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Abstract

The Chicago Board Options Exchange (CBOE) Volatility Index (VIX) is known as being

an indicator of fear, often referred to as the fear index. Low volatility indicates tranquil-

ity in the market, whereas high volatility indicates distress. We aim to use the level of

the VIX as an indicator for stock market movements and incorporate it into an invest-

ment strategy within a Markowitz (1952) mean-variance (MV) setting. By using Kenneth

French’s 12 industry assets over a 30-year window, we calculate the sensitivity between

VIX and the assets. Further, by incorporating transaction costs, and testing for different

input variables for the strategy, we build upon earlier papers by Copeland and Copeland

(1999), and Cloutier, Djatej, and Kiefer (2017). The VIX strategy is tested against a

simple moving average (SMA) strategy suggested by Faber (2013). We find evidence

in suggesting that our VIX strategy, using MV as the outset portfolio, outperform the

buy-and-hold strategy as well as the SMA strategy. Additionally, after introducing an

equally weighted outset portfolio, the strategy is able to outperform the S&P 500 over

the 30-years.

Keywords: VIX, strategy, mean-variance, simple moving average, volatility, transaction

costs, bull market, bear market
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1 Introduction

During the 2007-2008 financial crisis, and the stock market crash of 2020, the rapid sell-off

caused simple buy-and-hold portfolios to lose many years of accumulated gains. During

both crises, the market observed record-level increases in volatility, which reflected in

record-high levels in the volatility index (VIX). The VIX was first introduced by Brenner

and Galai (1989), where the VIX, as we know it today, was created by CBOE and had

its inception in 1993. From there on, the average market return and the level of the VIX

have had a clear negative correlation. Whaley (2009) explores the actual interpretation

of the VIX and argues that the VIX represents the expected future market volatility over

the next 30 calendar days. Since the VIX has been argued to show the expected future

volatility, several financial papers have explored the subject of forecasting volatility over

the years, using the VIX as a market-timing tool.

In this paper, we build upon the subject of market timing strategies using the VIX.

Earlier papers by Copeland and Copeland (1999), and Cloutier, Djatej, and Kiefer (2017),

apply tactical asset allocation (TAA) strategies that exploit the level of the VIX in order

to time the market. The main reason for using a TAA strategy is to reduce investor

bias. Cloutier et al. (2017) conclude that investor anxiety increases during times with

elevated levels of the VIX, which in turn leads to an emotionally biased investment

strategy. However, if a tactical asset allocation strategy were applied instead of letting

an investor control the divestment, such erratic behavior would be limited. The main

reason for using a TAA strategy that specifically exploits movements in the VIX is to

have an unbiased indicator that forecasts future bull and bear markets. In a practical

sense, a TAA using the VIX reallocates a chosen number of portfolio weights using the

VIX-level as an indicator for when this should happen. For example, our method is closer

to Cloutier et al. (2017), which looks at the current level of the VIX, while Copeland and

Copeland (1999) look at relative changes in the VIX-level.

However, one major area that is lacking in research looking into the subject of TAA

is that papers often ignore, or only briefly, consider transaction costs. By not including

transaction costs, the results by Copeland and Copeland (1999), and Cloutier et al.

(2017), are inflated. In this paper, we aim to include rudimentary transaction costs and

view them as a crucial part of the investment strategy. Therefore, a commission fee,

a short-selling fee, and the bid-ask spread, are used to account for the cost of trading
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appropriately. The costs are derived from the papers by D’Avolio (2002), Do and Faff

(2012), Abdi and Ranaldo (2017), and Engelberg, Reed, and Ringgenberg (2018).

Further, when developing an investment strategy that utilizes the level of the VIX

for a bull- and bear strategy, it is crucial to test its performance against other investment

strategies. A rather simple TAA strategy suggested by Faber (2013), uses a simple moving

average (SMA) of asset prices, with monthly rebalancing. They find that their simple

strategy performs well over a longer time-frame and sets a good baseline for how a rather

simple unbiased TAA strategy can improve the performance of a portfolio. However, as

is the case with the other mentioned papers, Faber does not include transaction costs.

Nonetheless, our suggested VIX strategy is compared with the SMA strategy side-by-side

during the whole sample period to see which strategy performs better.

What should be noted is that a TAA strategy builds upon an already existing port-

folio, and in terms of alpha, a TAA strategy is profoundly affected by the initial portfolio

allocations. In order to test an investment strategy that exploits implied volatility de-

rived from options, DeMiguel, Plyakha, Uppal, and Vilkov (2013) use different minimum-

variance and mean-variance (MV) portfolios, as well as an equally weighted (EW) port-

folio. To shed light on how a TAA strategy is affected by the underlying buy-and-hold

portfolio, we replicate the classic MV strategy first described by Markowitz (1952), the

SMA strategy by Faber (2013), as well as the EW portfolio as described by DeMiguel,

Garlappi, and Uppal (2009).

If we assume that TAA reduces investor bias as suggested by Cloutier et al. (2017),

our paper shows that our TAA strategy, not only, reduces investor bias, but also increases

portfolio returns with relatively lower volatility. When extending the data to the last

economic crisis of 2020, we can also show that we produce a significant positive alpha. The

alpha is higher than both the underlying buy-and-hold portfolio and the SMA strategy.

The remainder of this paper is structured as follows. Section 2 discusses previous

relevant academic research. Section 3 describes the data used. Further, section 4 describes

the methodology of the investment strategies. Section 5 depicts the results, which are

then thoroughly analyzed and discussed. Lastly, section 6 summarizes our findings and

suggests for future research.
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2 Literature Review

2.1 The History of Volatility Estimation in Portfolio Selection

One of the most well-known portfolio selection methods that use volatility as a part of the

investment strategy is the MV portfolio selection process. First introduced by Markowitz

(1952), it is a method in which a portfolio is selected based on expected returns (means)

and the volatility (variance) of different portfolio combinations with a chosen number of

assets. Markowitz shows that the solutions from the MV selection process result in more

efficient and diversified portfolios than any particular undiversified portfolio. However,

today it is well-known that many alternatives outperform the MV portfolio selection

suggested by Markovitz.

To further develop and improve on Markowitz’s findings, investors and researchers

have spent many years trying to predict movements and exploit forecast models to de-

velop better portfolio allocation strategies. Many of these improvements have focused on

estimating volatility and incorporating it into the strategy. One such famous estimation

model is the ARCH model, autoregressive conditional heteroskedasticity process, pro-

posed by Engle (1982). The ARCH process utilizes past volatility (variance) to forecast

future volatility, Engle shows that future volatility conditional on past volatility is not

constant, but rather that it depends on past volatility. This was later expanded upon

by Bollerslev (1986), who introduced the GARCH process, generalized autoregressive

conditional heteroskedasticity process.

During this time, research on the need of a volatility-based index, which could give

insight into current market volatility started to arise. Brenner and Galai (1989) first

proposed such an index, where the authors argue that investors were exposed to changes

in volatility and should, therefore, have an alternative to hedge that risk. They mention

that a volatility index should be introduced with the purpose of being the underlying

asset for volatility futures and options. From this came the VIX which was inaugurated

four years later in 1993, however, it would take until 2004 before futures contracts were

introduced in this market. First, the VIX was based on options on the S&P 100 (OEX),

this later changed from 2003 onwards to options on the S&P 500 (SPX) according to

Zhang, Shu, and Brenner (2010). However, the two different approaches in calculating

the VIX have a 98% correlation. As it would turn out in later years, the VIX in itself is

3



sometimes misunderstood, according to Whaley (2009). During the 2007-2008 financial

crisis, the VIX was said to cause volatility in the stock markets, whereas, in reality, it

shows the forward-looking expect, the purposes of the VIX are:

(i) The index should be a benchmark for short-term volatility

(ii) The VIX should be the underlying for derivative products such as futures and

options

It is further argued that the VIX ”is implied by the current prices of S&P 500 index

options and represents expected future market volatility over the next 30 calendar days”

Whaley (2009, p. 2), hence it does not measure realized volatility.

History has shown that the relationship between volatility and market effect is strong.

As research on the area of volatility grew, and the VIX was introduced, papers started

to look into using the VIX as a suitable method of predicting the volatility and using

it in a portfolio allocation setting. Fleming, Ostdiek, and Whaley (1995) show that it

is possible to use the VIX to forecast volatility. They find that there exists a negative

correlation between the VIX, and returns on the S&P 100. The authors also find that

the stock market’s positive moves have a lower impact on the VIX compared to when

the stock market goes down, in which case the impact on the VIX is more substantial,

in absolute values. French, Schwert, and Stambaugh (1987) builds upon the subject of

expected returns and volatility by statistically testing the exploratory paper of Merton

(1980). The authors conclude that unexpected negative returns are negatively related

to unexpected increases in volatility. They find that an unpredictable positive change in

volatility has a positive effect on expected risk premiums and lowers the current stock

price. It indicates that a market-timing approach, based on volatility, could be beneficial

for a portfolio allocations strategy.

Fleming, Kirby, and Ostdiek (2001), try to confirm the merit of timing the market

using volatility. They find that there is indeed an economically significant reason for

timing the market using volatility modeling. Thus, trying to exploit market movements

with predictions of volatility does indeed have its benefits. Further, Fleming, Kirby, and

Ostdiek (2003) build upon this subject by comparing the realized volatility estimates with

the famous estimation model GARCH. They conclude that realized volatility, instead

of volatility estimation with GARCH or similar, has a higher economic value. In the
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paper, they test three primary rolling estimation methods of estimating the volatility

for their portfolio optimization, daily, realized, and GARCH estimation. They find that

using the realized volatility approach indicates that investors would be willing to pay for

switching between ”daily-returns-based estimator for the conditional covariance matrix

to an estimator based on realized volatility.” Fleming et al. (2003, p. 508). It means

that the economic significance of better volatility estimations for market timing purposes

exists, further cementing the importance of volatility as a market-timing tool.

2.2 Tactical Asset Allocation

Stemming from the papers focusing on only estimating the volatility, and then newer

papers predicting market movements using volatility, research on the area of using the

VIX as a tool for producing higher returns started to arise. Copeland and Copeland (1999)

build upon the findings by French et al. (1987), and introduce a method of timing market

movements using the VIX within a tactical asset allocation (TAA) strategy. They look

into whether the VIX has a relationship with size and style portfolios, finding statistical

significance of the relationship between the portfolios and the VIX. By changing the

portfolio’s allocation of the size and style factors and testing their strategy against a

simple buy-and-hold portfolio, they can statistically prove that their strategy outperforms

for any given variation in the VIX. Their findings show that a TAA strategy using the

VIX as a market-timing tool is a viable option. Another paper by Cloutier, Djatej,

and Kiefer (2017) uses a well-diversified portfolio within a TAA strategy, which takes

the level of the VIX into account. If the VIX is above, or below, a certain bound, the

portfolio reallocates. Thus, the authors’ strategy tries to utilize the level of the VIX

to predict bull- and bear market movements. Their TAA strategy manages to achieve

higher returns than a simple buy-and-hold portfolio. However, both of these papers do

not consider transaction costs to any significant degree.

Wells Fargo first used TAA in the early 1970s, where assets were shifting between

bonds and stocks according to a set excess return threshold of stocks, according to Lee

(2000). TAA has therefore been in use for many years before research on the area caught

up. After TAA having outperformed the stock market during the crash of 1987, TAA

as an investment strategy grew tremendously in the coming years, from $48 billion in

1994 estimated by Philips, Rogers, and Capaldi (1996) to $100 billion in 1999 by Lee

5



(2000). However, being practically applied for many years without distinct research on

the area of what TAA is, meant TAA was not clearly defined. Lee (2000) tries to combat

this issue by trying to explain that TAA has developed since its inception, but a general

interpretation is an investment strategy, including stocks, bonds, and cash where the

weights are predetermined as well as lower and upper bounds of the percentual allocation

to these assets. The portfolio is then tactically rebalanced according to the manager’s

strategy. Dahlquist and Harvey (2001) take this a step further and distinguish between

three different levels of asset allocation. The first level is the tracking of a benchmark,

e.g., the MSCI World Index1, the second level being a strategic five-year asset allocation

with annual updates, and the last one is TAA, with monthly and, or, quarterly bets.

According to the authors, transaction costs in the TAA strategy is of high importance,

with re-allocations done more frequently, which should lead TAA managers wanting to

minimize the transaction costs.

What should be noted is that research on the area of TAA has not only focused

on simply predicting volatility in markets, but instead timing the market in general. To

see how well a VIX market timing approach performs, it is, therefore, relevant to test

it against another simple market-timing approach. A paper by Faber (2013) explores a

simple moving average (SMA) TAA strategy. Faber shows that using their TAA strategy;

a well-diversified portfolio can achieve similar returns to that of equities, while having

a volatility similar to bonds. By timing the asset reallocation to specific predetermined

characteristics, Faber shows that, over 110 years, the specific TAA model applied out-

performs the S&P 500 with a higher return, lower volatility, and a higher Sharpe ratio.

Another factor affecting the TAA strategy performance is, of course, the underly-

ing portfolio. Beyond the strategy’s implementation, the returns are only as good as

the portfolio from which the TAA strategy deviates. Papers on different portfolios are

numerous, one such paper is DeMiguel, Plyakha, Uppal, and Vilkov (2013), where they

test several portfolio allocations focusing specifically on volatility. The authors use in-

formation retained from options, including implied volatility, to reduce the volatility

of different minimum-variance and mean-variance portfolios. They conclude that using

option-implied volatility can improve the volatility of a portfolio. After adding trans-

action costs, they still manage to improve the Sharpe ratio compared to not consider-

1Morgan Stanley Capital International (MSCI) World Index, includes 1644 mid- and large-cap stocks
from 23 developed countries

6



ing option-implied volatility. In addition to testing volatility based portfolio allocations,

they also test an equal-weighted (1/N) portfolio, the argument stemming from DeMiguel,

Garlappi, and Uppal (2009), which concludes that although not relying on any specific

optimization, the 1/N portfolio performs well.

The papers by Copeland and Copeland (1999), Faber (2013), and Cloutier et al.

(2017) do not consider costs, while Dahlquist and Harvey (2001) argue that transac-

tion costs in a TAA strategy is of high importance. Since reallocations are done more

frequently than the previously stated strategies, TAA managers need to minimize trans-

action costs. DeMiguel et al. (2013) follow the same path by showing that transaction

costs have a significant impact if the portfolio is allowed to reallocate daily compared to

a fortnightly reallocation. It is, therefore, essential to expand the mentioned papers by

adding transaction costs.

As noted, a common problem while looking at portfolio performance and asset al-

location strategies, is that transaction costs, have to be estimated and included to yield

realistic portfolio performances. According to Yoshimoto (1996), transaction costs are

necessary to achieve efficient portfolios. Damodaran (2020) acknowledges four costs of

trading, namely the following; brokerage cost (going further, we will address it as commis-

sion fee), bid-ask spread, price impact, and opportunity cost. Woodside-Oriakhi, Lucas,

and Beasley (2013) describe the costs associated with the reallocation of assets in an MV

setting as being a penalty that is paid in order to reallocate the assets. When looking at

TAA, it is important to consider the cost of being long-short or only long in a portfolio.

