
Benchmarking Deep Learning Testing Tech-
niques

A Methodology and Its Application

Master’s thesis in Computer science and Software Engineering

HIMANSHU CHUPHAL
KRISTIYAN DIMITROV

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2020

Master’s thesis 2020

Benchmarking Deep Learning Testing Techniques

A Methodology and Its Application

HIMSNHU CHUPHAL
KRISTIYAN DIMITROV

Department of Computer Science and Software Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2020

Benchmarking Deep Learning Testing Techniques
A Methodology and Its Application
HIMANSHU CHUPHAL
KRISTIYAN DIMITROV

© HIMANSHU CHUPHAL, KRISTIYAN DIMITROV, 2020.

Supervisor: Robert Feldt, Department of Computer Science and Engineering
Examiner: Riccardo Scandariato, Department of Computer Science and Engineer-
ing

Master’s Thesis 2020
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Gothenburg, Sweden 2020

iv

Benchmarking Deep Learning Testing Techniques
A Methodology and Its Application
HIMANSHU CHUPHAL, KRISTIYAN DIMITROV
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
With the adoption of Deep Learning (DL) systems within the security and safety-
critical domains, a variety of traditional testing techniques, novel techniques, and
new ideas are increasingly being adopted and implemented within DL testing tools.
However, there is currently no benchmark method that can help practitioners to
compare the performance of the different DL testing tools. The primary objective
of this study is to attempt to construct a benchmarking method to help practitioners
in their selection of a DL testing tool. In this paper, we perform an exploratory study
on fifteen DL testing tools to construct a benchmarking method and have made one
of the first steps towards designing a benchmarking method for DL testing tools. We
propose a set of seven tasks using a requirement-scenario-task model, to benchmark
DL testing tools. We evaluated four DL testing tools using our benchmarking tool.
The results show that the current focus within the field of DL testing is on improving
the robustness of the DL systems, however, common performance metrics to evaluate
DL testing tools are difficult to establish. Our study suggests that even though there
is an increase in DL testing research papers, the field is still in an early phase; it is not
sufficiently developed to run a full benchmarking suite. However, the benchmarking
tasks defined in the benchmarking method can be helpful to the DL practitioners
in selecting a DL testing tool. For future research, we recommend a collaborative
effort between the DL testing tool researchers to extend the benchmarking method.

Keywords: Deep Learning(DL), DL testing tools, testing, software engineering, de-
sign, benchmark, model, datasets, tasks, tools.

v

Acknowledgements
We would like to thank our supervisor Prof. Robert Feldt of the Software Engi-
neering Division at Chalmers | University of Gothenburg for his continuous input,
assistance and counseling throughout the thesis work. We would also like to thank
Prof. Riccardo Scandariato of the Software Engineering Department at Chalmers
University of Technology as the examiner of this thesis for all the valuable feedback.
Finally, we would like to extend our appreciation to our family and friends for their
moral support.

Himanshu Chuphal, Kristiyan Dimitrov, Gothenburg, June 2020

vii

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Background . 1
1.2 Statement of the Problem . 1
1.3 Purpose of the Study . 2
1.4 Hypotheses and Research Questions 2
1.5 Report Structure . 3

2 Related Work and Background 5
2.1 Testing . 5
2.2 DL Testing . 6

2.2.1 Definition . 6
2.2.2 DL Testing Workflow . 8
2.2.3 DL Testing Components . 9
2.2.4 DL Testing Properties . 10

2.3 Software Testing vs. DL Testing . 13
2.4 Challenges in DL Testing . 16
2.5 DL Testing Tools . 18

2.5.1 Timeline . 18
2.5.2 Research Distribution . 18
2.5.3 DL Datasets . 20

2.6 Benchmarking Research . 22
2.6.1 What is Benchmarking? . 22
2.6.2 Benchmarking in DL Systems 22

3 Methodology 25
3.1 Research Questions . 25
3.2 Benchmarking Method . 26

3.2.1 Requirement-Scenario-Task Model 27
3.2.2 DL Testing Tool Requirements 28
3.2.3 DL Testing Scenarios . 28
3.2.4 Benchmarking Tasks . 29

4 Pre-Study Results 31

ix

Contents

4.1 Results from Pre-Study . 31
4.1.1 DL Testing Tools . 31
4.1.2 DL Testing Tools Availability 42

5 Benchmarking Method Results 43
5.1 Benchmarking Method . 43

5.1.1 DL Testing Tool Requirements 43
5.1.2 DL Testing Scenarios . 45
5.1.3 Benchmarking Tasks . 47

5.2 Benchmarking Design Results . 51
5.2.1 Benchmarking Tasks Automation 51
5.2.2 Benchmarking Tool . 52
5.2.3 Benchmarking Results . 53

6 Validation 55
6.1 Interview Feedback . 55
6.2 Benchmarking Properties . 57
6.3 High-level Benchmark Components 58
6.4 Manual Tasks Objectivity . 59

7 Discussion 61
7.1 Findings of the Study . 61
7.2 Regarding DL Testing Tools . 64
7.3 Regarding Benchmarking Results . 64
7.4 DL Testing Tools Recommendations 64

8 Threats to Validity 69
8.1 Threats to Construct Validity . 69
8.2 Threats to Internal Validity . 70
8.3 Threats to External Validity . 70
8.4 Threats to Reliability . 71

9 Conclusion and Future Work 73
9.1 Conclusion . 73
9.2 Future Work . 73

Bibliography 75

A Appendix 1 I
A.1 Benchmarking Run Configuration JSON File Structure I

A.1.1 Run and Output Configuration with ’help’ Text I
A.1.2 Example of Configuration file of a DL Testing Tool III

A.2 Python Script component used for executing Benchmarking Tasks . . V
A.3 System Configuration for DL Testing Tools VIII
A.4 Benchmarking Tasks Results for DeepXplore Tool IX
A.5 Benchmarking Tasks Results for SADL Tool IX
A.6 Benchmarking Tasks Results for DLFuzz Tool X
A.7 Benchmarking Tasks Results for DeepFault Tool X

x

Contents

A.8 Benchmarking Pre-Trained Model’s Architecture XI
A.8.1 Image Classification . XI
A.8.2 Self-Driving Classification . XII
A.8.3 Texts Classification . XIII

xi

Contents

xii

List of Figures

2.1 DL System Phases . 7
2.2 Overview of DL Testing Tools Process 7
2.3 DL Testing Workflow . 8
2.4 DL Testing Components . 9
2.5 DL System Stages . 10
2.6 DL Testing Properties . 11
2.7 Comparison : Traditional Software vs DL System Development 13
2.8 Timeline of DL Testing Tools Research, 2020 18
2.9 "Deep Learning System Testing" Publications 19
2.10 "Testing "Deep Learning"" Publications 19
2.11 "Testing "Machine Learning"" Publications 20

3.1 Requirement-Scenario-Task Model for the Benchmarking Method . . 28

4.1 DL Testing Properties Research Distribution 32

5.1 Benchmarking Method Tasks . 49
5.2 Benchmarking Method Process . 53
5.3 Tasks Status Comparison across four DL Testing Tools 54
5.4 Execution Time Comparison across four DL Testing Tools 54

6.1 An example snippet of the configuration file generated for the Deep-
Fault testing tool with manual tasks marked as "Yes" or "No", based
on the capabilities of the testing tool. 59

A.1 DeepXplore : Benchmarking Tasks Results IX
A.2 SADL : Benchmarking Tasks Results IX
A.3 DLFuzz : Benchmarking Tasks Results X
A.4 DeepFault : Benchmarking Tasks Results X
A.5 Keras Cifar-10 CNN Model . XI
A.6 Keras MNIST CNN Model . XI
A.7 Nvidia Dave Self-Driving Model 1 . XII
A.8 Nvidia Dave Self-Driving Model 2 . XII
A.9 Text Babi RNN based Model . XIII
A.10 Text Imdb RNN based Model . XIV

xiii

List of Figures

xiv

List of Tables

2.1 Key Differences : Software Testing vs DL Testing 13
2.2 Total Research Publications and Citations 20
2.3 DL Dataset: Image Classification . 21
2.4 DL Dataset: Natural Language Processing 21
2.5 DL Dataset : Audio/Speech Processing 21
2.6 DL Dataset: Bio metric Recognition 21
2.7 DL Dataset: Self-driving . 21
2.8 DL Dataset: Others . 22

4.1 Summary of the Investigated State-of-the-art DL Testing Tools and
Techniques . 32

4.2 List of DL Testing Tools and their Availability 42

5.1 DL Testing Tool Requirements and Scenarios 43
5.2 Test Scenarios for Benchmarking Design 48
5.3 Benchmarking Tasks and related key question to answer 48
5.4 Benchmarking Tasks Automation Check 52
5.5 Benchmarking Tool Results on four DL testing tool 54
5.6 Output Performance Metrics and type by DL Testing Tools 54

7.1 List of recommendations to DL Tool Researchers and Practitioners . 65

xv

List of Tables

xvi

1
Introduction

1.1 Background
Over the past few years, Deep Learning (DL) systems have made rapid progress,
achieving tremendous performance for a diverse set of tasks, which have led to
widespread adoption and deployment of Deep Learning in security and safety-critical
domain systems [2][9]. Some of the most popular examples include self-driving cars,
malware detection, and aircraft collision avoidance systems [3]. Due to their na-
ture, safety-critical systems undergo rigorous testing to assure correct and expected
software behavior. Therefore testing DL systems becomes crucial, which has tradi-
tionally only relied on manual labeling/checking of data [9]. There are multiple DL
testing techniques to validate different parts of a DL system’s logic and discover the
different types of erroneous behaviors. An example of some of the more popular DL
testing techniques which validate deep neural networks using different approaches
for fault detection are DeepXplore [2], DeepTest [16], DLFuzz [3], Surprise Ade-
quacy for Deep Learning Systems (SADL) [9]. While ensuring predictability and
correctness of the DL systems to a certain extent, there is no standard method to
evaluate which testing technique is better in terms of certain testing properties, i.e.
correctness, robustness, etc. There is a guide for the selection of appropriate hard-
ware platforms and DL software tools [29] but no guide available as such to select
appropriate DL testing techniques. Additionally, there is an increasing trend in the
research work done within the field of DL testing. Therefore, there is a need for a
method to benchmark DL testing tools with in-depth analysis, which will serve as
a guide to practitioners/testers and the DL systems community.

1.2 Statement of the Problem
DL systems are rapidly being adopted in safety and security-critical domains, ur-
gently calling for ways to test their correctness and robustness. Consequently, there
is an increase in the cumulative number of publications on the topic of testing ma-
chine learning systems between 2018 and June 2019, 85% of papers have appeared
since 2016, testifying to the emergence of new software testing domain of inter-
est: machine learning testing [30]. Recently, a number of DL testing tools have
been proposed such as DeepStellar [13], DeepFault [18], DeepRoad [17], and DL-
Fuzz [3]. However, there is no guide available as such to select an appropriate DL
testing techniques based on testing properties (e.g., correctness, robustness, and fair-
ness), testing components e.g., the data, learning program, and framework), testing

1

1. Introduction

workflow (e.g., test generation and test evaluation), and application scenarios (e.g.,
autonomous driving, machine translation) [30]. As stated by Xie et al. [24], due
to a lack of comparative studies on the effectiveness of different testing criteria and
testing strategies, many challenges and questions are left open and unresolved, such
as whether the existing proposed testing criteria are indeed useful. Moreover, se-
lecting a testing tool for real-world scenarios is a big investment. Since, there is no
standard method or guidelines available to evaluate DL testing tools, the selection
of an appropriate DL testing tool or technique for a relevant DL use case remains a
challenge for practitioners.

1.3 Purpose of the Study
The purpose of the study is to design a method for benchmarking DL testing tools.
The benchmark method shall be constructed following the general guidelines for
benchmarks in software engineering proposed by Sim et al. [31]. The selected
testing techniques will be evaluated using a sufficiently complex task sample as to
bring out their effectiveness. The method would provide academia with a standard
that can be used to verify the effectiveness of both existing and newly aspiring
DL testing techniques. Afterward, we hope to receive feedback from at least one
industry source on the usability of the method within an industrial setting and use
that feedback to extend the method. In addition, the results of the study can be
used in itself by industrial experts to support the selection of an appropriate DL
testing technique.

1.4 Hypotheses and Research Questions
Our benchmarking evaluation is designed to answer the following 3 research ques-
tions (RQ1-3):

RQ1: What existing state-of-the-art and real-world applicable DL testing tools are
available?
We investigate the correctness, fairness, efficiency, and robustness tested properties
by the existing DL testing tools and decide which testing tools are most suited for
a relevant case.

RQ2: To what extent do different testing techniques and workflows of the DL testing
tools perform better towards DL benchmarking tasks?
Our goal is to design a benchmark methodology DL to evaluate DL testing tools.
We have defined two sub-hypotheses to help answer the research question.
Hypothesis 1: There are significant qualitative differences in the selected DL
testing tools in terms of the properties tested by the tools.
Hypothesis 2: There is a significant difference in test input generation of selected
DL testing tools for a given type of dataset.

RQ3: How can the proposed benchmarking methodology of DL testing tools help

2

1. Introduction

practitioners as a reference for selecting an appropriate testing technique?
We aim to assess the benchmarking methodology using different DL testing tools
for an industry-grade dataset. The benchmarking methodology will be presented to
two industry contacts to receive feedback and assess the feasibility of its application
in real-world DL scenarios.

1.5 Report Structure
The rest of this thesis is structured as follows: Chapter two describes the re-
lated work and gives background information. Chapter three explains the research
methodology we followed to design the DL testing tools benchmarking and also
presents the DL testing requirements, testing scenarios, and benchmarking tasks.
Chapter four summarizes the results obtained from the pre-study and the bench-
marking research method of the DL testing tools and techniques. Chapter five
summarizes the results of the benchmarking method. Thereafter, Chapters six and
seven address validation and discussion of the entire benchmarking process of the
thesis. Chapter eight explains threats to validity. Finally, Chapter seven concludes
the thesis and mentions future work and possible research opportunities.

3

1. Introduction

4

2
Related Work and Background

This section starts with an introduction about testing in general, followed by DL
testing, explaining emerging research in the field of DL testing tools and techniques.
Furthermore, DL testing workflow, components, and testing properties are pre-
sented. Thereafter, the key differences between traditional software testing and
DL testing, as well as challenges in DL testing are introduced. Finally, DL testing
tools research trends and benchmarking theory are presented.

2.1 Testing
Testing is the process of executing a program with the intent of finding errors.
Software testing is a technical task, yes, but it also involves some important con-
siderations of economics and human psychology [1]. In an ideal world, we would
want to test every possible permutation of a program. In most cases, however, this
simply is not possible. Even a seemingly simple program can have hundreds or
thousands of possible input and output combinations. Creating test cases for all of
these possibilities is impractical. Complete testing of a complex application would
take too long and require too many human resources to be economically feasible. A
good test case is one that has a high probability of detecting an undiscovered error.
Successful testing includes carefully defining expected output as well as input and
includes carefully studying test results.

In general, it is impractical, often impossible, to find all the errors in a program.
Two of the most prevalent strategies include black-box testing and white-box testing.

Black-Box Testing
One important testing strategy is black-box testing (also known as data-driven or
input/output-driven testing). The goal here is to be completely unconcerned about
the internal behavior and structure of the program. Instead, concentrate on finding
circumstances in which the program does not behave according to its specifications.
To use this method, view the program as a black box. In this approach, test data are
derived solely from the specifications (i.e., without taking advantage of the knowl-
edge of the internal structure of the program) [1].

White-Box Testing
Another testing strategy, white-box (or logic-driven) testing, permits you to exam-
ine the internal structure of the program. This strategy derives test data from an

5

2. Related Work and Background

examination of the program’s logic (and often, unfortunately, at the neglect of the
specification). The goal at this point is to establish for this strategy the analog
to exhaustive input testing in the black-box approach. Causing every statement in
the program to execute at least once might appear to be the answer, but it is not
difficult to show that this is highly inadequate [1].

Traditional software testing is done through the use of test cases against which
the software under test is examined [5]. Typically, a test case will either be error-
revealing or successful. The successful test-cases are usually less important than the
error-revealing test cases because they often provide little information regarding the
state of the system. Even if all tests are successful, it does not guarantee that there
are no bugs in the system. As the complexity of the system rises, the harder it can
get to detect the bugs. However, the error-revealing test cases help improve the sys-
tem by detecting the bugs. This implies that the test set needs to be ’adequate’ in
identifying program errors to ensure program correctness [8]. For that purpose, the
concept of the Test Adequacy Criteria has been introduced. Test adequacy criteria
are ’rules’ and conditions that the test set needs to comply with to improve the
quality of testing. For the purpose of fine-tuning the test cases different approaches
have been proposed like differential testing, metamorphic testing, etc.

2.2 DL Testing

2.2.1 Definition

Definition: DL testing is the process of executing a DL program with the intent
of finding errors in a DL system.

A DL system is any software system that includes at least one Deep Neural Network
(DNN) component. A DNN consists of multiple layers, each containing multiple
neurons. A neuron is an individual computing unit inside a DNN that applies an
activation function on its inputs and passes the result to other connected neurons.
Overall, a DNN can be defined mathematically as a multi-input, multi-output para-
metric function composed of many parametric sub-functions representing different
neurons. Automated and systematic testing of large-scale DL systems with millions
of neurons and thousands of parameters for all possible inputs (including all the
corner cases) is very challenging.

Datasets play an important role in any DL system, which is basically a set of in-
stances for building or evaluating a DL model. At the top level, the data could be
categorized as Training data (the data used to train the algorithm to perform its
task), Validation data (the data used to tune the hyper-parameters of a learning
algorithm), and Test data (the data used to validate DL model behavior).

6

2. Related Work and Background

Dataset

Training
Set

Validation
SetD

L
Tr

ai
ni

ng
 &

 V
al

id
at

io
n

D

L
Te

st
in

g

Testing
Set

Pre-Processing

Pre-Processing

Input Representation

Input Representation

DNN Training

Tr
ai

ne
d

D
N

N
 M

od
el

Predicted
Score

Predicted
Score

Weights Training
Hyperparameter Tuning

DNN Testing

Figure 2.1: DL System Phases

The proposed system uses a typical machine learning protocol comprised of two
phases as shown in Figure 2.1. The two phases are (i) a training and validation
phase used to train the model and tune the hyper-parameters, and (ii) a testing
phase in which the model is evaluated. The data is first divided into three disjoint
sets for training, validation, and testing. In the training and validation phase, the
datasets are first passed through a pre-processing stage converting the raw data into
their corresponding input representations. These input representations are then fed
into a DNN model that tries to predict the assessment ratings. The data in the
training set is used to train the model parameters. The model performance on the
validation set is used to tune the hyper-parameters. The testing set data is used
to evaluate the model performance on unseen data following the same steps as above.

Test Inputs

Input Generation
Technique/Library

Feed Into DNN

Test Output
Objective

Reports Test R
eport Analysis

Changed Input

Seed Inputs

Figure 2.2: Overview of DL Testing Tools Process

Figure 2.2 depicts the overview DL testing tools process in general. DL testing tools
and techniques vary in how each activity is executed, the process generally involves
the generation of new testing input whether by image-transformation [16], mutation
[3][14], gradient descent[2], etc. of the original input or generating entirely new syn-
thetic input based on the original [17]. The test cases are made out of that input and

7

2. Related Work and Background

are ran through the DL system to fulfill a testing objective, i.e. discover robustness
related behavioral errors, increase neuron coverage, etc. Finally, either input are
retained for a new iteration of the test case seed or a bug report is generated as to
show the DL system’s performance.

Existing techniques in software testing may not be easily applied to DL systems
since they are different from conventional software in many aspects. Until now,
many researchers have devoted their efforts to enhance the testing of DL models.
Some of the differences are listed in Section 2.3.

2.2.2 DL Testing Workflow
The DL testing workflow is about how to conduct DL testing with different testing
activities. In this section, the five key activities in DL testing and the approaches
that are involved with those activities are introduced. Figure 2.3 shows different DL
testing workflows.

