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Abstract 

This paper aims to add further research to the field of downside risk, and downside risk 

measures’ influence on the average returns in the U.S. stock market. The study also examines 

and compares how well the Fama-French three-factor model, Carhart four-factor model, Fama-

French five-factor Model, q-four factor model, and q-five factor model explain these average 

returns. This was done by constructing zero-cost portfolios, split into two weight classes of 

stocks in the portfolios. The study shows relatively strong results for a major group of the 

downside risk measures. The measures of the major group show significance and good 

explanatory power; this could lay ground for further research and use of downside risk measures 

in financial contexts. Regarding the minor group of the downside risk measures, the result gives 

ambiguous implications about the way the asset pricing models can explain those residual mean 

returns. Therefore, the minor group could not establish what asset pricing model is preferred 

over other models. 
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1. Introduction 

In the context of finance, risk is one of the most important factors to consider. In everyday life, 

risk is associated with the avoidance of losing wealth. However, traditional risk measures treat 

bad outcomes and good outcomes equally. In this paper we focus on downside risk. We put this 

into practical test to emphasize and stress the cause of narrowing the overall view of what risk 

is, how it is perceived and how investors cope with it. 

 

In this research paper, we look at listed U.S. companies between January 1960 and December 

2019. Several downside risk measures are chosen and examined for their relevance in stock 

pricing. More specifically, an examination of chosen downside risk measures is performed to 

see if the risk measures in question are being priced in the expected stock returns. If they are 

not being priced, they could be interpreted as potential additional risk factors. This is done by 

studying the alphas generated by regressions of zero-cost portfolios for each risk measure. 

 

Lately, larger attention is being paid to downside risk. According to Farago and Tédongap 

(2018), the definition of downside risk could be identified as the risk that investors associate 

with “bad” outcomes such as negative returns or, more generally, returns below their 

expectations. Investors do not associate risk with large positive returns, returns above their 

expectations, or upside swings in general. Ang, Chen, and Xing (2006) examines if there is an 

existing premium for holding stocks with high downside risk. A cross-sectional regression 

analysis of the stock returns is performed and a downside premium of approximately 6% per 

annum was presented. The premium does, however, not reflect a compensation for regular 

market beta; neither was it explained by coskewness, liquidity risk, size or value and momentum 

characteristics. 

 

In this paper, we use seven downside risk measures: excess kurtosis, skewness, Value-at-Risk, 

Expected shortfall, semi deviation, downside beta and the Sortino ratio. Excess kurtosis and 

skewness of an underlying distribution are used to measure the level in which downside risk is 

priced in the stocks of the U.S. stock markets. Excess kurtosis captures the size (e.g., fat versus 

thin, and long versus small) of the tails of the underlying distribution in the U.S. stock returns. 

Skewness captures the direction in which the underlying distribution is skewed. Value-at-Risk 

and Expected shortfall attempt to quantify the total risk in a portfolio in form of monetary loss 

(Hull, 2015). Furthermore, the Sortino ratio is similar to the Sharpe ratio, with the key 
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distinction that it is based on semi deviation. Semi deviation is a variation measure just like 

standard deviation but solely captures the downside direction of a stock fluctuation. Lastly, 

downside beta is similar to the traditional market beta, although it solely captures the downside 

direction of a stock fluctuation.  

 

The downside risk measures are used to construct factor-mimicking portfolios. We use five 

asset pricing models to test whether these portfolios correspond to anomalies or potential risk 

factors. We adapt the testing procedure from Hou et. al. (2015, 2018). The first two of the 

models are the Fama and French (1993) three-factor model and the Fama and French (2015) 

five-factor model. The former model is based on three factors affecting expected stock return: 

market beta, size, and book-to-market ratio. The latter model distinguishes from the former with 

two additional factors: investment and profitability. Henceforth, other models used in this paper 

are Carhart (1997) four-factor model, as well as q-four and q-five factor models of Hou et. al. 

(2015, 2018). The Carhart four-factor model is similar to the Fama-French three-factor model 

but deviates with its additional factor that captures the effect of momentum. The q-factor 

models have minor differences compared to the previous models, which is the set of factors 

included.  

 

The main finding of the paper is that for equally-weighted portfolios, none of the asset pricing 

models are able to fully explain the variation in the factor-mimicking portfolios (alpha is 

significant). The sign of the intercept is consistent with the interpretation of the factor-

mimicking portfolios as risk factors, i.e., we find that taking a long position in low downside 

risk stocks and a short position in high downside risk stocks generates a positive abnormal 

return. Finally, the intercepts are highly significant with t-statistics ranging from 0.92 to 12.07. 

 

Furthermore, we find that for four out of seven risk measures (Value-at-Risk, Expected 

shortfall, semi deviation and standard deviation), some of the variation can be explained with 

the average Adjusted 𝑅2 of 0.5024. For the skewness and kurtosis, the asset pricing models 

provide worse fit, with the average Adjusted 𝑅2 of 0.1314. The highest Adjusted 𝑅2 is found for 

the downside beta portfolios, with an average Adjusted 𝑅2 of 0.6850.  

 

For the equivalent risk measures of the value-weighted zero-cost portfolios, an opposite pattern 

(compared to equally-weighted zero-cost portfolios) are identified. In absolute terms, the 
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intercepts increase for every newly added factor of asset pricing models. Some of the variation 

of these risk measures can be explained with the average Adjusted 𝑅2 of 0.5769. For the 

skewness and kurtosis, these asset pricing models also provide worse fit, with the average 

Adjusted 𝑅2 of 0.1997. In comparison to the equally-weighted zero-cost portfolios, downside 

beta does not distinguish itself as the risk measure with best providing Adjusted 𝑅2. The results 

are different suggesting that downside risk matters more for smaller companies than for large 

companies.  

 

The remainder of the paper is structured as follows: in Section 3, downside risk measures, asset 

pricing models, and the methods used in this thesis are presented. Section 4 describes how raw 

data has been retrieved and processed. The empirical results are exhibited and discussed in 

Section 5. In connection to that, Section 6 concludes the thesis by summing up and uplifting a 

few aspects of the thesis.  
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2. Literature review 

In this section, previous studies of downside risk and downside risk measures are presented. 

Studies about asset pricing models, such as the Fama-French three-factor and Fama-French 

five-factor models, Carhart four-factor model and q-factor models are also presented.  

2.1 Downside risk measures 

Ang, Chen, and Xing (2006) claim that stocks with high covariation with the market, with 

respect to downside risk have higher returns. For downside risk, the cross section of returns 

shows a premium. This is consistent with a market where participants place more weight in 

losses and less weight in gains. Therefore, premiums are required by investors for holding assets 

with higher downside risk; thus, assets with higher downside risk have higher returns. Ang, 

Chen, and Xing (2006) also conclude that past downside beta provides good predictions of 

future covariation with downward market movements, but for stocks with high volatilities, past 

downside beta predicts poorly of future downside risk. 

 

Downside risk in asset prices is further discussed by Farago and Tédongap (2018). Apart from 

market returns and market volatility, they find other disappointment-related factors: a 

downstate factor, a market downside factor and a volatility downside factor. Downside risk can 

also be related to a rise in market volatility. The provided empirical test strengthens the 

argument that the factors are priced in the cross-section of various asset classes. 

 

Investors possess different opinions of risk in modern portfolio history (Estrada 2006). 

Investors do not place equal weights in upsides and downsides, which is why the downside risk 

framework is quickly gaining acceptance among academics. Semi deviation captures the 

downside dispersion that investors try to avoid. The measure gives a good estimate of risk when 

the distribution is skewed, and the benchmark return is other than the mean. Estrada (2006) 

further describes that according to the downside beta, downward market swings are risky and 

upward market swings are not necessarily as risky. Some of the risk measures are very popular 

and have received a lot of attention in the literature (VaR, ES), while others like the Sortino 

ratio are not. 