This subject is explored in a paper by Frazzini, Israel, and Moskowitz (2012), where the

authors use real trading data from a large institutional investor. A long-short portfolio

is said to experience lower trading costs than a simple long portfolio, the first having

transaction costs of 10 basis points and the latter having transaction costs of 16 basis

points. However, they conclude that after value-weighting, the long-short portfolio has

slightly higher transaction costs than the long-only portfolio. As reported by Do and Faff

(2012), the commission fees have been declining since the 1970s, e.g., in 1990 they were

20 basis points (bps) compared to 8 bps in 2008 and further falling to 3.2 bps in 20192.

Regarding the cost of short-selling, D’Avolio (2002) mentions that 91% of US stocks can

be shorted at an annual fee of 1%. Do and Faff (2012) also use a 1% annual short-selling

2https://www.virtu.com/uploads/documents/Global-Cost-Review-2019Q4.pdf
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fee, according to the authors, 84% of US-listed stocks can be shorted, and they cover

99% of the US stock market capitalization. In contrast, Engelberg, Reed, and Ringgen-

berg (2018) show that the median short-selling fee is only 11 bps per annum, with some

significant outliers. Abdi and Ranaldo (2017) research the subject of the bid-ask spread

cost, derived from the intra-daily high and low prices, as well as the daily closing price

if quote data is not at hand. They report the bid-ask spread as a round-trip cost, i.e.,

both buying and selling the stock, as one unit of the bid-ask spread cost.

2.3 Alpha and Factor Models

There have been many suggestions over the years concerning how to test the performance

of a portfolio statistically. One of the most famous is Jensen (1968), which examines fund

managers’ performance by looking at the intercept (α) of the famous capital asset pricing

model (CAPM), which would later become known as ”Jensen’s Alpha.” He concludes

that a positive α suggests that the fund manager manages to achieve an excess return

regarding the market portfolio.

In later years, Fama and French (1993) would expand the CAPM by adding market

factors that can better explain a portfolio’s return. The authors identify risk factors on

stocks, the three factors on stocks are; a market excess return factor (Rm-Rf), a factor

concerning a firm’s size (SMB), and a factor related to a firm’s book-to-market equity

(HML). The paper pre-beta sorts on size, to overcome the issue that betas and size are

almost perfectly correlated. Using Fama-MacBeth regressions, the paper finds that the

additional factors added, help explain the relationship of cross-sectional expected stock

returns. Fama and French (2015) extend their three-factor model to a five-factor model,

where the factors RMW and CMA are added, where RMW corresponds to Robust mi-

nus Weak (high minus low operating profitability) and CMA corresponds to conservative

minus aggressive (regarding the firm’s investment strategies).

3 Data

Our daily and monthly data represent the U.S. equity market. Also, we use the U.S.

one month Treasury Bill. The U.S equity market data, as well as the risk-free rate, stem
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from French’s data library3, which in turn uses the Center for Research in Security Prices

(CRSP). From the data library, we use French’s 12 assets, which comprise all U.S. listed

stocks. The description of the 12 assets are in Appendix Table 9. The VIX data and

the S&P 500 data were extracted from Bloomberg. Due to the limited time since the

VIX’s inception, our data set corresponds to 30 years, starting in January 1990, and

ending in December 2019. The VIX-spike in March 2020 that was caused by the Covid-

19 pandemic resulted in adding data for the first three months in section 5.6. Note that

the first year is used for backtracing correlation calculations and so forth, as outlined in

section 4. Therefore, the starting date from when we start investing and calculate returns

is January 1991. We use the daily closing prices of French’s industry asset classes, S&P

500, and the VIX daily close level to calculate the corresponding daily returns, asset

correlations, and additional metrics used in the strategies outlined in Section 4. For the

outset portfolio, we use 80 months before the starting day of January 1991 to calculate

variance-covariance matrices for the MV portfolio. The regressions are calculated on the

daily data and returns from January 1991 onwards.

We obtained the commission fee from Do and Faff (2012), in combination with data

retrieved from the ITG (Investment Technology Group)4.

Their data set ends in 2009. Thus, we add the years through 2019. The commission

fees add up to an average of 7.52 bps per trade. The short-selling fee was obtained by

using an average of the papers by D’Avolio (2002), Do and Faff (2012), and Engelberg

et al. (2018), which constitutes 55 bps per annum. Regarding the bid-ask spread, it was

derived from Abdi’s database5 in combination with data from CRSP.

In stock price data, autocorrelation, or serial correlation, is a recurring issue that

has to be taken into consideration. Autocorrelation is the correlation between an asset

and any of the asset’s lagged values. By implementing the Newey-West estimator in the

regression analysis, the potential problem with autocorrelation is dealt with appropriately.

3https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
4https://www.virtu.com/uploads/2019/02/ITG-Global-Cost-Review-4Q18.pdf,
https://www.virtu.com/uploads/documents/Global-Cost-Review-2019Q4.pdf

5https://www.farshidabdi.net/data/index.html
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4 Method

This paper aims to increase the Sharpe ratio for an underlying buy-and-hold portfolio by

using the TAA strategy outlined in section 4.2 through 4.4. Further, we aim to produce

a significant positive alpha using the Fama-French five-factor model that is higher than

the comparable portfolios. In addition, several versions of the strategy will be tested to

shed light on the input variables that affect the strategy the most.

4.1 Constructing the Buy-and-Hold Outset Portfolio

For an efficient portfolio outset, we will use two different portfolios. The reason for using

two portfolios is to analyze the potential effect that the outset portfolio may have on a

TAA strategy. The first method is the mean-variance (MV) portfolio, as replicated from

Markowitz (1952). The method is well known, and the derivation of it can be seen in

Appendix 6.

By constructing the outset portfolio in this manner, the portfolio has an efficient

outset, and after that, we apply TAA to the chosen portfolio. In this paper, we derive

the neutral portfolio solution from minimizing the portfolio variance for a set number

of returns6. Further, we reallocate the MV portfolio quarterly. Since both means and

covariances change over time, it would not be reasonable to assume that the optimal

portfolio allocation does not change over roughly 30 years. Additionally, we define the

optimal neutral portfolio as the one with the highest Sharpe ratio. Formally stated as:

Sharpe ratio =
Rp −Rf

σp
(1)

Where Rp is the portfolio returns, Rf is the risk-free rate, and σp denotes the standard

deviation of the portfolio returns.

The second method for the outset portfolio is an equal-weighted buy-and-hold port-

folio, similar to Copeland and Copeland (1999) and Cloutier et al. (2017). This portfolio

allocates an equal amount into each asset at day one, and is not adjusted for any rela-

tive changes in an assets weight over the period. The reason for testing this method is

that it is used by earlier papers, such as DeMiguel et al. (2009), and will eliminate any

6The portfolios are solved by constructing 1000 different portfolios by combining assets using a
variance-covariance matrix calculated on monthly data in an 80-month moving window, moving backward
from the month the MV-portfolio is reallocated.
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estimation errors that may come as a consequence of the MV outset portfolio.

4.2 VIX Sensitivity and Market State Thresholds

The reason for using the VIX as an instrument for the expected volatility comes from the

way the VIX is calculated. Since the VIX is calculated by using implied volatilities from

the S&P 500, calculated on ”... near- and next-term put and call options with more than

23 days and less than 37 days to expiration” CBOE (2019, p. 5). The general formula

for calculating the VIX, stated by CBOE, is the following:

σ2 =
2

T

∑
i

∆Ki

K2
i

eRfTQ(Ki)−
1

T

[
F

K0

− 1

]2
(2)

Where σ is the implied volatility, T is the time to expiration, F is the forward index level

derived from index option prices, K0 is the first strike below the forward index level, Ki

is the strike price of the out-of-the-money option; a call if Ki > K0, and a put if Ki < K0;

both put and call if Ki = K0. Further, ∆Ki = Ki+1−Ki−1

2
is the interval between strike

prices, half of the difference between strikes on either side of Ki, Rf is the risk-free interest

rate to expiration, and Q(Ki) is the midpoint of the bid-ask spread for each option with

strike Ki.

To use the VIX as a market timing indicator for the tactical asset allocation strategy,

the sensitivity of an asset and the level of the VIX will be the two key factors when

deciding whether to sell or buy an asset. The sensitivity will be estimated as follows.

For each considered asset, the correlation between the percentage change of the daily

VIX-level and the percentage change of the asset’s price will be calculated. The delta-VIX

percentage change, or ∆V IXpctt, is calculated as:

∆V IXpctt =
V IXt − V IXt−1

V IXt−1
(3)

Where V IXt is the VIX closing level at day t. Further, the price percentage change for

the assets are calculated as, ∆Ppcti, defined as:

∆Ppcti =
Pi, t − Pi, t−1

Pi, t−1
(4)

Where Pi, t is the price of asset i at time t.
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To measure the asset-sensitivity, we rank assets as either high or low sensitivity,

depending on the correlation between ∆V IXpctt and ∆Ppcti, t. The implications of

whether the correlation is positive or negative is further discussed in section 4.3. The

correlation is calculated in a rolling window, where we test different windows to find the

optimal correlation window. High correlation is defined as above |X|, and is regarded

as high sensitivity, while low correlation is defined as below |X|, and is regarded as

low sensitivity. Different levels of the sensitivity bounds are tested in order to find the

optimal sensitivity bound. Following this, assets are bought or sold depending on two

major factors. The first is whether the VIX is at a high or low level, indicating a bear or

bull market. The second factor is that we take into account the sensitivity of the assets.

4.3 Tactical Asset Allocation

The two tactical asset allocation portfolios are the simple moving average (SMA) portfolio

and the VIX portfolio, from now on called the VIX strategy. The baseline ”neutral”

portfolio, in this paper defined as, the MV or the EW portfolio, is the outset portfolio

for the two TAA strategies, meaning that the TAA strategies will deviate from the MV

or EW portfolio during intervals where the window for TAA is triggered. For the VIX

strategy, this is defined as above or below a certain threshold, while the SMA portfolio

is triggered depending on its 200-day moving average and the asset’s price, as outlined

below. To summarize, the MV portfolio is used to keep the underlying outset portfolio

clearly methodically defined and efficient, while the TAA portfolio re-allocations react to

market movements.

When the VIX is above the upper bound, the assets which are sensitive to the VIX

and have a negative correlation are sold, and excess is put into risk-free. Conversely, if

the VIX is below the lower bound, the market is deemed as a bull market. The VIX

strategy can leverage its position for all of the assets and put the excess into risk-free to

gain the upside from a low volatility market. In practice, this means that when the VIX

is above its upper bound, or below its lower bound, two things will happen. If the VIX

is above its upper bound, the VIX strategy will change any positive weight allocated in

an asset to negative, i.e. shorting the asset and then allocate the difference to risk-free.

If the VIX is below its lower bound, the VIX strategy will leverage any position it has

by twice and borrowing the difference from risk-free.

12



The MV portfolio, which is rebalanced quarterly, is used when the TAA-window has

not been triggered. If the VIX is in a TAA-window, and the underlying outset portfolio

is reallocated, the VIX strategy weights will also be reallocated based on the changes

in the outset portfolio. For the TAA-window, the bounds that define either a bull or a

bear market were replicated from Cloutier, Djatej, and Kiefer (2017), but will be iterated

over several values to analyze the effect the input variable has. The bounds determine

what is considered high or low volatility and, therefore, depict bull and bear stock market

movements. Low volatility, and, consequently, a low level of the VIX, indicates periods

of stability, while high levels of the VIX indicate periods of higher uncertainty.

Further, within the TAA strategy, an n-day average is applied to calculate when

the VIX is above or below its bounds, where n is the number of lag-days used when

calculating the average. Using n-day averages instead of fixed values lets us test for the

optimal input for the VIX strategy and see if we enter or exit the positions too early.

The TAA strategy is in use until the n-day average VIX between the upper and lower

threshold; at this point, the mean-variance portfolio is re-implemented. The TAA-window

thresholds are formally defined as:

V IXAverage =
1

n

k∑
t=k−n+1

V IXt ≥ [Upper Bound] (5)

or

V IXAverage =
1

n

k∑
t=k−n+1

V IXt ≤ [Lower Bound] (6)

While the TAA strategy is only triggered by the pre-determined levels of the VIX,

we continuously run the TAABEAR and TAABULL portfolios. Where TAABEAR corre-

sponds to a V IXAverage ≥ [Upper Bound], and TAABULL corresponds to a V IXAverage ≤

[Lower Bound].

The paper also tests different trading limits in addition to correlation windows,

sensitivity limit, VIX average lag size, and upper and lower bounds. The trading limit

works as a percentage limit of the percentage that would have changed for an asset in a

TAA-window. For example, if the strategy is in a bull market and wants to change an

asset’s weight from 50% to 100% by borrowing the risk-free, the limit will only allow a

movement from 50% to 75% if the trading limit is set at 50%.

The SMA portfolio is replicated from Faber (2013) and is reallocated monthly, with
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the difference being that instead of either buying when the moving average is lower than

the current price or selling when the moving average is higher than the current price,

moving the excess into risk-free, we apply the same method as for the VIX strategy. This

means that when the moving average is lower than the current price, the SMA strategy

leverages its position by borrowing risk-free to gain potential upside. Following this, the

SMA strategy changes its positive positions to short positions and allocates the difference

to risk-free. Further, the window size used is a 200-day moving window. We calculate

the moving average as follows.

SMAn =
1

n

k∑
t=k−n+1

Pi, t (7)

Where Pi, t is the price of asset i at time t, where t is a function of k where i is the current

date at which the SMA counts back from, and n is the number of lagged days, which is

200 in this paper.

After constructing the portfolio weights, we calculate the returns as the cumulative

daily returns throughout the data set, given the weights allocated into each asset. The two

TAA-strategies SMA and VIX, and the neutral optimized MV portfolio, are examined

for portfolio performance by testing for a statistically significant alpha in each of the

portfolios using the Fama-French five-factor model (Fama and French (2015)). Formally

stated as:

µp = αi +β1(RM, t−Rf, t)+β2(SMBt)+β3(HMLt)+β4(RMWt)+β5(CMAt)+ εi, t (8)

Further, by using the Fama-French five-factor model, a comparison between the different

strategies’ characteristics can be made. This means that statistically significant different

betas for each factor in the portfolios can give further information regarding the charac-

teristics that each portfolio creates. We use this to see whether there are any similarities

concerning how the different strategies invest, but will not focus too much on this in

the paper. We will primarily employ this model to find a significant alpha. However,

the benefit of using the Fama-French five-factor model is that the model explains the

portfolios’ returns in a better way, and less omitted variable bias affects the alpha.
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4.3.1 Difference

In the paper by Copeland and Copeland (1999), the authors conduct difference regres-

sions, which we implement by using the following formulas:

V IXr − SMAr = α + β∆V IX + εi, t (9)

V IXr −MVr = α + β∆V IX + εi, t (10)

SMAr −MVr = α + β∆V IX + εi, t (11)

Where V IXr, SMAr, and MVr are the cumulative returns for the respective investment

strategy. α is the intercept, β is the slope, ∆V IX is the daily change in the VIX, and εit

is the error term. The focus of the regressions is to see how the TAA strategies perform

compared to each other, and additionally, how they perform compared to the outset

portfolio.

