4.6 Instrumentation

This is the last step before the execution in which we prepare our SUTs for
the experiments. The instrumentation process of our experiment consists of:
i) implementing the TestAdapter in each SUT, ii) writing the generators, iii)
applying Evosuite in each SUT and iv) seeding faults into the SUTs.

Our first step in the instrumentation phase is to make our tool work with
the selected SUTs. Our tool support is added to the SUTs as a dependency.
For each SUT, we create the TestAdapters based on the existing unit tests by
copying and refactoring the existing unit tests into new test files. This steps
ensures consistency between the SUT invocations done by the manual tests and
our TestAdapter. Otherwise, we would risk testing the wrong unit of the SUT.

Next step is to write the generators that provide appropriate data to the
TestAdapter. For the same TestAdapter, we have written three different gen-
erators (type A, type B and type C) varying the data generation parameters
with a view to capture the impact (if any) of generator writing style on the
experiment results. Figure 4.2 shows the three type of generator used for gen-
erating an array of Integer numbers. The first one chooses the numbers with
a range of -10000 to 10000. The second one generates the numbers without
any range which means any value can be generated within the minimum and
maximum limit of INT type. Finally the third has three different methods for
generating a number from which it randomly chooses one while generating each
of the numbers.

Evosuite uses the state-of-the-art techniques for test generation and opti-

1https://github.com/murraco/sorting-algorithms/
2https://github.com/rjust/defects4j

32

https://github.com/murraco/sorting-algorithms/
https://github.com/rjust/defects4j

mization [2] and has achieved the highest score among the other tools in the
7th SBST Java Unit Testing Tool Contest in 2019 [69]. Therefore, to compare
the efficiency of our tool with existing automatic test generation techniques, we
chose Evosuite. Adding the tool support of Evosuite into our selected SUTs we
automatically generate test suites for each test class.

Our final step is to seed faults in the SUTs. There are a number of
java mutation testing tool available for fault seeding- µJava3, Jester4, Jum-
ble5, Javalanche6, Pitest (PIT)7. However, among these PITest is open source
and actively maintained whereas the other tools are not as widely used as PIT
since those are more suitable for specific academic research rather than real soft-
ware industry [70]. The fact that PIT is supported by both ANT and MAVEN
makes it easier to use and it is scalable and fast [71]. PIT has inherent op-
timization techniques, supports mutant operators, supports configurations and
presents the reports in a user-friendly way [71] which makes PIT suitable for
our purpose. Therefore, we have configured PITest into our selected SUTs to
allow mutations in the source code.

At the end of the steps described above, the experiments were executed.
Results of the experiments are presented in the next chapter along with the
analysis of the results.

3http://cs.gmu.edu/offutt/mujava/
4http://jester.sourceforge.net/
5http://jumble.sourceforge.net/
6http://www.st.cs.uni-saarland.de/mutation/
7http://pitest.org/

33

http://cs.gmu.edu/offutt/mujava/
http://jester.sourceforge.net/
http://jumble.sourceforge.net/
http://www.st.cs.uni-saarland.de/mutation/
http://pitest.org/

Chapter 5

Result and Analysis

This chapter presents the results and analysis of the data received from our
experiments. The statistical analysis are done in R1 using R-studio2 software.

5.1 Experiment 1

In our first experiment manual test data generation technique, automatic test
data generation technique with Evosuite and automatic stochastic test data
generation technique with our proposed tool JuliaTest was applied on both
the selected SUTs and data of line coverage percentage and mutation coverage
percentage was collected. Whole test suite of SUT-1 containing one test class
with six different text methods was used in the experiment. For SUT-2, a
specific package of test suite that contains 13 test classes with 86 different test
methods was used for the experiment.

The experiment was repeated 10 times and every time, the same values were
retrieved. Since there was no variance in the results, we did not go through the
statistical analysis for this experiment. However, use of varying test classes for
SUT-2 might have a difference in the yielded result. Due to the time limitation
it was not possible to include all the test suite packages in the experiment,
which therefore should be considered for future work. Table 5.1 contains the
data gathered from the experiment.

The experiment result shows that Evosuite’s test data generation technique
has better line coverage percentage than the rest two techniques for both SUT1

1https://www.r-project.org/
2https://www.rstudio.com/

34

https://www.r-project.org/
https://www.rstudio.com/

Technique Line Coverage (%) Mutation Coverage (%)
SUT1 SUT2 SUT1 SUT2

Manual 94.0 70.0 82.0 54.0
Evosuite 100.0 88.0 73.0 22.0
JuliaTest 94.0 70.0 85.0 54.0

Table 5.1: Line coverage and mutation coverage using different techniques (Total
number of mutants: 1038)

and SUT2. Though our proposed tool’s stochastic test generation technique
could not beat Evosuit’s line coverage, it provides the same line coverage as the
manual test data generation technique.

However, clearly, for both SUT, our proposed tool won the race by find-
ing more faults through mutation testing than the rest. for the first SUT our
tool provides 12 percentage point more mutation coverage than Evosuite and
3 percentage point more mutation coverage than the manually generated test
data. For the second SUT our tool provided 31 percentage point more muta-
tion coverage than Evosuite while providing the same coverage as manual test
data generation. The total number of mutants generated was 1038. We will ex-
plore these differences further in our discussion of results (Chapter 6), specially
contrasting both the line and mutation coverage.

5.2 Experiment 2

As mentioned before, two factors of our second experiment are analyzed individ-
ually, therefore, this experiment has two part. Due to the time limitation, there
was not enough time to run the experiment on both the SUTs. We, therefore,
chose the second SUT (JFreeChart) for being bigger and more complex to run
our experiment on. The following sections describe the statistical analysis of
our second experiment data.