Figure 2.3: DL Testing Workflow

The first activity of testing a DL system as per the deduction of various testing
technique papers is the Test Input Generation. This activity usually consists of
modifying the existing testing input set [3][16] or generating new testing input [17].
Under normal circumstances, the testing set of data is a portion of the training data
that is taken out as to be able to test the system for abnormal behavior. However,
for the system to satisfy certain properties like robustness, the raw testing set is usu-
ally not enough to ensure testing data quality. For that purpose various techniques
use input generation as to improve that quality [3][2][13][16][18]. The implications
and reasoning behind test input generation are further covered in Section 2.4.
The second activity of importance would be to establish an oracle. After all, a test
generally needs to satisfy a condition to be able to pass, without having such a con-
dition it cannot be established if a test found a fault. However, DL systems widely
suffer from the oracle problem and therefore require other means of establishing an
oracle. This is further depicted in Section 2.4 due to it being a major constraint
when testing a DL system.
The third activity to consider is the definition of test adequacy criteria. As men-
tioned in Section 2.1, test cases need to conform to a set of rules to ensure that the
tests are qualified to find errors. These rules come in the form of Test Adequacy
Criteria and while their purpose is self-explanatory, due to the large gap in struc-
tural logic between DNNs and traditional software, new adequacy criteria need to
established. SADL [9] proposed a set of novel test criteria under the argument that

8

2. Related Work and Background

the test input needs to contain inputs that are ’surprising’ to the system.
The fourth activity of the workflow is the Debug Analysis Report. Once an input
that induced erroneous behavior within a DL system has been found, it needs to be
retained because that input becomes interesting. In this particular case, interesting
is used to depict the possible wide usability of the error inducing input. DeepStel-
lar [13] uses the error inducing input as a seed for its repeated test generation to
improve overall coverage. Whereas other techniques like SADL [9] retain the inputs
as valuable for retraining, which brings us to the final activity.
The final activity of the workflow is retraining. This activity is rather simple, yet
incurs significant complications. Once error-inducing inputs are retained they can
be used for retraining and improving the model. This has been by far the most
standard usage of inputs. The implication that this process holds is the fact that it
involves manual labeling. The retained inputs need to be manually labeled in most
cases to improve the model and eliminate the detected behavioral errors. Making
this process automated would greatly improve the testing process as it would au-
tomatically fix behavioral errors per test iteration. Currently, most techniques are
unaware of run-time what inputs are entering, greatly due to the automated input
generation that is meant to cover as much of the testing space or as effectively as
possible.

2.2.3 DL Testing Components
The DL testing components are components in a DL system towards which testing
is aimed at. In this section, the three key components in DL testing are introduced.
Figure 2.4 shows different key DL testing components.

Figure 2.4: DL Testing Components

DL testing components comprise of testings components, i.e. DL data, DL testing
learning program/script, and DL testing framework, for which a DL testing tool
might find a bug. The procedure of a DL model development requires interaction
with several components such as data, learning program, and learning framework,
while each component may contain bugs [30]. Therefore, when conducting DL test-
ing, developers may need to try to find bugs in every component including the data,
the learning program, and the framework. In particular, error propagation is a
more serious problem in DL development because the components are more closely

9

2. Related Work and Background

bonded with each other, which indicates the importance of testing each of the DL
components.

DL Data
DL datasets are used for building or evaluating a DL model. Datasets are catego-
rized as Training data, Validation data, and Test data. The Test data is used to
validate DL model behaviour.

DL Testing Program
A DL testing program is the script/program written by a DL software engineer to
build and validate the DL system. As shown in Figure 2.1 and Figure 2.5, a learning
program is required to first build and validate a DNN model, which is once trained
can be used to test against testing input seeds. The program or the script can be
programmed in any high-level programming language such as Python [42], etc.

DL Training Stage

DL Testing Stage

Input Data Expected
Output

Learning
Model

Test
Input Data

Learning
Model

Best
Guess

Figure 2.5: DL System Stages

DL Testing framework
DL Testing framework is the library, or platform being used when building a DL
model for testing, for example TensorFlow [39], Keras [38], and Caffe [40], Scikit-
learn [41], etc. Keras [38] is a Python framework for building DL systems. It is
a convenient library to construct any DL algorithm. The advantage of Keras is
that it uses the same Python code to run on CPU or GPU and allows training of
state-of-the-art algorithms for computer vision, text recognition, etc. Keras is used
in organizations like CERN, Yelp, Square or Google, Netflix, and Uber.

2.2.4 DL Testing Properties
Testing properties refer to what quality characteristics to test in a DL system: What
conditions DL testing needs to guarantee for a trained DNN model. This section

10

2. Related Work and Background

lists typical properties that the literature has considered. The properties are clas-
sified into basic functional requirements (i.e., correctness and model relevance) and
non-functional requirements (i.e. robustness, efficiency, generality, and reliability).
These properties are not strictly independent of each other when considering the
root causes, yet they are different external manifestations of the behaviors of a DL
system and deserve being treated independently when testing a DL system. Fig-
ure 2.6 shows different functional and non-functional properties in DL testing.

Figure 2.6: DL Testing Properties

Non-functional Properties:
• Robustness:

The robustness of a DL system, in broader terms, is related to the system’s
capability of withstanding corner-case scenario input. A DL system is essen-
tially a trained DNN model which when given an input, is meant to recognize
that input correctly. But the problem lies in the variations and conditions of
that input. Taking image classification as an example, when looking at a ’car’,
the image we see through our eyes can have a wide variation depending on the
weather condition or other outside influences. A human can recognize a car
even if it is raining and the vision is slightly obscured, but the same cannot
be always said about a DL system which may give an output different than a
car if such image obstructions are in place. For that purpose, the DL system
needs to be trained as to be able to recognize a ’car’ regardless of other such
outside influences. Intuitively, this implies that better quality training data
would lead to fewer robustness issues. An example of a robustness measure-
ment is DeepXplore [2], which both utilizes neuron coverage to measure the
parts of the DL system exercised by test inputs and multiple systems with
similar functionality to discover robustness faults within the DL system.

• Generality:
Generality as a DL system property is connected to the neurons in each layer
and the way they are trained. More general neurons are applicable for general
tasks but fail on tasks that require specifics. Therefore, the first layers tend
of a DNN tend to be more general whereas the later layers go into specifics
for which the system is meant to handle. Generality has been brought up in

11

2. Related Work and Background

testing tool research [14], however, its mention is brief and is used to point
out the apparent problem of high-quality training and testing data evaluation.
Generality would require a large amount, and of high quality, training data
from which testing data can be selected out. Without a way of evaluating the
quality of the training and testing data, the generality of a system cannot be
ensured, hence for the need for techniques that serve to evaluate the training
data like DeepMutation [14].

• Reliability:
Reliability within DL refers to how error-resilient a DL system is. Similar
to generality, reliability has been brought up with the DL testing technique
research [3] [2] but it was not further built-upon as the main focus was ro-
bustness. This is due to the reliability of a DL system depending greatly on
the robustness of that system and the measurements are, therefore, focused
on measuring robustness.

Functional Properties:
• Correctness:

The first functional property of importance is system correctness. Correctness
is essentially the prediction accuracy of the system under test. Similar to ro-
bustness, DL system correctness is heavily reliant on the quality of the training
data [12]. The more and better data the system is trained with, the better the
system is expected to perform in terms of giving correct predictions. However,
the reality is that robustness is the property that heavily influences the sys-
tem correctness. The better the system is able to handle the wide spectrum
of corner-cases around an input, the higher the chance for the system to give
correct predictions. That can further be seen by how several papers on the
topic of DL testing recognize both correctness and robustness as important,
but highlight or focus on robustness related issues [9][11][3] as to improve cor-
rectness. An example of a widely adopted correctness measurement is AUC
(Area Under Curve) which measures how well the model performed and is
used by SADL [9].

• Model Relevance:
Zhang et al.[30] defines model relevance as mismatches between model and
data. It is evaluated by using techniques whose objective is to find out whether
the model is overfitted or underfitted by injecting ’noise’ to the training data.
Overfitted models tend to fit the noise in the training sample, whereas the
underfitted models will have a very low training accuracy decrease. An alter-
native view can be seen on model relevance in DL as to whether the model
architecture is also fit for the task. DNN selection for a DL system has been
discovered to be a potential issue [10] due to different types of models being
good at different types of tasks, i.e. recurrent neural networks (RNNs) perform
better at sequential input streams[27]. However, we were unable to uncover
techniques that measure whether the model architecture is appropriate for the
type of task that the DL system is expected to handle.

12

2. Related Work and Background

2.3 Software Testing vs. DL Testing
As defined by Guo et. al. [3], currently there exists a large gap between traditional
software and DL software due to the "totally distinct internal structure of deep neu-
ral networks (DNNs) and software programs". However, despite these differences,
the testing community has made progress in applying traditional testing techniques
to DL systems. Table 2.1 shows the key differences between traditional software
testing and DL testing.

In traditional software development, developers specify the clear logic of the system,
whereas a DNN learns the logic from training data. Software testing, in theory, is a
fairly straightforward activity. For every input, there should be a defined and known
output. We enter values, make selections, or navigate an application and compare
the actual result with the expected one. If they match, we nod and move on. If
they don’t, we possibly have a bug. Figure 2.7 shows the key comparison between
the two systems.

Table 2.1: Key Differences : Software Testing vs DL Testing

Software Testing DL Testing
Fixed scope under test Scope changes overtime
Test oracle is defined by software developers Test Oracle is defined by DL developers and also communities with labeling data
Test adequacy criteria is usually code coverage Test adequacy is not concretely known
Testers are usually software developers Testers include DL designers, developers and data scientists
False positives in bugs are rare False positives if errors are frequent
Component to test include code or the software application Component to test include both data and code

There are several prominent testing techniques that are successfully adapted from
traditional software testing, i.e. differential, mutation, metamorphic, combinatorial,
and fuzz testing. It is interesting to note that although some papers focus on high-
lighting an individual technique, it usually uses more than one technique to fulfill
its purpose.

Developr
/ Tester

Developr
/ Tester

Test
Input Test

Input

Datasets

Hyperparameters
Tuning

Output Output

Software Development

Program
Logic

Trained
Model

DL System Development

Figure 2.7: Comparison : Traditional Software vs DL System Development

13

2. Related Work and Background

Differential Testing
Differential testing, a form of random testing, is done by giving one or more similar
systems the exact same input and use the output as a cross-referencing oracle to
identify semantic or logic bugs. The principle behind it, is feeding both systems
mechanically generated test cases and if one of the systems shows a difference in
behavior or output then there’s a candidate for a bug-exposing test case [4]. How-
ever if both systems give the same output, even if a bug is present, the bug cannot
be detected. Pei et al. [2] successfully adapted the differential testing approach to
DL systems through DeepXplore. The problem DeepXplore aimed at resolving with
this technique was error detection without manual labeling. Manual labeling on its
own is a problem due to being costly, time-consuming, and has a limited coverage
due to the aforementioned reasons. To resolve that DeepXplore applies differential
testing by using multiple similar DL systems. However, the approach does incur
difficulties such as if the systems are too similar, the algorithm may not be able
to find the difference inducing inputs which essentially are what causes erroneous
behavior, particularly related to the robustness of the system. A different approach
to differential testing was proposed by Guo et al. [3] to avoid the implications faced
in DeepXplore’s case by using one model in the framework DLFuzz. The ’differen-
tial’ part comes through the use of mutation testing to mutate a set of inputs. The
mutated inputs and the original inputs are then run through the DL system and if a
difference in output is observed between the two inputs then there is an error. With
this, we move on to the next testing technique that is widely utilized in DL testing.

Mutation Testing
Mutation testing is a fault-based testing technique that uses the metric "mutation
adequacy score" to measure the effectiveness of a test set [7]. The way this is done is
through the use of mutants, deliberately seeded faults that are injected in the origi-
nal program. The objective here is to affirm the quality of the test set, hence if the
test cases fail to detect the mutants then the quality of the tests is under question.
The mutation score gives a tangible estimate by calculating the ratio of the detected
faults over the total number of seeded faults. In DL testing this technique is utilized
in various ways. DLFuzz[3] uses mutation as to mutate inputs and use the output
of those mutants in cross-comparison to the original input’s output. DeepMutation
[14] on the other hand injects mutation faults not only in the input but the training
program as well. Afterward further mutation operators are designed and injected
directly in the model of the DL system. Other techniques like DeepStellar [13] use
mutants for two-fold purposes, if the mutant generated leads to incorrect output
then it’s an adversarial sample, otherwise, if it improves neuron coverage it is re-
tained and added back as a seed to the test case queue.

Metamorphic Testing
Metamorphic testing at its core tries to solve the oracle problem [6] which is built on
the assumption that a test oracle is readily available but in practice that may not
be the case [5]. The oracle problem is particularly present in applications that are
meant to provide the answer to a problem like shortest path algorithms in non-trivial
graphs and Deep Learning systems which are to give a prediction using non classi-

14

2. Related Work and Background

fied or immensely large sets of data. The way that metamorphic testing tackles the
problem is by evolving the successful test cases used on the system. By firmly be-
lieving that there are errors in the system, metamorphic testing seeks to improve the
test cases by branching out of the reasoning behind the test case and testing around
that reasoning, called a metamorphic relation, i.e. if the test was meant to check
the occurrence of a kth element in an unsorted array and the program returned an
element from that position, formulate case variations of what errors could possibly
occur whilst returning an element from the array [5]. This does not explicitly try to
detect all errors in the system or prove that there was an error in the system but it
increases the confidence in the system behavior is correct. An example of how meta-
morphic testing and its reasoning approach is used in DL systems is DeepRoad [17].
Because DeepRoad uses image synthesis to generate input, it suffers from a similar
problem as the one mentioned in Section 2.2.2 in regards to retraining. The tool does
not know on run-time what kind of input goes in as to be able to tell whether the
output that came out is correct. For that purpose, they use the reasoning that re-
gardless of the input (driving scenes) that goes in it should correspond to the driving
behavior of the original driving scenes which were used to synthesize the new inputs.

Combinatorial Testing
Combinatorial testing is a testing technique aimed at variable interactions. Large
systems often consist of many variables that interact with each other and each of
those interactions between two or more variables can lead to failures. Such failures
are called interaction failures [19]. Testing all interactions between variables within
a large system is not feasible, but research led to the belief that not all interactions
need to be tested. In fact, interaction failures happen mainly on configuration vari-
ables and input variables. Additionally, the bigger the number of interactions is,
the smaller the chance of a failure, i.e. 3-way interaction has a lesser chance than
a 2-way interaction, 4-way has an even lesser chance, etc. Combinatorial testing
is built on those principles and is therefore cost-efficient and effective. However,
overconfidence in this may lead to missed interactions that could possibly induce
failures. Therefore, this approach requires experience and good judgment to be ef-
fective [20].

Within recent years, an effort has been made to adopt combinatorial testing to
DL systems [21]. If the vast run-time space of a DL system, where each neuron
is a run time state, is compared to the problem combinatorial testing is trying to
resolve, the vast interaction space between variables, the similarities from an ab-
stract perspective can be observed. The testing framework implemented for this
purpose, DeepCT [21], adapts combinatorial testing by representing the space of
the output values into intervals such that each interval is covered. In the spirit of
combinatorial testing, these intervals can be viewed as variables whose interaction
can be tested. However, while this way the combinations of intervals are finite, they
can still increase exponentially with the number of neurons. Therefore, sampling of
neuron interactions is conducted to reduce the number of test inputs that have to
be executed.

15

2. Related Work and Background

Fuzz Testing
Fuzz testing is a form of testing where random mutations are applied to the input
and the resulting values are checked for whether they are interesting [22]. Due to its
success in detecting bugs, many techniques have been developed that made different
’fuzzers’ classify as blackbox, whitebox, or gray-box [23]. All of which is due to the
fuzzing strategy as there are underline rules that the fuzzers follow. Although only
two of the tool/framework related papers that we found focus on showcasing fuzzing
[3][23] as a DL testing approach, there are also papers that do not explicitly focus
on fuzzing techniques, but fuzzing is interwoven within frameworks [14][27].

2.4 Challenges in DL Testing
DL testing has experienced recent rapid growth. Nevertheless, DL testing remains
at an early stage in its development, with many challenges and open questions ly-
ing ahead. The key challenges in automated systematic testing of large-scale DL
systems are twofold: (1) how to generate inputs that trigger different parts of a DL
system’s logic and uncover different types of erroneous behaviors?, and (2) how to
identify erroneous behaviors of a DL system without manual labeling/checking?

Early Stage of Research
Arguably, the biggest challenge to DL testing is currently the fact that the field is
in an early stage. Xie et al. [24] noted that due to the research being at an early
stage, there is a lack of comparative studies on the effectiveness of DL testing crite-
ria and strategies. This results in doubt on whether the currently proposed criteria
and strategies are indeed useful and can be built upon or whether the application
of traditional strategies is still effective.

Test Input Generation
The challenge with testing input is that the robustness of the DL system greatly
relies on quality testing data. The better the testing data the higher the confidence
in the DL system. However, for a DL system to be applicable within safe-critical
fields, mistakes cannot be allowed. For that purpose, multiple testing techniques
were proposed to improve testing data quality. SADL [9] proposes a test adequacy
criterion that test input should be "sufficient but not overly surprising to the testing
data". According to this approach to improve the testing of the DL system, the
testing data should contain input that is different from the one used for training
but not too different. Another approach for test input generation is the synthetic
test case generation implemented by DeepTest [16]. DeepTest, a systematic testing
tool for DNN-driven vehicles, uses image transformation to apply realistic changes
that a car would face to the input, i.e. presence of fog, rain, change in contrast,
etc. to generate its synthetic test cases. DeepRoad [17], although being focused
on the same area as DeepTest, does not use image transformation, but Generative
Adversarial Networks (GANs) to generate input mimicking real-world weather con-
ditions. DeepXplore [2] uses adversarial sample generation and DeepFault [18] uses
a suspiciousness-guided algorithm to generate its synthetic inputs. Various tech-

16

2. Related Work and Background

niques are used to generate input to be able to improve training data quality. After
all, test inputs that trigger a faulty behavior within a DL system can be added to
the training data to resolve a logical bug, or depending on the technique used the
input can be retained for other uses, i.e. for a future test case seed [3].

Test Oracle Problem
One of the greater challenges of DL testing is the test oracle problem [6]. DL sys-
tems are ’predictive’ systems, systems that are meant to provide us with an answer.
This implicates automated testing because erroneous behavior cannot be identified
without manual labeling or checking [2]. Initial attempts at resolving the oracle
problem were done through the use of differential testing[4] that resulted in the au-
tomated whitebox testing framework DeepXplore [2]. However, unlike traditional
software, acquiring a similar DL system to the one under test is significantly more
difficult. After all, DL systems are decision systems that are made by training a
model with a, often, a large set of data that determines the weighs between neurons.
A later attempt at differential testing was done by Guo et al. [3] which eliminated
the need of having at least two similar systems but is based on the assumption that
a DL system could potentially fail if the input contains slight perturbations that are
indistinguishable to the human eye.

Test Assessment Criteria
For a system that is as complex as a DL system, it is very challenging to have test as-
sessment criteria pre-defined. Deep learning rises from the collaborative functioning
of layers and does not belong to any single property of the system and so ultimately,
we can never be sure your model produced has the exact properties we’d like. To
this end, actually testing the quality of a model requires training, which would tra-
ditionally be considered our second tier of testing as integration. In addition, this
form of training is computationally expensive and time-consuming.

Complex DNN Model
Calculating tensor multiplications are difficult and rarely can be done by software
engineers as “back of the envelope calculations”. The maths is complicated for
such complex models. Even with fixed seed initialization, the regular Xavier weight
initialization uses 32-bit floats, matrix multiplication involves a large series of calcu-
lations, and testing modules with batching involves hard-coding tensors with 3 di-
mensions. This complexity is further reflected in the variations of DNN models, like
RNNs (Recurrent Neural Networks) and CNNs (Convolutional Neural Networks),
each of which is better suited for specific tasks. This leads to some techniques being
less universal due to having to focus on a specific model. Whilst none of these tasks
are insurmountable, they massively stifle development time and creating useful unit
tests.

DL Testing Components Failures
Even trained DNN Models to fail silently, whilst testing a DNN model behaves
correctly with specific input, the inputs of a neural network are rarely a finite set
of inputs (with the exception of some limited discrete models). Networks work in

17

2. Related Work and Background

larger orchestration and regularly change their inputs, outputs, and gradients.

2.5 DL Testing Tools

2.5.1 Timeline
Figure 2.8 shows trends in "Deep Learning System Testing", showing several
key contributions in the development of DL testing tools and techniques. In 2017, K.
Pei et al. [2] published the first white-box testing paper on DL systems. Following
this paper, a number of DL testing techniques and tools have emerged, such as
DeepTest [16], SADL [9], DeepGauge [11], DeepConcolic [15], DeepRoad [17], etc.

