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Abstract 

Different characteristics of cryptocurrencies have been investigated by a number of studies. In this 

study, I focus on conditional volatility of Bitcoin in three exchanges which are Coinbase, Bitfinex 

and Bitstamp. I investigate in-sample and out-of-sample performance of GARCH, GAS, Realized 

GARCH, GJR and EGARCH, and assess existence of inverse leverage effect. Moreover, 

multivariate GAS model with equi-correlation and constant correlation structures is applied. I find 

that, in the time period of this study, inverse leverage effect does not exist, and Normal GARCH-

GAS model performs relatively better for out of sample forecasts. Furthermore, in multivariate 

part, I show that constant correlation t-GAS out performs other models with respect to AIC and 

BIC, and that estimated correlations, which are very close to one, provide evidence that while 

arbitrage opportunities exist across different markets, investors cannot diversify by investing in 

different markets. 

Keywords: Bitcoin; Volatility Modelling; GAS; GARCH; Realized GARCH; Coinbase; Bitfinex; 

Bitstamp  
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1. Introduction 

Conditional variances or volatilities of asset returns are typically used to measure financial, and 

are in turn used in asset pricing, asset management, and risk management. Assets that have high 

volatility are considered riskier, and investors expect such assets to generate higher returns to 

compensate for the risk. Modelling of conditional variances of assets is one of important research 

areas in finance and is the focus of this study. 

In this study, I evaluate price volatility for Bitcoin which was first introduced as a byproduct of 

another innovation, and has gained popularity and attention among not only traders but also 

researchers. Bitcoin and other cryptocurrencies are now traded by more than 50 million active 

market participants (Makarov & Antoinette, 2020). Moreover, development of Bitcoin derivative 

market provides evidence for importance of investigating volatility of Bitcoin. This study intends 

to evaluate in sample and out-of-sample performances of different volatility models when applied 

to Bitcoin prices in different exchanges and to investigate leverage effect for volatility. 

For univariate study, I utilize GARCH(1,1), GAS(1,1), and Realized GARCH models, and 

compare how they perform for heavy tail distribution. In addition, GJR-GARCH, EGARCH and 

Realized GARCH with leverage function are included to assess asymmetric response. While stock 

markets have higher volatility after negative return, but (Baur & Dimpfl, 2018) find evidence of 

inverse effect for cryptocurrencies.   

Furthermore, I utilize multivariate GAS , capable of absorbing outliers and observations from tails, 

with constant correlation and equi-correlation structures for multivariate analysis. While (Makarov 

& Antoinette, 2020) show existence of arbitrage opportunities across different exchanges, I 

estimate correlations which can be used to investigate diversification benefit. Except for 

EGARCH, which is included only with Normal distribution, for all the other models I include 

Normal and Student’s t distribution densities. 

For the empirical study, I consider three different exchanges: Coinbase, Bitstamp and Bitfinex.  

The sample period is August 10th 2016 to January 7th 2019, which includes a dramatic price rise 

during 2017. In this period, Coinbase was the biggest retail exchange, and Bitfinex is believed to 

be behind many of price manipulations in the time interval (Griffin & Shams, 2019).  
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Following estimation of different models, I compare their in-sample performances based on AIC 

and BIC information criteria. In-sample performance of GARCH and GAS models are 

comparable. The t-GAS shows lowest AIC and BIC and best in-sample performance compared to 

other models in its class. Among GJR and EGARCH models, GJR with Student’s t distribution 

has the best in sample performance in all the markets.  In addition, Realized GARCH with leverage 

and Student’s t distribution exhibits best in-sample performance among models including a 

realized measure.  

In addition, using Diebold-Mariano test statistic (Diebold & Mariano, 1995) and Mean Squared 

Prediction Error, I investigate out-of-sample performance of univariate models in the last 50 days 

of my period of study with an extending window design. I find that Normal GARCH (equivalent 

to Normal GAS) outperforms other models. However, this result can be due to the period 

considered for out of sample forecasts.  

Estimation results of multivariate models show that constant correlation model with Student’s t 

distribution has best in-sample performance. In addition, correlations are estimated approximately 

equal to one, providing evidence that markets are highly correlated. Furthermore, high correlation 

shows that although arbitrage opportunities may exist across markets, investing in Bitcoin in 

different markets does not provide a diversification benefit. Moreover, results of estimating 

univariate and multivariate models suggest possibility of factor structure, not only because of high 

correlation but also because of similar volatility forecasts.  

In addition, all the univariate and multivariate models with Student’s t distribution exhibit low 

degrees of freedom and heavy tail distribution. Moreover, forecasts of realized GARCH model 

with leverage depicts higher predictions for Coinbase than those for other markets. In addition, I 

find that the number of degrees of freedom estimated for Coinbase is lower than that of other 

markets, an observation that can serve as an explanation for higher predicted volatility of Coinbase.  

The rest of this paper is structured as follows. Section 2 includes Literature Review which is given 

in four parts: Block chain, Market structure and efficiency, Univariate Volatility and Multivariate 

Volatility. Section 3 provides Methodology used in this study and is decomposed to three 

subsections: Univariate, Multivariate and Model Selection. Section 4 gives a detailed description 

of data set used in this study, and section 5 presents results of empirical study. In section 6, I 

perform a brief simulation study, and in section 7, I present conclusion.
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2. Literature Review 

2.1 Block chain 

First introduced as a byproduct of another innovation, Bitcoin has gained popularity and attention 

among not only traders but also researchers. Bitcoin and other cryptocurrencies are now traded by 

more than 50 million active market participants (Makarov & Antoinette, 2020). Although the 

intriguing idea of digital currency existed for long time, Bitcoin---the first cryptocurrency---was 

created in late 2008 by unknown person or group of people under the pseudonym of “Satsohi 

Nakamoto” (Ølnes, 2016). 

There are several issues in creating digital currency. One worth mentioning is double spending. 

Bitcoin prohibits repeated spending of the same unit of currency and ensures transfer of money 

from the paying account. Indeed, the blockchain technology provides necessary basis on which 

some cryptocurrencies, such as Bitcoin, Ethereum, Litecoin and Ripple, are established and 

overcome the problem of double spending (Crosby, et al., 2016). 

Blockchain technology has other important characteristics such as alleged anonymous spending, 

i.e., inability to recognize the entity who spends the bitcoin (Nakamoto & Bitcoin, 2008). 

However, several previous studies show methods by which transactions can be traced (Meiklejohn, 

et al., 2013) and (Ron & Adi, 2013). Nevertheless, researchers provide new privacy patterns and 

cryptocurrencies, independent from Bitcoin, in response to methods of tracking transactions, but 

many of configurations proposed by them suffer from either inefficiency or insecurity (Heilman, 

et al., 2016).  

Blockchain technology facilitates transactions in a decentralized manner. This means that there is 

no centralized entity to keep records (Bouri, et al., 2016) and utilizes peer to peer system for 

transferring data among nodes. In fact, market information is stored in nodes which need to solve 

complex mathematical problems to facilitate transactions (Crosby, et al., 2016). Nodes check the 

information with each to ensure consistency.  

On one hand, solving mathematical problems and remaining connected to network requires 

consumption of energy. On another hand, blockchain system must ensure zero benefit for miners 

(nodes) and for possible attackers (Budish, 2018). Therefore, miners are rewarded with Bitcoin for 

providing liquidity, and blockchain network is designed such that attacks become expensive. 
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(Ølnes, 2016) suggests that blockchain has shown the potential to be utilized for smart 

governments: one of the usages could be validating documents in the public sector. 

2.2 Market structure and efficiency 

Cryptocurrency exchanges differ structurally from other markets. For example, exchanges are 

open continuously. Data from cryptocurrency markets can be observed at high frequency and 

without interruption, while stock markets are open during weekdays and facilitate trades in specific 

time intervals. 

In contrast to fiat currency that central banks can print without limitations, total supply of Bitcoin 

that will ever be produced is capped (Brandvold, et al., 2015). This is a design choice as for other 

cryptocurrencies the total supply is not limited. Furthermore, while value of Bitcoin is determined 

with respect to supply and demand, there are other cryptocurrencies which derive their value with 

respect to other indicators, such as Tether which is supposedly pegged to US dollar. Despite many 

in online communities and press being suspicious of this claim, exchanges facilitate trades with 

Tether as well (Griffin & Shams, 2019). 

Market structure and efficiency of cryptocurrencies have been investigated by a number of 

previous studies. (Urquhart, 2016) shows that although Bitcoin market is inefficient over sample 

period of this study, it moves toward efficiency in late subsample period, gradually evolving to an 

efficient market. (Makarov & Antoinette, 2020) illustrate that cross-venue arbitrage opportunities 

exist across different Bitcoin exchanges. They also show that the arbitrage opportunities are 

present for weeks, and are larger across countries or regions. Long memory in Bitcoin return time 

series between 2011 and 2017 is tested by (Bariviera, et al., 2017) concluding that market became 

more stable in latter period.  

Properties of Bitcoin as a specific asset class have been researched by different studies. (Selgin, 

2015) argues that Bitcoin can be considered speculative commodity, and (Bouri, et al., 2016) 

evaluate Bitcoin for diversification and hedging, concluding that it can be only used as hedge 

against dramatic down movements in Asian stocks.  

An illiquid market without a central authority may face difficulties to handle large trading volumes, 

causing jumps in price (Scaillet, et al., 2017). Utilizing unique opportunity created by data leak of 



Literature Review 

5 

 

Mt. Gox, (Scaillet, et al., 2017) evaluate jumps in Bitcoin market, finding presence of 

approximately one jump day per week in the time period of their study. 

Fluctuations in price of Bitcoin have been the focus of different studies. (Griffin & Shams, 2019) 

show that Tether has been used to manipulate price of Bitcoin during its unprecedented dramatic 

price increase in 2017. (Brandvold, et al., 2015) argue that although in western world people 

previously trusted central banks, following Euro crisis this attitude has changed, and posit that 

dissimilar prices in different exchanges are due to providing cheaper withdrawing and depositing. 

2.3 Univariate Volatility 

In this study, I investigate volatility of Bitcoin in different exchanges, so the volatility literature is 

divided into univariate and multivariate sections. I present literature review of volatility modelling 

and its application to Bitcoin and Cryptocurrencies. Volatility modelling has received much 

attention in financial literature, as it is a paramount factor in asset pricing.  

Parametric volatility modelling is classified into two different classes: observation-driven and 

parameter-driven models. Basic stochastic volatility model, developed by (Taylor, 1982) , contains 

an unobserved variance component, modeled by an autoregressive process, in the form of 

exponential (for details see (Shephard, 2005)). The class of observation-driven models includes 

the famous Generalized Auto Regressive Conditional Heteroskedastic (GARCH) model of (Engle, 

1982) and (Bollerslev, 1986). In addition, realized measures are gaining popularity and attention 

as a third alternative (Andersen, et al., 1999). 