 

Acharya et al. (2016) provide simple ways to measure banks’ contributions to systemic risk and 

propose ways to limit this. Value-at-Risk and Expected shortfall are initially introduced as 

measures to limit systemic risks. Their theory further suggests that the regulation of systemic 
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risk should depend on the systemic expected shortfall (SES) of each firm. The components of 

SES could have been used to predict the 2007-2008 financial crisis (Acharya et al. 2016). They 

conclude that financial institutions have incentives to take risks that could affect everyone, 

except for the case when the external costs of systemic risk are internalized. 

2.2 Factor models 

Not all factors that are proposed in the literature are genuine risk factors. Some of them are 

simply anomalies. These anomalies can be explained by sophisticated asset pricing models or 

due to multiple hypothesis testing fallacy (Campbell, Yan and Heqing, 2016). Recently, Hou et 

al. (2015, 2018) look at 158 anomalies and find that most of them can be explained by a five-

factor model. The testing procedures in these papers are GRS-tests and significance of alphas. 

We largely follow the testing procedure from these papers. 

 

Fama and French (1993) study whether common risk factors in stocks and bonds are captured 

in the cross-section of average returns. Their empirical results show that firms with small 

market capitalizations and high book-to-market outperform the market. The three-factor model 

is introduced and contains a market factor (the CAPM factor), a size factor and a book-to-

market factor. In a later research, Fama and French (2015) obtain empirical results which 

suggest that five factors provide a good explanation to the variation in bond and stock returns, 

as well as cross-section of average returns. In addition to size and book-to-market, patterns in 

average returns related to operating profitability and investment are found. 

 

Novy-Marx (2013) states that firms with higher profitability generate relatively higher average 

returns, regardless of bigger size and low book value. He further mentions that valuation and 

profitability strategies are composed to obtain productivity cheaply and leads to larger abnormal 

returns. Value strategies and profitability strategies are negatively correlated, which is why they 

work well when put together, which in turn reduces the volatility. This goes hand in hand with 

the reasoning of the value premium that is argued by Fama and French (1993). Titman, Wei, 

and Xie (2004) find that a second factor would be in place: investments.  

 

Carhart (1997) describes that selling the bottom-decile mutual funds and buying top-decile 

funds in 1996 yields 8%. Momentum explains 4.6% of this spread, 0.7% is explained by 

expense ratios and differences in transaction costs explain 1%. Carhart (1997) ends his 

conclusion by stating three rules-of-thumb for wealth-maximizing mutual fund investors. The 
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first rule is to avoid funds with continuous bad performance. The second rule is that funds with 

high returns in the previous year will yield higher-than-average expected returns the following 

year but will decline in the following years. Last rule-of-thumb is that the investment costs of 

expense ratios, load fees and transaction costs all have negative impacts on performance. 

 

Over the past 25 years, the Fama-French model has failed to account for many asset pricing 

anomalies. Hou, Xue, Zhang (2015) perform an examination of approximately 80 anomalies 

and yielded two major findings. For the high-minus-low deciles created by value-weighted 

returns and NYSE breakpoints, insignificant mean returns are found for almost 40 of the 

anomalies. Their evidence suggests that a q-factor model with four factors (the market factor, 

a size factor, an investment factor and a profitability factor) outperforms the Fama-French and 

Carhart models. 

 

Hou et al. (2018) further extend the q-four factor model by adding an expected growth factor 

and forming the q-five factor model. Although the Fama-French five-factor model is the best 

value-versus-growth model, it does not show any explanatory power for momentum, according 

to Hou et al. (2018). They eventually claim that the best performing model is the q-five factor 

model. 
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3. Methodology 

In this section, downside risk measures, asset pricing models and our testing procedures are 

presented. Subsections 3.1 to 3.7 discuss the downside risk measures. Subsections 3.8 to 3.12 

discuss the asset pricing models that are used when running our regressions. Subsections 3.13 

and 3.14 present the methods used to test the downside risk measures. 

3.1 Skewness 

Skewness quantifies the extent of asymmetry of a given distribution. Skewness is defined as: 

 

𝑠 =  
√𝑛(𝑛 − 1)

𝑛 −  2
 

1
𝑛

𝛴𝑖(𝑥𝑖  −  𝑥)3

(
1
𝑛

𝛴𝑖(𝑥𝑖  −  𝑥)2)3/2
 

 

where n is the sample size, xi is a random variable and 𝑥 is the mean of the random variables. 

The normal distribution is symmetric and has a skewness of zero. We distinguish between 

positive and negative skewness that are also referred as right-skewed and left-skewed, 

respectively. The direction reference of the skewness comes from the fact that the left or right 

tail is longer. For a positively skewed distribution, the mode is smaller than the median, which 

in turn is smaller than the mean, and vice versa for negatively skewed distributions.  

3.2 Excess kurtosis 

Excess kurtosis is a statistical measure that describes a probability, or return distribution, that 

has a kurtosis coefficient larger than the coefficient associated with a normal distribution, which 

is approximately 3. The degree of excess kurtosis is calculated with the following formula 

(Pearson, 1905):  

 

𝜂 =  𝛽2  −  3 =  
𝜇4  −  3𝜇2

2

𝜇2
2

 

 

where 𝛽
2
 is the characteristic coordinate of the second moment; 𝜇

2
 and 𝜇

4
 are the means of the 

second and fourth central moments.  

 

There are three regimes of excess kurtosis (Pearson, 1905). The first regime is a mesokurtic 

distribution. The form of this distribution is quite similar to the normal distribution. Comparing 

tops, the mesokurtic distribution is almost equally flat-topped. Recall the excess kurtosis 
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equation, the degree of excess kurtosis would be 𝜂 =  0. The second regime is a leptokurtic 

distribution. This kind of distribution exhibits a greater degree of excess kurtosis than a 

mesokurtic distribution. It is distinguished by its fatter tails. For this type of distribution, the 

given degree of excess kurtosis is 𝜂 >  0. Top of the normal curve of a leptokurtic distribution 

is less flat-topped. The third regime is a platykurtic distribution, which is characterized by its 

greater flat-toppedness. Consequently, the given degree of excess kurtosis is 𝜂 <  0. The tails 

are much thinner, which clearly implies that there are fewer outliers than for a leptokurtic or 

mesokurtic distribution. So, there are fewer extreme outliers that deviates from the mean 

compared to leptokurtic distribution. It is important to emphasize that no distribution could be 

legitimately described as normal unless both the excess kurtosis and the skewness are zero. In 

the real world, this kind of distribution could rarely be found.  

3.3 Value-at-Risk 

Value-at-Risk, henceforth VaR, was first presented by JPMorgan (1990), and published in their 

own system, RiskMetrics (1994). VaR is used to make a statement of how much money that 

could be lost within a certain time period, given a certain confidence level. In other words, VaR 

for a portfolio can be calculated from a probability distribution of losses during a time horizon 

(days, weeks, months or years) and the portfolio value (Hull, 2015). This relationship is 

described by following equation: 

 

𝑃𝑟(𝑋 ≤ 𝑉𝑎𝑅) = 𝛼, 

 

where X denotes returns of the portfolio and 𝛼 is a predetermined percentile point on a 

probability distribution.1 VaR is, however, flawed in one perspective. It does not possess all 

risk properties that are needed to maintain relevance within a risk measure. VaR meets the 

monotonicity, translation invariance and homogeneity properties, but not subadditivity.2  

 
1 There are three methods for measuring VaR: parametric method, Monte Carlo simulation and historical 

method. The parametric method assumes that the returns of each risk factor impacting the values of the assets in 

a portfolio, will follow a normal distribution. The equation can then be simplified to one that links the returns of 

those risk factors to the values of the assets. The Monte Carlo simulation is based on defining a stochastic model 

for each risk factor that can impact the value of the portfolio. The historical method is based on the rankings of 

the profits and losses of the current portfolio, where for each instrument and portfolio changes in value, historical 

returns are applied on each risk factor for these profits and losses. 