Figure 2.8: Timeline of DL Testing Tools Research, 2020

2.5.2 Research Distribution
Figure 2.9 shows commutative trends in "Deep Learning System Testing" and
Figure 2.10 shows commutative trends in "Testing "Deep Learning ". This shows
that there is a trend of moving from testing general machine learning to deep learn-
ing testing, as seen from the number of published papers in the field of DL testing
and techniques for each year. Before 2017 and 2018, the research papers mostly
focused on general machine learning; after 2018, we see a more dedicated focus on
DL specific testing notably arise. The majority of publications on DL testing tech-
niques came in 2019. The numbers shown in all three graphs also include survey
publications in the field of DL testing.

Comparing to publications for machine learning testing, as early as in 2007, Murphy
et al. [30] mentioned the idea of testing machine learning applications, which is one
of the first papers about testing Machine learning systems. Figure 2.11 shows the
commutative trends in Testing ""Machine Learning ". Table 2.2 shows the total
number of publications and maximum citations for each category.

18

2. Related Work and Background

All the statistics are taken from Google Scholar as per their search relevance1, Jan-
uary, 2020. The year displayed for each research paper is the year of publication.

Figure 2.9: "Deep Learning System Testing" Publications

Figure 2.10: "Testing "Deep Learning"" Publications

1Google Scholar https://scholar.google.com/

19

2. Related Work and Background

Figure 2.11: "Testing "Machine Learning"" Publications

Table 2.2: Total Research Publications and Citations

Total Publications Maximum Citations
Deep Learning System Testing: 42 55
Testing "Deep Learning": 67 345
Testing "Machine Learning": 294 152

2.5.3 DL Datasets
Datasets play a dominant role in shaping the future of technology. A lot of research
papers these days use proprietary datasets that are usually not released to the gen-
eral public. Table 2.3 to Table 2.8 show some key examples of widely-adopted and
openly available datasets used in DL testing research. There are numerous ways how
we can use these datasets. We can use them to apply various DL techniques. Some
of these datasets are huge in size. In each table, the first column shows the name.
The next three columns give dataset information, the size, and the total number of
records for each type. The datasets can be divided into following six key categories,
which includes:

1. Image Classification
2. Natural Language Processing
3. Audio/Speech Processing.
4. Biometric Recognition
5. Self-driving
6. Others

20

2. Related Work and Background

Table 2.3: DL Dataset: Image Classification

Dataset Dataset
Information Size Number Of

Records

ImageNet Images of WordNet phrases
(Visual recognition dataset) ∼150GB ∼1,500,000

MNIST Handwritten digits Images ∼50 MB 70,000 images in 10 classes

CIFAR-10 60,000 images of 10 classes
(each class is represented as a row in the above image) 170 MB 60,000 images in 10 classes

MS-COCO Object detection, segmentation and
captioning dataset ∼25 GB 330K images, 80 object categories,

5 captions per image, 250,000 people with key points

Open Images Dataset Open Images is a dataset of almost 9 million
URLs for images

500 GB
(Compressed)

9,011,219 images ,
more than 5k labels

VisualQA Open-ended questions about images. 25 GB
(Compressed)

265,016 images, at least 3 questions
per image, 10 ground truth answers per question

The Street View House Numbers
(SVHN)

Real-world image dataset for developing
object detection algorithms. 2.5 GB 6,30,420 images in 10 classes

Fashion-MNIST MNIST-like fashion product database 30 MB 70,000 images in 10 classes

LSUN Large-Scale Scene Understanding to detect and
speed up the progress for scene understanding NA 10,000 images

Youtube-8M large-scale video dataset that was announced in Sept 2016
by Google group. 1.53 Terabytes.

6.1 million YouTube video IDs,
2.6 billion of audio/visual features with high-quality annotations
and 3800+ visual entities.

Table 2.4: DL Dataset: Natural Language Processing

Dataset Dataset
Information Size Number Of

Records

IMDB Reviews Dataset for movie lovers 80 MB 25,000 highly polar movie reviews for training,
and 25,000 for testing

Twenty Newsgroups Information about newsgroups
1000 Usenet articles from 20 different newsgroups 20 MB 20,000 messages taken from 20 newsgroups

Sentiment140 Dataset for sentiment analysis 80 MB
(Compressed) 1,60,000 tweets

WordNet Large database of English synsets. 10 MB 117,000 synsets

Yelp Reviews
Dataset by Yelp for learning purposes, consists of millions
of user reviews, businesses attributes and over 200,000
pictures from multiple metropolitan areas

2.66 GB JSON, 2.9 GB SQL
and 7.5 GB Photos
(Compressed)

5,200,000 reviews, 174,000 business attributes,
200,000 pictures and 11 metropolitan areas

The Wikipedia Corpus Collection of a the full text on Wikipedia. 20 MB 4,400,000 articles containing 1.9 billion words
Machine Translation of
Various Languages Training data for four European languages. ∼15 GB ∼30,000,000 sentences and their translations

The Blog Authorship Corpus Dataset of blog posts collected from thousands of bloggers
and has been gathered from blogger.com. 300 MB 681,288 posts with over 140 million words

Table 2.5: DL Dataset : Audio/Speech Processing

Dataset Dataset
Information Size Number Of

Records

Free Spoken Digit Dataset Dataset to identify spoken digits
in audio samples 10 MB 1,500 audio samples

Ballroom Dataset of ballroom dancing audio files 14GB (Compressed) ∼700 audio samples
Free Music Archive (FMA) Dataset for music analysis. ∼1000 GB ∼100,000 tracks

Million Song Dataset Freely-available collection of audio features and
metadata for a million contemporary popular music tracks 280 GB A million songs

LibriSpeech Large-scale corpus of around 1000 hours of English speech ∼60 GB 1000 hours of speech
VoxCeleb Large-scale speaker identification dataset 150 MB 100,000 utterances by 1,251 celebrities

Google AudioSet
Dataset from YouTube videos and consists of an expanding ontology,
Categories cover human and animal sounds, sounds of musical instruments, genres,
everyday environmental sounds, etc

2.4 gigabytes
Stored in 12,228 TensorFlow record files,

2.1 million annotated videos that include 527 classes
and 5.8 thousand hours of audio

Table 2.6: DL Dataset: Bio metric Recognition

Dataset Dataset
Information Size Number Of

Records

Open Source Bio-metric Recognition Data
Dataset of tools to design and evaluate new bio-metric
algorithms and an interface to incorporate bio-metric technology
into end-user applications.

16 MB open source code for facial recognition,
age estimation, and gender estimation

Table 2.7: DL Dataset: Self-driving

Dataset Dataset
Information Size Number Of

Records
Udacity self-driving challenge self-driving challenge Dataset ∼500 MB to ∼60 GB A millions of images.

Baidu Apolloscapes Dataset for self-driving technologies ∼3 GB 25 different semantic items like cars, bicycles,
pedestrian, street lights, etc. covered by 5 groups.

21

2. Related Work and Background

Table 2.8: DL Dataset: Others

Dataset Dataset
Information Size Number Of

Records
Drebin Applications from different malware families NA ∼123,500
Waveform CART book’s generated waveform data NA 5,000
VirusTotal Malicious PDF files NA 5,000
Contagio Clean and malicious files NA ∼29,000

2.6 Benchmarking Research
This section starts with answering four typical questions as we talk about bench-
marking in general, such as "What is ‘benchmarking’?", "Why do we conduct bench-
marking activities?", "What benefits does benchmark bring?" and "What can we ac-
tually benchmark?". Finally, it gives insight into benchmarking research work done
in the field of Deep Learning.

2.6.1 What is Benchmarking?
Benchmarking is a widely used method in experimental software engineering, in
particular, for the comparative evaluation of tools and algorithms. There are two
aspects common to many benchmarking studies: [35] (i) Comparison of performance
levels to ascertain which organization(s) is achieving superior performance levels.
(ii) Identification, adaptation/improvement, and adoption of the practices that lead
to these superior levels of performance. A benchmarking method is two-fold [29].
First, for the end-users of DL tools, benchmarking results can serve as a guide to
selecting appropriate software tools. Second, for software engineers within the field,
the in-depth analysis, and comparative conclusion points out possible future research
directions to further optimize the properties of the software tools. Sim at al. [31]
extends the meaning of performance. When talking about performance metrics, in
the paper it is argued that performance is not just an innate software characteristic
but also the interaction between the software and the user. This further expands
the possible options when it comes to measuring software.

2.6.2 Benchmarking in DL Systems
Deep learning systems, which are the focus of our research, have been successfully de-
ployed for a variety of tasks, and its popularity results in numerous open-source DL
software tools. There is a guide for the selection of appropriate hardware platform
and DL software tools [29] but there is no guide available as such to select appro-
priate DL testing tools and techniques. Additionally, there is an increasing trend in
the research work done within the field of DL testing. To get benchmarking results,
we need to have a reliable benchmarking method. There exist some challenges to
get such a reliable method. Reliable benchmarking: Requirements and solutions by

22

2. Related Work and Background

Dorely [34] explains three major difficulties that we need to consider for benchmark-
ing such as a technical bias for benchmarking framework design, hardware resources
selection and the independence of different tool executions. Moreover, there is also a
survey paper [30] on ’Machine Learning Testing: Survey, Landscapes, and Horizons’
but this only focuses on Machine learning in general and it is just a survey on ML
testing tools.

23

2. Related Work and Background

24

3
Methodology

This chapter starts with a description of the methods used for the three research
questions. The following section explains the properties necessary for a benchmark-
ing method. Furthermore, the Requirement-Scenario-Task model is presented, high-
lighting methods used to elicit DL testing requirements and derive testing scenarios.
Finally, DL benchmarking scenarios and tasks are explained.

3.1 Research Questions
In this section, a description of the methods used to answer the three research ques-
tions is given.

RQ1: For RQ1 (as stated in section 1.4), we investigated fifteen existing state-
of-the-art research papers on DL testing and techniques. All research papers were
taken from Google Scholar pages1 sorted by search relevance. The focus was to un-
derstand the DL testing workflows, components, and testing properties of the tools.
We also studied the evaluation method, DL datasets, code support, and availability
of each DL testing tool. The result of the pre-study has a summary of all fifteen DL
testing tools and techniques and is presented in chapter 4.

RQ2: For RQ2, which includes Hypothesis 1 and Hypothesis 2, as stated in sec-
tion 1.4, we used the results from our literature review of fifteen research papers on
DL testing tools and the result of the benchmarking tool on four DL testing tools.

Hypothesis 1: To answer Hypothesis 1, the testing properties of each DL testing
tool were identified as a part of the literature review. The details of the qualitative
differences across these tools are presented in chapter 4.
Hypothesis 2: To answer Hypothesis 2, a benchmarking method was designed.
The output of the designed benchmarking method was used to find a significant dif-
ference in test input generation of four DL testing tools for a given type of dataset.
The tools were selected based on their working status and code support. The results
and analysis are explained in section 5.2.

RQ3: For RQ3 (as stated in section 1.4), relevant scenarios of DL testing tools
were identified, out of which benchmarking tasks were designed to reflect real-world

1Google Scholar https://scholar.google.com/

25

3. Methodology

scenarios. The method used to ensure the relevance of the scenarios is explained in
Section 3.2. The designed benchmarking method was then presented to two industry
researchers for validation by conducting a semi-structured interview for feedback on
the method. The analysis and results of the design are presented in chapter 5 and
section 5.2.

3.2 Benchmarking Method
For the benchmarking method design, we use the benchmark definition and method-
ology proposed by Sim et al. [31]. The paper contains the necessary benchmark
components, properties, and guidelines which to follow to create a successful bench-
mark in software engineering. We focus on the proposed five relevant properties for
creating a successful benchmark within the field of software engineering: relevance,
solvability, scalability, clarity, and portability. Each property will be presented by
giving the general description defined by Sim et al.[31] and followed by how it relates
to a benchmarking method in DL.

• Relevance: The task set out in the benchmark must be representative of
ones that the system is reasonably expected to handle in a natural (meaning
not artificial) setting and the performance measure used must be pertinent to
the comparisons being made. The relevance property in the case of the DL
testing tool benchmark is related to the task sample but also to the compo-
nents that are part of the task. Therefore, the benchmarking tasks, and the
datasets and DNN models which are part of the tasks, need to be representa-
tive of actual data and situations that the system is expected to handle as well.

• Solvability: It should be possible to complete the task domain sample and
to produce a good solution. Similar to the relevance property, the solvability
property is concerned with the task sample. The task set needs to be comprised
out of tasks that are not too difficult for the DL testing tools to handle, as well
as being not too simple for the tools to show their potential as best as possible.

• Scalability: The benchmark tasks should scale to work with tools or tech-
niques at different levels of maturity. This property involves the benchmark
being able to work with as wide a range of maturity of the DL testing tools
as possible. The initial benchmark will be meant to work with the currently
available DL testing tools. The benchmarking method, however, may contain
tasks that may seem not as predominant at the moment but show potential for
future development. It is important to note that a benchmark is a continuous
effort, it will need to be updated as the tools evolve and should be able to
accommodate or account for such updates.

• Clarity: The benchmark specification should be clear, self-contained, and as
short as possible. This clarity should help ensure that there are no loopholes
to be exploited. This study serves as the specification of the benchmarking

26

3. Methodology

method. However, the tool in which the method is implemented is accompa-
nied by a self-contained configuration file that is supported by a help file. This
property will be tested by presenting the benchmarking method to industry
researchers for validation and feedback. Through the feedback, we’ll discover
if the benchmark’s clarity property is fulfilled.

• Portability: The benchmark should be specified at a high enough level of ab-
straction to ensure that it is portable to different tools or techniques and that
it does not bias one technology in favor of others. The portability property of
the DL benchmark is concerned with the applicability of the benchmark design
on different platforms and languages. The benchmark specification, which is
the study itself, should give sufficient information for the abstract concept of
the benchmark to be applied on any language or platform, if possible.

By conforming to the properties, benchmarking tool was implemented by using the
Requirements-Scenario-Task model, which is described in the following subsection.

3.2.1 Requirement-Scenario-Task Model
As pointed out by Sim et al. [31], performance is not an innate characteristic of
the software when creating a benchmark but "the relationship between technology
and how it is used" and that creativity may be necessary to device meaningful
performance metrics. Therefore, we took inspiration from the model presented by
Bai et al. [32]. The paper presents a scenario-based modeling technique, which
captures system functionality at different abstraction levels and can be used to
direct systematic testing. The inspiration that our study took, is from its key point
of using requirements to give a functional view of the system, whereas the scenarios
give a user’s point of view of the system under test. What this means is that
by eliciting requirements to get a functional view of the DL tools, we can then
synthesize relevant test scenarios to get a user’s perspective on the tools. The user,
in this case, is a DL tester. By having the user’s perspective on what a DL tool
should contain in terms of relevant functionality for testing, i.e. selecting a model
should be possible, benchmarking tasks can be made that test the tools that are
in an early state for whether they have the necessary functionality. Additionally,
one requirement could possibly lead to multiple scenarios, hence making scenarios
a more fine-grained method for constructing tasks. By establishing requirements
based on the investigation done for RQ1 and creating testing scenarios out of these
requirements, we can both ensure task relevance and have a two-dimensional view
(functional and user view) of the tools that the benchmark is meant to test.

27

3. Methodology

Figure 3.1 shows the overview of the Requirement-Scenario-Task model for the
benchmarking method. The details of each component of the model are explained
in the following subsections.

List of Requirements

1. Technical	Feasibility
2.Diverse	Datasets.				

DL Testing
Requirement DL Testing

Scenarios

Benchmarking
Tasks (T1-T7)

Benchmarking
Method Execution

Scenarios

Check DNN models

Check DL datasets
.....

.....

List of Scenarios

Figure 3.1: Requirement-Scenario-Task Model for the Benchmarking Method

3.2.2 DL Testing Tool Requirements
For the elicitation of the requirements, we conducted a pre-study on fifteen DL test-
ing tool research papers to first get to know the domain extensively by observing the
intricacies involved in DL testing, the details of which can be found in Section 2.2.
Furthermore, we proceeded with familiarizing ourselves with the differences between
traditional and DL software testing techniques in Section 2.3 and the challenges that
DL testing imposes, found in Section 2.4. These are necessary pre-conditions to un-
derstanding the domain before both requirements can be extracted and meaningful
testing scenarios can be made. For the elicitation process, we used elicitation tech-
niques that were reviewed by Sharma et al. [33]. The two main techniques used
were Reading Existing Documents, complemented with a Brainstorming session. For
the existing documents, we referred to the DL testing tool papers, which were inves-
tigated for RQ1 as well as a taxonomy [10] about common faults in real-world DL
systems. The brainstorming session was conducted between the researchers involved
in this study.

3.2.3 DL Testing Scenarios
From the set of requirements, we established benchmark testing scenarios for the
DL testing tools. Although a benchmark is used for comparisons, it is a testing tool
that consists of testing tasks. Such testing tasks usually are aimed at scenarios that
occur within the subject under test. As such, after prioritizing the requirements
into what is most relevant to the DL testing tools, we established a set of scenarios.
This process is very important for one of the seven properties proposed by Sim et
al. [31] for a successful benchmark, Relevance. The tasks set of the benchmark
must be representative of what the tools are supposed to handle.

Benchmarking Test Scenarios:
The benchmarking test scenarios are the scenarios that are applicable to a bench-
marking effort. Before the scenarios can be synthesized into tasks for the benchmark,
another important property must be considered at this stage of the design and that

28

3. Methodology

is Solvability, "it should be possible to complete the task domain sample and to
produce a good solution" [31]. Out of all DL Testing Scenarios, not all the testing
scenarios were applicable for benchmarking for two reasons. Firstly, to focus on
the scenarios that are solvable by the DL testing tools in their current state, and
secondly, to filter out the less relevant benchmarking scenarios. After filtering out
the inapplicable DL testing scenarios, benchmarking test scenarios were identified.

3.2.4 Benchmarking Tasks
After the benchmarking scenarios have been filtered out, benchmarking tasks were
synthesized which are solvable to the DL testing tools. Ideally, the tasks that a
benchmark should give to the tools would strike a balance between difficulty and
feasibility. The tasks need to be difficult enough for a tool to show their full poten-
tial but not too difficult for it to give any meaningful output [31]. The tasks were
aimed at the capabilities that the tool has and was designed to address relevant
issues within the DL testing tools. The scenarios provide the groundwork for the
individual tasks but the tasks extend the groundwork into meaningful objectives for
the tools.

Building Benchmarking Models
The benchmarking tool was complemented by six DNNmodels for its testing process
against DL testing tools. Two models for each type of dataset classifications (Images,
Texts, and Self-driving) were included. Fours models were compiled using the Keras
Models Directory2. Two models for driving datasets were taken from Udacity self-
driving dataset. The details of each model and its architecture are presented in
Appendix A.8.

2Keras Models Directory https://github.com/keras-team/keras/tree/master/examples

29

3. Methodology

30

4
Pre-Study Results

4.1 Results from Pre-Study
The goal of the pre-study is to investigate existing state-of-the-art and real-world
applicable DL testing tools research papers. In this section, we present the results
of the investigation on the fifteen DL testing tools and techniques.

4.1.1 DL Testing Tools
Table 4.1 shows a summary of fifteen DL testing tools and techniques. The first
column shows the name of each tool/technique, followed by the year of publication,
type of testing, and DL datasets applied by the testing tool in the research pa-
per. We also investigated the correctness, fairness, efficiency, and robustness testing
properties by these DL testing tools.

DL Testing Properties:
A comparison was done among of most common DL testing properties across the
selected fifteen research papers on DL testing and techniques to find out which prop-
erties are the most commonly tested ones. The information on the properties was
extracted directly from their respective research papers. The properties that the
tools test on the DL system were either explicitly stated in each paper or implied.
Figure 4.1 depicts the Research distribution among different DL testing properties.
As seen in the figure, robustness is currently the most prominent property of con-
cern for the DL testing research community, which is common across thirteen out
of fifteen research papers. It is followed by Reliability, Correctness, and Generality.
The paper by Jahangirova et al. [10] identified many real faults within DL systems,
however, they were primarily technical faults related to the implementation, config-
uration, and training of the models. The interesting fault that is noted within the
paper is the selection of the wrong model. This is related to the Relevance property
of a model. Different types of DNNs perform better at certain tasks, i.e. recurrent
neural networks (RNNs) perform better at sequential input streams[27], however,
the relevance of a model, which we marked as Model Relevance, is not a point of
concern within the fifteen DL testing tool papers. Similarly, fairness and efficiency
were not elaborated upon within the research papers.

In the rest of the section, the investigated fifteen tools and techniques are presented.
Each tool is presented by first introducing the core concept of the tool, followed by
details of its setup and evaluation, supported dataset classifications, type of testing

31

4. Pre-Study Results

and finally properties tested by the DL testing tool.