There are many different specifications of GARCH models. The most notable include, GJR-

GARCH model of (Glosten, et al., 1993), which considers asymmetric effects of returns in 

GARCH(1,1) model by including additional coefficient for negative shocks, and EGARCH of 

(Nelson, 1991) which does not need parameter restrictions and considers volatility as a 

multiplicative function of past innovations. 

In the class of observation-driven models, we have also Generalized Autoregressive Score (GAS) 

model of (Creal, et al., 2013) which encompasses many other observation-driven models including 

the aforementioned GARCH models. GAS can be utilized to arrive at new formulations for 

volatility in a structured way and leverages all information in the likelihood function. Moreover, 

it has also been shown by (Blasques, et al., 2015) that updates used in GAS models are optimal. 
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Volatility of cryptocurrencies has been assessed by a number of recent research studies. For 

instance, (Katsiampa, 2017) applies combination of autoregressive and different GARCH-based 

models to find the optimal one with the highest goodness-of-fit for Bitcoin. He finds that AR-

CGARCH performs better than other models considered with respect to information criterion 

measures. However, I will show in Chapter 4 that for the period of current study, there is no need 

to perform autoregressive model. (Baur & Dimpfl, 2018) analyze volatility effect of positive and 

negative returns on volatility of 20 cryptocurrencies. They find that cryptocurrency markets are 

more volatile after a positive shock. This finding is in stark contrast to stock markets. They attribute 

the finding to ‘fear of missing out’ referring to noise trading of uniformed investors after positive 

shocks.  

Classic GARCH models are susceptible to an important shortcoming. While the markets might be 

extremely volatile during the day, low frequency, for example daily sampling, can lead to 

misleading measures for volatility. (Andersen & Bollerslev, 1998) discuss application of high-

frequency intra-daily data sets to forecast volatility. High-frequency realized volatility is shown to 

be potentially error free (Andersen, et al., 1999). I also consider Realized GARCH model presented 

by (Hansen, et al., 2012) where a realized measure is used for modelling daily volatility of 

cryptocurrencies. 

(Aalborg, et al., 2019) assess factors affecting return, volatility and trading volume of Bitcoin. 

They consider variety of variables including number of unique Bitcoin addresses and Google 

searches for Bitcoin. They utilize realized volatility measure computed from high-frequency data 

and discover that heterogeneous autoregressive model by (Corsi, 2009) is appropriate to model 

Bitcoin volatility and that addition of trading volume further improves this model. 

GARCH-MIDAS1 has been used extensively in previous studies for different purposes. (Conrad, 

et al., 2018) investigate impact of different indicators on volatility of Bitcoin. They conclude that 

Bitcoin volatility is inversely associated with US stock market volatility, but that it is strongly 

related to Baltic dry index which is a proxy of global economic activity. (Fang, et al., 2019) find 

that greater uncertainty in global economy increases hedging usefulness of Bitcoin. Higher global 

                                                           
1 GARCH-MIDAS model proposed by (Engle, et al., 2013) decomposes volatility into long-term and short-term 

components. It provides the basis to consider effect of high and low frequency observations, and to evaluate impact 

of other indicators on volatility being studied. 
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economic uncertainty provides greater forecasting power of Bitcoin volatility, negatively affects 

correlation between Bitcoin and bond and positively affects correlations between Bitcoin and 

equities or commodities. Empirical results of (Fang, et al., 2019) show that if different economic 

uncertainty conditions are considered, hedging usefulness of Bitcoin is not significant. (Walther, 

et al., 2019) find Global Real Economic Activity, among factors under their investigation, to be 

the most relevant factor associated with volatility of cryptocurrencies, giving better volatility 

forecasts for bull and bear markets.  

2.4 Multivariate Volatility 

The main purpose of multivariate volatility modelling is to study the relationship between 

volatilities and co-volatilities in different markets or assets. Generally, multivariate models impose 

restrictions to limit number of parameters which need to be estimated and to ensure positivity of 

volatilities and symmetry of correlation or covariance matrix. 

VEC model by (Bollerslev, et al., 1988) utilizes vector half operator to construct recursions for 

updates. Special cases of VEC model are DVEC, initially due to (Bollerslev, et al., 1988) in which 

the coefficient matrices are restricted to be diagonal and Baba, Engle, Kroner and Kraft (BEKK) 

model ensures positivity of volatility (Baba, et al., 1990).  

Using BEKK-GARCH to estimate conditional correlations, (Klein, et al., 2018) analyze the 

relationship between cryptocurrencies and stock indices and commodities, and investigates hedge 

and safe-haven properties of cryptocurrencies compared to gold. With a similar method, (Beneki, 

et al., 2019) test volatility spillovers and hedging capabilities between Bitcoin and Ethereum. They 

investigate whether increased volatility from one of the currencies can be transferred to another 

one, arguing that a delayed volatility transmission between Bitcoin and Ethereum provides the 

basis for profitable trading strategies. They find that although Bitcoin and Ethereum exhibit some 

diversification capabilities in the beginning, capabilities tend to diminish over time.  

Analyzing volatility co-movements and interdependencies between Bitcoin and Ethereum, 

(Katsiampa, 2019) utilizes Diagonal BEKK model and finds that volatility and correlation react to 

major news. Moreover, this study shows that Ether can be used as an effective hedge against 

Bitcoin. Using asymmetric BEKK-GARCH to investigate return, volatility and shock relations 

between Bitcoin and some stock indices, including clean energy, fossil fuel energy and technology 
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companies, (Symitsi & Chalvatzis, 2018) investigates how Bitcoin can be used for diversification 

and portfolio management. 

Another method of multivariate modelling, conditional correlation models are constructed by 

decomposing the covariance matrix into standard deviation matrix and correlation matrix. Many 

models have been proposed in the literature to focus on the specification of correlation matrix. The 

correlation matrix can be considered either constant or dynamic through time.  

One of the subsets of conditional correlation models, Constant Conditional Correlation (CCC) 

model by (Bollerslev, 1990) assumes that correlation matrix remains unchanged during time, an 

assumption which is often unrealistic. Dynamic Conditional Correlation (DCC) of (Tse & Tsui, 

2002) allows conditional correlation matrix to evolve over time while DCC of (Engle, 2002) 

permits conditional covariance matrix to vary during time.  

(Creal, et al., 2012) propose Generalized Autoregressive Score (GAS) model for multivariate time 

varying volatilities and correlations. This model includes update based on score function for 

prediction. Moreover, this model allows capturing observations of outliers, and is suitable for 

heavy tailed distributions which are typically observed in Finance.
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3. Methodology 

In this section, I explain the models which are used in this study in the following order. Initially, 

descriptions related to univariate volatility models are provided. Thereafter, I provide explanations 

regarding multivariate models. In addition, I include explanations regarding information criterion 

AIC and BIC, and regarding the Diebold Mariano (Diebold & Mariano, 1995) test.  

3.1 Univariate  

In the analysis of time series gathered from different markets, I will utilize logarithmic returns 

which are defined as: 

1

1

ln ln ln ln t
t t t

t

P
P P P

P




 
     

 
 

Where 
tP  denotes price of asset, in my case Bitcoin, at time t . Logarithmic return is preferred in 

finance as it is additive and believed to be more stationary, which is a paramount characteristic for 

a financial time series (Tsay, 2005). From now, I denote asset return series with
ty which can be 

rewritten as follows: 

   ,   0,1t t t ty h iid   

Alternatively, I can consider conditional distribution of 
ty with respect to information available at 

time 1t   formally 1|t ty Y  . Among different possible distributions for t or 1|t ty Y  , I choose 

Gaussian and Student’s t, which are more common. I estimate parameters with maximum 

likelihood. For the Gaussian distribution, I can write: 

1| (0, )t t ty Y N h  

 

1
2 2

1

1
|

2

t
t t

tt

y
f y Y

hh





 
  

 
 

Log-likelihood function can be derived as: 

 1

1

|
n

t t

t

L f y Y 



  
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 1

1

log( ) |
n

t t
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

  
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2

1

1
| log 2 log
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t t t

t

y
l y Y h

h
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1
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2
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log L h
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


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If I consider Student’s t distribution for conditional returns, I can follow the same procedure as in 

(Bollerslev, 1986) and write: 

 
 

     

 1
22

1

1
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| 1
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n
t

t
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y
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h

  
 


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

 

To arrive at the maximum likelihood estimator for each assumption of density, I maximize log-

likelihood functions defined above. To estimate the parameters of different models used in this 

study, I will maximize the log-likelihood function in which I substitute different filters for 

conditional variance
th .  

3.1.1 GARCH(1,1) 

The first set of models used in this study is GARCH(1,1) with Gaussian and Student’s t 

distributions. These models are used as the baseline for univariate. Filter equation for conditional 

variance in GARCH(1,1) is defined as: 

2

0 1 1 1 1t t th y h       

In order to implement the above model, some restrictions are typically imposed to ensure, for 

example, that unconditional variance is finite. The restrictions are: 

0 1 1 1 10   ,   0   ,   1  ,   1          
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The GARCH recursion is initialized with unconditional variance implied by the model. In case of 

GARCH(1,1) model, it can be shown that unconditional variance is equal to 

 
 

0

1 11
tVar y



 


 
.  

3.1.2 GAS(1,1) 

GAS(1,1) is the second model evaluated in this study. For this model, I can write: 

1 1 1t t th A s B h     

t t ts S   

In the above expressions, 
th stands for conditional variance, 

t  denotes score w.r.t. to 
th , and 

tS

refers to inverse of Fisher information. The above expression for 
ts allows for greater flexibility 

for GAS filters, since
tS can be specified in different ways. However, an optimal filter is derived 

by using inverse of Fisher information. For Gaussian distribution, the filter above simplifies to: 

 2

1 1 1t t t th A y h B h      

As illustrated by (Creal, et al., 2013), GAS(1,1) with Normal distribution is equivalent to Gaussian 

GARCH(1,1) model, however, the coefficients are not exactly the same. It can be shown that

0  , 1 1A   and 1 1 1B A   . The equivalency does not extend to other distributions. As the 

updates ts  depend on the score function and Fisher information, assuming Student’s t distribution 

for conditional density results in different update equation, as follows: 

 
 

 
 

 

1

1 2

1 1 11 2

1

1

1
1 3

1
1 2

1 2

t t t t

t

t

h A y h B h
y

h


 










 





 
 

 
      

    
  

  

 

Which is clearly different from the GARCH(1,1) model. While GARCH(1,1) considers the same 

update for Gaussian and Student’s t distributions, GAS(1,1) updates are structured to dampen 

contributions from  observations from tails of distribution. This filter can capture observations 
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from heavy tails of distribution and can absorb outliers, leading to improved model fit. In order to 

estimate the parameters, following restrictions are typically applied: 

1 1 1 10   ,   0 , 1  ,   1A B A B      

3.1.3 Realized GARCH 

The next univariate model that I consider is the Realized GARCH model with log linear 

specification (Hansen, et al., 2012). Realized GARCH models relate the observed realized measure 

to the latent volatility through measurement equation, in which a leverage function can be included 

to consider asymmetric response to shocks.  