 
2 Monotonicity: If a portfolio presents worse results than other portfolios, ceteris paribus, its risk measure should 

be greater. Translation invariance: If K amount of cash is added to the portfolio, its risk measure should decrease 

by K. Homogeneity: Changing the size of a portfolio by a factor ƛ, ceteris paribus, their risk measure should be 

multiplied by ƛ. Subadditivity: After two portfolios have been merged, the risk measure should be lower than 

before they were merged. 
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3.4 Expected shortfall 

Expected shortfall, henceforth ES, calculates the expected loss above a given certain percentile 

on a loss distribution, during a certain time period. ES possesses all the properties, including 

the subadditivity property. ES of a portfolio is the mean on days when the loss exceeds the 

predetermined VaR point (Hull, 2015). It is defined by the following equation: 

 

∫ 𝑥
𝛼

−∞

𝑓(𝑥) 

 

where 𝛼 is a predetermined percentile point on a probability distribution and x denotes the 

returns of the portfolio. Using ES instead of VaR limits the probability of taking unacceptable 

risks. This is based on the grounds that VaR only reflects the loss on one specific percentile 

point, whereas ES reflects the average loss on that percentile point and above. ES captures the 

advantages of diversification is therefore a more comprehensive measure (Hull, 2015). 

3.5 Semi deviation 

Semi deviation is a measure of dispersion, which captures an investment’s mean return but 

differs from standard deviation in the sense that semi deviation only takes negative returns into 

account. The formula is presented in the following equation: 

 

∑

𝐵

= √(1/𝑇) × ∑

𝑇

𝑡=1

{𝑀𝑖𝑛(𝑅𝑡 − 𝐵, 0)}2 

 

This measures the volatility below the chosen benchmark return, B, for T observations, during 

the time period t and 𝑅𝑡 denotes the returns for an asset (Estrada 2006). Some investors prefer 

using a limit that reflects their own risk tolerance more accurately. This is called a benchmark 

return. A benchmark return could be any return that an investor chooses to use; risk-free rate, 

the mean return of a set of returns (S&P 500 or Russell 3000) or a zero-return could be used 

among many others.  

3.6 Downside beta 

Downside beta measures the probability of an asset falling below the least accepted return, the 

benchmark return. The downside beta was popularized by Ang, Chen, and Xing (2006). In this 

paper, we use the formulation from Estrada (2006): 
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𝛽𝐵
𝐷 =

∑ {𝑀𝑖𝑛(𝑅𝑡−𝐵,0)×𝑀𝑖𝑛(𝑅𝑀𝐾𝑇−𝐵𝑀𝐾𝑇 ,0)}𝑇
𝑡=1

∑ {𝑀𝑖𝑛(𝑅𝑀𝐾𝑇−𝐵𝑀𝐾𝑇,0)}𝑇
𝑡=1

2 , 

 

where t indicates time and T indicates the number of observations, 𝑅𝑀𝐾𝑇  and 𝑅𝑡  denote the 

average market excess return and the excess return of an asset; 𝐵𝑀𝐾𝑇 and 𝐵𝑡 denote the 

benchmark market return and the asset benchmark return. If the downside beta for an asset is 

1.5, it explains that, on average, when the market falls by 1% below the benchmark return, the 

asset will fall 1.5% below the benchmark return. The bigger the downside beta, the more 

sensitive is the return of the stock to the movements of the market. 

3.7 Sortino ratio 

The Sortino ratio follows the same structure as the Sharpe ratio but deviates through its risk-

adjusted factor - the semi deviation. The excess return of the Sortino ratio can be calculated 

with risk-free rate as well as mean return of the same portfolio, zero, interbank interest rate, or 

some other benchmark return (like the benchmark return included in the formulas for semi 

deviation and downside beta). The formula is explained by the following equation:  

 

𝑇𝑃  =  
𝐸(𝑅𝑃)  −  𝐵

∑𝐵𝑝

 

 

𝐸(𝑅𝑃) denotes the expected return of a specific portfolio, 𝐵 denotes the benchmark return 

chosen for the specific portfolio, and 𝛴𝐵𝑃
 denotes the semideviation of the portfolio with respect 

to the benchmark return 𝐵 (Estrada, 2006). The values that the Sortino ratio is expected to attain 

are similar to those of the Sharpe ratio. Negative values of the Sortino ratio are undesired. As 

the value of the Sortino ratio increases, the performance per unit of downside risk increases. 

Therefore, the bigger value of Sortino ratio implies the better performance of the portfolio.  

3.8 Fama-French three-factor model  

Fama-French three-factor model is a multi-factor asset pricing model. Based on previous 

research, Fama and French (1993) draw the conclusion that small firms in terms of market 

capitalization and firms with high book-to-market ratio seem to outperform the market. 

Therefore, the size and valuation factors are added to the formula of Capital Asset Pricing 

Model (CAPM). This results in the Fama-French three-factor model:  
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𝑅𝑖,𝑡 − 𝑅𝑓,𝑡  =  𝛼𝑖  +  𝛽𝑖,𝑀𝐾𝑇𝑀𝐾𝑇𝑡  +  𝛽𝑖,𝑆𝑀𝐵𝑆𝑀𝐵𝑡  + 𝛽𝑖,𝐻𝑀𝐿𝐻𝑀𝐿𝑡  + 𝜀𝑖,𝑡, 

 

where 𝛼 denotes the unexplained contribution to the mean return that this specific multi-factor 

asset pricing model generates. Further, 𝜀 denotes the error factor which intended to be zero if 

there is no error in the data set. MKT stands for the excess return on a market proxy. Fama and 

French (2015) state that the size factor, SMB, is the difference between the mean of the three 

smallest portfolio returns and the mean of the three biggest portfolio returns. The factor is based 

on independent sorts of stocks into two size groups. The size breakpoint is the NYSE median 

market capitalization. Historically, on average, stocks with small market capitalization have 

been outperforming those with large market capitalization. This is translated into a higher 

 𝛽𝑖,𝑆𝑀𝐵  due to the higher risk premium that stocks with small market capitalizations have. Fama 

and French (2015) also state that the value factor, HML, is the difference between the mean of 

the two highest book-to-market ratio portfolio returns and the mean of the two lowest book-to-

market ratio portfolio returns. The factor is based on independent sorts of stocks, divided into 

three book-to-market ratio groups. The book-to-market ratio breakpoints are the 30th and 70th 

percentiles of book-to-market ratios for NYSE stocks. Usually, high and low book-to-market 

ratios are described as value and growth stocks, respectively. Value stock is defined as a big, 

mature company with low growth expectations but instead generates good profitability. Growth 

stock is the opposite - it is defined as a small company with high growth expectations and low 

profitability (because of its size; the company is in the first period of the company’s life cycle). 

A value stock tends to have its beta estimated as a positive HML factor while a growth stock 

tends to have its beta estimated as a negative HML factor. 

3.9 Carhart four-factor model 

Carhart (1997) concludes that the Fama-French three-factor model was not able to explain the 

cross-sectional variation in momentum-sorted portfolio returns, although the Fama-French 

three-factor model improved average CAPM pricing errors. Consequently, Carhart extends the 

Fama-French three-factor model by adding a momentum factor. The Carhart four-factor model 

uses the following formula: 

 

𝑅𝑖,𝑡  −  𝑅𝑓,𝑡  =  𝛼𝑖  + 𝛽𝑖,𝑀𝐾𝑇𝑀𝐾𝑇𝑖  + 𝛽𝑖,𝑆𝑀𝐵𝑆𝑀𝐵𝑖  +  𝛽𝑖,𝐻𝑀𝐿𝐻𝑀𝐿𝑡  + 𝛽𝑖,𝑀𝑂𝑀𝑀𝑂𝑀𝑡  +  𝜀𝑖,𝑡 

 

MOM denotes the difference between a portfolio of past winners and a portfolio of past losers 

for the trailing twelve months. Carhart (1997) points out that the Carhart four-factor model 
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explains more than half the spread3 in return on the one-year-return portfolios. Further, the 

Carhart four-factor model explains a smaller fraction of the spread in return on the two- to four-

year portfolios, and none of the spread in the five-year portfolios. 