Table 4.1: Summary of the Investigated State-of-the-art DL Testing Tools and
Techniques

Tool
Name

Publication
Year

Type of
Testing DL Datasets

DeepXplore 2016 Whitebox
Differential

Images
Self Driving
Textual

Surprise
Adequacy 2019 Test Adequacy

Criterion
Images
Self Driving

DLFuzz 2018 Differential Fuzzing Images
DeepConcolic 2018 Concolic Images
DeepFault 2019 Whitebox Images
nMutant 2018 Mutation Images
DeepTest 2018 Metamorphic Autonomous Driving
DeepHunter - Fuzzy 2018 Coverage Guided Fuzzing Images
DeepGauge 2018 Multi-granularity test criteria Images
DeepMutation 2018 Mutation Images

Deepcruiser 2018 Coverage Guided
Metamorphic Speech-to-text

DeepRoad 2018 Metamorphic Autonomous Driving

DeepStellar 2018 Coverage Guided Images
Speech-to-text

Coverage-Guided Fuzzing 2018 Coverage-Guided Fuzzing Images
DiffChaser 2019 Black-box Images

3

13

2

4

0

DL Testing Properties

R
es

ea
rc

h
D

is
tr

ib
ut

io
n

*

0

5

10

15

Correctness Robustness Generality Reliability Model Relevance

Figure 4.1: DL Testing Properties Research Distribution

32

4. Pre-Study Results

1. DeepXplore
DeepXplore [2] is the first white box framework for systematically testing
real-world DL systems. It proposes a test effectiveness metric called neuron
coverage and develops a neuron-coverage guided differential testing technique
that uncovers behavioral inconsistencies between different deep learning mod-
els. DeepXplore performs gradient ascent to solve a joint optimization that
maximizes both neuron coverage and the number of potentially erroneous be-
haviors. It covers three important aspects: (i) Systematically test deep neural
nets (DNNs), (ii) Differential testing of multiple DNNs without manual label-
ing, and (iii) Improve test coverage of DNN by means of Neuron Coverage.
Neuron Coverage aims to maximize the number of activated neurons during
testing. Neuron coverage of a set of test inputs is defined as the ratio of the
number of unique activated neurons for all test inputs and the total number
of neurons in the DNN. A neuron is considered to be activated if its output
is higher than a threshold value (e.g., 0). Note that this is just one way of
defining neuron coverage.
Differential Testing, on the other hand, aims to Systematically test DL systems
by levering multiple DL systems with similar functionality as cross-referencing
oracles to identify unexpected erroneous corner cases without manual checks.

• Setup and Evaluation:
DeepXplore is implemented using Python 2.7 on the Keras (2.0.3) DL
framework with TensorFlow (1.0.1). Some of the datasets that it evalu-
ates are Udacity self-driving car challenge, image classification from Im-
ageNet and MNIST, Android malware data from Drebin, and PDF mal-
ware data from VirusTotal. Its tests measure the Neuron Coverage of a
model.

• Type of Testing
DeepXplore involves the Whitebox framework and Differential Testing.
DeepXplore, being the very first white-box testing technique in the field
of DL testing, has a few limitations based on its approach. It doesn’t fully
capture all real-world input distortions, such as simulating shadows from
other objects still remains an open problem. It doesn’t cover realistic
transformations i.e. to emulate different weather conditions (e.g., snow
or rain) for testing self-driving vehicles. Finally, a key limitation of the
used gradient-based local search is that it does not provide any guarantee
about the absence of errors.

• Tested Properties
Robustness, Correctness, and Reliability.

2. Surprise Adequacy:
Surprise Adequacy for Deep Learning Systems (SADL) [9] recognizes that

there is a need to focus on improving the training data used to train the
model. According to it, the testing data needs to contain several, but not too
many, ‘surprising’ inputs. What that means is that the DL system should be
trained in a way as to be able to respond correctly towards corner-case sce-
nario input, taking images as an example, the DL system should be able to tell

33

4. Pre-Study Results

the number “nine” even if there is a weird fluctuation in the image, just like a
human would. While the concept of adversarial input is not new, DL systems
behaving incorrectly when such input is introduced is still a wide-spread prob-
lem due to the difficulties of obtaining quality training data [10]. The general
idea behind solving this problem is improving training data quality and SADL
adds a new layer to the currently expanding body of knowledge by proposing
a novel test adequacy criterion that helps improve training data classification
(selection). The problem with training data quality is that the model needs
to be trained for corner-case scenarios. Such scenarios need to be identified
before a model can be trained for them. To identify such scenarios the testing
input needs to be diverse, covering both inputs which were used during train-
ing and input that is very different from the training data used. This ensures
the model handles familiar input correctly as well as similar to unfamiliar in-
put which may influence its accuracy. Several DL testing techniques [2] [11]
focus on treating the input as sets or buckets, in general, bundled together
inputs, leaving individual input value out of the equation when presenting
the end result of the test. This way, while giving general information about
model performance when facing such input, information about individual val-
ues which could improve training data quality is lost. SADL tests the model
by measuring how ‘surprising’ the input is to the DL system with respect to
the training data used [9] while retaining the value of the individual inputs.
This way the inputs can be ‘cherry-picked’ and added to the training data,
improving the diversity of the data, and overall model performance. However,
this process is not yet automated and would require manual labeling when
adding the identified data.

• Setup and Evaluation
SADL is implemented using Python on the Keras (2.2.0) framework with
TensorFlow (1.9.0). It has been evaluated on four datasets: MNIST and
CIFAR-10 for image classification, Dave-2, and Chauffeur for the self-
driving car challenge. It uses Likelihood-based Surprise Adequacy and
Distance-based Surprise Adequacy and presents the results in a ROC-
AUC score and FGSM coverage score.
LSA (Likelihood-based Surprise Adequacy) uses Kernel Density Estima-
tion to estimate the probability density of each activation value within
an activation trace and obtain the surprise of a new input with respect
to the estimated density.
DSA (Distance-based Surprise Adequacy) uses the distance between ac-
tivation traces as a measurement of surprise. Basically it checks the
distance between the activation trace of new input and the activation
trace observed during training.
ROC (Receiver Operating Characteristic) determines how well a model
can distinguish between two things. The AUC (Area Under Curve) score,
on the other hand, shows how well the model performs. ROC-AUC in-
dicates how well the probabilities from the positive classes are separated
from the negative classes. Surprise Adequacy uses the ROC-AUC score to
get a % estimate of how well adversarial examples are classified, the higher

34

4. Pre-Study Results

the score the better the adversarial example classifiers when computing
LSA or DSA. The higher the score the more clear the differentiation be-
tween the adversarial examples and actual test data. That means that a
high score shows a clear ‘surprise’ in input, i.e. the input is diverse and
different from the data that was used to train the model. On the other
hand, lower values show that the input is less surprising to the data that
was used to train the model.

• Type of Testing
Surprise Adequacy is a test adequacy criterion. It is aimed at improv-
ing training data quality by measuring how surprising an input is and
retaining that input’s individual value by not grouping neurons into sets,
buckets, etc. The word ‘adequacy’ in this case is aimed at the testing
data, how adequate is the training data? Test adequacy criteria, in gen-
eral, are aimed at specific parts of testing and improving their quality. It
also a good Code Support for setup simulation

• Tested Properties
Robustness and Correctness.

3. DLFuzz
DLFuzz [3] is a differential fuzzing testing framework that approaches cross-
referencing in a different manner than DeepXplore [2]. Having identified that
DL systems give incorrect output on nearly identical images with small pertur-
bations, the framework is based on giving the same system two nearly identical
inputs, where the original is used as a cross-reference to the new nearly iden-
tical input. This nearly identical input is generated through mutation of the
original input by applying a very slight change to it that is nearly indistin-
guishable to the human eye. Being essentially the same input (in this case
images), the system is supposed to give the same prediction as for the original
input. If the output is different, the system is clearly misbehaving because it
fails the cross-reference, hence the input given to reach this incorrect behavior
is an important adversarial input that is retained. As such it can be used to
improve neuron coverage and the accuracy of the DL system under test.

• Setup and Evaluation
DLFuzz is implemented using Python on the Keras (2.1.3) framework
with TensorFlow (1.2.1) as backend. It has been evaluated using two
datasets: MNIST and ImageNet for image classification on a CNN model.
It measures Neuron Coverage and execution time.

• Type of Testing
DLFuzz is a whitebox framework that uses differential fuzz testing. It
mutates the original input using slight perturbations into new input which
is imperceivable. The differential part comes from the original input being
used as a cross-referencing oracle for the mutated input, hence removing
the need for a second DL system. It has has a good Code Support.

• Tested Properties
Robustness and Reliability.

35

4. Pre-Study Results

4. Concolic Testing for Deep Neural Networks
Concolic Testing for Deep Neural Networks [15] was published in 2018. Con-
colic testing alternates between CONCrete program execution and symbOLIC
analysis to explore the execution paths of a software program and to increase
code coverage. It explains the first concolic testing approach for Deep Neural
Networks (DNNs). More specifically, utilize quantified linear arithmetic over
rationals to express test requirements that have been studied in the literature,
and then develop a coherent method to perform concolic testing with the aim
of better coverage. The experimental results of the tool show the effectiveness
of the concolic testing approach in both achieving high coverage and finding
adversarial examples.

• Setup and Evaluation
DeepConcolic is implemented in python using the Keras framework. It
evaluates two datasets: MNIST and CIFAR-10 for image classification.
It measures Neuron Coverage, SS Coverage, and Neuron Boundary Cov-
erage on a subset of neurons.

• Type of Testing
DeepConcolic uses concolic testing to demonstrate its effectiveness to-
wards increasing test coverage. It has good code support and allows
model selection in its run command –model MODEL but works a bit
slow on commodity laptop to get the output.

• Tested Properties
Robustness.

5. DeepFault
DeepFault [18] (published in April 2019), approach for whitebox testing of
DNNs driven by fault localization, to establish the hit spectrum of neurons
and identify suspicious neurons whose weights have not been calibrated cor-
rectly and thus are considered responsible for inadequate DNN performance. It
uses an algorithm for identifying suspicious neurons that adapts suspiciousness
measures. It uses a suspiciousness-guided algorithm to synthesize new inputs
that achieve high activation values of potentially suspicious neurons. The
objectives of DeepFault are twofold: (i) identification of suspicious neurons,
i.e., neurons likely to be more responsible for incorrect DNN behavior; and
(ii) synthesis of new inputs, using correctly classified inputs, that exercise the
identified suspicious neurons. It employs a suspiciousness-guided algorithm
to synthesize new inputs, that achieve high activation values for suspicious
neurons, by modifying correctly classified inputs.

• Setup and Evaluation
DeepFault is implemented using python on the Keras (2.2.2) framework
with TensorFlow (1.10.1) backend. It is evaluated on two datasets: MNIST
and CIFAR-10 for image classification. It measures the suspiciousness of
neurons by applying an algorithm that activates these neurons.

• Type of Testing
DeepFault is a whitebox testing approach.

• Tested Properties

36

4. Pre-Study Results

Robustness and Generality.

6. Adversarial Sample Detection for Deep Neural Network through
Model Mutation Testing
The paper proposes nMutant [26], an adversarial sample detection algorithm
that detects adversarial samples on run-time. The tool is based on an observa-
tion that adversarial samples are much more sensitive to random perturbations
than normal samples. Being inspired by mutation testing, the method used for
adversarial sample detection measures how sensitive a sample is too random
perturbations and raises an alarm if it’s above a certain threshold. Addition-
ally, the approach does not require any underlying knowledge of the DNN
system, thus being applicable to a wide range of DL systems.

• Setup and Evaluation
nMutant is implemented as a stand-alone Java application, simple and
easy download from GitHub. It is evaluated to two datasets: MNIST and
CIFAR-10 for image classification. It measures the number of identified
adversarial samples.

• Type of Testing
nMutant is a mutation testing approach towards identifying adversarial
samples.

• Tested Properties
Robustness.

7. DeepTest
DeepTest [16] focuses on automatically detecting erroneous behaviors of DNN-
driven vehicles that can potentially lead to fatal crashes. The paper presents
thousands of erroneous behaviors under different realistic driving conditions.
It aims to explore different parts of the DNN logic by generating test inputs
that maximize the numbers of activated neurons.

• Setup and Evaluation
DeepTest is implemented using python on the Keras framework. We were
unable to get specific version information. It is evaluated on three models
for autonomous driving based on the Udacity dataset. The Chauffeur and
Rambo models were pre-trained, the Epoch model has been trained by
the authors. It measures neuron coverage.

• Type of Testing
DeepTest uses a systematic testing methodology to detect erroneous be-
havior.

• Tested Properties
Robustness.

8. DeepHunter
DeepHunter [24] is a coverage-guided fuzzing framework for testing general
purpose DNNs. The paper proposes a metamorphic mutation strategy to
generate its tests, whilst leveraging multiple coverage criteria as feedback for
the fuzzer to guide test generation. Within DeepHunter there are 4 seed

37

4. Pre-Study Results

strategies and 5 existing testing criteria incorporated.
• Setup and Evaluation

DeepHunter is implemented using python on the Keras (2.1.3) frame-
work with Tensorflow (1.5.0) backend. It is evaluated on three datasets:
MNIST, CIFAR-10, and ImageNet for image classification. It measures
coverage using different testing criteria.

• Type of Testing
It uses coverage-guided fuzzing to generate its tests and metamorphic
relations for detecting errors.

• Tested Properties
Robustness

9. DeepGauge: Multi-Granularity Testing Criteria for Deep Learning
Systems
DeepGauge [11] proposes a set of multi-granularity test criteria that focus on
gauging the testing adequacy. It measures the neuron activation on various
layers to facilitate the understanding of DNN and test data quality from dif-
ferent angles as to further the knowledge-base on DL systems logic. By giving
a multi-angle view of the test-bed DeepGauge hopes to further the progress
towards the construction of more robust and generic DL systems.

• Setup and Evaluation
DeepGauge is implemented using python on the Keras (2.1.3) framework
and Tensorflow (1.5.0) backend. Its evaluation is done on two datasets:
MNIST and CIFAR-10 for image classification. It uses five different met-
rics for its evaluation, three of which are on neuron-level coverage and
two on layer level coverage.
KMNC (k-multisection neuron coverage): measures how thorough the
given set of test inputs T covers the range of [lown, highn].
NBC (neuron boundary coverage): Measures how many corner-case re-
gions have been covered (upper and lower case boundary value) by a given
test input set.
SNAC (strong neuron activation coverage): Measures how many corner-
case regions have been covered (the upper boundary value) by a given
test input set.
TKNC (top-k neuron coverage): Measures how many neurons have once
been the most active k neurons on a layer.
TKNP (top-k neuron pattern): denotes different kinds of activated sce-
narios from the top hyperactive neurons of each layer.

• Type of Testing
DeepGauge is a multi-granularity testing criterion that uses multiple an-
gles of neuron coverage for its basis.

• Tested Properties
Robustness and Generality.

38

4. Pre-Study Results

10. DeepMutation: Mutation Testing of Deep Learning Systems
DeepMutation [14] proposes a mutation testing framework that is specialized
for DL systems to measure the quality of test data. It recognizes that the
behavior of a DL system is determined by both the DNN structure and the
connection weights in the network. The structure of the DNN is determined
by code fragments of a training program in a high-level language, whereas
the weights are determined by the training data used to train the model.
Therefore, DeepMutation focuses on both the training data set and the train-
ing program by using mutation operators to inject potential faults in either.
Afterward, the training process is re-executed, and mutated DL models are
generated. Each mutated model is afterward analyzed against a test set in
correspondence to the original DL model.

• Setup and Evaluation
DeepMutation is implemented using python on the Keras (2.1.3) frame-
work and Tensorflow (1.5.0) backend. Its evaluation is done on two
datasets: MNIST and CIFAR-10 for image classification. It is evaluated
using the Mutation Score and Average Error Rate as metrics.

• Type of Testing
As the name implies, it uses mutation testing, hence why Mutation Score
is the metric of choice.

• Tested Properties
Robustness and Generality.

11. DeepCruiser: Automated Guided Testing for Stateful Deep Learning
Systems
DeepCruiser [27] is an automated testing framework for RNN (recurrent neural
network) based stateful DL systems. The tool systematically generates tests
on a large scale based on specialized coverage criteria for stateful DL systems
to uncover defects. The effectiveness of the technique used within the tool is
demonstrated by showing how the basic state coverage is improved through
its usage over a period of 12 hours.

• Setup and Evaluation
We were unable to uncover data for the setup of DeepCruiser in rela-
tion to the framework and backend that it uses. Its evaluation is done
using one dataset: DeepSpeech-0.3.0 for automated speech recognition.
Its measurement is done using two state-level coverage criteria and three
transition-level coverage criteria for the automated test generation. The
state-level coverage criteria focus on the internal states of the RNN,
whereas the transition-level coverage criteria target the abstract tran-
sition activation by various input sequences.

• Type of Testing
DeepCruiser uses Coverage-Guided testing in which new coverage criteria
are proposed for RNN-based stateful systems.

• Tested Properties
Reliability.

39

4. Pre-Study Results

12. DeepRoad
DeepRoad [17] is a GAN-based Metamorphic Autonomous Driving System
Testing. It is an unsupervised framework to automatically generate large
amounts of accurate driving scenes to test the consistency of DNN-based au-
tonomous driving systems across different scenes. In particular, DeepRoad
delivers driving scenes with various weather conditions (including those with
rather extreme conditions) by applying the Generative Adversarial Networks
(GANs) along with the corresponding real-world weather scenes.

• Setup and Evaluation
We were unable to uncover data for the setup of DeepRoad in relation to
the framework and backend that it uses. It is evaluated on four datasets:
Udacity, Autumn Chauffeur, and Rwightman for self-driving. The Au-
tumn dataset is used within a CNN, whereas Chauffeur is used for one
RNN and one CNN model. It measures the inconsistent behavior of the
model. Consistent behavior is considered to be aligned with the steering
angle prediction within certain error bounds.

• Type of Testing
DeepRoad uses a GAN-based metamorphic testing approach for its tests.

• Tested Properties
Robustness and Generality.

13. DeepStellar: Model-Based Quantitative Analysis of Stateful Deep
Learning Systems
DeepStellar [13] is a general-purpose quantitative analysis framework for RNN-
based DL systems. The tool uses two trace similarity metrics (STS and TTS)
to quantify the prediction proximity of different inputs and five coverage cri-
teria (BSC, WSC, n-SBC, BTC, and WTC) to measure the adequacy of the
testing input. The tool creates an abstract model which contains a trace in
the form of RNN state vectors. These state vectors are abstracted due to the
sheer number of states that an RNN model contains beyond analysis capabil-
ity. This abstract model is afterward applied on two applications (adversarial
sample detection and coverage-guided testing) using the defined metrics and
criteria to both capture adversarial samples on run-time and improve coverage
by uncovering defects for quality assurance.

• Setup and Evaluation
DeepStellar is implemented using python on the Keras (2.2.4) framework
with TensorFlow (1.4, 1.8, and 1.11) backend. It evaluates two types
of datasets on RNN-based models: MNIST for image classification and
DeepSpeech (0.1.1 and 0.3.0) for automated speech recognition. It mea-
sures the coverage % by using the defined coverage criteria.

• Type of Testing
DeepStellar uses quantitative measures for adversarial sample detection
and converge-guided test generation for its tests.

• Tested Properties
Robustness

40

4. Pre-Study Results

14. Coverage-Guided Fuzzing
Coverage-Guided Fuzzing is implemented in DeepHunter [24] was published
in 2018 and evaluates images classification datasets.

• Setup and Evaluation
The paper uses DeepHunter for its evaluation, therefore it shares the
same framework information and uses the same types of datasets for its
tests.

• Type of Testing It uses coverage-guided fuzzing to generate its tests
and metamorphic relations for detecting errors.

• Tested Properties
Robustness and Reliability.

15. DiffChaser
DiffChaser [25] is based on the idea of Detecting Disagreements for Deep Neu-
ral Networks. It uses FDI (first disagreement input), TDI (unique disagree-
ment inputs), Success Rate, Total Time. Typically DL systems undergo an
optimization phase before deployment. That optimized version of the DL sys-
tem may have inconsistencies with the pre-optimized version which bypasses
the test cases. Due to the aforementioned, the importance of quality test data
increases. As such DiffChaser is aimed at identifying these differences be-
tween the version variants of a DNN by automatically generating input near
the decision boundary between the two versions by using a mutation testing
approach. This improves the quality of the test data which in return provides
important information regarding the inconsistencies between the optimized
and pre-optimized DL version.

• Setup and Evaluation
DiffChaser is implemented using python on Keras (2.1.3) framework with
TensorFlow (1.5.0) backend. It is evaluated on two datasets: MNIST
and CIFAR-10 for image classification. It measures the success rate to
generate disagreements and execution time.

