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Abstract 

This thesis aims to describe a conceptual model of the sedimentology for Swedish (or nordic) 

conditions of heterogeneous aquifers but focus is on a case study in Varberg. This to facilitate 

the identification of main water-bearing units (e.g. upper and lower aquifers, two-dimensional 

and one-dimensional flow) by short duration hydraulic tests evaluated by the Hvorslev method. 

The purpose was to provide guidance in relation to location and design of mitigation measure 

for the mitigation of pressure and flow focusing on infiltration and pumping. The analysis 

assumes that the geometric mean (median) of the saturated hydraulic conductivity in a 

lognormal isotropic two-dimensional medium (aquifer) is the exact upscaled hydraulic 

conductivity (effective hydraulic conductivity) (Gupta, Rudra, Parkin, & Parkin, 2006; Renard, 

Le Loc'h, Ledoux, De Marsily, & Mackay, 2000). Based on this assumption the median 

hydraulic conductivity from short duration hydraulic tests was compared to the effective 

hydraulic conductivity obtained from transient (time-dependent) pumping test to explain 

aquifer heterogeneity and spatial variability in hydraulic conductivity. The conceptual model, 

in combination with short duration hydraulic tests, was found to be a valuable tool for 

describing the spatial distribution of measured hydraulic conductivities. Deviation of median 

values of short duration hydraulic tests from hydraulic conductivity obtained from pumping test 

could be described by the spatial variability (aquifer heterogeneity) of hydraulic conductivity. 

The flow pattern in the aquifers in Varberg generally seem to be disturbed by channel flows in 

structures or geological materials with high hydraulic conductivity (glaciofluvial) that create 

deviation from a two-dimensional isotropic aquifer. The location and design of infiltration is 

suggested to depend on the spatial variability of hydraulic conductivity and these one-

dimensional channel flows.  

  

Keywords: Short duration hydraulic tests, hydraulic conductivity, radius of influence, 

infiltration, heterogeneity, confined and unconfined aquifer  
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1.  Introduction 

Groundwater movement and aquifer characterisation are two important aspects in infrastructure 

projects. If the hydrogeology is not described in a relevant way for an infrastructure project it 

may lead to damages such as spreading of contamination in groundwater (Kitanidis, 1994), 

settling and unwanted dewatering (Wada et al., 2010). Therefore, infrastructure projects 

commonly apply for a permit for groundwater withdrawal. An application is submitted to the 

Swedish Land and Environment Court in case there is a risk that public or private interests can 

be damaged. If there is a risk for damage to sensitive objects or environment, infiltration might 

be needed to maintain the groundwater levels. Where pumping in an aquifer occurs due to an 

excavation or similar, the groundwater surface level is lowered locally around the well 

(excavation). The groundwater moves along the pressure gradient (hydraulic gradient) toward 

the well and a radius of influence (or cone of depression) develops (Fetter, 2001). The radius 

of influence depends upon aquifer characteristics such as hydraulic conductivity (describes a 

fluids ability to flow in a porous media), aquifer heterogeneity (the contrast and distribution of 

hydraulic conductivity), and the type of aquifer (unconfined or confined) (Kruseman & De 

Ridder, 1994).  

Hydraulic conductivity (K) variability tends to exhibit a log normal distribution (Gupta et al., 

2006; Nielsen & Biggar, 1973; Tuli, Kosugi, & Hopmans, 2001; Wen, 1994; Zarlenga, 

Janković, Fiori, & Dagan, 2018). In a two-dimensional isotropic (the hydraulic properties is the 

same in all directions) homogenous medium the variability of K is assumed to be log normal 

and the central tendency can be described as the geometric mean (Gupta et al., 2006). Further, 

for a log normal distribution, the geometric mean equals the median of the population (Renard 

et al., 2000).  

The focus of this thesis was to evaluate aquifer anisotropy and behaviour with the purpose to 

select better locations for artificial infiltration (in principle, not object-specific) in a case study 

for the Varberg tunnel project. Infiltration might be needed where sensitive objects are situated 

within the radius of influence from a pumped well or excavation (if no settlement occurs, only 

a drawdown may not be sufficient to damage an object). A conceptual sedimentological model 

was connected to aquifer heterogeneity and the spatial variability of hydraulic conductivity. 

Short duration hydraulic test was used to measure the spatial variability of hydraulic 

conductivity.  

The hydraulic conductivity obtained from pumping tests is assumed to be equal to the median 

(bulk or effective) hydraulic conductivity (Zech, Müller, Mai, Heße, & Attinger, 2016). For a 

two-dimensional isotropic system with a lognormal distribution of K, the median K should 

describe the effective hydraulic conductivity obtained from pumping test (Gupta et al., 2006; 

Renard et al., 2000). Therefore, the central tendency (median) of hydraulic conductivity was 

evaluated for a qualitative comparison to the effective hydraulic conductivities which would, 

for a homogenous isotropic aquifer, be equal (Gupta et al., 2006)  
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1.1 Aim and hypothesis 

The aim of the thesis was to conceptualize a sedimentological model and use it as a basis for 

description and analysis of spatial relationships in relation to measured hydraulic conductivity. 

The purpose was to evaluate the usefulness of the conceptual model as a first step for an aquifer 

conceptualisation and characterisation. This was then used to evaluate aquifer behaviour 

(connectivity and anisotropy) and to select possible locations for infiltration and pumping. 

Further, the median hydraulic conductivity obtained from short duration hydraulic tests was 

compared to the effective hydraulic conductivity.  

1. Is the conceptual model of sedimentology in Varberg in agreement with results from 

short duration hydraulic tests?  

2. Can horizontal aquifer heterogeneity be described by short duration hydraulic tests? 

3. Under the assumption of two-dimensional isotropic aquifers, can the effective hydraulic 

conductivity from transient pumping tests be described by the median value resulting 

from short duration hydraulic tests?  

Slug test data (and basic time lag) can provide key input for evaluation of aquifer behaviour 

and infiltration design. The focus was on hydraulic conductivity, K (or transmissivity, T), 

variability (how spread out or closely clustered a set of data is) and median (50% larger, 50% 

smaller) for a better selection of infiltration well location(s) (Renard et al., 2000).  

 

In this work it was assumed that a transient (time dependent) pumping test 1) describes the 

effective (median) hydraulic conductivity (transmissivity) of a two-dimensional isotropic 

aquifer and that 2) observations in adjacent wells reflects the connectivity of the aquifer. The 

intention was to investigate if there is an agreement between the median value obtained from 

local slug testing and results from transient tests. A high median K (T) and a low variability is 

thought to result in a need for few(er) infiltration points. A low median K (T) and a high 

variability is expected to result in a larger number of points. 

1.2 Delimitations 

This work focuses on the unconsolidated sediments expected in Sweden and more specifically 

Varberg and do not consider the bedrock. The effect of pumping (and infiltration) and the 

development of a radius of influence will be considered in relation to aquifer characteristics. 

The thesis focuses on artificial recharge systems as a measure to maintain groundwater levels 

in infrastructure projects. Specific and sensitive objects (e.g. specific buildings and their 

foundation, specific energy wells or energy wells) that could be sensitive to a decline in the 

groundwater surface will not be discussed in this thesis. Further, parameters related to technical 

specifications such as pumping rates and capacity of artificial recharge facilities will not be 

discussed. The focus will be on the lower aquifers. 
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2. Background 

2.1 Infiltration and hydraulic testing 

Infiltration and/or pumping deals with restoring the mass balance and the hydrologic equation 

in an aquifer system. The hydrologic equation is based on the law of mass conservation. The 

hydrologic equation can be expressed according to Fetter (2001) as inflow equals outflow plus 

or minus the change of storage in the system. For a given hydrogeological system the inflow 

(recharge) and the outflow (discharge) are defined within a groundwater basin. The 

groundwater basin is the subsurface area which is delineated by boundaries (or groundwater 

divides) where no groundwater flow contributes to the system budget outside the boundaries.  

The movement of water in a porous media (in this case groundwater in sediments) is defined 

by Darcy’s law. Darcy’s law states that the discharge (Q) is proportional to the difference in 

height or pressure of the water (h, hydraulic head) between two locations and inversely 

proportional to the flow length (L). Further, the flow is proportional to the cross-sectional area 

(A) of the porous medium. In combination with the proportional constant (hydraulic 

conductivity, K), which is related to the character of the porous media, the one-dimensional 

discharge for the system can be calculated by equation 1 (Fetter, 2001). 

𝑄 = −𝐾𝐴 (
𝑑ℎ

𝑑𝑙
)                                                                                    (1) 

Where dh is the hydraulic gradient between two points and dl is the distance between these 

points. This means that groundwater moves from high hydraulic head to low hydraulic head, 

indicated by the negative sign in equation 1. Lines between points with the same hydraulic head 

(or potentiometric head) are called equipotential lines (or groundwater contours). The 

groundwater flow is perpendicular to this line, from high hydraulic head to low (Fetter, 2001).  

When pumping water from a well connected to an aquifer the hydraulic head is lowered in and 

around the well (drawdown) and groundwater is moving towards the well according to equation 

1. Under the assumption that an aquifer is homogenous and isotropic this will produce a radial 

flow towards the pumped well. As groundwater level decline a cone of depression or radius of 

influence will develop. The growth of the radius of influence depends on duration of the pump 

test, discharge rate, aquifer transmissivity (amount transferred water per time unit through the 

cross-section of the aquifer) or hydraulic conductivity, aquifer heterogeneity, type of aquifer 

(confined or unconfined) and boundary conditions (Kruseman & De Ridder, 1994). The radius 

of influence will grow with time until steady state is reached. This is a state of equilibrium 

where no further drawdown with time occur which simply state that the water pumped from the 

well is equal to the water transmitted by the aquifer.  

Where the pumped aquifer does not reach equilibrium (steady state) the radius of influence will 

continue to grow until it reaches a boundary, or the hydrologic equation is balanced by recharge 

from a supplying facility (artificial recharge) (Fetter, 2001). The radius of influence in a 

homogenous and isotropic unconfined aquifer can be calculated by a simple equation suggested 

by Kirieleis-Sichardt (1930), equation 2. 
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𝑅 = 3000 × 𝑠𝑤 × √𝐾                                                                        (2) 

 

Where R is the radius of influence and sw is the drawdown at the pumped well.  

In a confined aquifer pumped groundwater is released from elastic or specific storage (S). A 

confined aquifer does not get direct recharge from precipitation (due to the confining layer) and 

the radius of influence will grow until a boundary is reached. Boundaries are divided into 

recharge and barrier boundaries. A recharge boundary is where the system (aquifer) is 

replenished. Barrier boundaries are where the aquifer terminates by either meet an impermeable 

boundary or thinning (Fetter, 2001). If no recharge occur the radius of influence will grow 

continuously as pumping continues (nonequilibrium or transient flow) (Fetter, 2001). Transient 

flow means that the inflow parameter in the hydrological equation is not in balance with the 

outflow and the change in the storage of the aquifer. The growth of the radius of influence is 

hence time-dependent for transient flows. Therefore, the development of the radius of influence 

for a two-dimensional homogenous and isotropic compressible confined aquifer, which is 

horizontal and infinite in extent with no source of recharge pumped at constant rate can be 

calculated by equation 3 (Cooper & Jacob, 1946).   

𝑅 = √
2.25𝑇𝑡

𝑆
                                                                                         (3) 

Where r is the radius of influence, T is the transmissivity, S is the specific storage and t is the 

time since the pumping began.  

For radial flow and a symmetrical radius of influence to develop the aquifer must be 

homogeneous and isotropic. In most natural aquifers these conditions are seldom the case 

(Fetter, 2001). A nonhomogeneous (heterogenous) and anisotropic aquifer will create an 

unsymmetrical radius of influence due to the change in the porous media (sediment). Where 

there is high hydraulic conductivity in the system (aquifer) the radius of influence tends to be 

wide and flat. As the hydraulic conductivity decrease the radius of influence gets steep and 

narrow (Kruseman & De Ridder, 1994).  

These aquifer parameters are important when determining the radius of influence for pumping 

or infiltration and to determent if a radius of influence will reach sensitive objects 

(environmental or cultural) that need to be protected. Therefor, determination of artificial 

infiltration location depends upon these parameters. Artificial infiltration can be used to limit 

the development of the radius of influence by creating an artificial recharge boundary (Fetter, 

2001).  

2.1.1 Artificial groundwater recharge 

Artificial groundwater recharge (infiltration) system are systems that aim to restore or enhance 

the mass balance in the aquifer. Artificial recharge can be used for community water supply, 

enhance groundwater quality and remediation, prevent saltwater intrusion (Bouwer, 2002) and 

prevent dewatering of surface water and subsidence (settling) (Wada et al., 2010). Infiltration 

can be done both in unconsolidated sediments and in the bedrock. There are several types of 
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infiltration facilities dependent on local conditions. Surface infiltration in basins, vadose zone 

(the unsaturated zone between ground surface and the groundwater table) by infiltration in wells 

or trenches and direct injection in wells are common methods for artificial recharge (Bouwer, 

2002).  

In this thesis the focus is on artificial recharge systems as a method to prevent the radius of 

influence of growing in the unconsolidated sediments. In an aquifer system the drawdown from 

the pumping decreases the pore pressure and the effective stress with the consequence of 

compression and consolidation of the sediments. This situation is more pronounced in confined 

aquifers (e.g. a confining unit with low hydraulic conductivity covering more permeable 

sediments). If the pore pressure increases, as in the case of too high-water pressure (too high 

water column), in the infiltration facility the effective stress will increase and consequently the 

sediments will expand (Zhang, Wang, Chen, & Li, 2017). Therefore, recharge is limited by the 

infiltration capacity of the sediments. The infiltration capacity is defined by the capacity of soil 

to allow water to percolate under the influence of gravity. The infiltration capacity varies 

dependent on sediment heterogeneity (Pedretti, Barahona-Palomo, Bolster, Sanchez-Vila, & 

Fernàndez-Garcia, 2012). This leads to that there are limits to which capacity and pressure an 

artificial recharge facility can have dependent on the sediment type and heterogeneity. 

2.1.1.1 Surface infiltration 

Surface infiltration uses infiltration basins where water is gathered and can infiltrate the 

sediments and percolate to the groundwater. This method requires that the vadose zone have 

high enough permeability, or that the confining layer is thin enough to be remove, and enough 

land areas. Where there are semi-confined to confined aquifers with thicker confining bed or 

high vertical heterogeneity, this method is not recommended since perched water-tables can 

form and restrict the downward flow and recharge to the aquifer. Also, this type of infiltration 

method requires adequate maintenance since clogging occurs due to accumulation of suspended 

solids, formation of biofilms or gases. This reduces the hydraulic conductivity and hence 

groundwater recharge decreases (Bouwer, 2002).  

2.1.1.2 Vadose zone infiltration 

Where the unsaturated zone has lower hydraulic conductivity or where there is lack of land area 

for infiltration basins, vertical infiltration methods can be used. Water can be infiltrated in 

trenches or wells in the vadose zone. Trenches are generally dug to a depth of 5 meter with a 

surface area of approximately 1 meter in cross section. The trench is filled with coarse sand or 

gravel. Water is usually applied in the trench through a perforated pipeline. Wells are also filled 

with gravel or sand, is approximately 1 meter in diameter and water is applied through a 

perforated pipeline in the centre of the well. The well is typically deeper than the trenches (up 

to 60 meters) and is hence more suitable for areas with a thick vadose zone. Vadose zone 

infiltration is a rather inexpensive infiltration method. A disadvantage is that the system 

eventually clogs up since backwashing (reverse pumping of water to wash out the clogged 

layer) is impossible. Both Vadose zone and surface infiltration has the advantage of 

geopurification, as the water percolate through the unsaturated zone (Bouwer, 2002). 



 

 

6 

 

2.1.1.3 Well injection 

Where land surfaces are insufficient, the vadose zone has low permeability, aquifer is deep, or 

the aquifer is confined, direct injection of water through groundwater wells are often used. This 

method of infiltration sets high demand on the water quality of the water infiltrated since no 

geopurification occur. If the groundwater is used as drinking water the infiltrated water needs 

to be of drinking water quality. The advantage of this method is that clogging can be prevented 

by backwashing and hence the construction has a longer lifespan (Bouwer, 2002). 

2.1.2 Risks and opportunities with infiltration 

The need for infiltration is dependent on whether there are objects within the radius of influence 

sensitive to a change in the groundwater levels. Therefore, risks and opportunities for the usage 

of infiltration facilities must be evaluated to the risks that follows if no measures are taken. 

2.1.2.1 Remediation and spreading of contaminants 

Where infiltration is needed there is a possibility to remediate contaminated aquifers. Pumping 

gives the option to remove polluted groundwater by the method “pump and treat”, clean the 

water, then infiltrate it back into the aquifer (Chen et al., 2019). If surface infiltration is possible 

(basins) pumped groundwater can by geopurification be remediated where the unsaturated zone 

is of acceptable thickness and permeability. If geopurification is not possible (for example in 

confined aquifer) the groundwater needs to be treated before injection in the aquifer (Bouwer, 

2002). Though, there is a risk with these systems that contamination plumes spread or dilute in 

the aquifer rather than get remediated. In the long-term there is a risk of increasing dilution of 

contamination plumes in heterogenous aquifer systems because of spatial variability in flow 

velocities (Kitanidis, 1994). 

2.1.2.2 Aquifer depletion 

If aquifer depletion occurs in the vicinity of the ocean, the risk of saltwater intrusion must be 

considered. If the groundwater levels are lowered, the hydraulic gradient could cause saltwater 

to intrude into the groundwater system. In the long-term sea-level rise as a consequence of 

global warming could lead to saltwater intrusion, if sea-levels rise above the groundwater levels 

(Werner et al., 2013). Another risk associated with aquifer depletion is the risk of subsidence 

and settling (Wada et al., 2010). In confined aquifers these effects are generally irreversible 

(Bouwer, 2002). In an aquifer system that feeds surface water, which is often the case in 

Sweden, a change in the groundwater levels could result in drainage of close by waterbody, like 

lake or rivers, which could have ecological consequences (Brunner, Cook, & Simmons, 2009).  

2.1.2.3 Enhanced groundwater movement 

Clogging is a common problem in infiltration systems which reduces the infiltration rate 

(Bouwer, 2002). The opposite problem could also arise since infiltration and pumping system 

increase the groundwater movement. As groundwater movement increase, the erosion rate 

increases, and therefore the hydraulic conductivity of the aquifer could increase over time 

(Gette-Bouvarot et al., 2015). Pumping of groundwater compresses the soils and make them 
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move towards the pumped well. Infiltration or recharge have the opposite effect, the soils 

expand and move away from the infiltration facility (Zhang et al., 2017). Over time this could 

lead to a change in the aquifer characteristic.  

2.1.3 Short duration hydraulic tests  

To describe the hydraulic properties of an aquifer hydraulic tests are performed. A short 

duration hydraulic test, often referred to as slug test, is when a volume of water or a 

displacement body is abruptly added to or removed from a borehole raising/or lowering the 

hydraulic head (h) temporally compared to the static water level (figure 1). The resulting 

pressure change creates type-curves with pressure and time. These curves can be used for 

evaluation of aquifer characteristics.  

Slug and bailers are two commonly used methods. A slug is a heavy cylinder with a certain 

volume which can both raise (by inserting the slug in the well) or lower (removing the slug 

from the well) the hydraulic head. The bailer method only lowers the hydraulic head by insert 

the bailer under the static water level. The bailer is filled with water and is then rapidly removed 

(Hölting & Coldewey, 2019).  

The theoretical background for slug test is that the time for equalization of pore water pressure 

in response to a change in hydrostatic head is inversely proportional to the hydraulic 

conductivity of the sediment. The time required for eliminating pressure differences is called 

the time lag. On a semi-logarithmic plot, the head ratio versus time will be linear. The slope of 

the line is proportional to the permeability of the aquifer (Hvorslev, 1951). 

 

Figure 1. The configuration of a short duration hydraulic test taken from McElwee (2001). Application of a nonlinear slug 

test model. Retrieved from https://www2.scopus.com/inward/record.uri?eid=2-s2.0-0031149311&doi=10.1111%2fj.1745-

6584.1997.tb00110.x&partnerID=40&md5=8f6c41705459be6ac41041c716cd04e7. 