5.2.1 Different sizes of generated data

The first factor of this experiment is number of data generated which has 8
levels/alternatives- 1, 5, 10, 20, 50, 100, 200 and 500. During the experiment
the other factor (different designs of generators) was kept constant.

We collected the data gathered from the second experiment. Due to size,
the data is presented, entirely, in the Appendix, whereas here we discuss the
results of the statistical tests i.e. the analysis of line coverage and mutation

35

Figure 5.1: Line graph of Mutation coverage against data size

coverage against the generated data size. From the data gathered from the
second experiment it can be visually confirmed that the line coverage percentage
do not vary depending on the generated data size. For all 80 observations, the
line coverage is always the same, therefore, there is no need to perform statistical
tests on this data. With this data We have enough evidence to reject the null
hypothesis H01 in favor of the alternative hypothesis H01 concluding that the
treatments i.e. the number of data generated do not have any effect on the line
coverage.

However, the data for mutation coverage is not exactly the same for all 80
observations. The graph in 5.1 plots the mutant coverage as we increase the
number of sampled datums and reveals that there is a small variation in muta-
tion coverage for smaller data size and the value stabilizes with the increasing
number of data generated. Figure 5.2 shows the shape of the data distribution
and its variability for each alternative group more clearly. To investigate further
about this variation we approached to perform statistical analysis.

To perform statistical analysis, it needs to be tested if the data is normally
distributed. Among various normality test, we chose Shapiro-Wilk normality
test [62] for our purpose. The null hypothesis for this test is that the data
is normally distributed. The p-value obtained from performing the test on
mutation coverage data is extremely below the α-value with 95% confidence
level (0.05) resulting into rejection of the null hypothesis which means that the
data is not normally distributed. Therefore, the non-parametric Kruskal-Wallis
test is performed on the data since parametric tests assume that the data is

36

Figure 5.2: Box-plot of Mutation coverage against data size

normally distributed [62].

Shapiro−Wilk normality test p−value for mutation coverage = 8.128e−15

Kruskal−Wallis rank sum test p−value for mutation coverage = 8.056e−10

The p-value obtained from performing Kruskal-Wallis test on mutation
coverage against data size is below the α-value with 95% confidence level (0.05),
which means it is significant. We, therefore fail to accept our null hypothesis
H02 and conclude that there is a difference on the mutation coverage depending
on the number of data generated. However, the visual analysis show very little
variation of the mutation much before 100 datums are used. This is an indication
that the difference lies between some of the levels as opposed to all of them (as
indicates the Kruskal-Wallis test). Therefore, we did a pair-wise test of the
mutation coverage collected in each level.

The pairwise analysis was done using a Bonferroni correction to account
for α inflation. The analysis confirms that only specific levels of the factor yield
a statistical difference. Moreover, we also used the Vargha-Delaney Â12 metric
to reason about the magnitude of such difference (effect-size). The results on
Table 5.2 reveals that the difference comes mostly from small sample sizes (i.e.,
one or five datums generated). Moreover, observing the actual scores on the
data (Table 7.1 in the Appendix), the differences are very minimal, hence being
not significant in practice.

In short, even though the results reveal that there is a difference, we argue

37

Pairwise comparison p-value Effect size Effect size

1x5 0.00793 1 large

1x10 0.60461 1 large

1x20 0.00029 1 large

1x50 0.00029 1 large

1x100 0.00029 0.5 negligible

1x200 0.00029 0.5 negligible

1x500 0.00029 0.5 negligible

5x10 1.00000 1 large

5x20 1.00000 1 large

5x50 1.00000 1 large

5x100 1.00000 0.5 negligible

5x200 1.00000 0.5 negligible

5x500 1.00000 0.5 negligible

10x20 0.09029 1 large

10x50 0.09029 1 large

10x100 0.09029 0.5 negligible

10x200 0.09029 0.5 negligible

10x500 0.09029 0.5 negligible

Table 5.2: Pairwise comparison of mutation coverage (Remaining pairwise com-
binations did not point to any statistical results, because the results had no
variance)

that the difference and effect-size are not significant in practice, since unit tests
are often faster to execute (specially when compared to higher level tests). In
practice, testers would generate thousands or even more datums, leading to
a negligible effect-size. Nonetheless, future investigation is required, since we
constraint our evaluation to very small parts of the SUT (i.e., a specific package).

5.2.2 Different types of generators used

The second factor of this experiment is the type of generator used for generating
the test data. Three levels- generator type A, type B and type C is used in
this part of the experiment keeping the other factor (different sizes of sampled
datum) fixed.

In this part of the experiment line coverage and mutation coverage is an-
alyzed against the different designs of generators. Like the first part of the
experiment, a specific package of SUT-2 is used in the experiment. The three
types of generator used for the experiment is described in section 4.6 of Chapter
4.

Table 7.2 in the appendix depicts the data gathered from running the
experiment. From the data in table 7.2 it can be seen that there are no change

38

in line coverage percentage or mutation coverage percentage depending on the
different designs of generators as observation values are unchanged with the
variation of the alternatives. Therefore, we fail to reject our null hypothesis
H03 and H04.

Results of our experiment is further discussed in detail in the next chapter
of this report.

39

Chapter 6

Discussion

In this chapter we try to answer the research questions (RQs) of the study by
discussing our experiences through the thesis work, elaborating the findings from
the experiment results and statistical tests, analyzing potential reasons behind
the findings and evaluating the validity threats of the experiments. Along with
the discussions we also commenced some concepts for future works that may
thrive from this study.