Closely following (Hansen, et al., 2012) the filter and measurement equations for log linear 

specification are as follows: 

    1 1exp log logt t th h x       

   log log( )t t t tx h u        

In the above equation, 
tx  represents realized measure which is computed at high frequency. As I 

can see in the filter equation, rather than squared return in GARCH and GAS models, Realized 

GARCH model includes realized measure for prediction of conditional variance. In this study, 
tx

is Realized Variance and is defined as: 

    
2

2

, 1, ,

1 1

log log
m m

t i t i t i t

i i

x P P y

 

     

In addition,    2

1 2 1t t t        , called leverage function, incorporates the effect of negative 

returns on future volatility. Leverage functions can be written using Hermite polynomials which 

are typically written as: 

     2 3

1 2 31 3 ...t t tz z z z z          

However, as (Hansen, et al., 2012) argue, the polynomial of order two is both sufficient and 

convenient as it ensures    0tz  for any process tz  which has   0tz   and   1tVar z  . In 

this study, Realized GARCH models are considered in two different ways. Firstly, I simply 
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estimate the model without leverage function, and secondly, I estimate the model including 

leverage function to achieve a model for analyzing asymmetric volatility. 

With regard to estimation, I follow (Hansen, et al., 2012) and assume independent distributions of 

filter and measurement equations. Therefore, joint conditional distribution can be decomposed to 

multiplication of densities. Then, by taking logarithm, the log-likelihood function can be written 

as the sum of the log likelihood functions. Formally, I can write as illustrated by Hansen et al. 

(2012) as follows: 

    11
1

log , ; log , |
n

n

t t t t tt
t

L y x f y x Y 


  

     1 1 1, | | | ,t t t t t t t tf y x Y f y Y f x y Y    

     
2 2

2

2
1 1

1 1
, log(2 ) log log(2 ) log

2 2

n n
t t

t u

t tt u

y u
l y x h

h
  

 

   
          

   
   

Therefore, in case of Realized GARCH model the above function will be maximized to estimate 

the parameters of the model for Gaussian distribution assumption of measurement and filter 

equations. Moreover, I investigate Realized GARCH for Student’s t for which I propose that the 

log-likelihood is: 

      
 

    

2

1 1 1
1

1 1

22 2 2
2

1 11 1
, log log log 2 log log 1

2 2 2 2 2 2

1 11 1
               log log log 2 log

2 2 2 2 2

n
t

t

t t

u

y
l y x h

h

  
 



  
  



            
                                 

          
              

       



 

2

2
1 2

log 1
2

n
t

t u

u

 

  
        



  

3.1.4 GJR-GARCH 

GJR-GARCH model by (Glosten, et al., 1993) allows for positive and negative returns to have a 

separate effect on the volatility. Motivated by (Baur & Dimpfl, 2018), I evaluate the effect of 

positive and negative returns on volatility of Bitcoin in different exchanges. 

Filter equation for GJR-GARCH(1,1) is defined by the following equation: 

  
1

2

0 1 1 1 1 10t
t t ty

h I y h   




 
     
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Where 
 1 0ty

I
 

 denotes indicator function which takes value zero if the return in previous period is 

positive, and one if the return in previous period is negative. Therefore, the coefficient of squared 

return will be different for positive and negative returns, and investigation of asymmetric response 

of volatility becomes possible. For stock markets, 
1
  is expected to be positive, leading to greater 

increase in volatility after negative shocks. Restrictions to estimate the parameters in the above 

function are: 

0 1 1 1 10  ,   , 0  ,   0          

I investigate both Gaussian and Student’s t distributions for GJR-GARCH model, and estimate 

the parameters. 

3.1.5 EGARCH 

(Nelson, 1991) introduces EGARCH model to account for asymmetric response of volatility to 

positive and negative shocks, referring to the asymmetric effect as leverage effect. 

EGARCH(m,s) model in general is defined by the following:  

   ,  0,1t t t ty h NID   

 
 

 
   

1

1 1
1 1

1

1
ln

1

s

s
t t tm

m

L L L
h g g

L L L

  
   

  




 

  
   

  
 

In which  tg   denotes weighted innovation and is given by  

   t t t tg           

Moreover, for polynomials  L  and  L  I have: 

   0  ,   0 1L L L      
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In this study, I consider EGARCH(1,1) as this option usually leads to optimal solution for 

financial time series.2 In addition, I assume  0,1t N , so I immediately conclude that  t  is 

half-normal for which I have  
2

t


  . Consequently, I can write filter equation as below: 

     1 1

2
ln 1 lnt t t th h     


 

 
      

 

 

From the above equation one can see that the coefficient for t  in case of 0t  is    and in 

case of 0t   is   . Therefore, to evaluate asymmetric response I will investigate the sign of 

coefficient  . Negative   implies that higher future volatility for negative returns, and positive   

relates higher future volatility to positive returns.  

3.2 Multivariate 

In multivariate part, my approach remains the same, and I estimate parameters by maximizing log-

likelihood function, however, restrictions needed to ensure positivity of conditional variance and 

stationary process become more complex. In this section, I define vector 
ty  with dimension 1N   

to denote multiple asset returns at time t . I have: 

   | 1 1 1| , |t t t t t t ty Y H Var y Y       

1
2

| 1t t t t ty H    

And assuming zero conditional return, the term 
| 1t t 

vanishes and I arrive at: 

 
1

2
1, | 0,t t t t t ty H y Y N H   

The other assumptions are  1| 0t tY   and  1|t t t NY  
   which are equivalent to standard 

white noise for univariate model.  

                                                           
2 https://vlab.stern.nyu.edu/docs/volatility/EGARCH 

https://vlab.stern.nyu.edu/docs/volatility/EGARCH
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3.2.1 GAS 

In this study, I include two different specifications of GAS model: Equi-Correlation and constant 

correlation. In multivariate setting the filter equation is defined similar to univariate: 

1 1 1t t tf A s B f     

Where
tf  is time varying factor which is in this research  log th . Equi-correlation structure is 

defined as: 

11 1

1

1

1

n

n nn

R

  

  

   
   

 
   
   
   

 

In contrast to above specification, I also define constant correlation structure as: 

11 12 13 12 13

21 22 23 12 32

31 32 33 13 32

1

1

1

R

    

    

    

   
   

 
   
   
   

 

I follow (Koopman, et al., 2017) for derivations of the terms, and use similar equi-correlation 

structure. Therefore, the assumption is having constant correlation through time between all the 

exchanges. Equations related to this model are provided in the Appendix A. An important 

difference between this structure and the next one is that here I do not restrict matrices A and B to 

be diagonal, and their elements can be between -1 and +1. 

I now provide the equations and assumptions related to constant correlation model. I follow (Creal, 

et al., 2012). Similarly to univariate part, I have t t ts S   in which 
1

| 1t t tS 

  .  In order to clarify 

equations used in this study for the multivariate GAS model, I briefly review some matrix 

operations. Expression A B represents Kronecker product of matrices A and B, and I also denote 

Kronecker sum as    A B A B B A     . Operator  vec A vectorizes matrix A into a column 

vector, while ( )vech A vectorizes lower triangular part of matrix A. Duplication matrix kD  is 

defined such that  ( )kD vech A vec A . 

With similar notation to (Creal, et al., 2012), I have: 
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  
 

2log t

t

t

daig D
f

vech Q

 
 
 
 

 

 
1 1 1

2 2 2
11, 22, ,, ,...,t t t NN tD diag h h h  

t t tH D RD  

In which  
1 1 1

2 2 2
11, 22, ,, ,...,t t t NN tD diag h h h  is a diagonal matrix of standard deviations, and 

tQ  is a 

positive definite matrix used to compute correlation matrix: 1 1

t t t tR Q    , in which 
t is a 

diagonal matrix with square root of diagonal elements of 
tQ as its non-zero elements. Since I 

assume constant correlation, so 
tQ  and 

t  may be written without the subscripts and I have 

1 1R Q    . 

In addition, I follow (Creal, et al., 2012) and define  
 t

t t

t

vech H
f

f
 


 


, which is closely 

related to the chosen time varying variable
tf , to derive t  and 

1

| 1t t



 . Initially, I present the 

intermediate terms for estimation of Student’s t density. The Normal case is obtained by letting   

to go to infinity. 

To derive t , I define elimination matrix kB , for which    kB vec A vech A  . In addition DtW  

matrix is constructed from 2 2k k diagonal matrix   10.5 tdiag vec D  and eliminating columns 

containing only zeros, and selection matrix DS  is defined as   2log t D tdaig D S f . For the 

specification of  
tf  given above, (Creal, et al., 2013) show that 

t  is given by the following 

equation: 

  2

t k t t Dt t DB D R W D S    

Then, the score and fisher is given by the following two equations: 

 11

2
t t k t t tD y vec 

 
         
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   | 1

1

4
t t t k t t k tI D J G vec vec J D    

      
  

 

where 
1

t t t

N

y H y




 





 and N denotes number of exchanges. Moreover, 

tJ is implicitly defined by 

1

t t tJ J    and it can be obtained with various matrix decomposition techniques. In this study, I 

use Cholesky decomposition to compute 
tJ .  

In addition, matrix G is defined by the following equation: 

   1 , 1 ij lm il jm im jlG i k l j k m                  

In the above equation, 
ij denotes the Kronecker delta which is equal to one if i j and zero 

otherwise. In order, to estimate this model, I impose similar restrictions to those suggested by 

(Creal, et al., 2012)For simplicity, I assume matrices A and B are diagonal, with 1N   parameters 

to estimate for each matrix which are denoted by 
1 2 1, ,..., Na a a 

 and 
1 2 1, ,..., Nb b b 

. The first N

elements of each series are placed on the first N diagonal elements, the remaining diagonal 

elements are substituted by the element 1N  . It should be noted that first N diagonal elements 

of each matrix is related to   2log tdaig D  in my decomposition of tf , and the other elements 

which are equal to 1Na   and 1Nb   in A  and B respectively are related to  tvech Q . What is more, 

I must ensure1 0B A   , therefore, I need to satisfy: 

1 2 1 1 2 11 , ,..., 0  ,  1 , ,..., 0N Na a a b b b      

In addition to restrictions imposed on A and B, there is another constraint for  . Considering 

definitions provided for matrices Q  and R , it can be seen that multiplying all elements of Q

results in the same R . Therefore, elements of   which are related to diagonal elements of Q in 

its vech  decomposition are restricted to be equal to one. Furthermore, I impose restrictions on 

elements of matrix R to remain between -1 and +1. Applying these constraints decreases number 

of parameters needed to be estimated and also ensures appropriate results from the model. 
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3.3 Model Selection 

3.3.1 Information Criteria 

 I use information criteria to select a model with best performance among a set of candidates. I 

investigate in sample performance of different models with respect to both Akaike Information 

Criterion (AIC) and Bayesian Information Criterion (BIC). Information criteria are composed by 

an inverse measure of fit and an increasing function dependent on the number of parameters 

estimated.  