 

Hvorslev (1951), Cooper, Bredehoeft, and Papadopulos (1967) and Bouwer and Rice (1976) 

are the most widely used methods for slug test evaluation. All these three are linear theoretical 

models and assume aquifer homogeneity and isotropy. The Cooper et al. (1967) method is the 

https://www2.scopus.com/inward/record.uri?eid=2-s2.0-0031149311&doi=10.1111%2fj.1745-6584.1997.tb00110.x&partnerID=40&md5=8f6c41705459be6ac41041c716cd04e7
https://www2.scopus.com/inward/record.uri?eid=2-s2.0-0031149311&doi=10.1111%2fj.1745-6584.1997.tb00110.x&partnerID=40&md5=8f6c41705459be6ac41041c716cd04e7


 

 

8 

 

only method that accounts for storativity. It assumes a fully penetrating well, two-dimensional 

radial flow to or from the well in a confined aquifer (Mas-Pla, Yeh, Williams, & McCarthy, 

1997). The Hvorslev and Bouwer and Rice methods are developed for usage on both fully and 

partially penetrating wells (Bouwer & Rice, 1976; Hvorslev, 1951). The Bouwer and Rice 

(1976) method was developed to be more suitable for unconfined aquifers and if the well screen 

is above the water table.  

The most suitable method for evaluation of aquifer properties depends on aquifer 

characterisation (confined, unconfined), expected storativity of the aquifer, aspect ratio of the 

test interval and the radius of the well screen (Mas-Pla et al., 1997). The screen (or filter section) 

is the open or perforated interval of the well where groundwater can move from or into the well 

and aquifer.  

Mas-Pla et al (1997) compared these three methods in a sandy aquifer and concluded that the 

Hvorslev and the Bouwer and Rice method are most representative for this type of aquifer and 

that these two methods resulted in similar hydraulic conductivities. This was thought to be due 

to that the only difference in the two methods is the form factor related to the well function. 

The Hvorslev method generally yielded lower hydraulic conductivities than the Bouwer and 

Rice method (Mas-Pla et al., 1997). 

For evaluation of the hydraulic conductivity (K) Butler Jr, Bohling, Hyder, and McElwee 

(1994) reported that the Hvorslev method provided acceptable parameter estimates in the ratio 

of screen length to the radius of the screen between 3 and 300. Parameter estimates of hydraulic 

conductivities where within 20 percent of actual hydraulic conductivities (Butler Jr et al., 1994; 

Hyder, Butler, McElwee, & Liu, 1994). At larger aspect ratios and storage parameters Cooper 

et al. provides better estimates (Mas-Pla et al., 1997). The Bouwer and Rice method has been 

reported to estimate hydraulic conductivity parameters within 30 percent of the actual 

conductivity values in unconfined, isotropic and homogeneous aquifers (Hyder & Butler, 1995; 

Mas-Pla et al., 1997). 

Short duration hydraulic tests are easier and less expensive to perform than pumping tests 

(Hölting & Coldewey, 2019; Mas-Pla et al., 1997). These are also proven valuable when testing 

is needed at contaminated areas because there is no extraction of groundwater needed (Hölting 

& Coldewey, 2019). Short duration hydraulic tests are thought to give a good estimation of 

spatial variability of hydraulic conductivity and hence the horizontal heterogeneity (Brauchler, 

Hu, Hu, & Ptak, 2012; Mas-Pla et al., 1997).  

There are also methods developed for multilevel slug tests to analyse the vertical heterogeneity 

(Brauchler et al., 2010; Zemansky & McElwee, 2005). Zemansky and McElwee (2005) found 

that averaged multilevel slug tests showed hydraulic conductivities in the same magnitude as 

results from slug test conducted over the entire screen length. Jones (1993) found relationship 

between results from pump tests in the same magnitude of hydraulic conductivity as results 

from slug tests in unweathered till. Butler Jr and Healey (1998) found that, on average, slug test 

data yield lower hydraulic conductivity than pumping test within the same formation.  



 

 

9 

 

The drawback with slug tests is that they only sample on local scale around the well and the 

well function, installation and development may be dominant in results (L. Jones, 1993). When 

performing multiple slug tests with different initial heads the linear theoretical methods states 

that the type curves should coincide on a semi-logarithmic plot. If this is not the case, nonlinear 

effects influence the evaluated result. Nonlinear effect are effects related to other factors than 

the soil permeability. The nonlinear effects can be caused by turbulence because of the slug 

velocity, friction loss, radius change in the well bore and mobile fine fraction in the soil. 

Nonlinear effects are most pronounced in aquifers with high hydraulic conductivity 

(underdamped or oscillatory aquifer). Underdamped or oscillatory response is when the 

hydraulic conductivity is high enough to produce pulses (waves) by the velocity of the slug, as 

on a free water surface. Nonlinear effects can be of importance in medium and low hydraulic 

conductivity (overdamped or nonoscillatory) aquifers as well, for example if there is mobile 

fine fraction in the aquifer. Exactly how to deal with nonlinear effects is unclear (Zemansky & 

McElwee, 2005).  

Nonlinear effect can be determined by conducting several slug tests with different initial head 

(H(0)). If the response is changing with initial head, there are nonlinear effects. If multiple slug 

test with the same initial head response in different ways, there is noise in the data, or the well 

is changing as tests are conducted. As the hydraulic conductivity increase toward over-damped 

or oscillatory response, velocity and acceleration of the inserted slug becomes significant for 

the result. If corrections are not made the velocity in the water column will decrease pressure 

and the head is underestimated. When mobile fine grain material is present Hvorslev model 

may not be valid (McElwee, 2001). 

2.1.4 Transient pumping tests 

Pumping tests are thought to be representative for the median hydraulic conductivity of an 

isotropic two-dimensional aquifer (Renard et al., 2000). Both slug tests and pumping tests deals 

with estimation of hydraulic properties of aquifer systems. While the slug tests (or short 

duration hydraulic tests) increase or decrease the hydraulic head in the well by adding or remove 

a smaller volume of water, pumping test involve groundwater withdrawal by larger quantities.  

During a pumping test groundwater withdrawal, generally with a constant rate, is performed in 

a well. The responses in one or several other wells around the stressed well are recorded to 

determent the heterogeneity and connectivity in the aquifer system (Paradis, Lefebvre, 

Gloaguen, & Giroux, 2016). The influenced area of the tests is a function of the system 

hydraulic conductivity (or transmissivity), aquifer condition (unconfined/confined) and aquifer 

heterogeneity or diffusivity (speed of pressure disturbance is aquifer system) (Kruseman & De 

Ridder, 1994; Paradis et al., 2016). Aquifer parameter estimate determined by pumping test 

involve the median (mean or effective) hydraulic conductivity. The early response between the 

stressed well and the observation well (inter-well region) are most sensitive to parameter 

estimate (Gupta et al., 2006; Paradis et al., 2016; Renard et al., 2000). As the influenced area 

increases outside the inter-well region the influence of parameters within the inter-well region 

decrease (Paradis et al., 2016).  
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2.2 Geological and hydrogeological description  

A relevant conceptual model of the stratigraphy (geology) and type of aquifer (hydrogeology, 

e.g. confined, unconfined) are key for the evaluation of the hydraulic properties. The following 

section describes a conceptual model of the sedimentology in different parts of Sweden. This 

aims to demonstrate differences between aquifer systems dependent on geographical location. 

An early and relevant hypothesis of the geological conditions will allow for confirmatory rather 

than exploratory investigations.  

2.2.1 Quaternary geology and geological history in Sweden 

The unconsolidated sediments in Sweden are mainly quaternary deposits from the latest ice-

age (Kleman, Stroeven, & Lundqvist, 2008; Stroeven et al., 2016) and the most common soil 

type is till. Around 75 percent of all unconsolidated soils in Sweden are till ("Geology of 

Sweden," 2019). As mentioned in section 2.1 recharge to an aquifer is dependent on the 

infiltration capacity, the transmissivity of the aquifer, the type of aquifer and the heterogeneity 

of the aquifer (Bouwer, 2002; Pedretti et al., 2012). All these parameters are related to the 

sedimentology of an area. Different depositional environments and processes form different 

types of sediments and hence the aquifer character is related to these processes.  

The conceptualisation of typical Swedish sedimentology and stratigraphy will be based on and 

further developed based on the geographical and ice dynamic sectors suggested by Stroeven et 

al. (2016). Glacier dynamics controls, to a large extent, the erosion and deposition patterns 

within an glacier (Kleman et al., 2008). In a cold-based glacier, the ice is frozen to the bed. The 

consequence of this is that the ice moves by internal deformation rather than sliding (Benn & 

Evans, 2014). This slows erosion rates down and increases the preservation potential of older 

sediments (Bergman, 2018; Kleman et al., 2008; Stroeven et al., 2016). A warm-based ice is 

above the freezing point at the bed interface and the glacier can slide. This has the opposite 

effect in that it enhance erosion rates and decrease preservation potential (Kleman et al., 2008; 

Stroeven et al., 2016).  

In the following sections a general picture of the surficial sediments of Sweden and the 

processes involved will be presented. The aim is to give a picture of which type of aquifer 

system that can be expected to be found dependent on location in Sweden.  

2.2.2 Glacial history of Sweden 

During the quaternary period Sweden has been subjected to several glaciations. The last 

glaciation, the Weichselian, occurred between 115-11.7 thousand years ago (ka) (Anjar, 2012). 

During Weichselian several glaciation and warm periods, called interglacial or interstadial, 

occurred. Most of the older deposited sediments was removed during the Weichselian (due to 

the erosive power of glaciers) and hence most unconsolidated sediments found in Scandinavia 

are 115 ka or younger (Mangerud, Gyllencreutz, Lohne, & Svendsen, 2011). 

The last glacial maximum (LGM) during the Weichselian occurred 26.5 to 20 thousand years 

ago and it covered all of Scandinavia, the Baltic states, western Russia, Northern Belarus, 

Poland, Germany, Denmark, Netherlands and all the way to Ireland (Stroeven et al., 2016). 

Before the LGM three major interstadial had occurred during the early and middle Weichselian, 
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where large parts of Sweden were ice free. These are the Brørup, Odderade and Ålesund 

interstadials. During the Brørup and Odderade interstadials, which occurred 100 and 80 ka, 

where characterized by almost ice-free conditions in entire Sweden. During the Ålesund 

interstadial (38-35 ka) most of southern and central Sweden where ice-free while the northern 

part where mainly below ice, except a small part of the east coast (Mangerud et al., 2011).  

The late Weichselian is the phase of the LGM upon final deglaciation (Mangerud et al., 2011). 

During the Late Weichselian deglaciation there where several standstill and re-advances. One 

major re-advance occurred during a colder glacial period called Younger Dryas, 12 ka, which 

produced the Middle Swedish End-moraine zone. The glacial front was then positioned on the 

latitude of Lidköping (Johnson & Ståhl, 2010; Stroeven et al., 2016). 

The glacial history of Sweden suggests that there could be several glacial and deglacial 

sequences in the stratigraphic records. However, the erosion by later glaciers has often erased 

older deposited sediments. Still, sediments have been found from earlier interstadials and 

glaciations where glacier dynamics has been favourable (Benn & Evans, 2014; Bergman, 2018; 

Hättestrand & Stroeven, 2002; Kleman, Borgström, Robertsson, & Lilliesköld, 1992; Kleman 

et al., 2008; Lagerbäck & Robertsson, 1988; Möller, 2006; Möller, Anjar, & Murray, 2013).  

2.2.3 Conceptual sedimentological model of Sweden as a basis for aquifer 

characterisation 

2.2.3.1 Northern Sweden (north of Luleå) 

Most of northern Sweden have been cold-based upon final glaciation (Hättestrand & Stroeven, 

2002; Kleman et al., 2008; Stroeven et al., 2016). Saprolites (a zone in the lower soil profile 

which represents deep weathering in the bedrock) in the stratigraphical record indicate low 

erosion rates during former glaciations. The lack of features indicative for thawed bed 

conditions and reshaping by glacial sliding further strengthens this theory (Bergman, 2018; 

Ebert, Hall, & Hättestrand, 2012; Hättestrand & Stroeven, 2002). Deposits of organic or non-

glacial cold climate sediments have been found also indicating preservation of sediments 

deposited during interglacial cold periods, Brørup and Odderade (Gibbard, 1992). The northern 

part of Sweden has been glaciated during the longest time (Stroeven et al., 2016). 

The central and north of Sweden was below an ice cap that was approximately 2-2,5 kilometers. 

This have led to considerable suppression of the buoyant lithosphere and hence post-glacial 

isostatic uplift as a consequence of unloading (Grånäs & Ising, 2008). The highest coastline 

(HK) is the line that represent the highest point where the land has been below sea level (Björck, 

1995). The highest coastline in the northern Sweden is approximately 200 meters above 

(todays) sea level (MASL) (Påsse & Daniels, 2015). Because of this, glaciomarine sediments 

can be found far inland from todays coastline.  

There are well developed deglacial landforms as well as inherited pre-late Weichselian glacial 

landforms such as Veiki moraine, drumlins, and eskers in the north of Sweden. During 

deglaciation stagnant ice could cover eskers and glaciofluvial deposits by a thinner layer of 

melt-out till (Lagerbäck & Robertsson, 1988). Towards the coastal areas De Geer moraines 
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indicate a calving ice margin. Further inland deglacial landforms are generally less developed 

(Stroeven et al., 2016).  

Advance of a cold-based glaciers that override of frontal depositions and lakes can create 

considerable basal debris layer. This generates a thrust block moraine of sand, gravel and silt 

(Hambrey & Glasser, 2012). During deglaciation of a cold-based glacier the major landform 

recorded is lateral meltwater channels (Benn & Evans, 2014). This gives a simplified glacial 

advance and recession stratigraphy of thrust block moraine below clastic water-laid sediment. 

Bergman (2018) presented till deposition from three glaciations, Saale, middle and late 

Weichselian. These till units are often separated by organic or clastic water-laid sediments. This 

stratigraphy is well consistent with the above explanation. Late Weichselian till is generally 

only a thin sequence of 1-3 meters covering old glacial and non-glacial deposits (Stroeven et 

al., 2016). The moraine in the north of Sweden is generally sandy (Lagerbäck & Robertsson, 

1988). Most of the aquifers above the HK are therefore thought to be unconfined and made up 

of sandy till. The till could have considerable thickness since it can represent three different 

glaciation cycles and be divided by water-laid and organic sediments (figure 2). 

Below the HK the late-Weichselian deglaciation was maritime. Earlier, during the two glacial-

interstadial cycles and the last advance before the LGM, the glaciation environment was 

terrestrial (Mangerud et al., 2011). Therefore, the model for sediment deposition according to 

Bergman (2018) would apply. Though, during the final deglaciation the thermal regime in these 

areas changed to warm-based which typically enhance erosion (Benn & Evans, 2014; Stroeven 

et al., 2016). Therefor sequences of advance and pre-late Weichselian deposits are not thought 

to be as continuous as further inland.  

The De Geer moraines reveals a calving margin with proglacial water depth in excess of 150 

meters during deglaciation (Lindén & Möller, 2005).  Basal till is first deposited. As the glacier 

front recede subaqueous fan are deposited at the grounding line by sediment gravity flows. 

Suspended material is carried by water and deposited further away covering the earlier 

deposited sediments. These fine-grained sediments can be deposited along with drop stones 

from icebergs (Benn & Evans, 2014; Hambrey & Glasser, 2012). Fine-grained material 

continue to deposit and overgoes to mud and organic deposits as the ice front retreats further 

(Hambrey & Glasser, 2012). Isostatic uplift causes regression and the shoreline retreat causing 

reworking by waves and redeposition of the outwash material, such as sand (Påsse & Daniels, 

2015). Below the HK aquifers are suggested to be confined and sediments below the confining 

layer are basal till and sediment gravity flows. Reworking and deposition of postglacial sands 

could create a two aquifer system with an upper unconfined aquifer of outwash sediments and 

sand above the confined aquifer (figure 2). 

2.2.3.2 Central Sweden (south of Luleå to a line drawn between Norrköping-Karlstad-

Strömstad) 

The deglaciation in the central of Sweden was mainly terrestrial, except in the coastal areas and 

valleys below the HK connected to the coast. The HK in central Sweden is found between 

approximately 140 to 300 MASL. The most pronounced isostatic uplift is found in the province 

of Ångermanland and the least prounounced in the southern area, around Norrköping, Karlstad 
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and Strömstad (J. Lundqvist, 1969; Påsse & Daniels, 2015). Below the HK the deglaciation was 

in lacustrine to maritime environment, since the Ancylus lake developed to the Yoldia sea 

during the deglaciation (Möller, 2006).  

The area of central Sweden is thought to have had a more polythermal and warm-based basal 

thermal regime. A polythermal glacier has a mixed basal thermal regime with temperatures both 

below and above the freezing point (Benn & Evans, 2014). The extensive record of striae, eskers 

and lineation indicate a domination of warm-based thermal regime (Stroeven et al., 2016). 

Therefore, compared to the northern part of Sweden, pre-late Weichselian landforms and 

deposits are rarer. Still, the mountains in the west are thought have been subjected to cold-based 

ice for considerable time leading to preservation of older glacial deposits (Hättestrand & 

Stroeven, 2002; Kleman et al., 1992; Möller et al., 2013). This has been concluded by the 

finding of organic layers which represent paleo-surfaces from interstadials (Kleman et al., 1992; 

Möller et al., 2013).  

During the Weichselian glaciation the area was subjected to four interglacial and three 

interstadials (Mangerud et al., 2011). This makes the central part of Sweden the area where 

most glacial-interstadial cycles have occurred during the Weichselian glaciation. During the 

LGM central Sweden was cold-based. But upon the final deglaciation almost the entire central 

of Sweden was warm-based, except in the western mountain area (Stroeven et al., 2016). In 

central Jämtland and Ljungarn-Ljusnarn area larger ice-dammed lakes was developed leading 

to deposits of glaciolacustrine sediments (Benn & Evans, 2014; Stroeven et al., 2016).  

Pre-late Weichselian deposits are considered erased from the sedimental record under the late 

Weichselian warm-based ice. Still, at the western mountain area pre-late Weichselian tills 

separated of paleosol has been found (Kleman et al., 1992). In these areas lacustrine and apron 

deposits interpreted as deposited during Marine Isotope Stage 3b (MIS 3b), the interstadial 

before LGM, has been found. These sediments are overlaid by basal till from LGM (Möller et 

al., 2013). The many glacial-interstadial cycles are therefore suggested to create a more 

complex stratigraphy in this area and at the mountain pre-late Weichselian deposits could be 

found under Late Weichselian deposits. In the northern and western part of central Sweden, the 

ice recession changed direction transverse across valleys causing a cease in deposition of 

glaciofluvial deposits since drainage in valleys occurred under shorter time spans (Kleman et 

al., 1992; J. Lundqvist, 1969). This also contribute to higher preservation of pre-late 

Weichselian sediments. 

In the southern and eastern areas in central Sweden cold-based glacier did not prevail upon final 

deglaciation. Therefore, most of the sediment records are thought to be from the last 

deglaciation (Kleman et al., 2008). Larger esker systems generally follow valley system both 

in supra-aquatic and sub-aquatic depositional environments. These larger esker systems have 

often erased older sediments to the bedrock. Above the HK dammed-up ice lakes produced 

lacustrine deltas which some places developed to sandur systems. Where larger glacial lakes 

existed, sub-aquatic eskers covered with fine-grained deposits can be found (Benn & Evans, 

2014; J. Lundqvist, 1969; Möller, 2006). Thick deposits of quaternary sediments in valleys are 
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covering the bedrock. Toward higher ground the deposits gets thinner and the heights are 

generally covered with a thinner unit of till (Möller et al., 2013). 

Below the HK sub-aquatic eskers have developed to deltas during standstills in the ice recession 

(Benn & Evans, 2014; J. Lundqvist, 1969; Möller, 2006). These standstills can be seen by trace 

of marginal moraines in Uppsala (Rudmark, 2000). The sedimental models are generally the 

same as the model presented for the northern of Sweden below the HK. The difference is that 

more commonly, the pre-late Weichselian sediments have been eroded by the warm-based ice 

(Kleman et al., 2008; Stroeven et al., 2016). The sediment load is suggested to be higher due to 

higher erosion rate and higher discharge of water and more substantial proximal and distal 

deltas can build up (Hambrey & Glasser, 2012), figure 2.  

2.2.3.3 Southern Sweden (from Scania to a line between Strömstad and Norrköping) 

The southern parts of Sweden only experienced one glacial-interstadial cycle before the LGM 

(Mangerud et al., 2011). The deglaciation of southern Sweden was mostly slow and terrestrial 

with major standstills and minor re-advances, which have resulted in ice marginal formations. 