6.1 Answer to the RQs

RQ1: How can we instrument JUnit Frameworks to enable automated
and stochastic test generation?

With a view to answer this question we created our proposed tool support
”JuliaTest” that implements an automated and stochastic test generation
framework GödelTest and is instrumented with the JUnit framework.

One of the main enablers of our instrumentation was the use of automated
builds (Maven) and a TestAdapter to allow communication between the frame-
work to generate tests (GödelTest) and the SUT. Testers should also follow good
practices in separating test and production code, along with support from an
existing xUnit Framwork (in our case, JUnit) so other aspects of the automation
can be handled by the framework itself (e.g., a test Runner and the assertion
mechanisms).

The architecture along with other details of the tool is described in detail
in Chapter 3. Some ideas on different design and architectural decisions that

40

could have done differently and the pros and cons of those decisions are also
mentioned in Chapter 3.

RQ2: What are the challenges in applying stochastic test data gen-
eration to unit testing frameworks?

The experience we had while creating our proposed tool has enabled us to
point out some of the challenges in applying stochastic test data generation
to unit testing frameworks. One challenge is that the testers need to create
an adapter to make the communication between GödelTest generators and the
JUnit framework. However, writing an adapter needs only the basic knowledge
of java and some understanding of the JUnit 5 annotation property which is
assumed to be familiar to most test engineers.

Another challenge we noticed is the overhead that is added to the system
for calling the generators of GödelTest written in the language Julia. This
challenge can however be further be addressed by using the JavaCall library
of Julia and then investigating the performance of the tool in future works.
Another interesting future aspect of this part of the study would be to extend
the tool support for other XUnit frameworks or other languages (e.g., python,
C#).

While searching characteristics of JUnit Framework that can foster usage
of stochastic test generation we found the JUnit 5 annotation property very
useful for making the connection between GödelTest generators and JUnit test
cases. Also, we exploited the assertion property of JUnit. At present testers
sometimes create several tests- each containing one assertion for different test
inputs- whereas in our tool one test method can take 100s, 1000s or more dif-
ferent test inputs having the same assertion.

Another challenge we faced during the implementation of our proposed
tool is the oracle problem. Different types of oracle entails different design
choices, since the expected values are needed to instrument assertions. We
used a differential oracle in order to solve the oracle problem in our case. To
use differential oracles, we had to adapt the architecture of our tool, we had to
make our testing tool write and read the generated test datums to a file and also
write and read the results of those tests so they can be used by the differential
oracle to see if there has been a regression or not.

41

Figure 6.1: Detail comparison of line coverage and mutation coverage among
the three techniques for SUT-2

RQ3: What are the trade-offs between different test generation tech-
niques for unit testing?

We tried to answer this question through our first experiment, the result of
which is reported in section 5.1 of Chapter 5. In the experiment Evosuite’s
performance was better for line coverage for both SUTs. However, for mutation
coverage our proposed tool’s technique and manual test techniques are pretty
close where Evosuite left far behind. To understand the difference better Figure
6.1 shows the class-wise comparison among the techniques for SUT-2. From the
figure we can see that for all the test classes Evousuite’s mutation coverage is
less than the other two, even 0% for some classes.

Since we ran Evosuite with it’s default parameters which tries to optimize
for certain goals. Among the goals the most important one is line coverage fol-
lowed by branch coverage, so it makes sense that Evosuite scores high in that
regard, while scoring a lesser score for mutation coverage. The reason for choos-
ing the default setting on Evosuite is since this is probably the configuration
most people use it as, and therefore seems like a fair setting for our experiment,
further experimentation with different configuration can be explored in future
work. Perhaps, if Evosuite would have been run on a SUT with less interaction
between different objects that the test cases might have scored higher in the
mutation coverage, since the mutation coverage score of Evosuite for SUT 1
was a lot higher. In figure 6.1 we can see how Evosuite compares on a class ba-
sis. It shows that that for seven different classes Evosuite has a mutation score
of 0. After examining the test classes it was identified that all these classes
take complex data types like instances of Comparable (i.e., a Java Comparable
object) as an input for themselves. Evosuite does seem capable of filling this in
but generation of good test data for the other methods which use the variables
sat in the constructor seems to be not possible.

It also seems that Evosuite had a hard time with generating meaningful
tests for SUT 2 since it is a complex scenario (as opposed to SUT 1 where it
performs better but takes very simple data types). A number of test cases where

42

Figure 6.2: Comparison of killed mutations by Evosuite and Juliatest for SUT-2

manually changed since they seemed to be unstable (e.g. one test cases gener-
ated by Evosuite created a list of a million items inside of an object which caused
it to throw a out of memory inconsistently). For this case the passed variable
determining the size was changed without changing the other functionality of
the test.

To see if the tests generated with Evosuite are simply incapable at finding
some specific kinds of faults we also analyzed the output from PITest(see figure
6.2). Here we can see what types of mutations PItest created for the SUT, in
total it created a 1038 mutations of the following categories:

• ConditionalsBoundaryMutator - changes a conditional boundary e.g i <
10 gets changed to i > 10

• IncrementsMutator - changes the increment of a local variable e.g. i++
gets changed to i–;

• VoidMethodCallMutator - removes calls to methods void returing methods
• ReturnValsMutator - changes the returned variable of a method e.g. re-

turn x; gets changed to return 0;
• MathMutator - changes arithmatic operators to its inverse e.g multiplica-

tion gets changed to a division
• NegateConditionalsMutator - changes a conditional operator e.g == gets

changed to !=

From figure 6.2 it is clear that Evosuite does not excel or do poorly in a
single category, rather it scores about half of what JuliaTest does for all types
of mutators. Evosuite uses genetic algorithm with the source code for creating

43

tests whereas JuliaTest being black-box has no dependency on the source code,
all it needs is the input specification. We understand that Evosuite is highly
configurable, but to do so a good knowledge of Java is required whereas to use
JuliaTest the testers needs to know only the basic JUnit for adapters. Though
a very basic knowledge of Julia is also required for writing the generators, it is
easier to grasp since Julia is a high level language. The generator needs to be
created once and it will take care of many test cases. New generator needs to
be created only if the test specification changes.