4.4 Transaction Costs

Without accounting for transaction costs, the different asset allocation strategies will

show inflated returns simply because there are no trading restrictions. However, as was

discussed in the literature review, having to make a trade penalizes the portfolio manager

with a transaction fee. Copeland and Copeland (1999), and Cloutier et al. (2017), do not

incorporate any transaction costs, leading strictly to theoretical assumptions about the

over performance of their respective VIX-based investment strategies.

Included in the transaction costs, tci, t, are commission fees, short-selling fees, and

the bid-ask spread costs. We do not include any price impact costs or opportunity costs,

that is beyond the scope of this paper. The transaction costs are calculated as:

tci, t = (wi,t − wi,t−1)cfi, t + Short∗ | −wi,t | sfi, t + (wi,t − wi,t−1)0.5 ∗ bai, t (12)

Where cfi, t is the commission fee of asset i at time t, and sfi, t is the annual short-selling

fee of asset i at time t, and 0.5 ∗ bai, t is the one-way bid-ask spread cost of asset i at

time t. The wi,t corresponds to the weight allocated in asset i at time t, where the

change in weights for each asset between t and t-1 is the total amount that is traded.

Short is a scalar value of 1 or 0, triggered when the value for the weight is negative, and
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adding a short-selling fee to the allocated weight for each day that the short position

is held. The commission fee is set at 7.52 basis points per trade, as was mentioned in

section 3. The annual short-selling fee is set at 55 bps per year, as outlined in section

3. The daily short-selling fee is the annual fee divided by 252 (the number of trading

days per year). Regarding the bid-ask spread cost, we compute the appropriate cost for

the twelve industry assets, using CRSP’s permanent id-number of (security) PERMNO

in combination with their corresponding Standard Industrial Classification (SIC) code,

and the data provided by Abdi7. The data attainable from Abdi’s database extends from

before our starting point in January 1991 but ends in December 2016. The bid-ask-spread

does not vary dramatically during that 25-year time-span; we, therefore, use the average

bid-ask spread over the whole period. The calculated average bid-ask spreads for the

twelve assets are shown in Appendix Table 11.

5 Results and Analysis

5.1 Input Variables

In the following sections, the specific inputs for the VIX strategy are, unless varied in the

individual sections, as follows:

1. VIX correlation window: 70

2. Sensitivity: 0.75

3. Lag size: 4

4. VIX upper bound: 40

5. VIX lower bound: 0

6. Trading limit bear market: 0%

7. Trading limit bull market: 0%

The VIX correlation window is the window in which the asset-correlations to the VIX

are calculated. The sensitivity is the absolute value of the correlation for when an asset

is deemed sensitive to the VIX. Lag size is the value of the lag, used when calculating

the average VIX-level that triggers the VIX strategy. The VIX upper and lower bounds

control when the VIX strategy is triggered. The trading limits control the amount that is

7https://www.farshidabdi.net/data/index.html
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allowed to be reallocated from the outset weights. A 100% trading limit would result in

zero deviation from the outset weights, while 0% allows for full reallocation of the outset

weights. Further, each following section discusses the effects of changing each input

variable. The inputs above represent the optimal choice given an MV outset portfolio,

unless stated otherwise, and thus, each variable’s effect will be compared with these

inputs. This optimal choice is derived from single variable optimization tests, where

the best combination was found by testing all of the different combinations of the input

variables.

5.1.1 VIX Correlation Window

Table 1: Varrying Correlation Window
Summary Statistics

STATS 30 40 50 60 70 80 90 100
Return 339.4761 313.5659 334.1361 367.4154 415.1045 383.0584 365.1968 363.1868
Returnc 253.418 237.511 248.4613 276.2 323.5275 295.9078 283.3075 285.4001
No. of trades 668 647 659 645 611 610 608 585
µ 0.3806 0.3575 0.379 0.404 0.4405 0.4182 0.4046 0.4021
µc 0.2952 0.2764 0.2918 0.3197 0.3667 0.342 0.3293 0.3307
σ 2.405 2.3932 2.5366 2.4392 2.4909 2.5291 2.5343 2.4997
σc 2.3526 2.3422 2.4478 2.3427 2.4014 2.4469 2.4392 2.4093
Sharpe 0.1582 0.1494 0.1494 0.1656 0.1768 0.1653 0.1596 0.1609
Sharpec 0.1255 0.118 0.1192 0.1365 0.1527 0.1398 0.135 0.1373

Table 1 shows the summary statistics when varying the VIX correlation windows. The Return is the
cumulative daily excess return in the period 1991.01.03-2019.12.31. No. of trades is calculated as the
summary of changes in weights over the period, where one trade is defined as any change in any asset’s
weight from one day to the next. µ is the daily mean return in percent during the period. σ is the
daily standard deviation in percent of the portfolio. Sharpe is the daily Sharpe ratio for each iteration of
correlation window size. The cost-adjusted statistics are denoted with c; these include commission fees,
short-selling fees, and the bid-ask spread.

As seen in Table 1, by changing the VIX correlation window, we can see there is a large

increase in return moving from 40 to 70, and after that, an increase in window size yields

lower returns both before and after costs. Changing the window limit has two potential

merits. Firstly, by decreasing the window size, the correlation is calculated on newer data

and should better reflect the correlation between assets in a shorter time-frame. Secondly,

increasing the window size has the opposite effect of incorporating older data by taking

a longer time-frame, giving a long-term view of the correlation of each asset over time.

Therefore, the risk of taking too short of a correlation window may result in inaccurate

correlations due to a small sample size. On the other end, increasing the correlation

window could incorporate correlation data no longer relevant for when the VIX strategy

should be implemented. Interestingly, the 100-day window slightly increases returns from
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the 90-day window. Indicating that there is no consistency in terms of a large or small

window resulting in higher returns.

5.1.2 Sensitivity

Table 2: Varying Asset Sensitivity
Summary Statistics

STATS 0.5 0.55 0.6 0.65 0.70 0.75 0.80 0.85
Return 392.5202 395.2974 395.0475 382.8411 375.1322 415.1045 288.9511 229.1871
Returnc 284.7092 290.6448 291.0705 284.3616 281.6165 323.5275 237.9063 204.6833
No. of trades 663 652 647 642 628 611 567 465
µ 0.4253 0.4272 0.427 0.4173 0.4111 0.4405 0.3323 0.2687
µc 0.3308 0.3366 0.337 0.3296 0.3265 0.3667 0.2767 0.2361
σ 2.5325 2.5282 2.5284 2.5005 2.4849 2.4909 2.3245 2.447
σc 2.4436 2.4359 2.435 2.4078 2.3972 2.4014 2.3402 2.4465
Sharpe 0.1679 0.169 0.1689 0.1669 0.1654 0.1768 0.143 0.1098
Sharpec 0.1354 0.1382 0.1384 0.1369 0.1362 0.1527 0.1183 0.0965

Table 2 shows the summary statistics when varying the asset’s sensitivity limits. The Return is the
cumulative daily excess return in the period 1991.01.03-2019.12.31. No. of trades is calculated as the
summary of changes in weights over the period, where one trade is defined as any change in any asset’s
weight from one day to the next. µ is the daily mean return in percent during the period. σ is the daily
standard deviation in percent of the portfolio. Sharpe is the daily Sharpe ratio for each iteration of sensi-
tivity limit. The cost-adjusted statistics are denoted with c; these include commission fees, short-selling
fees, and the bid-ask spread.

In Table 2, the returns do not show a clear pattern, as the correlation approaches |1|.

However, the number of transactions show a clear pattern, where they decrease sub-

stantially. With a lower number of transactions, the method is not as penalized by the

transaction costs. The reason behind the lower amount of trades is simple. The strategy

uses asset correlations to decide whether the asset is sensitive or not, and from there, it

decides on whether the assets should be traded or not given the level of the VIX. In a

TAA window, reducing the number of sensitive assets will reduce the number of potential

trades that are available.

Our results indicate that increasing the sensitivity and limiting the number of trades

yield higher returns, up until sensitivity limit 0.75. This pattern may arise from trading

the wrong assets with the sensitivity limit too low. For example, if the VIX moves up

sharply, indicating a bear market, and the wrong asset (given a |0.5| sensitivity limit)

trades, the following error could occur. In the TAA window, the strategy is shorting the

asset; however, its return during this period is positive. This results in money lost on the

trade. Since the optimal sensitivity limit is |0.75|>, this indicates that there is a trade-off

between a high sensitivity limit and a low sensitivity limit. However, note that there are
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large variations in the level of return when the sensitivity limit is low, indicating that it

is not a linear trade-off.

5.1.3 Lag Size

Table 3: Varying Lag Size
Summary Statistics

STATS 3 4 5 6 7 8 9 10
Return 436.0230 415.1045 405.7001 369.8205 366.2317 349.9331 346.5937 333.375
Returnc 315.8576 323.5275 311.7854 297.8552 294.9671 285.2499 282.5251 271.6493
No. of trades 707 611 628 574 574 564 564 564
µ 0.4549 0.4405 0.4341 0.407 0.4041 0.3916 0.3889 0.377
µc 0.3605 0.3667 0.3561 0.3428 0.34 0.3308 0.328 0.3163
σ 2.498 2.4909 2.4976 2.4816 2.4802 2.5053 2.505 2.4776
σc 2.4311 2.4014 2.405 2.4003 2.4011 2.416 2.4179 2.3992
Sharpe 0.1821 0.1768 0.1738 0.164 0.1629 0.1563 0.1552 0.1522
Sharpec 0.1483 0.1527 0.1481 0.1428 0.1416 0.1369 0.1357 0.1318

Table 3 shows the summary statistics when varying the VIX average lag size. The Return is the cu-
mulative daily excess return in the period 1991.01.03-2019.12.31. No. of trades is calculated as the
summary of changes in weights over the period, where one trade is defined as any change in any asset’s
weight from one day to the next. µ is the daily mean return in percent during the period. σ is the daily
standard deviation in percent of the portfolio. Sharpe is the daily Sharpe ratio for each iteration of lag
size. The cost-adjusted statistics are denoted with c; these include commission fees, short-selling fees,
and the bid-ask spread.

Varying the lag size will affect how fast or slow we trigger the VIX strategy. As can be

seen in Table 3, the returns show that there is a clear pattern in the trade-off between a

shorter or longer lag size window. This may be connected to transaction costs and miss-

ing out on potential profits. For example, having the lag size window too narrow, results

in the number of trades being higher, leaving the strategy vulnerable to noise in the VIX

and therefore increasing costs without increasing returns. However, for every additional

day that is part of the lag, the probability increases that the strategy is not triggered

fast enough, thus missing out on potential profits. Therefore, a one-day lag size would

be nonsensical, since the strategy would be triggered too many times and be profoundly

affected by short-term spikes in the VIX. Copeland and Copeland (1999) employ a 75-day

simple moving average (SMA) compared to the daily level of the VIX, the motivation

being that a 75-day SMA of the VIX reduces the noise in the data. Our application

is different and instead uses a moving average over a small period, which triggers the

strategy when it is over a specific upper and lower bound. By testing different lag sizes,

we can shed light on the effect of decreasing or increasing the amount of noise in the VIX.

The authors do not investigate the relevance of this window, but our results indicate that

there is an optimal solution to the trade-off between having the window too small or
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too large. In our case, the optimal solution is the four-day lag size, yielding the highest

Sharpec ratio of 0.1527 as well as the highest mean (µc). The four-day lag produces

the highest returns, both including and excluding costs. From six and above, there is

no significant effect on the number of trades, and there is a downward trend in the returns.

5.1.4 VIX Bounds

The summary statistics and regression results are depicted in Table 4, for different levels

of the upper bound along with the SMA and MV strategies. The table includes only

the alphas from the regressions, for full regression results of the optimal solution, see

Appendix Tables 13 and 14. The returns are generated with the input variables from

section 5.1, except for the varying upper bound.

At which upper bound, the VIX strategy is triggered is important. Copeland and

Copeland (1999), find that triggering their strategy at different percentage changes of the

VIX can yield negative and positive returns. Although our VIX strategy uses another type

of limit as a trigger, the bounds serve the same purpose as the authors’ percentage changes

of the VIX. In Table 4, we can see that there is a clear trade-off between decreasing or

increasing the upper bound. This upper bound sets the limit for what constitutes a bear

market for the strategy. Naturally, it follows that this can yield lower returns if triggered

often. For example, a VIX-level of 20 does not indicate a potential bear market. The

poor performance of the VIX strategy at upper bound 20 reflects this. These results are

consistent with Copeland and Copeland (1999), who find that triggering their strategy at

10% changes in the VIX yield negative returns. This indicates that no matter the TAA

strategy, triggering it too soon will yield significantly lower returns due to the increase in

transaction costs. An example of this is that after the introduction of transaction costs,

the investor is better off by using upper bound 40. Not accounting for transaction costs

would result in the investor picking upper bound 25. Therefore, we can conclude that

even rudimentary costs have a significant impact on the strategy’s performance, which

is consistent with Dahlquist and Harvey (2001). Additionally and, most importantly, it

also changes what constitutes the optimal solution.
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Table 4: Varying Upper Bound
Summary Statistics and Regressions Results

STATS 20 25 30 35 40 45 SMA MV
Return 440.2212 465.3267 449.5513 388.8763 415.1045 311.7862 392.3947 219.5394
Returnc 134.5022 172.5663 251.2019 259.2105 323.5275 262.0611 146.2378 202.7941
No. of trades 1,936 1,597 1,038 788 611 526 1,226 390
µ 0.4521 0.4716 0.461 0.4204 0.4405 0.3579 0.5326 0.2569
µc 0.1135 0.1868 0.2945 0.3048 0.3667 0.3079 0.2522 0.2341
σ 2.2548 2.3991 2.3709 2.4141 2.4909 2.4876 5.2342 2.4724
σc 2.3735 2.4353 2.4184 2.4572 2.4014 2.4860 5.2979 2.4722
Sharpe 0.2005 0.1966 0.1944 0.1741 0.1768 0.1439 0.1017 0.1039
Sharpec 0.0478 0.0767 0.1218 0.1241 0.1527 0.1238 0.0476 0.0947

FF5
α 0.0002*** 0.0001** 0.0001* 0.0001 0.0001 0.0000 0.0000 -0.0001**
p 0.006 0.025 0.060 0.235 0.276 0.826 0.785 0.001
R2 0.022 0.072 0.125 0.228 0.315 0.385 0.241 0.765
αc 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0000 -0.0002 -0.0001***
pc 0.866 0.876 0.526 0.759 0.600 0.834 0.187 0.000
R2

c 0.023 0.072 0.129 0.228 0.318 0.388 0.238 0.765
* p < 0.10, ** p < 0.05, *** p < 0.01

Table 4 shows the main regression results and summary statistics when varying the VIX upper bounds,
and the SMA as well as the mean-variance strategy. The Return is the cumulative daily excess return
in the period 1991.01.03-2019.12.31. No. of trades is calculated as the summary of changes in weights
over the period, where one trade is defined as any change in any asset’s weight from one day to the
next. µ is the daily mean return in percent during the period. σ is the daily standard deviation in
percent of the portfolio. Sharpe is the daily Sharpe ratio calculated on daily mean and daily volatility.
The cost-adjusted statistics are denoted with c; these include commission fees, short-selling fees, and
the bid-ask spread. FF5 corresponds to the main regression, where the α is Jensen’s alpha from the
Fama-French five-factor model. p is the p-value for the regression, derived from Newey-West standard
errors to overcome the issue of heteroskedastic and autocorrelated standard errors. R2 is the r-squared
for the model.