The intuition behind the information criterion is to find the best compromise between fit and 

parsimony among the set of candidates. The preferred model is the one with minimum information 

criterion in both AIC and BIC. The formula for calculation of AIC and BIC are as follows: 

ˆ ˆ2log( ) 2   ,  2log( ) log( )AIC L k BIC L k n        

In the above equations L̂  denotes the maximum value of likelihood function, k denotes the number 

of parameters estimated by the model and n  refers to the number of observations. Clearly from 

the equations above, I can see that increasing number of parameters estimated by the model 

penalizes both AIC and BIC, leading to higher information criterion, while increasing the number 

of observations only affects and penalizes BIC, leading to heavier penalty for BIC.  

3.3.2 MSE and Diebold Mariano Test 

I also compare out-of-sample forecasts of different models in an expanding window analysis. All 

the univariate models proposed in this study, provide out-of-sample forecast. Therefore, the 

forecast of models can be compared to observed data in a pseudo out-of-sample exercise. 

After estimating models for a window, and capturing the forecast for the following day, I estimate 

the model again after extending the estimation sample to include an additional return and repeat 

the process. Therefore, I have a series of forecasts for each of the models included in this study, 

predictions that I can compare with observed data and for which I can calculate the error of 

forecast. Forecast error is defined as: 

ˆ
it it te     
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In which ˆ
it denotes prediction of volatility from model i  at time t  and 

t  is the actual conditional 

volatility. Since actual conditional volatility is not easy to estimate, I will use absolute returns ty  

as a proxy. In order to compare forecast error of different models, I calculate mean square error 

(MSE) as loss function for each model. This quantity is calculated as follows: 

 
2

1

1
ˆ

n

it t

t

MSE
n

 


   

Clearly, best performing model is the one with minimum MSE. Furthermore, taking square of 

errors provides higher weight for greater errors. However, in order to conclude about 

performances, I need to perform statistical test. (Diebold & Mariano, 1995) propose DM test 

statistic which is utilized to differentiate performances of different models. DM tests whether the 

forecast errors are statistically significant. 

Loss function for DM test is defined as: 

2 2

it jttd e e   

One shortcoming of this function is symmetric behavior for over and under estimation. Since I am 

considering for one period out of sample forecast I follow definitions of (Diebold & Mariano, 

1995), and write test statistic, together with null and alternative hypothesis as follows:  

   0 1: 0  ,  : 0t tH d d H d d       

 
 0,1

var t

d
DM

d
T

   

In this study, I consider 5% significance level for the above test statistic and perform the test. In 

order to differentiate performance, I first perform DM test to see whether the series of errors are 

statistically different. If I find statistical evidence of different processes, I choose the one with least 

MSE as the best performing process. In addition it must be mentioned that this test provides the 

opportunity to compare models that use realized measures with other models. Since realized 

models include sum of two 7 likelihood functions, they cannot be compared with other models 

with AIC and BIC. 
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4. Data 

In this section, firstly the general approach for processing high frequency data is explained, and 

secondly modifications for missing values are described. I gather high frequency data sets through 

different source and process them using mapper and reducer functions in Matlab to obtain daily 

log price, daily log return and daily realized variance for five minute intervals. Moreover, the 

number of five minute observations for each day is computed. I used five minute intervals in order 

to avoid market microstructure noise, however, I did not check the results under smaller or larger 

intervals. 

In the first step, data sets are resampled at five minute intervals, and in each interval the last 

observation is taken for the ‘closing’ price of the interval. Next, I sum up realized measures for 

each day, and take the last price of each day. I consider 00:00 (UTC) as the start of a new day. I 

study three different exchanges which are Bitstamp, Bitfinex and Coinbase. 

Data set for Bitstamp is entirely downloaded from bitcoincharts.com, and processed with the above 

mentioned method. The data set for Coinbase is downloaded entirely form Kaggle3 and contains 

observations from late January 2015 to January 2019.  

However, Bitfinex faced cyber-attack from August 3rd 2016 to August 9th 2016 which led to its 

servers being offline then. Therefore, there are no observations for this period for this exchange. 

This limited the time span of empirical study. I define the time period of this study from August 

10th 2016 to January 7th 2019.  

Data on Bitfinex suffers from further issues, and requires more modifications. The final data set 

for Bitfinex is created using two different sources. Initially, data set available on Kaggle4 is 

processed, and it contains missing observations. Thus, I incorporate hourly data from 

cryptodatadownload.com for the missing days. The intervals in which the hourly data is 

incorporated are from February 22nd 2018 to March 5th 2018, and from October 28th 2017 to 

November 9th 2017. 

 

                                                           
3 https://www.kaggle.com/mczielinski/bitcoin-historical-data/data#coinbaseUSD_1-min_data_2014-12-01_to_2019-

01-09.csv 
4 https://www.kaggle.com/tencars/392-crypto-currency-pairs-at-minute-resolution 

https://www.kaggle.com/mczielinski/bitcoin-historical-data/data#coinbaseUSD_1-min_data_2014-12-01_to_2019-01-09.csv
https://www.kaggle.com/mczielinski/bitcoin-historical-data/data#coinbaseUSD_1-min_data_2014-12-01_to_2019-01-09.csv
https://www.kaggle.com/tencars/392-crypto-currency-pairs-at-minute-resolution
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In total, I have missing observations for 26 days, while the time period of this study spans 880 

days. I expect that this small number of days with missing 5 minute returns to have a small impact 

on the results for models using realized measures. In addition, it must be mentioned that the 

missing observations do not affect the results of other studies, but impact only the realized models 

for this specific exchange.  

Figure 1 depicts relevant information for Coinbase while similar plots for other exchanges are 

provided in the appendix. From Figure 1, I can see spikes around January 2018, when the price 

bubble started to disappear. Moreover, as the price was increasing during 2017, volatility of the 

market experienced some sudden increases.  

Additionally, in the third panel realized volatility of market illustrates spikes around January 2018. 

Furthermore, in the fourth panel, I can see longer right tail for the distribution of realized volatility, 

an observation referring to extremely volatile days and riskiness of investing in Bitcoin. Second 

and third subplots, which depict absolute return and realized volatility, exhibit volatility clustering 

for Bitcoin. In addition, I provide plot of log realized volatility which is similar to Normal 

distribution, and it better depicts heavy tail of distribution 

In addition, the realized volatility of market illustrates spike around January 2018, and its 

distribution displays longer right tail, indicating presence of highly volatile days. In general, I see 

volatility clustering in both realized volatility and volatility of return. In addition, I provide plot or 

log realized volatility which exhibits closer behavior to Normal distribution, and it better depicts 

heavy tail of distribution. 

As shown in the Table 1, average daily return for different exchanges is around 0.2%, but it is 

statistically insignificantly different from zero. Moreover, unconditional standard deviation for 

different exchanges is 4%, and the correlations are approximately equal to one and are statistically 

significant. 

Negative skewness for returns provides evidence of longer left tail than right tail. Kurtosis is higher 

than 6 which indicates evidence for existence of heavy tails or outliers. Moreover, based on Jarque-

Bera test (denoted by JBp ) I reject the null hypothesis that the data is drawn from a normal 

distribution. It must be mentioned that Jarque-Bera tests simultaneously skewness and kurtosis of 

the distribution, and compares it with with a normal distribution. 
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Table 1: Return summary of all exchanges 
Table 1 shows the summary of returns for all the markets.  refers to unconditional mean over the sample period and 

p
denotes p-value of statistical significance of  . In addition,  refers to correlation, and its indices 1,2 and 3 

respectively refer to Coinbase, Bitfinex and Bitstamp. p
refers to p-value of test with null hypothesis that correlation 

is equal to zero, and  
JBp  refers to p-value of Jarque-Bera test. 

 NumObs Min Max   p
     p

 Skewness Kurtosis JBp  

Coinbase 880.00 -0.18 0.22 0.217% 0.13 4% 12  0.98 0.00 -0.07 6.33 0.001 

Bitfinex 880.00 -0.19 0.23 0.228% 0.12 4% 23  0.99 0.00 -0.18 6.17 0.001 

Bitstamp 880.00 -0.18 0.22 0.217% 0.13 4% 31  0.99 0.00 -0.18 6.16 0.001 

 

Table 2 provides a similar summary for realized volatility of each exchange. Correlations are close 

to one, skewness values are estimated to be greater than zero, providing evidence of longer right 

tail and high realized volatility observations. Kurtosis ranges from 9.95 to 13.7, showing existence 

of heavy tails and outliers. 

Table 2: Realized Volatility Summary 
Table 2 shows summary of Realized Volatility for all the markets.  refers to unconditional mean over the sample 

period and p
denotes p-value of statistical significance of  . In addition,  refers to correlation, and its indices 1,2 

and 3 respectively refer to Coinbase, Bitfinex and Bitstamp. p
refers to p-value of test with null hypothesis that 

correlation is equal to zero, and  JBp  refers to p-value of Jarque-Bera test. 

 NumObs Min Max   p
     p

 Skewness Kurtosis JBp  

Coinbase 880.00 0.00 0.29 4% 0.00 3% 12  0.97 0.00 2.55 13.70 0.00 

Bitfinex 880.00 0.00 0.28 4% 0.00 3% 23  0.97 0.00 2.23 11.04 0.00 

Bitstamp 880.00 0.01 0.24 4% 0.00 3% 31  0.97 0.00 2.08 9.95 0.00 

 

Next, I investigate characteristics of data. Figure 1 depicts autocorrelation of returns, absolute 

returns and realized volatility for Coinbase. As expected, there is no significant autocorrelation 

between lags of returns, while absolute return, a proxy of market volatility, provides evidence of 

dependence. The autocorrelation does not decay geometrically and provides evidence of 

heteroskedasticity. Similarly, the plot of realized volatility shows serial dependence as expected.  

In the rest of this paper, I will provide some of the results only for Coinbase as it was the biggest 

retail exchange in the time period of my empirical study. However, it must be mentioned that I 
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observe similar results for other markets as well. For some analyses, I also include results for 

Bitfinex in the main text since it is suspected to be behind price manipulations during 2017.  