The thermal regime in southern Sweden during deglaciation was warm-based which affect the 

erosion. Still, at some places the basal condition remained cold-based during the complete 

deglaciation which resulted in limited glacial erosion (Stroeven et al., 2016). Southern Sweden 

has only had two interglacial during the Weichselian and has therefore been glaciated shorter 

time than the northern and central Sweden (Mangerud et al., 2011). The southern of Sweden 

will be sub-divided into four areas, Mt. Billingen, Southwestern area of Sweden, South central 

Sweden, and Scania. 

2.2.3.4 Mt. Billingen 

A colder period called Younger Dryas was initiated here. As a consequence a frontal advance 

took place (Johnson & Ståhl, 2010). The ice sheet retreat slowed down and oscillatory advances 

occurred creating the Swedish Middle End Moraine Zone (MSEZ) (Johnson, Wedel, 

Benediktsson, & Lenninger, 2019).  The area west and east of Mt. Billingen has been subjected 

to processes related to the outburst of the Baltic Ice Lake, the development to the Yoldia Sea 

and later the Ancylus Lake (Andrén, Lindeberg, & Andrén, 2002; Björck, 1995). The 

development of the area started with a glacial phase. As the deglaciation took place the Baltic 

Ice Lake started to evolve (Björck, 1995). The lake was dammed-up and had no contact with 

the sea (Björck, 1995; Stroeven et al., 2016). When the deglaciation reached Mt. Billingen, an 

outlet was opened connecting the Baltic Ice Lake with the Atlantic Ocean, a phase called the 

Yoldia Sea. The following regression resulted in disconnection to the Atlantic and a new 

freshwater phase started, the Ancylus Lake which later on drained through Öresund and 

developed into the Baltic sea (Björck, 1995).  

The history of this area makes the stratigraphy different from other areas in Sweden. Johnson 

(2010) Analysed sediment cores west of Mt. Billingen and found out that there were no pre-late 

Weichselian deposits in the sequences. The sea-level was 120-130 meter above todays sea level 

and during deglaciation mainly fine-grained glaciomarine sediments were deposited. Till is 

generally a rare sediment type in the area. Thick layers of glacial varved clays has then been 

deposited in areas below sea-level (Johnson & Ståhl, 2010; Johnson et al., 2019). As the ice 
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front reached the north of Mt.Billingen a connection between the ocean and the Baltic ice lake 

was opened. A drainage of the Baltic Ice Lake followed. Two drainage event is thought to have 

occurred but evidence of drainage deposits is lacking (Johnson et al., 2019). During the 

construction of E20 in Götene poorly sorted sand and gravel was found in between layers of 

varved marine clay indicative of an outburst event (Johnson, Ståhl, Larsson, & Seger, 2010). 

Outwash fans, some eskers and hummocky topography, which is irregular morainic topography 

associated with supraglacial origin (Benn & Evans, 2014), are found on inter-moraine flats. The 

sediment depth can be up to 50 meters but is generally 20-30 meters (Johnson & Ståhl, 2010; 

Johnson et al., 2010). 

The area east of Mt. Billingen generally has a thin layer of till beneath the thicker fine-grained 

layer which is of both lacustrine and maritime origin. Before the opening of Mt. Billingen 

connection, the deposition was lacustrine at the ice front. After the Baltic ice Lake outburst, the 

conditions become glaciomarine (Fromm, 1976). The isostatic uplift de-connected the two areas 

and the lacustrine phase of Ancylus Lake was developed. During the final phase of the 

development of the Baltic Sea most of the area was above sea level. Only a bay in the area of 

Norrköping was still below sea level (Björck, 1995). At heights a thinner cover of basal sandy 

till was deposited (Fromm, 1976). 

2.2.3.5 Southwestern area of Sweden (Åmål down to Varberg) 

The relief of the west coast is thought to have shaped a landscape during deglaciation with 

drainage in longer valleys, calving bays, and archipelagos. The ice movement was down in 

fjords and fissure valleys. This left a rather shallow layer of till at the hill tops. The valleys 

acted as drainage channels (Hillefors, 1979). There has been several minor advances and 

standstills during the deglaciation (Plink-Björklund & Ronnert, 1999; Stroeven et al., 2016). A 

major standstill and ice-front advance mixed deposited glacial clay with till which produced 

clay moraine and also the pronounced end moraines seen in the west coast area (Hillefors, 

1979). 

The sedimentology of west coast of Sweden is characterised by maritime, glaciomarine deposits 

and larger end-moraine ridges. Generally, the presence of till is sparse compared to the rest of 

Sweden. The shallow deposits are dominated by bare rock and glacial and postglacial clays. 

Glaciofluvial deposits are more rare in this area than the rest of Sweden (Adrielsson & Fredén, 

1987).  

The glacial settings of the south western Sweden with warm-based ice and drainage in valleys 

suggests that preservation of old sediment is low (Benn & Evans, 2014; Hillefors, 1979). 

Therefore, sediments are assumed to be deposited during the last deglaciation phase. Since 

valleys acted as drainage channels glaciofluvial material is expected to be found there. During 

deglaciation the bottom layer of basal till or glaciofluvial material was deposited (Hillefors, 

1979).  At ice margins deltas were built up during standstills in the recession (Plink-Björklund 

& Ronnert, 1999). A major standstill and ice-front oscillation mixed deposited glacial clay with 

till which produced clay moraine and the pronounced end moraine seen in the west coast area. 

As the area becomes ice-free glaciomarine clay deposited (Hillefors, 1979).  
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As deglaciation continued the sea level decreased due to isostacy (Påsse & Daniels, 2015). 

Around 10000 years bp the sea level rise overcome the isostatic uplift and a transgression took 

place which reached its highest point around 7000 bp (Påsse & Daniels, 2015). The glacial clay 

was reworked at many places and post-glacial fine grained sediments was deposited (Adrielsson 

& Fredén, 1987). Due to the high deposition of clays covering high conductive glaciofluvial 

material, eskers or deltas are not as easily found by geomorphological features as in other parts 

of Sweden. The till on the west coast is generally sandy to silty in composition (Adrielsson & 

Fredén, 1987). The suggested dominated aquifer system is confined aquifer (figure 2). 

2.2.3.6 South central Sweden (highlands in Småland) 

The highlands in Småland is located in the middle of the south of Sweden are thought to be an 

area where the thermal regime of the ice sheet has been cold-based for a longer while during 

the last glaciation (Stroeven et al., 2016). The area has never been below sea-level and fine-

grained sediments are therefore glacial, glaciolacustrine or lacustrine (Lemdahl et al., 2013). 

Larger and thicker layers of clay and silt as therefore rarer than in the coastal areas and hence 

confined aquifers are rare. The area was subjected to terrestrial and slow deglaciation (Stroeven 

et al., 2016).  

Glacial topography such as ribbed moraine, drumlines, hummocky moraine and glaciofluvial 

deposits are common in the area (Magnusson, 2009; Möller, 2010; Möller & Murray, 2015). 

Ribbed (or Rogen) moraine genesis are not fully understood but it could be glacial reshaping 

pre-existing landforms and therefor an indicator of preservation of deposits from older ice 

sheets (J. Lundqvist, 1997; Möller, 2006). Other suggest that the landform is more polygenetic 

and the term only should be used as a descriptive, morphological term (Möller, 2010). 

Glaciofluvial deposits generally increase in frequency west of Växjö and is less frequent to the 

east (SGU, 2019). Glaciofluvial deposits are generally the top most sediment but could be 

overlaid by a layer of till (Magnusson, 2009).  

2.2.3.7 Scania 

Scania is the region in Sweden that has been glaciated during the shortest period (Ringberg, 

1989). Most of Scania is located above the HK except areas near the coast. The area has never 

been cold-based (Stroeven et al., 2016). Scania has many glaciofluvial deposits and striae which 

indicate sliding and warm-based conditions (Hebrand & Mark, 1989; Ringberg, 1988, 1989; 

Stroeven et al., 2016). 

What is unique for Scania is the widespread upper unit of till with high clay content. This is 

because the bedrock in Scania is different from other parts of Sweden which have resulted in 

production of more fine-grained tills. This unit is most common from the west coast to the 

higher areas in the central of Scania. In lowlands this unit grades into clay. This clay unit 

generally overlay one or two layers of clay and silt which is divided by a layer of gravel and 

sand (Berglund & Lagerlund, 1981). Underneath this unit sand and clay layers the lowest unit 

that is found which generally compose of another till layer (Ringberg, 1989).  

On the east coast the glacial history is different from the west coast. The areas are subjected to 

processes connected to the development of the Baltic sea as described in section 2.2.3.4 (Björck, 
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1995; Hebrand & Mark, 1989; Påsse & Daniels, 2015). The shallow layers on the east coast are 

therefore often sand and gravel and at some places varved clays (Hebrand & Mark, 1989). Also, 

further inland, the eastern part of Scania was more subjected to damming up of ice lakes and 

therefore the building of deltas in lacustrine environments. Eskers and glaciofluvial deposits 

are more often exposed compared to the western part of Scania. Some eskers have eroded the 

bottom unit of moraine and are in direct contact with the bedrock, but a layer of till is usually 

beneath the glaciofluvial material (Hebrand & Mark, 1989; Ringberg, 1991). A general 

stratigraphically model from bottom is till, overlaid by deltaic or outwash sediments which 

could be overlaid by fine grained lacustrine sediments. When approaching the coastal areas, the 

till locally is overlaid by glaciofluvial deposits and glacial clay with a topmost thinner layer of 

outwash material such as sand (Daniel, 1986; Hebrand & Mark, 1989; Ringberg, 1991). The till 

on the east coast of Scania is generally clayey (Daniel, 1986).  

2.2.3.8 Summary of conceptual model 

Figure 2 suggests four basic and simplified stratigraphy’s depending on the environment at 

glacier terminus and glacier thermal regime. Over the highest coastline the aquifers are 

generally unconfined. Where there have been glaciolacustrine environments confined aquifers 

can be found. Under the highest coastline confined aquifers are expected to be found. An upper 

unconfined aquifer could be found where there are outwash sediments and postglacial sands. 

For some locations, the stratigraphy will be very different because of different glacial history 

such as the areas around Mt. Billingen (section 2.1.4.4) with thick layers of clays in direct 

contact with the bedrock. Also, situations that deviates from the proposed model is the clay 

moraine (confining bed) in Scania (section 2.1.4.7) or areas which where glaciolacustrine such 

as at Ljungarn-Ljusnarn area described in section 2.2.3.2. Confined aquifers can hence be found 

without being under the HK or in a glaciolacustrine environment. The suggestion for 

construction of a conceptual model for a specific location is based on the determination of the 

ice dynamics during the deglaciation and the location in relation to the HK (under/over). Then 

one should define whether there are specific glacial events that could complicate the basic and 

simplified stratigraphy. Thereafter, modify the general stratigraphy presented in figure 2. 

 

Figure 2. Four basic and simplified stratigraphy's which can be used for aquifer characterisation. 
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2.3 Case study Varberg 

Infiltration, hydrogeology, and heterogeneity are key topics of this thesis and focus is on a case 

study for the Varberg tunnel project. Varberg is a smaller town located at the west coast of 

Sweden around 60 kilometers south of Gothenburg (figure 3). Varberg is a part of the 

infrastructure project “Västkustbanan”. In this project a double train trac is built between 

Malmö and Gothenburg. In Varberg the train tracks will both go through a tunnel and in a 

trough. If the groundwater surface is above the tunnel or trough groundwater must be pumped 

out of the aquifer so the excavation does not get filled with groundwater. Pumping of ground 

water or infiltration of water creates a radius of influence and groundwater moves towards the 

pumping facility or away from the infiltration well along the hydraulic gradient (Fetter, 2001). 

The growth of the radius of influence depends on duration of the pump test, discharge rate, 

aquifer transmissivity (amount transferred water per time unit through the cross section of the 

aquifer) or hydraulic conductivity, aquifer heterogeneity, type of aquifer (confined or 

unconfined) and boundary conditions (Kruseman & De Ridder, 1994).  

This case study is focusing on the last four parameters which do not depend on technical 

specifications. The case study will include a conceptual model of unconsolidated sediments in 

Varberg and in-situ measurement of the hydraulic conductivity by short duration hydraulic 

tests. The purpose was to provide guidance in relation to location and design of mitigation 

measure for the mitigation of pressure and flow focusing on infiltration and pumping. 

 

 

Figure 3. Overview map of Varberg city. 
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In the project “Varbergs tunnel” risks for environmental consequences have been estimated at 

a drawdown that exceeds 0.3 meters. During the maintenance of the train tracks groundwater 

drawdown are at some places thought to exceed 2 meters and at maximum during the 

construction 12 meters (Tyréns, 2016; Wååg & Niord, 2018). The juridical decision from 

Vänersborg’s Land and Environmental court (2018) states that infiltration is necessary and 

should be used where consequences from drawdown are estimated. 

2.3.1 Geological and environmental description of Varberg 

2.3.1.1 Climate, hydrology, and topography 

Varberg has according to Köppens climate classification a warm-summer humid continental 

climate. Varberg has an annual precipitation between 800-900 millimeters and an annual mean 

temperature of 8-degree Celsius (SMHI, 2020). The annual evaporation is 400 mm and the 

potential are 600 mm per year. The potential evaporation is a measure of the airs ability to 

evaporate water compared to the evaporation which is an actual measure of the evaporation 

(SMHI, 2017). The city of Varberg is located on a gently sloping hill between two valleys with 

the lowest point 0 MASL and highest 54 MASL. In the middle of Varberg there is a smaller 

valley (figure 4). The valleys all trend northeast southwest or west-east direction. This is 

approximately the same direction as the ice movement were during the last deglaciation. The 

red line represents 15 MASL which is the highest coastline from the 7000 Bp transgression 

(Påsse, 1990). There are no larger streams in the area. Varberg is positioned by the Kattegatt 

ocean. 

 

Figure 4. Topography, in meter above sea level, and the highest coastline 7000 bp. 
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2.3.1.2 Sediments and quaternary geology 

Figure 5 shows the surface sediments found in Varberg. There is a local deformation zone going 

through the valley south of Varberg (Apelviken valley). Along this deformation zone further 

inland larger glaciofluvial deposits can be found at Grimeton and Rolfstorp (Påsse, 1990). The 

shallow sediments mostly consist of postglacial fine sand (or sand) and outwash sediments 

(gravel) (figure 5). At heights till or outwash till is the dominant sediment. Glacial clays can be 

found in patches at flatter areas. In the north-east part of the area moraine ridges can be found. 

Outwash sediments are concentrated to heights while postglacial fine sand is found in valley 

systems. At heights there is shallow sediment depths, between 0 to 5 meters. In valleys the 

sediment depth increases, and the thickest sediments are up to 30 meters. The Apleviken valley 

generally have a sediment depth of 10-20 meters (figure 5). 

 

Figure 5. Surface sediments and sediment depth in Varberg. 

The area of Varberg was deglaciated between 16-17 ka (J. Lundqvist, Lundqvist, & Lindström, 

2011; Stroeven et al., 2016). During the deglaciation, the Varberg area was below sea-level. At 

the time the coast line was 75 meters above present shore level (Påsse & Daniels, 2015). The 

deglaciation was in a marine environment but turned terrestrial around 15 kilometers further 

inland where the land was higher (Hillefors, 1979). The thermal regime of the ice was mainly 

warm-based (Hillefors, 1979; Stroeven et al., 2016). The simplified and basic ice-recession 

stratigraphy for a glaciomarine, warm-based ice under the HK in figure 2 would therefore be 

suggested for the Varberg area. 
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There are several ice marginal formations in the area indicating standstills and re-advances of 

the glacier. These formations are occurring from the sea up to the border to the highlands. The 

area are a part of the Halland Coastal end-moraine zone (J.  Lundqvist & Wohlfarth, 2001). 

Terminal moraines such as De Geer moraines has also been found within the proximity of 

Varberg (V. Bouvier, M. D. Johnson, & T. Påsse, 2015). Marginal formations are formed 

perpendicular to the ice front and in Varberg they have been described as consisting of 

glaciofluvial sediments, till and in some part clays (Hillefors, 1979; Påsse, 1990). 

Glaciotectonized material has been found in these ridges, suggesting ice frontal advance (Påsse, 

1990). The warm-based ice with a calving ice margin caused high meltwater rate and sediment 

load (Hillefors, 1979; Stroeven et al., 2016). During marine deglaciation, the sediment loaded 

water in channels are deposited as subaqueous fans on the basal till. Where rapid deposition 

occur eskers can be buried as cores below fan forms, turbidites sediment flows and rhythmites 

(Benn & Evans, 2014). As the ice retreated fine-grained suspended sediments were deposited 

and covered older sediment structures (Påsse, 1990). This creates a confined aquifer. 

As the deglaciation reached the highland (approximately 15 kilometers inland) valleys drained 

the hills. This resulted in fast ice movement within the valleys. At the terminus large 

glaciofluvial deposits were built up (Hillefors, 1979). When the glacial front got to the HK ice-

proximal deltas was produced in the valleys. As meltwater was continuing to feed the valley 

with sediment ice-distal aprons could be developed (Hillefors, 1979; Påsse, 1990). 

Offshore suspended materials was deposited in the deeper calmer waters (S. J. Jones & Jones, 

2015; Påsse, 1990). Icebergs transported from the ice front could deposit rain-out diamicton on 

the fine-grained sediment (Hambrey & Glasser, 2012; Hillefors, 1979). As the deglaciation 

continues isostatic uplift initiates a regression (Påsse & Daniels, 2015). During the regression 

wave action reworked the deposited fine-grained material of glaciomarine clay and silt (S. J. 

Jones & Jones, 2015; Påsse, 1990). The area was completely deglaciated at 13200-13300 years 

ago (Påsse, 1990). 

10 000 years ago the isostasy was slower than the sea-level rise followed by a transgression that 

continued until 7000-8000 years ago (Påsse & Daniels, 2015). The shore displacement was 

around 15 meters above todays sea-level. Lower areas around Varberg was below sea level and 

beach processes reshaped the area. Several beach terraces can be seen around Varberg 

indicating different ancient shorelines (Påsse, 1990). A regression followed which has 

continued ever since and is still ongoing (Påsse & Daniels, 2015). During the last transgression 

most of the heights in Varberg was above sea-level (red line in figure 4 and 5).  

The hill tops in Varberg is thought to have acted as an ice divide and drainage occurred in the 

valleys and depressions in the bedrock (Hillefors, 1979; Påsse, 1990). At slopes turbidity 

currents are thought to have redistributed sediments and inhibited deposition of fine-grained 

materials such as clay and silt (Evans & Benn, 2004). During the regression wave action are 

suggested to have been more powerful in erosion and redistribution at slopes and at heights 

while on flatter and lower areas experienced lower energy erosion. This led to higher 

redistribution of sediments at hillsides.  
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By reworking of clay by wave actions and beach deposition younger sandy or silty post glacial 

sediments cover glacial clays in the valleys (Påsse, 1990). Therefore, below 15 MASL an upper 

unconfined sandy to silty aquifer could be separated by a clay layer to a lower confined aquifer 

with till or glaciofluvial material. On the coastal plain of Varberg area few larger glaciofluvial 

deposits have been found. Smaller, 1-2 meter thick, layers of glaciofluvial sediments which are 

horizontally widespread have been found below the glacial clays (Påsse, 1990). Since the 

glacier dynamics where warm-based pre-late Weichselian deposits are thought to be erased and 

glaciofluvial deposits could be in direct contact with the bedrock (J. Lundqvist, 1969; Möller, 

2006). The processes acting after deglaciation have concealed much of the geomorphological 

features and the marine clay have covered glaciofluvial material which makes it hard to visually 

find features compared to areas which are above the HK. 

2.3.1.3 Bedrock 

The Varberg area is dominated by 1700 million years old intrusive rocks (Göransson, 

Bergström, Shomali, Claeson, & Hellström, 2008). The bedrock in Varberg where formed 

during a long period, 800 million years, and have been subjected to at least two orogenic events. 

The Gothian orogeny occurred 1750 to 1550 million years ago and the Sweconorwegian 

orogeny, 1150 to 900 million years ago. During these events the bedrock in Varberg has been 

subjected to profound deformation and metamorphosis (Lundquist & Kero, 2008). 

Granodioritic-granitic gneiss is the most common rock in Varberg (figure 6). There are only 

minor areas of Gneiss with other compositions. There are also some smaller areas of gabbroid-

dioritoid. The other major rock type is charnokite. Charnockite consist of hypersten and 

orthoclase which indicate metamorphosis under high pressure and temperature (Lundquist & 

Kero, 2008).  

