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Abstract
Context: Development of large and complex software leads to a large number
of interconnected artifacts such as requirements, design models, code and im-
plementation. Traceability enables understanding and managing these artifacts
as they evolve. However, establishing traceability is not trivial. It requires the
development organization to design effective traceability strategies and provide
tools to support the traceability activities. Establishing traceability in practice
faces many challenges such as the amount of effort needed to establish trace-
ability, unclear traceability processes and difficulty in measuring the benefits
of traceability.

Objective: The overall objective of this research is to improve traceabil-
ity processes and tools in software development. In this thesis we started with
exploring the state of the art as well as the state of practice of traceability in
order to identify persisting challenges and existing solutions. We then propose
and implement solutions for four of the identified challenges: manual work of
establishing traceability, lack of configurable tools, diverse artifacts and tools,
and unclear traceability processes.

Method: To identify existing traceability challenges and solutions, we con-
ducted a systematic tertiary literature review, a multi-vocal literature review,
and a case study to understand how these challenges and solutions manifest in
practice. To design solutions we took an empirical approach where we used
case studies and design science for the different studies.

Results: Our results show that there are still many traceability challenges
which are not solved by current solutions in literature due to practical con-
straints and limitations that exist especially in safety critical domains. To
address the challenge of manual work needed to maintain trace links we propose
a set of important factors and guidelines for traceability maintenance aimed at
traceability tool developers and companies acquiring traceability tools. The
feasibility of these factors and guidelines are demonstrated through a prototype
implementation. The prototype implementation also shows how to design
traceability solutions that are both configurable and support tracing to and
from diverse artifacts and tools. To address the challenge of manual work in
creating traceability links we have investigated how to improve the trace link
vetting process as part of a way to transfer automated techniques of creating
trace links to industry. We provide insights and lessons learned on how to
improve the trace link vetting process. Lastly the thesis proposes a traceability
introduction methodology (TracIMo), which consists of concrete steps that
companies can take to design, deploy and evaluate traceability strategies.

Keywords Traceability, Software Traceability
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Chapter 1

Introduction

Many products today such as cars, health care devices and airplanes contain
software. As software is increasingly being used in complex tasks, its complexity
also increases. With this increase in complexity, a large number of artifacts such
as requirements, models, code and tests are being produced during development.
For instance, the software in a modern car consists of around 100 million lines
of code and up to 20,000 pages of requirements [1]. This complexity is also
observed in other domains like the telecommunication domain where software
in telephone switches contains around 200 million lines of code [2] and about
10,000 requirements [3]. Such complexity makes it difficult to ensure that the
delivered software and systems work as expected. This is because these artifacts
do not exist in pure isolation but are related to each other and their consistency
needs to be ensured during the entire development life cycle. Managing a
large number of artifacts is difficult for both developers and other stakeholders
involved in software development.

One factor that enables ensuring that software works as expected is the
ability to connect and relate different development artifacts, for instance, the
ability to connect customer requirements to detailed technical requirements,
implementation and tests. This gives the possibility to demonstrate how each
requirement has been implemented and tested. Traceability is the ability to
relate different development artifacts and is therefore very important as it
can be used to reason about the relationships between the different artifacts.
Traceability has many other benefits including increasing program compre-
hension, facilitating impact analysis, facilitating tracking of project progress
and supporting change propagation [4–7]. However, for these benefits to be
realized, a development organization needs to invest in establishing traceability.
This means putting in place processes on how traceability links will be created,
maintained and used, and providing tools to support these activities.

Establishing traceability in practice still remains a challenge since in many
development organizations, traceability practices are poor, mainly due to lack
of well-defined processes and tool support for establishing traceability [8, 9].
The overall goal of this research is therefore to improve traceability processes
and tools in software development. This goal is broken down into two subgoals:

Goal 1: Identify current traceability challenges and solutions.
Goal 2: Explore and propose solutions for the existing traceability chal-

1
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lenges related to tools and processes.
Explicitly, for Goal 1, our contribution is a set of challenges and existing

solutions for software traceability elicited from a tertiary literature review, a
multi-vocal literature review and a case study. For Goal 2, the thesis provides
a number of contributions:

• A set of important factors and guidelines for traceability maintenance.

• A prototype implementation of how the guidelines can be implemented.

• A set of lessons learned from experiments on how to improve the trace-
ability vetting process (which is the process of validating automatically
generated trace links).

• A methodology for introducing traceability that can be applied in compa-
nies that want to introduce traceability in their development environment.

The rest of this chapter is structured as follows: First a background on
the topic of traceability is given in Sections 1.1, 1.2 and 1.3 where we discuss
definitions of traceability, traceability strategies and traceability management
tools. The scope of the thesis is described in Section 1.4 and related work in
Section 1.5. The methodology for the research and how the threats to validity
were mitigated are reported in 1.6 and 1.7 respectively. The contributions of
the thesis are given in Section 1.8. Section 1.9 gives a discussion on how the
research questions were answered and Section 1.10 outlines our future work.
Finally Section 1.11 concludes the chapter.

1.1 Traceability Definition

In literature, there are a number of definitions of traceability. This section gives
an overview of the most cited traceability definitions, analyses the definitions
and gives the definition of traceability that is used in this thesis. This analysis
is summarized in Table 1.1

Gotel et al. [10] give a general definition of traceability as “the potential for
traces (a specified triplet of elements comprising: a source artifact, a target
artifact and a trace link associating the two artifacts) to be established (created
and maintained) and used”. The authors define a trace artifact as a “traceable
unit of data”. This definition explicitly mentions the use of trace links implying
that links should only be established if they will be used. The shortcoming of
this definition is that it is recursive as traceability is defined using the term
traces and trace artifact is defined using the word traceable.

In line with the Gotel et al. [10] definition, the Center of Excellence for
Software and System Traceability (COEST) [11] defines software traceability
as “the ability to interrelate any uniquely identifiable software engineering
artifact to any other, maintain required links over time, and use the resulting
network to answer questions of both the software product and its development
process”. This definition states that the artifacts need to be unique which is
a characteristic of a traceable artifact [12] and also that the traces should be
maintained over time and used in the development process. However from the
definition, it is not clear what the authors mean by “maintain required links".
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This may imply that some links that are not required may be created but not
maintained. Also the “over time” is very generic and may be interpreted in
several ways, e.g., to mean forever or for a certain period of time.

Another definition is provided by Spanoudakis and Zisman [5] who define
traceability as “the ability to relate artifacts created during the development
of a software system to describe the system from different perspectives and
levels of abstraction with each other, the stakeholders that have contributed
to the creation of the artifacts, and the rationale that explains the form of
the artifacts”. Like the previous definition, this one also stresses the use of
traceability links and even specifies the kinds of uses; for instance being able to
explain the rationale of the artifacts. Making the uses explicit in the definition
gives an impression that these are the only uses of traceability while in reality
there are many more, such as, facilitating tracking of project progress and
reuse of artifacts [4].

Older definitions are given in the IEEE standard glossary of software
engineering terminology [13] which gives two definitions of traceability:

[a] “The degree to which a relationship can be established between two or
more products of the development process, especially products having a
predecessor-successor or master-subordinate relationship to one another;
for example, the degree to which the requirements and design of a given
software component match”. This definition does not mention anything
suggesting that these relationships must be useful. Additionally, even
though the example given may give an idea of what “product" means in
this case, the word “product" may be interpreted as a complete software
or system implying a certain level of granularity for the traced artifacts.

[b] “The degree to which each element in a software development product
establishes its reason for existing; for example, the degree to which each
element in a bubble chart references the requirement that it satisfies”. Like
the first definition, this one also does not mention that the relationships
should be useful. On the other hand, this definition uses the term “element”
which could refer to a more fine grained granularity compared to the
term “product” in the previous definition.

There are also definitions which are explicitly from a requirements perspec-
tive. Gotel & Finkelstein [14] define requirements traceability as “the ability
to follow the life of a requirement in both forwards and backwards direction
(i.e., from its origins through its development and specification, to its subse-
quent deployment and use, and through all periods of on-going refinement and
iteration in any of these phases).” This is the only definition that discusses
refinement and iterations of artifacts. This implies not only being able to
“follow” a requirement to other artifacts but also being able to follow and track
the different versions. However this definition is only focused on requirements.
It does not explicitly mention the need to connect intermediate artifacts that
may not be related to requirements. Also the definition only informs about
being able to follow the life of a requirement but does not mention anything
about the use of traceability. A similar definition that is requirements-oriented
is provided by Spanoudakis [15] which defines requirements traceability as the
“ability to relate requirements specifications with other artifacts created in the
development life cycle of a software system”.
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Source Trace What? To what? Trace when? Why?

[10] Development
artifact

Development
artifact

– To be used

[11] uniquely
identifiable
software
engineering
artifact

uniquely
identifiable
software
engineering
artifact

over time use the resulting network
to answer questions of
both the software prod-
uct and its development
process

[5] Development
artifact

Development
artifact

– to describe the system,
the stakeholders and the
rationale of artifacts

[13] product of
software
development
process

product of
software
development
process

– –

[13] element in a
software
development
process

element in a
software
development
process

– –

[14] Requirements development
artifacts

Development life
cycle including
use in the field

–

[15] Requirements development
artifacts

Development life
cycle

–

Table 1.1: Analysis of Traceability Definitions

Analyzing all these definitions, we can deduce that there are three aspects
that are important to be able to define traceability. These are: artifacts
involved, which point in the development and the purpose of the links. We can
reduce this into what, when and why questions (Table 1.1). The question of
how traceability links are established is orthogonal to all of these and thus not
included in this classification.

Based on this analysis, in this thesis, we use the definition of software
traceability similar to the one given by COEST [11], but slightly adopted to
emphasize software evolution as well.

Software Traceability. The ability to relate uniquely identifiable software
engineering artifacts created and evolved during the development of a software,
maintain these relationships throughout the entire development life cycle and
use them to facilitate software development activities.

Software development artifacts in this case include requirements, design
models, behavior models, code, test cases, test results and all other artifacts
that are related to the system. We stress inclusiveness of development artifacts
because in many cases there has been confusion about the scope of traceability
where some practitioners seem to think that it is limited to requirements
artifacts [16]. We also stress the usefulness of the links because it is possible
to create links to arbitrary artifacts but this is not only a waste of time when
the links have no purpose, but also creates a lot of noise and may make the
useful links difficult to find and use. This definition is similar to the one by
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ID Description

SR 1.1 The system shall be able to detect white and yellow road lines

SR 1.2 The system shall send a signal to the driver when the car is…

SR 1.3 The system shall apply force to the steering wheel to keep…

Lane Keeping 
System

Lane 
Deviation 
Warning

Lane Keeping 
Assist

Lane 
Detection

uses uses

testedby

refinedby

implementedby

Lane Keeping 
System

Steering 
System

Camera 
System

Description

SWR 1.1 The software should be able to tell road lines from other …

SWR 1.2 On deviation, the software should send a signal to the …

SWR 1.3 The software should calculate the amount of force to …

System Requirements System Model

Software Requirements  Software Model

Software Implementation Unit Tests

refinedby

refinedby

refinedby

refinedby

refinedbyRelatedto

Figure 1.1: A simplified example of artifacts in a lane keeping system and
traceability links involved.

COEST [11], but substitutes “over time” with ”entire development life cycle"
to make the when explicit and includes the word “evolved” to indicate that
artifacts can have different versions and these versions should be traceable, a
factor which is deemed important in this thesis.

1.1.1 Example

This section uses an example of a lane keeping system from the automotive
domain to demonstrate what traceability looks like in practice. A lane keeping
system is a system that is used to identify lanes on the road and help the
driver keep the car within the lane by sending warning signals in form of sound
or vibrations to the steering wheel, when deviations occur. The system can
also steer the car back to the lane by applying a small force to the steering
wheel. During the development of such a system, the following artifacts may
be produced:

• A high-level description of the lane keeping system as a whole and which
other systems it interacts with, e.g., the steering system. The results of
this can be stored as textual requirements (Figure 1.1 top left) as well as
a system model (Figure 1.1 top right). A system model is an abstract
description of different system components and their connections.

• The system model is then broken down into discipline-specific subsystems
that can be handled by the different domains, for instance mechanical,
electrical, electronic and software.

From a software perspective further artifacts produced are:

• Software requirements, which can be in form of free text (Figure 1.1 mid
left) or formal models such as use case models.
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Processes and Tools

Preparation and Planning

Maintaining Measuring Exchanging

Input
Feedback 

UsingCreating

Figure 1.2: A traceability process model showing the different categories of
traceability activities.

• Design models such as structural models (models that describe the soft-
ware components and their connections, Figure 1.1 mid right) and behav-
ior models (models that describe the control flow of the software) such as
state charts.

• Implementation in the form of code (Figure 1.1 bottom left).

• Tests such as unit tests (Figure 1.1 bottom right) and integration tests.

Traceability in such a scenario will be the ability to relate a system requirement
to its component realization in the system model, the software requirements it
affects, its corresponding software components in the software model, the code
that realizes this requirement and the tests validating the requirement. It may
also include the ability to relate artifacts like change requests, task tickets and
bug reports to the specific development artifact that concerns them, depending
on if this information is later useful.

Figure 1.1 shows a simplified example of the development artifacts produced
and the lines between the artifacts represent the traceability links that can be
established between them.

1.2 Traceability Strategies

Successful traceability rarely happens by chance in companies but requires
careful planning [10]. A plan of action for why and how traceability should
be managed in a company is known as a traceability strategy. A traceability
strategy consist of all activities involved in traceability planning and traceability
management. The strategy therefore includes the traceability process and tools
that will be used in the company. To describe the different activities involved in
the traceability process, we derive a traceability process model depicted in Fig-
ure 1.2. This model is inspired by a generic traceability process model by Gotel
et al. [10] which has further been used in several traceability research projects
to describe traceability activities. The model contains the four activities from
the model in [10] which are preparation & planning, creating, maintaining, and
using traceability and two additional activities discovered during the research
which are measuring and exchanging traceability information. This model has
also been used as a basis for the study reported in Paper A (Chapter 3).
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1.2.1 Preparation and planning

The first activity in the model is preparation and planning for traceability. This
activity includes tasks such as, eliciting traceability goals of the development
organization, searching for fitting solutions, acquiring tools, documenting and
disseminating the traceability strategy. It is also important that the trace-
ability strategy is assessed periodically and improved according to the needs
of the organization [10]. Traceability strategies differ from organization to
organization and even from project to project. This is because the strategy
depends on various factors such as the specific traceability goals for the or-
ganisation/project, the development processes and workflows used, artifacts
created and the tools used in the development life cycle. As a consequence, the
preparation and planning phase needs to take all these factors into account
as one cannot simply reuse traceability strategies from other organisations
without any tailoring [17] [18]. In this thesis, we propose a methodology for
designing company/project specific traceability strategies in Paper F.

1.2.2 Creation of trace links

The second activity in the model is the creation of traceability links. In many
organizations, trace links are created manually [19]. However, automation
is also possible through various techniques such as information retrieval [20],
machine learning [21], model-based approaches [22], rule-based approaches [23]
and in recent years deep learning [24]. These approaches show promise but
they are still not perfect, as the techniques can miss true links and the set of
candidate trace links produced contain false positives. This makes it hard to
adopt for industry especially safety regulated industries [25]. To combat this
problem, a human analyst is needed to check whether the generated candidate
trace links are correct to come up with a final set of trace links that can be used
in development. This process is known as the trace link vetting process,
and is illustrated in Figure 1.3. In this thesis we have investigated how to
improve the trace link vetting process in two studies (Paper D and E).

Trace links can be classified as being implicit or explicit. Implicit traceability
refers to traceability that is established based on conventions e.g., naming
conventions. For instance, a traceability link exists if the name of a component
in the component model is the same as the name of a class in the corresponding
implementation. While implicit traceability may seem easy to establish, it is
hard to enforce conventions, as conventions can be violated leading to either
no links at all or existence of a partial set of potentially erroneous traceability
links [26]. Explicit traceability means that the links between the different
artifacts are created and represented in some form. Explicit links can be stored
as internal trace links, i.e, represented within one of the artifacts traced to, or
external trace links,i.e., represented as separate artifacts [27]. The advantage of
explicit links is that they are easier to assess with tools and can be provided as
input to visualization tools. Where implicit links exist, automation techniques
such as information retrieval techniques can be used to make the links explicit.
The quality of the resulting explicit links will depend on the performance of
the algorithms used, the quality of the implicit links (i.e., the conventions of
creating implicit links and if they were followed) [28] and the quality of the
vetting process.
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Candidate Links Final set of Links

Automation 
tool

Human 
analyst

Development 
Artifacts

Figure 1.3: The trace link vetting process.

1.2.3 Maintenance of trace links

The third activity is maintaining the traceability links which means making sure
that the links are up-to-date. As artifacts connected by traceability links evolve,
the traceability links also need to be updated. Otherwise they quickly become
outdated and therefore useless [29]. Maintenance of traceability links without
tool support is difficult because artifacts constantly evolve. While Version
Control Systems (VCS) can check for changes in the artifacts, traceability tools
need to use these changes to also check if they affect the existing traceability
links. Current tools that support traceability, for instance, IBM DOORS1,
provide a notification framework that allows users to be notified of changes
to artifacts that are connected by traceability links. This makes it easier for
the users to know which links they have to update. In this thesis, one of
the contributions is a set of important factors and guidelines for traceability
maintenance aimed at developers of traceability management tools and users
looking to select traceability management tools (Paper B). These guidelines go
beyond proposing implementation of notifications by providing guidance on
how to handle versioning, tool boundaries, defining trace link semantics and
consistency management.

1.2.4 Using trace links

The fourth activity in the model is using traceability. As mentioned in our
definition of traceability, the links created need to be useful during the develop-
ment of the system. Having the traceability links in place is not enough; tool
support is needed for navigation and visualization purposes to make sure the
links can be used. For instance if a product manager wants to see how many
requirements already have tests, it will be very difficult to navigate through all
requirements one by one to their tests. The traceability tool should be able to
provide this report. The traceability strategy therefore should also elicit how
these links will be used and provide the required support.

1.2.5 Measuring traceability

The fifth activity in the model is measuring of existing traceability There
are two perspectives of measurements for traceability; measuring the quality
of the maintained trace links, and measuring the usefulness/benefits of the
existing traceability. With respect to the quality of trace links, there are two
relevant metrics; completeness and correctness. The definition of completeness

1http://www-03.ibm.com/software/products/en/ratidoor
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varies and is defined differently in different development organizations. For
instance, a completeness definition could be that every test has a link to a
requirement. This can then be measured by checking if indeed all tests are
linked to requirements. Correctness on the other hand is harder to check for,
as it relies on domain-specific semantics and also human interpretation of the
artifacts. Semantics can be formalized and checked by tools through definition
of domain-specific traceability information models. For instance in the case
of linking tests to requirements, a tool can check if the link actually connects
a test and a requirement. What is difficult to check is if the requirement is
actually relevant for to the test it is connected to.

Measuring traceability does not end at the quality of the links but also
includes measuring the benefits of traceability. For instance, Ingram and
Riddle [30] discuss the cost and benefit of traceability and insist that companies
should be able to measure how much traceability management costs and weigh
the costs against the benefits that traceability yields. It is difficult to properly
measure the benefits of traceability since the benefits are first of all long-term,
i.e., can happen years after traceability has been established and are usually
not quantifiable. This should however not stop organizations from putting
measures in place to evaluate how the current traceability meets the traceability
goals of the organization. Even qualitative analysis of the usefulness of existing
traceability can lead to improvement in the traceability strategy. Priority
should be given based on value, to create and maintain trace links that yield
the most benefit.

1.2.6 Exchange of traceability information
The sixth activity refers to situations where different organizations or different
departments in the organization need to exchange traceability information. Due
to the numerous tools used in different departments and different companies,
there is a need for development organizations to plan for how traceability
information will be shared and exchanged. This may mean agreeing to use
certain tools that are compatible with each other. Other issues that need to be
considered are technical and legal issues on whether the different organizations
have access to artifacts that are traced to [31].

This thesis uses the activities described above (Section 1.2.1–1.2.6) as
a systematic model to assess the state of the art and state of practice of
traceability challenges and solutions as reported in Paper A. We structured
our research methods to systematically elicit the challenges as well as solutions
w.r.t to each of the activities. Additionally, in Paper F, where we propose a
traceability introduction methodology (TracIMo), we use these activities to
reason about how particular traceability strategies which define when and how
these activities should take place should be defined in companies.

1.3 Traceability Management Tools
As discussed in Section 1.2, tooling is an important aspect as it enables the
different traceability activities to be carried out. There are several tools that
are used for supporting traceability activities and according to [16] they can be
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classified into three main categories: dedicated traceability management tools,
life cycle tools and general purpose tools. Based on our own research, we add
a fourth category which is standalone traceability tools. This fourth category
is also supported by [32] and [8]. The four categories are defined as follows:

Dedicated Requirements Management Tools – These are tools whose
main purpose is requirements management. Even though the main
functionality of the tool is requirements management, they may have
functionality to facilitate traceability from requirements to other artifacts
such as design models, task tickets and code. An example of such a tool
is IBM Rational DOORS, which is a requirements management tool with
capabilities to connect to other artifact providers through Open Services
for Life Cycle Collaborations (OSLC) [33].

Application Life Cycle Management Tools – This category of tools pro-
vides functionality for creation and management of the different devel-
opment artifacts in the development life cycle. Life cycle tools support
requirements management, design, implementation, testing and other
development activities. All artifacts are stored in one repository and
traceability between the different artifacts is provided. The advantage
of life cycle tools is that it is comparably easier to establish traceability
between different artifacts. However in many cases companies have a
variety of tools in place due to fear of being dependent on one vendor,
unwillingness to use a certain development methodology (e.g., model
driven development) or the fact that developers prefer tools that are
task-focused over generic ones [16,22,34]. Examples of life cycle tools are
Systemweaver2, Siemens Polarion3 and IBM ALM4.

General Purpose Tools – These are tools that are designed to be used for
many purposes. These tools can also be used for traceability. For instance,
one of the most common general purpose tools used for traceability is
Microsoft Excel. It is used to create, for instance, requirements to tests
traceability matrices where requirements names or IDs are listed in the
first column and tests in the first row. A mark is placed in the cell
where two artifacts intersect if there is a trace link between them. The
advantages of general purpose tools are that they are widely available
and provide a cheaper traceability option for organizations. However, the
disadvantage is that the tools do not scale for traceability maintenance.
The tools are not aware of the actual artifacts and traceability is managed
separately from the artifacts. The chances that the links and the actual
artifacts become inconsistent is high.

Standalone Traceability Management Tools – These are tools that are
built for the purpose of managing traceability only. Such tools need
to be able to integrate and access artifacts from the development tool
chain to allow creation of traceability links. They also need to provide
notification mechanisms when artifacts in the different tools change
in order to facilitate maintenance of the links. These tools use tool

2http://www.systemweaver.se
3https://polarion.plm.automation.siemens.com
4https://www-01.ibm.com/software/rational/alm/
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integration technologies such as OSLC [33] or Eclipse Modeling Framework
(EMF) [35] to integrate the different tools. The advantage of such tools
is that they are configurable to include various artifacts and therefore do
not force a company to change their current tools. The disadvantage is
that the customization requires effort and may be costly especially in a
company where tools are added or changed frequently. An example of such
a tool is Yakindu Traceability5. In this thesis, one of the contributions is
an open source standalone traceability management tool, Eclipse Capra6.

1.4 Research Scope
Traceability is a topic that has been researched for a long time, with empirical
publications in software engineering research dating back to the 1990s [14]. Our
first goal was therefore to understand what the current challenges and solutions
that exist in practice are, in order to know where to focus our research efforts.
The first research question that this thesis answers is as follows:

RQ 1 What are the current traceability challenges and solutions in practice?

The study conducted to answer RQ 1 (Paper A) identified several traceabil-
ity challenges in different areas such as tools, processes, knowledge, measurement
of traceability and so on. This thesis covers the following four challenges:

[a] High manual work involved in creating and maintaining the trace links.

[b] Lack of configurable tools.

[c] Diverse artifacts and tools used in the development life cycle.

[d] Unclear traceability processes

The challenges are investigated from two perspectives: the process perspec-
tive which investigates how different traceability activities need to be carried
out; and the tool perspective which investigates how tools can be improved to
support the different traceability activities.

With regards to the first challenge, we identified that the manual work
involved in traceability is firstly in the creation phase where trace links need to
be created and secondly in the maintenance phase where trace links need to be
maintained as the artifacts they connect evolve. In the first part we investigated
how tools facilitate the maintenance of trace links given that organizations
already spend a lot of effort creating them. For this we strive to answer the
following research question:

RQ 2 What are the primary factors that affect how and to what extent a
traceability management tool can provide traceability maintenance?

The study (Paper B) not only revealed which factors are important, but
based on empirical evidence, we were able to derive guidelines for traceability
tool developers to develop tools that will allow for efficient maintenance of

5https://www.itemis.com/en/yakindu/traceability/
6https://projects.eclipse.org/projects/modeling.capra
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traceability links. In addition, the guidelines also show which factors need to
be considered to support diverse artifacts and tools, which is also one of the
challenges we identified.

Based on results from the study that answers RQ2 (Paper B), we imple-
mented a traceability management tool with two purposes in mind: (i) to show
how the guidelines we proposed can be implemented in practice, and, (ii) to
be able tackle the tool related challenges [b] lack of configurable tools, and [c]
diverse artifacts and tools. With this, the thesis answers the following research
question:

RQ 3 How can a traceability tool be implemented in such a way that it is
configurable and extendable?

The implementation and details of the tool is reported in Paper C.
Additionally, the thesis covers the challenge of high manual work involved in

creating trace links (challenge [a]). While this emerged as a practical challenge
that practitioners still face, the scientific community has already explored how
to automatically generate trace links (e.g., [21]). Although there are some
promising results in this area (e.g., [24]), the resulting candidate trace links
are still not 100% correct and therefore always require a human analyst to
verify the generated candidate links. The combination of automatic generation
of trace links with a human in the loop is a promising way to transfer this
research into practice. However, the vetting process (which is the process where
a human analyst verifies automatically generated links) is flawed, as shown by
Cuddebak et al. [36], since the human analyst can make mistakesby accepting
false links and rejecting true links. Our aim was therefore to investigate how
to improve the vetting process and the following research question was derived:

RQ 4 How can the trace link vetting process be improved?

For RQ 4, there are various areas and possibilities for how the vetting
process could be improved. In this thesis, we concretely investigated two things;
i) how providing context information to the human analyst improves the vetting
process (Paper D) and ii) how gamification (defined as “usage of game design
elements in non-game contexts” [37]) can improve the vetting process (Paper
E). We therefore answer the following sub-research questions:

RQ 4.1 What context information is useful to human analysts when vetting
trace links?

RQ 4.2 To what extent does this information help analysts to make correct
decisions?

RQ 4.3 What is the impact of gamification on the vetting process?

The study in Paper A also identified challenge [d] companies have an unclear
traceability strategy. A traceability strategy is a plan of action that defines
the traceability activities, how they will be carried out and when and how they
achieve the goals of the organization. In Paper F, we investigates how to solve
this challenge by answering the following research question:
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RQ 5 How can a traceability strategy be established to achieve the specific
goals of an organization?

In relation to the two goals previously stated, RQ 1 is directed towards
achieving Goal 1: Identify current traceability challenges and solutions. RQ
2 up to RQ 5 achieve Goal 2: Explore and propose solutions for the existing
traceability challenges related to tools and processes.

1.5 Related Work

Due to the cross-cutting nature of the traceability topic and the breadth of
this thesis, there is a vast amount of related work available. This section gives
a brief overview of existing research covering the thesis topics. It also describes
where the contributions of the different appended publications fit in the existing
body of knowledge on traceability.

1.5.1 Traceability challenges

Several studies in literature acknowledge the challenges of traceability. Back
in 1994, Gotel and Finkelstein [14] reported an empirical study with over 100
practitioners that identified challenges of traceability in industry. 18 years later,
Gotel and a group of traceability researchers published an updated version of
these challenges known as the Grand Challenges of Traceability with a vision on
how these challenges can be tackled by researchers [19]. Further studies follow
in this path (e.g., [9] and [8]). The most prominent challenges reported are the
cost of traceability, lack of knowledge on traceability, lack of appropriate tools as
well as social issues such as different stakeholder viewpoints [8], [19], [38]. Our
first study (Paper A) adds to this body of knowledge by further investigating
how the challenges as well as solutions already reported in literature manifest
in practice. We provide a more up-to-date description of both the state of the
art and state of practice of traceability challenges and solutions compared to
existing literature.

1.5.2 Traceability tools

Traceability activities such as creation, maintenance and use, need to be
supported by appropriate tools. A lot of tool-related research focuses on the
creation of trace links and specifically how to automate this activity. The
majority of the research is on using information retrieval techniques such as
Vector Space Model (VSM) [25] and Latent Semantic Indexing (LSI) [39] to
generate candidate links between two textual artifacts. Information retrieval
techniques investigate the text in the artifacts and produce candidate links based
on the similarity of the text in those artifacts. More sophisticated methods
such as machine learning [21] and deep learning [24] have been investigated
where a classifier is trained based on an existing set of links in order to identify
new candidate links in the set of artifacts. Another line of research utilizes
programmers interaction logs in an Integrated Development Environment (IDE)
to automatically derive trace links between artifacts [40,41].
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While fully automated approaches are promising, they are not perfect both
in terms of precision and recall. Precision refers to the fraction of true links
identified by the automation algorithm. This measure determines how many
links identified are actually true. Recall is the fraction of true links returned
over the total number of true links in the artifact set. This measure determines
how many of the true links present in the artifact set are identified as true links
by the automation algorithm. High values of both precision and recall (close to
100%) are required for the trace links to be accurate. However, this has not yet
been achieved and probably never will due to intrinsic noise in the underlying
data. For these automatic approaches to be used, a human analyst needs to
vet the generated candidate trace links, a process known as trace link vetting
as described before. Various research exist to better understand this process
from both the user perspective and tool perspective. For instance, Dekhtyar et
al. [42] investigated several factors such as development experience and tracing
experience that may influence the accuracy of trace links produced as a result
of human decision making. Similar studies such as Cuddeback et al. [43], [36]
and Kong et al. [44] also investigate the human analyst’s behavior when vetting
trace links. Additionally, several research tools e.g., RETRO [45], Poirot [46]
and TraceME [47] have been developed to show how the vetting process can be
supported in tools that generate trace links. This thesis contributes to further
understanding of the vetting process by first investigating the information
needs of the human analyst when vetting trace links (Paper D) as well as
studying the impact of gamification as an attempt to make the vetting task
more enjoyable (Paper E).

Another line of tool-related research is on how to select appropriate trace-
ability tools. For instance Rempel et al. [48] define a framework for traceability
tool comparison which enables classification and comparison of traceability
management tools in order to help companies when selecting tools. Similarly,
Gotel and Mäder [16] define step by step guidelines for practitioners to follow
when acquiring traceability management tools. Kirova et al. [32] give guide-
lines for implementing effective traceability which also include which technical
aspects to consider when implementing traceability. The existing research
however, does not explicitly focus on how to best analyze tools for their trace-
ability maintenance capabilities. A lot of research on tool-related traceability
maintenance focuses on specific techniques for automating the maintenance
process. For instance, research by Mäder et al. [29] [49] [50] investigate how
to recognize different changes in UML models in order to update the trace
links based on the changes in the model. A similar study by Rahimi and
Cleland-Huang [51] investigates which changes performed on requirements and
source code lead to changes in the traceability links, and how to propagate
these changes automatically. Our study in Paper B therefore aims to fill the
existing gap of lack of specific guidelines for tool developers and companies se-
lecting tools w.r.t traceability maintenance. We provide important factors and
guidelines specifically towards providing effective traceability maintenance. In
Paper C, we show how these guidelines can be applied in practice by developing
Eclipse Capra.

Eclipse Capra is a standalone configurable and extendable traceability
management tool. Similar standalone traceability management tools aiming to
support custom trace link types have also recently been developed for research
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purposes e.g., Tarski [52] which uses formal first order logic to create custom
traceability information models as opposed to Eclipse Capra which allows the
definition of custom traceability information models using the Eclipse Modelling
Framework (EMF). Another similar tool is EMFTrace [53] which also allows
tracing to different artifact types through the concept of adapters similar to
Eclipse Capra. However EMFTrace only supports model artifacts such as EMF,
UML and URN [54] models and only supports EMF store7 as the versioning
back-end.

1.5.3 Traceability strategies

While it is important to conduct research on specific traceability activities e.g.,
creation and maintenance of trace links and specific techniques e.g., how to
used model driven engineering to support traceability, it is equally important
to conduct research on overall traceability strategies. Traceability strategies
define the goals of the traceability needed by different stakeholders in the
company and the way to achieve these goals which includes which links need
to be created, when, how, by whom, using which tools and how they will be
created, maintained, assessed and used. The book by Gotel et al. [10] defines a
basic traceability process model that describes the different activities that need
to be considered in a traceability strategy, acknowledging that these activities
need to be tailored and planned for in specific contexts of the companies.
In this thesis we extend this model with two more activities: measuring,
and exchanging traceability information (cf. Section 1.2). In Paper F, we
investigated how companies can develop traceability strategies tailored to their
specific context and propose TracIMo, a traceability introduction methodology.
TracIMo extends the work by Rempel et al. [55] which proposes a model to
assess existing traceability in companies. Similar work on tailoring traceability
strategies for different contexts includes the work by Dömges and Pohl [18]
which proposes a framework for designing project specific traceability strategies.
This framework is similar to TracIMo, but is tool-oriented, defined on an
abstract level, and does not discuss how to measure and evaluate the designed
strategy. Espinoza and Garbajosa [56] propose a traceability information model
for defining company-specific traceability strategies. TracIMo also describes
how to define custom traceability information models but goes a step further
by describing how the model needs to be aligned with the process and selection
of appropriate tools. Similarly, there are several case studies investigating
how to implement traceability in different contexts, e.g., Durrani et al. [57],
Arkley and Riddle [17], Asuncion et al. [58] and Kirova et al [32]. These studies
provide experiences, lessons learned and guidelines on how to tailor traceability.
However, to the best of our knowledge there is still no defined framework to
systematically establish traceability.

1.6 Research Methodology

To achieve the goals of the thesis, we used a combination of different research
methods. We summarize the entire research process of the thesis in two research

7https://www.eclipse.org/emfstore/
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Figure 1.4: Research Methodology

phases: phase one is exploratory where the purpose was to understand the
traceability topic, specifically the challenges and solutions that already exist;
and phase two is the constructive phase where we construct solutions to the
challenges we identified in the exploration phase. This section gives an overview
of the different research methods used in the two phases. Details of how each
study was carried out are given in the individual papers that make up the
thesis presented in Chapter 2 to Chapter 7. Figure 1.4 shows which methods
were used for which studies. This is further explained below.

1.6.1 Exploration Phase

In the first phase the aim was to understand the current challenges of traceability
in order to identify areas that need further research. To achieve this, we
conducted an exploratory study to systematically identify these challenges. We
used a combination of three research methods: (i) a tertiary literature review,
(ii) a multi-vocal literature review and (iii) a case study. Figure 1.5 gives an
overview of the research process in the exploratory phase.

Systematic literature reviews: Systematic literature reviews are used to
thoroughly understand what has been published on a certain topic and
identify research gaps. When current literature reviews in the topic exist,
they can be used as starting points for researchers. Due to the existence
of recent literature reviews on traceability e.g., [59–61], we conducted a
systematic tertiary literature review on existing literature reviews with
the goal of identifying traceability challenges and solutions. A tertiary
literature review is a systematic literature review conducted on secondary
studies (i.e, existing systematic literature reviews). It follows the same
protocol as a systematic literature review [62] which consists of five steps;
definition of research questions, conducting the search, screening of papers,
keywording using abstracts, and data extraction and mapping process.
Since our aim was to specifically look for challenges and solutions, the
research question is defined as follows:
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Figure 1.5: Research method for the exploration phase.

RQ A.1: What are the general traceability challenges and solutions
reported in literature?

We searched for systematic literature reviews published in the topic of
traceability in three scientific databases; Scopus, ACM Guide and IEEE
Xplore. The papers found were screened by reading through the titles
and abstracts to determine which papers were relevant. From the relevant
papers we also conducted snowballing to specifically look for papers
focused on traceability challenges. To extract the data from the set of
relevant papers identified (24 papers), we read the papers and used a
similar model to Figure 1.2 to identify challenges and solutions, and map
them to the different activities in the model.

Multi-vocal literature review: While systematic literature reviews are
helpful to understand the state of the art of a certain topic, it is difficult
to understand the state of practice from such studies. To address this
challenge we performed another form of literature review called multi-
vocal literature review. A multi-vocal literature review (MVLR) [63], is
a systematic literature review that includes both scientific literature as
well as grey literature. Grey literature includes literature not published
in scientific venues and therefore not peer reviewed such as white papers,
blog articles, industrial conference presentations, etc. While MVLR is
not such a common literature review method in software engineering, it is
recommended when researchers are studying a practical topic and there-
fore looking to understand both the state of art and state of practice [63].
We conducted a MVLR to identify traceability challenges reported from
the perspective of the automotive domain. This means that we limited
our search to scientific work and grey literature published in the context
of the automotive domain. We used similar steps as the ones used in
the tertiary literate review described before. Two research quesions were
formulated:
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RQ A.2.a What are the challenges and solutions regarding traceability
when addressing the demands of automotive standards ASPICE and
ISO 26262?