• Type of Testing
DiffChaser uses an automated black-box testing approach for detecting
untargeted/targeted disagreements between DNN version variants.

• Tested Properties
Correctness

41

4. Pre-Study Results

4.1.2 DL Testing Tools Availability
We investigated a total of fifteen DL testing tools and techniques, not all tools
are publicly available as some of them are under NDA (Non-disclosure agreement).
Table 4.2 shows a list of the fifteen investigated DL testing tools and the status of
their code availability.

Table 4.2: List of DL Testing Tools and their Availability

DL Testing Tool Availability
DeepXplore[2]: Yes
Surprise Adequacy[9]: Yes
DLFuzz[3]: Yes
Concolic Testing[15]: Yes
DeepFault[18]: Yes
nMutant[26]: Yes
DeepTest[18]: Yes
DeepHunter - Fuzzy[24]: Yes
DeepGauge[11]: NDA
DeepMutation[14]: NDA
Deepcruiser[27]: NA
DeepRoad[17]: NA
DeepStellar[13]: NA
Coverage-Guided Fuzzing[23]: Yes
DiffChaser[25]: NA

Out of these fifteen testing tools, six tools are either not publicly available or have
no information about the code support by the authors (marked as ’NDA’ or ’NA’ in
Table 4.2). Out of the remaining nine tools, we managed to execute only four tools
in our local environment by following the guidelines published with the tool. The
nine testing tools are also made open-source by the authors but this study involves
using the testing tools without changing the functionality of the tools. Only four
tools namely DeepXplore [2], Surprise Adequacy [9], DLFuzz [3], and DeepFault[18]
are used for the benchmarking evaluation in this study.

42

5
Benchmarking Method Results

This section covers the overall benchmark construct. This includes the requirements
elicited, the scenarios which were synthesized out of the requirements, and how
the benchmarking tasks are made to conform to the scenarios. Furthermore, the
benchmarking tool is presented with its tasks and steps of execution. Finally, the
benchmarking tool results are presented on four DL testing tools.

5.1 Benchmarking Method
The list of DL testing tool requirements and scenarios are presented in Table 5.1. An
important observation is that the requirements and scenarios look nearly identical.
In the beginning, there was no way of knowing that the scenarios would turn out
nearly identical to the requirements, thus it made sense to use the requirements-
scenario-task model from a methodological point of view. Furthermore, one require-
ment might lead to multiple scenarios, i.e. requirement 4. Re-Training Models leads
to two scenarios as shown in Table 5.1. Out of the scenarios, benchmarking tasks
have been synthesized which can be found in subsection 5.1.3.

Table 5.1: DL Testing Tool Requirements and Scenarios

DL Testing Tool Requirements DL Testing Tool Scenarios
1. Technical Feasibility Check DNN models selection capability
2. Diverse Datasets Check diversity in DL datasets test tasks
3. Execution Time Check test execution time

4. Re-Training Models Check retraining of the DNN model under test
Check automatic labeling of test input

5. Test Input Generation Check adversarial input generation
6. Cross-Referencing Model Check DL system cross-referencing oracle support
7. Output Validation Check testing output validation and readability
8. Platform Support Check multiple platform support
9. Code Support Check DL testing tool code availability

5.1.1 DL Testing Tool Requirements
The proposed requirements are generated according to our methodology presented
in Section 3.2.2. These requirements are there to help understand what a DL test-
ing tool should consider according to current research on DL testing and traditional

43

5. Benchmarking Method Results

testing. All requirements are further explained in the remaining of the section.

Technical Feasibility
The technical feasibility is related to the model selection capability of a DL testing
tool. During the investigation of the tools, it was discovered that most of the tools
do not provide an option to select a model to test. Most of the tools we managed
to get working use their own pre-trained fixed models, for instance, DeepXplore [2]
and DLFuzz [3] or have a training program that trains a model and then the tool
uses that model [9].

Diverse Datasets
No matter how good a testing technique maybe, if it is not made for the type of
dataset that the DL system under test uses, then it cannot be used. Examples
of the diversity are DLFuzz [3], DeepMutation [14] and DeepGauge [11] that con-
duct their tests on images classification, DeepStellar [13] and DeepCruiser [27] on
speech-to-text, whereas DeepRoad [17] and DeepTest [16] cover autonomous driving.
DeepXplore [2] on the other hand, covers several datasets like image classification,
autonomous driving, and malware-detection.

Execution Time
Similar to the previous requirement, even if the testing tool is good, if it takes too
long to execute, which is deep learning may end up in days or even weeks depending
on the hardware, it cannot be applied easily. In additional support to this require-
ment is the fact that execution time has been used as a metric when comparing tools
to showcase improvement, i.e. DLFuzz [3] uses execution time in its comparison to
DeepXplore [2].

Re-Training Models
The next important requirement is the re-training of the DL system models. This
requirement is important if it is taken into consideration that many testing tech-
niques use adversarial sample detection to discover special points of data which when
added to the training data, improve the system robustness. Being able to retrain
the system with the discovered adversarial samples opens up different possibilities
for testing and is generally helpful. SADL [9] is aimed at finding ’surprising’ data
points which, however, need to be manually added to the training data to improve
the system, thus retraining would be valuable but difficult to apply due to the pro-
cess of labeling.

Test Input Generation
As previously mentioned, many tools use adversarial sample generation to discover
faults in the system, such as DeepXplore [2], Surprise Adequacy [9], etc. It is of-
ten integral to discovering robustness faults and as such, we feel that it is important.

Cross-Referencing Model
Cross-referencing oracles are used within differential testing techniques, where the
principle is, as stated in section 2.3, to feed two similar systems with the same input

44

5. Benchmarking Method Results

and look for inconsistencies within the results of the two systems.

Output Validation
Once a testing tool completes the tests, it should be capable to generate the output
report in any form for analysis of the system under test. Some of the tools presented
test output on the console which were either internal to the testing tools or were
difficult to interpret without additional support from the authors as there was no
available documentation. The results were not intuitive to software engineers with-
out extensive prior knowledge in deep learning.

Platform Support
The platform support requirement is related to the generality of the tool across dif-
ferent platforms. Some of the tools we tried to run did not support the Windows
OS. This was due to plugin versions that were not supported by Windows.

Code Support
This requirement is quite peculiar, during our investigation we discovered that many
of the proposed techniques were either inaccessible to us or we simply could not get
them to work. If the framework made for the technique cannot be used or found,
then it’s unusable. Moreover, it was also not apparent what arguments should be
used to run the tests. Without all of the arguments in place, the tool cannot execute
properly or at all. A testing tool should be easy to use.

These are the nine most important requirements based on our research on DL testing
tools. There are other possible requirements that are relevant to a testing tool but
are either inapplicable to a benchmarking method or simply of low priority for a
benchmarking effort. Some of the examples of such requirements are Application
Stability, Latest Libraries Support, Cost, Ease of Developing and Maintaining the
Scripts, Support to Web, Desktop & Mobile application, and Technical Support.
However, due to time constraints and keeping the benchmarking method in mind,
we will be focusing on only the most important requirements identified for DL testing
tools in this study.

5.1.2 DL Testing Scenarios
With the requirements established and prioritized, the next step is synthesizing sce-
narios from the requirements. The synthesized ten scenarios are explained below:

Check DNN models selection capability
Does the tool provide the option to select your own model? For the DL testing
tools to be applicable to real-world DL systems, model selection should be possible.
As such this scenario is important for the flexibility and applicability of the tool.
This concern arose as we attempted to use tools like DeepXplore [2] and SADL [9],
which did not allow for model selection within their run arguments. Synthesized
from Requirement 1: Technical Feasibility.

45

5. Benchmarking Method Results

Check diversity in DL datasets test tasks
How many dataset classifications does the tool support? This scenario is aimed at
covering whether the tool can still conduct its testing on a wider range of datasets.
Most tools use images classification such as MNIST and CIFAR-10 datasets, but
being able to only conduct testing on image datasets, excludes testing of other
datasets like speech-to-text and autonomous driving. It is understandable why
tools/frameworks focus on specific datasets instead of being generality applicable
because the issue is not simply a matter of datasets, it is also a matter of DNNs.
Different DNNs perform better in certain tasks that involve specific datasets. This
is further supported by the fact that within the industry a known problem is DNN
selection [10]. A prime example of such is how Recurrent Neural Networks (RNNs)
are good at audio, natural languages, and video processing [13]. Synthesized from
Requirement 2: Diverse Datasets.

Check adversarial input generation
Does the tool use adversarial input generation? Adversarial input generation is
currently a widely used technique for testing how the system handles input that is
similar to the training data but slightly distorted to ensure the robustness of the
model. As such we feel that including adversarial inputs for testing improves the
overall testing quality and should be included in nowadays DL testing tools if they
are to be versatile. Additionally, this scenario is needed to answer Hypothesis 2.
Synthesized from Requirement 5: Test Input Generation.

Check automatic labeling of test input
Does the tool automatically label test inputs? Several testing tools/frameworks
are made for improving the test data and training data quality by identifying and
retaining adversarial samples, which when included in the training/testing process
would improve model performance. Manual labeling is labor-intensive and we feel
that automated labeling of such data is an important step towards the future of
data quality improvement. Synthesized from Requirement 4: Re-Training Models.

Check retraining of the DNN model under test
Does the tool support the retraining of the model after its tests? As an example,
there are tools that find faults in the DL system and retain data that can be used for
improving the model [9]. As such being able to retrain the model with the retained
data and run the tests again would lead to better testing and towards an overall DL
system improvement as mentioned in Section 2.2.2. Synthesized from Requirement
4: Re-Training Models.

Check DL system cross-referencing oracle support
Does the tool require more than one model to conduct its tests? Some DL test-
ing tools may require a similar DL system like the one under test, by using the
second system as a cross-referencing oracle [2]. A cross-referencing oracle is one of
the solutions to the oracle problem stated in section 2.4, from which DL systems
suffer. However, due to the complexity involved with DL systems, finding a similar
system may prove to be difficult [3]. Nevertheless, if there is an available similar DL

46

5. Benchmarking Method Results

system for evaluation, it can be beneficial for testing. For example, DeepXplore [2]
was able to find multiple defects using a cross-referencing oracle. Synthesized from
Requirement 6: Cross-Referencing Model.

Check test execution time
How long does a testing tool take to execute its tests? While some DL testing tools
can show notable benefits when it comes to testing the system if the time the tool
takes to conduct its tests outweighs the benefits it provides then that would be a flaw
in the tool worth noting. Additionally, while there are cases of cross-comparison be-
tween tools to showcase tool efficiency in one form or another [3][15], the comparison
is usually between the tool in question and at most, one other tool and execution
time is sometimes involved. Synthesized from Requirement 3: Execution Time.

Check DL testing tool code availability
Currently, several tools, while possibly better than others, are either not publicly
available or under an NDA (non-disclosure agreement). Synthesized from Require-
ment 9: Code Support.

Check testing output validation and readability
Does the tool save the results? Another integral part of a testing tool is saving the
results for future references. While it may seem to be common sense to have such
a functionality, many tools are still on a prototype level made for demonstrating a
technique or framework where functionality as the saving of the results may not be
present. Synthesized from Requirement 7: Output Validation.

Check platform support
Which platforms does the tool support? Although a tool may be excellent at testing
a DL system, if the user cannot use the tool on that user’s available platform, the
applicability of the tool would lower. As such this scenario has an impact on the
tool’s generality. Synthesized from Requirement 8: Platform Support.

5.1.3 Benchmarking Tasks
Not all identified scenarios are feasible for a benchmarking effort. Table 5.2 shows
the test scenarios that are technically feasible for benchmarking. The three scenarios
are omitted for the following reasons:

• Check adversarial input generation: The test datasets generated by the
testing tool is an internal implementation of the tool, hence cannot be evalu-
ated using a benchmarking task.

• Check automatic labeling of test input: Similar to tests input genera-
tion, the labeling of test input is an internal implementation of the tool. It
is, therefore, difficult for a benchmarking task to figure out whether a testing
tool automatically labels individual inputs after it has conducted its tests.

47

5. Benchmarking Method Results

• Check DL testing tool code availability: This scenario has been omitted
because, for a tool to be benchmarked, the user of the benchmark must have
the code already at hand.

Table 5.2: Test Scenarios for Benchmarking Design

Test Scenarios Feasible for Benchmarking
Check DNN models selection flexibility Yes
Check diversity in DL datasets test tasks Yes
Check adversarial input generation NA
Check automatic labeling of test input NA
Check retraining of the DNN model under test Yes
Check DL system cross-referencing oracle support Yes
Check test execution time Yes
Check DL testing tool code availability NA
Check testing output validation and readability Yes
Check platform support Yes

Table 5.3 shows the list of benchmarking tasks that were made to address the test
scenarios. The first column shows the benchmarking tasks, whereas the second col-
umn states the key questions to be answered for each task. Figure 5.1 shows the
division of the seven benchmarking tasks. The detailed description of each task is
done in the remaining of the section.

Table 5.3: Benchmarking Tasks and related key question to answer

Benchmarking Task Key Questions

T1: Model Selection Does the testing tool provide an option to test user-defined models?
If yes, then the six models provided in the benchmark are used

T2: Diverse Dataset
i) T2_1: Images Classification
ii) T2_2: Self-Driving
iii) T2_3: Text Classification

How many types of dataset classifications does the testing tool support?
Does it support Images, Self-Driving, and Texts Classification?

T3: Retraining Does the testing tool support the retraining of the model after its tests?
T4: Cross-referencing Oracle Does the tool require more than one model to conduct its tests?
T5: Execution Time How long does a testing tool take to execute its tests?
T6: Output Capabilities Does the testing tool save the test results?
T7: Platform Support Which platforms does the testing tool support?

T1: Model Selection
The model selection task is the most important task in the benchmark because the
validity of other tasks within the benchmark depends on its evaluation. If the DL
testing tool supports model selection, the six models (see subsection 3.2.4) provided
in the benchmark will be used. This way measurements like execution time can be
correctly measured. If the tool does not support model selection then the model
provided with the tool is used and the tool is not ideal for benchmarking.

48

5. Benchmarking Method Results

Benchmarking
Tasks

T1
Model Selection

T2
Diverse Dataset

T3
Re-Training

T4
Cross-Referencing Oracle

T6
Output Capabilities

T5
Execution Time

T7
Platform Support

Yes

No

Yes

No

Three Iterations

Classification
Sub-Tasks

Single Model

Multiple Models

 *Parsing Benchmarking
Metrics

Mac/Linux

Windows
 ** Manual Intervention Required

Not Ideal

Benchmarking
Model/Dataset

Figure 5.1: Benchmarking Method Tasks

T2: Diverse Dataset
DL systems use a variety of datasets classifications, i.e. MNIST and CIFAR-10
for image classification, Udacity for autonomous driving, Drebin for malware and
IMDb, and Babi for texts, etc. As such, being able to handle tests of such a diverse
variety of datasets is important for a DL testing tool. This task focuses on checking
which datasets are supported by the tool to give a sense of its capabilities. The task
is based on three types of dataset classifications as Images Classification (T2_1),
Self-Driving (T2_2), and Text Classification (T2_3). As explained in Section 3.2.4,
six different DNN models were defined to test each type of dataset classification.

T3: Retraining
Some DL testing tools are capable of retaining data that can be used for retraining
the model and improving the model accuracy. If a tool supports retraining, the tool
can be run any number of iterations for the user to see how the model has improved
over time.

T4: Cross-referencing Oracle
The task provides information for whether the testing tool requires a single model
or multiple models (differential testing) for running the tests.

49

5. Benchmarking Method Results

T5: Execution Time
This task provides the total execution time taken by the tool under test, which is
important for measuring the tool’s efficiency.

T6: Output Capabilities
Every DL tool has a unique way of generation of output and it cannot be said in
advance what measurement metric is displayed by a DL testing tool due to a lack of
obvious performance measure standardization across the DL testing tools. DeepX-
plore [2] shows neuron coverage, SADL [9] on the other hand provides a ROC-AUC
score. Also, not every tool is capable of generating output due to a lack of code
support. Therefore, the benchmarking method would only check for the following
two things as a part of this task:

• Are tools capable of giving any output in any format?
• Does it have a parser to give any measurement metrics? If yes, the bench-

marking tool will just display it as an output.

This would give a metric that can not be compared with existing tools but would
definitely help to differentiate with those tools which are not capable of saving any
output for a system under test.

T7: Platform Support
This task provides information about the tool’s support for different operating sys-
tems (Windows, macOS, or Linux). Many of the tools use plugin combinations like
TensorFlow 1.5 with python 2.7, which is a combination that is currently not avail-
able for the Windows operating system. The results of this task have an important
informative value for a practitioner. During our investigation, we came across tools
that gave a wide variety of errors during compilation. This led to a loss of time until
it was discovered that the framework/language version combination did not work
on the operating system.

50

5. Benchmarking Method Results

5.2 Benchmarking Design Results

The sections cover the design of the benchmarking tool and the results on four DL
testing tools namely DeepXplore [2], SADL [9], DLFuzz [3] and DeepFault [18].

5.2.1 Benchmarking Tasks Automation

Out of the seven benchmarking tasks identified for the benchmarking method, not
all of them can be fully automated. The main reason is that the DL testing tools
and techniques presented in this paper are still maturing and don’t have a stable
working tool yet. Moreover, it would require a significant amount of time and effort
to find an alternative solution to automate those tasks. The decision for manual and
automation checks for each task is decided based on our experimental simulation of
the selected fifteen tools in this paper. Table 5.4 shows the automation and manual
check for each task.

Automated Tasks
Diverse dataset tasks can be automated based on provided execution command and
task status of each sub-tasks (T2_1, T2_2, and T2_3). Tasks such as Execution
Time and Platform Support can be fully automated. Output Capabilities task is
just based on the criteria that all the benchmarking tasks are successfully executed
and is able to save the results in any format for further analysis. The second aspect
of this task is optional, i.e. parsing saved logs can also be automated based on the
input command shared by a DL testing tool.

Manual Tasks
All three manual tasks are based on the capabilities of the DL testing tools and
have a simple verdict as Yes/No, with default values as No. Such capabilities can
be obtained either from the user manual or the code support web page of the DL
testing tool. The verdict of each task is located in the last column of Table 5.4. For
Model Selection, it is going to be manual as there is no straight forward way as of
today for us to know if a tool is providing an option to test user-defined models.
For instance, DeepXplore [2] uses its own fixed model. For the Retraining task, it
cannot be evaluated automatically whether a testing tool is capable of retraining
the model or not. Likewise, it can be known automatically if a tool requires more
than one model to do its tests. Therefore, the Cross-referencing Oracle task is also
manual.

The seven tasks presented in Table 5.4 are further categorized by priority as Very
High, High, or low. The priority is based on their importance to the benchmark-
ing method. Tools that do not pass the Very High priority tasks are not ideal for
benchmarking.

51

5. Benchmarking Method Results

Table 5.4: Benchmarking Tasks Automation Check

Task Automation/
Manual Check

Task
Priority Verdict

Model Selection Manual Very High Yes/No
Diverse Dataset Automated High Yes/No
Retraining Manual Low Yes/No

Cross-referencing Oracle Manual Low Single Model
Multiple Models

Execution Time Automated High Time in seconds
Output Capabilities Automated High Yes/No

Platform Support Automated Low Windows
Mac/Linux*

5.2.2 Benchmarking Tool
Figure 5.2 shows steps of the implemented benchmarking tool, involving all the seven
tasks and sub-tasks as defined in the Figure 5.1. The six steps of the benchmarking
process include:

1. Download benchmarking tool from Github
2. Fill out tool run and output configuration file
3. Generate DL testing tool run commands
4. Benchmarking tasks execution
5. Parsing (Optional)
6. Publish benchmarking tasks report

Implementation Details
The benchmarking tool is developed in Python (version 2.7) and the dependen-
cies required to evaluate the four DL testing tools can be installed using the tool’s
execution options. The details of the benchmarking tool’s usage and necessary re-
quirements are described in the user manual page of the tool on GitHub 1.

Benchmarking Configuration File
Benchmarking run and output input is a JSON structured configuration file and is
the most important step of the entire benchmarking method. It has all the required
input fields needed by the benchmarking tool and is filled out based on the capa-
bilities of a DL testing tool under test. The help file and an example of how to fill
out the configuration file are available in Appendix section A.1 and subsection A.1.2.