 

Figure 6. Bedrock in Varberg. 
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2.3.2 Earlier performed short duration hydraulic tests in Varberg 

There have been several short duration hydraulic tests performed in the Varberg area (figure 7). 

Tyréns (2016) performed several short duration hydraulic tests along the train track in Varberg. 

This will be referred to as the first testing campaign. 46 wells where tested whereas 39 of these 

where wells drilled to the bedrock (in this thesis the focus is on the lower confined aquifer). 

The method used for the short duration hydraulic tests was infiltration. Water was added into 

the well to raise the head and the recovery was measured. Where the recovery was fast the 

Bailer method was used to remove water and lower the head. The evaluation method used was 

Hvorslev (1951), equation 4. 

𝐾 =
𝑟2×ln (

𝐿

𝑅
)

2×𝐿×𝑇0
                                                                                           (4) 

Where K is the hydraulic conductivity, r is the radius of the well, L is the screen length, R is 

the radius of the filter and T0 is the time lag. The tests used in this thesis from the first testing 

campaign is showed in table 1. 

Table 1. Results from short duration hydraulic tests performed during the first testing campaign. 

Renen  K (m/s) 

14T3090 3.5×10-5 

14T3091 1.6×10-4 

14T3092 5.8×10-6 

14T3065 4.5×10-5 

14T3100 1.1×10-5 

Southern trough and 

tunnel 

 

14T713 2.4×10-6 

14T7040 4.1×10-6 

14T7041 4.2×10-5 

14T7046 3.7×10-6 

14T7047 2.4×10-7 

 

2019 Golder Associates (Wiklund et al., 2019) performed short duration hydraulic tests. These 

tests are referred to as the second testing campaign. The head in the well was lowered by a 

drainable pump and the recovery to the static water level was measured with pressure transducer 

and piezometer. The recovery curves were evaluated in Aqutesolv with Hvorslev (1951) 

method. The results from the tests are presented in table 2. The data from wells in the 

southernmost area (Vareborg) where evaluated in this thesis. In figure 7 the wells from earlier 

performed short duration hydraulic tests are presented. Results from these wells were used in 

this thesis. 

Table 2. Results from short duration hydraulic tests performed during the second testing campaign. 

Southern trough and tunnel K (m/s) 

U04G11 2.1×10-7 

U04G16 1.6×10-4 

U04G38 2.5×10-3 

U04G40 1.5×10-6 
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Figure 7. Overview of earlier performed short duration hydraulic tests. 
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2.3.3 Earlier performed transient pumping test in Varberg 

The first testing campaign performed transient pumping tests along the future train trac in 

Varberg and 2019 the second testing campaign did several pumping tests. The following text 

describe 5 of these pump tests that are relevant for this thesis. 

At the area Renen, in figure 8, the pumped well and observation wells used during the pumping 

test are showed. The pumped well had a filter placed 10-12 meters beneath the ground surface 

with the filter bottom at the sediment-bedrock interface. The dashed line displays the outline 

radius of influence during the pumping test. Well 14T3085 was pumped and six well measured 

a drawdown. Well 14T3087 is drilled into the bedrock which is 9.5 meters below the ground 

surface which is overlaid by silt. The well casing is 12 meters. All the influenced wells are 

deeper than 8 meters below the surface and in the vicinity of the pump well (except well 

14T3090U). The closest surrounding wells outside of the influence area are shallower than the 

wells that was influenced (7 meters deep or shallower). 

The pump test was initiated the 12th of November 2014 with a discharge of 8 litres per minute 

(l/min). The 15th of November the pump lost power and was shut off. The 19th of November the 

pump was started again with a higher discharge of 14 l/min and continued until the 24th of 

November. The evaluation method used was Hantusch-Jacob. The evaluation of the drawdown 

measured a hydraulic conductivity of 1-2×10-5 m/s with an assumed aquifer thickness of 5 

meters. 

 

Figure 8. Pumping test performed at Renen. Copyright 2020 by Lantmäteriet (background map) and Swedish 

Geological surveys (surface sediments). 
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Figure 9 shows the wells that responded to pumping in well 14T720FO by the first testing 

campaign at Southern trough and tunnel. All observation wells and the pumped well are 

positioned in the lower aquifer. The test where carried out between the 2nd to the 9th of June 

2014 with a discharge of 37 l/min. There was only one well that did not show a drawdown, well 

14T711. Evaluation of the recovery curves and the drawdown measured a hydraulic 

conductivity of 1×10-4 to 2×10-4 m/s with an assumed aquifer thickness of 3 meters. 

 

Figure 9. Pumping test at Southern trough and tunnel. Copyright 2020 by Lantmäteriet (background map) and 

Swedish Geological surveys (surface sediments). 

During the second testing campaign pumping tests where performed at Österleden (figure 10). 

Only three observation wells showed drawdown, wells U12G36, 14T7035 and U19G30. The 

discharge throughout the pump test varied due to problems with silt that clogged the pump and 

that the pump had a low capacity. The method used for evaluation of the transmissivity was 

time-distance evaluation to minimize the influence of the unsteady pump rate. The 

transmissivity measured a value of 3.2×10-5 m2/s.  
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Figure 10. Pumping test at Österleden. Copyright 2020 by Lantmäteriet (background map). 

Figure 11 show the influence area from pumping test in Vareborg performed during the second 

testing campaign. Well U19G08BR was used as pump well. The first testing campaign 

performed another pump test in 2014 in well 14T8033 with wells 14T8028, 14T8026 and 

14T8025 as observation wells. All the observation wells were influence by the pumping during 

the test. The second testing campaign measured an average transmissivity of 3×10-5 m2/s 

whereas during the first testing campaign measured a transmissivity of 4×10-5 m2/s. During the 

second testing campaign more observation wells where used and hence the value is thought to 

represent the hydraulic characteristics for a larger part of the system. 

Figure 11. Pumping test at Vareborg. Copyright 2020 by Lantmäteriet 

(background map) and Swedish Geological surveys (surface sediments). 
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3. Materials and method 

3.1 Description of deposits (sediments) to be Analysed 

The investigation areas were chosen based on expected hydrogeological settings or type of 

aquifer. The radius of influence depends to a large extent on the type of aquifer where the 

borehole is situated (Kruseman & De Ridder, 1994). According to the quaternary geology 

presented in section 2.2.1.2 and figure 2, the lower, more flat areas (below 15 MASL) are 

described by a two-aquifer situation with a lower confined and an upper unconfined. The lower 

aquifers were expected to consist of glaciofluvial sediments and till. The glaciofluvial deposits 

are expected to have a hydraulic conductivity over 3.3×10-5 m/s, with a composition of sand and 

gravel as can be seen in table 12 and 13 (Hölting and Coldeway, 2019; Domenico, 1998). The 

till was expected to have a lower hydraulic conductivity due to it being poorly sorted and 

consisting of finer grain sizes. Domenico (1998) suggested a hydraulic conductivity for till 

between 1×10-12- 2×10-6 m/s (table 12). The till in Varberg is generally sandy and the hydraulic 

conductivities for till are expected to be in the higher span (Påsse, 1990).  

When reaching 15 MASL which is the highest point where the 7000 Bp transgression reached, 

old sediment has been eroded and new beach sediments have been deposited (Hillefors, 1979; 

Påsse, 1990; Påsse & Daniels, 2015).  These sediments are expected to vary between a hydraulic 

conductivity for silt to sand (table 12).  

In figure 12 a suggested conceptual model of the sedimentology, based on section 2.2.1.2 and 

figure 2, and the aquifer system is presented. The figure suggests a cross-section of a valley 

system. The red squares show the suggested condition where the confined aquifer terminates at 

the hillside. The aquifer is thought to go from confined to leaky in this situation. The pink 

square represents a confined situation in the central valley where glaciofluvial deposits are 

suggested to be found. Under the cross-section a map over the Apelviken valley is presented 

with squares that shown where the different environments in the cross-section is suggested to 

be located (figure 13). The short duration hydraulic tests that were performed aimed at detecting 

and characterizing the different environments. Also, the aim was to find contacts between the 

depositional environments in the horizontal direction along the slope of the bedrock. In-situ 

measurement was carried out at Renen (figure 8) to describe difference between the unconfined 

and confined aquifers. 
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. 

 

Figure 12. The conceptual model of sediments and aquifer system at the investigation sites as a cross-section of 

the valley system. Red squares represent aquifers which are confined to semiconfined (Vareborg and Southern 

trough and tunnel). The pink square represents the confined aquifer at Österleden. 

 

Figure 13. Displays the cross-section from aerial view. Red squares are the semi-confined investigation areas 

(Vareborg and the Southen trough and tunnel). The pink square is the confined investigation area (Österleden). 
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3.2 Field testing methods 

The short duration hydraulic tests were performed between the 14th of November to the 13th of 

December 2020. Four field techniques, rising head with pump, slug, infiltration, and bailer 

where used to measure the saturated hydraulic conductivity (K) in 18 wells. Several field 

methods where used to evaluate if the results from different methods were consistent. The 

second reason is the evaluation of nonlinear effects (McElwee, 2001). 

32 short duration hydraulic test had already been made by the first and second testing campaign. 

To assess if the results from different actors consist some of the already tested wells was tested 

again.  

Before test started all wells inner radius and well height above or below the ground surface 

where measured. The depth to the water table and depth of the well was then measured with a 

piezometer. Pressure transducers (divers) where used in all wells to measure the pressure 

change. 

3.2.1 Rising head test by pumping 

A drainable pump with the capacity to pump water from a depth of 7 meters was used. The 

discharge during pumping was measured by count with a stopwatch the time it took to fill a 1 

litre bucket with water. Water was pumped until the well was empty (in unconfined shallow 

aquifer) or water surface was below the pump, then the pump was turned off. If the inflow to 

the well was too high to pump the well dry or down below the pump, pumping continued until 

a satisfying drawdown had been achieved or until steady state flow, which means that pressure 

do not change with times (Bourdet, 2003). The recovery time was measured with a pressure 

transducer. All the equipment where left in the well throughout the test. This to avoid 

disturbance and to avoid that the diver moves during the recovery. During testing at 

investigation site Renen, water that had been pumped up was collected in 20 litre cans because 

of groundwater contamination. A disadvantage with this method that is important to point out 

is that the ho is hard to exactly control. 

3.2.2 Slug test-, infiltration-, and Bailer methods 

To be able to do multiple tests, assess nonlinear effects (McElwee, 2001) and to compare results 

from different field methods slug and infiltration was used. Also, bailer was used for 1-inch 

wells.  

A slug was used with the length (l), diameter (d) and volume (V) of 0.9 meter (m), 0.4 m and 

0.0011 cubic meter (m3), respectively. The theoretical hydraulic head change (ho) caused by the 

slug is calculated by equation 5 (Kruseman, 1994). The theoretical ho is for a HDPE wells with 

an inner radius (re) of 0.029 m is 0.42 m and for the steel pipes with an inner radius of 0.0255 

m is 0.54 m. 

ℎ𝑜 =
𝑉

𝜋𝑟𝑒
2                                                                                            (5) 

The slug was instantaneously inserted in the well and left in until recovery of the static water 

level occurred. Then it was rapidly removed from the wellbore and the recovery time was 



 

 

31 

 

measured. Equation 5 for a 1-inch bailer with the volume of 0.000177 m3, the radius of 0.0127 

m and a length of 0.35 m results in an initial head displacement of 0.35 centimeters. 

The infiltration method was used at the investigation site “Renen”. Since there was a risk of 

contaminants in the groundwater the pumped water had to be collected in cans then poured back 

into the well. Due to safety precautions the water could not be moved to other containers and 

hence the water was poured back into the well without controlling the volume added. Were 

wells could be filled to the top of the well the increase in ho could be theoretical calculated by 

knowing the depth to the static water level and the radius of the well.  

3.2.3 Evaluation of field saturated hydraulic conductivity 

3.2.3.1 Preparation of pressure data 

Before the test initiates the initial pressure (pi) downhole is constant. As the head is decreased 

or increased the pressure changes according to the change in the water column above the 

pressure sensor (figure 14). The recovery of the head is a function of time (t). The drawdown 

pressure response (Δp) of the test is calculated by equation 6 (Bourdet, 2003). 

𝛥𝑝 = 𝑝𝑖 − 𝑝(𝑡)                                                                              (6) 

The pressure difference between the borehole and the aquifer produces a flow to or from the 

borehole (Hvorslev, 1951). The build-up pressure change for each time step (Δp) is calculated 

by equation 7, from the flowing pressure when time (t) is zero, p(t=0) (Bourdet, 2003). 

𝛥𝑝 = 𝑝(𝑡) − 𝑝(𝑡 = 0)                                                                   (7) 

 

Figure 14. Pressure change because of a drawdown and equalization curves taken from figure 1.1 in Bourdet 

(2003). Well Test Analysis: The use of Advanced Interpretation Models. Retrieved from Elsevier Science. 

 

As the recovery of the drawdown reach quasi-steady state (the recovery only dependent on the 

hydraulic conductivity of the porous media) the build-up pressure change is equal for each time 

step and the pressure recovery curve displays a straight line (Bourdet, 2003). The slope of the 

straight line is proportional to the hydraulic conductivity (Hvorslev, 1951).  
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The pressure data is expressed in millibar (mbar) by the pressure data logger. The initial 

displacement ho (or p(Δt=0)) was set to time 0 in Excel. The build-up pressure was calculated 

by equation 7 for each timestep. The data was transformed to meter from water column 

(pressure) by the International System of Units (SI) which state that 1 centimeter of water at 4 

degree Celsius (°C) equals to a pressure of 98.0665 Pascal (Pa) under the assumption that the 

water density is 1000 kg/m3 (equation 8). This equals to 0.980665 mbar per centimeter 

(Thompson & Taylor, 2008). 

𝛥𝑝 𝑚𝑏𝑎𝑟

0.980665 𝑚𝑏𝑎𝑟×100𝑐𝑚
= 𝐻 𝑚𝑒𝑡𝑒𝑟𝑠                                                      (8) 

If multiple test where performed in the well the pressure data from the tests where plotted as 

normalised head (h/ho) versus time to assess impact of nonlinear effects (McElwee, 2001).  

The basic time lag is calculated according to Hvorslev (1951). Hvorslev (1951) suggested that 

if there are no errors present during pressure equalization the total flow required for pressure 

equalization depends primarily of the permeability of the soil. The time it takes for equalization 

of the pressure difference between the well and the porewater pressure because of a change in 

head in the well is called basic time lag, equation 9. 

𝑡

𝑇
= ln 

𝐻𝑜

𝐻
                                                                                            (9)                                                             

Where t/T is the time lag ratio, Ho is the initial head displacement and H is the head 

displacement per time unit. If the assumptions for Hvorslev (1951) method are fulfilled the 

semi-logarithmic plotted recovery pressure data and time should display a straight line and the 

basic time lag correspond to a head ratio of 0.37. 

3.2.3.2 Evaluation of hydraulic conductivity in Aqtesolv 

The Hvorslev (1951) method was used for evaluating of the field data. The Hvorslev method 

states that the rate flow (q) to or from the well at any time (t) is proportional to the hydraulic 

conductivity (K). The Hvorslev method is under the assumption that the aquifer is isotropic, 

infinite in thickness and extent. Further, the aquifer is incompressible and artesian condition is 

prevailed or that inflow or outflow is small enough to not cause change in groundwater level or 

pressure (Hvorslev, 1951). In this evaluation an additional assumption will be that the aquifer 

thickness is the same as the screen length. Hvorslev neglect Ss in the formula under the 

assumption that the storage coefficient effect is insignificant (Koussis & Akylas, 2012). The 

method of Hvorslev is a straight forward method and do not consider nonlinear effect, velocity 

or acceleration, equation 10 (Hvorslev, 1951). 

𝐾 =
𝐴

𝐹(𝑡2−𝑡1)
𝑙𝑛

𝐻1

𝐻2
                                                                                  (10) 

Where K is the hydraulic conductivity, A is the cross-section area of the standpipe and F is the 

intake shape factor. The validation of the data was made by a semi-logarithmic plot of head 

versus time. There are several situations producing deviation from linear theoretical models 

(McElwee & Zenner, 1998). The program Aqutesolv Pro (Duffield, 2007) will be used for 

evaluation.  
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For instantaneous initiation in high K aquifers the pneumatic method is most reliable but was 

not used in this work. Hence, the translation method for evaluation was used when there was 

noisy data in the early part of the test. In this method the noisy data at slug initiation is ignored 

in the evaluation and the ho is selected where the pressure displays a straight line (Butler Jr & 

Healey, 1998).  

A critical unknown property of the lower confined aquifer is the lack of data of the aquifers 

thickness which is needed for Hvorslev (1951) method. In this work the evaluation of the data 

the aquifer thickness is assumed to be the same as the screen length. This assumption is based 

on the theoretical fact that a slug test only tests the absolute vicinity of the screen (Fabbri, 

Ortombina, & Piccinini, 2012). A sensitivity analysis for the aquifer thickness parameter for 50 

percent (%) of the screen length (l), 150 % and 600% of the screen length was made for the 

highest, median and lowest measurement at each investigation site. These values for parameter 

sensitivity (s) estimation are chosen based on that most screen lengths are 1 meter and that data 

from cone penetration test (CPT) from the second testing campaign suggests that the aquifer 

thickness seldom exceed 6 meters. The sensitivity was measured by equation 11. 

𝑠 =
𝑃𝑟𝑒𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑖𝑛𝑝𝑢𝑡

𝑃𝑟𝑒𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑜𝑢𝑡𝑝𝑢𝑡
                                                               (11) 

 

3.3 Compilation and analysis of field saturated hydraulic 

conductivity 

The basics of the analysis of the saturated hydraulic conductivity data is that in a lognormal 

isotropic medium the geometric mean is the exact upscaled hydraulic conductivity (effective 

hydraulic conductivity) in a two-dimensional medium (Renard et al., 2000). The variability of 

hydraulic conductivity tends to exhibit lognormal distribution and therefore the central 

tendency can be represented by the geometric mean (or median) (Gupta et al., 2006). The 

assumption for this analysis is that the transient pumping tests represent the upscaled hydraulic 

conductivity (geometric mean) of the system tested. The variability of field data from short 

duration hydraulic test was assumed to be lognormally distributed and hence the central 

tendency (median) would for an isotropic homogenous medium equal the geometric (effective) 

hydraulic conductivity from transient pump tests. The Weibull formula (equation 12) for 

probability distribution (P) was used. The values ranked from highest to lowest (Svensson & 

Sällfors, 1985). 

𝑃 =
𝑁+1−𝑚

𝑁+1
                                                                                         (12) 

Where N is number of measurements and m is the rank from highest to lowest measured 

hydraulic conductivity. The hydraulic conductivity data was plotted lognormally against P. The 

median in the data will be compared to the value of hydraulic conductivity evaluated from the 

transient pump test. 
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For this analysis results from both earlier performed short duration hydraulic tests and results 

from the field short duration hydraulic test was used (table 1 and 2). The results from rising 

head test with pump was used in first-hand. If the result from the rising head test with pump 

was indicating errors, results from slug, infiltration or Bailer tests will be used.   
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4. Results 

 

4.1 Field saturated hydraulic conductivity 

Table 3 displays wells that where tested in both testing campaigns and during the field work. 

Well 14T80325 to 14T8033 are a comparison between the first testing campaign, and the 

second. Wells 14T3056 to 14T3073 are comparison between field test made in this thesis and 

the first testing campaign (marked in grey). One well measured 130 times larger hydraulic 

conductivity for the first testing campaign compared to the second one (well 14T8026). The 

largest values for the other measurement are between 1.1 to 2.8 times larger. 

Table 3. Displays wells that have been tested during both testing campaigns and in this thesis. The darker grey 

areas are hydraulic conductivities measured during the field work. 