RQ A.2.b What are additional relevant traceability challenges and prac-
tices in the automotive industry?

For each research question a separate search was conducted to identify
relevant sources. We searched Scopus, ACM Guide and IEEE Xplore
to identify scientific literature and used Google Web search to find grey
literature. For scientific papers, screening was done by reading the titles
and abstracts, and for the grey literature, we screened the sources in 3
stages. In Stage 1, we read the title and short description given by the
Google web search and excluded papers which did not follow the criteria
below:

• The source is not an encyclopedic article
• The source is publicly available
• The source is written in English or in German
• The source was not written by the three authors of Paper A.

In Stage 2, we used available information about the source, e.g, its full
text and its meta-data to further exclude sources based on the criteria
above, if this information was not discovered in stage 1. In Stage 3, we
evaluated the quality of the source and excluded sources that did not
have any useful information on challenges or solutions of traceability in
the automotive domain. For example, all sources that only advertised
traceability tools but did not provide any information on the traceability
concepts or contexts of the tool were excluded. This process led to a
total of 245 relevant papers, 120 from the search for RQ 2.a and 125
from the search for RQ 2.B. The sources were analyzed using the model
in Figure 1.2 to map challenges and solutions to the different activities.
This MVLR enabled us to gather another set of traceability challenges
and solutions reported by academia as well as industry practitioners such
as traceability tool vendors and traceability tool users.

Having the challenges from the two literature sources, we investigated how
these challenges manifest in practice. To achieve this, we conducted a case
study with a large automotive supplier developing embedded systems.

Case study: A case study is an empirical research method that is aimed
at investigating a contemporary phenomenon in its context [64]. A
case study can be descriptive, exploratory, explanatory or improving.
We conducted an exploratory case study. An exploratory case study
is aimed to collect information on what is happening so as to generate
new research questions [64]. The aim of the case study was to provide
empirical evidence of the challenges and solutions found in the literature,
show how these challenges manifest in practice and identify new challenges
that were not reported in literature. The study was conducted with a
large automotive supplier that follows A-SPICE [65] and is therefore
required to implement traceability. We selected the particular company
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because it is in a domain where traceability is mandated and therefore
was already using traceability and looking into how to improve the current
traceability practices. Selecting a company which is not required to have
traceability may not have revealed the real challenges as the rigor in
which traceability is established and used may be low. The case study
answered the following research question:

RQ A.3: Which of the traceability challenges reported in scientific liter-
ature and non-scientific literature are also evident in practice in the
automotive domain and how have they been solved?

The study involved seven participants of three different roles (two senior
traceability experts, four system architects and one developer), from two
embedded systems development departments in the company. The data
collection was in form of semi-structured interviews where the collected
data was later analyzed systematically using thematic coding to identify
traceability challenges and solutions. The details of the tertiary literature
review, the multi-vocal literature review and the case study are reported
in Paper A (Chapter 2).

1.6.2 Constructive Phase
Constructive research involves the creation of solutions or constructs to solve
a practical problem and reasoning on how the solution contributes back to
scientific theory [66]. The constructs created as part of constructive research
are, e.g., models, guidelines, processes, designs and so on. It is a common
approach used in social sciences but also used quite often in software engineering
research [67]. The second phase of the thesis research process is described
under the constructive research umbrella since in this phase, the aim was to
develop solutions for the challenges identified in the exploration phase. For
this we applied a number of research methods:

Multipe case study: As previously mentioned, a case study investigates a
phenomenon in its context. In our second study (Paper B), we conducted
multiple case studies to understand traceability requirements from a
tooling perspective and further understand the challenges of traceability
in general. We conducted interviews with nine of our industrial and aca-
demic project partners to elicit requirements for a traceability tool, and
24 software development stakeholders from 15 industrial cases to provide
a broader overview of the current state of the practice on traceability
management. The data was analyzed to specifically look for concepts
related to traceability maintenance. From the analysis we formulated
important factors and guidelines for traceability maintenance for trace-
ability tool developers and for companies who want to acquire traceability
tools. We evaluated our guidelines through further interviews with three
experts on traceability tools. The guidelines together with the details of
how the study was conducted are reported in Paper B (Chapter 3).

Design science: Design science involves design and investigation of artifacts
in context. It is an iterative process in which the researchers conduct
several cycles of problem investigation, implementation of artifacts (e.g.,
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software prototypes) that will solve the problem and evaluation of the
artifacts in a given context to find out if the artifacts solve the problem [68].
In the thesis, design science is used in four studies, Paper C, D, E and F.
Table 1.2 summarizes the different methods used in the design science
activities, i.e., problem understanding, implementation and evaluation
of each study. In paper C, the aim was to implement a traceability
management tool based on requirements from our industrial partners
and to show the feasibility of the guidelines we propose in Paper C. To
understand which requirements are relevant, we conducted formal and
informal interviews with the industrial partners. In the implementation
phase we implemented Eclipse Capra [69], a traceability management tool
based on the gathered requirements. The implementation was done in
several phases and different versions of Eclipse Capra were demonstrated
to project partners during meetings for feedback. The final artifact of
this study is a traceability management tool that is now available and
maintained as an open source traceability tool.

In paper D, the study investigated how providing context information
to the human analyst improves the traceability vetting process. This
study took a design science approach where, to understand the problem
in detail, we conducted interviews with ten traceability practitioners.
In the interviews we asked about traceability practices, explained the
traceability vetting process and asked for which context information is
relevant for the vetting process. We complimented this with a literature
review on how existing tools that support context information work. We
investigated six relevant existing tools. From the interviews and the tool
investigation, we collected requirements for context information needed
when vetting trace links and implemented the presentation of the tool
in Eclipse Capra. To evaluate our findings we conducted a controlled
experiment to understand which context information is useful and to
what extent. A controlled experiment is “an investigation of a testable
hypothesis where one or more independent variables are manipulated to
measure their effect on one or more dependent variables” [70]. Controlled
experiments are useful when studying the impact of a certain phenomenon
in isolation. The experiment had 33 participants which were divided into
two groups, one with 16 and one with 17 participants. The task was
for each participant to vet a set of automatically generated candidate
trace links. One group used a version of Eclipse Capra which did not
include the display of context information such as the artifact metadata,
while the other group used a version of Eclipse Capra which contained
this information. We used statistical analysis to analyze the performance
of both groups in terms of the speed of vetting links and the accuracy
(precision and recall). We also used a pre-experiment questionnaire to
collect data on the participants background and experience and a post-
experiment questionnaire to collect data on the vetting task and the
usefulness of the information provided. Further details on how this study
was conducted are given in Paper D (Chapter 5).

In Paper E, we wanted to understand particularly the impact of different
gamification features on the analyst during the vetting process. To
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understand the problem, before the experiment, we conducted a survey
where we asked several participants who participated in the experiment
reported in Paper D to rate which gamification features will be useful for
the vetting task. From the results of the survey, we selected levels and
badges as useful gamification features. In the implementation phase we
extended Eclipse Capra to include levels and badges during the vetting
process. To evaluate the impact of gamification, we set up a controlled
experiment to investigate the effect of gamification on four dependent
variables; speed, accuracy and perceived enjoyment of the task as well as
the usability of the vetting tool. We recruited 24 students to take part
in the experiment where the students were randomly divided into two
groups of 12 each. One group performed the vetting task using Eclipse
Capra with no gamification while the other group used the gamified
Eclipse Capra. The experiment task was to vet automatically generated
trace links in a 45 minutes time window. If the participants think a link
is true then they mark it as accepted, if they think it is false they mark it
as rejected. We used statistical analysis on the results of the experiment
to determine the impact of gamification on speed, accuracy, perceived
enjoyment of the task, and usability. To capture perceived enjoyment, a
post-experiment questionnaire was used to ask participants on how they
experienced the vetting task. We also collected data on the usability of
both versions of Eclipse Capra using the system usability scale (SUS)
questionnaire [71].

The fourth study which used design science is paper F. In this study, the
aim was to propose a methodology for introducing traceability in industry.
We worked together with a company where we conducted iterations of
understanding their problem, implementing a solution and evaluating
the solution at the company. We used semi-structured interviews to
understand the problem at the company and conducted a literature search
to look for already existing solutions. Instead of creating a traceability
introduction methodology from scratch, we extended Rempel et al.’s [48]
framework for assessing existing traceability in industry which already
contains steps that can be reused in the creation of traceability strategies.
In collaboration with the company, we extended the framework to include
steps that make it possible to plan for and deploy a traceability strategy
in industry. The resulting artifact is TracIMO, a traceability introduction
methodology. To evaluate TracIMo, we conducted a case study at the
company to design and deploy a traceability strategy. We used the
case study to evaluate both the application of TracIMo as well as the
advantages of the designed and deployed traceability strategy in the
company. Further details on how this study was conducted are reported
in Paper F (Chapter 7).

1.7 Threats to Validity
In this section, we describe the threats to validity for the entire thesis, taking
into account the different research methods used in the different papers. We use
the categorization of validity threats given by Yin [72] and later by Runeson et
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Design science Activities

Paper Problem understanding Implementation Evaluation

C Interviews Tool implementation Demonstrations
Focus groups

D Interviews Tool implementation Experiment
Investigation of existing
tools in literature

E Survey Tool implementation Experiment

F Interviews Development of
TracIMo

Case study

Investigation of existing
methodologies in literature

Table 1.2: Different research methods used in the three design science studies
(Paper C, D, & F)

al. [64] which are specific for case studies but also applicable to reason about
validity threats of other research methods. A more detailed description of the
threats to validity can be found in the individual papers reporting the studies.

1.7.1 External validity

External validity is about how much we can generalize the findings of a study.
It calls for the researcher to reason about the specific context in which the
study was conducted in order to contemplate about the applicability of the
results in other scenarios. In Paper A, we used a tertiary literature review, a
multi-vocal literature review and a case study to identify existing traceability
challenges and solutions. We applied three different methods to achieve both
method and data triangulation in order to minimize validity threats. However,
w.r.t the tertiary literature review, the last systematic study we included was
published in 2014 with the latest primary study published in 2013, so there is
a chance that we missed newer challenges reported after 2014, however, the
snowballing as well as the multi-vocal literature review covers literature of
up to 2017 thus minimizing the threat. With regards to the case study, we
interviewed different roles to get a holistic view of the challenges and solutions
in the company, however since we only used one company, we cannot generalize
that the challenges and solutions identified are also experienced in the same
way in other companies.

The constructive phase of our research aims at developing solutions that
can be widely applied. However our aim was also to propose solutions and
investigate their feasibility given specific contexts. The general strategy we
used to maximize external validity for the five studies is data triangulation.
We collected data using different methods, from different roles and different
companies where possible. In Paper B, we only used interviews but had three
sets of interviews, one specifically eliciting traceability requirements and one
focused on general traceability practices and a final one to validate the findings.
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All the interviews involved participants with different roles, from different
companies and from different domains with the exception of the first set of
interviews where all participants where from the automotive domain. Similarly
for Paper C, we collected requirements from various project partners from
different companies with different roles and our validation was done using tool
demonstrations. In Paper D, we conducted interviews to identify information
needs for the human analysts by interviewing ten traceability practitioners
of different roles, from different companies and different countries. We also
complemented the data collected from interviews with a literature search of
existing traceability vetting tools. Additionally, the results were validated using
a controlled experiment with a mix of students and industrial subjects.

The generalizability of paper E and F is particularly low. In paper E we
used a controlled experiment with 24 students. While the use of students in
experiments has been criticized in software engineering research, it is still a
valid method for simplification of real life scenarios in order to learn more
about a specific variable [73]. However, the number of subjects used in the
study is also low which limits the generalizability of the study. In paper F,
where we propose a traceability introduction methodology, the study to derive
the methodology as well as the validation was conducted in one company and
therefore further cases studies are needed before we can generalize our findings.

1.7.2 Internal validity

Internal validity is usually relevant when a causal effect is under study [64].
Internal validity poses the question of whether there are other external factors
affecting the causal effect under investigation that the researcher is not aware
of. In controlled experiments, it is important to consider internal validity in
order to draw meaningful conclusions. In both Paper D, and Paper E, we used
controlled experiments. For both studies, we collected data on the confounding
factors that could have an influence on the results. Such confounding factors
are e.g., the tracing experience, programming experience and knowledge of the
system used. We collected data on these factors in a pre-experiment survey and
took the data into account during analysis. For paper E, we opted for higher
internal validity and used only students in the experiments. Confounding
factors were also recorded and used in the analysis.

For the studies where we used interviews (Paper A, B, C, D, and F), our
conclusions are drawn from the results of the interview. A threat to internal
validity exits if the there is a chance that the interviewees did not give honest
answers with the fear that the answers would reflect badly on their companies if
the results were published. To mitigate this, for all the studies, we guaranteed
the anonymity of both the interviewees and the company when publishing the
results.

1.7.3 Construct validity

Construct validity reflects to what extent the phenomena being studied are
understood by both the researcher and the subjects included in the research.
In this thesis, construct validity is a potential threat to most of our studies that
used interviews. When conducting interview studies, it is essential to make sure
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that both the interviewer and interviewee have a common understanding of the
concepts investigated and the terms used in the interviews. When there is a
misunderstanding in the constructs, the results are unreliable. In all the studies
in which we used interviews, we minimized this threat through the following:
first we conducted pilot interviews to see if the questions in the interview
guide make sense and are understandable; second, interview participants were
properly selected to make sure that they are in a role where traceability is
used and/or understood; third, the purpose of the study was discussed and
important terms explained before the interview; and fourth, we performed
member checking [74] where we sent the results of the interview back to the
interview participants for confirmation and clarification.

Construct validity can also apply to controlled experiments. In our con-
trolled experiments, before the experiment started, we introduced the trace-
ability topic briefly to the participants, explained important terms, and gave
clear instructions for what needs to be done. We also recorded the screens so
that we could exclude results from participants who did not follow instructions
and clearly misunderstood the experiment.

1.7.4 Reliability

Reliability questions to what extent the results of the study are dependent on
the specific researchers that conducted the study. This threat is particularly
relevant for interview studies where the results are dependent on the interview
questions asked (interview guide) and derived through a thematic analysis. To
first ensure reliability, all the interviews were piloted to check if the questions
are understandable and make sense. The pilots in this case help to reduce
ambiguity in the wording of the questions as well as reduce researchers’ bias.
To facilitate some form of replication, we published the interview guides that
were used in the studies when the papers were submitted for peer review. This
makes them accessible to the reviewers as well as other researchers interested in
replicating the studies. With respect to the reliability of data analysis, it is hard
to ensure that given the same interview transcript, two different researchers
will come up with exactly the same codes. To minimize the reliability threat,
we made sure that at least the initial phase of the analysis was done by multiple
researchers in order to reduce individual biases. We also sent the result back to
the participants (member checking), to ensure that they agree with our derived
results.

To ensure a certain level of reliability in the experiments, for Paper E, we
packaged the experiment in a virtual machine that is publicly accessible. We
also published our experiment materials such as experiment instructions, pre-
and post-experiment surveys.

1.8 Contributions

This section describes the contributions of the thesis. As the thesis is made
up of six distinct publications, the section discusses the contribution of each
paper in a separate subsection while a synthesis of how the papers contribute
to the overall goal and research questions of the thesis is given in Section 1.4.
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1.8.1 Paper A: Software traceability in the automotive
domain: Challenges and solutions

To build a foundation for our research, it was important to understand the
current and existing challenges and solutions of traceability. To achieve this,
we conducted an exploratory study using three different methods: i) a tertiary
literature review, where we examined 24 secondary studies and extracted a list
of challenges and solutions they report, ii) a multi-vocal literature review where
we reviewed 245 scientific and non-scientific sources, and iii) a case study with a
large automotive supplier where we used interviews and observations to identify
traceability challenges and solutions. The decision to conduct a case study in
the automotive domain was driven by the fact that we needed to investigate
the challenges and solutions in a company that already implements traceability
with some rigor and this is true for automotive companies, since traceability is
mandated by safety standards. Additionally, there were no studies investigating
traceability challenges and solutions particularly in the automotive domain and
our study fills this gap.

This study answered the following research questions:

RQ A.1: What are the general traceability challenges and solutions reported
in literature?

RQ A.2: What are the particular traceability challenges and solutions in the
automotive domain?

RQ A.3: Which of the reported traceability challenges in scientific literature
and non-scientific literature can be observed in practice in the automotive
domain and how have they been solved?

We identified challenges and solutions in four different phases of traceability
inspired by the model in Figure 1.2. These phases are preparation and planning,
creation and maintenance, outcome of traceability, and exchange of traceability.
The challenges and solutions are summarized in Table 1.3

Challenge Challenge
Solved?

Solutions

Preparation and Planning

Knowledge of
Traceability
Lack of knowledge about
and understanding of
traceability

Yes Training, Updated guidelines from cer-
tification bodies

Difficult to define
information model

Partially Defined traceability information model,
Updated guidelines from certification
bodies

Level of granularity Yes Defined traceability information model
Unclear traceability
process

Partially Defined traceability process, Defined
traceability information model, Struc-
tured information, Integrated tool plat-
form, Tool integration
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Creation and Maintenance

Tools
Lack of Configurable
Tools

Yes Flexible tools

Confidence in Tools N/A Certified Tool Suite
Inaccessibility of Artifacts Partially Centralized data storage, De-centralized

data storage, Flexible tools
Diverse Artifacts and
Tools

Partially Integrated tool platform, Tool integra-
tion, Integrated modelling language,
Structured information

Manual work No Automation, Just enough traceability,
Integrated tool platform, Integrated
modelling language

Human Factors
Misuse of Traceability
data

N/A Training

Perceived as an overhead No Automation, Report generation tools,
Just enough traceability

Organization and
Process
Distributed software
development

Yes Centralized data storage, De-centralized
data storage

Traceability Across
Lifecycle Phases

N/A Integrated tool platform, Defined trace-
ability process, Automation, Integrated
modeling language

Reuse of Traceability
Information

N/A –

Outcome of traceability

Uses of Traceability
Trace links are almost
never consulted or used

Partially Report generation tools, Just enough
traceability

Lack of proper
visualization tools

No Report generation tools

Measurement of
Traceability
Assessing the traceability
maintained

No Automation, Defined traceability pro-
cess, Defined traceability metamodel,
Structured data

Return on Investment
(ROI).

No Cost-benefit models, Just enough trace-
ability, Automation

Exchange of traceability

Exchange of
Traceability
Information
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Lack of Coordination in
traceability activities

N/A Collaboration tools, Defined traceability
process

Lack of interchange
standards

No Common standard

Conflicting objectives N/A Defined traceability process
Confidentiality
Constraints

Partially –

Table 1.3: Challenges and solutions for traceability in the automo-
tive domain

In total we identified a set of 22 challenges and 16 unique solutions from
the perspectives of academia, tool vendors and consultants reported in both
scientific and grey literature. Out of the 22 challenges, 17 were found in the
automotive company, of which six were still unsolved, six had partial solutions
and five were solved. Additionally, the study revealed that the challenges in the
automotive domain have a lot of overlap with general traceability challenges.
However, the domain has more restrictions such as traceability being mandatory
due to safety standards such as ISO 26262 [75], making existing solutions in
literature harder to apply in practice.

1.8.2 Paper B: Traceability Maintenance: Factors and
Guidelines

From our previous study (Paper A), we identified that one of the persisting
challenges is that establishing traceability is expensive as it requires manual
work for both the creation and maintenance of the links. While a lot of
effort is invested in companies to create the links, if the links are not updated
as the artifacts they connect evolve, the links become outdated and thus
useless. It is therefore important to put as much effort in maintaining the
links as in creating them. Creation of the links is harder to automate or
semi-automate because the initial set of links does not exist and needs to be
created from scratch. Maintenance on the other hand is comparably easier
to automate or semi-automate because the links and information about the
artifacts they connect already exist. However, the extent to which tool support
for traceability maintenance can be provided varies depending on a number
of factors. It is therefore important for the development organizations (when
selecting traceability tools) and tool vendors (when developing traceability
tools) to understand these factors.

We conducted a study to identify the important factors that affect the extent
to which a traceability tool can provide maintenance support. We analyzed
data from two sources: 9 interviews that were aimed at eliciting traceability
requirements for a traceability solution and 24 semi-structured interviews
from a study aimed at investigating traceability management practices. We
formulated guidelines from each of these factors and validated our guidelines
with interviews of expert users and developers of traceability tools used in
industry. The study answers the following research question:

RQ B: What are the primary factors that affect how and to what extent a
TM solution can provide traceability maintenance?
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Figure 1.6: The spectrum of tool boundaries from holistic tools to complete
separate traceability management tools.

Our results identified the following four influential factors of traceability
maintenance:

F1: Versioning – traceability maintenance is affected by whether or not a
Version Control System (VCS) is used. The granularity of the changes that
can be extracted from a VCS influences the extent to which traceability
maintenance can be supported. From this factor, we suggest the following
guidelines: G1) Version your traceability model just like all other artifacts;
and G2) Ensure that you are able to extract explicit deltas for all models
from your chosen VCS.

F2: Tool Boundaries – In a practical scenario, it is expected that multiple
tools are used to manage the different development artifacts. Maintaining
traceability between artifacts in different tools is difficult as the tools are
not connected to each other in any way. We elicited three tool-boundary
scenarios that are possible (cf. Figure 1.6). One scenario is where a
holistic tool is used to support manipulation of all artifacts. While
traceability becomes easier in this case, in practice finding a holistic
tool that supports all development activities is difficult. The second
scenario is having a dedicated traceability management tool to connect
the different tools. While this is feasible, it requires that the tool is able
to connect to the existing tools in the development tool chain. This
can be done through tool adapters. However, for each new tool, an
adapter needs to be created which is potentially not a trivial task. A
third scenario is a mixed scenario where a traceability tool is combined
with tools for other functions e.g., requirements management tools. This
scenario inherits all the negative aspects from the other two scenarios.
From this factor we derive the following guidelines: G3) Traceability tools
should provide well defined interfaces and easy, direct access to managed
traceability links; G4) Aim for either a holistic solution or a completely
separate traceability tool with a carefully designed tool adapter concept,
avoid combining strategies; and G5) Use a common standard as “glue” to
simplify the development of adapters.

F3: Configurable Semantics – The degree to which a traceability metamod-
el/information model captures domain-specific semantics and whether the
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links are explicit or implicit influences how the consistency of traceability
can be defined. This is because consistency must be defined and tailored
to specific domains. For instance, to ensure that a traceability link from
a requirement to a test is truly linking a requirement and a test, one
needs to be able to define the semantics of the concept of a requirement
and a test within the link in the traceability metamodel. From this factor
we derive the following guidelines: G6) Avoid implicit, convention-based
traceability links and strive instead for explicit links that can be checked
with tool support; and G7) Prefer a domain-specific, semantically rich
traceability metamodel as this simplifies traceability maintenance.

F4: Consistency Specification – The solution space for consistency specification
spans two dimensions: the process by which traceability is maintained
and the type of functions that are used to maintain traceability. From
the process dimension, there are two ends of the spectrum: 1) traceability
is maintained in a top-down approach and inconsistencies in traceability
links are fixed immediately and 2) a bottom-up and ad-hoc process of
maintaining the traceability links where the links are fixed on demand is
used. From this dimension, we derive the following guideline: G8) Ensure
that your TM solution supports a flexible combination of both top-down
and bottom-up maintenance approaches.

The other dimension of consistency specification is the type of consistency
function specified. This can be manual, semi-automatic or automatic.
For this dimension, we derive the following guidelines: G9) Support an
integrated mix of manual and complementary automated approaches to
consistency specification; and G10) For automatically generated links,
prefer no links at all over (possibly) inconsistent links.

1.8.3 Paper C: Capra: A Configurable and Extendable
Traceability Management Tool

From the previous studies, we gathered knowledge on the challenges of trace-
ability and specific requirements for what a traceability tool should contain.
Analyzing the requirements, we discovered that there is no solution that could
cover all the requirements as the requirements greatly vary depending on the
development organization and are sometimes contradictory. For instance, differ-
ent companies have different requirements for which trace link types should be
included in their traceability information model based on the artifacts in their
development environment. Additionally, technical requirements such as where
the links should be stored (e.g., in a database, as a model or as a simple text
file) also vary. With these requirements in mind we developed a traceability
solution that can be customized and extended to support the diversity in the
requirements. The study used design science where we gathered requirements
from both our industrial and academic partners, implemented a prototype and
evaluated the prototype through demonstrations. From these demonstrations
we got feedback and more requirements for another iteration. The resulting
tool Eclipse Capra, is an open source project8 and therefore freely available
and welcomes contributions from any developer.

8https://eclipse.org/capra
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Factor Guidelines Implementation in Eclipse
Capra

Versioning G1 and G2 Stores explicit trace links as an
EMF model. The location of the
trace model is configurable and
the resulting trace model can be
versioned using various VCS.

Tool boundaries G3 Trace links are stored in an EMF
model and accessible via well de-
fined Eclipse extension points.

G4 Eclipse Capra is a standalone
traceability management tool.

G5 Uses EMF, a well defined and
widely used modelling framework.

Configurable semantics G6 Trace links are stored explicitly.
G7 The traceability information

model is fully configurable and
allows definition of domain
specific link types.

Consistency specification G8 Supports both top-down and
bottom-up approaches of creat-
ing trace links.

G9 Supports manual creation of
traceability links as well as semi-
automatic maintenance of trace
links by sending warnings for sus-
pect links.

G10 Supports automatic visualisa-
tions of internal links which al-
ready exist in specific DSLs.

Table 1.4: Proposed factors and guidelines and their implementation in Eclipse
Capra.

In our solution, we followed the factors and guidelines defined in Paper B
to ensure that the tool will support maintenance as much as possible but also
as another way to validate some of the guidelines we proposed. As a result,
the tool is extendable in three different perspectives:

The traceability link types – It is possible to create link types with different
semantics depending on the needs of the development organization. The
tool allows for the links to be defined in a traceability metamodel and
this can be extended with domain-specific links, thus following guideline
G7.

The artifacts that can be traced – Since different development organizations
use different tools one cannot develop a traceability tool that is complete.
There are always going to be more tools that are not supported. To
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overcome this problem, our tool is a dedicated traceability management
tool and therefore follows G4. It allows adding tool adapters to support
different tools on a need to need basis. Therefore it is extendable. The
tool uses EMF [35] as a common standard for the adapters which follows
guideline G5. As adding adapters requires some technical expertise, the
tool ships with adapters to support common modeling languages such as
EMF and UML, programming languages such as Java, C/C++ and PHP
and general purpose tools such as MS Office. Adapters for more specific
formats such as ReqIF and task tickets from common task management
tools such as JIRA and Bugzilla are also available. Since the tool is open
source, more adapters can be contributed by the open source community.
As the adapters can be turned on and off, the tool is both configurable
and scalable.

The storage of the artifacts – The needs for storage of traceability links can
differ depending on the development organization. For instance, in some
cases the participants in our study preferred to store the links per project,
while other participants preferred to store the links per workspace and
others per repository. Therefore, the tool allows this to be configured.
This makes it possible for the tool to adhere to G1 and G2 depending on
the storage and VCS choice of the end users.

Following guideline G3, the tool also provides interfaces to expose the
traceability model to various tools that, e.g., provide visualization. To show
the feasibility of this, Eclipse Capra currently has two different visualization
options, one utilizing PlantUML [76] and one using the Eclipse Graphical
Editing Framework (GEF) [77]. Table 1.4 gives a summary of the guidelines
proposed in Paper B and how the implementation of Eclipse Capra follows
them.

1.8.4 Paper D: Vetting automatically generated
traceability links: What Information is Useful to
Human Analysts?

The study in Paper A identified manual work as a challenge. This relates to
the manual work involved in creating and maintaining trace links. To solve the
challenge of manual work involved in creating trace links, various automated
approaches using information retrieval, machine learning and deep learning
have been proposed over the last decade. However, since these approaches
to not generate accurate links, a human in the loop is needed to verify the
generated candidate trace links. This task is known as the trace link vetting
process. Past research has shown an indication of that the vetting process can
be flawed and that a human analyst can make mistakes [36]. While there is
some research to better understand the vetting process, e.g., [42, 78], none
of the research has investigated the information needs of the human analyst
during this process. To this end, we conducted a study to fill this gap. The
study answers the following research questions:

RQ D.1 What context information is useful to human analysts when vetting
trace links?
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RQ D.2 To what extent does this information help analysts to make correct
decisions?

The study used design science, where we conducted interviews with ten
practitioners who have experience with traceability to understand their infor-
mation needs. The interviews reveal that human analysts need information
from three different sources: 1) from the artifacts connected by the link, 2)
from the traceability information model, and 3) from the tracing algorithm.
We investigated existing trace link vetting tools that have been published to
identify the information presented to the human analyst. We extended Eclipse
Capra to support the vetting process and represent the information we collected
from interviews to the human analyst. The study evaluated to what extent
context information is useful using an experiment. In our study, we use the
definition of context information from Abowd et al. [79]: context information
refers to any information that can be used to characterize the development
artifact – e.g., the meta data of an artifact, such as the date it was created
or modified. In contrast, the content of the artifacts, such as the code in a
Java file or the textual description of a requirement, is not considered context
information. Our assumption is that offering context information together with
the content of the artifacts will improve the decisions made by human analysts.
We conducted the experiment with 33 participants divided into two groups
of 16 and 17 participants. One group performed the vetting task without the
context information elicited from the interviews and one group had the extra
context information. The results of the experiment show that there was no
significant difference in the performance of the two groups in terms of time
spent or precision and recall. However, the experience of the analyst with the
particular system matters. From this study we draw the conclusion that when
selecting who should vet trace links, the person with the most experience with
the artifacts involved should be selected. For example, candidate trace links
between requirements and code should be vetted by a developer of the system,
while candidate trace links between requirements and architecture should be
vetted by an architect of the system.

1.8.5 Paper E: Impact of Gamification on Trace Link
Vetting: A Controlled Experiment

In our previous study (Paper D), we discovered that since the vetting task is
tedious, the participants also found it boring. Previous studies have shown
that gamification can keep users performing a certain task motivated and
engaged [80], [81]. We therefore hypothesize that gamification can improve
the vetting task by motivating the analyst during the vetting process. We
conducted a study to answer the following research question:

RQ E What is the impact of gamification on the task of vetting automatically
generated trace links?

For this study, we concretely investigated the impact of two gamification
features; levels and badges. We conducted an experiment with 24 participants
where 12 performed the vetting task with gamification features enabled, and 12
without the gamification features. In the experiment we measured the speed
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(links vetted/time), correctness, perceived usability of the tool, and perceived
enjoyment of the task. The experiment showed that there is no significant
difference between the speed, correctness and perceived usability of the tool
between the two groups. However, the gamification features significantly
increased the users’ perceived enjoyment. This study indicates that on the one
hand gamification does not hamper performance in the vetting task. This is
important especially for correctness as we do not want users to concentrate
more on the gamification features and loose focus on the actual vetting task.
On the other hand, the study shows that the gamification features increase the
users perceived enjoyment and therefore make the task less boring.

1.8.6 Paper F: TracIMo: A Traceability Introduction
Methodology and its Evaluation in an Agile
Development Team

Our first study (Paper A), shows that from the process perspective, one of the
challenges is companies having an unclear traceability process. For traceability
to be successful, a company needs a well defined traceability strategy. However,
in practice, many factors play a role in the definition of the traceability strategy
and it is not always clear which steps a company should follow in order to
define their tailored traceability strategy [82], [83]. To solve this challenge, we
conducted a study to answer the following research questions:

RQ F.1: How can traceability be established to achieve the goals of the
organisation and yield a measurable impact?

RQ F.2: What are the short-term benefits of introducing traceability?

RQ F.3: What are the challenges and key decisions associated with introducing
traceability?

The aim of the study was to create a methodology that consists of concrete
steps that companies can follow to design and introduce a traceability strategy.
We therefore used design science where we worked closely with a company
in the finance domain who wanted to design and introduce a traceability
strategy in the company. We collaborated with the company to understand
the problem and conducted a literature search for existing guidelines on how
to introduce traceability. Since there are no explicit guidelines on how to
introduce traceability, we extended the work by Rempel et al. [55] – which
proposes a model for assessing existing traceability within companies – by
adding steps necessary to design and deploy a traceability strategy. We named
the resulting methodology TracIMo, which is short for Traceability Introduction
Methodology (Figure 1.7). To evaluate TracIMo, we conducted a case study
with a company in the finance domain, introduced traceability and evaluated
both how TracIMo was appropriate for designing the traceability strategy and
the short term benefits of the resulting traceability strategy.

The study shows that TracIMo can be used to design and deploy a trace-
ability strategy in companies. One major strength of TracIMo is that it applies
the GQM (Goal/Question/Metrics) goal definition strategy [84] which makes
it possible to derive measurable traceability goals. Table 1.5 shows an example
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Figure 1.7: Schematic overview of TracIMo, indication which steps have been
reused and modified from Rempel et al. [55].

of a measurable traceability goal defined in our case study defined from the
lead developer’s point of view as well as potential metrics to measure how the
goal has been reached. Additionally, TracIMo is iterative and therefore allows
for evaluation and re-evaluation of the different steps.

Applying TracIMo to the company, we were able to define a tailored trace-
ability strategy as well as evaluate its short term benefits. The short term
benefits identified were:

• improvement in effort estimation during sprint planning as the developers
could use the existing traceability to identify how complex a task will be;

• improvement in task understandability as developers used trace links to
further understand which artifacts are connnected to the task they are
assigned to; and

• improvement in identification of missing artifacts, as it was now possible
to notice missing artifacts when creating trace links (for example, having
trace links between implementation classes and tests, made possible to
know which tests are missing).

1.9 Summary of the Contributions

This section gives a summary of the contributions of the papers with respect to
the overall thesis goal. We also highlight the main takeaways of the thesis based
on the different studies. To recap, the main goal of the thesis is to improve
traceability tools and processes which is further divided into two goals:

Goal 1: Identify current traceability challenges and solutions.
Goal 2: Explore and propose solutions for existing traceability challenges

related to tools and processes.
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Goal 3: Improve the accuracy of effort estimations for tasks from
the Lead Developer’s point of view.

Question 1: How much does the estimated effort differ from the actual
effort?

Metrics: • Average number of tasks per sprint

• Average number of deviating tasks per sprint

• Percentage of deviating tasks per sprint (derived)

• Initial estimation for each task in story points

• Updated estimation for each task in story points

• Average increase/decrease in effort per task (derived)

• Number of JIRA comments about effort per task

Question 2: How confident is the lead developer in the estimation of
tasks?

Metrics: • Likert scale confidence
1 – not confident at all
5 – very confident
per task
(Questionnaire with lead developer)

• Number of low confidence tasks that required a change

• Number of high confidence tasks that required a
change

Table 1.5: Goal/Question/Metric example for a traceability goal on improve-
ment of effort estimation.

Paper A contributes to Goal 1 and answers RQ 1: What are the current
traceability challenges and solutions in practice?. Through literature
reviews and a case study, we identified 22 traceability challenges and 16 unique
solutions. The study showed that there is a great overlap between general
traceability challenges and those experienced in the automotive domain even
though conditions such as safety certification are more prominent in this domain
than other domains, e.g., the finance domain. Examining the applicability of
the solutions in practice, we identified six challenges that are still not solved
and call for further research on new solutions and enhancement of existing
solutions. The main takeaway from this study is that there are still a lot of
traceability challenges where proposed solutions do not work due to practical
challenges such as scale, existing regulations in different domains and specific
tools and processes used in organizations. We call for more empirical studies
investigating how existing traceability solutions can be applied in practice in
different contexts.

Based on the the frequency of the reported challenges and the requirements
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Challenge Studies

Manual work of managing traceability Paper B, D & E
Diverse artifacts and tools Paper B & C
Lack of configurable tools Paper B & C
Unclear traceability processes Paper F

Table 1.6: Challenges investigated and their corresponding studies.

from our industrial project partners, for Goal 2, the thesis further investigated
four challenges from a tool and process perpective. (cf. Table 1.6).

Regarding tool related challenges, we investigated how to minimize the man-
ual work in maintenance of traceability links. In Paper B, which answers RQ2:
What are the primary factors that affect how and to what extent a
traceability management tool can provide traceability maintenance?,
we propose important factors that need to be considered by traceability manage-
ment tools as well as guidelines for traceability tool developers on traceability
maintenance. We propose a total of ten guidelines that, when followed, will
facilitate more efficient traceability maintenance. In a nutshell, the guidelines
propose the following with regards to traceability tools:

• When creating traceability management tools, aim for flexibility, both
in terms of artifacts, trace link types and work flows supported (G7, G8
and G9) since one tool cannot cover all cases.

• Aim at maintaining explicit and versioned trace links as opposed to
implicit trace links (G1, G2, G3,G4, G6).

• Use common technology that is widely available and/or provides well
defined interfaces (G3, G5).

• Use automation where possible to maintain the existing set of trace links
(G9, G10).

In Paper C, which answers RQ3: How can a traceability tool be
implemented in such a way that it is configurable and extendable?,
we have demonstrated how to apply the proposed guidelines using Eclipse
Capra. Eclipse Capra is flexible, offering support to add custom link types
and is extendable to support various artifacts types. The tool is a standalone
traceability management tool and links created using Eclipse Capra are explicit,
meaning that they can be versioned using existing versioning tools. Additionally,
the tool supports semi-automatic maintenance of trace links.