Considering the points mentioned above we argue that performance-wise
and usage-wise JuliaTest is a better alternative than Evosuite. However, future
studies should investigate different configurations of Evosuite. Furthermore,
another interesting future work can be to replay the experiment on projects
containing real faults (e.g.,defect4J) instead of using mutants to see how many
of the faults are captured by manual test data generation technique, JuliaTest
and Evosuite.

RQ4: What are the effects of different settings/setups in stochastic
test generation?

Our second experiment reported in section 5.2 of Chapter 5 aims at answering
this question. Our second experiment consists of two parts- first of which anal-
yses the effect of line coverage and mutation coverage on data size i.e. number
of data generated. From the results in section 5.2 of Chapter 5 it is obvious that
line coverage do not change depending on the different number of data gener-
ated. However, we see a small difference in mutation coverage for varying data
size. Mutation coverage percentage vary a little until the data size 10. From
the data size 20 mutation coverage value stabilizes no matter how many more
data is generated. Therefore we identify 20 as the elbow value after which the
coverage goes flat meaning that generating 20 input values should be enough
to get optimal mutation coverage. Nonetheless, we argue that in practice this
change will not be relevant since testers can generate larger unit test suites and
still run all tests. However, since the first SUT used in the experiment is very
simple which might have an effect on the result, we do not claim the result to
be generalized. This is a threat to validity to our study and is open for further
experimentation.

The second part of our experiment analyzed the change in line coverage
and mutation coverage for different types of generators. Three different type of
generators were used on a specific package of SUT-2 (org.jfree.data.xy). Our
experiment result showed that there is no difference in the line coverage and mu-
tation coverage depending on how the generator is written. However, GödelTest
provides four choice points exploiting which a generator can be written in a num-
ber of different styles. In our experiment we tried to cover generators written
with different ranges which resulted in not having any effect on line coverage

44

or mutation coverage. Exploring other aspects of generator writing style could
not be covered in this study due to the time limitation. Experimentation with
these different aspects may result into different outcome from our experiment
and therefore, is an interesting candidate for future study.

However, the experiment was done using only one SUT. Though the SUT
used is moderately complex, it might be interesting to perform the experiment
using multiple SUTs. Analyzing the interaction effect of the two factors of the
experiment may also result in interesting findings. Furthermore, considering
the SUTs as factors of the experiment observe the change in line coverage and
mutation coverage for varying SUTs could be another future work from this
study.

6.2 Validity evaluation

Validity of a research investigates the question of how close the conclusion of
the study is to the reality and validity threats are the specific ways in which the
conclusion might be wrong [72]. There are namely four types types of validity
threats- external, conclusion, internal and construct [62].

External validity threat questions the generalizability of the findings of
the study outside the scope [62]. Due to the time limitation of the thesis our
inability to generalize the result of the experiment into industry practice is one
external validity in our case. However, considering Gorscheck’s et al. model
[73] for technology transfer, this study lies in step 4 (validation in academia),
whereas validation with actual industry partners for this study would be Step 5
or higher (static validation), which is aimed for future work. Another external
validity threat to our experiments is that we used only two SUTs which may
not be sufficient for generalizing the conclusions from our experiment results.
Due to time limitation it is not possible for us to include more SUTs in the
experiments. Moreover, We, therefore, claim our conclusions to be the the first
implication of the potential of stochastic test data generation technique and is
widely open for further investigations.

The focus of internal validity concerns if the experiment actually measure
the cause-effect construct properly ensuring that no other factors but the treat-
ments are solely responsible for the observed outcome [62]. In our experiments
we used a 3rd party mutation testing software called PITest for fault seeding,
hence the mutation score obtained from PIT is subject to internal validity. To
mitigate this validity threat the output of each step is checked manually. In
case of any unusual outcome, the reason was investigated and the whole execu-
tion was restarted if necessary. Furthermore, the fact that in our experiment
Evosuite was not used in its full capacity is another internal validity threat to
our first experiment. Due to time concern instead testing with different config-

45

urations to optimize the performance of Evosuite we used it with the default
configuration. Though we cannot mitigate this validity threat at this moment,
future studies should address this aspect.

Conclusion validity threat is concerned about if the treatments used in
the experiment are actually related to and have statistical significance on the
observed outcome [62]. One conclusion validity threat to our experiment two
is that the interaction effect of the two factors are not analyzed, instead, the
factors are analyzed individually. Unfortunately this validity threat cannot be
mitigated in this study due to the scarcity of time but this analysis is intended
to be included in future work. Another conclusion validity threat lies in our
experiment two with the choice of statistical analysis method. We mitigate
this threat by using non-parametric tests which are more conservative and less
constrained by assumptions regarding data distribution.

Finally, construct validity threat focuses on if the right constructs (e.g.,
techniques, dependent variables, projects) are being chosen i.e. the correspon-
dence between the treatments and the cause of interest [62]. Since the SUTs
for our experiments are open source projects, a threat to construct validity for
our experiment is that the chosen SUT might be atypical in the quality of test
suites. To mitigate this threat, we chose two different SUTs with different levels
of complexity. However, the time limit of the thesis period did not allow as to
consider more variety in the SUTs.