Sub-Tasks and Benchmarking Models
The task T2 has three sub-tasks to test for support of three dataset classifications
(Images, Self-driving, and Texts). DL testing tools are tested with pre-defined

1DLTestBenchmark (https://github.com/hchuphal/DLTestBenchmark)

52

5. Benchmarking Method Results

benchmarking models for each type of dataset if the tool provides the option to
select a model. There are six compiled models included in the benchmarking tool.
The method used to build these DNN models is explained in methodology subsec-
tion 3.2.4. Details of a similar configuration file for DeepFault [18] are available
in Appendix subsection A.1.2. The details of each model and its architecture are
presented in Appendix A.8.

2. Run & Output
Configuration

1. Download Benchmarking
Tool

Benchmarking Tool

Seven Tasks

Adaptor

3. Generate Run Commands

Three Sub-Tasks

4. Tasks Execution
&

Automation checks

DL Models

DL Testing Tool
Under Test

6. Benchmarking
Results

5. Parser

DL Datasets

Results

Figure 5.2: Benchmarking Method Process

5.2.3 Benchmarking Results

The results of the benchmarking method on four DL testing tools are presented in
Table 5.5. The four testing tools used to demonstrate the benchmark are DeepX-
plore [2], SADL [9], DLFuzz [3] and DeepFault [18]. All of the ’Passed’ tasks are
marked with (X), whereas ’Failed’ tasks are marked with (7). Out of the four, only
DeepFault is ideal for benchmarking as it supports the model selection task. The
benchmarking tasks report of every tool is also available in Appendix section A.4,
section A.5, section A.6 and section A.7. All benchmarking tasks were executed on
a Darwin Macintosh Laptop (an x86_64 machine and i386 processor) with a total
of four physical cores (see Appendix section A.3). The source code of benchmarking
tool is available on Github 2.

The comparison of the ‘passed’ and ‘failed’ tasks across the four tools is presented
in Figure 5.3. The execution time (in seconds) taken by each tool is presented in
Figure 5.4.

2DLTestBenchmark (https://github.com/hchuphal/DLTestBenchmark)

53

5. Benchmarking Method Results

Table 5.5: Benchmarking Tool Results on four DL testing tool

DeepXplore SADL DLFuzz DeepFault
[1/9] task_1 Model Selection 7 7 7 X
[2/9] task_2_1 Image Classification X X X X
[3/9] task_2_2 Driving Classification X 7 7 7

[4/9] task_2_3 Texts Classification X 7 7 7

[5/9] task_3 Re-training X 7 X X
[6/9] task_4 Cross-referencing Oracle X 7 7 7

[7/9] task_5 Execution Time
(Seconds) 864.43 1108.52 579.86 177.96

[8/9] task_6 Output Capabilities 7 X X X
[9/9] task_7 Cross Platform Support X X X X

Benchmarking
Verdict Not Ideal Not Ideal Not Ideal Ideal

6

3

4

5

2 5 4 3

DL Testing Tool Under Test

B
en

ch
m

ar
ki

ng
 T

as
ks

0

2

4

6

8

DeepXplore SADL DLFuzz DeepFault

Failed Passed

Figure 5.3: Tasks Status Comparison
across four DL Testing Tools

864.43

1108.52

579.86

177.96

DL Testing Tool Under Test

Ex
ec

ut
io

n
Ti

m
e

(in
 S

ec
on

ds
)

0

250

500

750

1000

1250

DeepXplore SADL DLFuzz DeepFault

Figure 5.4: Execution Time Compari-
son across four DL Testing Tools

The output performance metrics of the four DL testing tools are presented in Ta-
ble 5.6. As shown in the figure, some tools only output internal metrics and some
output both external and internal metrics.

Table 5.6: Output Performance Metrics and type by DL Testing Tools

DeepXplore SADL DLFuzz DeepFault

Output Metric Neuron Coverage ROC-AUC Score &
FGSM Coverage

Neuron Coverage &
Time Consumption Suspicious Neurons

Metric Type Internal External &
Internal

Internal &
External Internal

54

6
Validation

The objective of this section is to confirm the validity of the benchmarking tool.
This is done by conforming to the defined properties, which a successful bench-
mark needs to have, and by validating the necessary components of a benchmark
as defined by Sim et al. [31]. Firstly, the feedback from the interview conducted
with two industry contacts on the benchmarking tool is presented. Afterward, Sec-
tion section 6.2 covers the arguments on the benchmark properties, which touches
on the most questionable requirements/tasks and how they indeed conform to the
benchmark properties. It followed by an argumentative validation on the high-level
benchmarking components and validation arguments on manual task objectivity.

6.1 Interview Feedback
To validate the clarity property and objectivity of the manual tasks of the bench-
marking method, we conducted a semi-structured interview session with two repre-
sentatives of Chalmers IT-department.

Interview Setup:
The interview was conducted online and was recorded with the consent of the in-
terviewees for future references. The interview session was divided into four parts:
introduction, presentation, open-session with questions, and conclusions. During
the introduction session, we introduced ourselves and got to know about the inter-
viewees, as well as giving an overview of the interview. Afterward, a presentation
was carried out to showcase the benchmarking method and the intention behind
it. The presentation was followed by an open-session with questions aimed at both
confirming the clarity and simplicity of the benchmarking method, and to find out
whether the method could be helpful to practitioners to narrow down the selection
of a DL testing tool. Finally, in the concluding session, we confirmed the answer we
received during the open session, which was later used along with the recording of
the interview session to summarize the answers to the questions.

Feedback:
To find out whether the manual tasks are sufficiently explained as to ensure objec-
tivity and support the answer to RQ3, we asked the following three main questions:

55

6. Validation

• Are the steps of the benchmarking method simple to follow?
• Is the configuration file simple to understand and use?
• Would the benchmark method help the practitioners in selecting a DL testing

tool?

The interviewees have 20 years of experience in the Chalmers IT department, with
varied experience in software development, business process, AI, and Deep Learning.
Both of the interviewees have also worked on different IT tools and software devel-
opment cycles. We presented the benchmarking method, including a demo using
the implemented benchmarking tool on the DeepFault [18] testing tool and got the
following feedback:

• The interviewees found the steps very simple and straightforward to follow
from the help page on GitHub 1, where the code of the benchmarking tool
is hosted. However, there was confusion on the sequence of the steps while
running the benchmark tool.

• Both of the interviewees found it very straightforward to fill out the output
run configuration file in JSON format, particularly the manual tasks (having a
"Yes/No" verdict). However, they provided suggestions to improve the overall
format of the benchmark command section, which is part of the automated
tasks.

• There were mixed answers regarding the usefulness of the benchmarking method
to the practitioners. One of the interviewees said that the tool could definitely
help in selecting or narrowing down the selection of a DL testing tool. How-
ever, the other interviewee was skeptical about the number of tasks that the
benchmark tool should have. Because investing in a testing tool after selection
is an expensive activity, there need to be more tasks, which can give further
information on the tool before taking a decision on selecting an appropriate
DL testing tool. They did not mention any exact number of ’more tasks’ that
should be included, but they said that the tasks should be more because se-
lecting a testing tool is an investment.

They also liked the help section of the codebase on the GitHub page but suggested
for more information about the tasks within the benchmarking tool. Both of the in-
terviewees misunderstood what manual tasks are. They thought that manual tasks
involved human judgment to evaluate the benchmarking tool’s output. At the mo-
ment, only one tool runs at a time, they suggested running more than one tool in
parallel or save the benchmarking results in a database for doing a good comparison
across the DL testing tools under test. Finally, both of the interviewees gave positive
feedback towards the output format of the benchmark results.

Based on the feedback, the information of the tasks was updated in the benchmark-
ing tool and also in the GitHub help page. The important feedback for the execution

1DLTestBenchmark (https://github.com/hchuphal/DLTestBenchmark)

56

6. Validation

of tasks in parallel and saving the output in a database are considered in Future
Work (see section 9.2).

6.2 Benchmarking Properties
There are seven properties of a successful benchmarking method identified by Sim et
al. [31]. However, only five are relevant to this study: Relevance, Solvability, Scala-
bility, Portability, and Clarity. The excluded two are Affordability and Accessibility.
Affordability is not applicable due to the benchmark tool is publicly available, hence
no cost is incurred in using the benchmark. Accessibility feels redundant because
of a similar reason, the project is open-source and found on GitHub, whereas the
abstract concept of the benchmark method is found in Chapter 5.

• Relevance: The task sample of the benchmark should consist of tasks that
the system is expected to reasonably handle in a natural setting. Due to the
requirements being elicited from the DL testing tools that the benchmark is
meant to evaluate, we can ensure their relevance to the tools. Subsequently,
the scenarios synthesized from those requirements become representative of
real-world situations.

• Scalability: Scalability is another key benchmark property necessary for a
good benchmark design [31]. Currently, with the quantifiable performance
metric execution time and limited model selection capabilities of the tools,
running the tool with different datasets is not as impactful as it will be in
the future once other performance metrics which are influenced by the dataset
type are added. A benchmark is a continuous effort and it should be treated
as such during design. If it is not constantly improved upon, workarounds
and exploits of the tasks can be designed or tasks may become outdated [31].
Currently, the method targets tools in a prototype and early state. However,
the benchmarking method has six different DL models based on three datasets
and seven tasks, which can easily be extended to include more models or tasks
using the configuration file, if such a need arises.

• Solvability: In terms of task solvability, the main concern lies in the fact
that many of the tools do not allow for model selection and use fixed models
or models made through their own training program. This is due to the chal-
lenge of the field being in an early state. With the application of traditional
techniques to DL, the tools developed are mainly in an early framework state
designed to primarily showcase the technique. If the tool cannot use the mod-
els included in the benchmark, the benchmark would be compromised because
performance measurements like execution time cannot be compared between
the tools. This came to light early on as the first requirement due to being
one of the biggest obstacles and the task to check whether the model selection
is possible was made. While not as valuable for the industry, the benchmark
information on tools with fixed models may still be valuable to the academic
community. Additionally, this may inspire improvements in the tools to allow

57

6. Validation

model selection for them to be evaluated through the benchmark in the future.

• Portability: The next property to consider is Portability. The benchmark-
ing tool is implemented in python, but the benchmarking method (as listed in
Chapter 5) can be re-created in any programming language. The key challenge
here is the platform. Although the benchmark design can be implemented for
any platform, there is no guarantee that the tools can run on that platform.
This is one of the reasons why Platform Support is a task within the bench-
mark, to provide information on what platform the tool can be used. Through-
out the initial stages, while attempts were made to get the tools to work, many
of them used plugin combinations that are not supported on Windows oper-
ating systems. This problem would inherently impact the benchmark as some
of the tools would be unable to execute.

• Clarity: The final benchmark property to be covered is Clarity. It states
that the benchmark specification should be clear to avoid mistakes or finding
loopholes in the benchmark to change the results [31]. This property is partic-
ularly important for the study, due to the benchmark containing manual tasks
on which mistakes could happen and would influence the results. Manual tasks
are present within the benchmarking method because it simply is not worth
the time and effort to automate tasks which can be done manually with no
repercussions if the benchmark specification is done correctly in a clear and
concise manner. This study itself serves as a specification in which the tasks
and the idea behind them are covered. The manual tasks are encapsulated
in a single and simple configuration file. Moreover, a help file was made to
guide the user through the process of filling out the configuration file. The
content of the configuration file can be found in Appendix A.1.2, whereas the
content of the reference help file can be found in Appendix A.1. An interview
was also conducted to validate the clarity property of the benchmark and the
objectivity of the manual tasks. The interviewees found the configuration file
simple and straightforward to fill out with the sole exception of the format of
the commands which are necessary to run the tools. However, the commands
to run the tools are dependent on the tools and not on the benchmark itself.
Additionally, the commands are mainly concerned with automatic tasks rather
than manual tasks. In regards to the sequence of the benchmark steps, there
were no misunderstandings on what the steps are used for but the interviewees
were unsure of whether the steps should be followed explicitly one after the
other while running the benchmark.

6.3 High-level Benchmark Components
According to Sim et al. [31] a benchmark in software engineering consists of three
components: a Motivation Comparison, Task Sample, and Performance Measures.
Due to this study following his definition of a benchmark, our benchmarking method
must conform to the three components. The Motivating Comparison component
touches on the need for the benchmark, or more precisely the motivation behind

58

6. Validation

the comparison, which is covered in Section 1.2. The Task Sample is related to the
relevance of the tasks of the benchmark. The tasks need to be representative of the
tasks that the tool or technique is meant to handle in practice. This concern is han-
dled by the method through the usage of real-world representative testing scenarios
to formulate benchmarking tasks. The scenarios are constructed from tool require-
ments which were derived from different DL testing tools/techniques and testing
research papers using established requirements elicitation techniques.

The final component is the Performance Measures component and it states that
a benchmark should have quantitative or qualitative measurements of the tool’s fit-
ness for purpose, i.e. can it handle what it is expected to handle. Performance
measures in regards to the improvement of the tool on a testing property were
not feasible, thus leading to the decision to use user-orientated techniques, i.e. the
requirements-scenarios-tasks model. As stated by Bai et al. [32] requirements pro-
vide a functional view of the system, whereas the scenarios provide a user’s point
of view. As pointed out by Sim et al. [31], a benchmark can have user interaction
based tasks and the measurement can be qualitative. User interaction, in this case,
does not mean the user interacting with the tasks of the benchmark, but how the
software under test interacts with the user in the form of a task that has a qualita-
tive result, i.e. a Yes/No verdict. In terms of quantitative metrics, at the moment
only execution time is present within the benchmark.

6.4 Manual Tasks Objectivity

Manual task objectivity is about whether the tasks that need to be filled in manually
in the configuration file are objective, i.e. measures have been taken to ensure that
the tasks are filled correctly. The interview revealed that manual tasks can be
misunderstood as a form of manual judgment of the output, however, that is not
the case in this benchmarking method. The manual tasks are tasks that require
information regarding the tool under test that cannot be known automatically by
the benchmark. Therefore, to ensure manual task objectivity, measures were taken
to ensure clarity and simplicity of the configuration file. First, the configuration
file was filled out separately by both researchers on two DL testing tools that were
not used in the testing of the benchmark, DeepHunter [24] and DeepConcolic [15].
This was done by referring to the configuration help file from section A.1 and the
respective user manual document of the testing tool. Any differences in the filling out
of the file were noted and discussed for what ambiguity caused them and a correction
was applied in the context of the configuration help file. Finally, the benchmarking
tool was executed using these two independently generated configuration files to
check the verdict of all the manual tasks. The benchmarking results gave the same
output for manual tasks. Moreover, all the manual tasks have a simple verdict as
"Yes/No" (with default values as ’No’) to be added in the configuration, which is
pretty straight forward to follow. Such a snippet of the configuration file is shown
in Figure 6.1.

59

6. Validation

Figure 6.1: An example snippet of the configuration file generated for the Deep-
Fault testing tool with manual tasks marked as "Yes" or "No", based on the capa-
bilities of the testing tool.

1 {
2 "toolName": "DeepFault",
3 "description": "DeepFault: Fault Localization for Deep Neural

Networks",↪→

4 "authors": "Hasan Ferit Eniser, Simos Gerasimou, Alper Sen",
5 "language": "python",
6 "publication": "2019",
7 "..........."
8 "..........."
9 "manual_check": {

10 "model_selection" : "Yes",
11 "retraining" : "Yes",
12 "differential_testing" : "Yes"
13 },
14 "datasets_classification": {
15 "images" : "Yes",
16 "self_driving" : "No",
17 "texts" : "No"
18 }
19 }

60

7
Discussion

In this section, the previously defined hypothesis and research questions will be dis-
cussed and answered. This will be done by using the results collected during the
pre-study, benchmarking tool design, and execution process. Furthermore, bench-
marking results are discussed.

7.1 Findings of the Study
Based on the pre-study results published in Table 5.5 and the benchmarking results
presented in chapter 5, we can answer the research questions:

RQ1: Our investigation on DL testing tools/techniques resulted in fifteen testing
tool research papers, out of which only four tools were in a good working state in
our setup environment by following the user manual documents of the testing tools.
This shows that although there is a growth in the number of open-source DL testing
tools, many of them are not applicable for practical use. The reason for the failure
of the DL testing tools is mainly because of failures in the interaction with the
DL platform, i.e. TensorFlow, rather than in the execution of code logic. This is
mostly due to the discrepancies between local and platform execution environments.
Moreover, DL specific failures are also caused by inappropriate model parameters
and obsolete framework API. The findings suggest that this is due to the early stage
of the field, where the primary focus is improving DL systems by applying traditional
and novel testing techniques and showcasing them within a tool that’s in an early
state. Efficiency was not a primary concern for the majority of the research paper,
but there were cases where different DL testing tools were compared for the purpose
of elevating one tool over another /citedlfuzz /citeconcolic in terms of efficiency.
Moreover, the comparisons were made only with DeepXplore /citedeepxplore. Due
to efficiency not being stated as a primary concern but used for comparison, it has
not been added to the pre-study results. However, it is a part of the tasks of the
benchmark method in the form of execution time measurement.

RQ2: The results of running the selected four DL testing tools on the designed
benchmarking method suggest that the majority of the tools are currently not ideal
for a benchmarking effort. The main reason for that is the lack of model selection
support, without which the tools cannot be evaluated by using the models defined
within the benchmarking tool. Furthermore, by addressing Hypothesis 1, it has
been revealed that benchmarking a testing property is a major challenge. The

61

7. Discussion

investigation done for RQ1 unveiled that robustness is the most commonly tested
dominant property. However, attempts to measure the improvement of the testing
property were unsuccessful due to a lack of common performance metrics among
the DL testing tools. As mentioned by Xie et al. [24], due to the early state of
the field there is a lack of comparative studies on the effectiveness of the different
techniques. This shows that it is difficult to agree upon a measurement that is
effective. Without proof of effectiveness from comparative studies and the early
state of the field, a surge of different metrics is caused to surface on the landscape of
DL testing, i.e. Neuron Coverage, Mutation Score, Layer Coverage, etc. As a result,
what is measured as a property, i.e robustness, reliability, correctness, etc., stays
the same but the metrics used to quantify an improvement within the property
differs. This results in a great challenge to benchmarking the effectiveness of the
tools towards a given property, due to the obvious inability to be compared in terms
of output. Currently, the most wide-spread measurement is the one proposed by
DeepXplore [2] that is Neuron Coverage. However, Neuron Coverage is an internal
metric to DeepXplore, similarly to the way FGSM coverage is internal to SADL [9].
It cannot be said that the tools calculate Neuron Coverage the same way.

Using the results of our benchmarking process to answer Hypothesis 2 shows that
we cannot know the input generated by a DL testing tool, therefore we cannot
accept or reject the hypothesis. The reason for that is that every tool uses its own
technique or library to generate the test inputs and are internal to the tool. The
tools use a different sample of inputs for each test. Due to this, the calculations of
measurements like an AUC-ROC score (See item 2 under pre-study results) cannot
be made accurately for comparison, resulting in a similar problem of the inability
to select a model.
It is important to note that these findings are based on the benchmarking results
on four tools. The remaining tools that we did not manage to execute or other
emerging DL testing tools, which were not covered in this paper, could potentially
give different results. It is also not outside of expectations that these tools do not
suffer from the issues defined above, which could potentially lead to different results.

RQ3: Our findings suggest that the proposed benchmarking method can be
used by practitioners to narrow down the selection of a DL testing tool for a
given dataset. Our benchmarking results show that only one out of four tools are
suitable for benchmarking. The reason behind that is the tool’s inability to select a
user-defined model, which makes it also not suitable for practitioners. The results
also reveal that only one tool supports more than one dataset classification, i.e.
image classification. The benchmarking result will be helpful if the practitioner is
looking for a tool that supports more that one dataset classification or a specific
type of classification. Furthermore, tools like DeepXplore [2] use differential testing,
which suffers from scalability and the difficulty of finding a similar system [3].
The remainder of the benchmarking tasks further helps in the selection process
by narrowing down the scope through information on the tool’s capabilities.
The results are further supported by an interview with two industry researchers
who, when asked, showed positive feedback towards the method, saying that it

62

7. Discussion

could definitely help. However, there were also doubts about whether there are a
sufficient number of tasks. According to the interviewees, selecting a testing tool is
an endeavor that involves a significant investment, therefore having more tasks can
further help to narrow down the selection of a DL testing tool.
The proposed benchmarking methodology can be used as an initial stepping stone
in advancing the field of DL testing. Currently, diverse approaches are emerging
within the field, which is an indicator that the bounds of the field are being
established [31]. Therefore, a benchmarking methodology is necessary for the
different approaches to be compared for a new research paradigm to be established.
The second benefit is the results of the benchmark themselves, four of the tools
have been compared and their differences have been noted. Although not as
comprehensive of comparison as a comparative study would provide and rather
limited in its evaluation of the tools, the data itself still holds value by providing
information regarding the tools and how they compare against the others.