In Papers D and E we investigated how semi-automated creation of trace
links can be improved since according to our findings in Papers A and B,
semi-automation has a higher chance of adoption in industry compared to full
automated approaches due to several restrictions such as safety standards in
the automotive domain that require having correct trace links. We specifically
investigated how to improve the vetting process by first exploring what context
information is relevant to human analysts and second, exploring how gamifica-
tion can improve the vetting process. These two studies contribute to answering



1.10. FUTURE WORK 37

RQ 4: How can the trace link vetting process be improved?. Concrete
take aways that we get from these studies are as follows:

• When vetting candidate trace links, the human analyst needs information
from the connected artifacts, the traceability information model and the
automation algorithm used.

• It is important to carefully choose which role should vet traceability links.
Having experience with the artifacts involved increases the chances of
making the right decisions.

• While context information is perceived useful, it is more important for
the analyst to investigate the actual content of the connected trace links
in order to make correct decisions

• The traceability vetting task is a tedious one. Gamification can in-
crease the perceived enjoyment during this task without decreasing the
performance of the human analyst.

Lastly this thesis investigates how to introduce traceability that is tailored
to a specific organization. This is investigated in Paper F, which answers RQ5:
How can a traceability strategy be established to achieve the specific
goals of an organization?. In this study we propose a methodology to
systematically introduce traceability in companies (TracIMo). The methodology
has concrete steps and activities that should be performed in each step. In this
study, the main takeaways are as follows:

• Always create a traceability strategy based on traceability goals that are
measurable

• Constantly evaluate the traceability strategy to identify needed changes
based on changes in traceability goals, tools, development processes and
workflows in the company.

Thus, TracIMo calls for using GQM (Goal/Question/Metrics) which allows
defining traceability goals as well as the corresponding metrics to track how well
the goal has been achieved. Additionally, TracIMo is iterative and therefore
allows for modification of the defined traceability strategy until desirable
outcomes are achieved.

1.10 Future Work
In this section we discuss potential future work to extend the work presented
in this thesis. The overall goal of traceability research is to make traceability
management as efficient and effective as possible [85]. We therefore propose
the following research directions

Efficient traceability maintenance: In Paper B, we have proposed ten
guidelines for traceability tool developers. It is important to be able to
link the different guidelines to how they contribute to the efficiency of a
traceability management tool w.r.t. traceability maintenance. We pro-
pose further studies to investigate how following the guidelines improves
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traceability management tools. These studies could also investigate the
consequences of not following such guidelines by surveying existing trace-
ability tools which do not follow the guidelines to identify challenges
these tools face regarding traceability maintenance.

Transfer of automated approaches to industry: During the thesis, we
have had the opportunity to collaborate with various industrial practition-
ers. Most of the practitioners agree that manual creation and maintenance
of trace links is tedious and automation or at least semi-automated ap-
proaches are useful. We therefore propose studies that investigate how the
various suggested automated approaches in literature can be transferred
into practice. The studies could show feasibility of automated approaches
in industry as well as propose best practices such as those proposed
by Cleland-Huang et al. [28] but geared towards different contexts. For
instance one could investigate how to select an automation technique, and
how to set up the semi-automated pipeline of creating and maintaining
trace links using case studies.

Measurement of traceability: A famous quote by management expert
Peter Drucker says “if you can’t measure it, you cannot improve it”. We
believe this is true for traceability as well. To ensure that a certain
traceability strategy works, it is important to be able to measure it.
While it is already possible to measure things like completeness, the
actual usefulness of traceability is difficult to measure and justify [30, 86].
In paper F, we proposed TracIMo, a traceability introduction methodology
which uses GQM to define traceability goals and therefore ensures that
the goals are measurable. While this is a first step towards measurable
traceability, further research is needed to elicit common traceability goals
as well as their corresponding potential metrics. Such research could lead
to a traceability specific metrics catalog that practitioners can use as a
starting point to design measurement systems for their specific traceability
strategies.

While these three areas of future work directly follow the studies presented in
this thesis, there are several areas we observed that this thesis does not address,
but require further research. One of these areas is research on traceability
semantics. Traceability semantics refers to the definition of trace link types
and their meaning. The artifact types and the link types are usually defined in
a traceability information model. One of the steps in TracIMo is the definition
of a traceability information model. This model needs to include all link types
required to fulfill the traceability goals as well as support existing development
processes. The definition of a traceability information model is not a simple task
and while there is existing research presenting some examples of traceability
information models specific for different tasks (e.g., [87] [88]) there are no specific
guidelines on how to define traceability information model in companies. The
work by Ramesh et al. [7] and Mäder et al. [89] takes a first step towards this
area, but we believe more empirical studies are needed to define best practices
and guidelines for managing traceability information models, especially for
large scale system engineering companies. Our current work with industry
collaborators investigates existing challenges practitioners face when designing
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and managing traceability information models and proposes solutions for these
challenges.

1.11 Conclusion

While it is agreed that traceability is important, several challenges still re-
main [19]. This thesis focuses on creating solutions for four challenges from a
tool perspective and a process perspective.

As noted by Gotel et al. [85] in the definition of a roadmap for traceability
research, there is a need for an updated description of the state of practice of
traceability. We first address this gap by providing a detailed description of
the state of the art and state of practice of traceability challenges and solutions
and analyze how the existing challenges and solutions manifest in practice. Our
results show that while there are several traceability solutions for the existing
challenges, the applicability of the solutions due to practical constraints is still
limited and we conclude that further empirical studies on the applicability of
e.g, automated approaches in different contexts are needed.

The thesis further provides solutions for four challenges: (i) high manual
work involved in traceability management; (ii) lack of configurable tools; (iii)
diverse artifacts and tools used in software development; and (iv) unclear
traceability processes. While we investigated the challenges from two distinct
perspectives, process and tool perspective, the two perspectives are entangled
and tend to depend on each other. For instance, on the one hand, carefully
designing how the traceability activities will be carried out needs to take into
account the type of tools already used in the organization and on the other
hand designing traceability tools need to take into account how the tool will
support the different traceability activities.

With respect to the manual work involved in creating and maintaining
trace links, the thesis provides a set of important factors and guidelines for
maintenance aimed at both traceability tool developers and companies acquiring
traceability tools. These guidelines ensure that traceability management tools
support traceability maintenance efficiently and therefore reduce the work
needed to manually maintain trace links. Additionally, we provide a proof
of concept of how to apply these guidelines as well as demonstrate how a
traceability management solution can be designed to be configurable and
support diverse artifacts and tools. To incorporate automation in the creation
of trace links, we see the importance of having a semi-automated approach
where a human analyst vets the generated candidate trace links. This thesis
sheds some light on the vetting process by investigating how the vetting process
can be improved in two perspectives; studying which context information is
useful for the human analyst during the vetting process, and investigating the
impact of gamification on the task.

To enable the successful alignment of the traceability activities and trace-
ability tools, a carefully planned and and thought through traceability strategy
is required. In this thesis we identified that companies either struggle with
defining traceability strategies or let the traceability strategies emerge in an
ad-hoc manner therefore leading to ineffective traceability management that
is expensive and not necessarily beneficial [82]. The thesis proposes TracIMo,
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a traceability introduction methodology that consists of explicit steps and
activities companies need to take in order to define and deploy traceability
strategies. TracIMo is goal-oriented and therefore calls for identifying specific
goals of traceability for a company/project and defining a strategy towards
achieving those goals. TracIMo also insists on creating measurable goals to
facilitate understanding of how the goals are achieved and evaluation of the
existing traceability strategy in order to make improvements.

The results of the thesis can be used by both researches and industrial
practitioners. From a researchers’ perspective, we envision that the provided
state of the art and state of practice as well as the mismatch between challenges
and solutions can guide other researchers on which challenges of traceability
still need to be addressed. From a tool perspective, Eclipse Capra is an open
source tool that can be extended and used by other researchers who wish to
investigate different traceability concepts. The two studies on the trace link
vetting process shed light on how the vetting process can be improved but leave
a lot of open questions which could further be investigated in research projects.
Lastly, while we have investigated TracIMo in one case study, we believe that
the methodology can be used by researchers as a systematic way to conduct
other traceability related case studies in industry.

From a practitioners perspective, we envision that the state of the art as
well as state of practice described can help them learn about traceability and
existing solutions. The guidelines for traceability maintenance can be applied
by both companies developing traceability tools as well as companies aiming to
acquire traceability tools. The tool, Eclipse Capra can be customized and used
by companies who wish to acquire an open source traceability solution. The
studies on the vetting process show the importance of choosing the right role
when vetting trace links and this information is useful for practitioners when
they want to adopt semi-automatic techniques in their traceability practices.
Lastly, TracIMo can be used to systematically create, introduce and evaluate
traceability strategies in development organizations.
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Abstract
In the automotive domain, the development of all safety-critical systems has
to comply with safety standards such as ISO 26262. These standards require
established traceability, the ability to relate artifacts created during development
of a system, to ensure resulting systems are well-tested and therefore safe. This
paper contrasts general traceability challenges and solutions with those specific
to the automotive domain, and investigates how they manifest in practice. We
combine three data sources: a tertiary literature review to identify general
challenges and solutions; a case study with an automotive supplier as validation
for how the challenges and solutions are experienced in practice; and a multi-
vocal literature review to identify challenges and solutions specific to the
automotive domain. We found 22 challenges and 16 unique solutions in the
reviews. 17 challenges were identified in the case study; six remain unsolved.
We discuss challenges and solutions from the perspectives of academia, tool
vendors, consultants and users, and identify differences between scientific and
“grey” literature. We discuss why challenges remain unsolved and propose
solutions. Our findings indicate that there is a significant overlap between
general traceability challenges and those in the automotive domain but that
they are experienced differently.



42 CHAPTER 2. PAPER A

2.1 Introduction

Over the past 20 years, the automotive domain has witnessed a tremendous
increase of software deployed in cars. In today’s modern car, software consti-
tutes up to 40% of the production cost [90]. With upcoming trends such as
autonomous driving, the software is not only getting more complex but also
controls more and more safety-critical functions. The type of software has also
shifted from small isolated functions to systems that contain several functions
that interact and depend on each other [91]. Such complex systems can cause
life threatening accidents when not properly specified, designed, implemented
and tested. The number of artifacts produced during development (e.g., re-
quirements, design models, behaviour models, simulations and tests) is large
and their creation is usually distributed over various teams, including teams
from different companies due to OEM-supplier relationships. With regards to
the size of the systems, a typical high-end car consists of features that amount
to about 100 million lines of code. This is a very large number as software in
other domains has much less lines of code. For example, the F-22 fighter jet has
about two million lines of code and the Boeing 787 has around 14 million lines
of code [92]. In addition, not only is there a tremendous number of lines of code
in this domain but also a large number of other artifacts. For instance, the
specifications of the systems in a 2004 car had already reached 20000 pages at
that time [1]. This can be overwhelming if there are no standardized methods
established to keep track of these artifacts, their relationships, and how they
evolve.

In such situations, traceability plays an important role. In this paper,
we define traceability as the ability to relate artifacts created during the
development of a system, thus following [5]. Traceability helps in understanding
which artifacts are connected to each other and allows to keep track of which
features have already been specified, implemented and tested. Traceability
plays an even bigger role for maintenance tasks by facilitating change impact
analysis and improving understandability of the system for the developer who
needs to make changes in the system [85,93]. In the automotive industry, these
aspects are particularly important in light of safety standards that require
proof that safety requirements were specified, taken into account during the
design and development, validated in test cases, and verified through safety
analysis (see, e.g., [94, 95]).

In order to realize the benefits of traceability (and successfully argue their
safety cases), software development companies need to establish a traceability
strategy that is aligned with their goals. Defining and implementing a trace-
ability strategy is not a trivial task, since it requires a good understanding of
the artifacts to be traced as well as the ability to define meaningful links and
to make sure the created links are useful [10].

On the one hand, there exists a large body of knowledge on traceability;
for instance between 1999 and 2012, 70 studies on traceability were published
in just the Requirements Engineering (RE) conference [61]. On the other hand,
in practice traceability is either not established at all [96] or only established
since standards demand it [38]. In addition, it is unclear how the traceability
challenges in the automotive domain relate to general traceability challenges
and how they manifest in a practical environment of a company.
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The contribution of this paper is therefore to provide an exhaustive empirical
evaluation of traceability challenges and solutions in the automotive domain
that takes the specific characteristics of automotive software development into
account. To achieve this, we conducted a tertiary literature review, a case study,
and a multi-vocal literature review. This allows us to explore the traceability
problem in the automotive domain from both the practical and the scientific
perspective and provides insight into the challenges of traceability as they
present themselves in practice as well as solution approaches proposed by
academia, tool vendors, consultants, and the users of traceability themselves.
Our aim is to give insights on which challenges exist in this domain, the
spectrum of solutions available, and highlight difficulties experienced with
using some of these solutions in the automotive domain. Our study therefore
investigated the following research questions:

RQ 1: What are the general traceability challenges and solutions reported in
literature?

RQ 2: What are the particular traceability challenges and solutions in the
automotive domain?

RQ 3: Which of the reported traceability challenges in scientific literature and
non-scientific literature can be observed in practice in the automotive
domain and how have they been solved?

To obtain data for our study, we used three different data sources: a tertiary
literature review in which we reviewed 24 secondary publications on traceability;
a case study at an automotive supplier company; and a multi-vocal literature
review in which we reviewed a total of 245 scientific and non-scientific sources.
We found 22 challenges from the literature of which 17 were also found in our
case company. Five of the challenges have been solved with solutions proposed
in literature, six are partially solved while six remain unsolved even though
there are proposed solutions in literature.

This paper extends our work reported in [97] in which we discussed challenges
related to creation, maintenance and exchange of traceability by also discussing
traceability challenges related to preparation and planning for traceability
and the use and measurements of traceability. We have also added the multi-
vocal literature review as an additional data source and extend our results
and discussion with this new trove of information. Furthermore, we review
persisting challenges in detail and give an overview for solutions viable in the
automotive domain.

The rest of the paper is structured as follows: Section 2.2 describes trace-
ability requirements in the automotive domain and our research method is
described in detail in Section 2.3. Sections 2.4 to 2.7 present the challenges
and solutions and describes them from the perspective of the tertiary and
multi-vocal literature and how they relate to the case company. Section 2.8
provides a discussion of the results. Limitations of the study are discussed in
Section 2.9, Section 2.10 discusses related work, and Section 2.11 concludes
the paper and outlines future work.
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2.2 Traceability Requirements in the
Automotive Domain

In this domain, traceability requirements are imposed by the ISO 26262 [75] –
a functional safety standard for road vehicles – and ASPICE [65] – a process
assessment model specific to the automotive domain. Both the ISO 26262
and ASPICE prescribe the use of a V-model process lifecycle for product
development of embedded systems. The traceability links required are shown
as dotted lines in Figure 2.2. It is important to note that due to the overlap
in ASPICE and ISO26262 [98], these standards are usually used in companies
to complement each other, rather than as two separate alternatives. Since
ASPICE is a process assessment model, it can, e.g., be used to assess the
maturity of a process with extensions that also cover the safety critical aspects
prescribed in ISO26262 [99]. In summary, both standards impose the following
with respect to traceability:

Vertical traceability: Artifacts must be traceable to their children and the
children should be traceable to their parents (bi-directional traceability).
An example of this is that a requirement should be traceable to architec-
tural artifacts (structural and behavioral) that realise it and to the code
associated with these artifacts. It should also be possible to trace from
the code to architectural artifacts and back to the requirement.

Horizontal traceability: This means that it should be possible to trace
from artifacts on the left side of the V-model to their verification artifacts
(such as tests or safety analysis) on the right side of the V-model. In
addition, traceability links should be created and maintained between
any recorded change requests and the work products affected by them to
enable change impact analysis.

From a traceability point of view, the main difference between the two is
that ISO 26262 requires traceability to be established between safety-related
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artifacts, i.e., it requires defining links from hazards to safety goals, to safety
requirements, to the structure and behavior of these safety requirements, to
the code and to tests that are responsible for testing all the safety artifacts.
ASPICE on the other hand requires traceability for all artifacts, even if they
are not safety-related. Another difference is that while the ISO 26262 standard
recommends bi-directional traceability, it is deemed mandatory in ASPICE.
The term “recommended" in ISO 26262 implies that companies are free to
choose other alternatives to show that the requirements have been fulfilled.
Additionally, the ISO 26262 standard requires the artifacts to be versioned and
have unique identifiers in order to be traceable.

Apart from the requirements imposed by the standards, traceability pro-
cesses and tools in this domain need to deal with characteristics such as
complexity, longevity, and variability of the products as well as the distributed
development environment. In this situation, traceability can, e.g., help with
program comprehension [100], to allow change impact analysis [101], and to
document rationale and design procedures [86]

2.3 Research Method
The aim of our study is to get an understanding of the traceability problem in
the automotive domain and thus to answer the following research questions:

RQ 1: What are the general traceability challenges and solutions reported in
literature?

RQ 2: What are the particular traceability challenges and solutions the auto-
motive domain?

RQ 2a: What are the challenges and solutions regarding traceability
when addressing the demands of automotive standards ASPICE and
ISO 26262?

RQ 2b: What are additional relevant traceability challenges and prac-
tices in the automotive industry?

RQ 3: Which of the reported traceability challenges in scientific literature and
elsewhere can be observed in practice in the automotive domain and how
have they been solved?

To answer these research questions, we collected data from general and
specific scientific literature, from a case study and from specific non-scientific
literature. To achieve this, we used three types of research methods: a tertiary
literature review, a case study with an automotive supplier, and a multi-vocal
literature review. The tertiary literature review provided data on the challenges
and solutions in the literature (RQ 1). The multi-vocal literature review allowed
us to include information about challenges and solutions that were not reported
in scientific literature and were thus not covered in the tertiary literature review
(RQ 2a and RQ 2b, RQ 3). Since the adoption of standards in the automotive
domain is evolving quickly, RQ 2a addressed this topic specifically. We regarded
RQ 2b as an auxiliary research question, designed mainly to provide us with
additional material that does not mention the automotive standards. The case
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study provided data on which challenges exist in practice and their solutions if
any (RQ 3).

2.3.1 General Guidelines and Scope

We conducted the tertiary literature review according to the guidelines in [102],
the case study according to the guidelines proposed in [64] and the multi-
vocal literature review according to the guidelines proposed in [103]. Before
conducting these studies, we defined the scope relevant to us and which all
three data sources cover. Our scope (depicted in Figure 2.2) indicates that
we distinguish four different traceability categories (Preparation and Planning,
Establishment, Outcome and Exchange) which are inspired by the generic
traceability process model defined by Gotel et al. [10]. We used this model
because it contains most of the activities needed for establishing traceability.
This model is also well-known in the traceability community and since, its
definition has been used in other research, (e.g., in [34,55,104]) as a basis for
understanding and describing traceability.

In the model, the Preparation and Planning category, focuses on the pro-
cesses and tools involved when preparing to include traceability in a company
or a particular project. The Establishment category deals with the processes
and tools involved in the actual creation and maintenance of traceability links.
The Outcome category focuses on how the links are stored and how they are
actually used after they have been established. Since we are studying the
automotive domain where the OEM-Supplier relationship means that artifacts
are exchanged between companies, we added a fourth category called Exchange
where we discuss challenges of exchanging traceability within and between
organizations.

The details of the tertiary literature review are described in Section 2.3.2,
those of the multi-vocal literature review in Section 2.3.3, and those of the case
study are described in Section 2.3.4. The entire research process is summarized
in Figure 2.3.
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Figure 2.3: Summary of the Research Method

2.3.2 Tertiary literature review
Our tertiary literature review followed the guidelines for conducting a systematic
mapping study as proposed by [102]. The guidelines indicate that a systematic
literature study should include five steps which are Definition of research
questions, Conduct search, screening of papers, Keywording using abstracts and
Data extraction & mapping process. The subsections below describe how these
steps were carried out in our study.

2.3.2.1 Definition of Research Questions

Our aim is to identify both general traceability challenges and solutions from
the literature study that we can later compare to the specific challenges and
solutions in the automotive domain from the multi-vocal literature review and
the case study. Therefore our literature study has to answer the following
research question:

RQ 1: What are the general traceability challenges and solutions reported in
literature?

2.3.2.2 Conducting the Search

Since this is a tertiary literature review, our aim was to find literature reviews
published on traceability in the domain of computer science. We searched three
databases : Scopus, ACM Guide and IEEE Xplore. The search strings used
are shown in Table 2.1. This search led to a total of 522 papers which were
reduced to 370 by removing duplicates.

2.3.2.3 Screening of Papers

By reading the title and abstract, we selected papers that are relevant to our
study using the following inclusion criteria:.
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[a] The paper reviews literature on traceability.

[b] The paper is published in a peer-reviewed venue.

[c] The paper is in the field of computer science.

[d] The paper mentions challenges and solutions of traceability and gives a
description of these challenges and solutions.

[e] The paper is in English or German.

The initial screening in which we read the title and abstract left us with 27
relevant papers. After this we further read the introduction and conclusion of
the papers and excluded eleven more papers because they did not fulfill criteria
number one or four. From the remaining 13 papers we used both forward and
backward snowballing to look for papers that specifically addressed challenges
of traceability. We limited our snowballing to papers published between 2007
and 2017 to ensure that we get current traceability challenges. This led to
an addition of eleven more papers. In the end, we had identified a set of 24
relevant papers.

2.3.2.4 Data Extraction and Classification

We examined all 24 papers, extracted all the challenges and solutions they
report and listed them in a spreadsheet. After this process, we reviewed all the
challenges in the list and placed each challenge in the best-fitting sub-category
in the conceptual model shown in Figure 2.2. At this stage, we observed that
some of the challenges could be placed in more than one sub-category (for
instance, the challenge of Manual work could be placed in both the creation
and maintenance sub-category). We therefore merged these sub-categories.
Afterwards we reviewed the challenges and discovered that they could be
further distinguished by challenges about technical issues in particular with the
tool support, human factors that involved employees, and the organisational
setting and established processes. Therefore we divided the merged category
of creation and maintenance into three sub-categories: tool support, human
factors and organisation and processes. Additionally, in the Preparation and
Planning category, all of the challenges found were related to the general
understanding of traceability. We therefore merged the three sub-categories
(Purpose of trace links, trace link types and artifact types) into one category
“knowledge of traceability". It also became clear that the distinction between
company-internal and external Exchange of Traceability was not helpful, in
particular since a Lack of coordination could be found in both sub-categories.
The Outcome category remained the same as in our conceptual model.

2.3.3 Multi-vocal Literature Review

To answer the sub-research questions on practices for traceability in the au-
tomotive domain (RQ 2a and RQ 2b), we use a multi-vocal literature review
(MLR) [103]. This strategy allows us to include non-academic sources (some-
times called “grey literature”). Since many practitioners do not publish their
experiences in scientific venues, but do publish whitepapers, write blog entries,
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or give presentations at trade shows and conferences, this allows us to better
grasp the current state of the art and practice. Due to the large number of
sources, this approach requires very strict selection criteria for the sources.
We have detailed these criteria below. We used SCOPUS, IEEE Xplore and
ACM Guide as sources for scientific literature and Google Web Search to find
non-academic sources.

We used the general protocol suggested in [105] for the MLR. It contains
three stages of evaluation and combines systematic and “opportunistic” discov-
ery. While the former form of discovery is covered by the searches in scientific
databases and Google Web Search, the latter includes papers that were recom-
mended by colleagues, the results of snowballing, or discoveries of sources that
were otherwise incidental and not part of the systematic search. The evaluation
is based on the source title, teaser text, and quickly following the link to check
the source (Stage 1), the entire text (Stage 2), and an assessment of the overall
quality of the source (Stage 3).

2.3.3.1 Definition of Research Questions

Our aim is to find traceability practices relating to standards compliance in
the automotive industry and challenges and solutions to traceability that are
not reported by the scientific literature. We therefore use the MLR method to
answer the following research questions:

• RQ 2a: What are the challenges and solutions regarding traceability
when addressing the demands of automotive standards ASPICE and ISO
26262?

• RQ 2b: What are additional relevant traceability challenges and practices
in the automotive industry?

The data collected in the MLR will also support our answers to RQ 3: Which
of the traceability challenges reported in scientific literature and non-scientific
literature are also evident in practice in the automotive domain and how have
they been solved?

2.3.3.2 Conducting the Search

As mentioned above, we use Google Web Search to look for non-scientific
sources. In order to keep the number of results manageable, we let Google filter
redundant entries. The number of results Google reports on the first page of the
search results indicates the total number of hits in the index. The final number
(after filtering) becomes evident when going through the search results page
by page and navigating to the final results page1. We used Google Search for
our campus location (Gothenburg, Sweden) in early-to-mid August 2017. The
search for RQ 2a was conducted with a fresh user profile without any cookies
or history in Google Chrome to avoid influencing the results through tracking
cookies. The search for RQ 2b was conducted with a simple command line
script, again avoiding any tracking. Searches for RQ 2a and RQ 2b have been

1For a more technical discussion of this filtering, please refer to https://support.google.
com/gsa/answer/6329272. In essence, Google filters duplicates and only displays the two
most relevant similar pages on the same domain.
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performed with different IP addresses to also avoid tracking of this information.
The search terms have been intentionally kept vague to increase the breadth
of the found sources, even if this increased the effort for the screening of the
sources.

To answer RQ 2a, we combined the two pre-dominant process standards
Automotive SPICE and ISO 26262 with the term traceability. Google Web
Search reported approx. 34700 results in its index. When browsing through the
result pages, the total number of hits is 263. We exported the search results to
a spreadsheet and enriched it with meta-data as described below. The number
of search results for scientific sources was significantly smaller, with a large
overlap between the data bases. The exact search terms and result numbers
are shown in Table 2.1:

To answer RQ 2b, we used a very general core search term (“automotive
traceability”) that we paired with exclusion terms to reduce the number of hits
(cf. Table 2.1). For the Google Web Search, we also included German search
terms to look for information provided by the sizable German automotive
industry. This was not done for scientific literature since the used databases
focus on English language literature. As there is no unique German translation
for “traceability”, we use different options that have been used in literature
based on a preliminary search: “Nachverfolgbarkeit”, “RÃĳckverfolgbarkeit”,
and “Verfolgbarkeit”. Unfortunately, these terms are not only used in the
context of software, but also in the context of being able to trace work pieces
in a manufacturing process or products in a supply chain. We thus decided
to refine the search term to exclude these irrelevant results. Based on a pre-
liminary sighting of results, we excluded the terms “Manufacturing”, “Food”,
“Laser”, “Barcode”, “supply chain”, “logistics chain”, “lot tracking” “Chargen-
rÃĳckverfolgung”, and “rfid”. This increased the relevance of the search results
significantly. Since we were interested in traceability challenges and practices
that are currently relevant, we reduced the relevant time span for scientific
literature to 2008 to 2018.

As for the data for RQ2a, we exported the search results to a spreadsheet
and enriched them with meta-data. To check if there were additional reports
by automotive OEMs that we did not pick up through this search, we also
searched for combinations of OEM names with traceability and its German
counterparts. No additional sources were found this way.

2.3.3.3 Screening of Sources

We screened the papers in three stages, similar to the way described in [105]. In
Stage 1, we excluded sources based on the title of the page and the description
by Google Web Search and followed the link to determine if the information was
accurate, which type of source we dealt with, and if the source was available. In
Stage 2, we regarded all available information about the source, i.e., its full text
and its meta-data (e.g., which website the source was found on, the authors
if they were identifiable). In Stage 3, we evaluated the quality of the source,
successively excluding sources that did not provide useful information. This
exclusion was mostly focused on deciding whether criteria 1 to 6 below were
met. Since the process was highly context-dependent, it is difficult to describe
the exact criteria used. Possible exclusion candidates were therefore marked by
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one researcher and then confirmed (or overruled) by another in order to ensure
unbiased results. The inclusion criteria for stages 1 and 2 were as follows:

[a] The source provides first-hand information and is not an encyclopedic
article (such as Wikipedia)

[b] The source needs to be publicly available (i.e., not behind a paywall
inaccessible by researchers or only available on request)

[c] The source is in written format (e.g., not a video or an audio file)

[d] The source is written in English or German

[e] The source has not been considered previously (to avoid duplicates)

[f] The source was not written by the authors of this paper (to avoid all
sources that are directly related to our own research and could therefore
be perceived as biased)

The inclusion criteria for stages 2 and 3 were different depending on the
research question:

[a] (RQ 2a) The source discusses approaches to traceability based on the
standards and does not only mention them as motivation.

[b] (RQ 2a) The source provides information about traceability concepts in
the context of the standards (and does not, e.g., only advertise function-
ality of a tool 2 or describe the need for traceability).

[c] (RQ 2a) The source refers to important standards in the automotive
industry.

[d] (RQ 2b) The source discusses traceability practices in the automotive
industry.

[e] (RQ 2b) The paper discusses traceability in a software development
process (as compared to, e.g., traceability of the origin of parts used in
the manufacturing of a vehicle).

2.3.3.4 Data Extraction and Classification

As part of the enrichment with meta-data, we identified the provenance and
type of the source. Possible values for provenance – describing to which group of
people the authors of the source belong – were academia, tool vendor, consultant,
user, standardisation body, agency, student, Open Source Community, mixed,
and unknown. As a source for this information, we used the stated affiliations,
the website the source was found on, or meta-data provided with the source.
In case the provenance was not obvious from the source directly, author names
were identified and used to search for their affiliations. In case the affiliation
of the authors was with a company that fit several of the possible values for

2While we acknowledge that tools play an important part for traceability, pure marketing
material does not describe practical applications and uses.
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provenance (e.g., a tool vendor that also engages in consultancy services), we
selected the one that fit the type of the source best.

We identified a large number of different source types. Among the most
prominent were whitepaper, presentation, tool documentation, blog entry, job
posting, course announcement, tool description, and manual. An overview of
the frequency of provenance and source types is given in 2.11.

There is overlap between the search results for RQ 2a and RQ 2b. Of the
659 sources totally regarded for RQ 2b, 78 were already analysed for RQ 2a.
The number of sources in German is relatively low with a total of 33 out of the
659 considered. Of these 33, 17 were considered relevant and are included in
the analysis. Overall, 125 and 120 unique sources were considered for RQ 2a
and RQ 2b, respectively.

The data collected for both sub-RQs has been analysed together to answer
the over-arching RQ 2. The overlap between the found sources and the relative
semantic proximity of the search terms makes a joint analysis prudent. The
same codes have been used in both cases to identify challenges and solutions
as well. Two researchers engaged in this activity. The starting point for
coding challenges were the codes identified in the tertiary literature review
(cf. Section 2.3.2). Codes for solutions were emergent and refined in several
rounds of discussions between the researchers. Cross-checking was performed
and edge cases were reviewed and discussed. Sources excluded as off-topic or
containing no challenges or solutions by one researcher were reviewed by a
second researcher to avoid accidental exclusion of relevant material.

2.3.4 Case Study Design

As previously mentioned, the case study followed the guidelines reported in [64].
The aim of the case study was to provide empirical evidence of the challenges
and solutions found in the literature, show how these challenges manifest
in practice and identify new challenges that were not reported in literature.
Furthermore, the study provided context for the challenges and solutions
found in both the tertiary review and the multi-vocal review and therefore
provided data to answer RQ 3: Which of the reported traceability challenges in
scientific literature and non-scientific literature can be observed in practice in
the automotive domain and how have they been solved?

2.3.4.1 Case and Subject Selection

The study was conducted in one of the world’s largest suppliers of automotive
components located in Germany. The company is multi-national which means
that development is distributed in various locations. The company develops var-
ious types of automotive components ranging from hardware-only components
to software-only components to embedded systems which include a software
deployed on a certain hardware component. For this study we were interested
in traceability during automotive embedded systems development.

Our case study has two units of analysis within the same company: two
departments both developing embedded systems at the company. Since our aim
was to investigate how traceability challenges manifest in practice, we selected
these two departments because they already implement traceability in their
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projects and develop safety-critical embedded systems for which traceability
is a mandatory requirement. The two departments were also interested in
improving their traceability practices, thus the topic was relevant and of interest
to them. To be able to understand how traceability is implemented throughout
the development life cycle, we conducted the study with seven participants in
the following roles: two senior experts working on traceability (one from each
department), four software system architects (two from each department) and
one functional developer who belongs to one of the departments. We selected
these roles in order to get a full picture on how development is done from
when a requirement is received to when it is implemented and tested. The first
role of senior expert is responsible for understanding what traceability needs
the department has, surveying feasible solutions, acquiring these solutions
and making sure that they are used in the department. The second role,
system architect, is responsible for receiving requirements from the customer,
breaking them down and assigning them to development teams. This role is also
responsible for managing the architecture of the systems that the department
is developing. The last role, developer, is responsible for implementing the
features and testing them. In one department, the role of developer and tester
are split into two separate roles assumed by separate people.

2.3.4.2 Data collection procedure

We collected data through observing demonstrations and conducting semi-
structured interviews. Observations enabled us to understand the development
process and how traceability activities are carried out and the semi-structured
interviews enabled us to gather comparable data on the challenges. The model
describing the scope of our study and interview questions were sent to the
participants a week before the study took place. This was to allow them time
to prepare for the demonstrations and interviews. For each participant, we
started with the participant giving a demonstration on how they implement
traceability using the scope model as a guide. This was followed by a semi-
structured interview. The interviewer only asked questions which were not
answered by the demonstration part. Due to legal issues, the interviews were
not recorded but the interviewer took notes. The interviews and observation
for each person lasted between 90 minutes to four hours with breaks in between.
The longer sessions were with senior experts who explained and demonstrated
the traceability process in detail. The interview guide for these interviews is
available online3.

2.3.4.3 Analysis procedure

The data analysis started immediately after the observations and interviews
were completed. This was to ensure that all relevant information was recorded
for later analysis since the interviews were not recorded for legal reasons.
The interviewer drafted a summary of the sessions and what was learned
from the study and presented it to one of the senior experts for confirmation.
During this presentation, the interviewer described the development process
and outlined the challenges that were learned from the interview. The senior

3https://tinyurl.com/ycjrqal4
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Figure 2.4: Summary of Traceability Challenges. The solved challenges have a
green background, the partially solved challenges have a yellow background
and the unsolved challenges have a red background. The challenges that have
no background color were only in the literature and not identified in the case
study. This means that the data collected was not sufficient to say if these
challenges exist in the company. The directed arrows mean that one challenge
leads to the presence of another challenge.

expert could then confirm the findings or correct the findings when things were
misinterpreted by the interviewer. The senior expert could also ask questions at
any time during the presentation. This exercise led to few changes, indicating
that most of the initially collected information was correct. After this, we
went through the interview notes and identified the challenges. We used the
categories in the interview model as analysis codes and placed each challenge
found in the appropriate category.

2.3.5 Results

In the next sections (Section 2.4 to 2.7) we report findings both from the
tertiary literature review, the multi-vocal literature review, and the case study
separated by the categories we also used to scope our case study (cf. Figure 2.2).
The challenges are summarized in Figure 2.4. In the figure, we also include
the relationships between the challenges we discovered during analysis. The
arrows is indicate the dependencies between challenges: if one is present then
the other is also likely to be present. We describe each challenge, discuss it
and its solutions in the context of both the tertiary literate review and the
multi-vocal review and then compare them with the challenges and solutions
at the company.
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2.4 Results: Preparation and Planning

This section describes the challenges and solutions that are encountered when
companies are preparing to include traceability either in a specific project
or the entire company. Such challenges are concerned with the availability
and perception of knowledge about traceability by managers, engineers and
developers.

2.4.1 Knowledge of Traceability

We found four challenges related to knowledge about traceability in the liter-
ature. All four were also found at the company. Two of the challenges have
been solved while two have only been partially solved using work-arounds.

2.4.1.1 Lack of Knowledge about and Understanding of
Traceability

Description: In order to prepare and plan for traceability in a company, both
the managers and developers need to have an understanding of what traceability
is and its purpose. This understanding also needs to be aligned, meaning that
all the people in the company should have a common interpretation of what
traceability is. For companies, if the concept of traceability is not clear, then
the chances of failure are high.

Challenge and its Solutions in Secondary Literature: This chal-
lenge has been reported by nine papers from our tertiary review [8, 34, 38,
61, 106–110]. In [34], for instance, the authors report that some companies,
especially those not working in a safety-critical domain, have no notion of the
term traceability. Another issue is that different individuals in the company
have a different understanding of the purpose of traceability [8]. The most
common is that managers see it as a mandatory task that needs to be done for
certification purposes while developers perceive it as bureaucracy and a waste
of time [38, 108]. In some cases where traceability tools are well-established,
developers may perceive it as important and useful for tasks such as impact
analysis [107]. The literature proposes that in order to achieve a common
understanding of traceability among all stakeholders, training is important.
Early on, the company should invest some time and effort to train its employees
on purposes and practices of traceability. The training should also discuss
semantics of traceability links, completeness, traceability link quality, and other
topics [108].

Challenge and its Solutions in the Automotive Domain: This chal-
lenge was reported 13 times in the the multi-vocal review. In most cases, it
was reported in the context of stakeholders in the automotive domain not
understanding what kind of traceability is required by the different standards
such as ISO 26262 and ASPICE. This is because the standards do not define
how traceability should be established concretely (e.g., [111, 112]). It is also
not clear how traceability should evolve in the course of the project (e.g., [113].
Training is also suggested as a solution (e.g., [114] and [115]). Furthermore it
has been suggested that certification bodies should provide some guidelines on
how to properly establish traceability (e.g., [116,117]).
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Comparison to Case Company: This challenge exists at the company
but has already been solved. Given that the company operates in a safety-
critical domain, employees are already aware of the concept of traceability.
They base their understanding of traceability on the requirements defined by
the safety standard they need to comply to (ASPICE). They even have expert
roles whose job is to understand what the standards require, form a strategy
on what they need to do to comply, and communicate this to the rest of the
company.