 

 

Figure 1: Autocorrelation for Coinbase 

Figure 1 shows the autocorrelation results for return, absolute return and realized volatility of Coinbase. Red dashes 

show the rejection area at 5% significance level. In first panel, I assess appropriateness of AR process for modelling 

return, while in second and third panels, I explore suitability of conditional heteroskedasticity models for modelling 

volatility. 
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Figure 2: Coinbase Summary 

Figure 2 provides visual description of the data of Coinbase. Return series is depicted in panel 1 in which red line 

shows zero mean. Panels 2 and 3 depict volatility clustering in the market. Red lines in panels 4 and 5 show the kernel 

density fitted to realized volatility and log realized volatility. Panel 6 shows the number of observations per day which 

should be 288 if there are no missing observations.
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5. Results 

5.1 Univaraite Models 

In this section, I present results of univariate modelling for different exchanges. I present the results 

for Coinbase, which is the largest exchange in the period of this study, in the main text, and similar 

results for other exchanges are given in the appendix. I compare different models, and I provide a 

comparative analysis of results for the three exchanges. For representation purposes, models’ 

names are modified to become shorter for the tables, and all the abbreviations are shown in Table 

3. 

Table 3: Abbreviations used in the study for representation purposes 
Table 3 shows the abbreviations used in the tables of this study, and provides their descriptions. This table can be a 

reference point for reading the other tables in which results of models are presented. 

 

Abbreviation Description 

NGC Normal GARCH 

NGS Normal GAS 

TGC t-student GARCH 

TGS T-GAS 

NRL Normal Realized with Log transformation 

TRL t-student Realized with Log transformation 

NRLL Normal Realized with Leverage and Log transformation 

TRLL t-student Realized with Leverage and Log transformation 

NGJR Normal GJR 

TGJR t-student GJR 

EGC E GARCH 

Normal-Equi Normal Equi Correlation structure 

t-Equi t-student Equi Correlation structure 

ConstRN Normal Constant Correlation 

ConstRt t-student Constant Correlation 

 

Figure 3 displays results of different models without leverage for Coinbase. First panel depicts the 

convergence of Normal GARCH and Normal GAS models. This is not surprising as the Normal 

GAS is equivalent to Normal GARCH. Second subplot depicts t-GARCH and t-GAS models, for 

which I can observe differences in predictions. Forecasts generated by t-GAS are in some periods 

higher than those of t-GARCH. This can be attributed to utilization of score in the updates for t-
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GAS model which improves the predictions. Specifically predictions around January 2018 when 

the price bubble disappeared are higher for t-GAS. 

Third panel in Figure 3, shows the Normal and Student’s t Realized GARCH models. Predictions 

of volatility with this class of models are in general higher than GARCH and GAS models, an 

observation closely related to inclusion of realized measure for forecasting and possessing larger 

information set. 

It must be mentioned that appearance and disappearance of some of the spikes in the predictions 

is may be attributed to misspecification of density in the observation equation. For instance, on 

January 2018, I observe a spike which can be due to either explosion of price bubble or a realization 

of tail risk. Considering available information, I conclude that this observation is related to 

explosion of price bubble, and that this finding shows advantage of using t-GAS.  
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Figure 3: Coinbase no leverage models 

Figure 3 shows the predictions of Normal GARCH and GAS, Student’s t GARCH and t-GAS, and Normal and 

Student’s t realized GARCH model and provides the basis for comparing these predictions.  
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Figure 4 depicts comparison of different Student’s t models without leverage function and displays 

more spikes in realized model than in t-GARCH and t-GAS models. These spikes can be due to 

higher realized measures in the period. Moreover, I can observe a spike before January 2019 when 

realized model and t-GARCH model depict high forecast while t-GAS absorbs this spike as an 

outlier. 

 

Figure 4: Coinbase comparison of no leverage models 

Figure 4 shows predictions of different models which do not include leverage with student’s t distribution. This figure 

provides the basis for comparison of forecasts between models.  

In all the comparisons, I can see that changing the assumption of density affects levels and 

dynamics of predictions. However, comparison between t-GARCH and t-GAS depicts more 

differences between two models. Although t-GAS generates higher predictions than t-GARCH, its 

forecasts sometimes fall below the t-GARCH for realizations of outliers, and sometimes remain 

above t-GARCH because new impact curve converges to zero for t-GAS.  

Observing differences between predictions t-GARCH and t-GAS, I would like to highlight the 

spikes in realized models. As I can see when I observe a spike in the realized model, t-GARCH 

shows the spike simultaneously, but t-GAS initially absorbs the shock. Indeed, it takes more 

observations for t-GAS to adjust to a new level of volatility. Since Realized GARCH utilizes same 

procedure, it reflects jumps similar to GARCH model.  

Along with above, I can see that sudden increases and decreases around January 2018 in 

predictions of realized model are follow by GARCH model, however, t-GAS remains relatively 
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stable and above t-GARCH in the following period. I would like to highlight other characteristics 

of t-GAS: (i) it provides generally smoother path of predictions and (ii) its paths do not contain 

prolonged periods of geometric decay. These characteristics are due to the efficient update 

included in this model. 

Figure 5 depicts comparison of different models which include leverage. First panel shows 

comparison of Gaussian and Student’s t GJR models. Assumption of Student’s t density generates 

higher predictions for volatility and produces greater spikes in mid and late 2017 and early 2018. 

 

Figure 5: Coinbase models with leverage  

Figure 5 shows the forecasts of models which include leverage function. In subplots 1 and 2, I provide results of 

Normal and student’s t GJR and Realized GARCH with Leverage, and in subplot 3, I compare the forecasts of 

EGARCH and Normal GJR model. 

Second panel in Figure 5 shows comparison of Gaussian and Student’s t distributions for Realized 

GARCH with leverage function. I can see that Student’s t density provides overall higher forecasts 

and more peaked spikes, a finding related to estimated degrees of freedom which will be followed 

in Table 4. Third panel in Figure 5 shows comparison between EGARCH model and Gaussian 
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GJR, both models having Gaussian assumption for density. This subplot shows that EGARCH 

model generates higher predictions and spikes than Normal GJR.  

Figure 6 depicts results of Normal GARCH, t-GAS and Realized GARCH with Student’s t 

distribution for all the exchanges. None of the models in this figure include leverage. From Figure 

6, I can see that predictions for all markets have a similar trend. There are not substantial 

differences when comparing based on Normal GARCH and t-GAS. However, specification of 

Realized GARCH with Student’s t emphasizes differences, exhibiting highest predicted volatility 

for Coinbase and lowest predicted volatility for Bitstamp. To further check this result, I check the 

plots for models which include leverage function with Student’s t density. 

 

 

Figure 6: All exchanges no leverage 

Figure 6 shows predictions of Normal GARCH, t-GAS and Realized GARCH with student’s t distribution for all the 

markets. In each subplot forecasts of all the markets are provided and compared. Difference in forecasts is more 

emphasized in subplot 3, and it depicts that Coinbase has the highest and Bitstamp hast the lowest volatility forecasts. 
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Figure 7 depicts differences of markets given by Student’s t density assumption of GJR and 

Realized GARCH with leverage. In Figure 7, I can still see that forecasts for Coinbase are the 

highest and for Bitstamp are the lowest. However, this plot shows closer predictions for Coinbase 

and Bitfinex, and the difference between forecasts of these two markets and forecasts of Bitstamp 

is considerable. Estimated degrees of freedom are given in Table 4 for Student’s t density of 

different markets, providing evidence that Coinbase has the lowest value in all models among 

markets. Therefore, estimated degrees of freedom can be one reason for appearance of Coinbase 

above other markets.  

 

Figure 7: Leverage models all exchanges 

Figure 7 shows the comparison of predicted volatilities of different markets with respect to models which include 

leverage and have student’s t distribution. It can be seen that Bitstamp has the lowest volatility among the markets. 

Table 4 shows the values of log likelihood, AIC and BIC, which are provided in average 

contributions. Estimation results show that among GARCH and GAS models, t-GAS outperforms 

other models for all exchanges. Among GJR and EGARCH models Student’s t GJR model is the 

most appropriate model. These results are provided for the time period of this study, and it must 
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be noted that the time span of data set includes the dramatic price rise of Bitcoin in 2017 and 

bubble price explosion of early 2018.  

Realized models are not comparable in terms of neither log-likelihood nor AIC and BIC with other 

models. This fact is due to different definition of log-likelihood for realized models, for which I 

take into account log-likelihood for both measurement and filter equations. Therefore, comparing 

log-likelihood of these models with other models is not appropriate. Among realized models, the 

most suitable in terms of measurement criterion is Student’s t with leverage. 

Models are constructed by constraining number of degrees of freedom to be greater than 2, and I 

can see that number of degrees of freedom estimated range between 2 and 4.02 in all the exchanges 

for all the models, leading us to conclude that the conditional distributions are heavy tailed. 

Another interesting fact about the results is that moving from Gaussian distribution to Student’s t 

distribution improves AIC and BIC criterion in all the exchanges, providing evidence to conclude 

that between Gaussian and Student’s t distributions, the latter is more appropriate. 

Regarding leverage models, results show that in the period of this study, 0   for EGARCH model 

and 
1 0   and 

2 0   for the Realized GARCH model with leverage equation. Moreover, Table 

4 provides 0    for Student’s t GJR and 0    for Normal GJR model. As it was explained in 

the methodology section, results of estimating EGARCH, Normal GJR and all the realized models 

in all the markets are consistent with stock markets and asymmetric volatility response to shocks. 

However, TGJR provides evidence of inverse effect. Because of time constraint, I could not 

estimate standard errors, thus, I cannot assess significance of estimated parameters of different 

models.   
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Table 4: Univariate Results 
Table 4 shows the estimated parameters together with values of log-likelihood, AIC and BIC, which are provided by 

dividing the original values by the number of observations. Log-likelihood, AIC and BIC values which belong to 

models with best in sample performance in each class of models are shown in bold. 