Although the benchmark can give guidance in tool selection, it cannot show which
tool is better at improving a certain DL test property, i.e. robustness, correctness,
reliability, etc. Additionally, due to three out of four tools not supporting model
selection, and therefore not using a common model, a direct comparison of the
execution time of each tool cannot be made. However, execution time is a valuable
metric for the future of the benchmark, having been used in previous DL benchmark
studies [29]. Once the limitation of model selection is resolved, future tools can be
compared in terms of execution time and further metrics can be added. The final
limitation in regards to RQ3 is that the benchmarking method was not presented to
industry experts who have experience with DL testing tools. A future study could
present the method to experts with such experience and enhance the benchmarking
method in accordance to their feedback. Nevertheless, valuable feedback for
future improvements was gathered from the interview. A valid point was made,
that if benchmarking suite needs to be executed on multiple DL testing tools, it
would require a significant amount of time and effort to run them all through the
benchmark one by one. A possible future improvement for the benchmarking tool
can be running multiple tools in parallel and saving the benchmark results for each
tool. An additional suggestion was to be able to upload the results to a database.

In conclusion, although the robustness is the predominant property of concern, a
testing tool’s robustness improvement of a DL system cannot be measured. This is
a result of the four testing tools used within the study, however other tools could
potentially lead to a different outcome. Nevertheless, by aiming at benchmarking
the capabilities of the tools and tailoring the tasks to the current state of the tools,
the results suggest that it could be used to narrow down the selection of a DL testing
tool. However, there are suggestions to further improve the benchmarking method,
for instance having more performance measurements and tasks, due to the costs
involved in the selection of a DL testing tool.

63

7. Discussion

7.2 Regarding DL Testing Tools
Out of the fifteen tools published in Table 4.2, we managed to get the code running
only for four tools. As stated in the discussion for RQ1, the reasons for the failure
of the DL testing tools execution is major because of failures in the interaction with
the platform. For instance, reaching the code of DeepXplore [2] was fairly simple as
the code is openly available and the support for the tool was good. However, Deep-
Xplore runs on an old Tensorflow framework version (1.0) and Python 2.7. Using an
older version of Tensorflow other than 2.0 with Python 2.7, which is now officially
obsolete makes it incompatible to execute. DeepHunter [24] suffers from a similar
fate. While running a higher version of Tensorflow (1.5), it still requires Python 2.7
and is incompatible with the Windows OS. The Coverage-guided fuzzing technique
proposed in the paper by Xie et al. [23] is implemented in DeepHunter. DeepMu-
tation [14] and DeepGauge [11] are under an NDA, therefore the code is currently
unavailable. However, both of the tools use Keras (2.1.3) and Tensorflow (1.5). We
were unable to get the code for DeepCruiser [27], DeepRoad [17], DeepStellar [13]
and DiffChaser [25]. The mutation-inspired testing algorithm proposed by Wang
et al. [26], nMutant, is implemented in its own tool that is unlike all of the other
tools, an executable Java file. Although starting the application was simple, we were
unable to test its effectiveness due to being unable to load a model to undergo the
test. This shows that many of the DL testing tools are not in a complete working
state but rather in a prototype state to showcase the proposed technique.

7.3 Regarding Benchmarking Results
As per benchmarking results published in Table 5.5 for four DL testing tools, the
DeepFault [18] testing tool performed the best and passed all the Very High and
High tasks and thus is considered as an ideal tool for benchmarking. Benchmarking
results are purely based on the completion of both manual and automated nine tasks
and sub-tasks. Accuracy of benchmarking tasks depends a lot on how accurately
the tool’s run and output configuration is filled out. If there are mistakes done
in filling out the tool’s configuration, which is used to execute a DL testing tool,
mistakes would be reflected in the benchmarking results. Better benchmarking
result doesn’t necessarily mean that a DL testing tool is better than the other
tools. As stated by Spendolini et al. [35], results do not come without effort and
investment, and benchmarking is not a panacea for all issues. Benchmarking has
been used as an improvement tool for many years, and the fundamental idea behind
its use is simple. DL benchmarking results can only be regarded as a reference for
selecting a more suited testing technique or tool for a given application scenario.

7.4 DL Testing Tools Recommendations
As mentioned in section 7.1, many of the tools are currently not ideal for bench-
marking, due to a lack of essential or important functionality which is necessary

64

7. Discussion

to be applicable to real-world scenarios and perform better in a benchmark. To
address this issue, we propose a list of recommendations, based on our results, for
the DL testing tool researchers/developers that develop DL testing tools. The list
also provides recommendations on how to avoid obstacles and get the full use out
of the benchmarking method.
Table 7.1 shows our recommendations for what DL tool researchers/developers
should consider and what practitioners should do to narrow down the selection of a
DL testing tool. Each recommendation is afterward explained as to what it means
to the researchers/developers and what it means for general practitioners that are
looking for a testing tool.

Table 7.1: List of recommendations to DL Tool Researchers and Practitioners

Recommendation DL Testing Tool
Researchers

DL
Practitioners

Model Selection Option X X
Standardize Performance Metric X 7

Output Readability X X
Tool Support X X
Diverse Datasets Classifications X 7

Cross-platform Support X X
Support for Latest Libraries X 7

1. Model Selection Option:
Model Selection is a core feature for the applicability of the tool towards
real-world scenarios. If practitioners cannot test their own models, then they
cannot use the tool. Furthermore, the benchmarking method cannot compare
the execution time of the tool with other tools, if a common model is not used.

• To DL testing tool researchers/developers
We recommend for DL testing tool researchers/developers to add a
model selection capability to the tool to both be able to evaluate their
own work with that of others using the benchmark and make the tool
applicable for practitioners that want to test their own DL models.

• To DL practitioners
We recommend practitioners to try to understand the tool’s options and
if possible to change the code of the tool to make it accept an external
model to test. The benchmark will then be able to use its compiled
models and evaluate the testing tool.

2. Standardize Performance Metric:
Currently, it is difficult to compare the tools when talking about an improve-
ment of a DL model because the tools do not show the inputs that they use
for the tests.

• To DL testing tool researchers/developers

65

7. Discussion

We recommend the inputs used during the tests to be saved and made
available to the users to be able to make more accurate estimations and
use common performance metrics.

• To DL practitioners
Not applicable, as it touches the internal implementation of the DL
testing tool.

3. Output Readability:
A testing tool should be able to generate a readable output. Often, we had is-
sues understanding the output of the tools. If practitioners cannot understand
the output generated by the tool, then it is of little value to them.

• To DL testing tool researchers/researchers
We recommend researchers/developers to avoid using internal metrics in
the output of the testing tools and put efforts to only generate output
that can be easily understood.

• To DL practitioners
We recommend practitioners to contact the authors of the tools for
further information if they cannot understand the generated output of
the tool.

4. Tool Support: A testing tool is easy to use if it has good code support and
an updated user manual.

• To DL testing tool researchers/researchers
We recommend researchers/developers to put required efforts to provide
a good user manual of the testing tool including its execution steps and
information about the dependencies needed to run the tool.

• To DL practitioners
Similar to Output Capabilities, we recommend practitioners to contact
the authors if they need support with tool execution.

5. Diverse Datasets Classifications:
Support for more than one DL dataset classifications.

• To DL testing tool researchers/developers
We recommend researchers/developers to include testing options for
more than one DL dataset classifications, if applicable.

• To DL practitioners
Practitioners can refer the user manual of the tool to know supported
DL dataset classifications, but nothing much can be done to include the
support for an additional dataset classification as it touches the internal
implementation of the DL testing tool.

66

7. Discussion

6. Cross-platform Support:
The tool should be executable on different operating systems.

• To DL testing tool researchers/developers
We recommend researchers/developers to make the testing tool available
on different operating systems.

• To DL practitioners
There is no way for practitioners to make the tools available on every
platform due to the platform unavailability being caused by old frame-
work versions. However, most of the tools work on Linux and macOS
operating systems, therefore we recommend practitioners to use those
systems when benchmarking or using the tools.

7. Support for Latest Libraries:
The tools should not use obsolete libraries, should be updated

• To DL testing tool researchers/developers
We recommend researchers/developers to keep the testing tool updated
with latest supported libraries and get rid off obsolete libraries used by
the tools.

• To DL practitioners
Not applicable, as it touches the internal implementation of the DL
testing tool.

67

7. Discussion

68

8
Threats to Validity

In this section, the threats to construct, internal, external, and reliability validity
are discussed. In the following sections, each of these threats to validity for both
the pre-study and the design of the benchmarking method, that was conducted in
order to answer the research questions are explained.

8.1 Threats to Construct Validity
Construct validity focuses on whether the theoretical constructs are interpreted and
measured correctly [36]. Threats to the construct validity can be benchmarking
design errors, which could lead to the wrong phenomena being studied.

• Possible misunderstandings could happen if ’performance measures’ are
interpreted in a different way. To mitigate this threat, this study used
performance measures as defined by Sim et al. [31].

• Another threat is the term "DL testing properties". A possible misunder-
standing may come with the term on whether it is the property of the DL
system under test or the property of the testing tool itself. Throughout the
study, we have used the term ’testing properties’ as the property of the DL
system under test. To mitigate this issue, clarifications have been made that
with testing properties, we mean the property of a DL system, i.e. robustness,
correctness, etc., that the tool tests and attempts to improve by finding
defects related to the property.

• Having only one researcher reviewing the benchmarking method might have
caused bias. To try and mitigate this risk, the issues regarding the method
were also discussed among us and an interview was conducted with two
experienced researchers from Chalmers IT department.

• The execution time measured for each DL testing tool is not on the same
model. Hence, the time measurement in the results has little informative
value. While unable to mitigate this issue due to only one tool allowing for
model selection, the execution time task is still included for its future value
to the benchmarking method.

• Manual tasks can be misunderstood with some tedious tasks which are not

69

8. Threats to Validity

objective. However, such tasks are just an input to the benchmark’s config-
uration file with a verdict as ’Yes/No’ (see Appendix subsection A.1.2). Al-
though this was not predicted as a potential problem, the interviews revealed
that the word ’manual task’ can be misunderstood. To mitigate this issue, the
help configuration file (see Appendix section A.1) and the user manual of the
benchmarking tool was updated.

8.2 Threats to Internal Validity
Internal threats to validity involve factors, such as the design of the study, that
could have affected the outcome [36].

• The models included in the current version of the benchmarking tool are
trained on only three dataset classifications (i.e. images, self-driving, and
texts). Other types of datasets classifications might be important to some
researchers. However, we believe that the tests for the most popular datasets
are included in the benchmark.

• The number of benchmarking tasks and their priority are entirely based on
our study on fifteen DL testing tools. Some of the tasks might not make
much of a sense to emerging testing tools in the near future. Nevertheless, we
believe that based on our research, the seven tasks, identified in this study,
can be further improved and extended in the future.

• The interviewees could not get hands-on experience with the configuration and
help file due to a distant online interview and lack of time. However, they were
able to answer all the questions without raising that as an issue.

8.3 Threats to External Validity
External validity focuses on whether claims for the generality of the results are jus-
tified [36]. The benchmarking of the DL testing tool should be both representative
and generalizable.

• The interviewees have experience with Deep Learning and software tools in
general but no experience per se with Deep Learning testing tools. Due to a
lack of time and lack of industry contacts in the same field, we were unable
to present the benchmarking tool to industry experts.

• The results of the benchmarking tasks heavily depend on the four tools used
for our benchmarking evaluation. Different tools could potentially not suffer
from the model selection issue or provide the inputs that they use during the
tests. Due to a lack of code support, we were unable to make the remaining
tools work in our local environment setup.

70

8. Threats to Validity

d

8.4 Threats to Reliability
Reliability focuses on whether the study yields the same results if other researchers
replicate it [36].

• If the study is replicated in the future and the benchmarking tool is executed
on the same DL testing tools, different results may be given if the tools have
matured. For instance, the testing tools may provide an option for model
selection in the near future.

• The research methodologies and the benchmarking steps are thoroughly de-
scribed in this paper. By doing so, we believe this study can be reproduced
by other researchers.

71

8. Threats to Validity

72

9
Conclusion and Future Work

This chapter contains two sections; the first section contains the conclusion, which
includes the contribution of this thesis. The second section highlights potential
future work for this research.

9.1 Conclusion
This thesis aims to explore the benchmarking methodology for DL Testing tools. In
order to fulfill the goals of this thesis, we conducted pre-study research on fifteen
DL testing tools followed by the design of the benchmarking methodology. During
our pre-study, we studied existing state-of-the-art DL testing tools and techniques.
Our pre-study aimed to explore DL testing workflow, components, and properties.
We investigated the correctness, fairness, efficiency, and robustness properties of
the existing DL testing tools to decide which testing tools are most suited for a
relevant scenario. The pre-study results suggest that currently, the majority of
the DL testing tools are focused on improving the robustness property of the DL
systems. A requirement-scenario-task model was used to design the benchmarking
method tasks for DL testing tools. After running the benchmarking method on
selected four DL testing tools it became apparent that only one testing tool is ideal
for benchmarking. This suggests that, even though there is an increase in DL testing
tool research papers, the field is still in an early state that is not developed enough to
run a full benchmarking suite. Although the fifteen DL testing techniques studied in
this paper explain promising prospects to test DL systems, they are not sufficiently
developed to be considered a complete testing tool yet. Due to this limitation,
quantitative performance metrics that measure a tool’s robustness testing ability
on a DL system could not be established. However, the performance measures
aimed at the capabilities of the tools, defined within the benchmark, are helpful for
narrowing down the selection of a DL testing tool for practitioners. Moreover, a list
of recommendations has been on what practitioners can do to further narrow down
the DL testing tool selection.

9.2 Future Work
A benchmarking method is a continuous effort, hence scalability is an important
aspect of its design. For future studies, we recommend a collaborative effort with
the DL testing tool researchers to standardize the testing tools and improve the
benchmark method accordingly. The importance of collaboration when conducting

73

9. Conclusion and Future Work

a benchmark has already been pointed out by Sim et al. [31], and became even more
evident through the data presented in this study. For instance, many of the DL test-
ing tools do not support the model selection or output the test inputs used during
the test. Such challenges can be overcome if the DL testing tool researchers are
involved in the benchmarking effort. By standardizing such necessary components
needed to perform a benchmark, the testing tools can be better cross-compared and
we believe that it could further advance the field. Moreover, a list of recommenda-
tions has been presented in this study to DL testing tool researchers/developers for
future research that develop DL testing tools. As the DL testing techniques are in
the early prototype stage, we also recommend further investigation of the DL testing
tools as they evolve towards a complete testing tool in the future. A possible future
improvement that will need to be made is the addition of more, common quantifiable
performance metrics, which evaluate the tools in terms of improvement towards DL
testing properties (see Section 2.2.4). Regarding the formation of the benchmarking
tasks, it is fine to have manual tasks in benchmarking as long as they are objective.
However, a future investigation can be made to avoid manual interventions in the
benchmarking process. Finally, we recommend investigations to further enhance the
benchmarking method by considering the execution of multiple DL testing tools in
parallel and saving the results in a database for future reference.

74

Bibliography

[1] Myers, G.J., Sandler, C. and Badgett, T., 2011. The art of software testing.
John Wiley Sons.

[2] Pei, K., Cao, Y., Yang, J. and Jana, S., 2017, October. Deepxplore: Automated
whitebox testing of deep learning systems. In proceedings of the 26th Symposium
on Operating Systems Principles (pp. 1-18).

[3] Guo, J., Jiang, Y., Zhao, Y., Chen, Q. and Sun, J., 2018, October. Dlfuzz:
Differential fuzzing testing of deep learning systems. In Proceedings of the 2018
26th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. (pp. 739-743).

[4] McKeeman, W.M., 1998. Differential testing for software Digital Technical
Journal, 10 (1), pp.100-107.

[5] Chen, T.Y., Cheung, S.C. and Yiu, S.M., 2020. Metamorphic testing: a new
approach for generating next test cases. arXiv preprint arXiv:2002.12543.

[6] Barr, E.T., Harman, M., McMinn, P., Shahbaz, M. and Yoo, S., 2014. The
oracle problem in software testing: A survey. IEEE transactions on software
engineering, 41 (5), pp.507-525.

[7] Jia, Y. and Harman, M., 2010. An analysis and survey of the development of
mutation testing. IEEE transactions on software engineering, 37 (5), pp.649-
678.

[8] Zhu, H., Hall, P.A. and May, J.H., 1997. Software unit test coverage and ade-
quacy. Acm computing surveys (csur), 29 (4), pp.366-427.

[9] Kim, J., Feldt, R. and Yoo, S., 2019, May. Guiding deep learning system test-
ing using surprise adequacy. In IEEE/ACM 41st International Conference on
Software Engineering (ICSE) (pp. 1039-1049). IEEE.

[10] Jahangirova, G., Humbatova, N., Bavota, G., Riccio, V.,Stocco, A. and Tonella,
P., 2019. Taxonomy of Real Faults in Deep Learning Systems. arXiv preprint
arXiv:1910.11015.

[11] Ma, L., Juefei-Xu, F., Zhang, F., Sun, J., Xue, M., Li, B., Chen, C., Su, T.,
Li, L., Liu, Y. and Zhao, J., 2018, September. Deepgauge: Multi-granularity
testing criteria for deep learning systems. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering (pp. 120-131).

[12] Zhang, T., Gao, C., Ma, L., Lyu, M. and Kim, M., 2019, October. An empir-
ical study of common challenges in developing deep learning applications. In
2019 IEEE 30th International Symposium on Software Reliability Engineering
(ISSRE) (pp. 104-115). IEEE.

[13] Du, X., Xie, X., Li, Y., Ma, L., Liu, Y. and Zhao, J., 2019, August. Deepstellar:
model-based quantitative analysis of stateful deep learning systems. In Proceed-

75

Bibliography

ings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (pp.
477-487).

[14] Ma, L., Zhang, F., Sun, J., Xue, M., Li, B., Juefei-Xu, F., Xie, C., Li, L., Liu,
Y., Zhao, J. and Wang, Y., 2018, October. Deepmutation: Mutation testing of
deep learning systems. In 2018 IEEE 29th International Symposium on Software
Reliability Engineering (ISSRE) (pp. 100-111). IEEE.

[15] Sun, Y., Wu, M., Ruan, W., Huang, X., Kwiatkowska, M. and Kroening, D.,
2018, September. Concolic testing for deep neural networks. In Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software Engi-
neering (pp. 109-119), https://github.com/TrustAI/DeepConcolic.

[16] Tian, Y., Pei, K., Jana, S. and Ray, B., 2018, May. Deeptest: Automated
testing of deep-neural-network-driven autonomous cars. In Proceedings of the
40th international conference on software engineering (pp. 303-314).

[17] Zhang, M., Zhang, Y., Zhang, L., Liu, C. and Khurshid, S., 2018, September.
DeepRoad: GAN-based metamorphic testing and input validation framework
for autonomous driving systems. In Proceedings of the 33rd ACM/IEEE Inter-
national Conference on Automated Software Engineering (pp. 132-142).

[18] Eniser, H.F., Gerasimou, S. and Sen, A., 2019, April. Deepfault: Fault lo-
calization for deep neural networks. In International Conference on Funda-
mental Approaches to Software Engineering (pp. 171-191). Springer, Cham,
https://github.com/hasanferit/DeepFault.

[19] Kuhn, D.R., Kacker, R.N. and Lei, Y., 2010. Practical combinatorial testing.
NIST special Publication, 800 (142), p.142.

[20] Nie, C. and Leung, H., 2011. A survey of combinatorial testing. ACM Comput-
ing Surveys (CSUR), 43 (2), pp.1-29.

[21] Ma, L., Zhang, F., Xue, M., Li, B., Liu, Y., Zhao, J. and Wang, Y., 2018. Com-
binatorial testing for deep learning systems. arXiv preprint arXiv:1806.07723.

[22] Klees, G., Ruef, A., Cooper, B., Wei, S. and Hicks, M., 2018, January. Eval-
uating fuzz testing. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security (pp. 2123-2138).

[23] Xie, X., Ma, L., Juefei-Xu, F., Chen, H., Xue, M., Li, B., Liu, Y., Zhao, J.,
Yin, J. and See, S., 2018. Coverage-guided fuzzing for deep neural networks.
arXiv preprint arXiv:1809.01266, 3.

[24] Xie, X., Ma, L., Juefei-Xu, F., Xue, M., Chen, H., Liu, Y., Zhao, J., Li, B.,
Yin, J. and See, S., 2019, July. DeepHunter: a coverage-guided fuzz testing
framework for deep neural networks. In Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis (pp. 146-157).