3.10 Fama-French five-factor model 

The Fama-French five-factor model is an extension of the original Fama-French three-factor 

model. Fama and French (2015) add two factors that capture the effect of investments and 

profitability on the examined average stock returns. This was an effect of several researchers 

finding evidence of Fama-French three-factor model being incomplete. The incompleteness 

derives from the alpha factor not being zero, which implies that there are other factors affecting 

the average returns of stocks. Novy-Marx (2013) presents the finding of profitable firms 

generating significantly higher average returns, despite their relatively big size and low book 

value (i.e., low book-to-market ratio). Titman, Wei, and Xie (2004) find the grounds for the 

second additional factor: investments. The finding suggests that firms that substantially increase 

capital expenditures would achieve less positive or negative stock returns. Fama and French 

(2015) conclude that with these findings, they can form the Fama-French five-factor model: 

 

𝑅𝑖,𝑡 − 𝑅𝑓,𝑡  =  𝛼𝑖  +  𝛽𝑖,𝑀𝐾𝑇𝑀𝐾𝑇𝑡  +  𝛽𝑖,𝑆𝑀𝐵𝑆𝑀𝐵𝑡  + 𝛽𝑖,𝐻𝑀𝐿𝐻𝑀𝐿𝑡  

+ 𝛽𝑖,𝑅𝑀𝑊𝑅𝑀𝑊𝑡  + 𝛽𝑖,𝐶𝑀𝐴𝐶𝑀𝐴𝑡  +  𝜀𝑖,𝑡  

 

The construction of RMW and CMA are similar to the construction of HML, except that the 

second sort is either on operating profitability or investment. These factors can be interpreted 

as the means of profitability and investment factors for small and big stocks (Fama and French 

2015). RMW factor can be based on operating profit, based on Return on Equity. The CMA 

factor is the change in total assets from the previous fiscal year to the current fiscal year, divided 

by previous fiscal year’s total assets. Anomaly variables from the three-factor model could 

induce problems since they do not properly capture the variables in question, which is why it is 

relevant to include investment and profitability factors. Fama and French (2015) conclude that 

patterns in mean returns are acknowledged when put in relation to size, book-to-market equities, 

profitability and investment.  

 
3 Buying last year’s top-decile mutual funds and selling last year’s bottom-decile funds yields a return of 8 percent 

per year. 



 

 

13 
 

3.11 q-four-factor model 

The q-four-factor model is a multi-factor asset pricing model with a distinguishing set of 

mentioned factors: market, size, investment, and profitability. The formula of q-four-factor 

model is written in the following manner: 

 

𝑅𝑖,𝑡 − 𝑅𝑓,𝑡  =  𝛼𝑖  +  𝛽𝑖,𝑀𝐾𝑇𝑀𝐾𝑇𝑡  + 𝛽𝑖,𝑆𝑀𝐵𝑆𝑀𝐵𝑡  +  𝛽𝑖,𝑅𝑀𝑊𝑅𝑀𝑊𝑡  +  𝛽𝑖,𝐶𝑀𝐴𝐶𝑀𝐴𝑡  +  𝜀𝑖,𝑡 

 

In their paper, Hou, Xue and Zhang (2015) empirically test that the q-four factor model 

summarizes the cross section of average stock returns. The test was done by examining nearly 

80 anomalies, to reveal that almost one-half of the anomalies are insignificant. Besides this, the 

performance was at least comparable to, and in many cases better than that of the Fama-French 

three and Carhart four-factor models in explaining the average excess return of stocks.4  

3.12 q-five-factor model 

Hou et. al. (2018) add a new factor to the previous q-four-factor model: an expected growth 

factor EG. The newly added factor shows strong explanatory power in the cross-sectional 

regressions. The expected growth factor outperforms other recently proposed asset pricing 

models such as the Fama-French six-factor model. The new model is called q-five factor model 

and is presented in the following formula:  

 

𝑅𝑖,𝑡 − 𝑅𝑓,𝑡  =  𝛼𝑖  +  𝛽𝑖,𝑀𝐾𝑇𝑀𝐾𝑇𝑡  + 𝛽𝑖,𝑆𝑀𝐵𝑆𝑀𝐵𝑡  

+ 𝛽𝑖,𝑅𝑀𝑊𝑅𝑀𝑊𝑡  + 𝛽𝑖,𝐶𝑀𝐴𝐶𝑀𝐴𝑡  + 𝛽𝑖,𝐸𝐺𝐸𝐺𝑡  +  𝜀𝑖,𝑡 

 

The model has shown to be the overall best performing model. 

3.13 Regression analysis (time-series) 

For every risk measure, regressions are performed for portfolios with equally weighted returns 

and value weighted returns. Using both methods reflect two different investment methods, 

giving a broader understanding of the downside risk measures. These portfolios are meant to 

be factor-mimicking portfolios. The first- and the tenth quantiles are calculated for the portfolio 

returns; a long position is taken for the tenth quantile and a short position for the first quantile, 

or vice versa, depending on which downside risk measure is being examined. Implication of 

this is to state that a downside factor is considered by creating these zero-cost portfolios that 

 
4 Based on some exemptions 
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mimic the measures. Furthermore, the portfolios are zero-cost portfolios, not one-sided 

portfolios, which is why excess returns (𝑅𝑖,𝑡  −  𝑅𝑓,𝑡) are not needed for these regressions. 

 

A total of 14 × 5 × 2 time-series regressions are constructed, 70 regressions per weight class. 

Alpha, Alpha t-statistic and Adjusted 𝑅2 are presented for our regressions. These regressions 

are made with HAC standard errors with 10 lags.5 The error structure is assumed to be 

heteroskedastic and possibly serially correlated. Regressions with robust standard errors are 

also made, but regressions with HAC standard errors are mainly used due to their higher 

robustness (see appendix for the regressions with robust standard errors).  

 

The risk measures are constructed as zero-cost portfolios and are split into equally-weighted 

and value-weighted portfolios. Alpha is the mean of the part of the portfolio that is not being 

explained in the asset pricing models. Alpha t-statistic is used to see how significant the alpha 

is (to set the significance level). A significant alpha suggests that the asset pricing models can 

be extended with our downside risk factor. Adjusted 𝑅2 is presented because it penalizes when 

adding new factors to the asset pricing models. 

3.14 Construction of the portfolios 

The outputs are every investable stock from the beginning of the period until the end of the 

period examined. January 3rd, 1967 to June 28th, 2019. Rebalancing dates are set every year 

on the 30th of June. This is done to reflect new companies that entered the market, also 

companies that were delisted. Table 2 is presented to reflect the plausible ranges for the different 

risk measures. The table shows that the Sortino ratio and semi deviation are the same order of 

magnitude since they are related; the same parallel is drawn for VaR and ES. 

 

  

 
5 This is an arbitrary number and could be optimized, but for the interest of time it was not optimized. 
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Table 2: Summary statistics for every risk measure, where semi deviation and Sortino ratio without 

notations are constructed with respect to the portfolio mean returns. 

 Observations Mean Std Min 25% 50% 75% Max 

Skewness 237811 0.0465 1.3490 -50.0710 -0.1878 0.1346 0.4687 36.0639 

Kurtosis 237811 15.3177 43.3003 -0.4680 4.4577 7.6505 14.1492 3508.5234 

VaR 90.0% 237819 -3.2880 1.7958 -40.5465 -4.2560 -2.9322 -2.0176 0 

VaR 95.0% 237819 -4.7970 2.5473 -69.3147 -6.1076 -4.2560 -2.9509 0 

VaR 99.0% 237818 -8.7111 4.7247 -91.6355 -11.0780 -7.6919 -5.3110 0 

ES 90.0% 237811 -5.6142 3.0287 -58.6023 -7.2437 -5.0173 -3.4451 0 

ES 95.0% 237811 -7.3808 3.9182 -78.7904 -9.4480 -6.5491 -4.5201 0 

ES 99.0% 237811 -12.1613 6.6844 -130.7754 -15.5369 -10.6305 -7.3156 0 

Semi deviation 237811 2.2559 1.1744 0.2082 1.3702 1.9806 2.8661 20.7655 

Semi deviation risk-free 237811 2.2662 1.1980 0.0342 1.3811 2.0134 2.9087 20.7348 

Standard deviation 237811 3.2759 1.6983 0 2.0242 2.9270 4.1885 29.7643 

Downside beta 237819 0.6981 0.5463 0 0.2865 0.5780 0.9657 11.6356 

Sortino 237811 -0.0151 0.0309 -0.3550 -0.0318 -0.0145 -2.87E-05 0.2655 

Sortino risk-free 237811 -0.0052 0.0324 -0.7737 -0.0231 -0.0052 0.0106 0.6958 
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4. Data 

4.1 Data sample 

We use data obtained from CRSP (Center for Research in Security Prices) through Wharton 

Research Data Services (wrds). The initial data sample consists of daily stock returns of all 

American-listed companies between January 1960 and December 2019, with a total of 18231 

stocks. The data sample consists of ten different query variables.6 Some duplicates in stocks are 

identified. The duplicates are removed, which is further explained in the forthcoming section. 