 Model ω α β γ α- θ ν1  ξ φ τ1 τ2 ν2 LL AIC BIC 

C
o

in
b

a
se

 

NGC 4.31E-05 0.14 0.85           1.857 -3.708 -3.692 

NGS 4.35E-05 0.12 0.97           1.856 -3.705 -3.689 

TGC 8.75E-06 0.13 0.87    3.84       1.951 -3.892 -3.871 

TGS 1.63E-05 0.10 0.99    2.83       1.952 -3.894 -3.873 

NRL 2.8E-08  0.63 0.34     -0.59 1.01    0.491 -0.971 -0.944 

TRL 2.8E-01  0.55 0.38   2.23  -1.31 1.08   4.62 0.68 -1.344 -1.306 

NRLL 7.7E-08  0.51 0.44     -0.47 1.04 -0.08 0.13  0.603 -1.191 -1.153 

TRLL 1.9E-06  0.47 0.40   2.21  0.00 1.21 -0.37 0.90 3.00 0.878 -1.735 -1.686 

NGJR 4.4E-05 0.14 0.85  0.02         1.858 -3.706 -3.684 

TGJR 7.6E-06 0.14 0.87  -0.03  3.84       1.951 -3.891 -3.864 

EGC 9.1E-08 0.99  0.31  -0.03        1.816 -3.623 -3.602 

B
it

st
a

m
p

 

NGC 3.98E-05 0.14 0.85           1.853 -3.699 -3.683 

NGS 3.97E-05 0.12 0.98           1.852 -3.697 -3.681 

TGC 1.00E-05 0.13 0.87    3.93       1.937 -3.865 -3.843 

TGS 1.50E-05 0.10 0.99    2.91       1.942 -3.876 -3.854 

NRL 5.0E-08  0.58 0.40     -0.62 0.94    0.739 -1.466 -1.439 

TRL 3.6E-01  0.51 0.49   2.49  -1.35 0.91   4.95 0.912 -1.809 -1.771 

NRLL 6.1E-08  0.53 0.45     -0.47 0.97 -0.09 0.09  0.861 -1.707 -1.669 

TRLL 8.6E-09  0.46 0.48   2.56  -0.41 1.02 -0.22 0.35 2.67 1.085 -2.149 -2.1 

NGJR 4.1E-05 0.13 0.85  0.02         1.854 -3.698 -3.676 

TGJR 8.8E-06 0.14 0.87  -0.03  2.43       1.937 -3.863 -3.836 

EGC 7.5E-07 0.99  0.31  -0.03        1.823 -3.636 -3.615 

B
it

fi
n

ex
 

NGC 3.47E-05 0.13 0.86           1.841 -3.674 -3.658 

NGS 3.38E-05 0.11 0.98           1.84 -3.673 -3.656 

TGC 1.01E-05 0.12 0.88    4.02       1.912 -3.816 -3.794 

TGS 1.48E-05 0.09 0.99    3.20       1.916 -3.823 -3.801 

NRL 4.0E-07  0.62 0.35     -0.53 0.99    0.61 -1.209 -1.182 

TRL 5.6E-06  0.55 0.38   2.48  -0.55 1.10   4.86 0.758 -1.5 -1.462 

NRLL 3.9E-08  0.54 0.42     -0.29 1.03 -0.06 0.18  0.794 -1.572 -1.534 

TRLL 5.0E-07  0.53 0.36   2.22  0.33 1.24 -0.26 1.00 3.39 0.957 -1.894 -1.846 

NGJR 3.6E-05 0.12 0.86  0.01         1.841 -3.672 -3.651 

TGJR 9.3E-06 0.13 0.88  -0.02  4.02       1.92 -3.828 -3.801 

EGC 1.9E-06 0.99  0.23  -0.01        1.812 -3.616 -3.594 
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In order to compare models out-of-sample with MSE and DM test, I use an expanding window 

approach. The interval over which I compare models is the last 50 days of data set. I estimate 

parameters of each model by incorporating information available from beginning of my sample. I 

divide the analysis into two stages. First, I test whether performance of Gaussian and Student’s t 

distributions for same classes of models is different, and at the same time compare the values of 

MSE for them. For instance, NGC is compared with TGC, and this comparison is given in the 

column ‘NGCvsTGC’. In addition, I compare EGC with NGJR in column ‘NGJRvsEGC’. Table 

5 represents results of DM tests, and Table 6 illustrates results for comparison of MSE. In Table 

6, TRUE indicates lower MSE for left side of ‘vs’ than MSE for right side of it. For example, 

‘TRUE’ for all markets in column ‘NGSvsTGS’ shows that MSE of NGS is lower than that of 

TGS.  

Table 5: DM test statistic 
Table 5 shows DM test statistic. Each column depicts results of DM test between two models, whose names are 

given in the column header. Bolded values show that null hypothesis can be rejected at 5% significance level. 

 NGCvsTGC NGSvsTGS NRLvsTRL NGJRvsTGJR NRLLvsTRLL NGJRvsEGC 

Coinbase 0.53 -3.83 -6.53 0.59 -6.84 -3.53 

Bitfinex 0.28 -3.03 -5.37 0.58 -7.27 -3.95 

Bitstamp 0.51 -3.49 -4.34 1.22 -4.13 -0.66 

 

 

Table 6: Gaussian lower than Student’s t 
Table 6 shows the result of comparing MSE of two models, whose names are given in the column header ‘TRUE’ 

shows that the left hand side of ‘vs’ in column header has lower MSE than its right hand side. 

 
NGCvsTG

C 

NGSvsTG

S 

NRLvsTR

L 

NGJRvsTG

JR 

NRLLvsTR

LL 

NGJRvsEG

C 

Coinbas

e 
FALSE TRUE TRUE TRUE TRUE TRUE 

Bitfinex FALSE TRUE TRUE TRUE TRUE TRUE 

Bitstam

p 
FALSE TRUE TRUE TRUE TRUE TRUE 

 

Table 5 depicts the fact that Gaussian and Student’s t GARCH and GJR-GARCH models are not 

providing statistically different out-of-sample forecasts in any of the markets. Nevertheless, NGS 

and TGS exhibit statistically different out-of-sample performance. Additionally, I see from DM 

test that Student’s t distribution provides statistically different forecasts for other models and from 
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Table 6 that MSE is lower for Gaussian distribution. Moreover, I see that MSE for N-GJR is lower 

than EGARCH, however, EGC and NGJR are not providing significantly different results. I can 

argue that Normal distribution shows better out of sample performance compared to Student’s t 

distribution. I repeat the procedure described above for comparison between different models with 

Normal distribution. Results of this step are presented in Table 7 and Table 8. 

Table 7: DM test for Normal models 
Table 7 shows DM test statistic for comparison of different models with Normal distribution. Bolded values show 

that null hypothesis can be rejected at 5% significance level. 

 NGCvsNRL NRLvsNRLL NGJRvsNRL NGCvsNGJR 

Coinbase -3.27 -3.01 -1.89 -0.61 

Bitfinex -2.74 -3.07 -2.69 -1.97 

Bitstamp -1.82 -3.14 1.01 -1.66 

 

 

Table 8: MSE comparison for Normal models 
Table 8 depicts the result of comparing MSE of different models with Normal distribution. ‘TRUE’ shows that the 

left hand side of ‘vs’ in column header has lower MSE than its right hand side. 

 NGCvsNRL NRLvsNRLL NGJRvsNRL NGCvsNGJR 

Coinbase TRUE TRUE TRUE TRUE 

Bitfinex TRUE TRUE TRUE TRUE 

Bitstamp TRUE TRUE FALSE TRUE 

 

From Table 8, I see that Normal GARCH has the lowest MSE among all models. Moreover, 

Normal GJR has lower MSE than Normal Realized GARCH model, which in turn has lower MSE 

than Normal Realized GARCH with leverage.  

The null hypothesis can be rejected for all comparisons for Bitfinex, but for Bitstamp, the null can 

be rejected only for comparison between NRL and NRLL, while for Coinbase, it can be refuted 

for comparisons between NGC and NRL, and NRL and NRLL. Overall, results show that 

statistically different out of sample performance depends not only on the models being compared, 

but also on the market in which the comparison is being performed.  

In general, it can be concluded that simple Normal GARCH, which is equivalent to Normal GAS, 

has the best out of sample performance. This result is in stark contrast with in-sample performance 

results. Obviously, this difference can also be due to specific characteristics of time series in the 
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period under study. Such characteristics can include sudden jumps in volatility or observations 

from tails of distribution.  
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5.2 Multivariate Models 

In this section, the results of Multivariate GAS models are presented. Table 9 shows the result of 

equi-correlation model for Gaussian and Student’s t distributions. I can see from results of equi-

correlation model that the estimated value of  is 0.99, and number of degrees of freedom   for 

Student’s t is equal to 3.16. Therefore, taking  and   into account, I argue that the markets are 

highly correlated and returns are drawn from a fat tailed distribution.  

Table 9: Equi Correlation Estimation 
Table 9 provides the result of estimating Equi-Correlation structure. Bolded values highlight the model with better in 

sample performance. 

     LL AIC BIC 

Normal-Equi 0.99  8,275.27 -16,506.53 -16,401.38 

t-Equi 0.99 3.16 8,802.32 -17,558.63 -17,448.70 

 

Table 10 and Table 11 depict estimation results of matrices A and B for equi-correlation structure. 

In each table, I provide estimated matrices for both Normal and Student’s t densities. 

Table 10: Matrix A for equi-correlation structures 
Table 10 shows the estimation of matrix A for equi-correlation structure of multivariate GAS model. Left panel shows 

the estimation result for Normal distribution and right panel depicts the result for Student’s t distribution assumption. 

   Coinbase Bitfinex Bitstamp    Coinbase Bitfinex Bitstamp 

N
o
rm

a
l Coinbase -0.13 0.14 0.13 

S
tu

d
en

t’
s 

t 

Coinbase 0.1 0.01 9.24E-04 

Bitfinex -0.05 0.17 0 Bitfinex 5.23E-05 0.06 0.05 

Bitstamp -0.08 0.09 0.12 Bitstamp -1.18E-03 0.08 0.03 

 

Table 11: Matrix B for equi-correlation structures 
Table 11 exhibits estimation results of Matrix B for equi-correlation structure of multivariate GAS model. Left panel 

shows the estimation results for Normal distribution, and right panel provides the result for student’s t distribution 

assumption. 

  Coinbase Bitfinex Bitstamp   Coinbase Bitfinex Bitstamp 

N
o

rm
a
l Coinbase 0.95 -8.49E-05 -0.05 

S
tu

d
en

t’
s 

t Coinbase 0.98 0.01 -1.06E-05 

Bitfinex -0.11 0.99 0.03 Bitfinex 1.24E-04 0.99 3.99E-03 

Bitstamp 0.01 -0.02 0.92 Bitstamp -8.08E-04 -1.65E-03 0.99 
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As expected for B matrices, I have diagonal elements approximately equal to one, and elements 

close to zero for other elements in both Student’s t and Gaussian distribution. Moreover, for 

matrices A, I have diagonal elements which are lower than diagonal elements of matrix B.   

First diagonal element of Matrix A for equi-correlation structure with Normal distribution is 

negative. This negative value indicates that information conveyed from Coinbase is not the most 

relevant to predict its next day’s volatility, but it is the information provided by the other two 

markets that provides relevant information for predicting next day volatility of Coinbase.  

Also, the estimated elements on first row of Matrix A for Normal distribution are very close in 

absolute value, and the estimated correlation between markets is very close 1.  These results exhibit 

probable existence of factor structure between volatility of Bitcoin in different markets, however, 

due to time constraint, I did not investigate this. 