Well K (m/s), second 

testing campaign 

K (m/s), first 

testing campaign  

Ratio 

14T8025 2.6×10-7 4.9×10-7 1.9 

14T8026 1.2×10-8 1.6×10-6 130.1 

14T8028 4.3×10-6 6.7×10-6 1.6 

14T8033 4.2×10-5 5.3×10-5 1.3 

14T3056 1.0×10-3 1.1×10-3 1.1 

14T7035 4.6×10-7 1.3×10-6 2.8 

14T3073 4.7×10-6 3.3×10-6 1.4 

 

During the field test three well construction types were used. Two- and one-inch steel pipes 

with perforated screen section and high-density polyethylene (HDPE) wells. The latter well 

type is installed in a borehole and filled with sand. 
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4.1.1 Unconfined aquifers 

4.1.1.1 Renen 

Rising head tests with pump and infiltration tests (falling head test) for all wells were made 

(figure 15). The pump that was used had no check valve (prevent backflow in the hose) installed 

and hence the rising head test got a sharper gradient in the beginning of the test due to that water 

in the hose went backwards after turning the pump of (figure 15). This error in the measurement 

are thought to not affect the result in aquifers with lower conductivity. While with higher 

transmissivity and faster recovery this effect will influence the result to a lager extent (U09G97, 

14T335 and U09G83). The resolution of the transducer was two seconds, except for in well 

U09G97 where it was set to one second. 14T335, U09G97 and U09G84 have the sharpest 

gradient in the recovery curve. Due to high transmissivity in well U09G84 there was a problem 

to produce a larger drawdown. 14T335 had only 1.31 meters from the well bottom to the static 

water level and U09G97 had a sharp edge in the well which the pump got stuck on. Hence, a 

smaller drawdown was used in these wells. 

There was disturbance in the test of U09G97 due to that the pump got stuck in the well and 

during attempt to remove the pump the transducer where moved around. Also, the well was 

clogged during the falling head test and recovery was not achieved. 

 

Figure 15. Rising head tests at Renen. 

The recovery curves from falling head test can be seen in figure 16. Well U09G97 is excluded 

due to that the recovery of the head did not occur. The falling head test display the same 

appearance as the rising head test that U09G84 and 14T335 have the sharpest gradients in the 

recovery.  
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Figure 16. Falling head test Renen. 

Figure 17 show the semi-logarithmic normalized heads and time for all wells which measured 

a hydraulic conductivity lower than 6×10-6 m/s. The solid lines are rising head tests with pump 

while the dashed are falling head tests (infiltration). The black dotted line is the basic time lag 

(0.37). Most of the test are displayed as straight lines. Both wells U09G94 and U09G87 are 

slightly concave downward. The falling head test for well U09G83 are not a straight line. This 

could be due to filter package drainage since the screen are above the static ground water level 

(Bouwer, 1989). For wells without nonlinear effects the both different tests would display 

identical recovery curves on the semi-logarithmic plot. The recovery curves from U09G87 are 

the well which displays most impact of nonlinear effects. In this well 60 part per million (ppm) 

of gas was measured with a photoionization detector (PID). This can decrease the effective pore 

space and effect the measured hydraulic conductivity (Hvorslev, 1951). In the other wells there 

was no gas detected. The PID was not used in U09G94 and U09G97. 

 

Figure 17. Display the semi-logarithmic normalized heads and time for all wells which measured a hydraulic 

conductivity slower than 6×10-6 m/s. Both the falling head (infiltration) and the rising head (pump) for each well 

is shown. 
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Figure 18 displays the semi-logarithmic plot for U09G83, U09G97 and 14T335 which have 

hydraulic conductivities of 6×10-5 m/s or higher. U09G84 have the sharpest gradient and the 

rising head and falling head tests are well agreed. Results from 14T335 deviates more from 

each other.  

 

Figure 18. Displays the semi-logarithmic plot for U09G83, U09G97 and 14T335 which have hydraulic 

conductivities of 6×10-5 m/s or faster. 

Table 4 shows the hydraulic conductivities calculated in Aqtesolv. In well U09G84 the highest 

hydraulic conductivity was measured at 4.4×10-4 m/s which deviate clearly from the results 

from other wells. Also, well U09G97 measured a higher conductivity than the rest of the wells 

with a hydraulic conductivity of 7.0×10-5 m/s. All other measurements are within an order of 

magnitude. 

Table 4. Show the calculated hydraulic conductivities for the rising head tests (pump) and falling head tests 

(infiltration) at Renen. MASL is the ground surface above sea level. GW (masl) is the groundwater surface above 

sea level. GW (m) is the meter below or above the ground surface. L/R is the aspect ratio between the screen length 

and the radius of the screen. 

Well MASL GW 

(MASL) 

GW 

(m) 

L/R Pump, K 

(m/s) 

Infil. K 

(m/s) 

Well 

construction 

14T3073 2.1 1.2 -0.92 34 4.7×10-6 4.5×10-6 2” HDPE 

14T335 3 1.1 -1.88 34 3.0×10-5 4.5×10-5 2” HDPE 

U09G83 2.1 0.8 -1.31 103 2.3×10-6 1.9×10-6 2” HDPE 

U09G84 2.1 0.6 -1.53 39 4.4×10-4 4.4×10-4 2” Steelpipe 

U09G87 2.4 1.1 -1.32 103 1.1×10-6 4.0×10-6 2” HDPE 

U09G94 2 0.5 -1.47 39 3.2×10-6 2.2×10-6 2” Steelpipe 

U09G97 2.2 0.7 -1.54 39 7.0×10-5 - 2” Steelpipe 

 

Table 5 displays the initial head displacement, the measured hydraulic conductivity and the 

method used for multiple tests. The infiltration method was always carried out after the rising 

head with pump test (called pump in table 5). The result display higher K-values for a larger 
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initial head displacement, except in well U09G87 where the smaller displacement yielded the 

highest K-value. The smallest initial head displacement yielded 33.4 to 1.6 percent lower K-

values. The lowest head displacement for well U09G87 measured a 363.6 percent higher K-

value then the larger displacement. There was no trend dependent on method used or dependent 

on order of test. 

Table 5. Displays the hydraulic conductivity (m/s) dependent on initial head displacement (ho). The percentual 

change between the highest and lowest initial head is shown in column 4 (% change). 

Well  
   

14T3073 ho (m) K (m/s) % Change Method 
 

3.9 4.7×10-6 
 

Pump  
0.9 4.5×10-6 -5.1 Infiltration 

14T335  
   

 
1.8 4.5×10-5 

 
Infiltration  

1.31 3.0×10-5 -33.4 Pump 

U09G83  
  

 
2.2 2.3×10-6 

 
Pump  

1.25 1.9×10-6 -17.0 Infiltration 

U09G84  
  

 
0.8 4.5×10-4 

 
Infiltration  

0.45 4.4×10-4 -1.6 Pump 

U09G87  
  

 
2.8 1.1×10-6 

 
Pump  

1.25 4.0×10-6 363.6 Infiltration 

U09G94  
  

 
2 3.2×10-6 

 
Pump  

1.4 2.2×10-6 -33.3 Infiltration 
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4.1.2 Semiconfined (leaky) aquifers 

4.1.2.1 Southern trough and tunnel 

All the tested wells displayed artesian condition with the groundwater level (GW) above ground 

surface. Figure 19 displays all rising and falling head tests (for larger initial head displacements) 

except 17T706. The falling head tests are slug tests. The well 14T728 measured a depth in field 

from the well top to bottom of 6.55 meters. According to the field data from the construction 

of the well it should be 8.92 meter deep. There has not been any earlier performed slug test but 

from pump test during the first testing campaign the hydraulic conductivity was estimated to be 

1×10-4. 14T728 is therefor thought to be clogged and the result not reliable.  

As can be seen in the figure the recovery is steep between 2 to 3 meters and then there are no 

further recovery. In field full recovery in well 14T714 did not occur. The transducer did show 

a recovery from 0.5 meters drawdown as can be seen in figure 19. The drawdown corresponds 

relatively well with the theoretical initial head displacement of 0.54 meters. There is a risk that 

the measurement with the piezometer in field is wrong since the recovery was not detected. 

Still, the measurement of hydraulic conductivity in well 14T714 should be used with caution. 

During the falling head test in 17T714 (slug) water poured out of the well due to high static 

water level in the well. The initial head displacement was 0.1 meter lower than the theoretical 

initial head displacement of 0.42 meters. 

 

Figure 19. Rising- and falling head tests for larger initial head displacements. 

In figure 20 recovery curves from well 17T706 are presented. The transducer resolution of two 

seconds was to coarse for the fast respond in the well. During falling head test (slug) water was 

poured over the edge of the well because of high static water level. The result from the slug 

must hence be read with caution. Disturbance during slug initiation seems to have affected the 

transducer and produced a higher initial head displacement than the theoretical initial head 

displacement. For the rising head test with pump two different pumps where used with different 
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capacities. Only 0.15-meter drawdown was achieved with a stronger pump (pump 2) until 

steady state. The recovery after switching of the pump was too fast for the transducer to record 

and hence the flat appearance in the diagram. 

 

Figure 20. Rising- and falling head test in well 17T706 (smaller initial head displacement). 

Figure 21 displays semi-logarithmic head ratio and time for well 17T714. Both rising head test 

with pump displays similar appearance. The recovery curve from slug removal displays a 

sharper gradient in the beginning of the test. The slug tests display more deviations from each 

other than the rising head test with pump. 

 

Figure 21. Multiple tests on a semi-logarithmic head ratio diagram for well 14T714. 
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Semi-logarithmic head ratio and time for well 17T706 is presented in figure 22. The well 

displays high impact of nonlinear effects. The slug tests do show straight lines after 

approximately 1 second. The rising head tests with pump are hard to evaluate according to 

Hvorslev (1951). The Cooper-Jacob straight line method of the drawdown curve was therefore 

used as evaluation method. 

 

Figure 22. Multiple tests in a semi-logarithmic head ratio diagram for well 17T706. 

In Table 6 calculated hydraulic conductivities are shown. Recovery curve in well 14T728 

indicate clogging since the well do not recover completely. Well 17T706 measured high 

hydraulic conductivities 1.8×10-3 m/s. The 6-meter drawdown measurement is used for well 

17T714 and the slug removal measurement for well 17T706. The slug removal for 17T706 was 

chosen because this displayed the longest straight line on the semi-logarithmic plot and the 

Hvorslev (1951) method was used (figure 22).  

Table 6. Show the calculated hydraulic conductivities for the rising- and falling head tests (slug and pump) at 

southern trough and tunnel. MASL is the ground surface above sea level. GW (masl) is the groundwater surface 

above sea level. GW (m) is the meter below or above the ground surface. L/R is the aspect ratio between the screen 

length and the radius of the screen. 

Well MASL GW 

(MASL) 

GW 

(m) 

L/R K (m/s) Field 

method 

Well 

construction 

14T728 9.5 9.5 0 75 7.8×10-8 Pump 2” Steelpipe 

17T714 8.9 9.6 +0.72 34 1.4×10-5 Pump 2” HDPE 

14T714 8.5 9.1 +0.56 39 3.8×10-6 Slug in 2” Steelpipe 

17T706 9.2 10.1 +0.90 69 1.8×10-3 Slug out 2” HDPE 

 

Table 7 present the multiple tests carried out at Southern trough and tunnel. The slug tests were 

performed first. Well 17T714 measured highest hydraulic conductivity for the largest initial 

head displacement for rising head with pump. Slug removal (slug out) did measure the highest 

K-value almost 23 percent higher than the 6-meter drawdown with pump. Well 17T706 had 
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high hydraulic conductivity and a drawdown was almost not possible to produce. The lower 

initial head displacement for the pump measured lower hydraulic conductivities.  During the 

slug initiation (slug in) water flowed over the edge of the well. This happened for slug initiation 

in both wells. 

Table 7. Displays the hydraulic conductivity (m/s) dependent on initial head displacement (ho) for well 17T714 

and 17T706. The percentual change from the highest initial head is shown in column 3 (% change). 

17T714 
   

Ho (m) K (m/s) % Change  Method 

6 1.4×10-5 0 Pump 

4 1.3×10-5 -5.9 Pump 

0.42 1.0×10-5 -25.0 Slug in 

0.42 1.8×10-5 22.7 Slug out 

17T706 
   

0.42 2.0×10-3 0 Slug in 

0.42 1.8×10-3 -14.2 Slug out 

0.12 1.0×10-3 -49.0 Pump 

0.06 1.1×10-3 -46.6 Pump 
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4.1.2.2 Vareborg 

The field test was performed during the second testing campaign and evaluated in Aqtesolv in 

this thesis. Figure 23 displays wells with a faster recovery time, under 2000 seconds. The 

appearance of the recovery curves for several test deviate from a normal appearance, especially 

in well U19G37. For three of the tests there is a disturbance in the middle of the recovery (well 

14T78028, U19G35 and 14T8033).  

 

Figure 23. Rising- and falling head tests for short recovery time (<2000 seconds). 

Figure 24 shows wells with longer recovery times, over 2000 seconds. In well 14T8025 and 

14T8026 infiltration was used as field method since the wells were 1-inch wells. This well had 

a longer recovery time than 10000 seconds. 

  

Figure 24. Rising- and falling head tests for long recovery time (>2000 seconds). 

In figure 25 all measurement with longer recovery times than 2000 seconds are showed on a 

semi-logarithmic plot. All semi-logarithmic recovery curves display straight lines except well 
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U19G36. Well U19G36 are slightly concave downward. This well was pumped to steady state 

and the Cooper-Jacob straight line method was used for evaluation.  

 

Figure 25. Rising- and falling head tests on a semi-logarithmic plot for long recovery time (>2000 seconds). 

In figure 26 the semi-logarithmic head ratio plot is displayed for measured hydraulic 

conductivities that recovered within 2000 seconds. There is only well U19G35 that displays a 

continuous straight line (except the disturbance). Both test for U19G38 are concave upward but 

follow each other well. The appearance of the recovery curves in well 14T8028 and 14T8033 

are because the wells where pumped to steady state. Cooper-Jacob straight line method for 

evaluation was used on the drawdown curve for these two wells. Well U19G37 displays 

fundamentally different recovery for the three rising head test that was made. The second test 

displayed the straightest line.  

 

Figure 26. Rising head tests on a semi-logarithmic plot for short recovery time (<2000 seconds). 
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Table 8 present measured hydraulic conductivities for Vareborg. Wells 14T8025, 14T8026, 

17T801 and U19G36 measure lower hydraulic conductivities than the other wells which are all 

between 1.6×10-6 m/s to 3.3×10-5 m/s. Well 14T8028, 14T8033, 17T807 and U19G36 was 

pumped to steady state and the drawdown curve where evaluated with the Cooper-Jacob 

method. The first testing campaign assumed an aquifer thickness of two meters. This thickness 

was used to calculate the hydraulic conductivity. 

Table 8. Show the calculated hydraulic conductivities for the rising- and falling head tests (slug and pump) at 

Vareborg. MASL is the ground surface above sea level. GW (masl) is the groundwater surface above sea level. 

GW (m) is the meter below or above the ground surface. L/R is the aspect ratio between the screen length and the 

radius of the screen. For measurement were the Cooper-Jacob method was used transmissivity in column 7 was 

divided with the aquifer thickness (2 m) to obtain the hydraulic conductivity in column 6. 

Well MASL GW 

(MASL) 

GW 

(m) 

L/R K (m/s) T (m2/s), 

CooperJacob  

Well 

construction 

14T8025 15.5 14.9 -0.65 197 2.6×10-7  1” Steel pipe 

14T8026 15.8 14.9 -0.92 157 1.2×10-8  1” Steel pipe 

14T8028 16.0 16.0 0.00 39 3.0×10-6 6.1×10-6 2” HDPE 

14T8033 15.6 14.7 -0.86 39 3.3×10-5 6.5×10-5 2” HDPE 

17T801 15.7 15.0 -0.72 39 9.1×10-7  2” Steel pipe 

17T803 13.2 12.6 -0.64 39 5.4×10-6  2” Steel pipe 

17T807 14.4 12.9 -1.49 39 2.2×10-5 4.4×10-5 2” HDPE 

U13G57 14 13.6 -0.40 39 1.6×10-6  2” Steel pipe 

U19G35 16 144 -1.62 39 4.2×10-6  2” Steel pipe 

U19G36 15.4 14.9 -0.48 39 8.6×10-7 1.7×10-6 2” Steel pipe 

U19G37 12.8 12.1 -0.75 39 2.2×10-5  2” Steel pipe 
U19G38 16.2 15.0 -1.01 39 1.0×10-5  2” Steel pipe 
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4.1.3 Confined aquifers 

4.1.3.1 Österleden 

Figure 27 displays recovery curves for rising head test performed at Österleden which measured 

hydraulic conductivity under 1×10-5 m/s. There is a clear difference in recovery in wells 

U19G29, U12G36 and 17T711 compared to the other wells with steeper recovery curves. In 

well U19G32 the Bailer method had to be used in field since the well was a one-inch well hence 

the smaller drawdown.  

 

Figure 27. Rising head tests Österleden. 

In the following figures (28, 29 and 30) the rising head test with drawdowns smaller than 1.5 

meters and a recovery time faster than 100 seconds are presented.  

The recovery curves for the slug tests in well U19G33 (figure 28) display different initial heads. 

The theoretical initial head change is 0.54 meters. The slug removal from the first slug test (slug 

1 out) was the only test that recorded an initial head change that agreed with the theoretical 

calculated initial head. All the other slug test displays a fast decline in head the first five seconds 

(from approximate 1 meter to 50 centimeters) then the recovery slows down and follows the 

recovery curve of the rising head test with pump.  

 

Figure 28. Rising head - and slug tests in well U19G33. 
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Figure 29 shows underdamped response in well 14T7036. The response indicates an aquifer 

with very high hydraulic conductivity. Hvorslev (1951) method was not possible to use on this 

well due to oscillatory response. Therefor, the method for oscillatory response by Butler Jr 

(1998) was used. During the rising head test with pump in the same well the pump went broken 

and lost power. When the pump was turned off the recovery had started, and the recovery curve 

had flattened out. 

 

Figure 29. Rising head test and slug tests in well 14T7036. 

Figure 30 shows aquifer tests in well U12G35. The response in this well was rapid and the 

resolution on the transducer was too coarse for the slug test which makes the tests hard to 

evaluate. Still, the response indicates an aquifer with high hydraulic conductivity. The Butler 

Jr (1998) method was used for comparing with the Hvorslev method. Due to the low resolution 

the curve matching was not exact, and the obtained hydraulic conductivity was between 1×10-

3 to 5×10-3 m/s with the Butler Jr (1998) method. Since the appearance of the response in figure 

30 are slightly oscillatory the hydraulic conductivity measured with the Hvorslev could be 

lower than the actual hydraulic conductivity. The Hvorslev method measured a hydraulic 

conductivity of 2.3×10-4 m/s (table 9). 

 

Figure 30. Rising head test and slug tests in well U12G25. 
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Figure 31 shows the semi-logarithmic plot for rising head test that measured hydraulic 

conductivities slower than 1×10-5 m/s. All displays straight lines. The appearance of U19G32 

could be due to that the resolution of the transducer was too high compared to the recovery rate. 

 

Figure 31. Display the semi-logarithmic plot for all wells measuring hydraulic conductivity under 1×10-5 m/s. 

Figure 32 display semi-logarithmic plots of multiple tests (rising head test and slug test) for 

well U19G33. The slug test displays a double straight-line effect for three of four tests. The 

rising head test (pump) do not display the same appearance. If this where related to the wellbore 

skin effect the appearance would be the same for all the tests (Moench, 1998). The inclinations 

of the straight lines after the disturbance in the beginning was used for evaluation.  

 

Figure 32. Multiple tests in well U19G33. 

Figure 33 displays rising head test and slug test for measured hydraulic conductivities higher 

than 9×10-5 m/s. 14T7036 displays oscillatory response. U12G35 show a slight increase after 
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the recovery. The transducer resolution was set to coarse in this well and hence with a finer 

resolution the response could be different than seen in figure 33. Both rising head test with 

pump shows a different result with a flatter recovery curve. The hydraulic conductivity was 

high enough to not be able to produce a drawdown larger than 0.1 meter in U12G35 and the 

recovery was too fast to get any records. The only test from well U12G35 that could be 

evaluated was the slug removal from the first test round (purple line in figure 33). The 

appearance in the rising head test by pump in 14T7036 was due to that the pump broke and lost 

power and the head started to recover during the pumping of the well. 

 

Figure 33. Semi-logarithmic head ratio plot for multiple testing in well U12G35 and 14T7036. 

In table 9 the evaluated hydraulic conductivities are presented. Wells U12G35 and 14T7036 

measured high hydraulic conductivities compared to the other wells in the investigation area. 

For well 14T7036 the measured hydraulic conductivity from the slug test was used. In well 

U12G35 the Cooper-Jacob method measured a transmissivity of 2.2×10-4 m2/s.  