46

Chapter 7

Conclusion

Stochastic test data generation is one of the dimensions of test automation
that can add values to the software testing field- with this assumption we con-
ducted this thesis work putting a focus on investigating how well stochastic test
data generation technique performs with unit testing of open-source projects.
We implemented a tool called JuliaTest that combines stochastic test gener-
ation framework GödelTest with existing Java unit testing framework JUnit.
During the process we not only identified some challenges involved with gener-
ating JUnit tests using the GödelTest framework but also figured out how we
can exploit the JUnit5 Annotation property for our purpose. Current version
of our tool supports Java Maven projects and can be run via a single maven
command to generate as many input data as wish. Data types supported by
the tools are- Integer, Double and String. Another Interesting feature of our
tool is that it supports creating JSON data from a JSON schema. However,
this feature is still in the basic stage which is planned to be developed further
in future works.

In order to evaluate our tool’s efficiency and effectiveness in terms of line
coverage and mutation coverage, we ran an experiment comparing it with man-
ual test data generation and one of the most popular automatic test generation
tool- Evosuite. Our experiment showed that our tool provides almost the same
line and mutation coverage as manual testing but 31 percentage point more
mutation coverage than Evosuite for a moderately complex test suite of 13 test
classes and 86 test methods.

To take the evaluation of our tool further, we conducted another experiment
investigating if there is an effect of varying number of test data generated or
different type of generator used on the performance of the tool. Our experiment
did not find any effect of varied data size or differently written generators on
the line coverage. However, for optimal mutation coverage the study found the

47

suitable number of data size to be 20.

Stochastic test data generation is a field of immense possibilities, we tried to
investigate a small part of it. There are a lot of scopes to take this study further
and conduct experiments from different angles. Some concepts of related future
studies have been mentioned in different parts of this report which we think is
another implicit contribution of our study. Furthermore, since our study has
covered the instrumentation process of stochastic test data generation technique
by implementing GödelTest in the proposed tool, it is now easier to generate
data of more complex data types which eventually will make the tool compatible
to be used in real-life industrial projects. This study allowed us to take a small
step into the world of stochastic test data generation which, we believe, with
time and more effort will become sophisticated and matured enough to be used
industrially by the test engineers.

48

References

[1] R. Ramler and K. Wolfmaier, “Economic perspectives in test automation:
Balancing automated and manual testing with opportunity cost,” in Pro-
ceedings of the 2006 international workshop on Automation of software
test, ACM, 2006, pp. 85–91.

[2] G. Fraser and A. Arcuri, “Evosuite: Automatic test suite generation for
object-oriented software,” in Proceedings of the 19th ACM SIGSOFT sym-
posium and the 13th European conference on Foundations of software en-
gineering, ACM, 2011, pp. 416–419.

[3] C. Pacheco and M. D. Ernst, “Randoop: Feedback-directed random test-
ing for java,” in Companion to the 22nd ACM SIGPLAN conference on
Object-oriented programming systems and applications companion, ACM,
2007, pp. 815–816.

[4] A. Mista, A. Russo, and J. Hughes, “Branching processes for quickcheck
generators,” in Proceedings of the 11th ACM SIGPLAN International
Symposium on Haskell, ACM, 2018, pp. 1–13.

[5] R. Feldt and S. Poulding, “Finding test data with specific properties via
metaheuristic search,” in Software Reliability Engineering (ISSRE), 2013
IEEE 24th International Symposium on, IEEE, 2013, pp. 350–359.

[6] S. Poulding and R. Feldt, “Generating structured test data with specific
properties using nested monte-carlo search,” in Proceedings of the 2014
Annual Conference on Genetic and Evolutionary Computation, ACM,
2014, pp. 1279–1286.

[7] S. Poulding and R. Feldt, “The automated generation of humancompre-
hensible xml test sets,” in Proc. 1st North American Search Based Soft-
ware Engineering Symposium (NasBASE), 2015.

[8] N. Havrikov, M. Höschele, J. P. Galeotti, and A. Zeller, “Xmlmate: Evolu-
tionary xml test generation,” in Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ACM,
2014, pp. 719–722.

49

[9] R. Feldt, S. Poulding, D. Clark, and S. Yoo, “Test set diameter: Quanti-
fying the diversity of sets of test cases,” in Software Testing, Verification
and Validation (ICST), 2016 IEEE International Conference on, IEEE,
2016, pp. 223–233.

[10] C. Henard, M. Papadakis, M. Harman, Y. Jia, and Y. Le Traon, “Compar-
ing white-box and black-box test prioritization,” in Software Engineering
(ICSE), 2016 IEEE/ACM 38th International Conference on, IEEE, 2016,
pp. 523–534.

[11] G. Fraser, M. Staats, P. McMinn, A. Arcuri, and F. Padberg, “Does auto-
mated unit test generation really help software testers? a controlled empir-
ical study,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 24, no. 4, p. 23, 2015.

[12] D. Huizinga and A. Kolawa, Automated defect prevention: best practices
in software management. John Wiley & Sons, 2007.

[13] Junit 5, https://junit.org/junit5/, Accessed: 2019-03-28.

[14] K. Claessen and J. Hughes, “Quickcheck: A lightweight tool for random
testing of haskell programs,” Acm sigplan notices, vol. 46, no. 4, pp. 53–
64, 2011.

[15] R. Storn and K. Price, “Differential evolution–a simple and efficient heuris-
tic for global optimization over continuous spaces,” Journal of global op-
timization, vol. 11, no. 4, pp. 341–359, 1997.