[25] Xie, X., Ma, L., Wang, H., Li, Y., Liu, Y. and Li, X., 2019, August. Diffchaser:
Detecting disagreements for deep neural networks. In Proceedings of the 28th
International Joint Conference on Artificial Intelligence (pp. 5772-5778). AAAI
Press.

[26] Wang, J., Sun, J., Zhang, P. and Wang, X., 2018. Detecting adversarial
samples for deep neural networks through mutation testing. arXiv preprint
arXiv:1805.05010.

[27] Du, X., Xie, X., Li, Y., Ma, L., Zhao, J. and Liu, Y., 2018. Deepcruiser:

76

Bibliography

Automated guided testing for stateful deep learning systems. arXiv preprint
arXiv:1812.05339.

[28] Sun, Y., Huang, X., Kroening, D., Sharp, J., Hill, M. and Ashmore, R., 2018.
Testing deep neural networks. arXiv preprint arXiv:1803.04792.

[29] Shi, S., Wang, Q., Xu, P. and Chu, X., 2016, November. Benchmarking state-
of-the-art deep learning software tools. In 2016 7th International Conference
on Cloud Computing and Big Data (CCBD) (pp. 99-104). IEEE.

[30] Zhang, J.M., Harman, M., Ma, L. and Liu, Y., 2020. Machine learning testing:
Survey, landscapes and horizons. IEEE Transactions on Software Engineering.

[31] Sim, S.E., Easterbrook, S. and Holt, R.C., 2003, May. Using benchmarking to
advance research: A challenge to software engineering. In 25th International
Conference on Software Engineering, 2003. Proceedings. (pp. 74-83). IEEE.

[32] Bai, X., Tsai, W.T., Paul, R., Feng, K. and Yu, L., 2002, January.
Scenario-based modeling and its applications. In Proceedings of the Seventh
IEEE International Workshop on Object-Oriented Real-Time Dependable Sys-
tems.(WORDS 2002) (pp. 253-260). IEEE.

[33] Sharma, S. and Pandey, S.K., 2013. Revisiting requirements elicitation tech-
niques. International Journal of Computer Applications, 75(12).

[34] Beyer, D., Löwe, S. and Wendler, P., 2019. Reliable benchmarking: Require-
ments and solutions. International Journal on Software Tools for Technology
Transfer, 21(1), pp.1-29.

[35] Stapenhurst, T., 2009. The benchmarking book. Routledge.
[36] Easterbrook, S., Singer, J., Storey, M.A. and Damian, D., 2008. Selecting empir-

ical methods for software engineering research. In Guide to advanced empirical
software engineering (pp. 285-311). Springer, London.

[37] Knuth: Computers and Typesetting,
http://www-cs-faculty.stanford.edu/˜uno/abcde.html

[38] Keras: The Python Deep Learning library, 2020
https://keras.io

[39] An end-to-end open source machine learning platform, 2020
https://www.tensorflow.org

[40] Caffe : Deep learning framework, 2020
https://caffe.berkeleyvision.org/

[41] scikit-learn : Machine Learning in Python, 2020
https://scikit-learn.org

[42] Python : Programming language, 2020
https://www.python.org/

77

Bibliography

78

A
Appendix 1

A.1 Benchmarking Run Configuration JSON File
Structure

A.1.1 Run and Output Configuration with ’help’ Text

1 // Please follow // comments for each json parameter to fill in the run
and output config↪→

2

3 {
4 "toolName": "", // DL Testing Tool name
5 "description": "", // description of the tool
6 "authors": "", // Authors name
7 "language": "pass", //**Tools run and implementation

programming lanaguage used↪→

8 "publication": "",
9 "path_to_script" : "",

10 "commands": [// Total commands in list, can be
extented if more than 7 run commmadns are required↪→

11 { "path_1":"pass", // path of the locations of the script
/tool to run the command 1↪→

12 "command_1": "pass", // single command for same type of
dataset or a different dataset that tool should run for
benchmakring

↪→

↪→

13 "dataset_type": "pass"}, // type of dataset for command 1 (
images, self_driving, texts)↪→

14 {"path_2":"pass", // and so on .. as done for command 1
else leave it witgh "pass"↪→

15 "command_2": "pass",
16 "dataset_type": "pass"},
17 {"path_3":"pass",
18 "command_3": "pass",
19 "dataset_type": "pass"},
20 {"path_4":"pass",
21 "command_4": "pass",
22 "dataset_type": "pass"},
23 {"path_5":"pass",
24 "command_5": "pass",
25 "dataset_type": "pass"},

I

A. Appendix 1

26 {"path_6":"pass",
27 "command_6": "pass",
28 "dataset_type": "pass"},
29 {"path_7":"pass",
30 "command_7": "pass",
31 "dataset_type": "pass"} // extend list if more commands are

supported↪→

32],
33 "manual_check": { // manual check based in Tools support

and capabilities↪→

34 "model_selection" : "No", // Default Value is No, put as yes if
model selection is suuported↪→

35 "retraining" : "No", // Default Value is No, put as yes if
retraining is suuported↪→

36 "differential_testing" : "No"// Default Value is No, put as yes if
differential testing (testing with more than 1 model) is
suuported

↪→

↪→

37 },
38 // if model_selection is possible (Yes) then fill out all run command

as in previous commands but with benechmarking models based on type
pf datasets

↪→

↪→

39 // moded 1 (images dataset) :
./model/Images_cifar10_1_512_leaky_relu_model1.h5↪→

40 // model 2 (self_driving dataset): ./model/Self_Driving_CNN_model1.h5
41 // model 3 (texts dataset): ./model/Text_babi_RNN_model1.h5
42 "benchmarking_commands": [// commands to run benchmakring models

by replacing the path of one of models 1, 2, 3 based on dataset↪→

43 { "path_1":"pass", // follow the same sequence as before
but with benchmakring models↪→

44 "command_1": "pass", // command using benchmarking model
45 "dataset_type": "pass"}, // dataset type supported by

benchmarking model↪→

46 {"path_2":"pass", // and so on .. as done for command 1
else leave it witgh "pass"↪→

47 "command_2": "pass",
48 "dataset_type": "pass"},
49 { "path_3":"pass",
50 "command_3": "pass",
51 "dataset_type": "pass"},
52 {"path_4":"pass",
53 "command_4": "pass",
54 "dataset_type": "pass"} // can be extented if more variaions

are needed to run↪→

55],
56

57 "datasets_classification": { // manual check based in Tools support
and capabilities for different dataset classification↪→

58 "images" : "No", // Default Value is No, put as yes if
images classifications is suuported↪→

II

A. Appendix 1

59 "self_driving" : "No", // Default Value is No, put as yes if
self driving classifications is suuported↪→

60 "texts" : "No" // Default Value is No, put as yes if
texts classifications is suuported↪→

61 },
62 "output_config" : { // manual check based in Tools support

and capabilities for different dataset classification↪→

63 "output_saved" : "No", // Default Value is No, put as yes if
tool generates any form of output either on console or saved in
a file

↪→

↪→

64 "output_default_path" : "./output/",
65 "postProcessingCommand" : "None", // Default Value is None, put as

yes if postprocessing of the generated output is supported↪→

66 "parser_path" : "_path_" // If postProcessingCommand is
yes, path to the parser tool or script↪→

67 }
68 }

A.1.2 Example of Configuration file of a DL Testing Tool
Run Configration file filled out for DeepFault DL Testing tool which was used for
benchmakring tests.

1 {
2 "toolName": "DeepFault",
3 "description": "DeepFault: Fault Localization for Deep Neural

Networks",↪→

4 "authors": "Hasan Ferit Eniser, Simos Gerasimou, Alper Sen",
5 "language": "python",
6 "publication": "2019",
7 "path_to_script" :

"/Users/hchuphal/Desktop/github/thesis2020/Code/DeepFault-master",↪→

8 "commands": [
9 {

"path_1":"/Users/hchuphal/Desktop/github/thesis2020/Code/DeepFault-master",↪→

10 "command_1": "python2.7 run.py --model mnist_test_model_1_100
--dataset mnist -C 9 --approach tarantula --suspicious_num 10",↪→

11 "dataset_type": "images"},
12

{"path_2":"/Users/hchuphal/Desktop/github/thesis2020/Code/DeepFault-master",↪→

13 "command_2": "python2.7 run.py --model
cifar10_test_model_1_512_leaky_relu --dataset cifar10 -C 9
--approach tarantula --suspicious_num 10",

↪→

↪→

14 "dataset_type": "images"},
15 {"path_3":"pass",
16 "command_3": "pass",
17 "dataset_type": "pass"},
18 {"path_4":"pass",
19 "command_4": "pass",
20 "dataset_type": "pass"},

III

A. Appendix 1

21 {"path_5":"pass",
22 "command_5": "pass",
23 "dataset_type": "pass"},
24 {"path_6":"pass",
25 "command_6": "pass",
26 "dataset_type": "pass"},
27 {"path_7":"pass",
28 "command_7": "pass",
29 "dataset_type": "pass"}
30],
31 "benchmarking_commands": [
32 {

"path_1":"/Users/hchuphal/Desktop/github/thesis2020/Code/DeepFault-master",↪→

33 "command_1": "python2.7 run.py --model
Images_cifar10_1_512_leaky_relu_model1 --dataset cifar10 -C 9
--approach tarantula --suspicious_num 10",

↪→

↪→

34 "dataset_type": "images"},
35

{"path_2":"/Users/hchuphal/Desktop/github/thesis2020/Code/DeepFault-master",↪→

36 "command_2": "python2.7 run.py --model Self_Driving_CNN_model1
--dataset nvidia -C 9 --approach tarantula --suspicious_num 10",↪→

37 "dataset_type": "self_driving"},
38 {

"path_3":"/Users/hchuphal/Desktop/github/thesis2020/Code/DeepFault-master",↪→

39 "command_3": "python2.7 run.py --model Text_imdb_CNN_model2
--dataset imdb -C 9 --approach tarantula --suspicious_num 10",↪→

40 "dataset_type": "texts"},
41 {"path_4":"pass",
42 "command_4": "pass",
43 "dataset_type": "images"}
44],
45 "manual_check": {
46 "model_selection" : "Yes",
47 "retraining" : "Yes",
48 "differential_testing" : "Yes"
49 },
50 "datasets_classification": {
51 "images" : "Yes",
52 "self_driving" : "No",
53 "texts" : "No"
54 },
55 "output_config" : {
56 "output_saved" : "Yes",
57 "output_default_path" : "./output/",
58 "postProcessingCommand" : "None",
59 "parser_path" : "_path_"
60 }
61 }

IV

A. Appendix 1

A.2 Python Script component used for executing
Benchmarking Tasks

1 # Script Component of benchmarking tasks
2 class BenchmarkingTasks(unittest.TestCase):
3 """ Results of 6 Tasks and 3 SubTasks"""
4 with open(_TEMP_CONFIG, 'r') as myfile:
5 json_data=myfile.read()
6 parsed_json = (json.loads(json_data))
7 obj = json.loads(json_data)
8 language = str(obj['language'])
9 commmands_list = obj['commands']

10 manual_check = obj['manual_check']
11 output_config = obj['output_config']
12 language = obj['language']
13 datasets = obj['datasets_classification']
14

15 def test_Model_Selection(self):
16 time.sleep(1)
17 assert self.manual_check['model_selection'] in self._pass, "Model

Selection is not possible"↪→

18

19 def test_Image_Classifications_Support(self):
20 time.sleep(1)
21 assert self.datasets['images'] in self._pass, "Image

Classifications are not possible"↪→

22

23 def test_SelfDriving_Classifications_Support(self):
24 time.sleep(1)
25 assert self.datasets['self_driving'] in self._pass, "Self_driving

datasets are not possible"↪→

26

27 def test_Texts_Classifications_Support(self):
28 time.sleep(1)
29 assert self.datasets['texts'] in self._pass, "Texts/Malware

datasets are not possible"↪→

30

31 def test_Retraining(self):
32 time.sleep(1)
33 assert self.manual_check['retraining'] in self._pass,"Retraining

is not possible"↪→

34

35 def test_Differential_Testing(self):
36 time.sleep(1)
37 assert self.manual_check['differential_testing'] in

self._pass,"Differential Testing is not possible"↪→

38

39 def test_Execution_Time(self):

V

A. Appendix 1

40 time.sleep(1)
41 assert self._time > 1.0 ,"Execution time of Testing is less than 1

second"↪→

42 #logger.info("\n Total time taken in ms : " + str(self._time))
43

44 def test_Output_Capabilities(self):
45 time.sleep(1)
46 assert self.output_config['output_saved'] in self._pass,"Output

Saving is NOT possible"↪→

47 #logger.info(self._command_status)
48 for i, status in enumerate(self._command_status):
49 if self._command_status[i] != 0:
50 assert self._command_status[i] == 0, "DL Testing Tool

command failed to execute!"↪→

51

52 def _write_output(_buffer):
53 logger.info(_buffer)
54 try:
55 # log file to write to
56 logFile =

_OUTPUT+'Benchmarking_dl_testing_tool_'+time.strftime("%Y%m%d-%H%M%S")+'_._log'↪→

57 report = open(logFile, 'a')
58 report.write(_buffer)
59

60 except Exception as e:
61 # get line number and error message
62 report.write('En error message while Executing DL Testing command'

+ e+ logFile)↪→

63

64 if __name__ == '__main__':
65 # 1. get run config
66 _make_runconfig()
67 try:
68 shutil.rmtree(_OUTPUT)
69 os.mkdir(_OUTPUT)
70 except OSError as e:
71 logger.warning("Error: No Previous Output found! %s - %s." %

(e.filename, e.strerror))↪→

72 #sys.stdout =
open('Benchmarking_logs_'+time.strftime("%Y%m%d-%H%M%S"+'_.log'),
'w')

↪→

↪→

73 # 2. Read the run config
74 if _TEMP_CONFIG:
75 with open(_TEMP_CONFIG, 'r') as myfile:
76 json_data=myfile.read()
77 parsed_json = (json.loads(json_data))
78 #print(json.dumps(parsed_json, indent=4, sort_keys=True))
79 obj = json.loads(json_data)
80

VI

A. Appendix 1

81 language = str(obj['language'])
82 commmands_list = obj['commands']
83 manual_check = obj['manual_check']
84 output_config = obj['output_config']
85 language = obj['language']
86 datasets = obj['datasets_classification']
87 # 3. Run each command specified in the run configuration of the DL

testing tool↪→

88 spath = str(obj['path_to_script'])
89 _total_commands = [command for command in commmands_list if

command["dataset_type"] != 'pass']↪→

90 logger.info("\n")
91 logger.info ("\n********* Tasks Execution Started *********")
92 logger.info('Total ' + str(len(_total_commands))+ ' commands to

execute for Benchmarking!\n\n')↪→

93 #_buffer = []
94 bar = progressbar.ProgressBar(maxval=9, \
95 widgets=[progressbar.Bar('#', 'Progress[', ']'), ' ',

progressbar.Percentage()])↪→

96 bar.start()
97 start = time.time()
98 for i, commands in enumerate(commmands_list):
99 for command, argument in commands.items():

100 if argument != 'pass':
101 logger.info('Executing DL Testing tool ' +'run ' + command

+' : '+ argument)↪→

102 if 'dataset_type' in ['images', 'texts', 'self_driving']:
103 logger.info('Dataset Classifications'+ dataset_type)
104 # change to working directory of the script
105 os.chdir(commands["path_"+str(i+1)])
106 if "python" in argument:
107 with CodeTimer(' Time to run the testing command :'):
108 try:
109 _status = os.system(argument)
110 _buffer.append(_status)
111 #_buffer = subprocess.check_output(argument)
112 #_write_output(_buffer)
113 except Exception as e:
114 logger.error("Benchmarking DL Testing Tool

command failed!")↪→

115

116 #returned_output = subprocess.check_output('python
gen_diff.py light 1 0.1 10 20 50 0')↪→

117 final_time = (time.time() - start)
118 bar.finish()
119 print("\n")
120 logger.info("Total Execution Time taken to run all the commands :"

+str(final_time) +' Seconds')↪→

121 parser = argparse.ArgumentParser()

VII

A. Appendix 1

122 final_time, _buffer]
123 test_suite = unittest.TestSuite()
124

125 repetitions = 1 # how many times to we want to repeat the tasks (7)
126 tasks = get_tests()
127 for __ in xrange(0, repetitions):
128 test_suite.addTests(tasks)
129 logger.info("\nExecuting Benchmakring Tasks one by one....")
130 time.sleep(1)
131 TestRunner.main()
132 runner.run(test_suite)
133 final_time_2 = (time.time() - start)
134 logger.info("Total Execution Time taken by Benchmakring Tool :"

+str(final_time_2) +' Seconds')↪→

A.3 System Configuration for DL Testing Tools
1 # System Information
2 System: Darwin and Release: 19.3.0
3 Version: Darwin Kernel Version 19.3.0: Thu Jan 9 20:58:23 PST 2020;

root:xnu-6153.81.5~1/RELEASE_X86_64↪→

4 Machine: x86_64 and Processor: i386
5

6 # CPU and Memory Information
7 Physical cores: 2 and Total cores: 4
8 Max Frequency: 3100.00Mhz
9 Min Frequency: 3100.00Mhz

10 Current Frequency: 3100.00Mhz
11 svmem(total=8589934592, available=2073575424, percent=75.9,

used=4944916480, free=143818752, active=1930104832,
inactive=1841102848, wired=3014811648)

↪→

↪→

12 System Memory % used: 75.9

VIII

A. Appendix 1

A.4 Benchmarking Tasks Results for DeepXplore
Tool

Figure A.1: DeepXplore : Benchmarking Tasks Results

A.5 Benchmarking Tasks Results for SADL Tool

Figure A.2: SADL : Benchmarking Tasks Results

IX

A. Appendix 1

A.6 Benchmarking Tasks Results for DLFuzz
Tool

Figure A.3: DLFuzz : Benchmarking Tasks Results

A.7 Benchmarking Tasks Results for DeepFault
Tool

Figure A.4: DeepFault : Benchmarking Tasks Results

X

A. Appendix 1

A.8 Benchmarking Pre-Trained Model’s Archi-
tecture

A.8.1 Image Classification

Figure A.5: Keras Cifar-10 CNN Model

Figure A.6: Keras MNIST CNN Model

XI

A. Appendix 1

A.8.2 Self-Driving Classification

Figure A.7: Nvidia Dave Self-Driving Model 1

Figure A.8: Nvidia Dave Self-Driving Model 2

XII

A. Appendix 1

A.8.3 Texts Classification

Figure A.9: Text Babi RNN based Model

XIII

A. Appendix 1

Figure A.10: Text Imdb RNN based Model

XIV

	List of Figures
	List of Tables
	Introduction
	Background
	Statement of the Problem
	Purpose of the Study
	Hypotheses and Research Questions
	Report Structure

	Related Work and Background
	Testing
	DL Testing
	Definition
	DL Testing Workflow
	DL Testing Components
	DL Testing Properties

	Software Testing vs. DL Testing
	Challenges in DL Testing
	DL Testing Tools
	Timeline
	Research Distribution
	DL Datasets

	Benchmarking Research
	What is Benchmarking?
	Benchmarking in DL Systems

	Methodology
	Research Questions
	Benchmarking Method
	Requirement-Scenario-Task Model
	DL Testing Tool Requirements
	DL Testing Scenarios
	Benchmarking Tasks

	Pre-Study Results
	Results from Pre-Study
	DL Testing Tools
	DL Testing Tools Availability

	Benchmarking Method Results
	Benchmarking Method
	DL Testing Tool Requirements
	DL Testing Scenarios
	Benchmarking Tasks

	Benchmarking Design Results
	Benchmarking Tasks Automation
	Benchmarking Tool
	Benchmarking Results

	Validation
	Interview Feedback
	Benchmarking Properties
	High-level Benchmark Components
	Manual Tasks Objectivity

	Discussion
	Findings of the Study
	Regarding DL Testing Tools
	Regarding Benchmarking Results
	DL Testing Tools Recommendations

	Threats to Validity
	Threats to Construct Validity
	Threats to Internal Validity
	Threats to External Validity
	Threats to Reliability

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Appendix 1
	Benchmarking Run Configuration JSON File Structure
	Run and Output Configuration with 'help' Text
	Example of Configuration file of a DL Testing Tool

	Python Script component used for executing Benchmarking Tasks
	System Configuration for DL Testing Tools
	Benchmarking Tasks Results for DeepXplore Tool
	Benchmarking Tasks Results for SADL Tool
	Benchmarking Tasks Results for DLFuzz Tool
	Benchmarking Tasks Results for DeepFault Tool
	Benchmarking Pre-Trained Model's Architecture
	Image Classification
	Self-Driving Classification
	Texts Classification