We include cumulative factors for prices and shares outstanding to adjust for changes in 

numbers of shares outstanding (for instance, stock splits and share buybacks), acquisitions and 

sales of stocks. This is also to calculate adjusted prices and adjusted shares outstanding. This 

makes it possible to further calculate the correct market capitalization for every tradable date. 

 

The Fama-French factors and the momentum factor (Carhart four-factor model) used in the 

report are obtained from Kenneth French’s website (2019). The q-factors are obtained from the 

global-q website (2020). 

4.2 Data processing description 

The raw data that we download from CRSP needs to be processed to account for missing values 

(blank; not presented) and multiple share classes. We remove mutual funds, trusts, ETFs (e.g., 

iShares), etc. For the filtration process and further processing of data, programming language 

Python is used. Missing observations are filtered out and companies with several share classes 

are identified. Among those companies, we identify and filter out share classes with low 

volumes traded. We assume that share classes that traded bigger volumes 75% of the time, are 

the relevant ones for our analysis. Given two share classes, we picked the share class with the 

longer history. Share classes with short time series are removed, as well as shorter price series; 

series with fewer bid/ask quotes are also removed. A comparison is also made to pick the share 

classes with the bigger market capitalizations. The effect of distinguishing share classes in this 

manner was to make sure that the dataset was narrowed down to only including tradeable share 

classes.  

 
6 The following query variables downloaded for each tradable company were PERMNO (Permanent ID-number 

of a Security), PERMCO (Permanent ID-number of a Company), DT (Tradable Dates), COMNAM (Company 

Name), SHRCLS (Share Class), PRIMEXCH (Primary Exchange), SHROUT (Number of Shares Outstanding), 

PRC (Closing Price or Bid/Ask Average), CFACSHR (Cumulative Factor to Adjust Shares Outstanding) and 

CFACPR (Cumulative Factor to Adjust Price). 
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5. Empirical results 

5.1 Descriptive statistics 

This subchapter presents a summary of descriptive statistics for our risk measure regressions, 

using asset pricing models. Table 3 reflect numbers for a set of risk measures from both weight 

classes, although equally-weighted portfolios are the main focus in the results.  

 

Table 3: Descriptive statistics for a set of risk measures’ zero-cost portfolios on every date; EW denotes 

equally-weighted portfolios and VW denotes value-weighted portfolios 

 Observations Mean Std Min 25% 50% 75% Max 

ES 95% EW 13576 0.0752 0.9075 -9.4748 -0.4210 0.0390 0.5284 10.2654 

ES 95% VW 13576 -0.0881 1.2037 -11.8416 -0.7120 -0.1129 0.5021 17.2985 

VaR 99% EW 13576 0.0727 0.8877 -8.8909 -0.4108 0.0381 0.5177 10.1668 

VaR 99% VW 13576 -0.0838 1.1682 -11.2647 -0.6916 -0.1040 0.5004 16.5246 

Sortino risk-free EW 13576 0.0401 0.6825 -7.4641 -0.2931 0.0385 0.3754 6.9159 

Sortino risk-free VW 13576 0.0008 0.8453 -5.7156 -0.4408 0.0086 0.4409 7.9846 

Semi deviation EW 13576 -0.0754 0.8604 -9.6672 -0.5036 -0.0407 0.3849 8.7624 

Semi deviation VW 13576 0.0938 1.1230 -15.3593 -0.4687 0.1124 0.6786 12.0278 

Downside beta EW 13576 0.0027 0.8764 -9.7094 -0.4108 -0.0255 0.4359 10.3266 

Downside beta VW 13576 0.0052 0.9294 -7.7154 -0.4670 0.0021 0.4714 8.8541 

Kurtosis EW 13576 -0.0132 0.4517 -3.2214 -0.2698 -0.0051 0.2518 6.3558 

Kurtosis VW 13576 0.0059 0.7072 -10.3702 -0.3402 -0.0001 0.3523 8.0680 

Skewness EW 13576 -0.0134 0.3828 -3.9035 -0.2197 -0.0142 0.1998 3.5137 

Skewness VW 13576 0.0036 0.6175 -8.2017 -0.3161 0.0123 0.3330 8.0386 

 

In Figure 1, we can see how the median returns of the portfolios change for every risk measure 

over time, except for the Sortino ratio. In the first panel, kurtosis increases from 4 to 12, while 

skewness slightly decreases from 0.2 to 0. In the second panel, VaR is measured; the range goes 

from -2 to -9. All VaR measures slightly decreases over time, but the smallest one is VaR 99%. 

In Panel 3, ES follows the same trend as VaR, but the range goes from -3.5 to -13. Panel 4 

shows how semi deviation and standard deviation increases over time, where the biggest 
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increase is reflected in semi deviation with respect to the risk-free rate. Sortino ratio and Sortino 

ratio with respect to the risk-free rate has not changed over time, and has steadily been at 0, 

which is reflected in Panel 5. Downside beta has, however, decreased from 1.5 to 0.5 over the 

time frame given. 

 

Figure 1: Median over time for every risk measure  

 

 
Panel 1: Skewness in blue and kurtosis in orange 

Panel 2: VaR 90% in blue, 95% in orange and 99% in green 
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Panel 3: ES 90% in blue, 95% in orange and 99% in green 

Panel 4: Semi deviation in blue, semi deviation risk-free in orange and standard deviation in green 

Panel 5: Downside beta in blue, Sortino ratio in orange and Sortino ratio risk-free in green 
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5.2 Main findings 

We present the time-series regressions in Table 4. First and foremost, we find that nearly all the 

alphas are significant and negative (all except for the Sortino ratio and Sortino ratio with respect 

to the risk-free rate). This suggests that companies with higher exposure to downside risk earn 

lower returns and vice versa after controlling for other risk factors. This finding is consistent 

with downside risk being traded at a discount. The economic interpretation of the findings is 

that investors are either oblivious to downside risk, their risk preferences are skewed towards 

higher variance portfolios, or they are not investing in efficient portfolios. Ang, Chen, and Xing 

(2006) arrive at a different conclusion, that the cross section of stock returns reflects a downside 

risk premium. They also conclude that stocks with high downside betas have higher average 

returns, which they further describe as consistent with a market where participants place more 

weight in losses and less weight in gains. Their conclusions can be partly explained by different 

sample groups in the papers. Ang, Chen, and Xing (2006) base their study on a concentrated 

sample group, i.e., NYSE, while our study contains all U.S. stock exchanges. It is likely that 

they intend to avoid the illiquidity effect of including small firms. 

 

The zero-cost portfolios are then potential risk factors, where none of the asset pricing models 

are fully able to explain the variation in our portfolios. The alphas are also very significant in 

the sense that they have high t-statistics, which suggests that this is not due to multiple 

hypothesis testing or fortuitous numbers in the results. Considering the high Adjusted 𝑅2, the 

asset pricing models are not completely ignored. The factors in the models are indeed correlated 

with other factors. However, this is not an issue since the factors from asset pricing models 

themselves are correlated (for example SMB and MKT in the Fama-French three-factor model). 