2.4.1.2 Difficult to Define Information Model for Traceability

Description: Traceability links can be of different types depending on their
purpose and which artifacts they connect. The link types can differ from
domain to domain. Traceability link types are usually defined in what is known
as a traceability information model. It can, e.g., take the form of a meta-model,
a database schema, or an ontology. Link types can be generic and carry little or
no semantics (for instance a link type called “related_to" that allows connecting
arbitrary artifacts) or they can be specific and carry meaningful semantics (for
instance a link type named “tested_by" that can only connect a requirement
and a test in the sense that the requirement is tested by the connected test).
Defining traceability links with domain specific semantics is advantageous as
it allows for analysis of the links based on the semantics. In order to define
the traceability information model, one needs to understand which types are
needed and useful in the specific domain, company, or even project. These
needs can evolve over time as well. That makes it difficult to reuse existing
information models and to settle on an information model that will remain
fit-for-purpose over a longer period of time.

Challenge and its Solutions in Literature: This challenge was re-
ported by seven of the papers [5, 8, 22,34,109,118,119]. One of the solutions
proposed is to define a standard traceability information model [5] after ob-
servations in various companies. This model can indeed be used as a starting
point for companies to define their traceability metamodel. However, since
this is a domain-specific problem, another solution proposed is to document
domain-specific guidelines on how to define metamodels [8]. This can be done
through reporting case studies or experience reports.

Challenge and its Solutions in the Automotive Domain: Seven of
the sources in the multi-vocal literature report this challenge. Development
companies find it difficult to define a traceability information models especially
for tracing to non-functional requirements [120] and product line artifacts [121].
In some cases the companies have no traceability information model at all [113].
Solutions to this challenges are to have evolvable semantics [116], which means
that the traceability information model can be designed in an iterative manner
and evolved until it is sufficient. Another solution is to derive the traceability
information model from the development process by analysing the process and
the involved artifacts [122].

Comparison to Case Company: At the company, this challenge exists
and it is partially solved. In both departments, the traceability metamodel
has already been defined following the ASPICE standard (cf. Figure 2.2).
However, the links are designed specifically to adhere to this standard and it is
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not clear if these link types assist developers in their development activities.
The standard also does not have any guidelines for which links should be
created, for development paradigms such as product line development. The two
architects interviewed reported that the company has product lines with many
variants but they do not know how to include traceability links that take into
account variability. This is because the traceability information model defined,
does not take into account concepts of variability. Another issue that is not
addressed in the standard is how to trace to non-functional requirements such
as performance and security. The plan in the company is to use the current
metamodel and collect data from its users on what is missing or which links
are not working in order to evolve the model.

2.4.1.3 Level of Granularity

Description: When designing and planning a traceability concept in a com-
pany or even a project the level of granularity on which the traceability links
should be created on, has to be defined. For instance, a decision must be made
if a requirement should be linked to a test file, a test case, or a particular
line of code in a test case. This is a challenge, because, if the links are too
coarse-grained, they do not provide sufficient detail. If they are too fine-grained,
however, their number can become overwhelming and confusing to the end
users.

Challenge and its Solutions in Literature: This challenge was re-
ported in three studies [110, 118, 123]. The solution suggested is that the
granularity of the links should be defined explicitly in the traceability informa-
tion model and the traceability links should be checked regularly to ensure that
the links are created with the right level of granularity. This solution however
does not suggest which level of granularity a project or company should use.

Challenge and its Solutions in the Automotive Domain: This
challenge was reported by 17 sources from the multi-vocal review. The main
problem is that at different phases of the system development (requirements
engineering, design, implementation etc.) artifacts are defined at different levels
of abstraction. This also makes it difficult to determine which abstraction level
is appropriate for linking as the mapping from the different development phases
is not one to one. For instance, when linking from requirements to architectural
components, one has to decide whether to link to high level components of
the system or to detailed classes within the components. The multi-vocal
review did not point to any solutions to this challenge except that a lot of
experience with traceability is important in order to determine the right level
of granularity [124].

Comparison to Case Company: At the company, this was observed as
a solved challenge. The company adopted the level of granularity implied by the
V-Model as suggested by the ASPICE standard. The system requirements are
derived from customer requirements. The system requirements are then broken
down into functional requirements which could be software requirements or
hardware requirements. Software requirements are further refined into detailed
software requirements. The developer is then assigned a detailed software
requirement for implementation. Traceability links are created from customer
requirements to software requirements to detailed software requirements. The
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detailed software requirement is then linked to an implementation file that
actually contains the code. The detailed software requirement is also linked to
a test.

2.4.1.4 Unclear Traceability Process

Desciption: Establishing a traceability strategy requires a traceability process
(how links are created, used, and maintained) to be put in place. Such a
traceability process should be aligned with the software development process
that already exists in the company. It is important for the traceability process to
refer to work products of the existing development process. This process should
also define roles and responsibilities regarding traceability in the company. If
such a process does not exist or is vaguely defined, links will be created in an
ad hoc manner which results in low link quality.

Challenge and its Solutions in Literature: Ten of the papers reviewed
report this as a challenge [9, 14, 22, 38, 107,109,110,119,123,125]. In [123], the
authors propose that the solution is to create a traceability process based on
the traceability metamodel defined at the company. This process should be
documented and communicated to all stakeholders early on. Managers should
be assigned the role of making sure that this process is followed. In [22], the
authors propose putting in place an automated process of creating traceability
links by generating skeletons of artifacts from requirements and their traceability
links and let these skeletons be filled as development goes on.

Challenge and its Solutions in the Automotive Domain: This
challenge was reported by 28 sources from the multi-vocal review. In the
automotive domain, standards that need to be followed have an impact on
how the traceability process should be defined. Sometimes there is a mismatch
between the standards’ requirements and the process at the company which
makes defining the traceability process difficult [116]. Solutions proposed are to
use the standards to derive a traceability process [126]. This way the company
can be sure of its compliance. Another solution is to make sure that the
defined traceability process is enforced in order to avoid traceability tasks being
performed too late in the development and in an ad hoc manner (e.g., [117,127]).
Moreover, having tool support such as an integrated tool platform where all
development activities are done or a structured way of defining artifacts also
helps to solve this challenge [128].

Comparison to Case Company: At the company, this challenge exists
and has been partially solved. A traceability process already exists and although
it is a completely manual process, the developers and architects are aware of
which links need to be created based on the breakdown of the requirements
as discussed previously. In one department, the requirements are defined as
use cases and therefore traceability links are created from use cases to design,
implementation and tests. In the other department, the requirements are
defined as user stories and therefore the links are created from low-level user
stories to design, implementation, and test. This challenge is partially solved as
there are currently no roles that can check if the process for creating traceability
links was followed. Sometimes during review meetings, flaws of traceability
links can be detected and fixed.
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2.5 Results: Creation and Maintenance

This section reports on challenges that are associated with the activities of
creating and updating the traceability links. The challenges are divided into
three categories: tool support, human factors, and organization & processes.

2.5.1 Tool Support

We found five major challenges in the literature which were reported in this
category. Four of these challenges were also found at the case company. On
further analysis only two of these challenges have been solved, one has a
workaround solution, while two of them still remain unsolved.

2.5.1.1 Lack of Configurable Tools

Description: Traceability needs can greatly differ from company to company
and even from project to project. Therefore, providing a tool that can only be
used in a specific context is a limiting factor. It is crucial for tools to allow
for customization in terms of link types, supported artifact formats, reporting,
selection of relevant information, etc.

Challenge and its Solutions in Literature: This challenge was reported
by six studies in our review [8, 34, 38, 80, 108, 129]. The solution described is
urging developers of traceability tools to take into account how flexible the tool
should be. For instance traceability tools should be flexible in a sense that they
allow definition of custom links, allow linking to arbitrary artifacts, be able
to define which reports should be created from the links and so on. The more
flexible the tool, the better companies can tailor it to fit their project needs.

Challenge and its Solutions in the Automotive Domain: From the
automotive literature, this challenge was reported by 13 sources. Most of these
sources report that tools do not support the definition of custom traceability
links with rich semantics. The solution suggested for this challenge is similar
to the ones from the tertiary review. Traceability tool vendors need to design
flexible traceability tools that are highly customizable (e.g., [130]).

Comparison to Case Company: This is one of the challenges that
the company has solved. For requirements management, they have adopted
DOORS4, a tool that is flexible and allows for definition of custom traceability
links. Out of the box, the tool allows defining custom link types between
requirements. Other artifacts that are stored outside the tool can be linked
through OSLC5 (Open Services for Lifeycle Collaboration) which is a standard
for sharing artifacts across tools. For artifacts that do not have OSLC repre-
sentations, special attributes in the requirements can be defined to store IDs
or names of artifacts that are outside the tool. While OSLC enables creating
links to artifacts in external tools, maintaining consistency of these external
links is a challenge as when artifacts evolve in their tools, the changes are not
propagated to other tools for the links to be updated accordingly.

4http://www.ibm.com/software/products/en/ratidoor
5http://open-services.net
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2.5.1.2 Confidence in Tool

Description: Development companies need to have confidence in the traceabil-
ity tools that they acquire. One way to establish this confidence is to use tools
that have been certified for specific standards. Such a certification provides
evidence that the tool works as expected and does not, e.g., introduce errors in
the safety analysis that could lead to an unsafe product. It is also important
to make sure that the tool is scalable since large and complex systems with a
large number of traceability links are common in such domains.

Challenge and its Solutions in Literature: In the tertiary review,
three of the sources report this as a challenge [34], [80], [125]. Two aspects
have been discussed: 1) companies have problems finding tools that will enable
them to be adhere to the necessary safety standards [125]; 2) companies have
no confidence in the scalability of the tools they acquire as they have not been
used in large-scale development [34], [80]. There are no concrete solutions
suggested for this except that tool vendors should design flexible and scalable
tools [8].

Challenge and its Solutions in the Automotive Domain: Only four
of the multi-vocal literature report this challenge. In the automotive domain
where requirements can be up to 2000 pages, it is unclear whether existing tools
will scale to this level ( [131]). Furthermore companies have to be sure that
the tools they acquire will support them in being compatible to the different
safety standards. To address the confidence challenge in terms of adherence to
safety standards, tool vendors now provide solutions that are certified for these
respective standards already (e.g., Polarion [132] and Jama [133] are both ISO
26262 certified).

Comparison to Case Company: This challenge was not reported at
the case company.

2.5.1.3 Inaccessibility of Artifacts

Description: When creating or updating a traceability link, it is crucial to
have access to the artifacts that need to be connected by the traceability link.
In a situation where a project contains a large number of artifacts, tool support
is needed to assist in locating the different artifacts. It is also important for
traceability information to be accessible by different tools.

Challenge and its Solutions in Literature: Only two of the reviewed
papers mentioned this challenge [14, 104]. The solutions proposed is that
the company, through tools, should ensure that users have all the necessary
information and proper access to the artifacts needed to create traceability
links. Tools should provide features such as search by ID or search by keywords,
to make it easy for the users to find the artifacts they need.

Challenge and its Solutions in the Automotive Domain: Only 7
of the multi-vocal sources report this challenge. The proposed solution is to
collect all relevant development information in a centralized data storage.

Comparison to Case Company: For the case company, this challenge
is partially solved as the tools used have the ability to search for and locate
specific artifacts in an easy way. For traceability links involving artifacts stored
in different tools the user still needs to copy the ID manually from one tool to
another. While users have access to the artifacts needed due to the presence
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of centralized storage with appropriate access rights, it is still not possible to
access traceability information stored in the requirements management tool (in
this case DOORS) directly from other tools.

2.5.1.4 Diverse Artifacts and Tools

Description: In the software development life cycle different tools are used for
the different development activities such as requirements engineering, system
design and so on. This means that artifacts are of different formats. Fur-
thermore the artifacts specified in the different tools can contain redundant
information which leads to inconsistencies when the system evolves as only some
of the artifacts are updated. Development artifacts, especially requirements,
can also be specified in various languages. Most traceability tools either do not
support linking to artifacts located outside the tool or only support linking to
specific tools or specific formats.

Challenge and its Solutions in Literature: Ten of the reviewed studies
report this challenge [5, 8, 14, 22, 38, 80, 107, 108, 119, 134] From the studies,
there are two different solutions for this challenge. The first option is to use an
integrated tool platform that supports all the development activities. A user
can interact with heterogeneous artifacts in such an environment using the
same user interface and functionality. It includes traceability functionality and
the ability to create traceability links between these heterogeneous artifacts.
The second solution is tool integration where all existing tools are integrated
so that it is possible to exchange information about the heterogeneous artifacts
and create traceability links between them. This is however not a trivial task
and requires a considerable effort, especially if there are many tools that need
to be integrated [26].

Challenge and its Solutions in the Automotive Domain: This
is the most reported challenge by the multi-vocal literature. It has been
reported by 74 sources, where two of them report that in German automotive
companies, some requirements are in English while others are written in
German which further complicates traceability [112, 135]. Two of the solutions
proposed are similar to what was proposed in the tertiary review. An additional
solution is to define all the artifacts in a structured way so that they can be
easily traced. This can be done for instance by specifying artifacts as formal
models (e.g., [136]), tagging artifacts with traceable tags (e.g., [137]), by
enforcing naming conventions (e.g., [138]), or by using an integrated modelling
language. In this case, homogeneous artifacts are created in one specific
modelling language. The model elements can be linked to each other through
constructs of that modelling language. Several tools can interact with the
artifacts (e.g., [139,140].

Comparison to Case Company: In the case company, a total of eight
tools are used for different development activities. Tool integration is a techni-
cally challenging task. Therefore, the company currently uses implicit links to
link to artifacts in different tools which are created by copying IDs from one
tool to another. This is not only time consuming, but also error prone and does
not allow for any analysis to be done on the links. To overcome this problem,
the company is planning to acquire an integrated tool platform that will be
able to store all of their artifacts and thus make them accessible for creating
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traceability links. The main drawback of this solution as reported by one of
the architects is that it is hard to find a holistic tool that fully supports all the
activities in the development life cycle. Currently, there are no holistic tools
supporting activities like simulations which means that even with the holistic
tool in place, other tools will still be used. Therefore this challenge is partially
solved as linking to tools outside the holistic tool requires implementation of
special plugins, which is costly in terms of time and might require rework as
the involved tools evolve.

2.5.1.5 Manual Link Creation and Maintenance

Description: The task of creating traceability links is time consuming when it
is done manually. This is exacerbated when there is a large number of artifacts
involved. Moreover, traceability links become outdated when the artifacts they
connect evolve. This means that they need to be updated in order to remain
correct. Manually updating them is time consuming and error prone.

Challenge and its Solutions in Literature: This is one of the most
frequently reported challenges in the tertiary literature review. It has been
reported by 14 out of 24 papers [5, 8, 9, 14, 22, 34, 38, 61, 80, 108, 118, 125,
134, 141]. To overcome this challenge, the literature proposes the use of
automated techniques to generate and update the traceability links. Examples
of these techniques are: machine learning [21], information retrieval [9], event-
based techniques [108] and model-driven techniques [134]. Most of the studies
reporting these approaches have been on a theoretical level with small examples
and using students as test subjects. For instance the literature review conducted
by Borg et al. on information retrieval approaches for recovering traceability
links shows that out of 34 publications studied, only one had an industrial
evaluation [25]. Additionally, for automated techniques to work, implicit links
have to be present so that the algorithms can use them to generate explicit
links. In many cases, these implicit links do not exist due to lack of a uniform
structure (e.g., naming schemes, meta-data) in the different artifacts.
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Table 2.1: Search strings used in the tertiary and multi-vocal literature review
Data Source Search String Number of

results

Tertiary Review
IEEE Xplore (“Literature Review" OR Review OR Survey

OR “Literature Survey") AND Traceability
160 results

SCOPUS (Literature Review OR Review OR Literature
Survey OR Survey) AND Traceability

40 results

ACM Guide (Literature Review OR Review OR Literature
Survey OR Survey) AND Traceability

322 results

Multi-vocal review, RQ 2a
IEEE Xplore (((((Automotive SPICE) OR ASPICE) OR ISO

26262) OR ISO26262) AND Traceability)
8 results

SCOPUS ( ( aspice OR automotive AND spice OR iso
26262 OR iso26262 ) AND ( traceability ) )

25 results

ACM Guide +(ASPICE "Automotive Spice" "ISO 26262"
ISO26262) +(Traceability)

15 results

Google Web
Search

( aspice OR "automotive spice" OR "iso
26262" OR iso26262 ) AND traceability

approx. 34700
results
(263 after
filtering)

Google filters the search results to exclude similar results, parantheses and AND
operator added for clarity.

Multi-vocal review, RQ 2b
IEEE Xplore ((((Automotive Traceability) NOT rfid) NOT

barcode) NOT laser)
in the time span between 2008 and 2018

40 results

SCOPUS ( TITLE-ABS-KEY ( automotive AND
traceability ) AND NOT TITLE-ABS-KEY (
manufacturing ) AND NOT TITLE-ABS-KEY (
rfid ) ) AND ( LIMIT-TO ( SUBJAREA ,
"ENGI" ) OR LIMIT-TO ( SUBJAREA , "COMP" )
) AND PUBYEAR > 2008 AND PUBYEAR < 2018

163 results

ACM Guide +(Automobilindustrie Automotive Automobil)
+(Traceability Nachverfolgbarkeit
RÃĳckverfolgbarkeit Verfolgbarkeit)
-Manufacturing -Food -Laser -Barcode
-"supply chain" -"logistics chain" -"lot
tracking" -chargenrÃĳckverfolgung -rfid)
in the time span between 2008 and 2018

95 results

Google Web
Search

((((Automobilindustrie) OR Automotive) OR
Automobil) AND ((((Traceability) OR
Nachverfolgbarkeit) OR
RÃĳckverfolgbarkeit) OR Verfolgbarkeit))

approx. 189000
results
(356 after
filtering)
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Table 2.2: Challenges and solutions for traceability in the automotive domain
Challenge TR MLR Found at

Company
Challenge
Solved?

Solutions

Knowledge of Traceability
Lack of knowledge about and understanding of
traceability

11 13 Yes Yes Training, Updated guidelines from certification bodies

Difficult to define information model 7 7 Yes Partially Defined traceability information model, Updated guidelines from certifica-
tion bodies

Level of granularity 3 17 Yes Yes Defined traceability information model
Unclear traceability process 10 28 Yes Partially Defined traceability process, Defined traceability information model,

Structured information, Integrated tool platform, Tool integration

Tools
Lack of Configurable Tools 6 13 Yes Yes Flexible tools
Confidence in Tools 3 4 No Certified Tool Suite
Inaccessibility of Artifacts 2 7 Yes Partially Centralized data storage, De-centralized data storage, Flexible tools
Diverse Artifacts and Tools 9 74 Yes Partially Integrated tool platform, Tool integration, Integrated modelling language,

Structured information
Manual work 14 50 Yes No Automation, Just enough traceability, Integrated tool platform, Integrated

modelling language

Human Factors
Misuse of Traceability data 3 1 No Training
Perceived as an overhead 5 15 Yes No Automation, Report generation tools, Just enough traceability

Organization and Process
Distributed software development 2 11 Yes Yes Centralized data storage, De-centralized data storage
Traceability Across Lifecycle Phases 1 35 No Integrated tool platform, Defined traceability process, Automation, Inte-

grated modeling language
Reuse of Traceability Information 0 6 No

Uses of Traceability
Trace links are almost never consulted or used 4 9 Yes Partially Report generation tools, Just enough traceability
Lack of proper visualization tools 6 12 Yes No Report generation tools

Measurement of Traceability
Assessing the traceability maintained 5 8 Yes No Automation, Defined traceability process, Defined traceability metamodel,

Structured data
Return on Investment (ROI). 8 13 Yes No Cost-benefit models, Just enough traceability, Automation

Exchange of Traceability Information
Lack of Coordination in traceability activities 3 23 Collaboration tools, Defined traceability process
Lack of interchange standards 4 8 Yes No Common standard
Conflicting objectives 1 1 No Defined traceability process
Confidentiality Constraints 2 6 Yes Partially
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Challenge and its Solutions in the Automotive Domain: This is
also one of the most reported challenges in the multi-vocal literature (reported
by 50 sources). Just like in the tertiary review, automation has been suggested
as a solution for this. An additional constraint for using information retrieval
techniques is that in many German automotive companies, the requirements
are written both in English and in German which makes information retrieval
difficult. Further solutions are having “just enough traceability” (e.g., [142,143]),
meaning that only links that are needed should be created and maintained.
Another solution is to use an integrated tool platform or an integrated modelling
language. If all artifacts are accessible from the same tool, then the work of
locating artifacts when creating links is reduced (e.g., [144]). An integrated
tool also makes it easier to track changes.

Comparison to Case Company: Interestingly, none of these solutions
was viable for the company. In general, machine learning, information retrieval
and event-based techniques have a low precision and therefore the chance
that false traceability links are generated is high. Given that the company
produces safety-critical systems and the traceability links are also used for the
certification process, false links are not tolerable. Model-driven techniques,
on the other hand, require that all the artifacts being linked to and from are
represented as models which is not the case for the company, where only some
of the artifacts are models.

2.5.2 Human Factors

In this category we found two challenges that have been reported in the studied
literature. Only one of these challenges was found at the case company.

2.5.2.1 Misuse of Traceability Data

Description: This challenge refers to the fact that in some situations, people
responsible for creating and maintaining the traceability links have a fear that
this data may be used against them, e.g., during performance appraisals. This
happens especially when developers need to create links from artifacts they are
responsible for, e.g., bugs reported by users.

Challenge and its Solutions in Literature: This challenge has been
reported by three of our reviewed literature [8, 38,107]. The authors describe
that employees have a fear that traceability data can be used against them and
threaten their job security. This is an inappropriate use of traceability data
as the data is supposed to be used for quality assurance of the system rather
than used for judging employees’ performance. The studies propose that both
management and employees need to be educated on what traceability is and
what the potential benefits are.

Challenge and its Solutions in the Automotive Domain: Only one
of the sources in the multi-vocal review reported this challenge. According
to [145], engineers fear that if they document everything they might become
redundant and become replaceable. However, this source does not report any
solution to the challenge.

Comparison to Case Company: At the case company, this was not part
of the challenges that we identified. However, the company has a system that
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already logs user activities with respect to creating and modifying development
artifacts. If there is a problem in the system it is easy to identify who was
working on the artifact and contact them about the problem. This data is
not used for performance appraisals. This indicates that the development
environment is already very transparent thus employees do not fear the misuse
of traceability links.

2.5.2.2 Perceived as an Overhead

Description: In situations where traceability links are created manually,
developers usually perceive this as an extra activity that they need to do or
view it as a task that interrupts their workflow. Furthermore, this is a problem
since the creators of the links are often not the ones using them. Developers
therefore become demotivated and assign a low priority to this task, which can
lead to either wrong or missing links.

Challenge and its Solutions in Literature: Five of our reviewed
studies report this challenge [14,34,107,108,123]. Proposed solutions for this
problem are to ensure that the traceability links created provide immediate
benefit to the creators and also to automate the tasks whenever possible.
This can be done with tools that enable quick navigation from one artifact to
another or visualization techniques that give users an overview of the connection
between different artifacts.

Challenge and its Solutions in the Automotive Domain: This
challenge was reported by 15 of the sources in the multi-vocal literature. The
main problem is that the creators of links are not the ones benefiting and
therefore find the task demotivating (e.g., [122,146,147]). Suggested solutions
are similar to those proposed in the tertiary review.

Comparison to Case Company: At the case company this is a chal-
lenge, due to the diversity of tools and the fact that implicit links are created
between artifacts in different tools. It is hard for developers to get an overview
of the traces. Across tools they still have to find artifacts by searching for ID
and thus do not see the immediate benefits of traceability. All of the intervie-
wees pointed out that being able to navigate easily using the traceability links
and having graphical representations of how everything is connected would
be a feature that would encourage them to create more correct and complete
traceability links. Allowing for easy navigation across tools requires integrating
the tools which is also not a trivial task as previously discussed.

2.5.3 Organization and Processes

In this category, we found three challenges, two of which have been solved at
the case company and one which was not reported at the case company.

2.5.3.1 Complexity Added by Distributed Software Development

Description: In large organizations, it is a common phenomenon that devel-
opment activities are carried out at multiple sites. This adds complexity to
traceability, especially when the different sites need to share the development
artifacts. Unless the infrastructure is set up correctly and the sites have a
unified software development process, it can be very hard to create traceability
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links. For companies distributed in various countries, different time zones and
languages used in the different locations also make traceability establishment
difficult.

Challenge and its Solutions in Literature: This challenges has been
reported by two of the reviewed papers. These papers propose a centralized
repository for storage of all development artifacts [8,14]. This way, the location
of the developers will not matter as everything is centrally stored and shared.
Such a repository also needs to be guarded by an access control system to make
sure that the right people have access to the artifacts they need.

Challenge and its Solutions in the Automotive Domain: Eleven
of the multi-vocal sources report this challenge. The solution proposed is again
to use a centralized data storage where all artifacts are stored and therefore
accessible by the staff in different locations (e.g., [148,149]). Another solution
is for the company to put in place means of communication and collaboration
between the teams in the distributed locations [142]. This can be done by
using tools that provide collaborative features such as chats and comments on
artifact level.

Comparison to Case Company: The company has solved this challenge
by having centralized repositories where the artifacts can be stored and different
developers are given access rights accordingly. This is in line with what the
scientific literature proposes.

2.5.3.2 Traceability Across Lifecycle Phases

Description: Traceability needs to be established between artifacts that are
produced at different stages in the development lifecycle. In principle this is
defined in the traceability process (cf. 2.4.1.4). However, even if such a process
is in place, there is still a gap between these lifecycle phases, mainly because
they are performed in isolation with different teams and people. It is also
common that there is no direct mapping between the artifacts produced in the
different phases.

Challenge and its Solutions in Literature: Only one of the sources
in the tertiary review reports this challenge [134]. One solution has been
suggested which is to have a defined traceability process that is supported by
tools, e.g., an integrated modeling language that defines which links should be
established between models in the different lifecycle phases.

Challenge and its Solutions in the Automotive Domain: This
challenge was reported by 35 of the sources in the multi-vocal literature. Several
solutions have been reported that can contribute to solving this challenge of
both the development process and tools. First of all having an integrated tool
platform or an integrated modeling language that integrates all the phases in
the development lifecycle ensures that the different artifacts from the different
phases are accessible (e.g., [150, 151]). When an integrated tool platform is
not possible, integration of the different tools is suggested via technologies like
OSLC to ensure that the different phases are connected tool-wise (e,g., [152]).
Furthermore a well-defined traceability process and a traceability information
model should be put in place and enforced by the development companies
(e.g., [127, 153]). People performing the different activities in the different
phases should be aware of their roles and responsibilities when it comes to
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traceability. Lastly automation can help solve this challenge by, e.g., using
model-driven techniques to generate artifacts or skeletons of artifacts from one
development phase to the next (e.g., [154,155]).

Comparison to Case Company: In the company, this challenge has
been solved. Even though the interviewees reported that there is diversity in
the tools used in the different lifecycle phases, the development process is well
defined and enforced in the company. For instance code will only be written if
there is a low-level (detailed) requirement associated with it. This means that
the different phases are connected and hence this is not a challenge.

2.5.3.3 Reuse of Traceability Information

Description: It has already been discussed that establishing traceability is
a manual and time consuming process. It is therefore an advantage if the
established links can be reused in similar projects or when parts of the projects
are being reused, especially in product line environments. This is currently a
challenge as it is not clear how to select relevant information for reuse without
introducing links outside of the reuse scope. If, e.g., an architectural component
should be reused, selecting which of the traceability links connected to it (and
thus, which other artifacts) should also be reused is currently a task that is
not supported by tools or guidelines.

Challenge and its Solutions in Literature: None of the sources in
the tertiary review reports this as a challenge.

Challenge and its Solutions in the Automotive Domain: This has
been reported by six of the sources in the multi-vocal review. In the automotive
domain, in most cases, systems are not build from scratch but rather reuse
existing artifacts such as requirements and code. Developers and stakeholders
therefore would like to make use of traceability information when reusing
artifacts. Unfortunately, none of the sources reports solutions or best practices.
This shows that this is a topic that needs further research.

Comparison to Case Company: At the company, this challenge was
not reported by any of the interviewees and also not observed in the process.
Currently, traceability information is not reused.

2.6 Results: Outcome

In this section, we report on challenges related to the outcome of the trace-
ability process. The section is divided into two subsections which are Use of
Traceability containing challenges encountered when using traceability links and
Measurement of Traceability containing challenges associated with measuring
the quality and benefit of the traceability links.

2.6.1 Uses of Traceability

For this category, we found two challenges. One of the challenges has been
partially solved and one challenge is unsolved.
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2.6.1.1 Traceability Links are Almost Never Used

Description: Even with the large amount of time and effort invested in
establishing traceability, traceability links are not used at all or under-utilized.
The main use of traceability is still for certification.This is mainly due to
the following: 1) lack of tools that facilitate utilization (for instance, good
visualizations); 2) the number of links is too high and therefore unusable; and
3) lack of trust in the quality of the traceability links.

Challenge and its Solutions in Literature: This challenge has been
reported by four of the reviewed papers [9, 34, 108,123]. In [108], it is reported
that traceability links are not used either because the links recorded are not
helpful to support development activities or because the tools do not provide
an efficient way of using the links. The authors point out the importance of
tailoring traceability according to the needs of the users and not just creating
traceability links for every artifact. In [123], the authors point out common
flaws that cause traceability links to be ignored. These flaws are, e.g., redundant
traceability paths, missing links and out-dated links.

Challenge and its Solutions in the Automotive Domain: This
challenge was reported by nine of the sources in the multi-vocal review. Again
the most common use of traceability is for certification purposes. The solution
proposed in the multi-vocal literature are similar to the ones proposed in the
tertiary review.

Comparison to the Case Company: At the company, the main driver
for establishing traceability is the requirement from OEMs to be ASPICE
compatible. Therefore the main use of the traceability links is for certification
purposes. During the interviews we also found that traceability links are used to
track the progress of the project, for instance, to check how many requirements
already have test cases. The architects and developers however noted that they
would like to utilize the links more but that there is no convenient way to do
that at the moment. For instance, it is sometimes necessary to copy IDs from
one tool to another to search for the connected artifact. This makes it very
hard to get an overview of the system or feature through the traceability links.
This challenge is therefore partially solved and would be fully solved if better
tools that facilitate usage of traceability links are put in place.

2.6.1.2 Lack of Proper Visualization and Reporting Tools

Description: When traceability is properly established, it can result in a
large number of links, in particular if the project consists of a large number
of artifacts. The end users of these links need proper visualization tools in
order to understand them and powerful reporting tools to produce overviews
and statistics for reviews. This is currently a challenge as traceability links are
usually presented in large tables or lists where it is hard to comprehend what
they mean and even harder to detect flaws in them.

Challenge and its Solutions in Literature: This challenge was re-
ported by six of the reviewed papers [61, 80, 110, 118, 123, 156]. In [80], the
authors point out that it is very important, especially with automatically
generated traceability links, to have meaningful graphical representations so
that traceability links can be easily inspected for inconsistent and outdated
links. Visualization techniques that will facilitate development activities are
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proposed in [61]. For instance, it is useful to have a visualization that will
allow the user to see which requirements are already implemented and tested
or which tests do not have corresponding requirements.

Most common visualizations of traceability links are a matrix, graphical
notations, and hyperlinks. In the matrix view artifacts are displayed in a
table with a mark on the cell where the artifact in the column and that in
the row are connected by a traceability link. The graphical view represents
the artifacts as nodes and the links as edges in a graph. In the hyperlinks
view, traceability links are displayed as hyperlinks from an artifact and can be
clicked to navigate to the linked artifacts. The authors in [108] propose that a
traceability tool should have a combination of the three representation as all
have advantages and disadvantages and are used for different purposes. The
authors illustrate that a project manager may only need an overview of the
project but a developer making a change to the system may find hyperlinks
more useful as navigation to and from artifacts is facilitated [108].

Challenge and its Solutions in the Automotive Domain: This
challenge has been reported by twelve of the sources in the multi-vocal review.
The solution suggested is also similar to the one suggested in the tertiary review
which is, tool vendors need to develop tools that allow custom reports to be
generated from traceability information based on user needs (e.g., [157–159]).

Comparison to Case Company: In the case company, this was also
reported as a challenge that is not solved. This was mainly noted by the
developer and the architects who suggested that the traceability links would
be more useful for them if they had better graphical representation. They
specifically asked for visualization where one is able to get an overview of the
project or a specific feature through the traceability links. Also the traceability
links that are created manually, for example by copying an ID of one artifact
and adding it in another, are not supported by the visualization available in
the requirements management tool used in the company.

2.6.2 Measurement of Traceability

For this category, we found two challenges, both of them unsolved.

2.6.2.1 Difficult to Assess the Quality of Traceability Links

Description: When traceability is properly established, it can result in a large
number of links. In order to trust and use the traceability links, it must be
possible to assess their quality by, for instance, measuring how correct and
complete the set of traceability links is. This is a challenge as the most reliable
assessment method is still manual checking.

Challenge and its Solutions in Literature: Five of our reviewed papers
note this as a challenge [5,34,61,119,156] It is hard to assess if the traceability
maintained is of high quality as reported in [123], where the authors note that
even in safety-critical domains the traceability links submitted for certification
contain either missing links or redundant links. In [5], it is reported that
especially for generated traceability links, it is a challenge to evaluate their
correctness and completeness. One proposed solution is to attach confidence
values to the generated link and have a threshold based on the confidence
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value to determine which links are correct. However, this approach does not
guarantee that the links will be complete or correct. Another solution is to use
the semantics defined in the traceability metamodel to assess the traceability
links. For instance, if the information model defines that every requirement
should be linked to a test, then missing links can be detected by checking if
all requirements have a link to a test. This however only guarantees finding
missing links, completeness and correctness still needs to be checked manually.

Challenge and its Solutions in the Automotive Domain: Eight of
the multi-vocal sources report this as a challenge. In the automotive domain, it is
unclear to companies how traceability links can be assessed to ensure compliance
with safety standards. This is because of the lack of guidelines on assessment
and in some cases inconsistent guidelines and conflicting requirements from
different standards [116]. Several solutions are suggested to tackle this challenge.
One of them is using semantics of the defined traceability information model as
suggested by the tertiary review. Additionally, the multi-vocal review suggests
having structured data that can be checked (e.g., [116,160]). For instance if
high-level requirements and low-level requirements have unique naming schemes,
then it can be checked that a high level requirement is indeed linking to a low
level requirement. Another solution is to define the assessment strategy of
trace links when defining the traceability process (e.g., [116,161]). Even if the
strategy is a manual one (e.g., reviews by developers), if it is well-defined and
enforced it can improve the quality of the links.

Comparison at the Case Company: At the case company, this is
currently one of the unsolved challenges. For traceability links that are created
between artifacts in DOORS, there is a possibility to check for missing links
easily since the tool allows identifying requirements with no links. Also, since
the tool supports defining custom trace links, it is possible to limit which kinds
of artifacts a link can connect. The advantage of this feature is that it prevents
the creation of links that are semantically wrong. For links that are created
with artifacts that are not in DOORS this kind of check is harder as it requires
implementation of extra plugins that can do such checks. Correctness and
completeness on the other hand needs to be checked manually. This can be
done during review meetings but consumes a lot of time and effort.

2.6.2.2 Difficult to Measure the Return on Investment

Description: Since the most common way of establishing and maintaining
traceability in practice is manually, this is a cost-intensive task that requires
the company’s investment both in terms of money for the tools and in terms of
time. It is therefore important for a company to be able to measure what the
return on investment of the established traceability links is. This is a challenge
as the cost is significant while the benefits cannot be easily measured.

Challenge and its Solutions in Literature: Eight out of the reviewed
papers report that traceability establishment is an expensive process [5, 8, 9,
14, 22, 38, 108, 118] This is because developers need to spend extra time to
create and maintain traceability links. Most managers think that a project
that implements traceability is more expensive than one which does not [38].
Currently there are no measurements that can provide evidence of these direct
benefits of traceability. Research proposes cost-benefit models that can be used
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to show how much traceability has contributed to activities such as maintenance
and understandability [85], but these still need to be validated in practice.
This is not a trivial task as such benefits are mostly visible at the end of the
project. To minimize the effort spent on traceability creation and maintenance,
researchers have proposed having “just enough traceability” where links are
created only to artifacts of high value (e.g., high priority requirements) [8].

Challenge and its Solutions in the Automotive Domain: This
challenge has been reported by 13 sources in the multi-vocal review. Automotive
companies have difficulties proving that traceability is beneficial especially for
cases where full time employees are dedicated to this task [162]. The multi-vocal
literature does not suggest any cost benefit models but rather suggests that
there is a need to have more cost-effective ways of establishing traceability.
This can be through automation of traceability tasks where possible and also by
creating just enough traceability, only links that are needed should be created
and maintained [142].