The same story applies to the mean (µ), adjusted for costs; it is the highest at the

40 bound. µ is positive over the whole sample before and after accounting for transaction

costs for all the different threshold levels. Compared to Copeland and Copeland (1999),

our strategy does not seem to produce negative returns, as is the case with their lowest

threshold. One reason behind our consistent positive returns may connect to how we

trigger the strategy. While their method triggers on relative changes in the VIX compared

to a 75-day SMA, our strategy triggers simply on the actual level of the VIX. Therefore,

our method will be triggered when the market is deemed as distressed, while their method

runs the risk of triggering when there is no distress in the market.

The Sharpe ratio is at its highest at bound 25, while adjusting for transaction costs

it the highest at bound 40. Cloutier et al. (2017) achieve a Sharpe ratio of 0.7021; their

data set expands over the years 2002-2014; however, they do not include transaction

costs, leading to inflated values. Similar to their strategy, our VIX strategy produces a

higher Sharpe ratio than the outset neutral portfolio. Besides, it also outperforms the
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SMA strategy. We can, therefore, conclude that we achieved the goal of increasing the

returns while reducing the portfolio’s volatility. As mentioned, Cloutier et al. (2017)

do not consider costs; by including them, we can see that costs have a large impact on

the TAA strategy. It is not the case that the costs simply lower the return of the VIX

strategy; the fact is, they completely change what the optimal implementation of the

strategy is. Further cementing the findings by Dahlquist and Harvey (2001).

Under ”FF5”, the regression output in Table 4 shows that when excluding transac-

tion costs, the alphas with statistical significance for the VIX-strategy are all positive.

Only the MV strategy has a statistically significant alpha, after the introduction of trans-

action costs. As a form or robustness test, the ∆VIX is added to the Fama-French five-

factor model (see Appendix Table 12, 13 and 14), adding this variable to the regression

increases the R2
c , while also decreasing the p-value of the constant. Adding ∆VIX does

not make it possible to draw any new conclusions concerning alphas. However, it shows

that there may be an omitted variable bias not accounted for in the main model, includ-

ing the variable yields significant alphas on all regressions, except for the SMA strategy,

including costs. The second model used is suggested by Copeland and Copeland (1999),

and the corresponding results can be seen in Table 12 in the Appendix. The regres-

sions yield no positive statistically significant alphas; therefore, we can not conclude any

differences in returns between the portfolios for any given percentage change in the VIX.

It is important to note that when the VIX strategy moves towards its optimal upper

bound (40), the alphas in the difference regressions are almost zero against both the MV

outset portfolio and the SMA strategy. One reason behind this poor performance may

connect to the number of trades. As the VIX strategy moves its upper bound upwards,

the number of trades goes down. This, in turn, means that over the whole sample pe-

riod, the daily differences are small, albeit higher for the VIX strategy in the long-run.

This leads to the daily differences not being significant. Our results are not in line with

Copeland and Copeland (1999).

5.2 Return Period

As can be seen in Figure 1, we observe the most dramatic decrease in the SMA strategy

after the introduction of transaction costs. During the first ten years of the period, until
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the end of the dot-com bubble, the volatility and the sell-off was not high enough for the

VIX strategy to be able to utilize its short-selling strategy in any meaningful way. It is

apparent where the VIX strategy starts to exploit a high volatility throughout and after

the 2007-2009 financial crisis. During that period, the VIX strategy starts to deviate

from its outset MV portfolio and begins to outperform it, as can be seen in Figure 2.

The higher volatility of the SMA strategy is reflected by higher up-and-down movements

in Figure 1, which can also be seen in Table 4.

Figure 1: Cumulative Daily Returns

Figure 1 shows the excess returns of the three different investment strategies, VIX, MV, and SMA. The
period depicted is 1991.01.03-2019.12.31., included in the graph are both outputs excluding and including
transaction costs. The Y-axis is denoted in hundreds of percent, meaning 1 on the axis corresponds to
100%.

Faber (2013) manages to achieve higher returns for their SMA strategy compared

to a simple buy-and-hold portfolio. However, their strategy lets the invested funds leave

and re-enter the market by using the risk-free; they do not incorporate the ability to

short any assets. Additionally, they do not consider transaction costs. Faber’s strategy

reallocates monthly, as does our SMA; however, there are some significant differences.

First, the author’s strategy does not allow for a higher allocation than 60% in risky as-

sets, and the rest in risk-free, whereas we have no limitations. Second, the underlying

assets are different, where Faber includes commodities, foreign stocks, and real estate.

Also of importance is the fact that our SMA strategy uses the MV strategy as its outset

portfolio, which significantly affects the performance of the SMA strategy, as can be seen

in section 5.3.1.
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Figure 2: VIX Strategy Performance

Figure 2 shows the excess returns of the VIX and MV strategies. The period depicted is 1991.01.03-
2019.12.31. The grey line (left Y-axis) is the VIX-level, in 2008 the VIX peaked at a level above 80. The
right Y-axis is denoted in hundreds of percent, meaning 1 on the axis corresponds to 100%.

Over the years from 1997 until 2002, the VIX had a period of elevated volatility; however,

there were just short intervals where the VIX was above 30, let alone above 40, leading

the strategy to simply follow the outset portfolio’s trend. From Figure 2, especially the

spike in the VIX in 2008 is exploited by the VIX strategy, resulting in it outperforming

the MV strategy. In Figure 3, the performance of the strategy and the importance of it

acknowledging a bear market makes it perform closer to the S&P 500 index from late

2008 until 2015. The key take away from the graphs is that the ability to use the VIX

as an indicator for a bear market yields higher returns during a rapid and broad market

sell-off. However, the strategy does not seem to be able to use the short-selling tactic in

order to generate any abnormal returns, though it does reduce the level of the decline

during the financial crisis compared to the MV strategy.

The market sell-off during low volatility periods leads to the VIX strategy not being

triggered. It is seen during the end of 2018 in Figure 3, where the S&P 500 fell roughly

20% from the September highs to the December lows. With a threshold set at 40, the

bear strategy never triggered, since the VIX reached a high of 36 on December 24. A

lower threshold would have triggered the strategy; however, the VIX was only above 30

for a mere three days. It was thus leading the bear strategy to be unexploited during a
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low volatility market sell-off. Worth noting is the underperformance during the first 18

years, as seen in Figure 3; this is, of course, without exploiting the potential upside with

implementing the lower bull market indicator. Overall, by looking at the performance of

the VIX portfolio in Figure 3, the question arises whether other outset portfolios would

be better suited for a combination with the VIX strategy.

Figure 3: VIXc vs. S&P 500

Figure 3 shows the excess return of the VIX strategy and the excess return of a buy-and-hold S&P 500
portfolio. The period depicted is 1991.01.03-2019.12.31. The Y-axis is denoted in hundreds of percent,
meaning 1 on the axis corresponds to 100%.

5.3 Equal-Weighted Portfolio

As was shown in the preceding sections, using the MV approach as the outset portfolio

does not render any significant excess returns over thirty years, the investor would be bet-

ter off by buying a broad market index, like the S&P 500. To isolate whether the returns

are lower due to the outset portfolio rather than the strategy in itself, we take inspiration

from DeMiguel et al. (2009) by testing the MV outset portfolio against an equal-weighted

(EW) portfolio. It is known that MV optimization can suffer from estimation errors over

more extended periods and produce inferior results to other alternatives; therefore, an

EW portfolio removes the possibility of estimation errors in the outset portfolio. In ad-

dition, it lets us test the impact an outset portfolio has on a TAA strategy.
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5.3.1 Equal-Weighted Main Results

Across the board, reiterating the same tests as in section 5.1 (see Appendix Tables 18,

19, and 20) produces the same results, e.g., the optimal asset sensitivity is still 0.75, the

optimal correlation window is still 70 and so forth. Therefore, the input variables in this

section are the same as in 5.1.

Table 5: Varying VIX Thresholds Upper Bound
Summary Statistics and Regressions Results

STATS 20 25 30 35 40 45 SMA EW
Return 1,337.1576 1,857.7141 1,837.5725 1,678.9793 1,810.4707 1,362.4181 5,616.9229 798.8899
Returnc 362.0435 598.5943 1,005.8976 1,140.529 1,458.9412 1,176.6485 1,921.2081 793.8085
No. of trades 1,559 1,232 661 411 234 149 942 13
µ 0.7919 0.8937 0.893 0.8738 0.8983 0.8189 1.472 0.6654
µc 0.4177 0.5677 0.7204 0.7654 0.8319 0.7767 1.1674 0.6635
σ 2.9724 3.1847 3.2607 3.4435 3.5566 3.6485 7.7757 3.6271
σc 3.0751 3.2275 3.3075 3.5173 3.4309 3.65 7.8412 3.6252
Sharpe 0.2664 0.2806 0.2739 0.2537 0.2526 0.2244 0.1893 0.1834
Sharpec 0.1358 0.1759 0.2178 0.2176 0.2425 0.2128 0.1489 0.183

FF5
α 0.0003*** 0.0003*** 0.0003** 0.0002*** 0.0002*** 0.0002** 0.0002 -0.0000***
p 0.000 0.000 0.001 0.004 0.005 0.028 0.150 0.012
R2 0.121 0.197 0.268 0.372 0.471 0.540 0.431 0.983
αc 0.0002* 0.0002* 0.0002** 0.0002** 0.0002** 0.0001* 0.0001 -0.0000***
pc 0.078 0.053 0.017 0.023 0.014 0.052 0.582 0.005
R2

c 0.121 0.197 0.272 0.374 0.474 0.543 0.430 0.983
* p < 0.10, ** p < 0.05, *** p < 0.01

Table 5 shows the main regressions results and summary statistics when varying the VIX upper bounds,
and the SMA as well as the simple buy- and hold EW portfolio. The Return is the cumulative daily
excess return in the period 1991.01.03-2019.12.31. No. of trades is calculated as the summary of changes
in weights over the period, where one trade is defined as any change in any asset’s weight from one day
to the next. µ is the daily mean return in percent during the period. σ is the daily standard deviation
in percent of the portfolio. Sharpe is the Sharpe ratio calculated on daily mean and daily volatility.
The cost-adjusted statistics are denoted with c; these include commission fees, short-selling fees, and
the bid-ask spread. FF5 corresponds to the main regression, where the α is Jensen’s alpha from the
Fama-French five-factor model. p is the p-value for the regression, derived from Newey-West standard
errors to overcome the issue of heteroskedastic and autocorrelated standard errors. R2 is the r-squared
for the model.

In Table 5, the excess returns before costs have risen noticeably, going as high as 5,617%

for the SMA strategy and peaking at upper bound 25 for the VIX strategy at 1,858%.

Again, similar to the preceding sections, the costs rise as a consequence of increasing the

number of transactions. We see a large trade-off between trades and return looking at

the cost adjusted returns moving from upper bound 25 to 30. Upper bound 40 still yields

the highest cost adjusted excess return, but the SMA dwarfs all the other portfolios.

For the VIX strategy, the highest expected excess return, µc, and the highest Sharpec

ratio, are again achieved at the upper bound 40. The volatility in the SMA strategy is

higher when using the EW outset portfolio; however, it is offset by a remarkably higher
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cost adjusted return compared to the MV outset portfolio. Comparing the two outset

portfolios suggests that the EW portfolios used by Copeland and Copeland (1999), Faber

(2013), and Cloutier et al. (2017) improves the performance of a TAA strategy. However,

the other portfolios suggested by DeMiguel et al. (2013) may still improve upon this, but

are not explored in this paper.

Looking at the R2
c , there is a noticeable difference between the two outset portfolios

compared to the preceding section 5.1. This may come from that the EW portfolio equally

invests in all assets during the sample period. Since there are no variations in weights,

this will reflect the market movements to a much higher degree. This is represented by

the much higher R2
c of the EW portfolio. Further, the alphas are statistically significant

to a higher degree than in the MV case.

The DIFF regressions against the SMA yield significant results (see Appendix Table

15), showing that both the EW outset portfolio and the VIX strategy are outperformed

by the SMA strategy. This suggests that without the MV estimation errors, the SMA

performs better than the VIX strategy. One explanation could be that without estimation

errors, the SMA yields higher results in its long strategy during periods where the VIX-

level is relatively low enough to the point that it catches up and moves past the VIX

strategy.

The statistically proven outperformance of the SMA strategy supports the findings

of Faber (2013) to a greater degree. Since even when including costs, their suggested

strategy still manages to outperform the others. It can, therefore, be concluded that the

SMA strategy dramatically benefits from a stable EW portfolio. Given this result, for

the sake of the VIX strategy, looking into the effect of enabling a bullish VIX strategy,

exploiting especially calm periods in the VIX-level, is further explored in section 5.4.

5.4 Bull Limit Test

5.4.1 Equal-Weighted Test

Table 6 shows that utilizing low volatility periods by leveraging the VIX-sensitive assets,

provides a portfolio with the ability to outperform the market even more than was the

case in Table 5. However, there are consequences. If the lower bound is set to 15, the
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VIX strategy will reallocate the portfolio too often. This will increase costs substantially

while not gaining the bull market upside. Setting the lower bound at 20 captures more

of the upside bull market, resulting in a maximum cost adjusted excess return of 2,907%

over the sample period, using a |0.5| correlation. Note the difference between the returns

before and after the inclusion of transaction costs have risen tremendously compared to

Table 5. This is exemplified by reaching a return of more than 200,000%, while the cost-

adjusted return is as low as 2,907%. As outlined by Woodside-Oriakhi et al. (2013), the

investor is getting penalized by conducting more transactions.