Table 9. Show the calculated hydraulic conductivities for the rising- and falling head tests (slug and pump). MASL 

is the ground surface above sea level. GW (masl) is the groundwater surface above sea level. GW (m) is the meter 

below or above the ground surface. L/R is the aspect ratio between the screen length and the radius of the screen.  

Well MASL GW 

(MASL) 

GW 

(m) 

L/R K (m/s) Method Well 

construction 

U19G31 9.4 9.8 +0.38 39 2.4×10-7 Pump 2” Steel pipe 

14T7036 9.1 8.7 -0.45 34 2.7×10-3 Slug 2” HDPE 

U12G36 9.7 9.6 -0.09 39 1.4×10-5 Pump 2” Steel pipe 

17T711 9.0 9.0 -0.02 34 1.6×10-5 Pump 2” HDPE 

U19G33 8.9 8.5 -0.38 39 5.1×10-5 Pump 2” Steel pipe 

U19G32 9.2 9.0 -0.19 71 9.4×10-8 Bailer 1” Steel pipe 

U19G29 9.1 9.1 -0.02 39 2.5×10-6 Pump 2” Steel pipe 

U19G30 9.8 9.9 +0.08 39 8.6×10-8 Pump 2” Steel pipe 

U12G35 9.2 8.4 -0.76 39 2.3×10-4 Slug 2” Steel pipe 

14T7035 9.6 9.9 +0.30 39 4.6×10-7 Pump 2” Steel pipe 
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Table 10 present multiple tests performed at Österleden. All slug test where performed first and 

than the rising head test with pump. All the slug test yielded lower hydraulic conductivity then 

the rising head test with pump for well U19G33, which had a larger initial head displacement. 

The slug method measured 36.9 to 6.3 percent lower hydraulic conductivities. The insertion of 

the slug yielded K-values that deviated more from the rising head test with pump compared to 

the removal of the slug, around 30 percent compared to 10 percent respectively.  

 

Due to problems with the pump in well 14T7036 enough drawdown where not produced and 

the measurement is not reliable since the recovery started before the pump was turned off. 

Therefor, the method yielded a mush lower K-value than the other methods. The slug test 

yielded oscillatory response. The first slug test measured lowest hydraulic conductivity. Since 

no comparison can be made for different initial head displacement the change from the mean 

(3.0×10-3 m/s) are showed. The initiation of the slug measured the highest deviation from the 

mean. Here it should be mentioned that the measured initial head displacement in field deviated 

extremely from the theoretical. At the most the measured initial displacement where more than 

two times larger than the theoretical displacement (0.95 m).   

 
Table 10. Displays the hydraulic conductivity (m/s) dependent on initial head displacement (ho) for well U19G33 

and 14T7036. The percentual change from the highest initial head is shown in column 3 (% change). For well 

14T7036 the percentual change is shown as deviation from the mean value since no different ho where used. 

U19G33 
   

Ho (m) K (m/s) % Change Method 

1.2 5.1×10-5 0 Pump 

0.54 3.5×10-5 -32.0 Slug in 

0.54 4.8×10-5 -6.3 Slug 

out 

0.54 3.2×10-5 -36.9 Slug in 

0.54 4.6×10-5 -9.8 Slug 

out 

14T7036 
 

% Change from 

mean 

 

0.42 2.6×10-3 -10.5 Slug in 

0.42 2.8×10-3 -4.8 Slug 

out 

0.42 3.7×10-3 19.8 Slug in 

0.42 2.7×10-3 -9.5 Slug 

out 

0.40 7.6×10-6 Pump 

 

4.2 Sensitivity analysis for aquifer thickness 

Table 11 displays a sensitivity (s) analysis for different screen length (or aquifer thickness). As 

can be seen, if the aquifer thickness is assumed to be the same as the screen length the sensitivity 

is high for an aquifer thickness that is thinner than the screen length. This would result in an 

overestimation of the hydraulic conductivity of around 400 percent. The parameter sensitivity 

is lower for an underestimation of the aquifer thickness (the screen length is shorter than aquifer 
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thickness). For a 200 percent thicker aquifer than the screen length the hydraulic conductivity 

will be underestimated by 0 to 15 percent, but most common under 10 percent. With an 

increased aquifer thickness the sensitivity of parameter estimate decrease. 

The sensitivity analysis for the aquifer thickness parameter (Table 11) displayed that a 

percentual change of the input of 200 to 600 percent generally do not generate more than 10 

percent change in the output. With an increase of 600 percent compared to a 200 percent 

increase in aquifer thickness the hydraulic conductivity generally do not change. Hence, the 

sensitivity is lower for a 600 percent change in the input parameter. If the aquifer thickness is 

smaller than the screen length the output parameter will change more dramatically. A 50 percent 

change in the aquifer thickness would result in a change of 300 to 500 percent in the output. 

This implies that the analysis is sensitive to a change in the aquifer thickness that is thinner than 

the screen length. For aquifer thickness that exceeds the screen length there is lower sensitivity. 

Therefore, the usage of the screen length is suggested to be acceptable since the thickness of 

the aquifers during the first testing campaign in the investigation areas are reported to exceed 2 

meters.  

Table 11. Sensitivity analysis for aquifer thickness. Column 2-5 displays the measured hydraulic conductivities for 

different aquifer thickness between 50 percent of the screen length (l) to 600 percent. Column 6-8 displays the 

percentual change in hydraulic conductivity dependent on the change in aquifer thickness. Column 9-11 displays 

the sensitivity (s) which is a measure of the difference (in precent) of the percentual change in the input to the 

output (equation 11). 

Well 50% (l) 100% (l) 200% (l) 600% (l) 50% 

change  

200% 

change  

600% 

change 

S 50% S 200% S 600% 

U09G83 4.14×10-6 2.07×10-6 1.67×10-6 1.67×10-6 200 % -19.3% -19.3% 400.0% -9.7% -3.2% 

U09G97 1.00×10-4 9.50×10-5 7.82×10-5 7.82×10-5 138.9% -17.7% -17.7% 277.9% -8.8% -2.9% 

U09G84 9.40×10-4 5.00×10-4 3.83×10-4 3.83×10-4 206.6% -15.8% -15.8% 413.2% -7.9% -2.6% 
14T728 1.59×10-7 8.04×10-8 7.67×10-8 6.62×10-8 197.8% -4.6% -17.7% 395.5% -2.3% -2.9% 

17T714 3.19×10-5 1.28×10-5 1.28×10-5 1.28×10-5 249.2% 0.0% 0.0% 498.4% 0.0% 0.0% 

17T706 3.51×10-3 1.87×10-3 1.50×10-3 1.50×10-3 187.7% -19.8% -19.8% 375.4% -9.9% -3.3% 

U19G30 1.69×10-7 8.68×10-8 7.18×10-8 7.18×10-8 194.7% -17.3% -17.3% 389.4% -8.6% -2.9% 

U19G29 5.82×10-6 2.91×10-6 2.02×10-6 2.02×10-6 200.0% -30.6% -30.6% 400.0% -15.3% -5.1% 
U19G33 8.81×10-5 4.41×10-5 3.63×10-5 3.05×10-5 199.8% -17.7% -30.8% 399.6% -8,8% -5.1% 

14T8025 5.28×10-7 2.64×10-7 2.26×10-7 2.26×10-7 200.0% -14.4% -14.4% 400.0% -7.2% -2.4% 

U19G35 8.47×10-6 4.23×10-6 3.49×10-6 2.93×10-6 200.2% -17.5% -30.7% 400.5% -8.7% -5.1% 
U19G38 1.86×10-5 9.29×10-6 7.84×10-6 7.84×10-6 200.2% -15.6% -15.6% 400.4% -7.8% -2.6% 
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5. Discussion 

In this section compilation of the measured hydraulic conductivity will be presented to 

demonstrate the spatial variability and variance of the hydraulic conductivity in the 

investigation areas. The spatial variability of the field data will be used to explain or correct the 

conceptual model in figure 12. The difference of the variance, spatial variability and the results 

from the pumping tests will be presented and their differences and similarities will be discussed 

in relation to aquifer heterogeneity. Further, with this compilation of the data the heterogeneity 

and connectivity in the aquifer system will be discussed as a guidance on location and design 

of infiltration facility. 

In figure 44 the lognormal distribution of the hydraulic conductivity is presented. To get a 

general view of what kinds of sediments that were tested intervals of hydraulic conductivities 

representative for a certain sediment (table 12) where included in figure 44. The hydraulic 

conductivity values for unconsolidated rock suggested by Domenico (1998) was used (table 

12)(Şen, 2015). These will be used for classifying hydraulic conductivities in figure 34 to 43. 

Table 12. Interval of hydraulic conductivities for different types of sediments by Domenico (1998). 

Unconsolidated rock materials K (m/s) 

Gravel 3×10-4- 3×10-2 

Coarse sand 9×10-7- 6×10-3 

Medium sand  9×10-7- 5×10-4 

Fine sand  2×10-7- 2×10-4 

Silt 1×10-9- 2×10-5 

Till 1×10-12- 2×10-6 

Clay 1×10-11- 4.7×10-9 

Unweather marine clay 8×10-13- 2×10-9 

 

In addition, the classification of aquifer permeability (hydraulic conductivity) of Ad-hoc 

Airbeitsgruppe hydrogeologic (1997) is used (Hölting & Coldewey, 2019). This classification 

suggests a low permeable aquifer (or aquitard) below 1×10-6 m/s, moderate permeability aquifer 

between 1×10-6 m/s to 3×10-5 m/s and a high (or good) permeable aquifer over 3×10-5 m/s (table 

13). 

Table 13. Aquifer permeability (hydraulic conductivity) classification (Hölting & Coldewey, 2019). 

Aquifer permeability K (m/s) 

Good (high) > 3×10-5 

Moderate  1×10-6 – 3×10-5 

Low < 1×10-6 

 

5.1 Short duration hydraulic tests 

Hydraulic conductivity estimation did not change as more test were carried out in a continuous 

way. The change in measured hydraulic conductivity as testing continued varied from both 

higher and lower compared to the first test. There was no indication that different methods 
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rising head with pump, slug and infiltration gave continuously higher or lower measured 

hydraulic conductivity than other methods (table 5, 7, 10). The measured hydraulic conductivity 

did show a dependence on the initial head displacement (table 5, 7, 10).  

In the evaluation of the repeatability of short duration hydraulic tests at investigation area 

Renen, the highest initial head displacement yielded the highest hydraulic conductivity except 

for one well, U09G87 (table 5). The result where independent of method used, the order of tests 

and seemed to only be dependent on the initial head displacement. According to McElwee and 

Zenner (1998) the critically damped region in a Hvorslev plot show dependence on initial head 

displacement. The result indicate that this is the case for the critically damped region but also 

for the overdamped region as well (table 5). McElwee and Zenner (1998) found that a larger 

initial head displacement yielded a lower hydraulic conductivity. In the result in table 5, the 

opposite is found, a larger initial head displacement yields a larger hydraulic conductivity. The 

difference in measured hydraulic conductivity for the lowest initial displacement were generally 

not larger than 30 percent lower than the largest initial head displacement (table 5). The 

exception, well U09G87, the largest initial head resulted in a hydraulic conductivity of 30 

percent of the lowest initial head (table 5). This could be due to gas in the pores which decrease 

the effective porosity and measured hydraulic conductivities (Hvorslev, 1951). At Renen there 

is contamination of trichloroethylene which is a volatile chlorinate hydrocarbon (Martí et al., 

2014).  

The trend of lower measured hydraulic conductivities with smaller head displacement could 

also bee seen at Southern trough and tunnel and Österleden (table 7 and 10). There was one 

measurement in well 17T714 (table 7) and one in 14T7036 (table 10) that deviated from this 

trend. These two measurements yielded 22 and 19 percent higher hydraulic conductivities than 

the largest initial head displacement.  

A setback with the analysis was that there were generally no more than two initial head 

displacement for comparison. With more measured head displacement for each well the 

confidence in the analysis would be higher. For example, McElwee and Zenner (1998) 

continuously used four initial head displacements between 1-5 meters. Also, Kulessa, Hubbard, 

Williamson, and Brown (2005) reported that sensitivity Analyses of curve fitting processes and 

repeatability of slug test tend to be of minor influence on parameter estimate compared to 

geometrical and hydrological parameter uncertainties between the borehole and the aquifer 

system. 

The slug tests generally yielded a much higher or lower initial head displacement compared to 

the theoretical initial head displacement. This could be seen in well U19G33, 14T7036 and 

U12G35 at Österleden investigation area (figure 28, 29 and 30) and for slug removal in well 

17T706 and 17T714 (figure 19 and 20) at Southern trough and tunnel. For slug initiation in well 

17T706 and 17T714 this relationship could not be seen. This was due to that the initial head 

displacement being higher than the edge of the well and hence water poured out of the well at 

slug initiation. Both 14T7036 and U12G35 (figure 29 and 30) measured high hydraulic 

conductivity (table 9). The deviation of the head displacement compared to the theoretical head 

displacement suggest that there is impact of acceleration and the velocity of the slug. McElwee 
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(2001) wrote that as the hydraulic conductivity increase toward the overdamped region the 

velocity of the water column will decrease the pressure and the head will be underestimated. 

Results from both Österleden and Southern trough and tunnel suggest the opposite. The pressure 

seemed to increase, and the head is overestimated rather than underestimated.  

The head for several slug initiation test overestimated the initial head with two times the 

theoretical head (figure 20, 28, 29 and 30). This could be due to the velocity of the slug 

(McElwee, 2002). Further, McElwee and Zenner (1998) did compare nonlinear numerical 

model estimation of K-values to a linear model. The result was that the linear model estimated 

K-values between 0.23 to 73 percent of the estimated values with the nonlinear numerical 

model. The deviation from the nonlinear model increased with increased initial head 

displacement. Hence, measurement of hydraulic conductivities which displays variability 

dependent on initial head displacement and are in the underdamped response could deviate 

more from actual hydraulic conductivities (figure 29 and 30).  

Also, in this investigation wells which were in the underdamped region (figure 19, 20 and 28) 

displayed deviation from the theoretical initial head displacement which McElvee (2001) 

discussed only for the overdamped case. The position of the transducer is reported to influence 

the measured hydraulic conductivity, with a higher distance from the static water column the 

hydraulic conductivity risks being underestimated (Butler Jr, Garnett, & Healey, 2003). Butler 

et. al. (2003) reported that for transducer position 6.116 meters below the static water level 

could produce underestimation of hydraulic conductivities with a factor of 2.03 times. 

Transducers positioned within 0.5 meters from the static water table would make the correction 

for acceleration of the water column unnecessary.  In this work the pressure transducer have 

generally positioned more than 6 meters from the static water level. Hence, the result from slug 

test performed in this work could be effected by the change of the effective water column as a 

consequence of radius change and acceleration of water, called the β parameter (Butler Jr et al., 

2003; McElwee, 2001; McElwee & Zenner, 1998). Here it should be noted that the measured 

hydraulic conductivity between slug tests and rising head tests with pump (table 7 and 10) did 

not show any extreme differences compared to reported acceptable parameter estimates by 

Butler Jr. (1994) of 20 to 30 percent within actual hydraulic conductivities.  

5.2 Field saturated hydraulic conductivity and variability 

5.2.1 Unconfined aquifer 

5.2.1.1 Renen 

Figure 34 shows the spatial distribution of hydraulic conductivity. Short duration hydraulic tests 

in well 14T3090, 14T3091, 14T3092, 14T30100 and 14T3065 where performed during the first 

testing campaign (table 1). The other measurements where performed during the field work. 

The higher hydraulic conductivities are concentrated to two areas, around wells 14T3091, 

14T3090 and 17T335, U09G84 to 14T3065. The bedrock interpolation indicates that wells 

14T3091 and 14T3090 are positioned in a depression in the bedrock whereas the bedrock 

becomes shallower to the east, north and south. The bedrock generally slopes towards the west 
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with some depressions and ridges in the bedrock trending in west-east direction. The area 

around 17T335, U09G84 and 143065 are not, according to the bedrock interpolation, positioned 

within a bedrock depression. The sediment depth is rather shallow at wells 17T335 and U09G84 

(around 3 meters) and deepens towards 14T3065 to 8 meters. In the digital elevation model in 

figure 34 a ridge could be detected just north of these wells.  

There are no low permeabilities (hydraulic conductivities) measured in the area (slower than 

1×10-6 m/s) (table 13). Well U09G84 and 14T3091 measured the highest hydraulic 

conductivities of 4.4×10-4 m/s and 1.6×10-4 m/s (table 4 and 1), respectively. All other wells 

which measured high permeability was in the span of 3.0×10-5 to 4.5×10-5 m/s. During the pump 

test the radius of influence was highly unsymmetrical indicating that the connectivity to the 

south and the north is lower than the east-west direction (figure 34). This appearance can also 

be seen on the result from the short duration hydraulic tests. Both wells 14T3090-91 measured 

high permeability while those to the south and north measured moderate permeability. 

The interpolated groundwater contours indicate a net groundwater flow towards the west (figure 

34). The groundwater contours are interpolated by the groundwater level in MASL in table 4. 

The resolution of the groundwater contours is rather coarse, and therefore the groundwater flow 

should not be discussed in detail dependent on this result. 

The gray line trending south-north (figure 34) represents the boundary between filling material 

(west) and natural deposited sediments (east). The filling material complicates the interpretation 

of the aquifer characterisation since original sediments has been removed to an unknown depth 

and the type of filling material deposited is unknown. 
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Figure 34. The upper map shows spatial variability of permeability (hydraulic conductivity) at Renen. The 

hydraulic conductivity is divided into three classes, low, moderate, and high permeability (Hölting & Coldewey, 

2019) for determination of the behaviour of the aquifer (table 13). The lower map shows the surface elevation or 

digital elevation model (DEM), the surface contours with 1-meter equidistance and the well depths. 
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Figure 35 displays a scatterplot with the bedrock surface (defined as the bottom of the well). 

The values are within the range of moderate to good permeability. There are five wells that 

measure good permeability, 17T335, U09G84, 14T3065, 14T3090 and 14T3091. The bedrock 

(screen position) are located at 0, -0.5, -6, -9 and -10 MASL, respectively.  All other wells 

measure permeabilities in the moderate span.  

 

Figure 35. A scatter plot with the hydraulic conductivity in m/s and the bedrock surface in MASL. 

At Renen wells with good permeability was clustered but not always within bedrock 

depressions. The areas of good permeability are considered oblong and stretched in the west 

east direction perpendicular to the bedrock slope (figure 34). This agrees with the conceptual 

model of Varberg with a drainage pattern from the hills downward (Hillefors, 1979). Also, well 

14T3090 and 14T3091 are positioned in a bedrock depression with higher hydraulic 

conductivity (figure 34 and 35). This seems to be a continuous structure and could be a potential 

deformation zone. This situation agrees with the conceptual model in figure 12 with material 

with higher hydraulic conductivity in bedrock depression and deformation zones.  

During the first testing campaign a drilling was performed and the stratigraphy was described. 

Coarser material within the filter section of the pumped well (figure 34) was found within the 

depression and was covered with 4-5 meters of sandy silt. The coarser material where 

interpreted as gravely till. During the first testing campaign the situation where interpreted, in 

the vicinity of the pumped well, as a lower leaky aquifer. The interpolated bedrock in figure 34 

strengthen the theory from the first testing campaign. The bedrock could act as a barrier 

boundary (Fetter, 2001) by delineating well 14T3091-91 within the bedrock depression. The 

outline of the radius of influence from the pump test performed during the first testing campaign 

also coincide with the interpolated bedrock depression. This indicate that the wells outside of 

the influence area (14T3073, U09G83, U09G84, U09G87, 14T3065, 17T335 and 14T3100) 

from the pump test is positioned within another aquifer where the silt layer and the bedrock act 

as barrier boundaries within the aquifer system (Fetter, 2001).  

This does not mean that the aquifers are not connected. The unconfined aquifer could act as a 

recharge boundary to the confined aquifer since the groundwater movement seems to be from 
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the east to the west (figure 34). From CPT tests (cone penetrating tests) during the second testing 

campaign the areas north of the bedrock depression was found to be an unconfined aquifer with 

direct contact to the bedrock. The two- aquifer situation is hence restricted to the bedrock 

depression and to the west side of the train trac. The filter screens in U09G94 and U09G97 at 

the west side of the train trac is below the silt layer interpreted during the first testing campaign.  