Comparison to Case Company: The results of the case study indicated
that this challenge has not been solved. All of the interviewees including the
managers confirmed that they think traceability is expensive and they do not
have evidence of the value it adds to the projects. The only reason that justifies
investing in traceability is because it is a mandated task, they have to do
it. Value-Based Traceability is also not a feasible solution for them as full
traceability is a mandatory requirement for safety-critical applications. It is
also hard to maintain an exclusive list of high priority requirements that need
traceability as priorities can rapidly change over time.

2.7 Results: Exchange of Traceability
Information

This section reports challenges associated with how traceability information can
be interchanged between teams within an organization and between different
organization.

2.7.1 Exchange Within and Across Organizations

In this category we found four challenges from the literature. At the case
company, one challenge is partially solved even though there was no proposed
solution in literature , one is not solved and two of the challenges were not
observed.

2.7.1.1 Lack of Interchange Standards

Description: To facilitate the sharing and transfer of traceability information
from one company to another, there is a need for a common standard. Currently,
such a standard does not exist and traceability information is stored in various
forms ranging from implicit links established through copying IDs from one
artifact to another, to explicit traceability links that utilize formal notations
such as models. Some links are also stored together with the artifacts while
others are stored in a separate trace model with only references to the connected
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artifacts. Depending on the tool the formats of the traceability links can also
vary substantially. This makes it difficult for traceability to be exchanged and
reused in different companies.

Challenge and its Solutions in Literature: Four sources in the
tertiary review report this challenge [31,34,119,156]. The literature proposes
the need for one standard that can be used by companies in order to facilitate
this sharing and exchange of traceability information [34].

Challenge and its Solutions in the Automotive Domain: This
challenge was reported by eight of the sources in the multi-vocal review. The
OEM and supplier relationship in the automotive domain means that artifacts
are exchanged between the two companies. Some of these artifacts contain
traceability information. If there is no standardized format for the links, then
they are inaccessible. It is reported in [163] that OEMs sometimes acquire
entire subsystems from suppliers but have no way of accessing the traceability
information from these subsystems. The solution proposed here is similar to
the one proposed by the tertiary review. A common standard of accessing and
exchanging traceability information is needed. The multi-vocal review suggests
that OSLC can be a common standard for information access, but the question
of common semantics is still open.

Comparison to Case Company: This is a challenge that the company
faces. For instance, OEMs can send requirements which could have traceability
links as well. But if the tools at the company cannot identify these links then
that information is lost and has to be re-created from scratch.

2.7.1.2 Conflicting Objectives

Description: When more than one company is involved in the development of
a system, it is important to align organizational objectives of all the companies.
This is true also for traceability. If the objectives for traceability in one
company contradict the ones in another, there might be a conflict. For instance,
if the supplier and OEM created traceability links that are not compatible (in
terms of types and granularity), then the links end up being unusable between
the organizations because each organization has a different objective. If the
OEM has the objective of using the traceability links from its suppliers in an
aggregated manner to get an overview of the entire system, this will only work
if all of the suppliers create the needed traceability links.

Challenge and its Solutions in Literature: Only one of the reviewed
papers [31] reports this challenge. It proposes that at the beginning of the
project, all the stakeholders need to align their objectives, including traceability
objectives. It is important to define early on what each stakeholder requires
and is expected to deliver in terms of traceability.

Challenge and its Solutions in the Automotive Domain: In the
multi-vocal review only one source reports this challenge. The OEM and the
supplier may have different objectives that can be conflicting [142]. The solution
proposed is similar to the one proposed in the tertiary literature review.

Comparison to Case Company: This challenge did not come up in the
study at the company. Since the company is a supplier, one of their objectives
is to satisfy the OEM. In this case, the demand for traceability actually comes
from the OEMs. The OEMs specifically asks the company to be compliant to
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the ASPICE standard in which traceability is one of the requirements.

2.7.1.3 Confidentiality Constraints

Description: Establishing traceability links that cross the organizational
boundaries is a challenging task due to confidentiality implications. It is difficult
for suppliers for example, to create traceability links when some artifacts are
not accessible to them since they are confidential due to protected intellectual
property from the OEM.

Challenge and its Solutions in Literature: In the reviewed literature,
two of the papers [31,104] mention this challenge but there are no proposals
for how to establish traceability when the artifacts are restricted due to legal
reasons.

Challenge and its Solutions in the Automotive Domain: This
challenge was reported by 6 sources in the multi-vocal review. Most of the
time the suppliers only receive partial requirements which makes traceability
harder [164]. Only one source suggests a solution [165] where the development
process, including all artifacts exchanged between the OEM and supplier, should
be transparent. This can be hard to implement since OEMs keep some artifacts
confidential, e.g., because they contain intellectual property that distinguishes
them in the market.

Comparison to Case Company: The company also faces this challenge
when some of the artifacts they want to trace to cannot be shared by the OEMs.
Currently they do not have a solution for this. For some OEMs, the company
shares requirements via web interfaces. The OEMs can then limit which fields
are visible to the OEM and which fields are visible to both the supplier and
OEM. This is an initiative towards sharing confidential information.

2.7.1.4 Lack of Coordination in traceability activities

Description: During software development different roles need to coordinate.
This becomes more important in system development because various parts
of the system are developed by different disciplines, from different companies
and have to be integrated in the end. For example the software team needs
to coordinate with the hardware team to make sure that their software will
work on the hardware. This coordination is also important when it comes
to updating the traceability links. Coordination becomes difficult because
the different disciplines use different vocabularies, have different objectives,
and most of the time the development is isolated. When development is done
across companies, the different companies involved may also have different
development processes.

Challenge and its Solutions in Literature: This challenge was ob-
served by four of the papers we reviewed [8, 9, 31, 104]. In [9], just enough
traceability (value-based traceability) is proposed as a means to reduce the
amount of links created and hence reduce the time people need to coordinate
on traceability link maintenance. In [104], the authors report that change noti-
fication is useful for coordination. When an artifact connected by a traceability
link has changed, the person responsible for the it should be notified in order
to decide how the link should evolve.
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Challenge and its Solutions in the Automotive Domain: 23 of the
sources in the multi-vocal review report this challenge. Systems development
involves various disciplines and establishing traceability between artifacts from
the different disciplines is difficult if the disciplines do not collaborate. In the
automotive domain this challenge becomes more complex due to the OEM
and supplier relation where parts of the tracing need to be done at the OEM
and parts need to be done by the supplier [112]. There is currently no defined
process on how to do this. Two solutions have been suggested. One is to have
tools that support the different disciplines with collaboration features such as
chats, forums and notifications. This can be part of an integrated tool platform.
Second is having a defined process on how the teams should collaborate, in
[SG62], it has been suggested that cross-discipline work assignments should be
designed to make the different disciplines collaborate more.

Comparison to Case Company: At the company this was not observed
as a challenge. On further analysis this can be due to the fact that the require-
ments management tool has a feature called “suspect links”. It highlights the
links that connect artifacts which have changed. The user can thus investigate
the change and decide how to update the traceability link and the connected
artifacts. When working as a team, the suspect links are also propagated to a
developers local workspace when they pull changes from the repository. The
developers can navigate to see what has changed in connected artifacts by
clicking the suspect links.

2.8 Discussion

In this section, we discuss our results in relation to the research questions. We
will address RQ 1 and RQ 2 that deal with the general traceability challenges
and the particular challenges of traceability in the automotive domain in
sections 2.8.1 and 2.8.2. RQ 3 that addresses challenges that can be observed
in practice will be discussed in Section 2.8.3.

2.8.1 Differences between the tertiary and the
multi-vocal review

While most of the challenges and solutions found in the tertiary review were
also found and thus confirmed in the MLR, there are a few differences that
stand out. This has partially to do with the different data sources and the
different provenance of the information (discussed in Section 2.8.2) and partially
with the fact that the sources in the MLR were more specific to the automotive
domain. One challenge has been newly identified from the MLR sources: Reuse
of traceability information. In addition, Traceability across lifecycle phases
has only been reported once in the tertiary review, but 34 times in the MLR
sources.

The reason why Reuse of traceability information was not identified as a
challenge from the secondary literature might be due to the focus of the MLR
on the automotive domain and the high maturity of product line approaches
in this area [166]. Reuse of traceability information is usually described in
this context. When a component or a subsystem has to be reused in another
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product, all attached requirements, design documents, test cases, etc. should
also be accessible to the developers of the new products. Since these artifacts
are connected via traceability links, this information must also be reused.
However, there might be traceability links present to the artifacts of other
components that should not be reused. This introduces a challenge in terms
of which links to reuse and how to deal with those links that point to targets
outside of the reused artifacts. It is not clear which solutions apply to this
challenge at this point.

The challenge of Traceability across lifecycle phases is one of the most
reported challenges in the MLR (cf. Figure 2.5). Our analysis shows that out
of the 34 sources that report this challenge, 16 are written by tool vendors.
This might be due to the fact that one of the selling points for tools is the
ability to establish traceability across all development phases (cf. Section 2.2).
This also correlates with the fact that the sources that mention this challenge
also claim to provide a solution either in terms of an integrated tool platform
or tool integration. However, this seems to solve only one side of the challenge
which is how the different tools in the different phases can work together. The
other side of this challenge is the process side, which refers to how the people
involved in the different phases should create and maintain traceability links.
A solution suggested is to have a well defined traceability process even though
the specifics of what this process looks like and how it should be established
have not discussed.

With regards to solutions, there is again a significant overlap between the
solutions proposed in the tertiary review and those in the MLR. However, two
thing stand out: 1) While the Confidence in tool challenge has no concrete
solution from the tertiary review, the MLR proposes to have a certified tool
suite which has been cleared by a certification authority for use within a process
to develop safety-critical systems. Again we think that this solution is used as
a marketing point, given that it has been reported by only tool vendors and
consultants; 2) On the one hand, the MLR calls for updated guidelines from
certification bodies so that practitioners can have a clear understanding on
what they need to do (in terms of traceability) to be able to comply with the
standards. On the other hand, the tertiary review reveals that there is a need
for guidelines and best practices from research on how to efficiently establish
traceability. This shows that from both the academic and the practitioner side,
the task of establishing traceability is still not well understood and requires
the collaboration of both practitioners and academia to establish guidelines
and best practices.

2.8.2 Differences by challenge and solution provenance
The provenance of the different challenges and solutions proposed in the
regarded sources refers to which stakeholder the source can be traced to. There
are marked differences between issues discussed in scientific literature that
mostly stems from academics and from teams that are a mix between academics
and practitioners and the reports made by tool vendors, consultants, and users
of traceability. Unfortunately, the latter category is not well represented in this
study with only 27 of 246 sources directly attributable to users. Interestingly,
of these 27, 15 are publications in peer-reviewed venues.
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Figure 2.5: Distribution of challenges by provenance in absolute numbers.
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This indicates that information about state of the practice from the user
perspective is available in the scientific literature.

Tool vendors want to push the features of their tools and provide mostly
marketing material online. However, they are responding to the needs of their
customers, so that the features that traceability tools provide reflect (at least
in part) issues that the industry deals with. This can be seen, e.g., in the focus
on report generation and integration, where the latter is addressed with either
an integrated tool platform or tool integration. Features for flexible visualisation
and report generation are a response to the challenge that is posed by a lack
of such tools. Likewise, the two integration approaches are a response to the
challenge of diverse artifacts and tools. The fact that these challenges and
solutions are reported by sources of all provenances indicates that there is
an agreement about the validity of the challenges and the potential solution
approaches to them.

The challenges Misuse of traceability data and Conflicting objectives showed
up only once, both times in academic papers. Since these are not reported as
challenges by any of the practitioners or are even accepted as widespread in
the scientific community indicates that they might not be general problems
but have rather been observed on few occasions and might thus be issues of
individual companies or even project teams. In terms of Conflicting objectives,
the automotive industry might also be a special case: OEMs and suppliers in
most cases have very long-standing relationships with clear communication
channels. It can be expected that the objectives are fairly aligned in such
an environment. In addition, ASPICE is indeed a standard to regulate the
relationship with the supplier. If a supplier follows the standard, any conflicts
between expectations and what is delivered should be minimized.

2.8.3 Unsolved Challenges at the Case Company

With regards to RQ3 (Which of the reported traceability challenges in scien-
tific literature and non-scientific literature can be observed in practice in the
automotive domain and how have they been solved? ), the findings reported in
Section ?? show that there is a total of six unsolved challenges. An overview
of this is given in Figure 2.4. We will focus our discussion on the unsolved
challenges and why they are so difficult to address since this sheds light on how
the special circumstances in the automotive domain influence the applicability
of solutions. Table 2.3 gives a summary of the persistent challenges at the case
company, why the solutions from the literature are not applicable and which
extensions we propose to solve the issues.

One partially solved challenge, however, deserves some attention: Diverse
artifacts and tools was the most reported challenge in the MLR. The company
has integrated tools where possible so that links can be created to and from
artifacts in different tools. For instance, in one team, the requirement tool
(DOORS) has been integrated with the design tool (Enterprise Architect).
However, this is done only for some tools, to allow traceability to tools that
have not been integrated, e.g., the requirements tool and the testing tool, the
company has a structured way of naming artifacts uniquely, these unique names
are then copied from one tool to another to create traceability links. Even
though this is a manual process, it works because there are guidelines in how
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these naming conventions work and the developers follow these guidelines.
Manual work (Tools): Several studies have focused on machine learn-

ing [21, 167], information retrieval [20] and rule-based techniques [23] for
automating the creation and maintenance of traceability links. However, due
to the fact that automated techniques can generate incorrect links, which is in
violation to safety standards such as ISO 26262, they have not been adopted
in the automotive domain. Furthermore, automation techniques only work
if implicit links are already in place. To overcome the problem of incorrect
links, researchers have proposed that generated links are manually inspected
by humans. However, it has been shown that giving a set of generated links to
humans to sort out incorrect links can even decrease quality [36].

Other automation techniques in literature are model-based techniques where
traceability links are generated as a by-product of transformations. Model-
driven traceability works if all artifacts are models. This is not necessarily the
case in the automotive industry. Even if models exist, they are often independent
and not connected by transformations. Second, many transformation tools
that support the generation of traceability links have their own pre-defined
notion of link structure and semantics. This makes it hard to integrate them
in traceability tools already used in companies [22].

To practically solve this challenge, traceability tools have to enable the
combination of manual, semi-automatic and automatic techniques for creation
and maintenance of traceability links. Since each of these approaches has its
advantages and disadvantages, they can complement each other. For instance,
to make sure the links are correct one can rely on manual creation, but to
reduce the effort of maintenance, automatic and semi-automatic techniques can
be used. Semi-automatic techniques include sending notifications and warnings
to users on traceability issues and suggesting probable solutions on how to
fix issues. This kind of solution has been investigated in [29, 168] and the
authors show that the solution is promising when properly integrated into the
traceability tools.

Lack of interchange standards (Exchange of Traceability Information):
For requirements, there already is a Requirements Interchange Format (ReqIF)6,
which is being adopted and provided as exports from several requirements
management tools. Extending such a standard or creating a similar standard for
traceability exchange can resolve this challenge. Several sources from the multi-
vocal review suggest OSLC7 as an interchange standard for traceability [117,
169,170]. OSLC is an integration technology which enables tools to integrate on
the data level, i.e., data from one tool can be made accessible to another tool.
With a proper set-up, tools from the OEM and supplier can make artifacts
available via OSLC and hence enable creation and use of links across companies.
It should be noted that a common standard will not solve the Diverse artifacts
and tools challenge as data still needs to be shared between companies which
can cause inconsistencies as the data evolves. Where not legally constrained,
we encourage suppliers and OEMs to share the data repository to avoid such
inconsistencies.

6http://www.omg.org/spec/ReqIF/1.1/
7Open Services for Lifecycle Collaboration, https://open-services.net
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Figure 2.6: Distribution of solutions by provenance in absolute numbers.
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Table 2.3: Challenges and proposed solutions.
Challenge Solutions in Literature Why solutions are not applicable Proposed Extensions

Manual
Work

Machine Learning [21] [171],
Information Retrieval [25] [122,172],
Rule-based [23] and Model-based
techniques [134] [173]

Machine learning and information
retrieval techniques produce in-
correct links; not acceptable for
safety-critical systems due to the
ISO 26262 standard.

Use semi-automatic approaches for maintenance
(e.g., to push notifications of artifact changes to
responsible users and suggest how links should be
updated). Combine manual links with model-based
techniques to create links.

Perceived as
an overhead

Develop tools that require less effort
and produce immediate benefits (e.g,
ease of navigation), training on
importance of
traceability [14,34,107] [174] .

Large number of heterogeneous ar-
tifacts that need to be traced to.
Traceability is viewed as only im-
portant for certification.

Complement the traceability process with gamifi-
cation features. Developers can, e.g., be rewarded
based on the number of correct links they create
and projects can be awarded points/badges based
on completeness of traceability links.

Lack of
visualization
tools

Matrix view, Graphical view and
Hyperlinks [108] [159,175]

Too many traceability links due to
large and complex systems.

Provide visualizations suitable for end user needs.
Develop tools that enable visualizations to be cus-
tomised. Users should be able to create different
views (graphs, charts, matrices, etc.) based on
different data from traceability links.

Assessment
of
traceability

Use a well-defined traceability
information model to facilitate checking
for missing links and prevent invalid
link creation [123] [162], event-based
maintenance [168], text-matching

Distributed and isolated develop-
ment phases

Extend event-based techniques to enable notifica-
tions to be sent to artifact owners when links are
created involving these artifacts in order to facilitate
correctness checks.

Return on
investment

Value-based or “just enough”
traceability [176] [142,161]

Links have to be created from all
safety-related requirements regard-
less of their value or priority

Monitor activities supported by traceability to au-
tomatically collect evidence on advantages of trace-
ability. Communicate this evidence in the company.

Lack of
interchange
standards

Create a common traceability
standard [85]

A common traceability exchange
standard accepted by OEMs and
suppliers does not exist.

Adopt OSLC as a way to access data in other tools.
Define a common information model.
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Lack of Visualization and Reporting Tools (Use of Traceability): At
the case company, all interviewees were not satisfied with the visualization
provided by their traceability tool. Our analysis shows that this is attributed
to the fact that most tools are not well adapted to the requirements of using
links in different scenarios. Instead, much of the effort in developing these
tools is dedicated to the functionality of creation and maintenance of the links,
rather than visualization. To solve this problem, we propose that there is a
need to first analyze different use cases in which traceability links are used. A
study by Bouillon et al. [4] investigated different scenarios in which traceability
links are used. Conducting such a study in the automotive domain will lead
to usage scenarios that can be used to determine which kind of visualization
is appropriate for each use case. When this is clear, it will be possible to
add such visualizations to existing tools and support the users when using
traceability links. Additionally, tools should provide possibilities for users to
create customized reports based on their needs [157–159].

Assessment of Traceability (Measurement of Traceability): This chal-
lenge refers to how the quality of the maintained traceability links can be
measured to ensure that the links are both correct and complete. Measuring
completeness is tricky since it is difficult to define what completeness means.
For instance, while it is possible to check with tools that every requirement has
a link to a test, it is not possible to determine that the tests actually cover all
aspects of the requirement. Tools are able to flag requirements with no links to
test cases, but it is still up to the developers to determine whether the linked
tests provide sufficient coverage for the requirement.

Correctness is also hard to assess with tools. For instance a requirement
can indeed be linked to a test but the decision if the test is a correct test for
the requirement must be made in a time-consuming, manual process. Text-
matching [177] that yields a similarity score between the connected artifacts
is one approach that can be used to reduce the time spent on this task. The
links below a certain similarity score threshold can be shown to the user for a
manual check. This solution requires naming standards that ensure that there
is always a text similarity between two connected artifacts. Another solution
approach is to notify the owners of the linked artifacts when links are created.
They can then raise their concern if they think the link is incorrect and discuss
the link with the user who created it. This approach is similar to event-based
traceability proposed in [178] where the authors suggest notifications to be sent
to the owners of connected artifacts when one connected artifact evolves in
order to update their artifacts, too.

Return on investment (Measurement of Traceability): Most literature
on traceability points out benefits such as saving time and effort during impact
analysis, tracking progress and improving understandability of the system.
However, measuring these benefits in an industrial setting is not trivial because
it is hard to isolate the effects of traceability. Also, some traceability benefits
manifest only if the project has been progressing and is affected by, e.g., personel
churn. Traceability can then save time by helping new developers understand
the system and easily navigate to artifacts. Value-based traceability is one
solution proposed to reduce the cost of creating traceability links [176, 179].
This means that when planning for traceability, companies need to assure that
the links are useful for the project and thus beneficial by assessing why the
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links are needed and how the benefit will be derived.
In the automotive domain, the main reason for adopting traceability is

due to safety standards that demand traceability. This is however not a
good motivation as traceability is adopted because people are forced to do
it. Being able to quantify the benefits of traceability is one way to show that
traceability is indeed useful. For this, we propose monitoring the activities
that are supported by traceability links in the company in order to collect
data on how useful traceability links are. Additional data can be obtained
by conducting surveys with users of traceability and publicizing the results
internally in order to promote its adoption in the company even for projects
that are not safety-critical and thus controlled by safety standards.

Perceived as an overhead (Human Factors): This challenge has two
aspects: an organizational and a technical one. The organizational issue is
that the people creating and maintaining the traceability links are not the
ones using them. A relation to the challenge of understanding traceability thus
exists and sufficient training as well as the realization of the immediate benefits
of traceability links can help in this regard. The technical aspect is related
to the tools that offer little support in terms of visualization, navigation, and
analysis. If, based on traceability links, the tools used in the industry can
offer features such as easy navigation, visualization, customized reports or even
recommendations for artifacts that can be re-used, then the developers creating
the links will see their benefits. It should be possible to customize the tools
in a way that benefits the creators of the links as well [86]. Another option
is complimenting traceability tools with aspects of gamification to make the
task of creating and maintaining the traceability links more motivating and
engaging. This has been shown to work with other software engineering tasks
such as requirements analysis and testing [81].

2.9 Threats to Validity

In this section we discuss the threats to validity of our study and ways in which
we minimized these threats. We use the categories described in [64] but do not
discuss internal validity as our study was not not examining a causal relation.

2.9.1 External Validity

This threat refers to how generalizable the results of the study are. In our
case study, we applied data triangulation and interviewed seven employees
of three different roles to get data from different sources. However, since we
conducted the study in only one company, we cannot generalize the obtained
results without further replication of the study which is discussed as future
work in Section 7.8.

With regards to the tertiary review, the most recent publication was pub-
lished 2014, which reviewed papers up to 2013. There is a chance that papers
that propose newer solutions to our identified challenges have been published
since then. However, since the multi-vocal literature review covers sources
published up to August 2017, we could confirm the data extracted from the
secondary sources.
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2.9.2 Construct Validity

To minimize this threat we had to make sure that what we wanted to study
(Challenges of establishing traceability) was understood by the participants
of the study. To achieve this we first had a meeting with the two experts
from the two departments where we explained the intentions of the study.
In return, they also explained what their departments do. We also sent the
interview guide and scope to the participants one week before the study. As
mentioned in Section ??, the interviews we conducted were not recorded due
to legal matters but the interviewer took notes. To make sure that we did
not misinterpret our findings, we showed our initial analysis to one of the
senior experts for confirmation. This is known as member checking [180]. The
multi-vocal literature review relies on publicly available sources, it is possible
that it does not fully cover the state of the art in the automotive industry. In
particular OEMs and Tier-1 suppliers do not make all information regarding
their processes publicly available. We have tried to mitigate this thread by
being as broad as possible in our search terms and include as many sources
from different provenance as possible to construct a picture that is as complete
as possible.

2.9.3 Reliability

To ensure that the results of a study are reliable it is important to make
sure that the study can be repeated by other researchers and get the same
results. While the settings of the interview cannot be replicated, the artifacts
used such as the definition of the scope of the study and the interview guide
were well documented and can be used for replication of the study. For the
literature review, especially the MLR, even though we have documented our
process and have traceability of which source produced which challenges and
solutions, repeating the study to obtain 100% similar results is a challenge.
This is because for the very short sources (e.g., blogs, presentations, forums),
the information given is brief and therefore leaves room for interpretation.
To reduce the chances of misinterpretation, two researchers went over the
ambiguous challenges and solutions together to code them.

2.10 Related Work

Regan and colleagues [8], conducted a literature review to identify the barriers
of traceability and their solutions from literature. In their work, they propose a
framework which consists of the categories of the challenges and their solutions.
Their framework is quite similar to the categories of challenges that we have
proposed. However, their work does not investigate if these proposed solutions
work in practice, which is something that our research does by complementing
the literature reviews with an industrial case study.

Further related studies are those by Torkar et al. [9] and Cleland et al [34].
In [9], the authors performed a systematic literature review, with the aim of
identifying requirements traceability definitions, tools, practices and challenges.
They also complement their work with a case study in two companies. In their
results, they give a list of challenges and how they are relevant for the two
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companies. That study is similar to ours but their literature review only includes
papers up to 2007 while ours includes studies of up to 2014. Also in their
research the studied companies are not in the automotive domain but in the
telecommunication domain and mobile applications domain. In [34], the authors
reviewed four recent industrial studies and interviewed eight practitioners on
traceability practices. The authors propose several research questions that need
to be investigated in order to achieve the seven desired qualities of traceability
proposed in [85]. These qualities are that traceability needs to be purposed,
cost-effective, configurable, trusted, scalable, portable and valued. These
quality attributes correspond to the findings in our study, for instance for
traceability to be trusted, there needs to be methods for assessing the quality
of links. Also in the study, one of the conclusions is that more collaboration
with industrial practitioners and researchers is needed in order to ensure that
the solutions from research are actually applicable in practice. Our study is an
example of the research proposed here.

A study by Kannenberg & Saiedian [38] reviews the existing literature to
investigate why software requirements traceability still remains a challenge.
They conclude that manual traceability methods and existing tools are inade-
quate for the needs of the software development companies, a finding support
by our investigation.

2.11 Conclusion

This paper provides an exhaustive overview of traceability challenges and
solutions in the automotive domain and contrasts them with those found in
general literature. Our study shows that there is a significant overlap between
general challenges and solutions and those found in the automotive domain.
It provides evidence that many solutions proposed in the literature are not
applicable in the automotive domain due to its specific set of characteristics,
such as system complexity, the safety-criticality of the developed systems, and
the distributed development split between the OEMs and suppliers.

We used a tertiary literature review to explore general traceability challenges
and solutions reported in literature, a multi-vocal literature review to elicit
challenges reported in the automotive domain by different provenances such
as tool vendors, consultants, academia and users, and a case study to explore
how the challenges are experienced in practice.

While the tertiary review revealed challenges and solutions mostly from
academia, the MLR was a richer data source (due to the diversity in the
provenances). The MLR also gave an indication of which challenges are
particularly prominent in the automotive domain. Challenges such as Diverse
artifacts and tools and Manual work, e.g., were reported by all provenances. The
same is true for solutions where, e.g., Integrated tool platform, Tool integration
and Automation where reported by all provenances. The MLR also showed
the difference in challenges that are mainly discussed in academia and those
discussed with practitioners such as tool vendors, consultants and users.

The case study validated our findings as most of the challenges were found
there as well. In addition, it revealed six unsolved challenges at the company:
1) Manual work of creating and maintaining traceability links, 2) Traceability
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activities perceived as an overhead, 3) Lack of visualization tools, 4) Manual
assessment of links, 5) Hard to measure the return on investment of traceability
and 6) Lack of universal standards for exchange of traceability links.

There are proposals for solutions for most of the unsolved challenges. How-
ever, for the case we investigated, these solutions were either tried and did not
fully solve the problem (e.g., an integrated tool platform to solve the diversity
of tools problem) or the solutions could not be applied due to constraints
that are specific to the automotive domain such as the requirement to follow
safety standards like ISO 26262. This limits, for instance, the applicability of
machine learning to generate links for safety-critical applications. Given that
our static validation was conducted in one company, this is no indication that
these challenges are also unsolved in other automotive companies. Nevertheless,
we identify solutions that can be applicable to solve these challenges given the
constraints found in the automotive domain. It is therefore still important to
investigate how the proposed solutions in literature can be tailored and made
applicable to this domain. In cases where tailoring of the solutions will not be
enough, new approaches to solve these challenges can be investigated.

For future work, we plan to investigate how solutions proposed in Section 7.6
will be able to work in practice, by implementing and trying them with
practitioners. As part of our research we have developed an open source
traceability tool8 that allows manual creation of links to arbitrary artifacts.
In terms of the solutions found in our review, it addresses Tool integration
and Report generation. Our concrete plans are to investigate how to combine
automatically created links (for instance from model transformations) with
manually created links. We will also investigate how to support users with
semi-automatic maintenance of traceability links through notifications and
collaborative features such as commenting on links. Furthermore, we will
investigate how such a dedicated traceability tool can be integrated into the
development process of a company. To contribute to the best practices of
traceability, we also plan to work together with our industrial partners, mainly
from the automotive domain, to provide different traceability information
models for the different systems found in this domains. For instance we will
provide information models for traceability when developing product lines and
when developing multi-core systems.

Acknowledgements
Funding: This work was supported by Vinnova (grant number 2014-01271) as
part of the ITEA2 project AMALTHEA4Public.
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Table 2.4: Frequency of different source types in the MLR by provenance
Source Type Total Academia Tool Vendor Consultant Mixed User

Conference Paper 65 23 5 2 23 12
Workshop Paper 11 7 1 0 3 1
Journal Paper 12 3 1 1 6 1
Book Chapter 3 2 0 0 0 1

Peer reviewed 91 35 7 3 32 15

Book 3 2 0 0 0 1
Whitepaper 19 1 10 6 1 1
Presentation 35 6 11 11 3 5
Press release 3 0 2 0 0 1
Blog Entry 7 0 5 2 0 0
Thesis paper 3 2 0 0 0 0
Job posting 3 0 0 2 0 1
News article 6 0 4 2 0 0
Project Deliverable 4 1 0 0 1 2
Forum post 1 0 0 0 0 1
Course
announcement

1 0 0 1 0 0

Tool description 43 0 41 2 0 0
Case description 8 0 7 1 0 0
Technical Report 2 1 0 0 1 0
Website 1 0 0 0 0 0
Service description 3 0 1 2 0 0
Magazine Article 8 0 4 3 0 0
Manual 2 0 0 0 0 0
Thesis description 2 1 0 1 0 0
Training Material 1 0 0 0 0 0
Talk abstract 1 0 0 0 0 1
Workshop
Proceedings

1 0 0 0 1 0
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Abstract
Traceability is an important concern for numerous software engineering activ-
ities. Establishing traceability links is a challenging and cost-intensive task,
which is uneconomical without suitable strategies for maintaining high link
quality. Current approaches to Traceability Management (TM), however, often
make important assumptions and choices without ensuring that the conse-
quences and implications for traceability maintenance are feasible and desirable
in practice. In this paper, therefore, we identify a set of core factors that
influence how the quality of traceability links can be maintained. For each
factor, we discuss relevant challenges and provide guidelines on how best to
ensure viable traceability maintenance in a practical TM approach. Our results
are based on and supported by data collected from interviews conducted with:
(i) 9 of our industrial and academic project partners to elicit requirements
for a traceability tool, and (ii) 24 software development stakeholders from 15
industrial cases to provide a broader overview of the current state of the practice
on traceability maintenance. To evaluate the feasibility of our guidelines, we
investigate a set of existing TM solutions used in industry with respect to our
guidelines.



90 CHAPTER 3. PAPER B

3.1 Introduction and Motivation

Traceability can be defined as the ability to relate different artefacts created
during the development of a software system. This also includes the ability to
identify stakeholders that have contributed to the creation of artefacts, and the
rationale that explains the need of these artefacts [5]. Traceability Management
(TM) incorporates the creation, maintenance, and use of traceability links. It
is an important concern that cuts across numerous domains and application
scenarios including tool integration [181], requirements management (RM) [14],
software product line management [182,183], model driven engineering [108,184,
185], and compliance with standards such as CMMI [186] and ISO 26262 [75].

All activities associated with keeping traceability links up to date and
consistent are referred to as traceability maintenance. Traceability links rapidly
become obsolete and effectively useless if they are not maintained as other
artefacts evolve [29]. As the manual maintenance of links is error prone and
expensive, a tool-supported approach to traceability maintenance is required
if the benefits of traceability are to be realised. The main contribution of
this paper are factors that impact traceability maintenance and guidelines on
how to address them when designing TM tools. This contribution is based
on an analysis of the spectrum of possible solutions extracted from interviews
with industry practitioners. A further contribution is an overview of how the
guidelines are realised in existing TM tools.

The promised benefits of traceability include improving the quality of
software systems by supporting tasks related to maintenance, evolution, docu-
mentation, testing, and reuse. Traceability makes these tasks less dependent
on individual experts and improves system acceptance by increasing under-
standability [5,10,85] A current challenge is, however, to cost-effectively enable
these promised benefits [29]. To ensure this, it is of the utmost importance to
guarantee that a high traceability link quality can be maintained in the face of
changes to connected artefacts.

Traceability link “quality” is typically quantified by a combination of mea-
surable properties including completeness, correctness, accuracy, precision,
confidence, etc. [10]. These properties can only be defined precisely in a
specific context and will thus be referred to collectively in the following as
the general level of consistency of all traceability links. There are some
automated approaches to maintain consistency, e.g., constraint-based [185],
grammar-based [187], or based on machine learning techniques [188]. In prac-
tice, however, it often remains unclear why the particular chosen approach is
feasible or desirable. The data from our interviews reveals two main challenges:
(i) traceability links are still mostly created manually in practice as there is not
yet sufficient trust in the quality of automation techniques, and (ii) one must
cope with connected but highly heterogeneous artefacts across tool boundaries.

When designing and developing a TM solution that combines manual
and automated traceability maintenance techniques, multiple factors must
be considered. It is crucial to understand their consequences on traceability
maintenance. Our aim is to provide a systematic set of guidelines that can
be applied when establishing traceability maintenance as a crucial part of a
practical TM approach. These guidelines are based on a set of primary factors
that influence how the consistency of traceability links can be maintained.
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For each factor, we discuss relevant challenges and suggest solution strategies
together with their respective consequences and implications. These factors
and guidelines constitute a novel contribution based on empirical evidence.
Thus, the main research question for this paper is as follows:

What are the primary factors that affect how and to what extent a TM solution
can provide traceability maintenance?

We conducted semi-structured interviews with 9 industrial practitioners to elicit
requirements for a traceability tool, and with 24 additional software development
stakeholders from 15 companies to provide a broader understanding of the
practical challenges involved in establishing a viable and flexible TM solution.

The rest of the paper is structured as follows: In Section 3.2 we introduce
basic terminology. Our main contribution, important factors and guidelines to
consider when addressing traceability maintenance, is presented in Section 3.3.
In Section 3.4 we evaluate the feasibility of our guidelines in practice by
investigating a set of existing TM solutions with respect to our guidelines. Our
paper concludes with an overview of related work in Section 3.5, threats to
validity in Section 3.6, and future areas of research in Section 3.7.

3.2 Foundations

As TM is a task that cuts across multiple application domains and technological
spaces, our terminology is chosen to be generic enough to incorporate both
manual and informal TM strategies. Research on bidirectional transformations
(bx) has many parallels to TM, including the central concept of consistency for
a given set of artefacts, as well as the requirement to be as technology agnostic
as possible. Our definitions are thus inspired by work on bx such as [189].

Let us refer to the “things” that we want to work with (modify, trace to
and from) as models. We do not care what exactly models are (this can be
very different from one domain to another), only that they can be modified
to result in other models. Let us refer to such a modification as a delta. We
are also interested in different “kinds” of models, which we shall refer to as
model spaces. A model space basically groups together all possible states of a
kind of model, connected by deltas. Again we do not care how such a model
space is exactly induced as there are many ways to do this (using metamodels,
constraints, grammars, etc.). Finally, we expect deltas to be composable and
that it be possible to get from any model to any other model in the same model
space. This is summarised succinctly in the following definition.

Definition 1. (Model Space) A model spaceM = (M,∆) consists of a set M
of models, a set ∆ of deltas, and functions src : ∆ → M , trg : ∆ → M that
map a delta to its source and target model, respectively. For A,A′ ∈ M , we
denote a ∈ ∆ as a : A→ A′, if src(a) = A and trg(a) = A′.

Every model space M = (M,∆) is connected: ∀A,A′ ∈ M ∃ a : A → A′,
and reflexive: ∃ id : M → ∆, a function mapping every model A to idA : A→ A,
a special identity delta. Finally, deltas can be composed via a binary operator
; : ∆ × ∆ → ∆, which is associative: (a; a′); a′′ = a; (a′; a′′), ∀ a : A →
A′, a′ : A′ → A′′, a′′ : A′′ → A′′′, and for which identity deltas are neutral:
idA; a = a = a; idA′ .
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Example. As our running example we consider a software development
project with (i) requirements in the ReqIF1 format, (ii) implementation models
as UML statecharts, and (iii) tests in form of C code. In terms of model
spaces we thus have three model spaces: (i)Mreq of all possible requirement
models connected by deltas representing all possible changes (e.g., addition,
deletion, and all means of editing a requirement), (ii) Muml of all possible
statechart models and deltas on statecharts, and (iii)Mc of all C programs
and deltas on C programs. One could additionally restrict the model spaces
to “well-formed” models, e.g., only considering C programs that compile, and
requirements/statecharts that comply to the ReqIF/UML metamodel (and all
constraints).