Table 6: Equal Weights Outset Portfolio
Summary Statistics

Lower bound 15 Lower Bound 20
Sensitivity Limit 0.50 0.60 0.70 0.80 0.50 0.60 0.70 0.80
Return 24,673.7029 14,668.3699 8,172.6862 2,018.1729 200,749.363 83,980.2912 28,970.7214 2,746.7274
Returnc 580.3107 661.5144 774.0197 841.7406 2,907.2411 2,250.5391 1,801.0659 1,021.9094
No. of trades 3,709 3,096 2,439 1,048 4,303 3,835 3,077 1,274
Sharpe 0.3733 0.3534 0.3342 0.2632 0.3912 0.3732 0.3582 0.2745
Sharpec 0.1336 0.1477 0.17 0.193 0.1924 0.1905 0.2003 0.1983

Correlation Window 30 50 70 90 30 50 70 90
Return 4,337.1883 3,890.4581 4,879.6593 4,114.7898 14,448.7169 9,869.0587 11,346.6228 10,745.5279
Returnc 523.4772 536.3582 866.8193 820.1746 719.1418 877.5932 1,508.8374 1,564.5919
No. of trades 2,399 2,184 1,878 1,784 3,586 2,874 2,388 2,272
Sharpe 0.3064 0.2887 0.3125 0.2966 0.3392 0.316 0.3362 0.3284
Sharpec 0.147 0.1469 0.1866 0.1814 0.1537 0.1684 0.208 0.2108

Bull Trading Limit 90% 60% 30% 0% 90% 60% 30% 0%
Return 2,001.7067 2,700.81 3,634.8761 4,879.6593 2,184.647 3,816.2654 6,608.9433 11,346.6228
Returnc 1,388.6791 1,190.6328 1,017.4339 866.8193 1,473.8913 1,499.3111 1,510.772 1,508.8374
No. of trades 1,878 1,878 1,878 1,878 2,388 2,388 2,388 2,388
Sharpe 0.2598 0.2798 0.2974 0.3125 0.2646 0.2957 0.3192 0.3362
Sharpec 0.2375 0.2213 0.2042 0.1866 0.2402 0.2308 0.2197 0.208

Table 6 shows the summary statistics when varying VIX correlation windows, assets sensitivity limits,
and the VIX average lag size. The input variables are the same as mentioned in section 5.1, i.e., in
the Sensitivity Limit part, the correlation window is 70 and bull trading limit is 0%, and so forth. The
Return is the cumulative daily excess return in the period 1991.01.03-2019.12.31. No. of trades is cal-
culated as the summary of changes in weights over the period, where one trade is defined as any change
in any asset’s weight from one day to the next. Sharpe is the daily Sharpe ratio calculated on daily
mean and daily volatility. The cost-adjusted statistics are denoted with c; these include commission fees,
short-selling fees, and the bid-ask spread.

Varying the sensitivity limit indicates that the excess returns are upward trending

with a lower sensitivity, using a lower bound of 20. This shows the inverse relationship of

sensitivity, compared to earlier results in Table 4. An explanation could be that when the

VIX-level is low, the correlations during the period are nonsensical in terms of strategy.

Since a low VIX-level indicates a bull market where almost all 12 assets yield positive

returns on average. It is beneficial for the strategy to trade as many assets as possible. It

is not relevant to check for VIX sensitivity but simply better to leverage as many assets

as possible, undermining the point of the asset-sensitivity strategy. Therefore, lowering

sensitivity means the strategy moves away from its primary purpose of exploiting the
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asset-sensitivities towards the VIX. This means that the VIX strategy would be an EW

portfolio that is more leveraged compared to the EW outset portfolio during especially

low volatility market periods.

An upward trend is visible with regards to the correlation window, the longer the

window, the better the cost adjusted returns get. Limiting the bull strategy, from a limit

of 90% to no limit at all (0%), has small effects on the cost adjusted returns at the 20

bound, whereas limiting the bull strategy using the 15 bound raises returns.

It should be noted that the highest Sharpe ratio is not accompanied by the highest

cost adjusted excess return when using the EW outset portfolio, opposite to the case

when using the MV outset portfolio. Looking at bound 15 and 20, we achieve the highest

Sharpe ratios by limiting the ability to leverage by up to 90%. This means that although

the highest cost adjusted excess return is 2907% with a Sharpe ratio of 0.1924, it has a

lower Sharpe ratio compared to limiting the bull strategy almost entirely, which produces

a Sharpe ratio of 0.2402. Therefore, achieving more substantial returns by leveraging in

bull markets yields higher, but much riskier, returns.

Although the strategy somewhat deviates from its original purpose, we note that

if we can yield substantial abnormal returns during bull periods in this manner, it falls

in line with earlier papers. Both Cloutier et al. (2017), and Copeland and Copeland

(1999) exploit bull markets by having a strategy applied during tranquil market periods.

However, a conclusion from this is that the importance of asset sensitivity to the VIX

diminishes when markets stay in low volatility periods for a longer duration. This essen-

tially boils down to the fact that the best sensitivity strategy in tranquil markets is no

sensitivity strategy.

5.4.2 Mean-Variance Test

In Table 7, it should be noted that we yield lower returns when enabling a bull strategy

with an MV outset portfolio compared to Table 4. Allowing for the bull strategy, but

limiting it at 90% produces similar returns to the ones achieved using only the upper

bound strategy. What should be noted, is that for each input variable that decreases

trading with the bull strategy, the return increases.
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Table 7: Mean-Variance Outset Portfolio
Summary Statistics

Lower bound 15 Lower Bound 20
Sensitivity Limit 0.50 0.60 0.70 0.80 0.50 0.60 0.70 0.80
Return 1,698.3232 1,543.1932 1,003.7403 397.3847 4,101.993 4,157.1125 2,437.7692 491.6111
Returnc 64.2779 119.6262 154.4486 185.8912 80.7853 161.0365 240.0489 214.9201
No. of trades 4,090 3,475 2,817 1,424 4,674 4,211 3,455 1,650
Sharpe 0.2673 0.2712 0.2498 0.1759 0.2635 0.2809 0.2744 0.1887
Sharpec -0.0215 0.0321 0.0596 0.0864 0.0098 0.0536 0.09 0.0981

Correlation Window 30 50 70 90 30 50 70 90
Return 665.0567 634.5469 787.1517 715.2718 1,440.027 1,194.5322 1,518.7631 1,379.7479
Returnc 122.159 131.3522 192.8215 189.1785 115.5547 168.7657 276.9407 290.8683
No. of trades 2,780 2,562 2,256 2,161 3,975 3,256 2,772 2,643
Sharpe 0.2226 0.2084 0.2344 0.2207 0.2513 0.2335 0.2626 0.2543
Sharpec 0.0353 0.043 0.0859 0.0834 0.0289 0.0645 0.1134 0.1185

Bull Trading Limit 90% 60% 30% 0% 90% 60% 30% 0%
Return 442.7838 536.9927 650.5145 787.1517 473.7579 701.993 1,035.0891 1,518.7631
Returnc 307.6509 263.9221 225.8794 192.8215 319.6616 306.8632 292.565 276.9407
No. of trades 2,256 2,256 2,256 2256 2,772 2,772 2,772 2,772
Sharpe 0.1836 0.2025 0.2195 0.2344 0.1892 0.2209 0.245 0.2626
Sharpec 0.1464 0.1266 0.1062 0.0859 0.149 0.1373 0.1253 0.1134

Table 7 shows the summary statistics when varying VIX correlation windows, assets sensitivity limits,
and the VIX average lag size. The input variables are the same as mentioned in section 5.1, i.e., in
the Sensitivity Limit part, the correlation window is 70 and bull trading limit is 0%, and so forth. The
Return is the cumulative daily excess return in the period 1991.01.03-2019.12.31. No. of trades is cal-
culated as the summary of changes in weights over the period, where one trade is defined as any change
in any asset’s weight from one day to the next. Sharpe is the daily Sharpe ratio calculated on daily
mean and daily volatility. The cost-adjusted statistics are denoted with c; these include commission fees,
short-selling fees, and the bid-ask spread.

E.g., increasing the sensitivity limit from 0.5 to 0.8 lowers the amount of assets that

are allowed to trade. This leads to a decrease in the number of trades from 4,674 to 1,650.

This increases the return in most cases. However, one exception is the 0.7 sensitivity limit

at the lower bound of 20. It yields higher cost adjusted returns compared to a 0.8 limit,

indicating there is still an optimal sensitivity limit that we can use to increase the returns.

In general, this indicates that the more we deviate from the bull strategy, the more the

returns increase. This is the opposite of the case in Table 6, where returns increase

when trading increases. Additionally, it is also somewhat contrary to earlier papers by

Copeland and Copeland (1999) and Cloutier et al. (2017), where they employ bullish

strategies that produce higher Sharpe ratios compared to their buy-and-hold strategies.

One possible reason for the poor performance could be that the estimation errors

from the MV outset portfolio are amplified with trading at a lower limit. For example,

the MV outset portfolio is shorting an asset which displays positive return during a

shorter bullish period—further augmented in the VIX strategy, by leveraging that position

in calm periods, yielding significant negative returns. Another possible reason for the

decrease in return could be that costs are primarily driven by the total weight allocated
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to an asset in the portfolio. If there are large allocations given to any assets in the

MV outset portfolio, changing that position results in reallocating a large amount of the

portfolio and increasing transaction costs. The EW outset portfolio allocates a moderate

amount of 7.69%, compared to some of the more extreme allocations in the MV outset

portfolio of 23.02% in an asset (see Appendix Table 21). The moderate amount leads to

less extreme reallocations in the EW outset portfolio. This reduces the effects of trading

more regularly during up and down movements in the VIX-level, explaining why the EW

outset portfolio outperforms the MV portfolio given the same VIX strategy.

5.5 Best Outcome

Looking at Figure 4, we can see that the VIX strategy performs better when using an

EW outset portfolio, compared to the MV outset portfolio in Figure 2. Further, allowing

for a bull strategy to benefit from low volatility periods is beneficial. Especially seen in

the bull market from 2010 until 2019, with two more massive setbacks visible. During

the setbacks, the VIX was not at a high enough level to trigger the bear strategy. Also,

when combining this with the optimal input variables from Table 6:

1. VIX correlation window: 90

2. Sensitivity: 0.5

3. Lag size: 4

4. VIX upper bound: 40

5. VIX lower bound: 20

6. Trading limit bear market: 0%

7. Trading limit bull market: 0%

The VIX strategy yields results that vastly outperform the S&P 500 over the sample

period. It is important to note, that although the VIX strategy outperforms, the VIX

strategy still cannot be confirmed to yield statistically significant positive alphas (see Ap-

pendix Table 23). Before costs are included, the VIX strategy does produce a statistically

significant alpha (see Appendix Table 22), but the returns are inflated. Additionally, the

best outcome in return may not represent the best outcome from the VIX strategy’s

perspective in terms of actual strategy. As discussed in section 5.4, decreasing the sensi-

tivity for the assets yields higher returns. Those returns are not directly related to the

strategy since it is merely leveraging up all positions when the VIX is below a certain
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threshold. This means that the strategy is not using the different asset sensitivities to

exploit movements in the VIX, and thus, arguably, it is therefore not part of the strategy

anymore.
Figure 4: Different VIX Strategies with EW Outset

Figure 4 shows the excess cost adjusted return for each portfolio with the excess return of the simple
buy-and-hold S&P 500 portfolio. The period depicted is 1991.01.03-2019.12.31. The Y-axis is denoted
in hundreds of percent, meaning 1 on the axis corresponds to 100%.

Another variable that may indicate that this is not the optimal solution for the VIX

strategy is the Sharpe ratio. Looking at Table 8, we can see that the Sharpec ratio has

been reduced to 0.1980 from 0.2402, as seen in Table 6, meaning that we have created

higher returns with the expense of increased risk substantially. This is visible in Figure 4,

which looks at the aforementioned setbacks during the 10-year bull market from 2010 until

2019. The VIX strategy produces the highest µc, as well as the highest Sharpec ratio.

However, as mentioned, the Sharpec ratio is only slightly higher than the EW outset

portfolio (seen in Appendix Table 15) due to the large increase in volatility. Cloutier

et al. (2017) still manage to achieve a Sharpe ratio that is higher than ours, but as noted

previously, they do not consider costs.

Using the optimal solution, our strategy applies a similar strategy to Copeland and

Copeland (1999). Their strategy is also exploiting calm market periods and utilizing

movements in the VIX, using the Fama-French HML and SMB factors. While our optimal

VIX strategy leverages up during calm market periods, as opposed to section 5.3.1, where

simply a bearish tactic is applied. Additionally, looking at Tables 22 and 13, we can get
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an idea of how the SMA strategy suggested by Faber (2013) invests compared our VIX

strategy, before and after applying the optimal strategy. The SMA strategy, and the VIX

strategy, lie closer together in the optimal strategy when looking at factors SMB and

HML in Table 22, compared to earlier when there were hardly any similarities at all, as

seen in Table 13. Therefore, one can conclude that our optimal solution yields similar

exposure to the factors SMB and HML, while yielding a higher Sharpe ratio.

Overall, we can conclude that our VIX strategy performs well compared to the

strategies suggested by earlier papers. However, one of the primary goals with this paper

is to increase returns, with a lower volatility, using a VIX strategy. It can be argued

that the solution with the highest return is indeed the optimal solution. However, given

how this increases volatility, it may not be the actual optimal solution. Enabling the

bullish strategy induces high volatility, and this is not the point of the VIX strategy.

Therefore, it may be the case that the optimal solution to the bullish tactic could benefit

from further development, something we do not consider in this paper.

Table 8: Optimal Solution
Summary Statistics

Return Returnc No. of trades µ µc σ σc Sharpe Sharpec
VIX 210,695.3 3,377.378 4,149 2.4054 1.1972 6.1465 6.0463 0.3913 0.198
SMA 5,616.923 1,921.208 942 1.472 1.1674 7.7757 7.8412 0.1893 0.1489
EW 798.8899 793.8085 13 0.6654 0.6635 3.6271 3.6252 0.1834 0.183

Table 8 shows the summary statistics for the best VIX strategy, the SMA strategy, and the EW buy-
and-hold portfolio. The Return is the cumulative daily excess return in the period 1991.01.03-2019.12.31.
No. of trades is calculated as the summary of changes in weights over the period, where one trade is
defined as any change in any asset’s weight from one day to the next. Sharpe is the daily Sharpe ratio
calculated on daily mean and daily volatility. The cost-adjusted statistics are denoted with c; these
include commission fees, short-selling fees, and the bid-ask spread.

5.6 Extended Data Set

In late February 2020, the volatility in the stock markets started to increase because of

the evolving Covid-19 pandemic, reflected in the VIX. By mid-March, the VIX closed

at a record 82.69, which was even higher than the previous record closing during the

last financial crisis. The rapid sell-off after countries started going into lock-down, and

quarantines being put into place all over the world, lead to the fastest 30% stock market

sell-off ever recorded, according to CNBC8. Because of these seldom before seen levels

8https://www.cnbc.com/2020/03/23/this-was-the-fastest-30percent-stock-market-decline-ever.html
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of the VIX, it is of high interest to see how the VIX strategy performed during the first

three months of 2020.

Figure 5: Extended Data Set

Figure 5 shows the excess return for each portfolio with the excess return of the EW buy-and-hold port-
folio. The period depicted is 2018.12.01-2020.03.31. The grey line (left Y-axis) is the VIX-level. The
right Y-axis is denoted in hundreds of percent, meaning 1 on the axis corresponds to 100%.