Sediment classification of the upper unconfined aquifer from the first testing campaign (in well 

14T3073) was interpreted as silty sandy till (figure 34). In the upper aquifer in the vicinity of 

the pump well sediment where interpreted as sand. This could be a representative sediment for 

the unconfined upper aquifer for the measurement in the moderate permeability span. The upper 

unconfined aquifer is suggested to transcend to a leaky aquifer or confined aquifer at the west 

side of the train trac. The unconfined aquifer could therefor act as a recharge boundary for the 

confined aquifer. The higher hydraulic conductivities could be smaller drainage channels as 

discussed by Hillefors (1979). It should be noted that during the first testing campaign the upper 

1.5 meters of sediments where reported as filling material. The shallower wells are therefor not 

certain of being representative for natural deposited sediments. 

5.2.2 Semiconfined (leaky) aquifers 

5.2.2.1 Southern trough and tunnel 

Short duration hydraulic tests where performed in well 14T713, 14T7040, 14T7041, 14T7046 

and 14T7047 during the first testing campaign and in well U04G11, U04G16, U04G38 and 

U04G40 during the second testing campaign. Wells with high permeability is concentrated to 

the central part of the area (figure 36). Well U04G38 (table 2) and 17T706 (table 6) had a 

hydraulic conductivity between 1-2.5×10-3 m/s. This indicate that there could be some sort of 

glaciofluvial material. Wells U04G16 and 14T7041 had slower conductivities with 1.6×10-4 

and 4.2×10-5 m/s, respectively (table 1 and 2). The highest permeabilities are measured in the 

deeper part of the bedrock bottom (figure 36). 

During the pumping test well 14T7041 and 17T714 was not used as observation wells and hence 

the connection to these wells are unknown. Wells 14T714 and 14T728 indicate clogging during 

field work. The radius of influence from the pumping test further points to that the measured 

conductivities are wrong. The pumped well was positioned 25 meters northeast of U04G38 with 

a depth of 8.5 meters. The filter of the well is one meter and is positioned 1.7-2.7 MASL (figure 

36). The filter of the pumped well is then positioned around 11 meter above the deepest 

influenced well and 2 meters under the highest positioned well (upper north east corner of the 

influence area). The radius of influence is stretched in the southwest-northeast direction. 

Due to small amount of data from groundwater levels the groundwater surface could not be 

interpolated. From well 17T706 the hydraulic gradient is sloping toward 17T714 with a 

groundwater level of 10.1 MASL and 9.6 MASL, respectively (table 6).  
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Figure 36. The upper map shows spatial variability of permeability (hydraulic conductivity) at Southern trough 

and tunnel. The hydraulic conductivity is divided into three classes, low, moderate, and high permeability (Hölting 

& Coldewey, 2019) for determination of the behaviour of the aquifer (table 13). The lower map shows the surface 

elevation or digital elevation model (DEM), the surface contours with 1-meter equidistance and the well depths. 
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In figure 36 the ground surface within the investigation area are 4 meters higher at the highest 

point compared to the lowest (from 9 to 12 MASL). The lowest to the highest point of the 

bedrock (here defined as the bottom of the well or screen end) are, for comparison, -10 to 8 

MASL (figure 37). The uppermost part, between 2-7 MASL, the result shows medium 

permeability (between 1×10-6 to 3×10-5 m/s). Below 0 MASL the general trend is higher 

hydraulic conductivities (good permeability) between 0 to -5 MASL. Two measurements 

deviated from this trend with low permeabilities in well 14T728 and 14T7047 which are 

positioned in the eastern part of the area (figure 36). Here it should be mentioned that the result 

from 14T728 are uncertain since clogging are suspected. Under -5 MASL the hydraulic 

conductivity decreases again toward moderate permeability. There is one well, U04G11 that 

deviates with a lower permeability at -5.33 MASL.  

 

Figure 37. Displays a scatter plot with the hydraulic conductivity in m/s and the bedrock surface in MASL. 

The red squares in the conceptual model in figure 12 represent the expected deposition to be 

found within the area. Within the larger depression in the bedrock good permeable material was 

found (figure 36 and 37). This could be a possible deformation zone. Larger glaciofluvial 

material was supposed according to the conceptual model to be in direct contact with the 

bedrock (figure 12). The Well U04G11 which is positioned lower than the wells that measured 

good permeability, as can be seen figure 37, measured low hydraulic conductivity. This indicate 

that either there is material deposited before the glaciofluvial sediments that have not been 

eroded or it represents a boundary between fine-grained deposits and glaciofluvial deposits 

(figure 12). At well 17T714, where the bedrock is some meter deeper than the wells that 

measured good hydraulic conductivity, moderate hydraulic conductivity was measured (table 

6). Here the measured hydraulic conductivity also was lower which further indicate that there 

could be lower permeability material (till) beneath the glaciofluvial material. Well 17T714 

could also represent a transition boundary between the glaciofluvial material and the till.  

Both 14T714 and 14T728 measured lower conductivities (table 6 and figure 36). Well 14T728 

never reached full recovery (figure 19). These wells are thought to be clogged since during the 

pump test performed during the first testing campaign these wells responded well which can be 
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seen in the influence area in figure 36. From the pump test the measured hydraulic conductivity 

was estimated to 1-2×10-4 m/s. Therefore, the measurement from short duration tests are 

considered unreliable and the wells could have higher hydraulic conductivity.  

The first testing campaign reported a sandy gravel in the screen section of the pumped well 

(figure 36). The upper aquifer was reported as silty sand with a 1.5-meter thickness. Between 

the unconfined and confined aquifer there was a clay layer with the thickness of 6-7 meters. At 

well 14T713 (figure 36) the material within the filter section reported was silty to sandy till. 

This agrees well with the measured hydraulic conductivities (table 1, 2 and 6).  

The first testing campaign reported a 3-meter-thick glaciofluvial deposit and according to the 

bedrock interpolation the surface is at 0 MASL at the pumped well (figure 36). At the pump 

well this represent glaciofluvial deposits between 0-3 MASL, clay between 3-9 MASL and silty 

sand 9-10 MASL. In the well east of 14T7047 clay was identified during the first testing 

campaign at 6.2 MASL and silt at 3.5 MASL. In well 17T706 clay where found at 4.0 MASL. 

In figure 37, which presents the scatter plot between filter position (bedrock surface) and the 

hydraulic conductivity, the wells that measured good permeability have screens below 3 MASL 

which agree with sediment samples taken in the first testing campaign. In the chatter plot, 

between 3-9 MASL, no well measured hydraulic conductivity within the low permeability 

range (figure 37). The measurements between 2- 8 MASL are positioned along the bedrock 

slope in the northern part of the area (figure 36). This indicate that the clay layer gets thinner 

as the bedrock gets shallower and at well 14T713, which have a screen section located at 8-9 

MASL, the clay layer is expected to be not more than 1 meter. The wells that measured 

moderate permeability is therefore thought to be positioned in the till unit below the confining 

unit as shown in the conceptual model in figure 12. This result also indicate that all the measured 

wells are positioned in the under aquifer. The result suggests that the glaciofluvial material is 

horizontally widespread, around 180 meters, between well 14T7041 to well 14T728. This 

structure of glaciofluvial deposits in the Varberg area are also mentioned by Påsse (1990), 

which strengthen interpretation of the result. Toward the northeast the glaciofluvial deposits 

gets narrower and the formation is suggested to go in between well U04G11 and 14T7041. This 

is suggested due to the appearance of the radius of influence in figure 36. 

The deposits that have been identified in the conceptual model in figure 12 are the till layer 

below the confining unit and the contact between the till and glaciofluvial deposit. From the 

results the suggestion is that the glaciofluvial material have eroded older sediment to the 

bedrock, but tills can also be found between the bedrock and the glaciofluvial deposit. 

5.2.2.2 Vareborg 

Vareborg do not show hydraulic conductivities higher than 3.3×10-5 (table 8). The interpolated 

bedrock contours indicate a hill in the central area with a gentle slope to the west, south and 

north (figure 38). To the east the interpolation suggests a steeper gradient of the bedrock. The 

interpolated groundwater contours give the same appearance with a gentle slope to the west, 

and a hydraulic gradient an expected groundwater movement in the same direction. Toward the 

east (between well 14T8025, 14T8026 and U19G36) the groundwater levels produce a 

relatively flat surface. The spatial variability is higher at Vareborg compared to Southern trough 
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and tunnel. The hydraulic conductivity seems to vary rather local without continuous areas with 

K values in the same range (figure 38).  

 

Figure 38. The upper map shows spatial variability of permeability (hydraulic conductivity) at Vareborg. The 

hydraulic conductivity is divided into three classes, low, moderate, and high permeability (Hölting & Coldewey, 

2019) for determination of the behaviour of the aquifer (table 13). The lower map shows the surface elevation or 

digital elevation model (DEM), the surface contours with 1-meter equidistance and the well depths. 
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There is only a 3-meter difference in surface height in Vareborg (figure 38). The bedrock differs 

from 3 to 11.5 MASL (figure 39). Between 10-12 MASL the hydraulic conductivity varies 

between moderate permeability to low permeability. Below 10 MASL the hydraulic 

conductivity is mainly within the moderate permeability span. One measurement, in well 

14T8033, the permeability is classified as good. 

 

Figure 39. Displays a scatter plot with the hydraulic conductivity in m/s and the bedrock surface in MASL. 

Figure 40 present a combined bedrock surface and hydraulic conductivity plot of Vareborg and 

Southern trough and tunnel since these two areas was the same type of aquifer (figure 12). 

Vareborg do not show as deep bedrock as Southern trough and tunnel. The upper part of 

Vareborg shows two measurement within the low permeability span. This was not seen in the 

area Southern trough and tunnel. The hydraulic conductivity over 2 meters above sea-level are 

generally indicating mainly moderate permeability for both areas. 

 

Figure 40. Displays a combination scatter plot for Southern trough and tunnel and Vareborg with the hydraulic 

conductivity in m/s and the bedrock surface in MASL. 
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At Vareborg the variability from the lowest measured hydraulic conductivity to the highest is 

lower than Southern trough and tunnel and trough (table 14). This is due to that there are no 

higher hydraulic conductivities identified at Vareborg (figure 38). Still, the hydraulic 

conductivity seems to change more locally than in Southern trough and tunnel. Both low 

permeability, moderate permeability and good permeability can be found within a rather small 

area (figure 38). This compared to Southern trough and tunnel (figure 36) where measured 

values of low, moderate, and good permeability generally are not found together. Rather, 

measurement within the same category is generally clustered. In figure 39 which shows the 

scatter plot between the screen depth (bedrock surface) and hydraulic conductivity at Vareborg 

there are no major formations indicating larger glaciofluvial deposits with increasing depth. 

The appearance of the spatial variability of K (figure 38) and the change of the hydraulic 

conductivity with deeper bedrock (figure 39) cannot be explained by the conceptual model in 

figure 12. In the first testing campaign sediment during the installation of well 14T728 was 

interpreted. Here, a clayey till was suggested. This sediment type has not been found in the 

other investigation areas. Hence, another possible explanation for the depositional process is 

presented below. 

Northeast of the Apleviken valley some geomorphological features has been mapped by the 

Swedish Geological Surveys (SGU). These features can be seen in the black square in figure 

41 (A) and highlighted in blue in (B). These can also be seen in the sediment map in figure 5. 

These features where found during the reconstruction by the highway (E6) and where described 

by Påsse (1990). The ridges are perpendicular to the direction of the ice movement and Påsse 

(1990) interpreted them as end-moraines. The moraine ridges contained glaciotectonized 

material, clay, till, and sand. It was found that the moraine ridges of till could overgo to 

glaciofluvial sediments. The ridges where generally 50 to 200 meters apart and the throughs in 

between the ridges where filled with younger fine-grained sediments. At the surface of the 

ridges outwash sediments where generally found.  

V. Bouvier et al. (2015) described end-moraine formations in the Varberg area and Halland 

province as De Geer moraines. These are smaller push moraines formed sub-aquatic as ice-

marginal formations. These are regular spaced ridges which has been found to be between 150-

300 meters apart and the spacing is likely to represent ice-marginal retreat rates. De Geer 

moraines are generally found in the northern of Sweden and in the Middle Sweden end-moraine 

zone but also, as mentioned, in Varberg (V. Bouvier et al., 2015).  

In figure 41 the pink square in (A) shows the digital elevation model with a hillshade to make 

surface features clearer. Three distinct ridges with the same direction as those described by 

Påsse (1990) is detected in the pink square (Vareborg). The blue lines in (B) highlight these 

features. The ridges are spaced 150 to 200 meters from each other which is in agreement with 

the De Geer moraines explained by V. Bouvier et al. (2015). In figure 41 (C) the measured 

wells in Vareborg are shown in relationship to the ridges. The ridges are generally perpendicular 

to the 7000 Bp highest coastline (red line) and therefore the ridges are thought not to be beach 

terraces. As can be seen in figure 41 (C) the all wells are positioned within this ridge system. 
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Also, the most southern part of the southern ridge formation where mapped by the Swedish 

Geological Surveys as a moraine (SGU, 2019). 

Therefore, the interpretation is that all these ridges in Vareborg are end-moraines. These could 

be a part of the Halland coastal end-moraine zone described by J.  Lundqvist and Wohlfarth 

(2001) or De Geer moraines as earlier have been found in the Varberg area by V. Bouvier, M. 

Johnson, and T. Påsse (2015). This could be the reason for the more complex spatial distribution 

of hydraulic conductivity at Vareborg. The buildup of these ridges has rearranged and deformed 

older deposited sediments and mixed them with younger sediments. According to Påsse (1990) 

these ridges could compose of a mixture between fine-grained sediments, till and glaciofluvial 

material, which could explain the more local variability of hydraulic conductivity at Vareborg. 

This implies that the origin and deposits at Vareborg are considerable different than sediments 

found at Southern trough and tunnel. The conceptual model in figure 12 are suggested to not be 

applicable at Vareborg. The sediments in the ridges could differ from the ones in the troughs. 

 

Figure 41. Shows the digital elevation model with a hillshade. (A) Shows only the DEM and the hillshade.  

Geomorphological features described and mapped by SGU (Påsse, 1990) are shown in the black square. The pink 

square are the investigation area Vareborg where simmilair geomorpholocial fetures can be identified. (B) Shows 

the ridge formations with outlines. (C) Displays a close up picture of Vareborg. 

 

5.2.3 Confined aquifers 

5.2.3.1 Österleden 

The highest conductivities are centered in the southern part of the area (figure 42). Well 

U12G35 measured a hydraulic conductivity of 2.3×10-4 m/s and well 14T7036 a conductivity 

of 3.0×10-3 m/s (table 9). The interpolated bedrock contours indicate a sloping bedrock surface 
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from north to south which agrees with the local deformation zone (SGU, 2020). Well U19G33 

measured a hydraulic conductivity of 5.10×10-5 m/s (table 9). All wells within or in the vicinity 

of the deformation zone measured K values representative for a good permeable aquifer except 

well U19G32 (figure 42). Wells measuring low hydraulic conductivity are within the same are. 

The same appearance applies on good hydraulic conductivity (figure 42). 

The interpolated groundwater contours indicate a major groundwater movement from north to 

south with a northwestern movement in the northern part of the area (figure 42). This is the 

same pattern as the curvature of the bedrock. A digital elevation model is not shown in the map 

due to that the area is flat. The elevation ranges from 9.1 to 10.5 MASL. 

The pumped well during the pumping test where positioned 25 meters northwest of well 

14T7037 (figure 42). The radius of influence displays an unsymmetrical appearance with higher 

connectivity toward the west and east. This appearance could be an artifact due to that the length 

to observation wells to the south was much longer (14T7036).  

 

Figure 42. The map shows spatial variability of permeability (hydraulic conductivity) at Österleden. The 

hydraulic conductivity is divided into three classes, low, moderate, and high permeability (Hölting & Coldewey, 

2019) for determination of the behaviour of the aquifer (table 13). 

The bedrock at Österleden differs from -1 to -15 MASL (figure 43). Below -5 to -9 MASL 

moderate permeability was measured. Between -4 to -5 MASL low permeability was measured. 

Between -10 to -12 MASL three measurement within the low permeability span has been 

measured. The low permeabilities was also found within the same area (figure 43). From -12 

MASL and down to -16 MASL (the deepest well) material with good permeability was found.  
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Figure 43. Displays a schatter plot with the hydraulic conductivity in m/s and the bedrock surface in MASL for 

Österleden. 

Österleden is positioned in the middle of the valley system. The sediment depth is much deeper 

here than at Southern trough and tunnel. Sediment with the highest hydraulic conductivity if 

found at the deepest part of the bedrock which both figure 42 and 43 display. Also, at in figure 

42 wells measuring good permeability are found in the vicinity of the local deformation zone 

(SGU, 2020). The result at Österleden are therefore in agreement with the conceptual model in 

figure 12. Well U19G32 is the only well in the vicinity of the deformation zone that do not 

measure good permeability. Field data from the installation of the well reported low discharge 

which indicate that there is lower hydraulic conductivity around this well. To determine whether 

the well is positioned within the deformation zone and within the glaciofluvial formation 

measurement could be taken further to the southeast of well U19G32. The well that were 

supposed to be tested during the field work within this position had been removed due to 

cultivation in the area. 

Hebrand and Mark (1989) pointed out that glaciofluvial deposit in Skåne has eroded to the 

bedrock and eskers are in direct contact with it. The result indicate that this could be the case 

in Varberg as well. Results from Österleden (figure 42), Southern trough and tunnel (figure 36 

and 37) and Renen (figure 34 and 35) indicate that glaciofluvial material are deposited in 

bedrock depressions. 

5.3 Median hydraulic conductivity and effective hydraulic 

conductivity 

Table 14 display that all pumping tests measured a higher hydraulic conductivity then the 

median K measured by short duration hydraulic tests. The median K value deviate most from 

the K obtained from the pumping tests in the investigation area Southern trough and tunnel. 

The pumping test K value is 26 times larger. The investigation area Renen show the least 

deviation between the median K compared to the K obtained from the pumping tests with a 

ratio of 2.2. All areas except Southern trough and tunnel have effective K values that are similar, 

within the range of 1×10-5 to 2×10-5 m/s. All the median K values received from short duration 

hydraulic tests are within the range of 2.5×10-6 to 9.0×10-6 m/s. The variance is lowest in 

Vareborg and Renen and highest in Österleden and Southern trough and tunnel (figure 44). The 
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pumping tests in Renen and Southern trough and tunnel where performed during the first testing 

campaign (figure 8 and 9). Pumping tests at Österleden and Vareborg were carried out during 

the second testing campaign (figure 10 and 11). 

Table 14. Displays the difference between the median hydraulic conductivity (median K) and K values obtained 

from pumping tests (K pumping tests). The ratio is the difference between the median K and K pumping tests. 

Southern trough and tunnel is called ST in the table. 

Area Median 

K (m/s) 

K pumping test 

(m/s) 

Ratio 

Renen 9.0×10-6 2×10-5 2.2 

ST 3.8×10-6 1×10-4 26.6 

Österleden  2.5×10-6 1.1×10-5 4.3 

Vareborg 3.6×10-6 1.5×10-5 4.2 

 

 

 

Figure 44. Display the lognormal distribution of hydraulic conductivity obtained from short duration hydraulic 

tests and obtained hydraulic conductivities from pumping tests for all investigation areas. Southern trough and 

tunnel is called ST in the figure.  

The ratio between effective hydraulic conductivity from the pump test at Southern trough and 

tunnel and trough deviates most from the median hydraulic conductivity from short duration 

hydraulic conductivity (figure 44 and table 14). The pumped well is positioned in the good 

permeable area that can be seen in figure 36. If only the median from the hydraulic conductivity 

from the five wells within this area (14T714, 14T7041, U04G16, 17T706 and U04G38) the 

median hydraulic conductivity would be 1.6×10-4 m/s. This would agree relatively good with 

the effective hydraulic conductivity of 1×10-4 m/s (table 14). The reason for the extreme ratio 
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compared to the other investigation areas could be explained by the pump well position at 

Southern trough and tunnel and through. 

At Österleden the ratio between the effective hydraulic conductivity and the median K from 

short duration hydraulic tests are the second highest (table 14). Still, the difference between the 

ratio for Vareborg and Österleden is 26.6 to 4.3. The variance is similar at Österleden and at 

Southern trough and tunnel (figure 44). Here the pump well is positioned within the till rather 

than glaciofluvial deposit (figure 42) which agrees with the median K. This is suggested to be 

the reason for having a dramatically lower ratio than in Southern trough and tunnel and through 

and still higher variance. There are different structures that are tested.  