The concept of a “traceability link” is relatively difficult to fix, ranging in
the literature from typed to untyped, binary to n-ary, and interconnected to
isolated. In this paper, we choose not to define what a traceability link is but
rather to view a distinguished model space as a special kind of traceability
model space for connecting models from other model spaces. This means that
traceability models and deltas are just as simple or as rich as any other models
and deltas:

Definition 2. (Traceability Model) A traceability model space is a distinguished
model space Mτ = (Mτ ,∆τ ). Models T ∈ Mτ are referred to as traceability
models.

Example. For our running example, we take a model-based approach, defin-
ing a traceability model spaceMτ via a meta-model with an n-ary traceability
“link type” connecting a requirement, multiple states and transitions in a state-
chart, and multiple tests (files with C code) together. We also decide to connect
such traceability links with an association “isRelatedTo”, effectively grouping
related traceability links. The point here is that traceability models can be
chosen to be just as rich as any other model.

The exact manner in which a traceability model “connects” a set of other
models is also left open and can range from explicit edges (assuming a graph-
based representation of models), implicit connections based on attribute values
(IDs), and connections based on auxiliary structures such as tables, etc. For
this paper, it suffices to introduce a consistency function that hides all such
details, and decides how consistent a given set of models together with a
connecting traceability model is. We choose to allow levels of consistency as
opposed to “fully consistent” or “completely inconsistent”, as a viable traceability
maintenance solution should be able to cope with partially consistent models
[190]:

Definition 3. (Consistency Function) Given model spacesM1 . . . ,Mn, and
a traceability model spaceMτ , a consistency function is a function R : M1 ×
. . .×Mn ×Mτ → [0, 1].

Example. Given model spaces Mreq,Muml,Mc and traceability model
space Mτ from our running example, a consistency function R : Mreq ×
Muml ×Mc ×Mτ → [0, 1] can be specified as a pragmatic combination of
automated sanity checks and decisions to be made by a domain expert:

1Requirements Interchange Format (omg.org/spec/ReqIF/)
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- Validity: R(mreq,muml,mc,mτ ) := 0 if mτ is invalid, i.e., does not conform
to its metamodel. This means that “broken” traceability links (wrong types,
violated multiplicities, etc.) are not to be tolerated.

- Completeness and Correctness: if mτ is valid, then
R(mreq,muml,mc,mτ ) := 0.2 · comp+ 0.8 · corr, where comp is the number
of “covered” requirements, i.e., requirements connected to a traceability link,
divided by the total number of requirements, and corr is the number of
correct traceability links divided by the total number of traceability links.
Correctness of a traceability link is manually determined by consulting a
domain expert.

Note that this consistency function penalises incorrect links more than missing
links, and can be extended analogously to handle uncovered elements also in
the statecharts and tests.

Given that it is possible to gauge the consistency of a set of models connected
by a traceability model, we can now define the task of traceability maintenance.
The central idea is to define a traceability maintainer on deltas instead of just
models, i.e., to supply information on how a set of models has evolved, together
with the old traceability model. The task of traceability maintenance is then to
compute a suitable delta on the traceability model. This is depicted schemat-
ically in Fig. 3.1 as “completing the square” and is subsequently formalised
in Def. 4. This differs from general consistency restoration, where the input
deltas can also be manipulated [189]. In the case of traceability maintenance,
the expectation is that only the traceability model is changed.
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Figure 3.1: Completing the square

Definition 4. (Traceability Maintainer) Given model spaces M1 . . . ,Mn,
and a traceability model space Mτ , a traceability maintainer is a function
↔
R: ∆1 × . . .×∆n ×Mτ → ∆τ .

Example. For the consistency function R defined previously, the following
represents a traceability maintainer

↔
R:

[a] Delete all broken traceability links (fully automatic).
[b] Request a review of all traceability links by a domain expert to evaluate

correctness, supplying exactly what was changed as input. Incorrect
traceability links that cannot be fixed should be deleted (manual).

[c] Determine uncovered requirements and ask a domain expert to add
missing links (semi-automatic).

The assumption in Step (2), which is reasonable but does not hold in general,
is that a domain expert (or some software component if this step is automated)
does not need to review all links if provided with detailed change information.

A basic property of a useful traceability maintainer is that the maintainer
either improves (or retains) the current situation, or does nothing at all. This
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expectation holds for manual and fully/semi-automated traceability mainte-
nance alike; if manipulating the traceability model worsens the current situation
then the changes are not worth applying.

Definition 5. (Consistency Improving) For model spacesM1 . . . ,Mn, a trace-
ability model spaceMτ , and a consistency function R : M1× . . .×Mn×Mτ →
[0, 1], a traceability maintainer

↔
R: ∆1 × . . .×∆n ×Mτ → ∆τ is consistency

improving if R(A1, . . . , An, T ) ≤ R(A′
1, . . . , A

′
n, T

′), where δ1 : A1 → A′
1 ∈

∆1, . . . , δn : An → A′
n ∈ ∆n, and δT =

↔
R (δ1, . . . , δn, T ) : T → T ′ ∈ ∆τ .

Further properties concerning, e.g., how “much” of the traceability model is
changed (the assumption being that “smaller” changes are preferred), can be
specified. The interested reader is referred to, e.g., [191] for a related discussion.

3.3 Influential Factors and corresponding
Guidelines

This section presents our findings and discussion based on data collected from
the following sources:

(S1) Two focus groups2 aimed at identifying traceability problems and
collecting requirements for a traceability tool from both industrial and academic
partners in the Amalthea4public project. The first session was with 5 partners
from 2 companies developing embedded systems for forest automotives in
Sweden and the second session was with 3 academic partners from 2 universities
and one industrial partner (automotive supplier) from Germany. The collected
traceability requirements were later refined through phone calls with project
partners outside Sweden, and face-to-face meetings with one industrial partner
in Sweden.

(S2) Semi-structured interviews3 with 24 software development stakeholders
from 15 industrial cases in Germany and Sweden. This was part of a larger
case study aimed at investigating general traceability management practices
in industry [192]. For this paper, we only use data related to traceability
maintenance collected from the study.

The majority of the cases (cases 1-6) are from the automotive domain,
followed by the domains of software development (cases 7-8) and telecom-
munications (cases 9-10). Other domains are IT services (Case 11), banking
self-service automation (Case 12), electrical equipment (Case 13), embedded
systems (Case 14), and industrial automation (Case 15). All interviewees had
working experience of at least one year in their current roles, including devel-
opment managers, quality managers, system software architects, and product
managers. The interviewees worked in projects varying in size, from four to
more than one hundred employees.

The interviews from S1 and S2 were recorded and transcribed. The data was
used in several analysis sessions with four researchers to identify key factors and
guidelines. We conducted cross case analysis to examine differences between

2http://tinyurl.com/jotqagy
3http://tinyurl.com/ht2hmzk
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cases and identify practical needs. In the following, we present our findings,
referring to respective sources to support our arguments.

3.3.1 Factor 1: Versioning

A realistic application scenario will involve multiple users working together
more or less concurrently on a common set of models. This implies that a
Version Control System (VCS) of some kind is most probably already present
and in use. The conclusion that versioning is a primary factor to consider is
supported by (S1), as our project partners require explicitly that versioning
be addressed appropriately in a proposed TM solution, and by (S2) as change
propagation and VCS solutions play an important role in all 15 cases.

The effect of versioning on traceability maintenance can be explained by
considering the possible input to a traceability maintainer, depicted in Figure 3.2
with labels ¶, ·, ¸. If versioning information is completely ignored ¶,
traceability maintenance becomes relatively challenging as the maintainer is in
effect presented with some versions (perhaps the latest versions) of all models
and is expected to update the traceability model. Without any provided
deltas, however, a maintainer can only assume that everything was created
from scratch meaning that all models, including the traceability model, must
be fully inspected. This corresponds to a so called batch or non-incremental
scenario, well-known from research on model synchronisation (cf. [193] for a
classification of application scenarios for model synchronisation). This situation
is problematic as it is difficult, if not impossible, to guarantee consistency
improvement in any way (the consistency of the previous “state” cannot be
determined as previous versions are unavailable). We are ready to formulate
our first guideline concerning versioning:
(G1) Version your traceability model just like all other models, especially

ensuring that it is included in any consistent tags (beta, release, etc.).
Strive to provide the same level of support and integration with your VCS
for your traceability models as for any other models.

Ample support for (G1) is provided by (S2) as the majority of our intervie-
wees explicitly stated that it would be beneficial to have a versioning solution
for traceability models. In some cases (3 of 15), a traceability model is indeed
versioned, connecting models in specific versions. This is stated by a software
architect from Case 2 to be a major advantage as “correct” traceability links
do not get “automatically incorrect", but rather “outdated”.

We interpret this as meaning that the task of traceability maintenance is
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well-defined in the sense that a traceability model T can be evaluated with
respect to the correct set of connected models without imposing automatic
updates, i.e., forcing a potentially problematic evaluation of T in the context
of A′

1, · · · , A′
n (cf. ¶ in Figure 3.2).

Even if all models are versioned and tagged together with the traceability
model, the task of traceability maintenance remains challenging if explicit
deltas are not provided. This situation is depicted as · in Figure 3.2 and
corresponds to a so-called state-based scenario, where the traceability maintainer
is only provided with the previous and current versions of all models, and
must somehow determine the missing deltas (depicted as question marks in
the diagram). This is better than the batch case, but is still suboptimal as
the deltas have to be determined, e.g., by comparing the two versions. This is
problematic as it entangles consistency improvement with delta recognition,
two difficult tasks that should best be handled and controlled separately [189].
This brings us to our second guideline on versioning:

(G2) Ensure that you are able to extract explicit deltas for all models from
your chosen VCS.

Following this guideline means that you are able to provide all deltas
required for traceability maintenance. This is depicted as ¸ in Figure 3.2,
representing the ideal situation required for traceability maintenance as all
deltas are present.

Guideline (G2) is supported by (S2) as multiple interviewees describe their
expectations of how a traceability maintainer should work as follows: a main-
tainer must check if there are implications caused by evolving connected models.
If a versioning solution exists, the traceability model must be appropriately
updated with respect to the new versions of the models, i.e., one must decide if
there should (still) be a link or not. Furthermore, the vast majority of intervie-
wees attributed the most common source of inconsistencies to missing “deltas”
and corresponding change propagation. For example, a software architect from
Case 2 stated that most inconsistencies are probably introduced when perform-
ing changes (changing a signal) for which no information is provided about
what is connected and potentially affected (e.g., connected requirements). The
point here is that without explicit deltas, the entire traceability model must
be inspected, regardless of if the consistency maintainer is fully automated,
semi-automated, or manual. Even in an optimal situation with all deltas, there
is still no general guarantee that necessary updates to the traceability model
are “local” in any sense, but the chances of providing an “incremental” and
more efficient traceability maintainer are increased.

3.3.2 Factor 2: Tool Boundaries

A typical application scenario for traceability will involve multiple model spaces
and often many tools, with which the different models are managed. Planning
the scope and boundaries of a TM tool is, therefore, a crucial factor that has a
substantial impact on traceability maintenance.

Our requirements (S1) show that project partners require integration of
different VCS approaches, RM tools, development environments, and modelling
standards, to name just a few of the models spaces and tools involved.
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Our interviews (S2) show an equally wide variety of stakeholders from
several disciplines, often organised in separate departments with several tools.
14 of our 24 interviewees stated that the heterogeneous nature of the used tools
makes traceability management in general, and traceability maintenance in
particular, quite difficult in practice. Due to inadequate tool integration, it is
often difficult to establish connections between models stored in different tools.

In some cases, workarounds are provided using the manual mapping of
IDs (such as in Case 12 or Case 10). In Case 11, the developers reference the
requirements specification with the current version number as a source code
comment. Such ad-hoc solutions negatively impact traceability maintenance:
the relevant interviewees confirmed that the traceability links established in this
manner can only be managed manually and can get easily outdated. It is thus
important to plan for a heterogeneous tool landscape, with an understanding
of how this impacts traceability maintenance.

The range of choices is depicted schematically in Figure 3.3. On one end of
the spectrum ¶ is a holistic tool environment that directly supports all relevant
tasks, including traceability management. Everything is fully integrated in
essentially the same tool. On the other end of the spectrum ¸ is a separate
TM tool that only manages traceability models and must establish links to
models managed by other tools.

In between these extremes are hybrid solutions · where a mix is chosen.
While eliciting requirements from our project partners (S1), we were confronted
with contradicting requirements: some partners were interested in traceability
to and from primarily requirement specifications and thus suggested that the
envisioned TM solution incorporate direct support for RM. This was essentially
demanding a hybrid solution combining TM and RM in the same tool. Other
partners, however, were already using established RM tools and ruled out
changing or switching to a new RM tool.

Interviewees from 6 of our 15 cases from (S2) state that interorganisational
collaboration would benefit from using a common tool. For example, a developer
from Case 1 stated that it would be helpful to have a common platform to
communicate with suppliers. The problem is that there is no standard way
to communicate. Different suppliers work with different tools and approaches
(e.g., document-based, model-based). With a common tool or platform, one
would not have to worry about different standards.

Although a holistic environment might work in some cases — e.g., for
smaller companies such as in Case 14, where the collaboration with customers
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is very close and they can get direct access to development artefacts — in
many scenarios this will not be feasible. In Case 6, for example, external
collaboration is accomplished using the export of specification documents and
e-mail exchange. It was stated that due to legal and intellectual property issues,
it is infeasible to use one central platform with other organizations. Even in
supposedly holistic solutions, such as Case 13 and Case 9, some traceability
links still exist that point to bugs or issues reported by the customer and are
thus “external” to the tool.

The Head of Software Quality Assurance from Case 12 points out that
having an “orthogonal tool that only takes care of traceability” ¸ might be the
solution. Such a tool would need to have good interfaces to existing tools (for
RM, test management, etc.) and allow the creation of links between models
managed by different tools. Our next guideline, therefore, encourages TM
solutions to provide direct access to their managed traceability models, as this
opens up the TM tool, simplifying integration with external tools:
(G3) Provide well-defined interfaces and easy, direct access to managed trace-

ability models.
Holistic and separate TM solutions both have advantages and disadvantages,

many of which were stated by our interviewees. With respect to traceability
maintenance, a holistic tool environment is able to guarantee a certain minimal
consistency, e.g., by forbidding changes that break traceability links, and
by forcing the user to first of all delete or adjust affected traceability links
before making changes that might cause inconsistencies. One could also weave
traceability link creation into a given process supported by the TM tool, ensuring
that certain traceability links are created eagerly, i.e., “captured” immediately
at certain steps in the process. This is advantageous and significantly simplifies
the task of traceability maintenance. Establishing such a holistic tool and
acquiring adequate acceptance for it is, however, challenging, especially in the
context of a multi-partner, open-source project such as Amalthea4public.

For a separate TM tool, every model apart from the traceability model is
external in the sense that the TM tool does not control where these models
are persisted and how/when they are changed. To enable this, a strategy
is required to connect elements in such external models to elements in the
traceability model. Possible solutions include establishing proxies for these
elements, whose creation and maintenance are handled by corresponding (tool)
adapters. With respect to consistency, this means that the maintainer has to
be able to deal with traceability links that can become broken due to changes
(no minimal consistency can be guaranteed), as well as support the delayed
creation (“recovery”) of new traceability links due to changes. This can be
substantially more difficult and less scalable than in a holistic situation.

Mixing these strategies, however, tends to amplify the disadvantages, leading
to a situation where there is an internal concept not only of traceability
models, but also of, for example, requirement models. This means that some
import/export mechanism must be provided to get existing requirements
specification into the TM tool, paired with the possibility of linking to external
models in other tools (e.g., implementation and test models). This results
in a complex and potentially confusing workflow, where some models are
treated differently than others. In the worst case, imported models might
still be changed externally, demanding some additional form of update or
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synchronisation mechanism. Our guideline in this respect is thus as follows:
(G4) Aim for either a holistic solution, or a completely separate TM tool with

a carefully designed tool adapter concept. Avoid combining both strategies.
Support for (G4) is provided by our interviews (S2): interviewees from 9 of
15 cases stated that having one common platform across disciplinary borders
would be beneficial.

To address the challenges of establishing a separate TM solution and
numerous tool adapters, we suggest:
(G5) Use a common standard and/or technological space as “glue” to simplify

the development of tool adapters.
This is supported by (S2) as, for example, a product manager from Case 5
and a system software architect from Case 6 state that having one tool for all
tasks is not feasible but that one should rather try to achieve traceability using
better interfaces across tool boundaries (such as OSLC4 or EMF5).

3.3.3 Factor 3: Configurable Semantics

The types and semantics of traceability links vary depending on the domain.
It is therefore impossible to implement generic but still adequately useful TM
consistency functions as consistency is defined based on the type and semantics
of the links. This means that “consistency” must be defined and tailored to
each domain, possibly even to specific processes, companies, and projects.
Defining consistency functions and corresponding traceability maintainers is
thus a central and recurring task for TM and should be supported as much as
possible by any TM approach.

Support for regarding such diversity as an important factor is provided
by (S1): Different project partners require different traceability link types. For
instance, partners having a product line approach express the need for links
related to variability management while those developing multi-core systems
require traceability links for task mapping purposes. Such diverse consistency-
related requirements cannot be addressed with a single, fixed definition of
a traceability model space, indicating that a suitably flexible configuration
process is crucial.

The data collected from our interviews (S2) also reveals a desire for diverse
semantics of links e.g., “satisfies”, “transferred from”, and “refers to” mentioned
by a quality manager from Case 7 or “verifies” and “fulfils” mentioned by a
system software architect from Case 6, to mention a few.

As motivation for configurable semantics, our interviewees stated: (i) im-
provement of traceability maintenance (the Head of Software Quality Assurance
from Case 12), (ii) to support understandability, especially for new developers
(a developer from Case 1), (iii) to simplify reviews and creation of status reports,
especially for large models (a project manager from Case 14), and (iv) to enable
better search and filter functions (a system software architect from Case 6).

A factor that greatly influences the complexity of consistency functions
and corresponding maintainers is the degree to which the traceability model
space captures domain-specific semantics and whether the links are explicitly

4http://open-services.net/
5https://eclipse.org/modeling/emf/
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stored or exist implicitly based on, e.g., naming conventions. The spectrum
of choices ranges from traceability model spaces without any domain-specific
semantics at all (any connection is possible), to traceability model spaces
with a rich domain-specific semantics (connections are restricted to only what
makes sense). The former simplifies TM tool support but shifts all complexity
to the consistency function and maintainer, while the latter captures some
level of consistency already in the traceability models, thereby simplifying
corresponding consistency functions and traceability maintainers.

To discuss the effect of implicit vs. explicit semantics on consistency mainte-
nance in more detail, Figure 3.4 depicts the range of choice divided into implicit
links ¶, e.g., based on conventions, and explicit links, which are further divided
into generic ·, fixed ¸, and domain-specific ¹.

Implicit links ¶ are connections between traceability models and other
models based on conventions such as naming schemes, identifiers, etc. For
example, when committing code for a bug fix into a VCS, the ticket number of
the bug report should be written in the commit message. Such conventions
are problematic as they can be hard to enforce and are often regarded only
as “best practice” leading to numerous violations or alternative and possibly
conflicting conventions.

Implicit links can be very difficult to check for programmatically, e.g., if
the referenced fixed bug is described textually (in a manner that is clear for a
human reader) instead of entering its unique ticket number (similar examples
could be observed in Case 10, Case 11, and Case 12). Explicit links, represented
by elements in the traceability models, are easier to analyse and keep consistent.
This brings us to our first guideline on configurable semantics:

(G6) Avoid implicit, convention-based traceability links and strive instead for
explicit links that can be checked with tool support.

Explicit links can vary substantially regarding the degree to which domain-
specific semantics can be captured. Generic links ·, are all of the same basic
“type” and can be used to establish connections between anything. This is
advantageous for two reasons: (i) it is easy to provide generic tool support,
and (ii) such links are flexible in the sense that connections can be established
even in unforeseen situations.

From the point of view of consistency maintenance, however, almost all
complexity is shifted to the consistency function and maintainer, which have
to determine consistency based on the context of established connections. This
is not only challenging but can even be impossible in some cases, if there
is not enough context information present to retrospectively determine what
such a generic link actually means. The disadvantages of generic links can be
addressed by allowing additional meta-information to be embedded in links.

2
implicit, based 
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generic domain-specific
1 43
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Figure 3.4: How rich are your traceability models?
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In an attempt to retain the advantages of generic links with respect to generic
tool support, a common strategy is to provide a rich, but fixed traceability
model space ¸. This means that the TM solution provides, e.g., numerous
attributed link types and relations that are, however, fixed with no or only
very limited possibilities of extension. This is certainly an improvement over
implicit or generic links, but the fixed model space might be either too complex
or not rich enough for a certain domain, process, or company. In such a case,
complexity is again shifted to the traceability maintainer as it is impossible
to embed the required semantics into traceability models. The advantage of
this approach is that the TM solution can provide a substantial amount of
functionality and consistency checking out-of-the-box.

Finally, explicit links can be completely domain-specific ¹ if the TM solu-
tion allows the underlying traceability model space to be swapped. This enables
domain-specific semantics to be represented, e.g., by appropriate attributes,
types and relations. The advantage of this approach is that the TM solution
can be adapted to a wide range of domains and applications without sacrificing
semantics. Traceability model spaces can be chosen to be very rich, making
it impossible, e.g., to create “wrong” links. A challenge with this approach is
that generic functionality provided by a TM solution is limited. Substantial
effort must be spent on re-implementing domain-specific parts, in particular in
relation to traceability maintenance. In practice, therefore, some aspects are
typically fixed such as the general “shape” of a traceability link. This discussion
is summed up in the following guideline:

(G7) Prefer domain-specific, semantically rich traceability model spaces as this
simplifies traceability maintenance.

Support from our interviews (S2) is provided by a quality analyst from Case
4, who describes the current usage of generic links as “immature” and “work in
progress”, and would prefer to be able to attach more semantics. An interesting
observation is made by a product manager from Case 5, who mentions that it is
virtually impossible to get the exact semantics perfectly right at the start of a
project. The semantics must thus be adapted and updated continually during
the lifetime of the project, not only by adding new “types” of links, but also
by refining and even deactivating existing types. Concerning tool boundaries,
the Head of Test Management from Case 7 states that especially links to
external tools should be as “rich” as possible. A quality manager from Case 7
describes the current usage of a commercial TM tool with a fixed semantics
as unsatisfactory; the TM tool “knows nothing” about extra semantics that
users in the company have decided upon and that (hopefully) everyone in the
company is aware of and adheres to. Such a fallback to relying on conventions
has of course similar disadvantages as using implicit links.

3.3.4 Factor 4: Consistency Specification

Our final factor concerns how consistency is specified and consequently main-
tained. Support for considering this as a primary factor is provided by (S2), as
numerous interviewees expressed the need to establish trust in the consistency of
traceability links. For example, the Chief Technical Officer from Case 8 stated
that the quality of traceability links must be so high that their benefit becomes
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obvious to all stakeholders. If the stakeholders do not trust the traceability
links, then they will not be used, and will not be improved.

The solution space for consistency specification as depicted in Figure 3.5 is
spanned by two orthogonal dimensions: a dimension concerning the manner in
which traceability maintainers are applied (the vertical axis), and a dimension
characterising the possible classes of their underlying consistency functions
(the horizontal axis).

From our interviews, we have identified two main strategies of maintaining
consistency: a top-down, process-oriented, mostly eager (consistency violations
are fixed immediately) strategy ¶, and a bottom-up, ad-hoc, mostly delayed
(consistency violations are fixed only on-demand) strategy ·. Both strategies
appear to be equally successful in practice and are often mixed, with the choice
mainly depending on the primary users of the TM solution. We thus suggest
the following guideline for this dimension:

(G8) Ensure that your TM solution supports a flexible combination of both
top-down and bottom-up strategies.

Support for this guideline is mainly provided by (S2): 7 of our 15 cases all
have a strong focus on requirements management when it comes to applying
traceability. All of these cases except Case 9 use a dedicated RM tool and
already organise requirements and their breakdown with it. Integration and
system test cases are usually also stored in the tool (or a connected test tool) and
linked to the requirements. Many of these cases are part of bigger organizations,
in which several companies work together on projects where safety and quality
certification is often highly relevant. This demands organised, fixed processes
and clear responsibilities. In Case 7, for example, formal reviews are conducted
before a milestone is completed. In Case 9, connections between requirements
and the design of a measurement system are recorded in spreadsheet files and
documents, following a strict and well-defined process. In all these mainly
requirements-centred cases, TM in general, and traceability maintenance in
particular, is handled in a top-down fashion initiated by project management.
Often, but not always, consistency is maintained as part of a defined process,
e.g., creating or updating traceability links immediately after the connected
artefacts are created or changed in a certain step.

Many other cases feature a more developer-driven, ad-hoc approach. In

fuzzy open world closed worldmanual

semi-automated fully-automated

top-down, 
process-oriented, 

eager
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ad-hoc,
delayed
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3 4 5 6

Figure 3.5: How is consistency specified?
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these cases, traceability links are created and updated on-demand by developers,
while focussing on software implementation. This typically involves a software
configuration management system handling source code management, tracking
of defects (issues, bug reports), and the management of implementation tasks
(tickets) in a project. These cases typically drive their development based on
implementation tasks, and require traceability, e.g., from source code commits
to tickets.

There exist some cases that cannot be assigned to exactly one of the two
approaches mentioned above. This involves attempts to handle TM in a
structured, top-down way — and at the same time, bottom-up approaches
invariably arise from the developers’ side. In 3 cases, both approaches are
clearly present and coexist harmoniously and complementarily. In Case 15, for
example, there exists both a requirements-centred approach to connect features
and test cases, while a more developer-driven approach is used to link bugs or
defects to the respective code commits.

Coming back to the horizontal dimension of Figure 3.5, consistency is in
practice often defined manually ¸, i.e., involving a domain expert who has to
decide to what extent a given traceability model is consistent or not. As this
is, however, quite expensive, considerable research has been conducted with
the goal of (fully) automating this task, e.g., [187,188].

Some of these approaches are fuzzy ¹, i.e., similarity metrics and machine
learning techniques are applied to detect patterns and suggest probable con-
nections [188]. Such techniques are often combined with a manual approach
resulting in a semi-automatic approach, providing support for a domain expert
to make the final decision.

Although semi-automatic approaches already improve the situation, a fully
automated approach has the advantage that traceability links can be regarded
as “derived”, i.e., created on demand and never persisted. This avoids incon-
sistencies completely by simply re-creating all links as soon as any changes
are made. To achieve scalability in cases where this is necessary, numerous
incremental and caching strategies can be applied to determine the (potentially)
affected set of traceability links and avoid updating or re-creating all links. An
underlying assumption that might be necessary, however, is that all traceability
links can be (re)created automatically given the current state of all models.

From this discussion, it would appear as though fully-automated strategies
are to be clearly preferred; we suggest, nonetheless, taking a hybrid solution
instead:

(G9) Support an integrated mix of manual and complementary automated
approaches to consistency specification.

This pragmatic guideline is supported by (S2), indicating that there is
simply not yet enough trust and acceptance for full automation. As a quality
analyst from Case 4 puts it, automatically creating and updating traceability
links is a difficult task; some form of validation or evidence is required to
convince users that such traceability links are actually consistent. Especially
interviewees from the automotive domain state that it would be very disturbing
to have inconsistent traceability links in a system. A manual inspection of
traceability links might be expensive, but at least avoids a false sense of
high-quality traceability links.
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Other interviewees are more open, stating that it would be interesting
to improve traceability maintenance via automation strategies; they would,
however, still use this more “as an input for a final manual step”, as stated by
the Chief Technical Officer from Case 8.

There is, at the same time, a clear wish for more automation expressed by
numerous interviewees: based on clear naming and structural rules, the Head
of Test Management from Case 7 would have no problem maintaining at least
a subset of the traceability links automatically. In fact, a team leader from
Case 3 mentions basic automation as an important point; simple rules based
on steps in a well-defined process should ideally be automated to avoid tedious,
repetitive, and manual TM-related tasks.

A well-accepted pragmatic strategy of how to combine manual and auto-
mated consistency maintenance appears to be the concept of suspect links [29,
194]. A product manager from Case 5 states that this technique of applying
automatic consistency checks to identify “suspect links” is applied by numerous
TM-related tools. Such suspect links are presented to the user for a final deci-
sion, possibly together with a set of standard “quick-fix” maintenance strategies
that can be applied at the click of a button.

Fully-automated consistency specification approaches can be broadly clas-
sified into adhering to either the Open World Assumption (OWA) º, or the
Closed World Assumption (CWA) ». In an OWA approach, traceability links
that the traceability maintainer cannot classify as inconsistent are assumed to
be consistent and retained. The maintainer is considered to be incomplete and
the language of consistent traceability models is assumed to initially include
all possible traceability models (everything would be accepted without a main-
tainer), and is progressively restricted as necessary. Suitable OWA strategies
include constraint-based approaches, i.e., providing a set of constraints that
must not be violated by any consistent link [185]. Links that are not referenced
in any constraint are by default consistent.

In a CWA approach, links that cannot be classified as consistent are assumed
to be inconsistent. The maintainer is considered to be complete and the
language of consistent traceability models is assumed to be initially empty
(everything would be rejected as inconsistent without a maintainer) and is
progressively extended as necessary. Suitable strategies include generative,
grammar-based approaches, i.e., a set of rules that generate all consistent
traceability models [187]. Links that cannot be recognised by the maintainer
as consistent are by default inconsistent.

Although there are numerous studies on successfully applying machine
learning techniques to traceability management and maintenance [188], based
on our requirements and interviews, we tend towards CWA approaches:

(G10) For automatically generated links, prefer no links at all to (possibly)
inconsistent links.

This final guideline is certainly contentious and might not be valid in every
application domain, but in the automotive domain and for the development
of embedded and safety-critical systems, stakeholders appear to demand both
a high confidence in traceability links and a zero tolerance for (possibly)
inconsistent traceability links. As a team leader from Case 13 aptly states,
users that encounter inconsistent traceability links tend to be utterly confused
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by connections that do not make sense at all. Having no link at all is actually
better than having an inconsistent link — in addition to eventually having to
search in some other way for the desired connection, an inconsistent link forces
you to first evaluate and conclude that it is indeed inconsistent and unhelpful.

3.4 Strategies in existing TM tools

We now discuss strategies for traceability maintenance employed by three TM
tools currently used in industry. The discussion, structured with our proposed
guidelines, is based on semi-structured interviews6 with expert users (in one
case) and the developers of the tool (other two cases).

3.4.1 Rational DOORS

IBM Rational DOORS,7 also known as DOORS Classic, is a requirements
management tool that is widely used in industry. It offers traceability features
that allow tracing to different types of requirements, e.g., customer requirements,
system requirements, software requirements, etc.

Versioning. Both requirements and traceability links are versioned (stored
in a database) and can be included in tags. Deltas on requirements are recorded
and are available to users. When an artefact connected by a traceability link
changes, the user is informed and the delta is presented to the user, who should
decide how to update the traceability model. The tool thus adheres to both
(G1) and (G2).

Tool Boundaries. As the core functionality of DOORS is RM, traceability
links from requirements to requirements are supported out-of-the-box. To
address linking to model spaces other than requirements, DOORS provides an
OSLC adapter for accessing the requirements. This is currently problematic,
as changes to the models in external tools cannot be detected via such OSLC
links. The clients of the OSLC adapter provided by DOORS also need to be
implemented for each tool which takes substantial effort. Guideline (G3) is
followed as links can be accessed via plugins/addons. DOORS, however, does
not strictly follow guideline (G4) as it combines RM and TM. Although OSLC
has its limitations, (G5) is followed by using OSLC as a common standard for
linking to external tools.

Configurable Semantics. The traceability links created with the tool are
explicit links, adhering to (G6). Semantics can be configured to a certain
extent, as new link types with attributes and restricted source and target types
can be created but, for example, n-ary links are impossible. Guideline (G7) is
thus followed but with limitations.

Consistency Specification. DOORS allows both top-down and bottom-
up consistency management strategies, adhering to (G8). Semi-automatic
traceability maintenance is supported by the use of “suspect link detection”,
i.e., marking a link as “suspicious” as soon as one of the models it connects
changes. This is well in accordance with (G9). In addition to manual links,
DOORS supports the automatic creation of links for some generated models.

6http://tinyurl.com/htvusac
7http://www-03.ibm.com/software/products/en/ratidoor
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For instance, test case skeletons (in form of Excel sheets) can be generated with
a link back to the requirements the tests originated from. As the Excel sheets
are, however, maintained manually after the generation step they can become
inconsistent over time. This means that (G10) is adhered to, but without a
viable means of maintaining consistency.

3.4.2 SystemWeaver

SystemWeaver8 is a commercial holistic information management solution that
aims to support the entire development life-cycle for software and systems
engineering. SystemWeaver supports traceability by providing a means of
connecting elements of models that reside within the tool.

Versioning. Every model in SystemWeaver is versioned and stored in a
common database. The tool has its own VCS and is able to keep track of and
provide all deltas. When a model is changed, SystemWeaver checks for any
traceability links that are connected to modified elements and imply a potential
inconsistency. If such links are found, the relevant deltas are presented to the
user who decides if the link is to be updated to point to the newer versions of
the models.

With respect to (G1), traceability information is not stored and versioned
in an independent traceability model, but as part of the models residing in the
tool. The versions of the models containing traceability links implicitly reflect
the versions of the traceability links. As the tool implements its own VCS for
all models residing in the tool and is able to provide explicit deltas, it adheres
quite well to (G2).

Tool Boundaries. SystemWeaver is clearly a holistic tool, adhering to (G4).
For models residing in the tool, it is relatively easy to keep track of what
has been changed and propose corresponding changes to affected traceability
links. It is also possible to configure workflows to prompt the user to create
traceability links when certain model elements are created. Since traceability
links are parts of the models in the tool, there is a need to traverse the models
to get an overview of all traceability links. The tool provides visualization
features out of the box and the user is able to get an overview of all the links.
Guideline (G3) is thus partly followed. The tool is meant to be sufficient on its
own, but some of its customers use it with other tools such as simulation tools.
In such cases OSLC is used as glue technology for integration as suggested
by (G5). According to an application engineer from the team developing
SystemWeaver, ensuring and maintaining consistency to external tools requires
a substantial amount of effort. This is done by creating tool-specific adapters
that are typically not reusable.

Configurable Semantics. SystemWeaver provides considerable flexibility as
metamodels can be used to configure the tool to a particular domain or project.
By enabling explicit and domain-specific links, the tool is well in line with
both (G6) and (G7). According to SystemWeaver’s fixed meta-metamodel,
however, the concept of a “connection” is defined as having a single source and
a maximum of two targets. An application engineer of the tool stated, however,
that this does not appear to be a major limitation for most use cases.

8http://www.systemweaver.se



3.4. STRATEGIES IN EXISTING TM TOOLS 107

Consistency Specification. SystemWeaver allows the definition of workflows
enforcing when links should be updated, as well as ad-hoc link creation. This
adheres to (G8) as both top-down and bottom-up approaches are possible.

The tool was originally designed for manual link creation. It is, however,
also possible to define rules controlling when and how traceability links are
created. Maintenance of links is semi-automatic; when a change is detected
in a model element that has a link, the link is flagged as a “suspect link” and
the user has to resolve this manually. This is in coherence with (G9). For
(G10), as the tool is configurable, it is up to the final user to decide on suitable
mechanisms for automatically generating links.

3.4.3 YAKINDU Traceability

YAKINDU Traceability (YT)9, is a commercial, Eclipse- and EMF-based TM
tool. It is a dedicated traceability tool.

Versioning. Traceability models in YT are EMF models, which can be
persisted as XML files and thus versioned using any standard VCS. The tool
strives to follow (G1) by providing extra diff and merge procedures implemented
specially for traceability models.

Concerning (G2), however, version and delta information of the models
connected by a traceability link must be obtained from the VCS that is used to
store these models. The quality and availability of the deltas thus depend on
the chosen VCS. For file types where version and fine-grained delta information
cannot be accessed, YT computes a version based on the content of the model.
If the model changes, YT analyses the current model and the information
stored in the traceability link. If they no longer match, the user is prompted
to update the traceability link.

Tool Boundaries. Traceability models are EMF models and can be accessed
and used for activities such as impact analysis and change management. This
correlates with (G3). YT is a dedicated TM tool, thus adhering to (G4).

All models apart from the traceability model are handled as external models
by the tool. To create traceability links to these external models, an EMF
representation is required. For non-EMF models, this is handled by tool
adapters that create EMF representations of models from different tools. A
tool adapter makes a specific type of file format available to YT, for instance,
an Excel adapter makes Excel files (up to cell level) available to the tool, while
a DOORS adapter makes DOORS requirements available to the tool. This
follows (G5), as EMF acts as “glue” technology.

Configurable Semantics. All traceability links are stored in an explicit
traceability model (G6). When there is an implicit connection between models
(e.g., from one UML component to another), YT provides a rule-based language
that can be used to specify how explicit links can be automatically derived.
If feasible, such derived links can be stored in memory and not persisted to
simplify maintenance.

YT was designed to be a highly configurable tool. Consequently, it must
be configured according to the needs of a client. A technical project leader
from the company stated that default configurations are not provided as needs
differ substantially between companies and even between projects in the same

9http://www.yakindu.de/traceability/
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company. Traceability models can be configured for each customer, with a few
restrictions concerning the general shape of a link (e.g., a “link” can connect
only two things). Another obvious restriction is that all model types to be
connected must be supported by corresponding tool adapters. If required, new
tool adapters can of course be developed for a customer who is ready to pay
for it. YT thus adheres to (G7) with a few constraints.