Table 12 illustrates the results of estimating constant correlation, which with multivariate GAS 

model. In Table 12, ConstRN refers to multivariate GAS with constant correlation and Normal 

distribution and ConstRt refers to multivariate GAS with constant correlation and Student’s t 

density. These models include one correlation estimate between each two markets. Table 13 and 

Table 14 exhibit estimated correlation matrix for different distributions. 

 

Table 12: Constant Correlation Estimation 
Table 12 depicts results of estimating constant correlation model for both distributions. Bolded values highlight the 

model with better in sample performance. Diagonal elements of matrices A and B are given in the table as well. 

  1a  
2a  

3a  
4a  

1b  
2b  

3b  
4b    LL AIC BIC 

ConstRN 0.07 0.07 0.07 0.03 0.96 0.96 0.96 0.82  8,357.77 -16,687.54 -16,620.62 

ConstRt 0.11 0.1 0.1 0.21 0.97 0.98 0.97 0.39 3.31 8,813.95 -17,597.90 -17,526.21 

 

Table 13: Correlation matrix - Normal constant correlation 
Table 13 shows the estimated correlation matrix for constant correlation model with Normal distribution. 

 Coinbase Bitfinex Bitstamp 

Coinbase 1 0.99 0.99 

Bitfinex 0.99 1 0.99 

Bitstamp 0.99 0.99 1 
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Table 14: Correlation matrix - Student’s t constant correlation 

Table 14 exhibits the estimated correlation matrix for constant correlation model with Student’s t distribution. 

 Coinbase Bitfinex Bitstamp 

Coinbase 1 0.99 0.99 

Bitfinex 0.99 1 1 

Bitstamp 0.99 1 1 

 

Results from the constant correlation estimation indicate strong correlation, approximately equal 

to one, for the markets and heavy tail distribution with degrees of freedom   equal to 3.31. Again 

I observe that elements of matrix B which is diagonal in this specification are close to 1, and 

diagonal elements of matrix A are close to zero. Comparison in terms of AIC and BIC criterion 

lead us to conclude that Student’s t distribution provides more appropriate predictions in both types 

of models. Moreover, constant correlations provide lower AIC and BIC criterion than equi-

correlation specification. 

In order to represent, predictions of Multivariate model for constant correlation structure, I 

provided Figure 8, which depicts comparison of predictions for Student’s t and Gaussian densities. 

I can obviously see that Student’s t specification allows for realizations of tails and does not include 

spikes at certain points. Similar plot is provided for equi-correlation structure. 
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Figure 8: Comparison of Student’s t and Gaussian predictions for constant correlation model 

Figure 8 depicts forecasted volatilities of all the markets for multivariate GAS with constant correlation model and 

Student’s t and Normal distributions. This figure shows absorption of outliers and observations from tails for Student’s 

t distribution.
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6. Simulation Study 

In this section, I briefly investigate behavior of models used in this study in a simulation setting. 

In order to prepare the data set, I generated a bivariate set of variables with constant correlation, 

set equal to 0.2, and t-student distribution. Following equation provides the equation for volatility 

of the data generated: 

   1 11  , t 1,1000   ;  5  , t 1001,2000t t      

2

2
7 5sin

400
t

t


 
   

 
 

Volatility path of one of the generated variables follows a process with structural break, and the 

volatility path of the other variable follows a sine wave process. Generated data set includes 2000 

return, and the degrees of freedom is equal to 3, which provides basis for depicting difference of 

t-GAS. Figure 9 shows summary of simulated data with Student’s t distribution. 

 

Figure 9: Simulated Data with Student’s t distribution 

Figure 9 displays the summary of generated data set for simulation study. Panels 1 and 3 show the return series, and 

panels 2 and 4 depic the volatility path used to generate data set. 



Simulation Study 

43 

 

Since generated data set does not include realized measure, I will not estimate those models. 

Moreover, I will only estimate GJR-GARCH model with Normal and Student’s t distributions 

among leverage models, and I exclude EGARCH since I included it only with Normal distribution.  

Figure 10 displays the result of estimating GARCH and GAS models for simulated data with sine 

wave for volatility.  
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Figure 10: GARCH and GAS results for simulation study 

Figure 10 exhibits predictions of different densities for GARCH and GAS models. In addition, I provide the data 

generating process for comparing with predictions of different models. Panel 1 shows the absolute return and volatility 

path used to generate returns. Panels 2 and 3 depict forecasts of GARCH with Normal and Student’s t densities around 

the volatility path used to generate data set. Panels 4 and 5 exhibit variability of GAS model with Normal and Student’s 

t distribution around the volatility path utilized to simulate data. 
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Figure 11 shows the result of estimating GJR model with different distributions. It is worth 

mentioning that all the models show the ability of tracking true path, and can provide forecasts 

close to data generating process. 

 

Figure 11: GJR models for simulated data 
Figure 11 shows the predictions of Normal GJR and Student’s t GJR models, and the data generating process.   

From Figure 11 I can see that Normal and Student’s t GJR models are providing very close 

predictions. This is due to close estimations of parameters in the model, a fact which will be shown 

in Error! Reference source not found.. Moreover, I provide comparison of GARCH and t-GAS 

models in Figure 12. 

 

Figure 12: Comparison of GARCH and GAS for simulated data 
Figure 12 shows the predictions generated by Normal and Student’s t GARCH and predictions given by t-GAS. This 

figure provides the basis to compare the predictions of these models. 
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From Figure 12, I can observe that t-GAS needs more observations to adjust the level of 

predictions. Indeed, this observation is one of the important characteristics of GAS model which 

allows for observations from heavy tails of distribution. Additionally, predictions generated by t-

GAS are smoother compared to those of GARCH models. Table 15 represents results of estimating 

univariate models for generated data set with sine wave as the volatility. 

Table 15: Results of univariate estimation for generated data set 

Table 15 depicts the result of estimating univariate models for generate data set. Bolded value emphasize the 

minimum AIC and BIC among the models. 

Model        
 1  LL AIC BIC 

NGC 0.14 0.06 0.94   -3.29 6.58 6.59 

NGS 0.00 0.05 1.00   -3.30 6.61 6.62 

TGC 0.26 0.08 0.92  2.92 -3.05 6.10 6.12 

TGS 1.98E-04 0.07 1.00  2.63 -3.03 6.06 6.07 

NGJR 0.17 0 0.95 0.09  -3.27 6.55 6.56 

TGJR 0.25 0.03 0.93 0.08 2.91 -3.05 6.10 6.11 

 

 

As I can see in Table 15 minimum AIC and BIC are observed for t-GAS. In addition, degrees of 

freedom for models with Student’s t distribution are close to degrees of freedom used to 

generate data set. In the next step, I will provide results of estimating multivariate models. First I 

will estimate equi-correlation structure and provide the subplots in Figure 13.  
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Figure 13: Equi-correlation for simulated data 
Figure 13 depicts comparison of predictions generated by equi-correlation model with Normal and Student’s t 

distributions. In addition, the volatility path used to generate the data set is given for comparison with predictions. 

Panels 1 and 2 show the forecasts with Student’s t distribution, and panels 3 and 4 depict the predictions with Normal 

distribution. 

I can clearly see a characteristic of t-GAS model which is smoothly updating to new levels by 

comparing the panels related to the series with structural break. In addition, I can see in the panel 

related to series with sine wave that t-GAS is relatively smoother and does not contain spikes. I 

also provide the results of estimating multivariate GAS model with constant correlation structure 

in Figure 14, in which I have similar observation. 
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Figure 14: Constant correlation for simulated data 

Figure 14 shows the predictions of constant correlation model with different densities. In addition, I present the 

volatility path used to generate data set for comparison. Panels 1 and 2 show the forecasts with Student’s t 

distribution, and panels 3 and 4 depict the predictions with Normal distribution. 

In Table 16 and Table 17, I present estimation results of matrices A and B for simulated data set. 

In these tables, SB refers to data with Structural Break, and SW refers to data with Sine Wave. I 

can see that diagonal elements of matrix B for Gaussian and Student’s t distributions are close to 

one, and that those of matrix A for both distributions are close to zero. Moreover, off diagonal 

elements in both matrices are close to zero. 
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Table 16: Matrix A of equi-correlation specification 
Table 16 shows the A matrices, which are estimated through equi-correlation structure, for simulated data. 

  SB SW   SB SW 

N
o

rm
a
l SB 0.02 0.00 

S
tu

d
en

t’
s 

t 

SB 0.04 -0.01 

SW -0.02 0.04 SW -0.01 0.07 

 

 

Table 17: Matrix B of equi-correlation specification 
Table 17 provides the B matrices, which are estimated through equi-correlation structure, for simulated data. 

  SB SW   SB SW 

N
o
rm

a
l SB 1.00 0.00 

S
tu

d
en

t’
s 

t 
SB 1.00 0.00 

SW 0.00 1.00 SW 0.00 0.99 

 

In Table 18, I provide the result of estimation for equi-correlation specification. As I can see, 

estimated values of correlation for Normal and Student’s t are not similar. For Student’s t 

distribution I have correlation equal to 0.16, and for Normal distribution I have correlation equal 

to 0.01. It must be mentioned that correlation used to generate the data set is 0.2. Moreover, the 

number of degrees of freedom in Student’s t specification is 2.65 rather than 3 which was used to 

create the data set. AIC and BIC show that for equi-correlation structure multivariate GAS model 

with Student’s t distribution has better in sample performance than Normal distribution. 

Table 18: Result of equi-correlation specification for simulated data 
Table 18 show the correlation, likelihood, AIC and BIC for equi-correlation structure. Bolded values show the model 

with better in sample performance. 

     LL AIC BIC 

Normal-Equi 0.01  -11178.48 22378.96 22440.57 

t-Equi 0.16 2.65 -10102.15 20228.30 20295.51 
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In Table 19, the result of constant correlation model is provided. I can see that parameters related 

to logarithm of conditional variance which are given by 
1b  and 

2b , are approximately equal to one, 

whereas a  parameters which are related to matrix A are close to zero. Moreover, I estimate  

number of degrees of freedom for Student’s t specification is 2.63, and correlation is estimated to 

be 0.16. In addition, for Gaussian specification correlation value is estimated to be -0.06. 

Table 19: Result of constant correlation model for simulated data 
Table 19 provides the result of estimating constant correlation model for the simulated data set. Bolded values 

emphasize the model with better in sample performance. 