Vareborg has the second lowest ratio between the effective K and the median K (table 14) but 

the lowest variance (figure 44). The variability of hydraulic conductivity (figure 38) is varying 

more locally then in the other areas. This compared to Österleden (figure 42), Southern trough 

and tunnel (figure 36) and Renen (figure 34) where larger connective geological formation is 

found. The radius of influence was rather symmetrical during the pumping test from the second 

testing campaign (figure 38).  Butler Jr and Healey (1998) proposed that small-scaled high-K 

conduits do not impact the parameter estimate evaluated from pumping test. This indicates 

difficulties to detect small-scaled variations with pumping tests. Therefore, without the usage 

of short duration hydraulic tests these local variations may not have been detected. The 

symmetrical radius of influence from the pumping test at Vareborg are not in agreement with 

suggested push-moraine deposits, with low connectivity and high heterogeneity. The radius of 

influence and the median hydraulic conductivity indicate connectivity but still a generally low 

hydraulic connectivity. At Renen, during the first testing campaign, highly fractured shallow 

bedrock was identified during installation wells 14T3051O. This well is within the 

granodioritic-granitic gneiss (figure 6). The same bedrock is found at Vareborg (figure 6). A 

possible explanation of the symmetrical appearance of the radius of influence at Vareborg could 

be connectivity and groundwater flow in fractures in the shallow bedrock rather than in the 

sediments.  

The lowest ratio is found at Renen (table 14). The pumped well was concluded to be positioned 

in the under aquifer (figure 34). This means that the pumping test is not representative for the 

upper aquifer. Since the under aquifer (14T3090-92, U19G94 and U19G97) are a different 

aquifer system the median value for the upper aquifer should contain the other measure wells 

(table 4 and 1). A median value for the upper unconfined aquifer (U09G87, U09G83, 14T3073, 

14T3100, 17T335, 14T3065 and U09G84) are 1.1×10-5 m/s. This is lower than the effective 

hydraulic conductivity in the under aquifer but higher than the median value for all short 

duration hydraulic tests. The median value for the lower aquifer (14T3090, 14T3091, 14T3092, 

U19G94 and U19G97) are 7.0×10-6 which is lower than for the upper aquifer. The ratio for the 

lower aquifer between median K and the effective hydraulic conductivity are larger compared 

to the ratio for the entire area. This is probably due to that the upper aquifer is related to 

postglacial depositional processes rather than glacial as described by Påsse (1998). The ratio in 

the lower aquifer could therefore be explained by the position of the pumped well in a more 

permeable area. Still, the relatively little change between the effective K in the under aquifer 
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compared to the median in the upper indicate that the hydraulic properties do not differ that 

much. However, the upper aquifer would respond differently during pumping or infiltration 

since the aquifer is not under pressure and the radius of influence would develop slowly due to 

precipitation (Fetter, 2001; Kruseman & De Ridder, 1994). 

Generally, the median hydraulic conductivity obtained from short duration hydraulic tests are 

lower compared to hydraulic conductivity calculated from pumping tests. This appearance has 

also been found by Butler Jr and Healey (1998) which found that K estimated from pumping 

tests are generally considerable larger than the estimated K from a series of slug test within the 

same geological structure. Butler Jr and Healey (1998) reported that slug test is extremely 

sensitive to altered, near-well conditions. A vertical anisotropy within the screen section can 

lead to an underestimation of hydraulic conductivity with a factor of three. Pumping tests 

performed with observation wells will be unaffected by vertical anisotropy (or the Cooper-

Jacob semi-log method is used) (Butler Jr & Healey, 1998). All earlier performed pumping tests 

during the first and second testing campaign used observation wells. Therefore, vertical 

anisotropy could be neglected as an influence factor in the effective hydraulic conductivity 

result. Still, Butler Jr and Healey (1998) point out that the most common reasons for differences 

between obtained values from slug tests and pumping-tests are related to well installation and 

well development. The wells where not developed prior the short duration hydraulic test. This 

leads to a shorter effective screen length and hydraulic conductivity may be underestimated 

(Butler Jr & Healey, 1998).  

Further, pumping tests are contributed by flow from the entire aquifer thickness. When 

converting the transmissivity to hydraulic conductivity a good estimation of the aquifer 

thickness is required. This is pointed out by Butler Jr and Healey (1998). For the data in table 

14 with lower K-value obtained from pumping test the aquifer thickness could have been 

underestimated. Renard et al. (2000) found that the algebraic techniques (such as median and 

mean) always show a large dispersion of the estimated value around reference values. The 

reason was that the spatial arrangement of the hydraulic conductivity. Therefore, heterogeneity 

within an area and dependence on the position of the pumped well and used wells for short 

duration hydraulic tests will also influence the ratio between obtained hydraulic conductivity 

from the two methods.  

The results from the median K from short duration hydraulic tests compared to the effective 

hydraulic conductivity (figure 44 and table 14) implies that with a higher variance the methods 

tends to deviate more from each other in measured K. For a two-dimensional isotropic system 

with a lognormal distribution of K, the median K should describe the effective hydraulic 

conductivity obtained from pumping test (Gupta et al., 2006; Renard et al., 2000). Therefore, 

the difference in ratio between the investigation areas are suggested to be influenced by 

anisotropy and heterogeneity in the aquifers, where stronger anisotrophy and heterogeneity 

results in a higher ratio.  

Also, with a lower variance the difference between the median K and the effective hydraulic 

conductivity tend to have a lower ratio (figure 44 and table 14). This implies that the aquifer 

characteristic is closer to a two-dimensional isotropic medium. Therefore, it is suggested that 
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short duration hydraulic tests are a good method for detecting heterogeneities and gives a good 

indication of the spatial variation of hydraulic conductivity (figure 34 to 43). This was also 

suggested by Mas-Pla et al. (1997) and Brauchler et al. (2012). 

 

5.4 Infiltration and pumping 

For a homogenous isotropic medium it was assumed that the effective hydraulic conductivity 

can be expressed by the median hydraulic conductivity. In section 5.3 it was suggested that a 

high difference between the effective hydraulic conductivity and the median K could be 

explained by the variability of hydraulic conductivity. In this section the effect of the spatial 

variability on the radius of influence from infiltration wells will be discussed.  

The new railway (figure 45) and the related excavations will have an effect on groundwater 

levels. At Renen the train trac will be in a trough. At the Southern trough and tunnel the 

excavation starts in a tunnel and goes into a trough. At Österleden and Vareborg the train tracs 

will go at ground level but at both places a bridge will be constructed and excavations will be 

made for a road below. If needed (to avoid damage) the effect of the excavations can be reduced 

using infiltration wells. For an unconfined and isotropic and homogenous aquifer (equation 2) 

the radius of influence for the infiltration wells will depend upon the increase in hydraulic head 

(water column) at the infiltration point and the hydraulic conductivity. In table 15 estimated of 

the radius of influences are presented. The estimates represent an increase in hydraulic head 

with 1 and 10 meters in infiltration wells (or a drawdown, sw, or pumping) for the lowest, 

median, and highest hydraulic conductivity value within each investigation area. For a confined 

aquifer the development of the radius of influence will depend upon the specific storage (S) as 

well (equation 3). Equation 2 will be used to demonstrate the development of the radius of 

influence dependent on hydraulic conductivity for both unconfined and confined aquifers.  
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Table 15. Displays theoretical radius of influences (R) for a drawdown (sw) in the pumped well or an increase in 

hydraulic head in an infiltration well. The radius of influence was calculated using equation 2. Southern trough 

and tunnel is named ST in the table. 

Renen  K (m/s) R for sw=1 (m) R for sw=10 (m) 

high 4.4×10-4 63 629 

median 9.0×10-6 9 90 

low 1.1×10-6 3 31 

ST 
   

high  1.0×10-3 95 949 

median 3.9×10-6 6 58 

low 2.1×10-7 1 14 

Österleden 
   

High 3.0×10-3 164 1643 

median 2.5×10-6 5 47 

low 8.6×10-8 0.9 9 

Vareborg 
   

high  4.4×10-5 20 199 

median  4.3×10-6 6 62 

low 2.6×10-7 2 15 

 

At Renen the new railway will be located at approximately the same position as the old one but 

in a trough (figure 45). There are three boreholes with high hydraulic conductivity in the 

northern part of the area (unconfined aquifer) and two within the under confined aquifer (figure 

45). Both areas with high hydraulic conductivity displays an oblong structure in the west-

easterly direction and along the bedrock slope (figure 34). As can be seen in table 15 the radius 

of influence would grow 7 times larger for the highest hydraulic conductivity compared to the 

median. Hillefors (1979) suggested that drainage patterns under the glacier potential could be 

found from heights down into valleys. This agrees with the material found (sand and gravel) in 

the filter section of the pumped well (figure 34) during the first testing campaign. Also, this 

agrees with the radius of influence and short duration hydraulic tests with high hydraulic 

conductivity along the bedrock slope (figure 34). Further, the conceptual model presented in 

figure 12 agrees with the spatial variability of hydraulic conductivity and interpreted sediment 

in the filter section of the pumped well, with high hydraulic conductivity within bedrock 

depressions (well 14T3091 and 14T3090) (figure 34). The origin of these elliptical (oblong) 

sediment deposits are therefore suggested to be drainage channels. This implies that the radius 

of influence would grow larger in the east-wester direction within these formations (figure 45) 

and along the bedrock slope. In the north-southerly direction the connectivity is not as high due 

to lower hydraulic conductivity (figure 45) and the growth of the radius of influence will not be 

as wide (table 15). 

Further, the variance at Renen (figure 44) is low and all measured hydraulic conductivities was 

moderate or high (figure 34). Also, the highest median hydraulic conductivity, compared to the 

other investigation areas, was estimated for Renen (figure 34 and table 14). The spacing needed 
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between infiltration points is therefore thought to be quite large compared to the other areas 

since every individual infiltration point is likely to affect a larger area (table 15). 

In the (upper) unconfined aquifer recharge is occurring by direct infiltration of precipitation. 

This will slow down the growth of the radius of influence during infiltration and pumping. As 

a result, an unconfined aquifer may not result in a deficit in the input parameter in the hydrologic 

equation and infiltration may not be necessary (Fetter, 2001). For the confined (lower) aquifer, 

which do not get direct recharge from precipitation and is under pressure, the situation would 

be different. During pumping or infiltration, the radius of influence will grow until it reach a 

recharge boundary (Kruseman & De Ridder, 1994). Also, in an confined aquifer pumping could 

lead to compression of the aquifer which is generally irreversible (Bouwer, 2002). Therefore, 

the need for infiltration in a confined aquifer could be greater. 

At the Southern trough and tunnel the aquifer is mainly expected to be confined. Hence, no 

direct recharge from precipitation is possible. The recharge to the aquifer is restricted to areas 

where the confining layer is absent. The radius of influence as an effect of an excavation or 

from pumping will continue to develop until it reaches the recharge or discharge area (Fetter, 

2001). In the north and northeast part of the area the bedrock along the hillside is considered a 

boundary which will limit the radius of influence from further growth (figure 36 and 45). These 

areas could be recharge boundaries if water can infiltrate the till in the bedrock slope or water 

is added from shallow rock, fractures, or deformation zones.  

The location of the new railway at the Southern trough and tunnel can be seen in figure 45. The 

area with high hydraulic conductivity, indicated from southwest to northeast, would cause the 

radius of influence to grow in the directions of the area with high hydraulic conductivity (figure 

36). This area is likely to increase the connectivity of the aquifer in the southwest-northeast 

direction compared to the northwest-southeasterly direction (se radius of influence from 

transient pumping test in figure 36). In the conceptual model of the sediments (figure 12) 

glaciofluvial material was expected to be found in bedrock depression and deformation zones. 

The short duration hydraulic tests could confirm that (often) sediments within lower areas in 

the bedrock resulted in high hydraulic conductivity. This can be seen in figure 36. According 

to Påsse (1990) the glaciofluvial sediments found in Varberg could be widespread. This can 

also be seen in figure 36 by combining the radius of influence from the pumping test and the 

short duration hydraulic tests. Therefore, this area of high hydraulic conductivity is suggested 

to be a glaciofluvial deposit. A radius of influence of an infiltration well within the glaciofluvial 

formation could therefore affect a rather widespread area. This can be seen in table 15. An 

infiltration well within this location also means that the capacity that is possible to apply in the 

well would be large compared to the rest of the investigation area related to the Southern trough 

and tunnel. This due to that the infiltration capacity depends on soil properties (K) (Pedretti et 

al., 2012). 

The trough is suggested to cross sediments with high, moderate, and low hydraulic conductivity 

(figure 45). The effect of the excavation and the response related to infiltration along the trough 

will react differently dependent on the hydraulic conductivity. To produce an increase in head 

along the trough where the hydraulic conductivity is low, infiltration wells must be more closely 
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spaced since the radius of influence is smaller (table 15). The increase of head that can be 

applied on an infiltration well would also be lower due to the lower infiltration capacity in fine 

grained sediments (Zhang et al., 2017). This implies that to maintain the mass balance within 

the system (Fetter, 2001) more infiltration points could be needed.  

Where there is high hydraulic conductivity the radius of influence is larger and hence infiltration 

wells can be positioned with a larger distance from each other. Therefore, in figure 45, since 

the trough goes through both moderate, low, and high hydraulic conductivity areas (figure 36), 

the amount of infiltration points (needed if there is a risk for damage) is suggested to be more 

compared to if the entire area was homogenous and had a high hydraulic conductivity.  

The discussion above does also apply to Österleden. On the east side of the trough the 

infiltration wells must be more closely spaced due to the much lower hydraulic conductivities 

than the west side (figure 45). Here, the high hydraulic conductivity area located within the 

deformation zone mapped by SGU (2020) (figure 42) agrees with Hillefors (1979) deglaciation 

model for the highlands in the west, with deposits of glaciofluvial material along deformation 

zones. The result from the short duration hydraulic tests (figure 42) suggests that this 

deglaciation model and the conceptual model in figure 12 would apply for Österleden. The 

outline of the glaciofluvial deposit was not found by the result in figure 42. Påsse (1998) found 

larger glaciofluvial deposits within the same deformation zone further inland. Therefore, if this 

is a continuous formation within the deformation zone the radius of influence could reach long 

distances (table 15). Hence, this formation is suggested to be further investigated, especially in 

the eastern direction, to be able to predict the radius of influence. 

At Vareborg the moraines ridges suggest a flow pattern that is not continuous (figure 41). The 

sediments within these structures varies from clay to till and sand (Påsse, 1990). No preferred 

flow directions were found at Vareborg (figure 38). This indicate that the radius of influence 

could vary rather locally. Not as in the other areas where there are flows aligned with bedrock 

depressions. Therefore, the radius of influence is suggested to be the most symmetrical one 

compared to the other areas. This is supported by the radius of influence from the second testing 

campaign in figure 38. This indicate that at Vareborg the distribution and spacing of the 

infiltration points could be more even compared to the Southern trough and tunnel and 

Österleden. Therefor, as discussed in section 5.3, both the bedrock and the high local variability 

of hydraulic conductivity could produce a rather symmetrical radius of influence. 

In this discussion based on equation 3 by Kirieleis-Sichardt (1930) aquifer storativity (storage 

coefficient) was neglected. This equation and resulting radius of influence (table 15) is 

assuming a two-dimensional isotropic and homogenous unconfined aquifer. It is suggested that 

the radius of influence from an infiltration well will be unsymmetrical due to heterogeneities 

within the aquifer as been discussed for all investigation areas. This in agreement with the 

growth of the radius of influence as an effect of pumping in heterogeneous aquifers explained 

by Pedretti et al. (2012) and Kruseman and De Ridder (1994). Though, in a confined aquifer 

the radius of influence is also affected by the storage coefficient (S) as can be seen in equation 

4. This equation suggests that with a smaller storage coefficient (for constant T and t) the radius 

of influence will be wider (Cooper & Jacob, 1946).  
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The flow pattern in the aquifers in Varberg is generally disturbed by channel flows in structures 

with high hydraulic conductivity (glaciofluvial materials) that creates deviation from two-

dimensional isotropic aquifers (Renard et al., 2000). This can be seen in Renen, Southern trough 

and tunnel and for Österleden (figure 45). The resulting radius of influence will, because of 

this, exhibit an elliptical rather than circular form. Where the pumped well was positioned in 

these channel flows (Southern tunnel and trough) the result was a large ratio between the median 

hydraulic conductivity from short duration hydraulic tests and the effective hydraulic 

conductivity (table 14 and figure 36) and a high variance (figure 44). Where the pumping well 

was representing the general properties of the aquifer rather than the channel (Österleden), the 

ratio was smaller (figure 42 and table 14). Still, the variance for the short duration hydraulic 

test was high (figure 44). However, the high K channels are important since the effect from an 

excavation, infiltration well or pumping will be greater. Further, within these channel flows, 

where glaciofluvial sediments are in direct contact with the bedrock and the bedrock are highly 

fractured (as found by the first testing campaign at Renen) water could be infiltrated into the 

bedrock. 

Both Österleden and the Southern tunnel and trough are suggested to result in a radius of 

influence that grows along the channels. Where no channel flows were detected (Vareborg) the 

variance was lower (figure 44) and the ratio was smaller (table 14 and figure 38). Here, the 

suggestion is that the radius of influence will not have as a strong elliptical shape (as can be 

seen from the pumping test in figure 38). Still, if the development of the radius of influence 

during a pumping test reached a channel flow this is expected to not largely influence the 

effective hydraulic conductivity as pointed out by Butler Jr and Healey (1998). Therefore, short 

duration hydraulic tests are suggested to be a valuable method and complement to pumping 

tests to further determent the spatial variability of hydraulic conductivity and determination of 

infiltration locations.  
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Figure 45. The new railway stretches through the investigation areas. 
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6. Conclusions 

This thesis aimed to describe a conceptual model of the sedimentology for Swedish (or Nordic) 

conditions to facilitate the identification of main water-bearing units (e.g. upper and lower 

aquifers, two-dimensional and one-dimensional flow). The spatial variability in hydraulic 

conductivity was measured by short duration hydraulic tests to evaluate the conceptual model. 

The main assumption for the analysis was that the geometric mean (median) of the saturated 

hydraulic conductivity in a lognormal isotropic two-dimensional medium (aquifer) is the exact 

upscaled hydraulic conductivity (effective hydraulic conductivity) (Gupta et al., 2006; Renard 

et al., 2000). Based on this assumption the median hydraulic conductivity from short duration 

hydraulic tests was compared to the effective hydraulic conductivity obtained from transient 

(time dependent) pumping tests to explain aquifer heterogeneity and spatial variability (and 

anisotropy) in hydraulic conductivity.  

1. The conceptual model of the sedimentology was found to be a valuable tool for the 

understanding of the relative values and the spatial distribution of hydraulic 

conductivity. Both for the case of agreement with the model (Renen, Österleden, 

Southern trough and tunnel) and for the situation of a deviation from the model 

(Vareborg). The latter was further developed from the conceptual model in figure 2 and 

12, based on local processes and conditions for sedimentology and by the detection of 

geomorphological features. 

2. Determination of aquifer heterogeneity and spatial variability by short duration 

hydraulic test were found to be a valuable complement to pumping tests by detecting 

small scale variations in hydraulic conductivity (Vareborg) and areas of higher 

hydraulic conductivity (Österleden).  

3. Hydraulic conductivity parameter estimates from short duration hydraulic tests results 

in hydraulic conductivities in the range of the effective hydraulic conductivity 

estimation from pumping tests within the same aquifer. Differences between hydraulic 

conductivity from a pumping test and the median hydraulic conductivity obtained from 

short duration hydraulic tests can be explained by aquifer heterogeneity (variance) and 

the location of the pumped well representing a sub-area of the aquifer.  

4. The flow pattern in the aquifers in Varberg generally seem to be disturbed by channel 

flows in structures or geological materials with high hydraulic conductivity 

(glaciofluvial) that create deviation from a two-dimensional isotropic aquifer (Renard 

et al., 2000). This was indicated for Renen, for Southern trough and tunnel and for 

Österleden (figure 45). The resulting radius of influence will, because of this, exhibit an 

elliptical rather than circular form. 

5. A low variance and a high(er) median and effective hydraulic conductivity are suggested 

to lead to the need of fewer infiltration points (Renen). A higher variance is suggested 

(Österleden and the Southern tunnel and trough) to complicate the development of the 

radius of influence and could lead to the need of more infiltration points.  
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As a last remark, for mitigation measures (infiltration) to be needed a sensitive object need to 

be within a radius of influence (drawdown from pumping e.g. due to an excavation) and the 

decrease in hydraulic head need to be large enough to cause damage. 
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