By extending the time-period to also include January through March 2020, up-to-

date market data is used. In Figure 5, the VIX, the cost adjusted VIX strategy, and

the EW buy-and-hold portfolios are seen. During the lower VIX-levels, the VIX strategy

utilizes its bull-strategy, which leads to an overperformance during 2019. Then, going

into 2020, where the VIX was below 20 until mid February, the VIX bear-strategy kicks

in after the 4-day average is above the upper 40 bound. The strategy did not catch the

initial sell-off; however, after the strategy kicks in, it is clear that the strategy works

as intended. Looking at the last draw-down, where the market bounces back off of its

lows, the VIX strategy is still using its bear-strategy, and thus missing out on the upswing.

As can be seen in Table 24, in the Appendix, the cost adjusted excess return has increased

to 3,516% from 3,377% for the optimal VIX strategy. The EW buy-and-hold portfolio

has decreased, but the most significant difference can be seen using the SMA strategy,

its cost adjusted excessive return has decreased from 1,921% down to 678%, which is

close to what an investor would have achieved with the buy-and-hold portfolio. Of high

interest is the fact that the volatility (σc) using the VIX strategy is almost the same as
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before, even though the market volatility is spiking. This is not the case for the SMA

strategy, where the volatility increases, and the Sharpec ratio decreases along with the

µc. Extending the data with this down-turn sheds light on the performance of our VIX

strategy when there is high distress in the market.

After the inclusion of the first quarter of 2020, the VIX strategy achieves statistically

significant positive alphas at the 0.05-level, excluding the ∆VIX regressor and at the

0.01-level, including the ∆VIX regressor (Appendix Table 26). The VIX strategy is only

slightly worse than it was going into the crisis at the end of February. The draw-down in

the EW buy-and-hold portfolio is considerable, as seen in Figure 5.

6 Conclusion

In this paper, we examine the performance of a quantitative tactical asset allocation

(TAA) strategy based on the VIX, inspired by Copeland and Copeland (1999) and

Cloutier et al. (2017). The strategy is applied to two buy-and-hold strategies, a mean-

variance (MV) portfolio, and an equal-weighted (EW) portfolio. We extend the paper by

factoring in costs, which are not considered by earlier papers. We also compare our VIX

strategy with an SMA strategy, as taken from Faber (2013). The purpose of this paper is

to provide a simple quantitative market timing strategy which removes investor behav-

ioral bias, while also increasing the Sharpe ratio and producing a significant alpha. In

line with earlier papers, we can conclude that our VIX strategy produces higher returns

with lower volatility compared to both buy-and-hold strategies and the SMA strategy.

We cannot statistically prove that our VIX strategy generates significant positive alpha,

which is contrary to prior studies, that manage to achieve statistically significant al-

phas. However, when extending the data to March 2020, we can see that we produce a

significant positive alpha.

To test our strategy, we construct the buy-and-hold portfolios using both daily and

monthly asset data from French’s data library from 1983 until 2019. We also collect

daily VIX data spanning 1991 to 2019 to use in our VIX strategy. In section 5.6, the

data set is extended to include the first quarter of 2020. In addition to the two buy-

and-hold outset portfolios, we test for the optimal implementation of the strategy by

examining several combinations of input variables. We conclude that the underlying
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outset portfolio significantly affects the VIX strategy used during the almost 30-year

period. This is highlighted by the performance of the bullish VIX strategy during times

of low volatility. The MV outset portfolio produces lower returns, while the EW outset

portfolio produces higher returns. We can also conclude that the variables that have the

most significant effect on the performance of the VIX strategy are the upper and lower

bounds set for when the VIX strategy is triggered. This is in line with Copeland and

Copeland (1999) who find that triggering their strategy too early or too late significantly

impacts the performance of the TAA strategy based on the VIX.

As suggested by previous research, we extend our paper by including rudimentary

costs. These transaction costs are derived from the papers by D’Avolio (2002), Do and

Faff (2012), Abdi and Ranaldo (2017), and Engelberg et al. (2018). The transaction costs

are; short-selling fees, commission fees, and the bid-ask spread. When factoring in costs,

we can conclude that the optimal solution for our strategy regarding the input variables

changes dramatically. Since the strategy revolves around timing the market with the help

of the VIX, including costs shed light on how entering or exiting the market too often can

negatively impact the return of a TAA strategy—exemplified by the Sharpe ratio for the

optimal solution being reduced from 0.3913 to 0.1980 when factoring in costs. Therefore,

contrary to Cloutier et al. (2017), who ignore transaction costs, we can conclude that

costs have a substantial effect on the strategy and should always be considered when

looking into the performance of a TAA strategy.

First, to test the performance of our VIX strategy compared to the market and other

strategies, our primary econometric model is the five-factor model from Fama and French

(2015). Using the five-factor model, we can not conclude that our VIX strategy produces

significant alpha compared to the market in our normal time-frame. When extending

the data, we can conclude that our VIX strategy produces significant positive alpha

compared to the market. Second, we use the econometric model suggested by Copeland

and Copeland (1999). The model tests for significant differences in the portfolio returns

to the variation in the VIX. We can not conclude that our VIX strategy produces positive

abnormal returns given the variation in the VIX compared to the buy-and-hold portfolios

or the SMA portfolio.

Given our findings on how profoundly affected the strategy is by the input variables

and the outset portfolio, we suggest that future research on the area of quantitative TAA
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should include the following. First, the transaction costs should always be considered,

given their effect on the optimal solution. Second, the impact that the neutral buy-

and-hold weights have on the performance should always be considered. Third, future

research should also focus on shedding light on the effect that input variables have on

their TAA strategy. Additionally, a strategy implementing a cost-mitigation tactic could

greatly benefit a trading strategy based on the VIX, given our results on the effect of costs.
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Appendix

Table 9: Asset Descriptions
Asset Asset Description Industries
NoDur Consumer Nondurables Food, Tobacco, Textiles, Apparel, Leather, Toys
Durbl Consumer Durables Cars, TVs, Furniture, Household Appliances
Manuf Manufacturing Machinery, Trucks, Planes, Off Furn, Paper, Com Printing
Enrgy Energy Oil, Gas, and Coal Extraction and Products
Chems Chemicals Chemicals and Allied Products
BusEq Business Equipment Computers, Software, and Electronic Equipment
Telcm Telecommunication Telephone and Television Transmission
Utils Utilities Utilities
Shops Shops Wholesale, Retail, and Some Services (Laundries, Repair Shops)
Hlth Health Healthcare, Medical Equipment, and Drugs
Money Finance Finance
Other Other Mines, Constr, BldMt, Trans, Hotels, Bus Serv, Entertainment

Table 10: Asset’s Corresponding SIC-codes
NoDur Durbl
0100-0999, 2000-2399, 2700-2749, 2770-2799, 3100-3199, 3940-3989 2500-2519, 2590-2599, 3630-3659, 3710-3711, 3714-3714, 3716-3716,

3750-3751, 3792-3792, 3900-3939, 3990-3999
Manuf Enrgy
2520-2589, 2600-2699, 2750-2769, 3000-3099, 3200-3569, 3580-3629, 1200-1399, 2900-2999
3700-3709, 3712-3713, 3715-3715, 3717-3749, 3752-3791, 3793-3799,
3830-3839, 3860-3899
Chems BusEq
2800-2829, 2840-2899 3570-3579, 3660-3692, 3694-3699, 3810-3829, 7370-7379
Telcm Utils
4800-4899 4900-4949
Shops Hlth
5000-5999, 7200-7299, 7600-7699 2830-2839, 3693-3693, 3840-3859, 8000-8099
Money Other
6000-6999 The Rest

Markowitz’ Mean-Variance

max
w

w′µ

Subject to.

w′Σw = σ̄2
p

w′ι = 1

Therefore stated as a the following Lagrangian:

w′µ− λ1(w′Σw − σ̄2
p)− λ2(w′ι− 1)

Where w′ is a vector of the asset weights, µ is a matrix of expected returns, ι is a vector

of ones, Σ is a variance covariance matrix, and σ̄2
p is a volatility scalar. By taking the

first order condition of the Lagrangian one can solve for the portfolio variance:
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σ̄2
p =

1

ι′Σ−1ι

(
1 +

(ι′Σ−1ι µ̄p − µ′pΣ−1ι)2

µ′Σ−1µ ι′Σ−1ι− µ′Σ−1ι

)
(13)

Further, one can solve for the portfolio return as:

µ̄p =
µ′Σ−1ι

ι′Σ−1ι
+

1

ι′Σ−1ι

√
(ι′Σ−1ι σ̄2

p − 1)(µ′Σ−1µ ι′Σ−1ι− (µ′Σ−1ι)2) (14)

Table 11: Bid-Ask Spread Cost per Asset Class
NoDur Durbl Manuf Enrgy Chems BusEq Telcm Utils Shops Hlth Money Other
0.0107 0.0102 0.0111 0.0125 0.0109 0.0145 0.0134 0.0066 0.0121 0.0164 0.0116 0.0147

Table 11 shows the corresponding bid-ask spread cost for each of the 12 assets.

Table 12: Varying Upper Bound MV Setting
Summary Statistics and Regressions Results

STATS 20 25 30 35 40 45 SMA MV
Return 440.2212 465.3267 449.5513 388.8763 415.1045 311.7862 392.3947 219.5394
Returnc 134.5022 172.5663 251.2019 259.2105 323.5275 262.0611 146.2378 202.7941
No. of trades 1,936 1,597 1,038 788 611 526 1,226 390
µ 0.4521 0.4716 0.461 0.4204 0.4405 0.3579 0.5326 0.2569
µc 0.1135 0.1868 0.2945 0.3048 0.3667 0.3079 0.2522 0.2341
σ 2.2548 2.3991 2.3709 2.4141 2.4909 2.4876 5.2342 2.4724
σc 2.3735 2.4353 2.4184 2.4572 2.4014 2.486 5.2979 2.4722
Sharpe 0.2005 0.1966 0.1944 0.1741 0.1768 0.1439 0.1017 0.1039
Sharpec 0.0478 0.0767 0.1218 0.1241 0.1527 0.1238 0.0476 0.0947

MAIN REGRESSION
FF5
α 0.0002*** 0.0001** 0.0001* 0.0001 0.0001 0.0000 0.0000 -0.0001**
p 0.006 0.025 0.060 0.235 0.276 0.826 0.785 0.001
R2 0.022 0.072 0.125 0.228 0.315 0.385 0.241 0.765
αc 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0000 -0.0002 -0.0001***
pc 0.866 0.876 0.526 0.759 0.600 0.834 0.187 0.000
R2

c 0.023 0.072 0.129 0.228 0.318 0.388 0.238 0.765
FF5+∆VIX
α 0.0003*** 0.0003*** 0.0003*** 0.0002*** 0.0002*** 0.0001* 0.0003** -0.0001**
p 0.000 0.000 0.000 0.002 0.004 0.065 0.012 0.014
R2 0.090 0.140 0.192 0.288 0.365 0.423 0.342 0.768
αc 0.0001** 0.0001** 0.0002*** 0.0001** 0.0001** 0.0001 0.0002 -0.0001***
pc 0.036 0.034 0.008 0.023 0.023 0.147 0.162 0.006
R2

c 0.091 0.140 0.198 0.289 0.368 0.425 0.340 0.768

DIFF REGRESSION
MV
αc -0.0001* -0.0001 -0.0000 0.0000 0.0000 0.0000 0.0001 -
pc 0.068 0.225 0.753 0.993 0.447 0.725 0.343 -
R2

c 0.118 0.081 0.058 0.034 0.020 0.016 0.074 -
SMA
αc -0.0002* -0.0002 -0.0001 -0.0001 -0.0001 -0.0001 - -0.0001
pc 0.019 0.055 0.194 0.264 0.505 0.370 - 0.343
R2

c 0.247 0.223 0.205 0.181 0.158 0.140 - 0.074
* p < 0.10, ** p < 0.05, *** p < 0.01

Table 12 shows the main regression results and summary statistics when varying the VIX upper bounds,
and the SMA as well as the mean-variance strategy. The Return is the cumulative excess return in the
period 1991.01.03-2019.12.31. No. of trades is calculated as the summary of changes in weights over the
period, where one trade is defined as any change in any asset’s weight from one day to the next. µ is
the daily mean return in percent during the period. σ is the daily standard deviation in percent of the
portfolio. Sharpe is the Sharpe ratio calculated on daily mean and daily volatility. The cost-adjusted
statistics are denoted with c; these include commission fees, short-selling fees, and the bid-ask spread.
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FF5 corresponds to the main regression, where the α is Jensen’s alpha from the Fama-French five-factor
model. p is the p-value for the regression, derived from Newey-West standard errors to overcome the issue
of heteroskedastic and autocorrelated standard errors. R2 is the r-squared for the model. FF5+∆VIX, is
the Fama-French five-factor model extended by adding the variable ∆VIX. The DIFF-title corresponds
to the difference regression derived from Copeland and Copeland (1999), where the α is the constant ob-
tained from regressing the differences in returns against the ∆VIX. The MV-title, under the DIFF-title,
corresponds to the VIX strategy minus mean-variance returns, and SMA corresponds to the difference
in return between the VIX strategy and the SMA strategy.