 

For many models (VaR 90%, VaR 95%, VaR 99%, ES 90%, ES 95%, ES 99%, semi deviation, 

semi deviation with respect to the risk-free rate and standard deviation), we find significant 

alphas. Alpha of the q-five factor model is closest to zero, followed by the alphas of q-four, 

Fama-French five, Carhart four and Fama-French three-factor models. Although, the most 

significant alpha is the one of Fama-French three-factor model (biggest absolute t-statistic). As 

we keep on extending models from the Fama-French three-factor model to Fama-French five 

and q-factor models, we can explain additional parts of the variation, which translates to added 

explanatory power (higher Adjusted 𝑅2). Despite that, there is a small deviation: Adjusted 𝑅2 
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of the q-four and q-five factor models are smaller than those of the Carhart four and Fama-

French five-factor models, respectively (see Table 4). 

 

Table 4: Equally weighted returns using HAC; numbers in brackets denominate Alpha t-statistics  

 Alpha 

FF3 

[%] 

Adj.  𝑅2  

FF3  

 

Alpha 

FF5  

[%] 

Adj.  𝑅2  

FF5  

Alpha 

Carhart 

[%] 

Adj.  𝑅2  

Carhart 

Alpha 

q-four 

[%] 

Adj.  𝑅2  

q-four 

Alpha 

q-five 

[%] 

Adj.  𝑅2  

q-five 

ES at 90.0% -0.0948 0.5034 -0.0853 0.5363 -0.0920 0.5061 -0.0813 0.4977 -0.0703 0.5098 

 (-12.07)  (-11.63)  (-11.59)  (-10.57)  (-9.18)  

ES at 95.0% -0.0932 0.4956 -0.0831 0.5311 -0.0902 0.4988 -0.0789 0.4923 -0.0682 0.5041 

 (-11.69)  (-11.12)  (-11.18)  (-10.04)  (-8.73)  

ES at 99.0% -0.0893 0.4984 -0.0786 0.5389 -0.0857 0.5031 -0.0741 0.5001 -0.0645 0.5101 

 (-11.31)  (-10.66)  (-10.72)  (-9.60)  (-8.39)  

VaR at 90.0% -0.0929 0.5167 -0.0836 0.5509 -0.0902 0.5190 -0.0796 0.5100 -0.0687 0.5215 

 (-11.84)  (-11.46)  (-11.37)  (-10.38)  (-8.95)  

VaR at 95.0% -0.0919 0.5066 -0.0825 0.5392 -0.0889 0.5096 -0.0781 0.5020 -0.0672 0.5139 

 (-11.68)  (-11.20)  (-11.16)  (-10.07)  (-8.70)  

VaR at 99.0% -0.0904 0.4843 -0.0806 0.5187 -0.0872 0.4879 -0.0764 0.4832 -0.0657 0.4955 

 (-11.46)  (-10.89)  (-10.93)  (-9.82)  (-8.53)  

Downside beta -0.0198 0.6878 -0.0208 0.6898 -0.0183 0.6887 -0.0176 0.6775 -0.0119 0.6812 

 (-3.91)  (-4.18)  (-3.59)  (-3.49)  (-2.31)  

Kurtosis -0.0091 0.1212 -0.0042 0.1507 -0.0081 0.1225 -0.0048 0.1460 -0.0087 0.1522 

 (-2.17)  (-1.03)  (-1.87)  (-1.16)  (-2.06)  

Skewness -0.0097 0.1219 -0.0058 0.1473 -0.0114 0.1274 -0.0079 0.1066 -0.0035 0.1179 

 (-2.60)  (-1.63)  (-2.95)  (-2.04)  (-0.92)  

Semi deviation -0.0877 0.4279 -0.0760 0.4791 -0.0850 0.4309 -0.0730 0.4162 -0.0634 0.4266 

 (-10.81)  (-10.09)  (-10.29)  (-9.06)  (-7.92)  

Semi deviation 

risk-free 

-0.0950 0.5031 -0.0844 0.5418 -0.0919 0.5063 -0.0803 0.5006 -0.0700 0.5110 

 (-11.68)  (-11.13)  (-11.16)  (-10.06)  (-8.80)  

Sortino ratio -0.0268 0.4807 0.0307 0.5191 0.0277 0.4811 0.0237 0.4926 0.0240 0.4926 

 (4.21)  (4.95)  (4.20)  (3.78)  (3.78)  

Sortino ratio 

risk-free 

0.0357 0.4006 0.0367 0.4440 0.0367 0.4012 0.0308 0.4386 0.0304 0.4386 

 (5.29)  (5.66)  (5.25)  (4.74)  (4.65)  

Standard deviation -0.0951 0.5081 -0.0842 0.5474 -0.0923 0.5106 -0.0806 0.5014 -0.0698 0.5126 

 (-11.64)  (-11.08)  (-11.13)  (-9.97)  (-8.67)  

 

 

VaR and ES are significant at 99% but are not significant when we want to account for multiple 

hypothesis testing. This is something that comes out after many of the factors are false positive. 

 

Many models exhibit relatively strong significance in explaining the mean return of the zero-

cost portfolios. The q-five factor model stands out as the best explaining model with its smallest 
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absolute alpha. The increase in Adjusted 𝑅2 through Fama-French three, Carhart four, and 

Fama-French five-factor models seem logical, where every newly added factor increases the 

credibility of the models and in explaining the alpha. Therefore, it is reasonable to take a 

cautious look on why Adjusted 𝑅2 of the q-four and q-five factor models are smaller than those 

of the Carhart four and Fama-French five-factor models. It appears that the set of factors from 

the q-factor models give rise to minor differences in the Adjusted 𝑅2, compared to the Carhart 

four and Fama-French five-factor models. That is due to the idea that the Carhart four and 

Fama-French five-factor models go better together with the downside risk measures that we 

form our zero-cost portfolios from. In Table 4, the remaining measures give grounds for the 

second group of the split.7 This group consists of deviating characteristics. 

 

5.3 Other findings 

5.3.1 Downside beta (EW) 

The alpha presented by the downside beta using the Fama-French five-factor model deviates 

from the previous findings from Section 5.2, by having the biggest absolute value. T-statistics 

among the zero-cost portfolios are small (in absolute values) when compared to Section 5.2, 

which raises thoughts for underlying reasons. The reason could be that the Fama-French five-

factor model is better at pricing the assets. Lower t-statistics would probably not survive the 

multiple hypothesis testing. 

5.3.2 Skewness (EW) 

For skewness, alpha of the q-five factor model is closest to zero. The significance is reflected 

in the t-statistics, which show small absolute values, where the t-statistic from the Carhart four-

factor model shows that its alpha is statistically significant. The variation in the returns of 

skewness-formed zero-cost portfolios are, to a certain extent, explained by their small absolute 

Adjusted 𝑅2.  

5.3.3 Kurtosis (EW) 

In Table 4, kurtosis-formed zero-cost portfolios constructed by the Fama-French five-factor 

model show the smallest, absolute values. While this is current, the most significant alpha is 

 
7 The second group consists of downside beta, kurtosis, skewness, Sortino ratio and Sortino ratio with respect to 

the risk-free rate.  
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the one of the Fama-French three-factor model (t-statistics in Table 4). Further, significantly 

lower Adjusted 𝑅2 are reflected in the returns of the kurtosis-formed portfolios, compared to 

those from Section 5.2. This gives rise to uncertainty regarding the intercepts. The conclusion 

that could be drawn is that these values show that there is low explanatory power in these alpha 

factors. That can be reflected in the small absolute value of the t-statistic from the zero-cost 

portfolio formed by kurtosis. 

 

Kurtosis and skewness fit well into a theoretical framework, but when put into a practical 

perspective, they seem to lose explanation power regarding the unexplained variables of  asset 

pricing models. The alphas do not have statistical explanatory power when attempting to see 

how much of the mean return that is explained by priced risk measures like skewness and 

kurtosis. 

5.3.4 Sortino ratio (EW) 

The benchmark return used in this measure is the mean return of the portfolio. The q-four factor 

model performs well when explaining some of the variation in its returns, although alpha is not 

zero. When it comes to the significance of t-statistics, they are smaller than those in Section 

5.2, in absolute values. The alpha of the most significant t-statistic is the one from the Fama-

French five-factor model. These findings give rise to a contradicting linkage when compared 

to Section 5.2.  