[16] G. Grieco, M. Ceresa, A. Mista, and P. Buiras, “Quickfuzz testing for fun
and profit,” Journal of Systems and Software, vol. 134, pp. 340–354, 2017.

[17] N. Mitchell, “Deriving generic functions by example,” in Proc. York Doc-
toral Symposium, Citeseer, 2007, pp. 55–62.

[18] C. Runciman, M. Naylor, and F. Lindblad, “Smallcheck and lazy small-
check: Automatic exhaustive testing for small values,” in Acm sigplan
notices, ACM, vol. 44, 2008, pp. 37–48.

[19] K. Claessen, J. Dureg̊ard, and M. H. Pa lka, “Generating constrained ran-
dom data with uniform distribution,” Journal of Functional Programming,
vol. 25, 2015.

[20] J. Christiansen and S. Fischer, “Easycheck—test data for free,” in In-
ternational Symposium on Functional and Logic Programming, Springer,
2008, pp. 322–336.

[21] A. Mista and A. Russo, “Generating random structurally rich algebraic
data type values,” in Proceedings of the 14th International Workshop on
Automation of Software Test, IEEE Press, 2019, pp. 48–54.

[22] P. Duchon, P. Flajolet, G. Louchard, and G. Schaeffer, “Boltzmann sam-
plers for the random generation of combinatorial structures,” Combina-
torics, Probability and Computing, vol. 13, no. 4-5, pp. 577–625, 2004.

50

https://junit.org/junit5/

[23] F. G. de Oliveira Neto, R. Feldt, R. Torkar, and P. D. Machado, “Search-
ing for models to evaluate software technology,” in Proceedings of the 1st
International Workshop on Combining Modelling and Search-Based Soft-
ware Engineering, IEEE Press, 2013, pp. 12–15.

[24] M. Bendkowski, O. Bodini, and S. Dovgal, “Polynomial tuning of multi-
parametric combinatorial samplers,” in 2018 Proceedings of the Fifteenth
Workshop on Analytic Algorithmics and Combinatorics (ANALCO), SIAM,
2018, pp. 92–106.

[25] A. Arcuri and L. Briand, “Adaptive random testing: An illusion of effec-
tiveness?” In Proceedings of the 2011 International Symposium on Soft-
ware Testing and Analysis, ACM, 2011, pp. 265–275.

[26] E. J. Weyuker and B. Jeng, “Analyzing partition testing strategies,” IEEE
Transactions on software Engineering, no. 7, pp. 703–711, 1991.

[27] Y. K. Malaiya, “Antirandom testing: Getting the most out of black-box
testing,” in Software Reliability Engineering, 1995. Proceedings., Sixth In-
ternational Symposium on, IEEE, 1995, pp. 86–95.

[28] T. Y. Chen, H. Leung, and I. Mak, “Adaptive random testing,” in Annual
Asian Computing Science Conference, Springer, 2004, pp. 320–329.

[29] C. Mao, T. Y. Chen, and F.-C. Kuo, “Out of sight, out of mind: A distance-
aware forgetting strategy for adaptive random testing,” Science China
Information Sciences, vol. 60, no. 9, p. 092 106, 2017.

[30] P. Bueno, W. E. Wong, and M. Jino, “Improving random test sets us-
ing the diversity oriented test data generation,” in Proceedings of the
2nd international workshop on Random testing: co-located with the 22nd
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE 2007), ACM, 2007, pp. 10–17.

[31] E. G. Cartaxo, P. D. Machado, and F. G. O. Neto, “On the use of a similar-
ity function for test case selection in the context of model-based testing,”
Software Testing, Verification and Reliability, vol. 21, no. 2, pp. 75–100,
2011.

[32] H. Hemmati, A. Arcuri, and L. Briand, “Empirical investigation of the
effects of test suite properties on similarity-based test case selection,” in
2011 Fourth IEEE International Conference on Software Testing, Verifi-
cation and Validation, IEEE, 2011, pp. 327–336.

[33] R. Feldt, R. Torkar, T. Gorschek, and W. Afzal, “Searching for cogni-
tively diverse tests: Towards universal test diversity metrics,” in Software
Testing Verification and Validation Workshop, 2008. ICSTW’08. IEEE
International Conference on, IEEE, 2008, pp. 178–186.

[34] R. Feldt and S. Poulding, “Searching for test data with feature diversity,”
arXiv preprint arXiv:1709.06017, 2017.

[35] B. Marculescu and R. Feldt, “Finding a boundary between valid and in-
valid regions of the input space,” in 2018 25th Asia-Pacific Software En-
gineering Conference (APSEC), IEEE, 2018, pp. 169–178.

51

[36] P. P. Mahadik and D. Thakore, “Survey on automatic test data genera-
tion tools and techniques for object-oriented code,” Int. J. Innovat. Res.
Comput. Commun. Eng, vol. 4, pp. 357–364, 2016.

[37] Randop, https://randoop.github.io/randoop/, Accessed: 2019-05-29.

[38] Evosuite, http://www.evosuite.org/evosuite/, Accessed: 2019-05-29.

[39] T. Xie, “Improving automation in developer testing: State of practice,”
North Carolina State University, Tech. Rep, 2009.

[40] K. Lakhotia, M. Harman, and H. Gross, “Austin: A tool for search based
software testing for the c language and its evaluation on deployed automo-
tive systems,” in 2nd International Symposium on Search Based Software
Engineering, IEEE, 2010, pp. 101–110.