Table 13: Main Regressions Results
VIX SMA MV VIX SMA MV

Mktrf 0.3213*** 0.5659*** 0.5135*** 0.1879*** 0.1716** 0.4802***
(0.000) (0.000) (0.000) (0.000) (0.015) (0.000)

SMB 0.1081*** 0.3992*** 0.1506*** 0.0949*** 0.3601*** 0.1472***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

HML 0.0500 0.1056 0.2292*** 0.0637 0.1462** 0.2326***
(0.260) (0.172) (0.000) (0.125) (0.031) (0.000)

RMW 0.0028 0.1477** 0.1054*** -0.0226 0.0726 0.0990***
(0.922) (0.017) (0.000) (0.436) (0.188) (0.000)

CMA 0.2475*** 0.4718*** 0.1690*** 0.2184*** 0.3859*** 0.1617***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

∆ VIX - - - -0.0287*** -0.0849*** -0.0072***
(0.000) (0.000) (0.000)

Constant 0.0001 -0.0000 -0.0001*** 0.0002*** 0.0003** -0.0001**
(0.276) (0.785) (0.001) (0.004) (0.012) (0.014)

R-squared 0.315 0.241 0.765 0.365 0.342 0.768
p-values in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01

Table 13 shows the results from running the regression µp = αi + β1(RM, t − Rf, t) + β2(SMBt) +
β3(HMLt) + β4(RMWt) + β5(CMAt) + εi, t for the mean-variance outset portfolio, SMA strategy and
VIX strategy. The regression is run on daily excess returns in the period 1991.01.03-2019.12.31. Mktrf
is the Fama-French excess market return, SMB is the small minus big factor, HML is the high minus low
factor, RMW is the robust minus weak factor, CMA is the conservative minus aggressive factor. ∆VIX
is the monthly percentage change of the VIX in the same period. Alpha is Jensen’s Alpha. P-values are
derived from Newey-West standards errors to overcome the issue of heteroskedastic and autocorrelated
standard errors.
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Table 14: Main Regressions Results Cost Adjusted
VIXc SMAc MVc VIXc SMAc MVc

Mktrf 0.3208*** 0.5646*** 0.5137*** 0.1871*** 0.1700** 0.4804***
(0.000) (0.000) (0.000) (0.000) (0.015) (0.000)

SMB 0.1136*** 0.3953*** 0.1511*** 0.1003*** 0.3561*** 0.1478***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

HML 0.0508 0.1034 0.2283*** 0.0646 0.1441** 0.2317***
(0.252) (0.178) (0.000) (0.120) (0.032) (0.000)

RMW 0.0054 0.1473** 0.1062*** -0.0201 0.0721 0.0999***
(0.854) (0.017) (0.000) (0.485) (0.192) (0.000)

CMA 0.2465*** 0.4673*** 0.1696*** 0.2173*** 0.3813*** 0.1623***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

∆ VIX - - - -0.0288*** -0.0850*** -0.0072***
(0.000) (0.000) (0.000)

Constant 0.0000 -0.0002 -0.0001*** 0.0001** 0.0002 -0.0001***
(0.600) (0.187) (0.000) (0.019) (0.162) (0.006)

R-squared 0.318 0.238 0.765 0.368 0.340 0.768
p-values in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01

Table 14 shows the results from running the regression µp = αi + β1(RM, t − Rf, t) + β2(SMBt) +
β3(HMLt) + β4(RMWt) + β5(CMAt) + εi, t for cost adjusted returns of the mean-variance outset port-
folio, SMA strategy and VIX strategy. The regression is run on daily excess returns, adjusted for
commissions fees, short-selling fees and bid-ask-spread, in the period 1991.01.03-2019.12.31. Mktrf is
the Fama-French excess market return, SMB is the small minus big factor, HML is the high minus low
factor, RMW is the robust minus weak factor, CMA is the conservative minus aggressive factor. ∆VIX
is the monthly percentage change of the VIX in the same period. Alpha is Jensen’s Alpha. P-values are
derived from Newey-West standards errors to overcome the issue of heteroskedastic and autocorrelated
standard errors.
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Table 15: Varying Upper Bound EW Setting
Summary Statistics and Regressions Results

STATS 20 25 30 35 40 45 SMA EW
Return 1,337.1576 1,857.7141 1,837.5725 1,678.9793 1,810.4707 1,362.4181 5,616.9229 798.8899
Returnc 362.0435 598.5943 1,005.8976 1,140.529 1,458.9412 1,176.6485 1,921.2081 793.8085
No. of trades 1,559 1,232 661 411 234 149 942 13
µ 0.7919 0.8937 0.893 0.8738 0.8983 0.8189 1.472 0.6654
µc 0.4177 0.5677 0.7204 0.7654 0.8319 0.7767 1.1674 0.6635
σ 2.9724 3.1847 3.2607 3.4435 3.5566 3.6485 7.7757 3.6271
σc 3.0751 3.2275 3.3075 3.5173 3.4309 3.65 7.8412 3.6252
Sharpe 0.2664 0.2806 0.2739 0.2537 0.2526 0.2244 0.1893 0.1834
Sharpec 0.1358 0.1759 0.2178 0.2176 0.2425 0.2128 0.1489 0.183

MAIN REGRESSON
FF5
α 0.0003*** 0.0003*** 0.0003** 0.0002*** 0.0002*** 0.0002** 0.0002 -0.0000***
p 0.000 0.000 0.001 0.004 0.005 0.028 0.150 0.012
R2 0.121 0.197 0.268 0.372 0.471 0.540 0.431 0.983
αc 0.0002* 0.0002* 0.0002** 0.0002** 0.0002** 0.0001* 0.0001 -0.0000***
pc 0.078 0.053 0.017 0.023 0.014 0.052 0.582 0.005
R2

c 0.121 0.197 0.272 0.374 0.474 0.543 0.430 0.983
FF5+∆VIX
α 0.0005*** 0.0005*** 0.0004** 0.0004*** 0.0004*** 0.0003*** 0.0007*** -0.0000**
p 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.012
R2 0.168 0.245 0.316 0.414 0.503 0.561 0.500 0.983
αc 0.0003*** 0.0003*** 0.0004*** 0.0003*** 0.0003*** 0.0003*** 0.0005*** -0.0000**
pc 0.001 0.000 0.000 0.000 0.000 0.003 0.002 0.010
R2

c 0.168 0.245 0.321 0.416 0.507 0.564 0.499 0.983

DIFF REGRESSION
EW
αc -0.0002** -0.0001 -0.0000 -0.0000 0.0000 0.0000 0.0004*** -
pc 0.022 0.153 0.611 0.943 0.560 0.721 0.004 -
R2

c 0.139 0.094 0.063 0.037 0.022 0.017 0.144 -
SMA
αc -0.0007*** -0.0006*** -0.0005*** -0.0004*** -0.0004*** -0.0004*** - -0.0004***
pc 0.000 0.000 0.000 0.001 0.003 0.002 - 0.004
R2

c 0.368 0.343 0.323 0.296 0.272 0.245 - 0.144
* p < 0.10, ** p < 0.05, *** p < 0.01

Table 15 shows the main regressions results and summary statistics when varying the VIX upper bounds,
and the SMA as well as the simple buy- and hold equal weighted portfolio. The Return is the cumulative
daily excess return in the period 1991.01.03-2019.12.31. No. of trades is calculated as the summary of
changes in weights over the period, where one trade is defined as any change in any asset’s weight from
one day to the next. µ is the daily mean return in percent during the period. σ is the daily standard
deviation in percent of the portfolio. Sharpe is the Sharpe ratio calculated on daily mean and daily
volatility. The cost-adjusted statistics are denoted with c; these include commission fees, short-selling
fees, and the bid-ask spread. FF5 corresponds to the main regression, where the α is Jensen’s alpha from
the Fama-French five-factor model. p is the p-value for the regression, derived from Newey-West standard
errors to overcome the issue of heteroskedastic and autocorrelated standard errors. R2 is the r-squared for
the model. FF5+∆VIX, is the Fama-French five-factor model extended by adding the variable ∆VIX.
The DIFF-title corresponds to the difference regression derived from Copeland and Copeland (1999),
where the α is the constant obtained from regressing the differences in returns against the ∆VIX. The
EW-title, under DIFF REGRESSION, corresponds to the VIX strategy minus EW returns, and SMA
corresponds to the difference in return between the VIX strategy and the SMA strategy.

46



Table 16: Mean-Variance Outset Portfolio
Summary Statistics

Lower bound 15 Lower Bound 20
Sensitivity Limit 0.50 0.60 0.70 0.80 0.50 0.60 0.70 0.80
Return 1,698.3232 1,543.1932 1,003.7403 397.3847 4,101.993 4,157.1125 2,437.7692 491.6111
Returnc 64.2779 119.6262 154.4486 185.8912 80.7853 161.0365 240.0489 214.9201
No. of trades 4,090 3,475 2,817 1,424 4,674 4,211 3,455 1,650
µ 0.8691 0.8361 0.7039 0.4266 1.168 1.1594 0.9842 0.4923
µc -0.0716 0.0981 0.1615 0.207 0.0453 0.2257 0.3113 0.2533
σ 3.2517 3.0836 2.8182 2.4251 4.4329 4.1275 3.5873 2.609
σc 3.3265 3.0555 2.7087 2.3974 4.6225 4.2106 3.4587 2.582
Sharpe 0.2673 0.2712 0.2498 0.1759 0.2635 0.2809 0.2744 0.1887
Sharpec -0.0215 0.0321 0.0596 0.0864 0.0098 0.0536 0.09 0.0981

Correlation Window 30 50 70 90 30 50 70 90
Return 665.0567 634.5469 787.1517 715.2718 1,440.027 1,194.5322 1,518.7631 1,379.7479
Returnc 122.159 131.3522 192.8215 189.1785 115.5547 168.7657 276.9407 290.8683
No. of trades 2,780 2,562 2,256 2,161 3,975 3,256 2,772 2,643
µ 0.5795 0.5692 0.6303 0.6038 0.8216 0.7679 0.8339 0.8061
µc 0.0902 0.1127 0.2221 0.217 0.0905 0.1968 0.337 0.3508
σ 2.6028 2.7317 2.6883 2.7353 3.2693 3.2892 3.1753 3.1695
σc 2.5567 2.6197 2.5839 2.6023 3.1284 3.0509 2.9728 2.9591
Sharpe 0.2226 0.2084 0.2344 0.2207 0.2513 0.2335 0.2626 0.2543
Sharpec 0.0353 0.043 0.0859 0.0834 0.0289 0.0645 0.1134 0.1185

Bull Trading Limit 90% 60% 30% 0% 90% 60% 30% 0%
Return 442.7838 536.9927 650.5145 787.1517 473.7579 701.993 1,035.0891 1,518.7631
Returnc 307.6509 263.9221 225.8794 192.8215 319.6616 306.8632 292.565 276.9407
No. of trades 2,256 2,256 2,256 2,256 2,772 2,772 2,772 2,772
µ 0.4594 0.5163 0.5732 0.6303 0.4797 0.5976 0.7157 0.8339
µc 0.3523 0.3089 0.2655 0.2221 0.3642 0.3562 0.3471 0.337
σ 2.5026 2.5488 2.611 2.6883 2.5355 2.705 2.9211 3.1753
σc 2.4062 2.4391 2.4991 2.5839 2.444 2.5935 2.7714 2.9728
Sharpe 0.1836 0.2025 0.2195 0.2344 0.1892 0.2209 0.245 0.2626
Sharpec 0.1464 0.1266 0.1062 0.0859 0.149 0.1373 0.1253 0.1134

Table 16 shows the summary statistics when varying VIX correlation windows, assets sensitivity limits,
and the VIX average lag size. The input variables are the same as mentioned in section 5.1, i.e., in
the Sensitivity Limit part, the correlation window is 70, and the bull trading limit is 0%, and so forth.
The Return is the cumulative daily excess return in the period 1991.01.03-2019.12.31. No. of trades
is calculated as the summary of changes in weights over the period, where one trade is defined as any
change in any asset’s weight from one day to the next. µ is the daily mean return in percent during
the period. σ is the daily standard deviation in percent of the portfolio. Sharpe is the daily Sharpe
ratio calculated on daily mean and daily volatility. The cost-adjusted statistics are denoted with c; these
include commission fees, short-selling fees, and the bid-ask spread.
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Table 17: Equal Weights Outset Portfolio
Summary Statistics

Lower bound 15 Lower Bound 20
Sensitivity Limit 0.50 0.60 0.70 0.80 0.50 0.60 0.70 0.80
Return 24,673.7029 14,668.3699 8,172.6862 2,018.1729 200,749.363 83,980.2912 28,970.7214 2,746.7274
Returnc 580.3107 661.5144 774.0197 841.7406 2,907.2411 2,250.5391 1,801.0659 1,021.9094
No. of trades 3,709 3,096 2,439 1,048 4,303 3,835 3,077 1,274
µ 1.6968 1.5364 1.3539 0.9294 2.3891 2.1076 1.7592 1.026
µc 0.6114 0.6374 0.6663 0.6753 1.1495 1.0487 0.9442 0.7396
σ 4.545 4.3473 4.051 3.5311 6.1066 5.6476 4.9119 3.7376
σc 4.5777 4.3163 3.9195 3.4996 5.9745 5.5043 4.7137 3.7296
Sharpe 0.3733 0.3534 0.3342 0.2632 0.3912 0.3732 0.3582 0.2745
Sharpec 0.1336 0.1477 0.17 0.193 0.1924 0.1905 0.2003 0.1983

Correlation Window 30 50 70 90 30 50 70 90
Return 4,337.1883 3,890.4581 4,879.6593 4,114.7898 14,448.7169 9,869.0587 11,346.6228 10,745.5279
Returnc 523.4772 536.3582 866.8193 820.1746 719.1418 877.5932 1,508.8374 1,564.5919
No. of trades 2,399 2,184 1,878 1,784 3,586 2,874 2,388 2,272
µ 1.1601 1.1335 1.1957 1.1477 1.5394 1.4277 1.4614 1.4481
µc 0.5457 0.5553 0.6909 0.6756 0.6598 0.7159 0.8699 0.8801
σ 3.7868 3.9256 3.8265 3.8695 4.5379 4.5185 4.3471 4.4101
σc 3.7134 3.78 3.7027 3.7235 4.2917 4.2521 4.1824 4.175
Sharpe 0.3064 0.2887 0.3125 0.2966 0.3392 0.316 0.3362 0.3284
Sharpec 0.147 0.1469 0.1866 0.1814 0.1537 0.1684 0.208 0.2108

Bull Trading Limit 90% 60% 30% 0% 90% 60% 30% 0%
Return 2,001.7067 2,700.81 3,634.8761 4,879.6593 2,184.647 3,816.2654 6,608.9433 11,346.6228
Returnc 1,388.6791 1,190.6328 1,017.4339 866.8193 1,473.8913 1,499.3111 1,510.772 1,508.8374
No. of trades 1,878 1,878 1,878 1,878 2,388 2,388 2,388 2,388
µ 0.928 1.017 1.1063 1.1957 0.9545 1.1233 1.2922 1.4614
µc 0.8181 0.7756 0.7332 0.6909 0.8367 0.8485 0.8595 0.8699
σ 3.5722 3.6347 3.7198 3.8265 3.6067 3.7993 4.0488 4.3471
σc 3.4446 3.5044 3.5911 3.7027 3.4841 3.6761 3.9112 4.1824
Sharpe 0.2598 0.2798 0.2974 0.3125 0.2646 0.2957 0.3192 0.3362
Sharpec 0.2375 0.2213 0.2042 0.1866 0.2402 0.2308 0.2197 0.208

Table 17 shows the summary statistics when varying VIX correlation windows, assets sensitivity limits,
and the VIX average lag size. The input variables are the same as mentioned in section 5.1, i.e., in
the Sensitivity Limit part, the correlation window is 70, and the bull trading limit is 0%, and so forth.
The Return is the cumulative daily excess return in the period 1991.01.03-2019.12.31. No. of trades
is calculated as the summary of changes in weights over the period, where one trade is defined as any
change in any asset’s weight from one day to the next. µ is the daily mean return in percent during
the period. σ is the daily standard deviation in percent of the portfolio. Sharpe is the daily Sharpe
ratio calculated on daily mean and daily volatility. The cost-adjusted statistics are denoted with c; these
include commission fees, short-selling fees, and the bid-ask spread.
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Table 18: Varying Correlation Window
Summary Statistics and Regressions Results

STATS 30 40 50 60 70 80 90 100
Return 1,437.6528 1,369.6047 1,446.526 1,617.1649 1,810.4707 1,667.032 1,571.4024 1,587.2845
Returnc 1,101.4071 1,063.8733 1,109.1855 1,261.5054 1,458.9412 1,345.9143 1,266.2938 1,299.5827
No. of trades 290 270 282 268 234 233 230 208
µ 0.8295 0.8161 0.8364 0.8649 0.8983 0.8771 0.8601 0.8635
µc 0.7497 0.7401 0.7555 0.7889 0.8319 0.8114 0.7936 0.8014
σ 3.4915 3.5071 3.6488 3.5417 3.5566 3.6403 3.6411 3.6564
σc 3.4048 3.4107 3.5147 3.4056 3.4309 3.5172 3.5093 3.5196
Sharpe 0.2376 0.2327 0.2292 0.2442 0.2526 0.2409 0.2362 0.2362
Sharpec 0.2202 0.217 0.215 0.2317 0.2425 0.2307 0.2261 0.2277

Table 18 shows the summary statistics when varying VIX correlation windows. The Return is the cu-
mulative daily excess return in the period 1991.01.03-2019.12.31. No. of trades is calculated as the
summary of changes in weights over the period, where one trade is defined as any change in any asset’s
weight from one day to the next. µ is the daily mean return in percent during the period. σ is the daily
standard deviation in percent of the portfolio. Sharpe is the daily Sharpe ratio for each iteration of the
correlation window size. The cost-adjusted statistics are denoted with c; these include commission fees,
short-selling fees, and the bid-ask spread.