5.3.5 Sortino ratio with respect to the risk-free rate (EW) 

The zero-cost portfolios formed from the Sortino ratio with respect to the risk-free rate also 

present deviating findings in the results. The q-five factor model manages to explain some of 

the variation in the returns, which is reflected in its alpha, experiencing the smallest absolute 

value. Like the Sortino ratio with respect to the portfolio mean, the different details stress a 

linkage that are not similar to the linkages found in Section 5.2. The contradicting linkage that 

Sortino ratio and Sortino ratio with respect to the risk-free rate seem to support, may reflect the 

distinguishing characteristic that Sortino ratio possesses in coherence with U.S. stocks. 

5.3.6 Miscellaneous comments 

There are some details in Table 4 that could further be stressed. As we increase the confidence 

level of ES and VaR, alphas come closer to zero; the higher the confidence level, the more the 
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accuracy increases. The Sortino ratio with respect to the risk-free rate seems to be the only 

measure to experience positive alphas.  

5.4 Equally-weighted vs. value-weighted 

There are some differences between the equally-weighted zero-cost portfolios and the value-

weighted zero-cost portfolios. In Table 5, alphas of the risk measures discussed in Section 5.2, 

follow an opposite trend, i.e., as we add more factors to the regressions, alphas become larger 

in absolute value. The alphas are backed up by different t-statistics which are not similar to the 

t-statistics previously mentioned (compare t-statistics in Table 4 and 5). A similar trend can be 

reflected for the zero-cost portfolios formed from downside beta (compare downside beta in 

Table 4 and Table 5). Further comments of Table 5 are that the kurtosis and skewness have 

similar characteristics compared to the findings in Section 5.3. They are surrounded by very 

small Adjusted 𝑅2 and irregular t-statistics like small absolute values (compared to those in 

Section 5.3). The low Adjusted 𝑅2 show that the factors in the models have low correlation with 

other factors. Similar trends can be reflected for the zero-cost portfolios formed from the 

Sortino ratio (with respect to the mean return) and Sortino ratio with respect to the risk-free rate 

(see Table 5).  

 

The big absolute values of the alphas of risk measures equivalent to those in Section 5.2 can be 

indications of value-weighted stock portfolios not cooperating well with asset pricing models. 

It shows disturbance in the returns when adding new irrelevant factors that do not co-work with 

the volume factor. Perhaps a model designed with a volume factor should be tested to see if the 

alphas show better significance. The few similarities with the outliers can reflect value-

weighted stock portfolios working slightly better than the ones in Section 5.2. The value-

weighted zero-cost portfolios are considered not to be convenient for our results. It seems that 

downside risk is priced mostly for smaller companies. 

 

  



 

 

25 
 

Table 5: Value weighted returns using HAC; numbers in brackets denominate Alpha t-statistics 

 Alpha 

FF3 

[%] 

Adj.  𝑅2  

FF3  

 

Alpha 

FF5  

[%] 

Adj.  𝑅2  

FF5  

Alpha 

Carhart 

[%] 

Adj.  𝑅2  

Carhart 

Alpha 

q-four 

[%] 

Adj.  𝑅2  

q-four 

Alpha 

q-five 

[%] 

Adj.  𝑅2  

q-five 

ES at 90.0% -0.0707 0.5242 -0.0978 0.6374 -0.0743 0.5266 -0.0988 0.5460 -0.1130 0.5571 

 (-8.55)  (-13.85)  (-8.76)  (-12.15)  (-13.84)  

ES at 95.0% -0.0686 0.5389 -0.0960 0.6638 -0.0736 0.5440 -0.0995 0.5851 -0.1132 0.5964 

 (-8.57)  (-14.31)  (-9.04)  (-13.08)  (-14.95)  

ES at 99.0% -0.0652 0.5000 -0.0962 0.6522 -0.0708 0.5063 -0.0968 0.5494 -0.1097 0.5591 

 (-8.17)  (-13.94)  (-8.61)  (-12.31)  (-13.77)  

VaR at 90.0% -0.0654 0.5255 -0.0924 0.6359 -0.0695 0.5284 -0.0920 0.5219 -0.1031 0.5281 

 (-7.56)  (-12.37)  (-7.85)  (-10.55)  (-11.82)  

VaR at 95.0% -0.0710 0.5528 -0.0993 0.6799 -0.0768 0.5591 -0.1017 0.5838 -0.1138 0.5920 

 (-8.60)  (-14.39)  (-9.07)  (-12.66)  (-14.20)  

VaR at 99.0% -0.0640 0.5358 -0.0904 0.6586 -0.0683 0.5396 -0.0926 0.5794 -0.1072 0.5929 

 (-8.24)  (-13.73)  (-8.52)  (-12.43)  (-14.46)  

Downside beta -0.0078 0.4198 -0.0125 0.4271 -0.0081 0.4198 -0.0152 0.4103 -0.0100 0.4131 

 (-1.23)  (-2.00)  (-1.25)  (-2.36)  (-1.51)  

Kurtosis 0.0117 0.2045 -0.0011 0.2789 0.0075 0.2144 -0.0002 0.2633 -0.0022 0.2640 

 (2.16)  (-0.21)  (1.37)  (-0.04)  (-0.41)  

Skewness -0.0033 0.1491 0.0010 0.1629 -0.0032 0.1490 0.0045 0.1537 0.0083 0.1569 

 (-0.67)  (0.19)  (-0.63)  (0.88)  (1.63)  

Semi deviation 0.0785 0.5630 0.1038 0.6890 0.0816 0.5652 0.1054 0.5876 0.1153 0.5943 

 (10.48)  (17.04)  (10.55)  (14.58)  (15.98)  

Semi deviation 

risk-free 

0.0738 0.5431 0.1030 0.6800 0.0778 0.5463 0.1044 0.5768 0.1177 0.5868 

 (9.17)  (15.28)  (9.44)  (13.40)  (14.99)  

Sortino ratio 0.0155 0.5289 0.0256 0.6047 0.0137 0.5300 0.0109 0.5178 0.0083 0.5186 

 (2.65)  (4.65)  (2.32)  (1.84)  (1.36)  

Sortino ratio 

risk-free 

0.0069 0.4995 0.0101 0.5547 0.0041 0.5026 -0.0040 0.5181 -0.0071 0.5192 

 (1.13)  (1.78)  (0.67)  (-0.70)  (-1.22)  

Standard deviation 0.0683 0.5446 0.0989 0.6873 0.0719 0.5469 0.0992 0.5704 0.1130 0.5806 

 (8.13)  (14.45)  (8.32)  (12.11)  (13.79)  
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6. Conclusion and discussion 

This paper aims to emphasize further knowledge and research about downside risk as an 

academic subject but also to uplift its use in practical, financial contexts. The data output is 

used to construct zero-cost portfolios. We run 140 time-series regressions where factors from 

Fama-French three, Fama-French five, Carhart four, q-four and q-five factor models are used. 

We find that the alphas for our regressions are significant, and the results using data from the 

q-factor models possess the most explanatory power. 

 

The reason behind the differences in equally-weighted portfolios and value-weighted portfolios 

could be subject of further studies. The results of the paper open up for further improvements. 

Other theories can be considered to develop the paper. For instance, a relatable subject that can 

be linked to this paper is the Extreme Value Theory. This branch of tail risk would provide a 

theory for a closer look into extreme probability outcomes that could occur. Our findings could 

also be linked to market bubble literature. Another improvement could be to run cross-sectional 

regressions, Fama-MacBeth regressions. These cross-sectional regressions estimate the betas 

and risk premiums for any risk factors that are expected to determine asset returns. Multiple 

assets across time can be regressed. This has beneficial implications to analyze the value of the 

correlation created in the cross-sections of the multiple assets and to see how much of the asset 

returns are priced by the downside risk measures.  

 

Lastly, another improvement that could be done regarding this paper is to run a Gibbons-Ross-

Shanken (GRS) test. The GRS test is used to study the alpha intercepts from the regressions of 

our asset pricing models, leading us into a comparison of the models’ explanatory power. In 

this case, the test enables to test the hypothesis that all alphas would be jointly equal to zero. 