 1a  
2a  

3a  
1b  

2b  
3b      LL AIC BIC 

ConstRN 0.02 0.04 0.05 1.00 1.00 0.9  -0.06 -11220.85 22459.70 22510.10 

ConstRt 0.06 0.08 0.05 1.00 1.00 0.9 2.63 0.16 -10126.46 20272.91 20328.92 

 

Estimations above show that Student’s t specification performs better in terms of converging to 

true correlation parameter for both equi-correlation and constant correlation specifications.  
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7. Conclusion 

Considering in sample results provided by AIC and BIC, I conclude that among GARCH and GAS 

models, which do not include leverage, t-GAS outperforms other models for modelling volatility 

of Bitcoin in all the exchanges. This finding was expected, because t-GAS uses efficient update 

and allows for observations of outliers or realizations from tails of distribution. In addition, plots 

provided, in the body and appendix, display smoother paths for predictions given by t-GAS, an 

observation closely related to efficient filter. 

Among models including leverage, but excluding realized measures, t-GJR model outperforms the 

other models. Moreover, among models containing realized measure, Realized GARCH model 

with leverage function and Student’s t distribution performs better in terms of AIC and BIC. 

However, out-of-sample performance of models shows that Normal GARCH (equivalent to 

Normal GAS) has the best performance among all the models. This result can be due to sudden 

shocks in the window of performing out-of-sample analysis. 

In multivariate part, I observe that correlations among markets are estimated to be approximately 

one. This observation shows us that volatility in markets generally moves in the same direction. 

Moreover, Student’s t density assumption provides lower AIC and BIC in each of the multivariate 

specifications, which are equi-correlation and constant correlation. In addition, constant 

correlation provides lower AIC and BIC than equi-correlation structure.  

Plots given in this study depict an important characteristic of t-GAS model. This model can absorb 

outliers, and observations from tails, additionally discounting information from such realizations. 

Moreover, t-GAS provides smoother path compared to that of GARCH or t-GARCH. Moreover, 

in multivariate case, it is shown that Student’s t distribution for t-GAS absorbs shocks compared 

to Gaussian density for the same model. 
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9. Appendix 

A. Equi-correlation model specification 

In the equi-correlation structure, 
tf  is time varying factor which is in   2log tdaig D . Moreover, 

following (Koopman, et al., 2017) for derivations, I can write: 

  1 10.5t t t t t t tD H H vec y y H  


       

   | 1t t t t t tbc 
          

Intermediate terms to implement the model are 1( )k k kD D D D
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t t Dt tD I D R W D    , 

N N   , 
1

N
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,  1 10.5 t tD H H D  

 
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 
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

  
   and  | 1t t t tbc 

    . These terms are obviously written for Student’s t 

density. 

Nevertheless, for Gaussian distribution from above expressions we will have N  ,  1  , 

1   and 0b  . Therefore, in computations I will have some simplifications, and one less 

parameter, which is  , to estimate. 
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B. Univariate Plots 

 

Figure 15: Bitstamp Autocorrelation 

Figure 15 shows the autocorrelation results for return, absolute return and realized volatility of Bitstamp. Red dashes 

show the rejection value of test statistic, and black circles show the estimated statistic. First panel assesses 

appropriateness of AR process for modelling return, while second and third panels explore suitability of conditional 

heteroskedasticity models for modelling volatility. 
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Figure 16: Bitfinex Autocorrelation 

Figure 16 shows the autocorrelation results for return, absolute return and realized volatility of Bitfinex. Red dashes 

show the rejection value of test statistic, and black circles show the estimated statistic. First panel assesses 

appropriateness of AR process for modelling return, while second and third panels explore suitability of conditional 

heteroskedasticity models for modelling volatility. 
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Figure 17: Bitstamp Data Summary 

Figure 17 provides visual description of the data of Bitstamp. Return series is depicted in panel 1 in which red line 

shows zero mean. Panels 2 and 3 depict volatility clustering in the market. Red lines in panels 4 and 5 show the kernel 

density fitted to realized volatility and log realized volatility. Panel 6 shows the number of observations per day which 

should be 288 if there is no missing observation. 
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Figure 18: Bitfinex Data Summary 

Figure 18 provides visual description of the data of Bitfinex. Return series is depicted in panel 1 in which red line 

shows zero mean. Panels 2 and 3 depict volatility clustering in the market. Red lines in panels 4 and 5 show the kernel 

density fitted to realized volatility and log realized volatility. Panel 6 shows the number of observations per day which 

should be 288 if there is no missing observation. 
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C. Univariate Plots 

 

Figure 19: Bitstamp No Leverage comparison 

Figure 19 shows the predictions of Normal GARCH and GAS, Student’s t GARCH and t-GAS, and Normal and 

Student’s t realized GARCH model and provides the basis for comparing these predictions. First panel shows that 

Normal GARCH and Normal GAS are essentially the same. However, second panel depicts the difference between 

GARCH and GAS with Student’s t density, and shows that t-GAS has smoother plots, and that spikes occur sooner in 

GARCH. In addition, while GARCH shows periods of geometric decay, t-GAS does not have similar behavior. Third 

panel exhibits that Student’s t distribution for realized GARCH provides higher prediction in volatility. 
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Figure 20: Bitstamp Comparison 

Figure 20 shows predictions of different models that do not include leverage and that have student’s t distribution. 

This figure provides the basis for comparison of forecasts between models. Smoother behavior of t-GAS is depicted 

against both GARCH and Realized GARCH. In addition, spikes happen almost simultaneously in GARCH and 

realized GARCH while t-GAS needs more observations to shift the level of predictions, and absorbs outlier and 

observations from tails. Unlike t-GAS, both GARCH and realized GARCH show periods of geometric decay. 

  



Appendix 

63 

 

 

 

Figure 21: Bitstamp Leverage models 

Figure 21 shows the forecasts of models which include leverage function. In panels 1 and 2, I provide results of Normal 

and student’s t GJR and Realized GARCH with Leverage, and in panel 3, I compare the forecasts of EGARCH and 

Normal GJR model. Normal and Student’s GJR models are providing very close predictions, while Student’s t 

Realized with leverage generates higher forecasts than those of the same model with Normal distribution. Third panel 

shows that EGARCH provides higher predictions than Normal GJR model. 
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Figure 22: Bitfinex No Leverage 

Figure 22 shows the predictions of Normal GARCH and GAS, Student’s t GARCH and t-GAS, and Normal and 

Student’s t realized GARCH model and provides the basis for comparing these predictions. First panel shows that 

Normal GARCH and Normal GAS are essentially the same. However, second panel depicts the difference between 

GARCH and GAS with Student’s t density, and shows that t-GAS has smoother plots, and that spikes occur sooner in 

GARCH. In addition, while GARCH shows periods of geometric decay, t-GAS does not have similar behavior. Third 

panel exhibits that Student’s t distribution for realized GARCH provides higher prediction in volatility. 
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Figure 23: Bitfinex Comparison 

Figure 23 shows predictions of different models that do not include leverage and that have student’s t distribution. 

This figure provides the basis for comparison of forecasts between models. Smoother behavior of t-GAS is depicted 

against both GARCH and Realized GARCH. In addition, spikes happen almost simultaneously in GARCH and 

realized GARCH while t-GAS needs more observations to shift the level of predictions, and absorbs outlier and 

observations from tails. Unlike t-GAS, both GARCH and realized GARCH show periods of geometric decay. 
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Figure 24: Bitfinex Leverage 

Figure 24 shows the forecasts of models which include leverage function. In panels 1 and 2, I provide results of Normal 

and student’s t GJR and Realized GARCH with Leverage, and in panel 3, I compare the forecasts of EGARCH and 

Normal GJR model. Normal and Student’s GJR models are providing very close predictions, while Student’s t 

Realized with leverage generates higher forecasts than those of the same model with Normal distribution. Third panel 

shows that EGARCH provides higher predictions than Normal GJR model. 
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D. MSE and MAE for Diebold Mariano test 

 

Table 20: MSE results for Diebold Mariano Test 
Table 20 provides the estimated MSE values which are in turn used for comparing out of sample performance of 

univariate models. 

 Coinbase Bitfinex Bitstamp 

NGC 1.425E-03 1.226E-03 1.406E-03 

TGC 1.416E-03 1.222E-03 1.399E-03 

NGS 1.347E-03 1.164E-03 1.329E-03 

TGS 2.057E-03 1.594E-03 1.947E-03 

NRL 1.935E-03 1.562E-03 1.612E-03 

TRL 6.212E-03 2.999E-03 2.685E-03 

NGJR 1.525E-03 1.252E-03 1.966E-03 

TGJR 1.415E-03 1.229E-03 1.518E-03 

NRLL 2.106E-03 1.674E-03 1.684E-03 

TRLL 5.159E-03 4.676E-03 2.145E-03 

EGC 2.219E-03 1.628E-03 2.217E-03 

 

 

 

Table 21: MAE results for Diebold Mariano Test 
Table 21 provides the estimate Mean Absolute Error values which are calculated with absolute return as proxy of 

true volatility. These results can be informative and used to draw conclusions regarding out of sample performance 

of different models. 

 Coinbase Bitfinex Bitstamp 

NGC 3.073E-02 2.867E-02 3.057E-02 

TGC 3.048E-02 2.858E-02 3.035E-02 

NGS 2.934E-02 2.765E-02 2.930E-02 

TGS 3.735E-02 3.283E-02 3.626E-02 

NRL 3.638E-02 3.251E-02 3.251E-02 

TRL 6.959E-02 4.820E-02 4.350E-02 

NGJR 3.120E-02 2.892E-02 3.526E-02 

TGJR 3.017E-02 2.853E-02 3.137E-02 

NRLL 3.814E-02 3.397E-02 3.342E-02 

TRLL 6.368E-02 6.158E-02 3.887E-02 

EGC 3.973E-02 3.376E-02 3.995E-02 
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E. Multivariate Plots 

 

Figure 25: Equi-Correlation Gaussian 

Figure 25 depicts forecasted volatilities of all the markets for multivariate GAS with equi-correlation model and 

Student’s t and Normal distributions. This figure shows absorption of outliers and of observations from tails for 

Student’s t distribution. 
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Figure 26: Equi-correlation Gaussian 

Figure 26 shows the absolute return and predicted volatility from multivariate GAS model with equi-correlation 

structure and Normal distribution for all the markets. Two distinct spikes can be seen in prediction for all markets. 
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Figure 27: Equi-correlation Student’s t 

Figure 27 shows the absolute return and predicted volatility from multivariate GAS model with equi-correlation 

structure and Student’s t distribution for all the markets.  
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Figure 28: Constant Correlation Gaussian 

Figure 28 exhibits the absolute return and predicted volatility from multivariate GAS model with constant correlation 

structure and Normal distribution for all the markets. Two distinct spikes can be seen in prediction for all markets. 
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Figure 29: Constant Correlation Student’s t 

Figure 29 exhibits the absolute return and predicted volatility from multivariate GAS model with constant correlation 

structure and Student’s t distribution for all the markets. 

 