Consistency Specification. YT does not dictate which approach should be
used for traceability maintenance. According to the technical project leader,
the tool can be used to support several processes in combination with other
tools (G8). In combination with a VCS, for example, YT can enforce access
restrictions for editing the traceability model.

Both manual and automatic creation of traceability links is possible (G9).
Automatic links are defined by a rule-based language as opposed to employing
machine-learning techniques, indicating that (G10) is desired by clients.

3.5 Related Work

Most of the research on traceability maintenance is in the area of (semi-
)automatic maintenance of traceability links. These approaches can be cate-
gorised as Transformation-Driven, Event-Driven and Rule-Based.

Transformation-Based Approaches take advantage of the fact that (model)
transformations can be suitably enriched to additionally produce traceability
links. In general, traceability maintenance in this context requires incremental
transformation approaches, for which the case when both source and target
models evolve separately is challenging [59, 60]. This approach also assumes
that all artefacts are created via model transformations, which is often not the
case in practice (yet). An example for this approach has been proposed by
Fockel et al. [185], who describe an approach for semi-automatic establishment
and maintenance of traceability links in the automotive domain. Another
example is [195], where the authors use a graph-transformation based approach
to define, identify, and maintain traceability links.

Event-Driven Approaches leverage events occurring during software devel-
opment activities to maintain traceability links. As a simple example, deletion
of an artefact can be used as a trigger to delete all traceability links connected
to it. Research employing this techniques include [196], where a publish and
subscribe mechanism is used to connect traceability maintenance tasks to
certain events.

Rule-Based Approaches use rules to determine when traceability links
should be generated. For example, Spanoudakis et al. [23] define rules based
on attributes of artefacts, for creating traceability links between requirements,
use cases, and analysis object models. Traceability links are maintained by re-
evaluating the rules. Rule-based approaches can be combined with event-driven
approaches such as in [29, 168], where traceability maintenance is conducted in
two phases: recognising changes based on events, and (re-)evaluating the rules
governing link updates.

Even though some of the factors discussed in this paper have been men-
tioned in the literature (e.g., as requirements in [197]), we are not aware of any
categorisation of primary factors together with guidelines for traceability main-
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tenance such as we provide. In an experience report, Kirova et al. [32] propose
technology recommendations for a traceability tool. These recommendations
support our proposed guidelines especially on versioning and configurable se-
mantics. However, their research was not focused on traceability maintenance
and is based on data from only one company. The research by Gotel and
Mäder [16] provides guidelines for selecting a TM tool. Their guidelines are
directed at end users, while ours are aimed more at developers of such TM
tools.

3.6 Threats to Validity

With regards to data source (S1), the elicited traceability requirements were
from industrial and academic partners in the automotive industry. It is thus
questionable to what extent the requirements can be generalised to other
domains.

Data source (S2) was part of a larger traceability study whose main focus was
on TM in general. This broader scope could have influenced the interview parts
related to traceability maintenance. To minimise this threat, we complemented
the data with an analysis of existing TM tools and interviews with TM tool
developers and expert users (Section 3.4).

A further threat to the validity of our study is that nine of the interviews
from S2 were conducted in German and then translated as accurately as
possible to English. For consistency and readability, all interview quotes were
also rephrased using our established terminology in the paper (e.g., model
instead of artefact, document, or file).

Lastly, researchers’ bias in identification of the factors could have affected
the results. We mitigated this threat by involving four researchers during
analysis and discussing the results with TM tool developers and expert users.

3.7 Conclusion and Future Work

In this paper, we presented factors that greatly influence to what extent
a TM solution can support viable traceability maintenance. We suggested
guidelines for each factor, which should be followed to avoid potentially negative
consequences of certain (combinations of) design decisions.

To evaluate our guidelines, we analysed existing commercial and fairly
established or at least reasonably successful TM tools. Our results show that
while our guidelines are mostly adhered to (indicating that this is necessary for
successful traceability maintenance), configurability and the level of automation
can be improved.

Our results and conclusions are backed by interviews with our project
partners, a broad range of software development stakeholders, and expert TM
tool users and developers.

Our findings can be used by practitioners to develop and select TM tools.
Researchers can build up on our findings to create more applicable (automated)
TM methods and techniques that take practitioners’ needs into consideration.

As future work, we plan to continue ongoing development on an open
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source TM tool Capra,10 which will be used and evaluated in the context of
the Amalthea4public project. To cater for the wide range of project partners,
we aim to address especially configurability (G7) and integrating manual
and automation techniques (G9) better than existing TM solutions, applying
model-driven technologies to enable truly domain-specific traceability solutions.

10http://salome-maro.github.io/TraceabilityManagement
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Abstract
Traceability is a known problem both in academia and industry. One of the
main challenges is that there is no one solution that will solve traceability
problems for everyone in industry. Traceability needs are dependent on the
context of the organization and can differ from project to project in the same
organization. To cater for this problem we have developed Capra, an open
source, flexible, configurable and extendable traceability management tool.
Capra can be tailored according to specific traceability needs of individual
projects and organizations.



112 CHAPTER 4. PAPER C

4.1 Introduction

Traceability in software development refers to the ability to link software
artifacts like requirements, code, and tests throughout the development life
cycle [5]. Traceability facilitates impact analysis, verifying that requirements
have been implemented and tested and in some domains, e.g. in the automotive
domain, it is required for fulfillment of safety standards such as ISO 26262 [75].
A major challenge for traceability tool developers is that traceability needs
differ from company to company and even from project to project [32,108]. To
build a tool that fits a certain company, one needs to analyze the needs of that
company and in most cases the solution will be feasible for that company only.
This is not a good business model for commercial tool vendors or open source
tool developers who want the same tool to be used in multiple companies. To
solve this, a traceability tool needs to be configurable and extendable in such a
way that it can be customized specifically to fit the needs of various companies.
This is also referred to as traceability fit for purpose [85].

We collected requirements for a traceability tool that can integrate into a
workflow for the development of embedded systems from a number of industrial
partners, mostly in the automotive domain. Based on the collected requirements,
Capra1 has been developed. The choice of which parts of the tool should be
configurable is based on the variations that we encountered in the requirements
from the different companies. The requirements with the highest priority are
the following:
[a] As a user, I want to create traceability links to arbitrary artifacts.
[b] As a project manager, I want to define custom traceability link types for

projects.
[c] As a user, I want to visualize artifacts connected by traceability links

through a matrix or graph view.
Our current implementation of Capra supports all these requirements by
allowing the end user to create, update, and visualize traceability links. It also
allows defining custom link types and extending the tool to support arbitrary
artifacts.

In comparison to existing tools, Capra supports traceability between ar-
bitrary artifacts (as compared to, e.g., DOORS2 that, at least off the shelf,
only supports traceability between requirements) and a higher degree of cus-
tomisability (as compared to other tools such as ReqCycle3 that does not allow
modifying storage of traceability links and extending the targets of traceability
links easily).

This extended abstract describes the architecture of the tool and an imple-
mentation of its default configuration.

4.2 Architectural Design

Capra is an Eclipse plugin and uses the Eclipse Modelling Framework (EMF)
as its base technology. It stores the traceability model as an EMF model.

1http://salome-maro.github.io/TraceabilityManagement/
2http://www-03.ibm.com/software/products/en/ratidoor
3http://www.polarsys.org/projects/polarsys.reqcycle
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The tool relies on the Eclipse Extension mechanism4 and provides extension
points for parts of the tool that can be customized. Based on requirements we
collected from our project partners, the tool is customisable at three points: i)
the types of links to be supported; ii) which types of artifacts can be traced to;
and iii) how the links should be stored. Figure 4.1 depicts the extension points
and the rationale for each of them is described in the following.

Core	
  layerArtifact	
  Handler

Traceability	
  Metamodel

Persistence	
  Handler
1..*

1..1

1..1 Legend
Extension  Point

Extension

Figure 4.1: Extension points in Capra

4.2.1 Traceability Link Types

Depending on the company, development context, and process used, the trace-
ability links required can differ [85,198]. For example, traceability links for a
company developing web-based solutions are not the same as links for compa-
nies developing embedded software. To address the different link types, the tool
offers an extension point for the traceability metamodel (see Figure 4.1). Here
the end user (company), can define the types of links through a metamodel
and supply it to the tool. Examples of link types are “verifies”, “implements”,
“refines”, “related to” etc.

4.2.2 Supported Artifact Types

Software development usually involves a number of activities such as require-
ments engineering, design, implementation and testing. In most cases, each of
these activities use different tools and produce artifacts of different formats. A
traceability tool needs to ensure that the different formats can be traced to
and from. Since different companies use different tools, it is not easy to foresee
which formats a traceability tool should support. This problem of diverse
artifacts existing in the development environment has been noted by several
studies on traceability [5, 182]. Our tool offers an extension point for Artifact
Handlers which allows adding artifact formats based on the needs of the end
users.

As discussed, Capra stores the traceability links as an EMF model. To be
able to support tracing to other formats, EMF representations of these other
formats are required. Implementing an extension for a certain format means
providing an EMF representation of that format to the tool using the artifact
handler extension point.

4https://wiki.eclipse.org/FAQ_What_are_extensions_and_extension_points
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4.2.3 Persistence Extension Point

The storage of traceability links is another factor that can vary depending
on company policies or project set-ups. For some cases it makes sense that
there is a traceability model per project while in some cases there can be one
traceability model for the whole workspace. The extension point Persistence
Handler allows defining such storage locations. It will also allow integrating the
traceability model with versioning solutions such as EMF Store, CDO or Git.

4.3 Functionalities of Capra — The Default

One of the challenges of creating a configurable tool is that it cannot be used
out of the box without a considerable effort going into the configuration first.
Since Capra is also very flexible, its core is not usable without any extensions
provided to the extension points. To deal with this, we have implemented a
default configuration that offers basic extensions to the tool.

Currently, the default configuration of the prototype offers a simple trace-
ability metamodel that supports creation of traceability links that have source
and target of any supported artifact type. As shown in Figure 4.2, there are
six supported artifact types: Java code (up to method level), C/C++ code
(up to function level), files (such as PDF or MS Word), task tickets supported
by Mylyn, and test case execution from a continuous integration tool such as
Hudson. For storage of the traceability links, the prototype implements an
extension to the persistence extension point that stores all links created in the
same work space in one folder.

The tool also has functionality for visualization of the traceability links. The
links can be visualized in a matrix as well as a graphical format with artifacts
represented as nodes and links represented as edges. Figure 4.3 shows such
a graphical view extracted from a Heating Ventilation and Air Conditioning
(HVAC) system. The example shows a requirement specification about a
“blower” connected to a feature represented by a class. The class is connected
to a component and a PDF file, and lastly the component is connected to a
state machine and another component.

Capra
emf

Figure 4.2: Artifact types currently supported by Capra
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Figure 4.3: Graphical representation of artifacts connected by traceability links

4.4 Conclusions and Future Work
The main contribution of Capra is to provide a configurable and extendable
open-source traceability solution. In order to build a flexible tool, one needs
to design for flexibility from the start. For future work we aim to incorporate
features such as versioning to support trace link maintenance and collaboration
features such as discussion, chats and voting in the context of a traceability
link in order to improve trace link quality.
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Abstract
Automated traceability has been investigated for over a decade with promising
results. However, a human analyst is needed to vet the generated trace links to
ensure their quality. The process of vetting trace links is not trivial and while
previous studies have analyzed the performance of the human analyst, they
have not focused on the analyst’s information needs. The aim of this study is to
investigate what context information the human analyst needs. We used design
science research, in which we conducted interviews with ten practitioners in
the traceability area to understand the information needed by human analysts.
We then compared the information collected from the interviews with existing
literature. We created a prototype tool that presents this information to the
human analyst. To further understand the role of context information, we
conducted a controlled experiment with 33 participants. Our interviews reveal
that human analysts need information from three different sources: 1) from the
artifacts connected by the link, 2) from the traceability information model, and
3) from the tracing algorithm. The experiment results show that the content
of the connected artifacts is more useful to the analyst than the contextual
information of the artifacts.
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5.1 Introduction

Traceability is regarded as important in software and systems engineering [14];
however, its adoption across many industrial sectors is still quite low [34]. One
of the main inhibitors to adoption is the cost of creating and maintaining trace-
ability links [30,199]. To combat this challenge, many automated techniques
for creating and maintaining trace links have been proposed [200] including
techniques based on information retrieval [20,25], machine learning [21], deep
learning [201], rule-based [23], and repository mining [202]. Automated tech-
niques are promising, since they could potentially eliminate the manual work
of creating and updating trace links. However, current solutions do not yield
perfect results in terms of either precision or recall [25, 203]. Human analysts
therefore need to inspect the generated trace links and make a final decision on
their correctness. We refer to the task of inspecting automatically generated
links to confirm true links and reject false links as “vetting.” The task of vetting
trace links is tedious, and it has been observed that, in some cases, instead of
improving the accuracy of the generated trace links, human analysts actually
decrease their quality [36].

Researchers have conducted two types of studies on the traceability vetting
process: studies that investigate the impact of varying the accuracy of the
generated traceability model and studies that build and evaluate tools to
support analysts. Regarding the former line of research, Cuddeback et al. [36]
showed that while human analysts tend to improve the trace model if it has a
low precision and recall, they tend to degrade the quality of the trace model if
it initially has high precision and recall. Regarding the latter line of research,
Hayes et al. [45], e.g., developed RETRO, a traceability management tool that
generates links automatically and presents them to a human analyst for vetting.
The tool offers features such as global tracing, local tracing, and filtering the
generated links based on a score from the tracing algorithm. The main focus of
such studies is the usability of the tool and which benefits for vetting trace links
it provides over a manual tracing approach. However, further empirical studies
are needed to understand which factors influence human analysts’ decisions
when vetting trace links in order to improve this process [204, 205] within
specific software engineering contexts [206].

In this study, we take a different perspective and hypothesize that the task
of vetting automatically generated links can be improved if the traceability tool
provides useful information to the human analysts. We specifically investigate
how context information can be useful to the human analyst. In our study,
we use the definition of context information from Abowd et al. [79]: context
information refers to any information that can be used to characterize the
development artifact – e.g., the meta data of an artifact, such as the date it was
created or modified. In contrast, the content of the artifacts, such as the code in
a Java file or the textual description of a requirement, is not considered context
information. Our assumption is that offering context information together with
the content of the artifacts will improve the decisions made by human analysts.

Our study has two main contributions. First, we conduct an empirical
investigation investigating what context information is needed by human ana-
lysts. We collect data from practitioners and compare it to existing literature.
Second, we investigate the effect of context information for supporting the
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human analyst during the vetting task. The study addresses the following
research questions:

RQ 1: What context information is useful to human analysts when vetting
trace links?

RQ 2: To what extent does this information help analysts to make correct
decisions?

The remainder of the paper is structured as follows. Section 5.2 provides an
overview of the related work in the area of vetting trace links while Section 5.3
describes our research methodology. Our results are described in Sections 5.4,
5.5, 5.6, and 5.7, while Section 7.6 discusses the results with respect to existing
research. We conclude with a discussion of threats to validity in Section 5.9
and then summarize our findings in Section 5.10.

5.2 Related Work

Related work primarily falls under the two areas of vetting trace links and
tools for supporting human analysts in the vetting task. We discuss each of
these areas in this section.

5.2.1 Performance of human analysts in vetting trace
links

Several studies confirm that human analysts make mistakes when vetting auto-
matically generated trace links. Cuddeback et al. [36] studied the performance
of human analysts in evaluating the correctness of generated trace links. They
showed that humans often degrade the accuracy of generated links by accepting
wrong links and rejecting correct links. As a result of these findings, researchers
have studied factors that contribute to human analysts’ decision making in
order to design tools to improve the quality of human-vetted links.

Dekhtyar et al. [42] investigated several factors that may influence the
accuracy of trace links produced as a result of human decision making. They
showed that the quality of the initial trace link set and the effort in analyzing
the links both made a difference in the final accuracy. Sets of trace links
that started with high recall and precision tended to decrease in both recall
and precision, while sets that started with low recall and low precision led
to improvements in both recall and precision. Similarly, a starting set with
a high precision and low recall led to improvements in recall but decreases
in precision, and vice versa. They also observed that analysts who reported
investing more effort in vetting the links often ended up reducing recall by
rejecting true links. These findings align with those from similar experiments
reported by Cuddeback et al. [36] and Kong et al. [44]. One possible explanation
for their results is the presence of gray links, i.e., those links which capture
meaningful associations between artifacts, but are ambiguous because they are
only relevant for certain software engineering tasks [206].

Additionally, Kong et al. [207], studied how humans make correct and
incorrect decisions by investigating logs recorded during the vetting process.
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They identified several strategies that analysts use to make decisions such
as “first good link” (participants focusing on finding the first good link) and
“accept-focused” (where participants only accepted links and never explicitly
rejected links). This study also showed how the tracing experience of the
analyst and effort spent on vetting traces affects the quality of the final set of
traceability links.

Another study reported by Dekhtyar and Hilton [208] investigated the
strength and weaknesses of human analysis versus automated tracing techniques
in order to identify how the two approaches could best complement each other.
They proposed using an automated technique that identifies links which human
analysts would be more likely to miss.

Our study, however, takes a different approach by studying context informa-
tion that can be presented to the human analyst in order to make the decision
process easier and more accurate. Kong et al. [44] already observed that during
the vetting task some analysts go back to review the connected artifacts and
other artifacts in the data set before they decide on a link. This implies that
the analysts seek to understand the artifacts and how they fit together in the
data set in order to make decisions.

5.2.2 Tools for vetting trace links

There are several research tools that support the vetting of trace links. It
is important to note that not all tools that can generate trace links offer
functionality for vetting those links. Many research tools stop at the generation
stage (see, e.g., [167]), because they are focused on presenting or improving
certain automated techniques to generate the links, and are not interested
in further steps such as vetting or utilizing links. The main functionalities
provided by tools that support link vetting are: generating links, presenting
them to the analyst, and finally allowing the analyst to accept correct links and
to reject incorrect links. Some tools also allow the analyst to search for missing
links [45,209] and to perform coverage analysis for completeness of links [47]. To
the best of our knowledge, there are six tools that support vetting of trace links:
RETRO [45], ADAMS [210], Poirot [46], TraCter [211], TraceME [47], and
ART-Assist [212]. A deeper analysis of these tools is presented in Section 5.5.

5.3 Research Method

The study was conducted using the design science research method [213,214]
in which a problem is iteratively investigated while implementing suitable
artifacts to solve the problem and evaluating the effectiveness of the solution.
We utilized a combination of techniques based on interviews, literature review,
and a series of controlled experiments. The process was conducted in three
distinct iterations.

5.3.1 Interviews and Identification of Existing Tools

In the first iteration, we conducted a series of semi-structured interviews to
investigate what information affects human analysts’ decisions when vetting
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Table 5.1: Interview Subjects
Subject Role Domain

A Business Analyst Finance
B Software Architect Automotive
C Practice area lead, software

and license handling
Telecommunication

D Software Lead Military
E Requirements engineering re-

searcher
IT Consultancy

F Research Fellow Automotive
G System Engineer Software Development
H Requirements engineering re-

searcher
IT Consultancy

I Verification and Validation
analyst

Space

J Senior Software Architect Automotive

traceability links. We first designed an interview guide1, for which the questions
were reviewed and re-written by four researchers across several iterations. We
then tested this interview guide by conducting one pilot interview in order to
establish its soundness and to improve the guide. After the pilot, we interviewed
ten practitioners with experience in creating and maintaining traceability links.
We used convenience sampling where our aim was to interview practitioners with
experience in traceability while maximizing diversity in our interview sample.
All the interviewees were recruited through our personal connections and were
from different domains. Table 5.1 provides a summary of our interviewees,
their roles, and the domains in which they work. The interviews focused on
identifying which types of information analysts used to create traceability links
and how trace links are evaluated in the interviewee’s company. We assume
that this same information should also be available during the process of vetting
automatically generated trace links. In addition, we asked the interviewees
about their experience with automatic tools for traceability link generation and
how they would expect such tools to work. For each interview, we summarized
a set of information and information sources discussed by the interviewee in a
spreadsheet.

To further strengthen our results, in the second iteration of our study, we
researched existing literature on tools that support the vetting of trace links
that have already been published in scientific literature. Our aim was to identify
if these tools already offer the information collected from the interviews and
to identify any gaps that might exist. We conducted our literature search by
starting with previously identified papers on trace link vetting and then using
snowballing to extend the scope. Many of these papers are already discussed
in Section ?? describing related work.

1https://tinyurl.com/yauypdhn
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5.3.2 Experimental setup

To validate the usefulness of context information during the vetting process, we
created a prototype by extending an open source traceability management tool,
Eclipse Capra [69]. We chose to extend Eclipse Capra for this study because
it is a customizable open source tool that contains basic traceability features
such as creating and visualizing trace links. Additionally, two of the authors
are developers of the tool. Details of how Eclipse Capra was extended are
provided in Section 5.6. Using the prototype we conducted an experiment with
33 participants in order to understand how various types of context information
affects the human analyst’s decision making process.

Experiment Variables: The experiment was designed to investigate
whether providing analysts with contextual information from connected artifacts
would affect their performance in vetting trace links. Examples of contextual
data include meta data (e.g., date created), attributes (e.g., status or priority),
location (e.g., subsystem), and connectivity to other artifacts. The independent
variable was therefore context information of the artifacts, where one group was
given contextual information and the other was not. The choice of contextual
information to include in our study was driven by results from our interviews
and literature review as reported in Section 5.4. We measured three dependent
variables: 1) recall of the final trace links; 2) precision of the final trace links;
and finally 3) the number of links investigated by the analyst within the allotted
time.

To reduce the number of confounding factors, we controlled three variables:
1) the initial precision of the trace links, 2) the initial recall of the trace links,
and 3) the order in which the experiment subjects vetted the trace links. All
analysts were instructed to review the provided list of links from top to bottom
as provided to ensure that they inspected the same links without intentionally
skipping any links. This also made it possible for us to identify links investigated
by the analysts for which they did not indicate a decision.

In the experiment, an analyst who produced trace links with higher final
recall, higher final precision, and who investigated more links was considered
to have outperformed an analyst with lower final recall, lower final precision,
and a lower number of investigated links.

Based on our research questions, we formulated the following hypotheses to
investigate the three dependent variables:

Ho1 Providing human analysts with context information about the artifacts
connected by trace links has no effect on the precision of the final set of
trace links

Ho2 Providing human analysts with context information about the artifacts
connected by trace links has no effect on the recall of the final set of trace
links

Ho3 Providing human analysts with context information about the artifacts
connected by trace links has no effect on the number of links investigated
during a given time period

These hypotheses guided our evaluation into how and to what extent context
information is useful to the analyst (RQ2).
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5.3.3 Experiment Materials

We describe the experiment artifacts that the candidates interacted with as
well as the data collection instruments.

Experiment Artifacts: We used Medfleet, a system developed by Soft-
ware Engineering graduate students as part of a five month studio course [215].
We selected this system because it contains realistic artifacts of a software
development project, and has been used in a previous publication [216] with
a set of verified traceability links. Medfleet enables its users to request emer-
gency medical kits to be delivered using small Unmanned Aerial Systems. The
project artifacts include requirements, environmental assumptions, architec-
tural components, code, and fault descriptions. Requirements, assumptions,
and faults were originally captured in Jira, while code was written in both Java
and Python and stored in GitHub. The trace links provided by the project
served as a gold standard and consisted of 288 true links. In the experiment
we used a subset of the artifacts – requirements, Java code implementing the
mission control subsystem, assumptions, and faults to reduce the scope and
make the experiment more manageable. We used the Vector Space Model with
Term Frequency-Inverse Document Frequency (TF-IDF) technique to generate
three types of traceability links: links from requirements to code, links from
requirements to assumptions, and links from requirements to faults. TF-IDF is
an information retrieval technique that not only uses text similarity to predict
how similar two artifacts are, but also uses term frequency [217]. The weight of
the terms is calculated as a product of the frequency of the term in a given doc-
ument and the inverse of the frequency of the term in all the documents. This
technique gives an indication of how important a term is in a given document.
The total number of links generated was 1239. The precision and recall for
requirements to code links was 4.2% and 33% respectively, for requirements
to assumptions links was 8.6% and 56% respectively and for requirements to
faults links was 7.7% and 54% respectively.

Data Collection Instruments: We created two questionnaires to collect
data from our experiment: 1) a pre-experiment questionnaire that collected
information about the participants’ experience with software development, use
of the Eclipse IDE (on which Eclipse Capra is based), and experience with
traceability, and 2) a post-experiment questionnaire that collected feedback
on the experiment and the different features of the tool with which users
interacted. Additionally, we recorded the screen during the experiment. To
collect information about the vetted links, we stored all the links that the
analyst accepted in a list of accepted links and all the links that the analyst
rejected in a list of rejected links. These lists were stored as EMF models in
Eclipse Capra.

Experiment Subjects: We used convenience sampling to identify diverse
participants from our personal connections. As a result, the experiment was
conducted with 33 participants of which six were Bachelor students, eight
were Masters students, twelve were PhD students, and seven were industry
practitioners. The students were all software engineering students from two
universities and therefore had all taken several courses on software development.
The subjects were randomly divided into two groups, the control group (16
subjects) and the experiment group (17 subjects). Out of the 33 subjects
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who took part in the experiment, we discarded the results of five subjects
because they did not follow the instructions of the experiment, for example, by
evaluating trace links in a different order from the instructions or evaluating
only one type of trace links. These results were excluded in order to avoid bias.

Experiment Groups: The control group was provided with a version
of the tool which did not display context information, while the experiment
group was provided with a version of the tool with context information of the
connected artifacts. This means that the control group had features F1 to F8
and the experiment group had features F1 to F8 and additionally features F9
and F10 (cf. Section 5.6).

Experiment Procedure: All experimental sessions began with one
of the researchers giving a scripted brief introduction to traceability and
automated techniques of generating trace links. This was followed by explaining
the Medfleet system and the vetting task to the participants. During this
session, participants were allowed to ask questions. The instructions of the
experiment were also distributed in paper format for participants to read 2.
Before the experiment, participants filled in the pre-experiment questionnaire.
The participants were then given 45 minutes to vet as many links as they could.
At the end of the experiment, we collected the final traceability models the
participants produced as well as video recordings of the screen for the entire
45 minute vetting session. The participants also filled in a post-experiment
questionnaire containing questions about the task and which features of the
tool they found useful. The questionnaires for each group are available online 34

5.4 Interview Results
From the interviews, we learned that the task of vetting trace links is conducted
in companies, even when trace links are created manually. In safety-critical
domains, trace links must be carefully reviewed before submission to the
certification body [218] . The information used to evaluate the correctness
of a trace link is therefore used during both the link creation and the link
assessment processes. As a result, information collected from the interviews
was derived from two activities, that of creating and reviewing the links. We
categorized the information that the interviewees reported into three main
categories of information derived from 1) connected artifacts (Section 5.4.1),
2) the traceability information model showing connections between artifact
types (Section 5.4.2), and 3) results from the tracing algorithm (Section 5.4.3).
Additionally, interviewees reported how they would like this type of information
to be represented or displayed (Section 5.4.4). From these results we ultimately
selected specific contextual and content-based elements to be included in our
tool and used in the evaluation.

5.4.1 Information from the connected artifacts
Six out of ten interviewees reported that they create trace links based on their
knowledge of the system. They use their experience to determine if two artifacts

2https://tinyurl.com/y98jpdtg
3https://goo.gl/forms/zdY23Gqjk1rixF4U2
4https://goo.gl/forms/jMRKW9yWitHDj4JI3
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(e.g., a specific requirement and a specific Java class) should be connected or
not. However, when asked what information they would need if they did not
have such system experience, they reported the following:

• The content of the connected artifacts: this refers to the information that
makes up the artifacts, e.g., the content of the Java file represented by
the actual lines of code, or content of a requirement represented by its
textual description.

• The meta data of the connected artifacts, such as who created it, when
it was modified, and who modified it.

• Other artifacts connected to the artifacts: This refers to other development
artifacts that already have established links with the investigated artifacts,
e.g., when deciding if requirement X is connected to a Java file Y, one may
first want to know which other requirements are related to requirement
X or to the Java file Y.

• The location of the artifacts in a project, system, or subsystem.

5.4.2 Information from the traceability information
model

Before creating or reviewing trace links, all the interviewees reported that
it is necessary to understand how the different artifacts in the project are
related to each other. For instance, interviewee E reported that the company
has a metamodel that specifies how the artifacts should be connected. Such
a metamodel or traceability information model (TIM) contains information
indicating specifically which types of artifacts may be linked together within a
given project. For example, a link might be allowed from an acceptance test to
a requirement, but not directly from the acceptance test to code. In summary,
users need the following information from the TIM:

• A definition of which links are allowed and which are disallowed. The TIM
may also contain additional information about cardinality constraints.

• The type of link that is being created or reviewed. For TIMs that contain
diverse link types (e.g., tests, refines, describes), the analysts need to
understand the type of link they are currently vetting before making a
decision.

5.4.3 Information from the tracing algorithm

While many interviewees were aware of techniques for automatically generating
trace links, only three had actually used such tools and had first-hand experience
of tracing algorithms. For interviewees that had no experience with these
tools, the interviewer carefully described how they worked. We then asked
all participants what information they would expect to see if they used an
automated tool to create links. This was first asked as an open question,
and if the interviewees did not have any ideas, we suggested options. All
the interviewees agreed that a confidence score for each link would be useful.
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Additionally, some of the interviewees agreed that for information retrieval
techniques that use text matching, seeing which exact words or phrases from
the source artifacts matched words or phrases in the target artifact would be
beneficial. Therefore we concluded that the following information should be
available for evaluating trace links:

• A score representing the similarity of two artifacts. This score is calculated
by the information retrieval algorithm that is used to generate the links.

• Words or phrases from the source artifact that matched words or phrases
in the target artifact.

5.4.4 Presentation of the information

Especially for large projects, the number of artifacts and trace links can be
overwhelming and therefore tool support is critical for creating and reviewing
links. Our interviewees reported that when reviewing trace links, they would like
to search for artifacts and filter the links that they are reviewing. Additionally, it
was reported that being able to review one type of trace link (e.g., requirements
to code) is beneficial, compared to viewing all the trace link types at once.

Two out of ten interviewees reported that they would like to have a graphical
representation of the trace links. However, they noted that since a large
amount of trace links can lead to large graphs which are complex to read,
the traceability management tool should allow filtering of the links to display
manageable graphs.

From this category, we identified two features that should be included:

• Ability to search for and filter trace links.

• Ability to view trace links in a graphical representation.

5.4.5 Context information

Since the interviewees reported generally on what information is useful when
vetting links, we collected this information and used our definition of context
information (information that can be used to characterize the development
artifact) to derive context information relevant for trace links vetting. This
information is summarized and exemplified in Table 5.2.

5.5 Investigation of existing tools

We compared the results from the interviews to available literature on vetting
traceability links. Specifically, we investigated research tools that support
vetting of traceability links. Our literature search started with a few papers
that are prominent in the field, e.g., [45], [36], [42] and used snowballing to
acquire more papers. We found six tools described in scientific literature that
support traceability link generation and the activity of vetting traceability
links. These tools and their features are summarized in Table 5.5 along with
the extended Eclipse Capra. Our investigation was focused on features that
provide information to the human analyst and did not focus on analyzing the
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Table 5.2: Context Information
Context
Information

Description Example
(w.r.t. Requirement (RQ-01))

Meta
data

This refers to data de-
scribing the artifact
e.g., who created the
artifact, when it was
created, when it was
modified

created on: May 19, 2016, cre-
atedBy: SMaro

Location Where the artifact is
located and in which
system

MedFleet/Requirements.xlxs

Connected
artifacts

Other artifacts linked
to the artifact in
question

Assumption (A-01),
Fault (F-01)

different tracing strategies provided by the tools. We used this knowledge from
the existing tools as inspiration for our own implementation of features that
were suggested by the interviewees. The implementation decisions and details
are discussed in the next section.
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Information RETRO Poirot TraceME AdamsTraceTraCter ART-
Assist

Eclipse
Capra

Navigation to full artifact content Yes No Unk. Unk. Yes Yes Yes
Score from the tracing algorithm
(Similarity measure)

Yes Yes Yes Yes No No Yes

Matching terms from the source
in the target artifact

Yes Yes No Yes No No Yes

Text search Yes Yes Unk. Yes Unk. Unk. No
Trace link type N/A No Yes Yes Yes Yes Yes
Graphical representations No Yes Yes No No No Yes
Accepted links Yes Yes Yes Yes Yes Yes Yes
Location of the artifact Unk. No Unk. Unk. Yes Yes Yes
Summary of the artifacts (e.g.,
Java class documentation)

No No No No No Yes No

Table 5.3: Information provided by existing tools that support trace links vetting. “Yes": information/feature present; “No": informa-
tion/feature not present, “N/A": not applicable; “Unk.": not enough information available to determine if feature present.
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5.6 Prototype implementation
In order to perform our evaluation using a controlled experiment, our prototype
needed to automatically generate trace links given a set of development artifacts
and then to present these links for vetting, together with context information,
to the human analyst. To generate the initial set of trace links, we extended
Eclipse Capra to use the Vector Space Model – Term FrequencyâĂŞInverse
Document Frequency (TF-IDF) [217]. This technique is proven useful in
previous studies [212].

To provide the ability to vet the generated traceability links, we imple-
mented ten features identified through the interviews. Features 1 to 8 provided
basic functionality for vetting links, while features 9 and 10 presented context
information. Our choice of what context information to include and evaluate
is based on the results of the interviews. Three of our interviewees reported
that meta data of the connected artifact was useful, four mentioned location of
artifacts (e.g., artifact X and Y are both from the same subsystem or package)
and five mentioned relationship to other artifacts. Because our aim was to study
whether a type of information, and not its exact representation, was important,
we made every effort to select a simple solution for each type of information.
We provide the rationale for the way each feature was implemented below and
illustrate some of these features in Figure 5.1.

F1: A list of trace links generated from the tool: We displayed trace
links in the form of a tree list where the parent of the tree represents the
source artifact and the children of the tree represent the target artifact.
This type of display is what is known as local tracing, where the user can
view links related to one artifact at a time. We chose this implementation
since it was preferred by users in a previous study reported by Hayes et
al. [45].

F2: Ability to open the artifacts connected by the links: To make
sure that users can access the content of the connected artifacts, we
implemented functionality to open the connected artifact for each of the
artifacts This feature is present in some of the tools, e.g., in RETRO,
TraCter, and ART-Assist. In RETRO, the content of the requirements
are displayed as text. In TraCter and ART-Assist, connected Java files
are opened in a pop-up window. In our case, we decided to use the native
environments of the tools that were used to create the artifacts. For
instance, all Java files are opened in a Java editor so that features such
as syntax highlighting are available.

F3: A display of similarity scores generated by the tracing algo-
rithms: With the exception of TraCter and ART-Assist, the rest of the
tools display the similarity score from the trace generation algorithm.
This feature has also been highly ranked by user studies performed on
RETRO [45] and ADAMS [20]. There were two possibilities to display
this score. One way is to display the raw value (or a percentage) and the
other way is to translate this into a confidence value as done in Poirot [46].
We chose to display the values as raw numbers since this has been shown
to work and was highly rated [20,45] while there are no user studies on
the alternative by Poirot.
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F4: A graphical representation of the links: We implemented a graphi-
cal representation of the links that displays trace links as a graph. The
source of the trace link was the root node of the graph, while the targets of
the trace link were the child nodes. We did not implement any transitive
links, i.e., displaying more than one level of traceability, because three of
our interviewees had indicated that for the purpose of vetting the trace
links, they could only deal with one level of trace links at a time.

F5: A view of the Traceability Information Model (TIM): This fea-
ture was requested by all interviewees. Additionally, since we wanted our
tool to support diverse link types, displaying the TIM to the user gives
information on which links are allowed and the different constraints on the
different link types. Several tools such as RETRO, only support one type
of trace link, i.e., tracing high level requirements to low level requirements,
and therefore displaying the TIM was not a required feature.

F6: Ability to see the link type: This feature is related to feature F5.
When vetting the trace links, the user should be able to know which
link type they are currently vetting. We implemented this by adding
the link type name, e.g., “satisfies," “realizes," or “requirements to code"
depending on how the TIM is defined for the project.

F7: Ability to see terms from the source artifacts that matched
terms from the target artifacts: This feature enables the user to see
which term in the source artifact matched terms in the target artifact.
The most common way of implementing this is through highlighting
these terms in the source artifact and in the target artifact [45, 46]. In
our case, due to technical limitations (it is tricky to implement multiple
highlighting in the Java editor),we followed a simpler solution and used
markers to indicate lines where these terms occurred. Since there can be
many terms, we only displayed the top three terms according to their
TF-IDF weights. This feature was only implemented for Java files.

F8: Ability to accept a link and reject a link: This feature was imple-
mented to allow the analyst to accept and reject links by using the trace
link list provided. The analyst could accept/reject one target for a link
at a time or could accept/reject all suggested targets at once. This kind
of implementation has been shown to work in RETRO and TraceME.
When an analyst accepts a link, it is removed from the candidate trace
link list and added to a list of confirmed links. When an analyst rejects a
trace link as incorrect, the link is removed from the candidate trace links
and added to a separate list of rejected links. Storing both the list of
accepted links and rejected links enables the tool to keep track of what
the analyst has already vetted in order not to show these links to the
analyst again for vetting.