Reason for this statistical test is to diversify the paper further and to give a broader view of 

downside risk measures and to convince the reader about the weight of using downside risk 

measures in practice. The mentioned improvements are interesting to follow and see the 

outcomes of, but we leave that work for future researches.  
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Appendix 

Table A1: Equally-weighted returns using robust errors; numbers in brackets denominate Alpha t-statistics 

 Alpha 

FF3 

(%) 

𝑅2  

FF3  

 

Alpha 

FF5  

(%) 

𝑅2 

FF5  

Alpha 

Carhart 

(%) 

𝑅2 

Carhart 

Alpha 

q-four 

(%) 

𝑅2 

q-four 

Alpha 

q-five 

(%) 

𝑅2 

q-five 

ES at 

90.0% 

0.0948 0.5035 0.0853 0.5364 0.092 0.5063 0.0813 0.4979 0.0703 0.5100 

 (16.71)  (15.58)  (15.96)  (14.12)  (12.22)  

ES at 

95.0% 

0.0932 0.4957 0.0831 0.5313 0.0902 0.4989 0.0789 0.4924 0.0682 0.5043 

 (16.56)  (15.34)  (15.78)  (13.85)  (11.97)  

ES at 

99.0% 

0.0893 0.4985 0.0786 0.539 0.0857 0.5032 0.0741 0.5003 0.0645 0.5103 

 (16.24)  (14.92)  (15.38)  (13.40)  (11.63)  

VaR at 

90.0% 

0.0929 0.5168 0.0836 0.551 0.0902 0.5192 0.0796 0.5102 0.0687 0.5217 

 (16.17)  (15.11)  (15.46)  (13.65)  (11.76)  

VaR at 

95.0% 

0.0919 0.5068 0.0825 0.5394 0.0889 0.5098 0.0781 0.5021 0.0672 0.5141 

 (16.22)  (15.09)  (15.47)  (13.60)  (11.70)  

VaR at 

99.0% 

0.0904 0.4844 0.0806 0.5189 0.0872 0.4881 0.0764 0.4833 0.0657 0.4957 

 (16.23)  (15.02)  (15.43)  (13.58)  (11.70)  

DS beta -0.0198 0.6879 -0.0208 0.69 -0.0183 0.6888 -0.0176 0.6776 -0.0119 0.6814 

 (-4.67)  (-4.93)  (-4.26)  (-4.07)  (-2.72)  

Kurtosis -0.0091 0.1214 -0.0042 0.1511 -0.0081 0.1228 -0.0048 0.1462 -0.0087 0.1525 

 (-2.44)  (-1.14)  (-2.14)  (-1.30)  (-2.32)  

Skew. -0.0097 0.1221 -0.0058 0.1477 -0.0114 0.1277 -0.0079 0.1069 -0.0035 0.1182 

 (-3.12)  (-1.87)  (-3.59)  (-2.46)  (-1.09)  

Semidev. -0.0877 0.428 -0.076 0.4793 -0.0849 0.4311 -0.073 0.4163 -0.0634 0.4268 

 (-15.44)  (-14.04)  (-14.69)  (-12.58)  (-10.90)  

Semidev. 

risk-free 

-0.095 0.5032 -0.0844 0.5419 -0.0919 0.5065 -0.0803 0.5008 -0.07 0.5112 

 (-16.56)  (-15.34)  (-15.78)  (-13.84)  (-12.05)  

Sortino 0.0268 0.4809 0.0307 0.5192 0.0277 0.4813 0.0237 0.4928 0.024 0.4928 

 (6.05)  (7.14)  (6.10)  (5.31)  (5.29)  

Sortino 

risk-free 

0.0357 0.4007 0.0367 0.4442 0.0367 0.4013 0.0308 0.4388 0.0304 0.4388 

 (7.71)  (8.20)  (7.74)  (6.73)  (6.56)  

Standard 

deviation 

-0.0951 0.5082 -0.0842 0.5476 -0.0923 0.5108 -0.0806 0.5016 -0.0698 0.5128 

 (-16.44)  (-15.20)  (-15.70)  (-13.70)  (-11.86)  
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Table A2: Value-weighted returns using robust errors; numbers in brackets denominate Alpha t-statistics 

 Alpha 

FF3 

(%) 

𝑅2  

FF3  

 

Alpha 

FF5  

(%) 

𝑅2 

FF5  

Alpha 

Carhart 

(%) 

𝑅2 

Carhart 

Alpha 

q-four 

(%) 

𝑅2 

q-four 

Alpha 

q-five 

(%) 

𝑅2 

q-five 

ES at 

90.0% 

-0.0707 0.5243 -0.0978 0.6376 -0.0743 0.5267 -0.0988 0.5461 -0.1131 0.5573 

 (-9.43)  (-14.80)  (-9.79)  (-13.30)  (-15.32)  

ES at 

95.0% 

-0.0686 0.5390 -0.0960 0.6639 -0.0736 0.5442 -0.0994 0.5853 -0.1132 0.5966 

 (-9.65)  (-15.67)  (-10.26)  (-14.55)  (-16.66)  

ES at 

99.0% 

-0.0652 0.5001 -0.0962 0.6524 -0.0708 0.50655 -0.0968 0.5495 -0.1097 0.5593 

 (-8.74)  (-15.25(  (-9.36)  (-13.40)  (-15.19)  

VaR at 

90.0% 

-0.0654 0.5256 -0.0924 0.6360 -0.0695 0.5285 -0.0920 0.5221 -0.1031 0.5283 

 (-8.37)  (-13.33)  (-8.81)  (-11.49)  (-12.87)  

VaR at 

95.0% 

-0.0710 0.5529 -0.0993 0.6800 -0.0768 0.5592 -0.1017 0.5839 -0.1138 0.5922 

 (-9.89)  (-16.16)  (-10.59)  (-14.42)  (-16.20)  

VaR at 

99.0% 

-0.06404 0.5359 -0.0904 0.6587 -0.0683 0.5398 -0.0926 0.5796 -0.1072 0.5931 

 (-9.25)  (-15.15)  (-9.74)  (-13.91)  (-16.24)  

DS beta -0.0078 0.4199 -0.0124 0.4274 -0.0081 0.4200 -0.0152 0.4104 -0.0100 0.4134 

 (-1.30)  (-2.10)  (-1.33)  (-2.50)  (-1.63)  

Kurtosis 0.01167 0.2047 -0.0011 0.2792 0.0075 0.2146 -0.0002 0.2636 -0.0022 0.2643 

 (2.08)  (-0.20)  (1.33)  (-0.04)  (-0.40)  

Skew. -0.0033 0.1493 0.0009 0.1532 -0.0031 0.1493 0.0045 0.1539 0.0083 0.1572 

 (-0.66)  (0.19)  (-0.63)  (0.89)  (1.64)  

Semidev. 0.0785 0.5631 0.1038 0.6891 0.0816 0.5654 0.1054 0.5877 0.1153 0.5944 

 (12.19)  (18.97)  (12.49)  (16.63)  (18.15)  

Semidev.

risk-free 

0.0738 0.5432 0.1030 0.6801 0.0778 0.5464 0.1044 0.5769 0.1177 0.5870 

 (10.22)  (16.90)  (10.67)  (14.76)  (16.71)  

Sortino 0.0155 0.5290 0.0256 0.6048 0.0137 0.5302 0.0109 0.5179 0.0083 0.5188 

 (2.97)  (5.31)  (2.57)  (2.04)  (1.51)  

Sortino 

risk-free 

0.0069 0.4996 0.0101 0.5549 0.0041 0.5027 -0.0040 0.5182 -0.0071 0.5194 

 (1.31)  (2.03)  (0.77)  (-0.78)  (-1.36)  

Standard 

dev. 

0.0683 0.5447 0.0987 0.6874 0.0719 0.5471 0.0992 0.5706 0.1129 0.5808 

 (9.20)  (15.84)  (9.52)  (13.45)  (15.33)  
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A3: Data processing and zero-cost portfolio code 
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