[41] M. Papadakis and N. Malevris, “Metallaxis: An automated framework for
weak mutation,” Department of Informatics, Athens University of Eco-
nomics and Business Athens, Greece,

[42] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The oracle
problem in software testing: A survey,” IEEE transactions on software
engineering, vol. 41, no. 5, pp. 507–525, 2015.

[43] H. Liu, F.-C. Kuo, D. Towey, and T. Y. Chen, “How effectively does
metamorphic testing alleviate the oracle problem?” IEEE Transactions
on Software Engineering, vol. 40, no. 1, pp. 4–22, 2014.

[44] F. Pastore, L. Mariani, and G. Fraser, “Crowdoracles: Can the crowd
solve the oracle problem?” In 2013 IEEE Sixth International Conference
on Software Testing, Verification and Validation, IEEE, 2013, pp. 342–
351.

[45] M. D. Davis and E. J. Weyuker, “Pseudo-oracles for non-testable pro-
grams,” in Proceedings of the ACM’81 Conference, ACM, 1981, pp. 254–
257.

[46] A. Avizienis, “The n-version approach to fault-tolerant software,” IEEE
Transactions on software engineering, no. 12, pp. 1491–1501, 1985.

[47] ——, “On the implementation of n-version programming for software fault
tolerance during execution,” Proc. COMPSAC, 1977, pp. 149–155, 1977.

[48] R. Feldt, “Generating diverse software versions with genetic program-
ming: An experimental study,” IEE Proceedings-Software, vol. 145, no. 6,
pp. 228–236, 1998.

[49] W. B. Langdon, S. Yoo, and M. Harman, “Inferring automatic test ora-
cles,” in 2017 IEEE/ACM 10th International Workshop on Search-Based
Software Testing (SBST), IEEE, 2017, pp. 5–6.

[50] F. Chan, T. Chen, S. C. Cheung, M. Lau, and S. Yiu, “Application of
metamorphic testing in numerical analysis,” in Proceedings of the IASTED
International Conference on Software Engineering (SE’98), 1998, pp. 191–
197.

52

https://randoop.github.io/randoop/
http://www.evosuite.org/evosuite/

[51] L. K. Dillon, “Automated support for testing and debugging of real-time
programs using oracles,” ACM SIGSOFT Software Engineering Notes,
vol. 25, no. 1, pp. 45–46, 2000.

[52] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao, “The daikon system for dynamic detection of likely
invariants,” Science of computer programming, vol. 69, no. 1-3, pp. 35–45,
2007.

[53] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin, “Dynami-
cally discovering likely program invariants to support program evolution,”
IEEE Transactions on Software Engineering, vol. 27, no. 2, pp. 99–123,
2001.

[54] N. Polikarpova, I. Ciupa, and B. Meyer, “A comparative study of programmer-
written and automatically inferred contracts,” in Proceedings of the eigh-
teenth international symposium on Software testing and analysis, ACM,
2009, pp. 93–104.

[55] K. Shrestha and M. J. Rutherford, “An empirical evaluation of assertions
as oracles,” in 2011 Fourth IEEE International Conference on Software
Testing, Verification and Validation, IEEE, 2011, pp. 110–119.

[56] M. Staats, P. Loyola, and G. Rothermel, “Oracle-centric test case pri-
oritization,” in 2012 IEEE 23rd International Symposium on Software
Reliability Engineering, IEEE, 2012, pp. 311–320.

[57] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: A survey,” Software Testing, Verification and Reliability,
vol. 22, no. 2, pp. 67–120, 2012.

[58] W. McKeeman, “Differential testing for software, digital tech,” J, vol. 10,
pp. 100–107, 1998.

[59] J. Jung, A. Sheth, B. Greenstein, D. Wetherall, G. Maganis, and T. Kohno,
“Privacy oracle: A system for finding application leaks with black box dif-
ferential testing,” in Proceedings of the 15th ACM conference on Computer
and communications security, ACM, 2008, pp. 279–288.

[60] B. Marculescu, R. Feldt, R. Torkar, and S. Poulding, “Transferring inter-
active search-based software testing to industry,” Journal of Systems and
Software, vol. 142, pp. 156–170, 2018.

[61] F. G. d. O. Neto, R. Feldt, L. Erlenhov, and J. B. d. S. Nunes, “Visualizing
test diversity to support test optimisation,” arXiv preprint arXiv:1807.05593,
2018.

[62] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A.
Wesslén, Experimentation in software engineering. Springer Science &
Business Media, 2012.

[63] J. M. Rojas, M. Vivanti, A. Arcuri, and G. Fraser, “A detailed investiga-
tion of the effectiveness of whole test suite generation,” Empirical Software
Engineering, vol. 22, no. 2, pp. 852–893, 2017.

53

[64] P. S. Kochhar, F. Thung, and D. Lo, “Code coverage and test suite effec-
tiveness: Empirical study with real bugs in large systems,” in 2015 IEEE
22nd international conference on software analysis, evolution, and reengi-
neering (SANER), IEEE, 2015, pp. 560–564.

[65] R. Gopinath and E. Walkingshaw, “How good are your types? using mu-
tation analysis to evaluate the effectiveness of type annotations,” in 2017
IEEE International Conference on Software Testing, Verification and Val-
idation Workshops (ICSTW), IEEE, 2017, pp. 122–127.

[66] A. S. Namin and J. H. Andrews, “The influence of size and coverage
on test suite effectiveness,” in Proceedings of the eighteenth international
symposium on Software testing and analysis, ACM, 2009, pp. 57–68.

[67] N. Juristo and A. M. Moreno, Basics of software engineering experimen-
tation. Springer Science & Business Media, 2013.