Table 19: Varying Asset Sensitivity
Summary Statistics and Regressions Results

STATS 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85
Return 1,709.7506 1,708.2578 1,706.9825 1,654.6092 1,672.1994 1,810.4707 1,308.2988 867.2961
Returnc 1,268.7098 1,280.1989 1,287.5162 1,259.5108 1,298.5666 1,458.9412 1,118.7141 813.4053
No. of trades 286 275 270 265 251 234 189 88
µ 0.8852 0.8848 0.8846 0.8751 0.8761 0.8983 0.7998 0.6865
µc 0.7948 0.7973 0.7988 0.7919 0.7988 0.8319 0.7541 0.6682
σ 3.6654 3.6602 3.6594 3.6443 3.5876 3.5566 3.4128 3.5624
σc 3.5312 3.5272 3.5223 3.5066 3.4516 3.4309 3.3963 3.565
Sharpe 0.2415 0.2417 0.2417 0.2401 0.2442 0.2526 0.2344 0.1927
Sharpec 0.2251 0.226 0.2268 0.2258 0.2314 0.2425 0.222 0.1874

Table 19 shows the summary statistics when varying VIX asset sensitivity. The Return is the cumulative
daily excess return in the period 1991.01.03-2019.12.31. No. of trades is calculated as the summary of
changes in weights over the period, where one trade is defined as any change in any asset’s weight from
one day to the next. µ is the daily mean return in percent during the period. σ is the daily standard
deviation in percent of the portfolio. Sharpe is the daily Sharpe ratio for each iteration of sensitivity
limit. The cost-adjusted statistics are denoted with c; these include commission fees, short-selling fees,
and the bid-ask spread.

Table 20: Varying Lag Size
Summary Statistics and Regressions Results

STATS 3 4 5 6 7 8 9 10
Return 2,118.8755 1,810.4707 1,802.3244 1,577.5171 1,576.5322 1,463.4226 1,441.1042 1,360.2527
Returnc 1,546.2132 1,458.9412 1,423.5006 1,316.9899 1,316.25 1,233.7732 1,215.0023 1,145.9798
No. of trades 330 234 251 197 197 187 187 187
µ 0.9439 0.8983 0.8986 0.8585 0.8583 0.8375 0.8329 0.8149
µc 0.8496 0.8319 0.826 0.8025 0.8023 0.7841 0.7795 0.7618
σ 3.5601 3.5566 3.6009 3.5548 3.5545 3.5758 3.5697 3.5312
σc 3.4546 3.4309 3.4634 3.4341 3.4339 3.4458 3.4417 3.4175
Sharpe 0.2651 0.2526 0.2496 0.2415 0.2415 0.2342 0.2333 0.2308
Sharpec 0.2459 0.2425 0.2385 0.2337 0.2337 0.2275 0.2265 0.2229

Table 20 shows the summary statistics when varying VIX lag size level. The Return is the cumulative
daily excess return in the period 1991.01.03-2019.12.31. No. of trades is calculated as the summary of
changes in weights over the period, where one trade is defined as any change in any asset’s weight from
one day to the next. µ is the daily mean return in percent during the period. σ is the daily standard
deviation in percent of the portfolio. Sharpe is the daily Sharpe ratio for each iteration of lag size. The
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cost-adjusted statistics are denoted with c; these include commission fees, short-selling fees, and the
bid-ask spread.

Table 21: Max and Min Weights Allocated for each Outset Portfolio
Summary Statistics

MV Outset Portfolio Max Weights
NoDur Durbl Manuf Enrgy Chems BusEq Telcm Utils Shops Hlth Money Other Rf
0.2038 0.1761 0.1927 0.1532 0.1357 0.1748 0.0896 0.0807 0.1834 0.2172 0.1550 0.2302 0.7964

MV Outset Portfolio Min Weights
NoDur Durbl Manuf Enrgy Chems BusEq Telcm Utils Shops Hlth Money Other Rf
-0.1042 -0.0075 -0.0884 0.0235 -0.0070 -0.0629 0.0588 0.0743 -0.0751 -0.1233 -0.0345 -0.0304 -0.4271

EW Outset Portfolio Max Weights
NoDur Durbl Manuf Enrgy Chems BusEq Telcm Utils Shops Hlth Money Other Rf
0.0769 0.0769 0.0769 0.0769 0.0769 0.0769 0.0769 0.0769 0.0769 0.0769 0.0769 0.0769 0.0769

Table 22: Main Regressions Results Best Outcome
VIX SMA EW VIX SMA EW

Mktrf 0.9094*** 1.2211*** 0.9062*** 0.5367*** 0.7274*** 0.9022***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

SMB 0.1935*** 0.1972*** 0.0212*** 0.1565*** 0.1482** 0.0208***
(0.000) (0.003) (0.000) (0.001) (0.013) (0.000)

HML -0.3435*** -0.4101*** 0.0616*** -0.3051*** -0.3592*** 0.0620***
(0.000) (0.000) (0.000) (0.000) (0.001) (0.000)

RMW 0.1603* 0.3507*** 0.1750*** 0.0892 0.2566*** 0.1742***
(0.051) (0.000) (0.000) (0.261) (0.007) (0.000)

CMA 0.5288*** 0.4628*** 0.1905*** 0.4476*** 0.3552*** 0.1896***
(0.000) (0.000) (0.000) (0.000) (0.004) (0.000)

∆VIX - - - -0.0802*** -0.1063*** -0.0009**
(0.000) (0.000) (0.040)

Constant 0.0008*** 0.0002 -0.0000*** 0.0011*** 0.0007*** -0.0000**
(0.000) (0.150) (0.006) (0.000) (0.000) (0.012)

R-squared 0.403 0.431 0.983 0.469 0.500 0.983
p-values in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01

Table 22 shows the results from running the regression µp = αi + β1(RM, t − Rf, t) + β2(SMBt) +
β3(HMLt) + β4(RMWt) + β5(CMAt) + εi, t for the equal-weighted outset portfolio, SMA strategy and
VIX strategy. The regression is run on daily excess returns in the period 1991.01.03-2019.12.31. Mktrf
is the Fama-French excess market return, SMB is the small minus big factor, HML is the high minus low
factor, RMW is the robust minus weak factor, CMA is the conservative minus aggressive factor. ∆VIX
is the monthly percent change in VIX in the same period. Alpha is Jensen’s Alpha. P-values are derived
from Newey-West standards errors to overcome the issue of heteroskedastic and autocorrelated standard
errors.
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Table 23: Main Regressions Results Best Outcome Cost Adjusted
VIXc SMAc EWc VIXc SMAc EWc

Mktrf 0.9199*** 1.2189*** 0.9063*** 0.5289*** 0.7247*** 0.9022***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

SMB 0.2084*** 0.1909*** 0.0211*** 0.1696*** 0.1418** 0.0207***
(0.000) (0.003) (0.000) (0.000) (0.016) (0.000)

HML -0.3460*** -0.4134*** 0.0614*** -0.3057*** -0.3625*** 0.0618***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

RMW 0.1722** 0.3486*** 0.1753*** 0.0977 0.2544*** 0.1745***
(0.037) (0.001) (0.000) (0.217) (0.007) (0.000)

CMA 0.5237*** 0.4586*** 0.1907*** 0.4385*** 0.3509*** 0.1898***
(0.000) (0.000) (0.000) (0.000) (0.004) (0.000)

∆VIX - - - -0.0842*** -0.1064*** -0.0009**
(0.000) (0.000) (0.037)

Constant 0.0002 0.0001 -0.0000*** 0.0005*** 0.0005*** -0.0000**
(0.116) (0.582) (0.005) (0.000) (0.002) (0.010)

R-squared 0.407 0.430 0.983 0.479 0.499 0.983
p-values in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01

Table 23 shows the results from running the regression µp = αi + β1(RM, t − Rf, t) + β2(SMBt) +
β3(HMLt) + β4(RMWt) + β5(CMAt) + εi, t for cost adjusted returns of the equal-weighted outset
portfolio, SMA strategy and VIX strategy. The regression is run on daily excess returns, adjusted for
commissions fees, short-selling fees, and bid-ask-spread in 1991.01.03-2019.12.31. Mktrf is the Fama-
French excess market return, SMB is the small minus big factor, HML is the high minus low factor,
RMW is the robust minus weak factor, CMA is the conservative minus aggressive factor. ∆VIX is the
monthly percent change in VIX in the same period. Alpha is Jensen’s Alpha. P-values are are derived
from Newey-West standards errors to overcome the issue of heteroskedastic and autocorrelated standard
errors.

Table 24: Optimal Solution Extended
Summary Statistics

Return Returnc No. of trades µ µc σ σc Sharpe Sharpec
VIX 226,818.1927 3,516.3014 4,188 2.4075 1.1998 6.1433 6.0424 0.3919 0.1986
SMA 2,042.0191 678.0401 955 1.2447 0.9387 8.3684 8.4452 0.1487 0.1112
EW 624.5229 620.5505 13 0.5937 0.5918 3.7282 3.7264 0.1593 0.1588

Table 24 shows the summary statistics for the best VIX strategy, the SMA strategy, and the EW buy-
and-hold portfolio. The Return is the excess cumulative return in the period 1991.01.03-2020.03.31. No.
of trades is calculated as the summary of changes in weights over the period, where one trade is defined
as any change in any asset’s weight from one day to the next. µ is the daily mean return in percent
during the period. σ is the daily standard deviation in percent of the portfolio. Sharpe is the daily
Sharpe ratio for each iteration of the correlation window size. The cost-adjusted statistics are denoted
with c; these include commission fees, short-selling fees, and the bid-ask spread.
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Table 25: Main Regressions Results Extended
VIX SMA EW VIX SMA EW

Mktrf 0.7664*** 1.3339*** 0.9050*** 0.3553*** 0.9064*** 0.9025***
(0.000) (0.000) (0.000) (0.007) (0.000) (0.000)

SMB 0.1475*** 0.2396*** 0.0251*** 0.1090** 0.1995*** 0.0248***
(0.008) (0.001) (0.000) (0.034) (0.004) (0.000)

HML -0.4299*** -0.3276*** 0.0662*** -0.3731*** -0.2686** 0.0665***
(0.000) (0.008) (0.000) (0.000) (0.022) (0.000)

RMW 0.0219 0.4687*** 0.1725*** -0.0479 0.3961*** 0.1721***
(0.832) (0.000) (0.000) (0.624) (0.001) (0.000)

CMA 0.5018*** 0.4781*** 0.1842*** 0.4131*** 0.3859*** 0.1836***
(0.000) (0.000) (0.000) (0.000) (0.003) (0.000)

∆VIX - - - -0.0914*** -0.0951*** -0.0006
(0.000) (0.000) (0.229)

Constant 0.0009*** 0.0001 -0.0000*** 0.0013*** 0.0005*** -0.0000**
(0.000) (0.593) (0.008) (0.000) (0.009) (0.012)

R-squared 0.315 0.466 0.983 0.401 0.515 0.983
p-values in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01

Table 25 shows the results from running the regression µp = αi + β1(RM, t − Rf, t) + β2(SMBt) +
β3(HMLt) + β4(RMWt) + β5(CMAt) + εi, t for the equal-weighted outset portfolio, SMA strategy and
VIX strategy. The regression is run on daily excess returns in the period 1991.01.03-2020.03.31. Mktrf
is the Fama-French excess market return, SMB is the small minus big factor, HML is the high minus low
factor, RMW is the robust minus weak factor, CMA is the conservative minus aggressive factor. ∆VIX
is the monthly percent change in VIX in the same period. Alpha is Jensen’s Alpha. P-values are derived
from Newey-West standards errors to overcome the issue of heteroskedastic and autocorrelated standard
errors.
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Table 26: Main Regressions Results Extended Cost Adjusted
VIXc SMAc EWc VIXc SMAc EWc

Mktrf 0.7771*** 1.3318*** 0.9051*** 0.3484*** 0.9034*** 0.9025***
(0.000) (0.000) (0.000) (0.008) (0.000) (0.000)

SMB 0.1621*** 0.2338*** 0.0250*** 0.1219** 0.1936*** 0.0248***
(0.004) (0.001) (0.000) (0.017) (0.005) (0.000)

HML -0.4307*** -0.3330*** 0.0659*** -0.3714*** -0.2738** 0.0663***
(0.000) (0.007) (0.000) (0.000) (0.018) (0.000)

RMW 0.0340 0.4669*** 0.1728*** -0.0388 0.3942*** 0.1724***
(0.742) (0.000) (0.000) (0.690) (0.001) (0.000)

CMA 0.4951*** 0.4751*** 0.1844*** 0.4026*** 0.3827*** 0.1838***
(0.000) (0.000) (0.000) (0.000) (0.003) (0.000)

∆VIX - - - -0.0954*** -0.0953*** -0.0006
(0.000) (0.000) (0.219)

Constant 0.0003** -0.0001 -0.0000*** 0.0007*** 0.0003* -0.0000**
(0.035) (0.748) (0.007) (0.000) (0.074) (0.010)

R-squared 0.320 0.465 0.983 0.412 0.514 0.983
p-values in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01

Table 26 shows the results from running the regression µp = αi + β1(RM, t − Rf, t) + β2(SMBt) +
β3(HMLt) +β4(RMWt) +β5(CMAt) + εi, t for cost adjusted returns of the equal-weighted outset port-
folio, SMA strategy and VIX strategy. The regression is run on monthly excess returns, adjusted for
commissions fees, short-selling fees and bid-ask-spread, in the period 1991.01.03-2020.03.31. Mktrf is the
Fama-French excess market return, SMB is the small minus big factor, HML is the high minus low factor,
RMW is the robust minus weak factor, CMA is the conservative minus aggressive factor. ∆VIX is the
monthly percent change in VIX in the same period. Alpha is Jensen’s Alpha. P-values are derived from
Newey-West standards errors to overcome the issue of heteroskedastic and autocorrelated standard errors.
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