[68] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in Pro-
ceedings of the 2014 International Symposium on Software Testing and
Analysis, ACM, 2014, pp. 437–440.

[69] A. Panichella, J. Campos, and G. Fraser, “Evosuite at the sbst 2019 tool
competition,” 2019.

[70] Pitest, http://pitest.org/, Accessed: 2019-05-08.

[71] H. Coles, T. Laurent, C. Henard, M. Papadakis, and A. Ventresque, “Pit:
A practical mutation testing tool for java,” in Proceedings of the 25th
International Symposium on Software Testing and Analysis, ACM, 2016,
pp. 449–452.

[72] J. A. Maxwell, Qualitative research design: An interactive approach. Sage
publications, 2012, vol. 41.

[73] S. L. T. Gorschek P. Garre and C. Wohlin, “A model for technology trans-
fer in practices,” IEEE Software, no. november/december, pp. 88–94, 2006.

54

http://pitest.org/

Appendix

55

Sample Size Line Coverage (%) Mutation Coverage (%)

G1-1 70.0 53.0

G1-2 70.0 53.0

G1-3 70.0 53.0

G1-4 70.0 53.0

G1-5 70.0 53.0

G1-6 70.0 53.0

G1-7 70.0 53.0

G1-8 70.0 53.0

G1-9 70.0 53.0

G1-10 70.0 53.0

G5-1 70.0 54.0

G5-2 70.0 54.0

G5-3 70.0 54.0

G5-4 70.0 53.0

G5-5 70.0 54.0

G5-6 70.0 54.0

G5-7 70.0 54.0

G5-8 70.0 54.0

G5-9 70.0 53.0

G5-10 70.0 54.0

G10-1 70.0 54.0

G10-2 70.0 54.0

G10-3 70.0 53.0

G10-4 70.0 54.0

G10-5 70.0 53.0

G10-6 70.0 53.0

G10-7 70.0 53.0

G10-8 70.0 54.0

G10-9 70.0 53.0

G10-10 70.0 53.0

G20-1 70.0 54.0

G20-2 70.0 54.0

G20-3 70.0 54.0

G20-4 70.0 54.0

G20-5 70.0 54.0

G20-6 70.0 54.0

G20-7 70.0 54.0

G20-8 70.0 54.0

G20-9 70.0 54.0

G20-10 70.0 54.0

G50-1 70.0 54.0

G50-2 70.0 54.0

G50-3 70.0 54.0

G50-4 70.0 54.0

G50-5 70.0 54.0

G50-6 70.0 54.0

G50-7 70.0 54.0

G50-8 70.0 54.0

G50-9 70.0 54.0

G50-10 70.0 54.0

G100-1 70.0 54.0

G100-2 70.0 54.0

G100-3 70.0 54.0

G100-4 70.0 54.0

G100-5 70.0 54.0

G100-6 70.0 54.0

G100-7 70.0 54.0

G100-8 70.0 54.0

G100-9 70.0 54.0

G100-10 70.0 54.0

G200-1 70.0 54.0

G200-2 70.0 54.0

G200-3 70.0 54.0

G200-4 70.0 54.0

G200-5 70.0 54.0

G200-6 70.0 54.0

G200-7 70.0 54.0

G200-8 70.0 54.0

G200-9 70.0 54.0

G200-10 70.0 54.0

G500-1 70.0 54.0

G500-2 70.0 54.0

G500-3 70.0 54.0

G500-4 70.0 54.0

G500-5 70.0 54.0

G500-6 70.0 54.0

G500-7 70.0 54.0

G500-8 70.0 54.0

G500-9 70.0 54.0

G500-10 70.0 54.0

Table 7.1: Line coverage and mutation coverage using JuliaTest with varying
number of data generated for SUT-1

56

Generator Type Line Coverage (%) Mutation Coverage (%)
GA-1 24.0 9.0
GA-2 24.0 9.0
GA-3 24.0 9.0
GA-4 24.0 9.0
GA-5 24.0 9.0
GA-6 24.0 9.0
GA-7 24.0 9.0
GA-8 24.0 9.0
GA-9 24.0 9.0
GA-10 24.0 9.0
GB-1 24.0 9.0
GB-2 24.0 9.0
GB-3 24.0 9.0
GB-4 24.0 9.0
GB-5 24.0 9.0
GB-6 24.0 9.0
GB-7 24.0 9.0
GB-8 24.0 9.0
GB-9 24.0 9.0
GB-10 24.0 9.0
GC-1 24.0 9.0
GC-2 24.0 9.0
GC-3 24.0 9.0
GC-4 24.0 9.0
GC-5 24.0 9.0
GC-6 24.0 9.0
GC-7 24.0 9.0
GC-8 24.0 9.0
GC-9 24.0 9.0
GC-10 24.0 9.0

Table 7.2: Line coverage and mutation coverage using JuliaTest with varying
generator type

57

	Introduction
	Background and Related Work
	Test data generation
	Stochastic Test data generations
	Diversity-based Test data generations

	Automated unit test generation tools
	Oracle Problem

	Proposed Solution
	Our proposed architecture
	Usage

	JSON generator
	Unit test example
	Limitations of the tool
	Architectural choices and lessons learned

	Methodology and Evaluation
	Scoping and Planning
	Context
	Variable selection
	Experimental Study 1 - ES1
	Experimental Study 2 - ES2

	Hypothesis formulation
	Selection of subjects and objects
	Instrumentation

	Result and Analysis
	Experiment 1
	Experiment 2
	Different sizes of generated data
	Different types of generators used

	Discussion
	Answer to the RQs
	Validity evaluation

	Conclusion
	References
	Appendix