F9: Ability to hover over the connected items and see context in-
formation for the artifacts: Displaying context information (e.g., date
created, date modified, who created and modified the artifact, and the
location of the file) was a new feature that has not been implemented in
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Figure 5.1: A screen shot of the trace links vetting tool with indicators for the
different features.

<6
months

6-12
months

1-3
years

3-6
years

>6
years

Experience with software
development

2 2 11 5 8

Experience with Eclipse 9 2 9 3 5

Table 5.4: Software development experience of the experiment subjects

existing tools, with the exception of the location of the artifact in ART-
Assist. We implemented the display of the context information based on
the suggestion by the interviewees and show the context information in a
tooltip when the mouse hovers over an artifact.

F10: The ability to see already accepted links: Other links that have
already been accepted and contain the artifact that is currently being
inspected are additional context information. When analyzing links
related to requirement X, e.g., the analyst would like to know if other
links to requirement X already exist. While the existing tools that allow
the analyst to view accepted links show the entire list, in our case the user
can see only accepted links related to the artifacts the user is currently
inspecting. If the user is vetting links related to requirement X, then the
user can only see accepted links that contain requirement X either as a
source or a target. This implementation is due to the fact that, in our
case, the accepted links are a form of context information while other
tools show accepted links to indicate progress to the user.

5.7 Experiment Results
In this section, we report results for all participants who successfully completed
the study (i.e., 14 in the control group, and 14 in the experiment group). The
results of the pre-experiment questionnaire are shown in Table 5.7. Most of our
participants had at least one year of experience with both software development
and Eclipse. However, only eight of our participants had experience with
traceability activities.
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Table 5.5: Experiment Results
Test Group Control Group

Subject ID Accepted Rejected InvestigatedPrecision (%)Recall (%) Subject IDAccepted Rejected InvestigatedPrecision (%)Recall (%)

TS01 100 33 149 13 87 CI01 54 81 135 19 56
TS02 79 85 164 14 61 CS01 49 44 98 20 67
TS03 27 38 66 33 60 CS02 12 2 19 25 100
TS04 60 13 95 20 92 CS03 111 49 160 10 61
TS05 58 39 128 19 92 CS04 17 67 84 47 53
TS06 49 128 177 14 39 CI02 46 92 138 20 50
TS07 130 207 337 13 63 CS05 47 84 134 21 56
TI01 73 61 134 16 67 CS06 103 56 159 16 87
TS08 14 57 71 29 27 CS07 42 0 42 24 100
TS09 37 20 57 32 80 CI03 73 36 109 19 82
TS10 40 55 95 28 69 CS08 210 113 323 11 92
TS11 98 1 99 16 100 CS09 17 19 36 29 56
TS12 82 26 108 16 76 CS10 47 7 54 32 100
TS13 270 53 323 9 96 CSI04 64 120 184 16 50

Average 79.79 58.29 143.07 19.50 72.02 Average 63.71 55 119.64 22.04 72.23
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We recorded the total number of accepted links, total number of rejected
links, number of correct accepts, number of correct rejects, and the total number
of links investigated. We also computed the final recall and precision.

As can be seen from the results in Table 5.5, the performance of the two
groups was quite similar. Since the data was not normally distributed, we used
the Wilcoxon-Mann-Whitney U Test [219] with an alpha of 0.05 to determine
if there was a statistically significant difference between the two groups for
the following three variables: 1) the recall of the final trace link set, 2) the
precision of the final trace link set, and 3) the number of links investigated by
the analyst in the given time. The results show that for all three variables, the
difference is not statistically different between the two groups. Therefore we
cannot reject the null hypotheses (cf. Section ??).

To get a better understanding of why there was no significant difference
between the two groups, we further analyzed the post-experiment questionnaire
results. Each group had a post-experiment survey that asked about the
different information provided in the tool and their perception of how useful
this information was for the vetting task. Since the experiment group had the
contextual information, we analyzed their perception on this extra information.
The survey included three questions related to the extra information given to
the test group. The first two questions were on the metadata of the connected
artifacts. All the questions were to be answered on a 5-point Likert scale, where
1 is strongly disagree, 2 is disagree, 3 is neutral, 4 is agree, and 5 is strongly
agree. The first statement was “Knowing who created the connected artifacts
was useful when vetting the trace links.” For this statement, eight of the
respondents said they strongly disagree, three disagreed, only one responded
with agree, and two did not answer the question. A similar trend was seen
for the second statement which was “Knowing when the connected artifacts
were created was useful when vetting the trace links.” For this statement,
eight respondents stated that they strongly disagree, three stated that they
disagreed, while only two agreed to the statement, and one was neutral (cf.
Figure 5.2). We were able to ask some participants why they thought this
information was not useful during their vetting task. Most of them responded
that since they did not know the system or the people involved in creating
the system, this information was not useful. However, they noted that if they
were involved in the development of the system and knew the participants,
then this information might have been useful. This corresponds to what our
interviewees reported, that their experience with the system is important when
vetting trace links.

Figures 5.2 and 5.3 show that three features were perceived as most useful
during the vetting task: 1) the ability to open the connected artifacts, 2) the
ability to know which link type is being vetted, and 3) knowing the similarity
score of the link from the algorithm. This information also explains why our null
hypotheses could not be rejected since the content of the connected artifacts was
considered more useful than contextual information of the connected artifacts.

We conducted further analysis on our data to understand if there was a
significant difference between the performance of industry participants and the
performance of students. Due to a lower sample size of industry participants
(four in the control group and one in the test group), we could only compare
this for the control group. For both the precision and total number of links
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Figure 5.2: Results of the test group from the post-experiment questionnaire

Figure 5.3: Results of the control group from the post-experiment questionnaire

vetted, using the Wilcoxon-Mann-Whitney U Test, there is no statistically
significant difference between the performance of the two groups. However, for
recall, we found that there is a significant difference between the groups, where
the student group had slightly higher recall (see Table 5.6). Going back to the
definition of recall (the number of correct links identified over the total number
of correct links present in that set of links vetted), we can see that the students
that had higher recall are those that vetted a small number of links. Subject F
(in Table 5.6), e.g., did not reject any links. This therefore does not mean that
the students had better performance, only that they vetted a smaller number
of links and therefore reduced their chances of rejecting correct links.

Analyzing the post-experiment questionnaire for the industry participants
and student participants, we see the same trend in the top three features that
were found to be useful during the vetting process: 1) the ability to open the
connected artifacts, 2) the ability to know which link type is being vetted, and
3) knowing the similarity score of the link from the algorithm (cf. Figure 5.4).

5.8 Discussion

In this section, we discuss the results of our study with respect to our research
questions. As previously stated, our interviews revealed that three sources
of information are useful during trace link vetting: 1) information from the
connected artifacts, 2) information from the traceability metamodel, and 3)
information from the tracing algorithm. We designed an experiment to validate
how context information affects the analyst’s performance when vetting trace
links. The context information we studied came from the first source of
information i.e., the connected artifacts. Our experiment showed that there is
no statistically significant difference between the group that was provided with
context information and the group that was not. The experiment also showed
that the analysts spent more time investigating the content of the artifacts
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Figure 5.4: Comparison of Industry participants vs. student participants

than investigating the context information provided. This could be due to
unfamiliarity with the system and its context, analysts tried to understand
the artifacts by looking at their content rather than their context information.
This behaviour of the analyst is also supported by what was reported by the
interviewees. A majority reported that familiarity and experience with the
system is important when vetting trace links.

While there are some differences between industry and student participants
(cf. Table 5.6), the difference is not statistically significant. We believe that it is
experience with the particular system that plays a larger role in the performance
of the analyst instead of general software development experience. The study
by Dehtyar et al. [42] also shows neither experience with software development
nor tracing experience had an influence on the analysts’ performance. We
therefore suggest that analysts who have system experience be assigned to the
task of vetting traceability links. Developers should, e.g., be assigned to vet
links between requirements and code and safety analysts should be assigned to
vet links between requirements and faults. However, further research is needed
to support this.

Regarding the second source of information, i.e., the traceability information
model, participants from both the control and the experiment group thought
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that knowing the link type of the trace link was useful, but having the entire
TIM visible to them at all times was not very useful. This could be because
the experiment only included four types of elements (requirements, code,
assumptions, and faults) and therefore the TIM was small. The analysts
only had to see the TIM once to understand which links were possible. The
information from the third source, i.e., the tracing algorithm, such as the
similarity score was also perceived as useful by the experiment participants
which is in line with the study by Hayes et al. [45].

5.9 Threats to Validity

In this section we discuss the threats to validity that are relevant to our study.
Since we used multiple research methods we discuss the threats in a combined
manner.

Construct Validity We selected interviewees who had experience with
tracing and explained the study prior to the interview. For the experiment, a
preliminary session introduced traceability and the aim of the study. However,
some participants did not follow the instructions of the experiment. To limit
this threat to construct validity, we viewed the screen videos of all participants
to exclude these participants.

Table 5.6: Performance of industry subjects vs. student subjects
Industry Subjects

Subject Accepted Rejected InvestigatedPrecision Recall
A 54 81 135 19 56
B 64 120 184 16 50
C 111 49 160 10 61
D 46 92 138 20 50

Average 68.75 85.5 154.25 16.25 54.25
Student Subjects

A 49 44 98 20 67
B 12 2 19 25 100
C 17 67 84 47 53
D 47 84 134 21 56
E 103 56 159 16 89
F 42 0 42 24 100
G 73 36 109 19 82
H 210 113 323 11 92
I 17 19 36 29 56
J 47 7 54 32 100

Average 61.7 42.8 105.8 24.4 79.5
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Internal Validity The aim of the experiment was to evaluate if the context
information makes the analyst more effective. There are four confounding
factors that could affect the results of the experiment: tracing experience of the
analyst, implementation of link vetting features in Eclipse Capra, the tracing
strategy used by the analyst, and the system used for the experiment (MedFleet).
While the study by Dekhtyar et al. [42] shows that tracing experience has no
effect on the performance of the analyst, it also used students with limited
tracing experience. In our study, only eight of the experiment participants
had experience with tracing. Conducting the experiment with traceability
experts could lead to different results. Regarding Eclipse Capra, we made sure
that we only implemented features that were requested by the interviewees
and also evaluated existing tools to see how these features were previously
implemented. Regarding the tracing strategy, the experiment participants were
asked to vet the list of trace links from top to bottom. This ensured that
the analysts did not skip any links without investigating them. However, the
tracing strategies still varied as some analysts skipped the links they did not
understand immediately, while others investigated the link for a longer time
before making the decision of skipping the links. This resulted in a variation on
the number of links investigated.Regarding the system used for the experiment,
we selected a system containing artifacts that are as close to reality as possible.
Even though MedFleet was developed by students, it was in a course where
students learned software development skills and had to follow proper software
development procedures just like in industry. However, this does not guarantee
that the system selected had no effect on the study. To properly rule out this
internal validity threat, further experiments are needed with different systems.

External Validity We took several steps to ensure that our study included
diverse participants. We interviewed practitioners with different roles, from
different companies, and different countries. However, since not all interviewed
participants had experience with trace links vetting, we cannot generalize that
we elicited all possible context information. Additionally, since the number
of interviewees we had was low, we cannot generalize the results. In the
experiment, we used participants from different companies and two different
universities, with different levels of education and development experience.

Reliability We documented our process in the research method section
(Section 5.3) and have also published our interview guide to make sure that
our study can be repeated. Our prototype tool is also accessible as a virtual
machine, meaning that the experiment can be repeated by other researchers.

5.10 Conclusion

In this study, we investigated what information is useful to human analysts when
vetting automatically generated traceability links. We specifically investigated if
context information can improve the analyst’s vetting performance when vetting
traceability links. Our interview results reveal three sources of information
that can be useful to the analyst. However, our experiment presents evidence
to support the conclusion, though not statistically significantly, that context
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information does not make the analyst more effective during the vetting process.
The experiment also shows that analysts made their decisions on trace links
by reading the content of the artifacts rather than using context information.
Our study shows that the experience of the analyst with the particular system
matters more than their general software development experience or tracing
experience. We conclude that since the vetting process is a human-centric
process, further studies are needed to investigate how this process can be
improved by traceability tools to make the analyst more effective.
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Abstract
[Context] Automatically generated trace links must be vetted by human
analysts before use. The task of vetting trace links is considered boring due to
its repetitive nature and tools that are not engaging to the analyst. Therefore,
a lack of developer engagement can hamper the successful implementation of a
traceability strategy in an organisation. [Objective] In this study, we examine
whether two gamification features, levels and badges, have a positive effect on
human analysts’ engagement and ultimately on the quality of vetted trace links.
[Method]We have conducted a controlled experiment with 24 participants that
vetted trace link candidates and recorded their speed, correctness, enjoyment,
and perceived usability of the tool. [Results] The results indicate that there
was no significant difference between the speed, correctness, and perceived
usability of the control and the experiment group. However, gamification
features significantly increased the users’ perceived enjoyment. Levels and
badges were perceived positively by the majority of the participants while
some pitfalls and improvements were pointed out. [Conclusion] Our study
indicates the need for further research as the results raise several questions,
in particular w.r.t. what analyst behaviour gamification incentivises, and the
impact of gamification on long-term enjoyment.
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6.1 Introduction
Traceability is important in the software industry as it aids both developers
and managers in maintaining the relationships between software artefacts such
as requirements, design, code, and documentation. Traceability is also required
by certain safety standards, such as ISO 26262, or to obtain certification for
organisational maturity, e.g., when using Capability Maturity Model Integration
(CMMI). Creating and maintaining trace links is cumbersome when the systems
involved are large and contain a large number of artefacts. To reduce the effort
of creating and maintaining trace links, information retrieval approaches [25]
such as machine learning [21] have been proposed to automatically generate
trace links. However, since automated approaches produce a relatively high
number of candidates that are not valid links, a human analyst needs to vet
candidates before they become actual trace links. This task of vetting trace
links is perceived as boring by many analysts [220].

Previous studies, e.g., Kong et al. [207] and Dekhtyar et al. [42], investigate
how analysts vet trace links and how this process can be improved. However,
none of these studies have investigated how to make the vetting process more
engaging and enjoyable to the human analyst.

When attempting to engage users, gamification has shown to have a positive
motivational effect [221–223]. Additionally, gamification has been shown to
reduce the rate of failure and assists in the learning process in some areas [224].
Specifically for traceability, Parizi [225] showed that gamification concepts
improve the task of creating trace links between code and tests during software
development. She also points out that gamification elements could be useful
for other human-centered tracing activities, such as vetting automatically
generated trace links.

To address the lack of studies about the impact and potential benefit of
applying gamification to traceability task, we investigate the effects of gamifica-
tion on vetting automatically generated trace links. Specifically, we investigate
the effect of two gamification features – levels and badges. Concretely, we aim
to answer the following research question:

RQ: What is the impact of gamification on the task of vetting automatically
generated trace links?

To answer these questions, we conducted a controlled experiment in which
we asked 24 participants to vet automatically generated trace links. Twelve
participants used the traceability management tool Eclipse Capra [69] without
modifications, while the remaining twelve participants used the same tool
extended with gamification elements. We investigated the impact of gamifica-
tion on the total number of links vetted, the accuracy of vetted links, on the
motivation of the vetting task, and on the perceived usability of the tool.

Our results show no significant difference between the two groups with
regards to the final precision and recall of the vetted links, total number
of vetted links and usability of the tool. However, the results show that
gamification elements have the potential to increase enjoyment and motivate
the users for such a task.

The remainder of this paper is structured as follows: In Sect. 6.2, we discuss
the background as well as similar studies on trace link vetting and gamification
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in software engineering. We then describe our methodology in Sect. 6.3 and
our results in Sect. 6.4. Sect. 6.5 provides answers to our research questions
before we conclude the paper in Sect. 6.6.

6.2 Background and Related Work
This section discusses the background of our work and related studies. We
discuss trace link vetting and the use of gamification elements in software
engineering.

6.2.1 Vetting Automatically Generated Links
Automatically generated trace links are flawed and need a human analyst to
vet them for correctness and completeness. Hayes et al. [226,227] discovered
that the human analyst can make the generated set of trace links worse. Since
then, several studies have been conducted to better understand and to improve
the process of vetting trace links. In a controlled experiment, Cuddeback et
al. [36] showed that human analysts decreased the quality of a high-quality set
of initial trace links, while they increased the quality if it was initially low. In
other experiments, Cuddeback et al. [43] and Kong et al. [228] confirm these
findings.

To understand different strategies used by human analysts in vetting links,
Kong et al. [207] studied logs from a link-vetting experiment and identified
strategies such as “accept-focused”, where the analyst only accepted links,
and “first good link”, where the analyst focused on finding the first good link.
Additionally, Hayes et al. [78] conducted a simulation study on the different
vetting strategies to understand which strategy was the most effective. The
authors show that analysts have the best performance when they examine a list
of top candidate links that has been pruned based on some heuristics to remove
low ranked links, and if the tool takes the analyst’s feedback into consideration
to modify the list of candidate links dynamically.

Dekhtyar et al. [42] conducted an experiment to understand how factors
such as the development experience, and tracing experience of the analyst
affect their performance when vetting trace links. The authors showed that
development experience, tracing experience, effort used to search for missing
links, and how prepared the analyst felt had no significant influence on the
performance. However, they also show that the self-reported effort used on
validating trace links had a significant effect on the performance: analysts that
spent a lot of time validating links ended up reducing recall by rejecting correct
links.

While these existing studies investigate the performance of the human
analyst, there exist to our knowledge no studies dedicated to improve the trace
link vetting process by making it more engaging.

6.2.2 Gamification in Software Engineering
Several studies have investigated how to incorporate gamification elements
in software engineering tasks for the purpose of increasing engagement and
motivation of people performing different tasks. Pedreira et al. [221] published
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a systematic mapping study that shows the distribution of gamification studies
in software engineering. The authors show that most studies focus on the
software implementation task (coding), followed by project management and
process support, while only few studies targeted requirements engineering and
software testing. Since the publication of this mapping study, more studies have
been published in the area of requirements engineering, e.g., in requirements
elicitation [229,230] and requirements prioritization [231,232].

Additionally, there exist a number of studies on a meta-level, focusing on
how gamification can best be introduced in software engineering. These studies,
for example Kappen and Nacke [233], Morschheuser et al. [234] and Garcia et
al. [235] define guidelines and frameworks to guide software engineers on how
to effectively gamify software engineering activities. Our research method is in
line with these frameworks that suggest analyzing the activity to be gamified,
implement the gamification features, and evaluate the impact of the features.

We are aware of only one study that targets traceability and is therefore
related to our study. Parizi [225] investigated the impact of gamification when
tracing between code and tests. The authors conducted an experiment showing
that use of gamification elements, namely case points, feedback, reputation,
avatars, progress and quests, improved both precision and recall of the recovered
set of manually created trace links. The gamification elements encouraged the
developers to create more links. In this paper, we study a different phenomenon
where gamification elements are applied to encourage the human analyst to
vet trace links based on candidates created automatically.

6.3 Research Method
In order to answer our research question, we conducted a controlled experi-
ment [236], comparing vetting of automatically generated trace links with and
without gamification.

6.3.1 Experiment Design
We used a simple one-factor experiment design with two treatments [236],
namely the use of the traceability software without gamification and the use
of the same software with gamification. We refer to the subjects using the
software without gamification as our control group, while the subjects using the
gamified software are in the experiment group. The dependent variables are the
overall number of vetted trace links (vetted), the fraction of correctly vetted
trace links (vettedCor), the self-reported motivation throughout the experi-
ment (motivation), and the impact of gamification on the perceived usability
(usability). The variables vetted and vettedCor can furthermore be divided
into accepted and rejected trace links, i.e., accepted, rejected, acceptedCor,
and rejectedCor. We derive the following null hypotheses and corresponding
alternative hypotheses:

• H0vetted: There is no significant difference in vetted between the control
group and the experiment group.

• H1vetted: There is a significant difference in vetted between the control
group and the experiment group.
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• H0vettedCor: There is no significant difference in vettedCor between the
control group and the experiment group.

• H1vettedCor: There is a significant difference in vettedCor between the
control group and the experiment group.

• H0motivation: There is no significant difference in motivation between
the control group and the experiment group.

• H1motivation: There is a significant difference in motivation between the
control group and the experiment group.

• H0usability: There is no significant difference in the perceived usability
between the control group and the experiment group.

• H1usability: There is a significant difference in the perceived usability
between the control group and the experiment group.

To decide what kind of gamification elements to implement, we sent out a
survey to 14 subjects that had participated in a previous study using trace link
vetting with Eclipse Capra, reported in [220]. For each candidate gamification
element, we asked the subjects a number of questions pertaining to the potential
enjoyment and distraction caused by the element. We received 11 responses to
our survey. The results and implementation of the gamification elements are
described in Sect. ??.

We used MedFleet as an instrument, a drone fleet coordination system
which contains requirements and fault descriptions as well as source code.
A manually created set of trace links served as a ground truth to which we
could compare the vetting results. We generated trace link candidates using
Vector Space Model with Term Frequency – Inverse Document Frequency
(TFIDF), a technique that is commonly used to generate links between textual
artifacts [237].

During the experiment, we asked participants to work through a list of
candidate trace links between any of the three artefact types. For each link,
participants had to decide whether the two linked artefacts indeed have a
relation to each other. If yes, the candidate link should be accepted, if not,
then it should be rejected. To support this process, Eclipse Capra offers the
ability to open and view the artifacts the candidate link refers to, including the
source code files. Prior to the experiment, we handed out a written document
describing all relevant features of Eclipse Capra. For the experiment group,
this description also contained an explanation of the gamification elements.

6.3.1.1 Data collection and analysis

The participant sample for this experiment consisted of 24 students with
an academic software engineering background. We assigned the participants
randomly into balanced experiment and control groups. While all subjects
were students, some had experience as software developers. Only eight of the
students, four in the control group and four in the experiment group, had
experience with traceability. Additionally, all students had some experience
with using Eclipse. The use of student subjects in experimentation has been
debated heavily and controversially [73]. As this is an initial study, we believe
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that the use of student subjects is favourable over practitioners due to the
higher homogeneity in their knowledge and thus higher internal validity [73]

After the introduction to Eclipse Capra, participants had 45 minutes to
complete their task. Using the features of Eclipse Capra freely, we encouraged
participants to accept and reject as many candidate links as they could, while
taking the time they needed for decision making. Participants were allowed
to ask questions regarding the operation of Eclipse Capra and the gamified
system during the entire experiment.

We instrumented Eclipse Capra to monitor participant activity, namely
accept and reject events, as well as opening events of artifact files. Addi-
tionally, we collected data through a pre-experiment questionnaire (collecting
demographic data) and a post-experiment questionnaire (collecting perceptions
about gamification and system usability scale (SUS) [71] scores). All survey
instruments as well as the instructions are available online [238].

6.3.2 Validity threats

There are several potential threats to validity in this study.
To avoid survey questions being misinterpreted by participants, we ran each

questionnaire through several internal review rounds, identifying and improving
potentially ambiguous questions.

Domain knowledge about the MedFleet system can affect the correctness
of trace links per participant. While none of the participants had any prior
knowledge of MedFleet, and therefore an advantage in domain knowledge, this
lack of domain knowledge could also threaten the external validity of the study.
We accepted this potential threat in favour of having a higher internal validity
due to the homogeneity of the student population.

Individual differences between participants could pose another threat to
validity, as we did not use a crossover design. Since we only had a single
software system with all the required artefacts (requirements, source code,
faults, and traces between them), we had to accept this potential threat.

Given that gamification features were added to Eclipse Capra, there is a
potential threat that these modifications affected the usability of the system
and, hence, confounded the results. Additionally, the specific implementation
of the features could have an effect on the results. To assess this, we collected
usability information in the post-experiment survey as discussed in Sect. ??.

As for all empirical studies, there is a trade-off between internal and external
validity [73]. We opted for a higher internal validity, e.g., by choosing student
subjects. This naturally limits the generalisability of our results. For this
initial work, we believe that this restriction is acceptable, but at the same time
encourage replications with a more diverse sample of participants.

6.4 Results

We first explain the two gamification features we chose to test in our experiment
— levels and badges. We then describe the results of our experiments, including
answers from the questionnaires as well as the analysis of vetting accuracy.
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Do you believe this
functionality would help in

decreasing the time spent on
each link?

Do you believe this
functionality would make the
task of verifying traceability

links more satisfying?

Do you believe this
functionality would make you

focus less on verifying the links
correctly and focus more on

verifying as many as possible?

Given this functionality, do you
believe you would skip the

more advanced links and go for
easier ones that could

potentially allow you to receive
the reward more quickly?

Strongly Disagree Disagree Neutral Agree Strongly Agree

Figure 6.1: Pilot survey results showing aggregated responses for the gamifica-
tion features.

Gamification features We used the responses from the pilot survey (Sect. 6.3)
to decide on the gamification features to be implemented and tested in the
experiment. Out of the four suggested gamification features, we selected levels
and badges as the most viable options. As can be seen in Fig. 6.1, the results
of the pilot survey were very mixed across the different features. While the
progress bar received the most positive results in terms of potential decrease of
the time spent on each link, some commentators also pointed out that a progress
bar that does not fill up quickly, e.g., because of the large number of links to
vet, can be discouraging. In addition, there were participants that felt that
they would optimise towards vetting as many links as possible and potentially
skip difficult ones. Leader boards, on the other hand, received high scores in
the ranking for how satisfying they would make the task, while also showing
a high spread. However, there are indications from the free text comments
that leader boards can be perceived as too competitive, even though findings
from the literature show that competitiveness might have positive effects on
performance [239]. In addition, there were respondents who strongly agreed
that they would again favour number of links over vetting more complicated
ones. For both badges and levels, no indications could be found that they would
decrease the time spent on each link, but both have good values for increase in
satisfaction. While there are indications that levels would shift focus to vetting
as many links as possible, there is no strong indication that users would skip
more complicated links.

Both implemented features are shown in Fig. 6.2. The current level of the
user is shown within the green star next to the total points accumulated and
how much progress is left until the next level is reached. This is different from
the progress bar suggested as a feature since it does not measure progress of
the overall vetting task, but still provides feedback on the progress towards the
next level. The levelling system awards 10 points for accepting or rejecting a
candidate link. The next level is reached after 100 points have been collected.
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(a) (b)

Figure 6.2: The level and badges as shown in the modified version of
Eclipse Capra.

Table 6.1: Experience with systems similar to the experiment system and
confidence of understanding the experiment system.

Control
Group

Experiment
Group

Experience with systems
similar to MedFleet

Yes 0 2
No 12 10

Confidence of
understanding the
MedFleet system

Strongly disagree 0 0
Disagree 2 2
Neutral 3 6
Agree 6 3
Strongly Agree 1 1

We integrated three different badges: one is awarded after accepting 20
links, one after rejecting 20 links, and one after opening 25 source code files.
The figure shows an icon for each badge, how many links have been accepted or
rejected, how many source code files have been opened, and how much progress
has been made for each badge. When the requirements of a badge are fulfilled,
the logo turns green as can be seen on the “rejected links” badge.

Experience with and understanding of experiment system The post-
experiment part of the survey contained some questions common for both groups.
Two questions aimed at understanding previous experience with systems similar
to the one used in the experiment and the confidence that participants felt in
working with the system. The answers to these questions allowed us to gauge if
any of the groups had an advantage over the other due to previous experience
or a vastly higher confidence in working with the system. The responses in
Table 6.1 show, however, that no significant differences exist. Only two of the
participants, both in the experiment group, had prior experience in similar
systems and confidence levels for understanding the system are very similar.

Participant enjoyment and motivation To understand the impact of
the gamification features on the enjoyment of the participants and on their
motivation to complete the vetting task, all participants were asked explicitly
about these aspects in the post-experiment questionnaire. As can be seen in
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I felt motivated to complete the task. The current process for vetting trace links
(as used in the experiment) is enjoyable.

Strongly Disagree Disagree Neutral Agree Strongly Agree

Figure 6.3: Results of the post-experiment survey showing aggregated responses
for enjoyment of the task and motivation to complete the task.

Fig. 6.3, the experiment group shows a tendency towards finding the vetting
process more enjoyable and feeling more motivated to complete the task. The
Mann-Whitney u-test on the responses shows that the results are statistically
significant (p ≈ 0.040), thus corroborating H0motivation. This result shows that
adding gamification features is beneficial to the enjoyment of vetting the links
and to the motivation of completing the task.

System usability scale In order to compare the usability of the gamified
and the regular versions of Eclipse Capra, we used the System Usability Scale
(SUS) [71]. It contains a total of ten statements which are answered on a
five-point Likert scale. From the responses, we also computed the overall SUS
score. For this purpose, we deducted 1 from the score for each positively-
worded statement (statements 1, 3, 5, 7, and 9) and deducted the score of each
negatively worded statement (statements 2, 4, 6, 8, 10) from 5. The resulting
scores were multiplied by 2.5 and added up to achieve a range from 0 to 100.
The results are shown in Table 6.2.

According to Bangor et al. [240], SUS scores between 0 and 25 are considered
worst imaginable, scores between 26 and 38 are considered to be poor, scores
between 38 and 52 are considered to be OK, scores between 52 and 73 are
considered to be good, scores between 73 and 85 are considered to be excellent
and finally scores between 85 and 100 are considered the best imaginable.
Therefore, the scores provided both by the control group and the experiment
group are in the good range with a slight advantage for the gamified version.
The results from a Mann-Whitney u-test on the average score from both groups
showed to be insignificant (p ≈ 0.904). The SUS-scores show that the usability
of Eclipse Capra is good with and without extension with level and badge
features. We can thus reject H1usability and conclude that there is no significant
difference in usability.

Attitude towards levels and badges To gauge the attitudes of the par-
ticipants towards the gamification features, we asked both groups different
questions about their perceptions. While the experiment group was asked
about how they rated their experience, the control group was given a brief
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Table 6.2: SUS for the control group and the experiment group. For each
question, the average values in the groups are depicted, with standard deviation
in brackets.

Control
Group

Experi-
ment
Group

Q1 I think that I would like to use this
system frequently

2.25 (1.55) 3.00 (1.05)

Q2 I found the system unnecessarily com-
plex

2.33 (1.37) 2.08 (1.08)

Q3 I thought the system was easy to use 3.83 (0.94) 4.17 (0.58)
Q4 I think that I would need the support

of a technical person to be able to use
this system

1.92 (1.08) 2.25 (1.22)

Q5 I found the various functions in the sys-
tem were well integrated

3.66 (0.89) 3.75 (0.86)

Q6 I thought there was too much inconsis-
tency in the system

1.75 (0.75) 1.92 (1.08)

Q7 I would imagine that most people would
learn to use this system very quickly

4.08 (1.16) 4.08 (1.00)

Q8 I found the system very cumbersome to
use

2.25 (1.60) 2.17 (0.94)

Q9 I felt very confident using the system 3.00 (0.95) 3.50 (1.68)
Q10 I needed to learn a lot of things before

I could get going with this system
2.00 (1.21) 2.25 (1.14)

SUS score 66.56 69.58

demonstration of the gamification features after they completed their task and
were then asked about how these features might have influenced their experi-
ence. We were also interested in gauging whether the participants thought that
there was an impact on the vetting process or on their individual performance.
All questions were answered on a five-point Likert scale. The attitudes of the
experiment group are shown in Table 6.3 and the attitudes of the control group
in Table 6.4.

The averages in the tables show no major difference between the levels and
badges features. The majority of the participants understood the features, but
it was considered easier to understand the badges which is overall the biggest
difference between the two features. The control group on average thought
that the levels feature would make them focus less on correctness and more on
verifying as many links as possible, at least compared to the badges feature.

Vetting task results This section presents the results from the vetting task
that all the participants undertook. The results from both groups can be
seen side-by-side in Table 6.5. On average, participants in the experiment
group vetted 130 links, while participants in the control group vetted 160. The
average rate of correctly accepted links for the experiment group was 16.54%
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Table 6.3: Attitude of the experiment group towards the levels and badges
feature

Levels Badges

I had no issue understanding the levels/badges 3.4 (1.31) 4.2 (1.11)
The levels/badges made the task of vetting
trace links satisfying

3.6 (0.90) 3.8 (0.94)

The levels/badges helped decrease the time
spent on each link

3.2 (0.94) 2.9 (0.90)

The levels/badges made me focus more on ver-
ifying as many links as possible instead of ver-
ifying each link correctly

3.1 (1.17) 3.1 (1.38)

I felt that the levels/badges contributed to-
wards being motivated to complete the task

3.4 (1.08) 3.5 (1.24)

Overall, the levels/badges feature was a good
addition to the traceability tool

3.9 (0.67) 3.8 (0.94)

Table 6.4: Attitude of the control group towards the levels and badges feature
Levels Badges

Levels/badges make the task of verifying trace
links more satisfying

3.4 (1.24) 3.6 (1.62)

Levels/badges help in decreasing the time spent
on each link

2.75 (1.49) 2.7 (1.16)

Levels/badges make me focus less on verifying
the links correctly and more on verifying as
many as possible

3.4 (1.38) 2.8 (1.22)

Levels/badges would make me skip the more
advanced links and go for easier ones in order
to “level up”/receive more badges faster

3.4 (1.24) 3.2 (1.53)

and 17.19% for the control group. The average rate of correctly rejected links
for the experiment group was 92.14% and 92.15% for the control group. This
is reflected in the measures for precision and recall that show a low precision of
0.17 for both groups, but a recall of 0.62 and 0.67, respectively. This indicates
that detecting correct links was harder compared to rejecting wrong links that
were obvious to spot. Standard deviations for the total number of links as well
as for precision are relatively high, indicating that there was a relatively large
spread in the rate of true positives amongst all selected positives. Indeed, the
control group, e.g., ranged between a correctness of 7.7% and 52%.

We tested our null hypotheses H0vetted and H0vettedCor with a Mann-
Whitney u-test, yielding p-values of p ≈ 0.542 and p ≈ 0.912, respectively.
Therefore, we can not reject the null hypotheses and can not detect a statistically
significant difference in either the number of vetted links or the correctness of
vetting decisions between the experiment group and the control group.
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Table 6.5: Results of the vetting task for the control group and the experiment group.
True

positive
False

positive
Total

positive Rate True
negatives

False
negatives

Total
negatives Rate Precision Recall

Control Group

Avg. 9 66.92 75.92 17.19% 77.58 5.75 83.33 92.14% 0.17 0.62
Stdev. 2.26 43.79 43.33 57.83 3.28 60.25 0.14 0.19

Experiment Group

Avg. 9.67 60 69.67 16.54% 56 4.67 60.67 92.15% 0.17 0.67
Stdev. 2.71 30.84 31.92 21.34 2.46 22.23 0.08 0.18
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6.5 Discussion

In this section we discuss the implications of the results and how they relate to
our research question. To recap, our research question is: What is the impact
of gamification on the task of vetting automatically generated trace links?

Our results show that, on one hand, there is no significant difference in
the total amount of links vetted and also in the accuracy of the vetted links
between the experiment and the control group. From the survey carried out
to elicit which gamification features are suitable, there were indications that
gamification might lead to participants vetting more links but reduce accuracy.
However, our results show that this is not the case. We would like to emphasise
that this is not a negative result. In contrary, the results mean that the newly
added gamification elements did not lead to participants rushing the vetting
task in favour of reaching higher levels or winning badges. Indeed, it was
difficult for participants to know which accuracy they attained since there was
no feedback as to whether the links accepted or rejected were correct. For
the future, we consider alternative means of rewarding correctness, such as
rewarding taking extra time to analyse an artefact in detail. Another alternative
proposed by an experiment participant is to allow the participant to see the
vetting decisions of other users before making their own. Decisions of other
users would allow the current user to get an idea of what others thought was
correct, but is by no means guaranteed to be correct. Since reward options
are limited if correctness can not be checked automatically, the usefulness of
gamification for trace link vetting can be restricted. Agreement with other
users might be used as a stand-in, but might lead to skewed results when users
are incentivised to agree with others.

The design of the badges and the associated reward system could have an
influence on the precision achieved by the participants. In our case, participants
felt the need to accept approximately as many links as they rejected since both
actions were associated with the reward of badges. The low number of correct
links among the link candidates might have contributed to the low correctness
rate of accepted links. To better understand this factor, more research is needed
with different types of badge designs and reward systems.

The results show that the experiment group found the vetting task to
be more enjoyable and motivating than the control group. Many studies
on gamification consider how and if a gamified implementation has had an
impact on intrinsic and extrinsic motivation (see, e.g., [222,241,242]). Intrinsic
motivation can be described as being motivated to perform a task because one
enjoys doing it, while extrinsic motivation can be described as completing a task
because of the incentive one gets after completing it [243]. When attempting
to motivate people, it is considered best practice to aim at increasing intrinsic
motivation, since being motivated to do something because of enjoyment is
more sought after than being motivated by extrinsic rewards [243]. In our case,
since participants of the experiment group reported that they enjoyed the task
and felt more motivated to perform it, but did not increase the number of links
or their accuracy, there is an indication that the participants had more intrinsic
than extrinsic motivation. However, we cannot conclude that this is the case
and further research is needed to investigate this motivational aspect by, e.g.,
letting participants choose if they want to perform the vetting task or not and
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observing their performance over time.
Our findings are also inconclusive w.r.t. the long-term effects of gamification.

Since participants were only exposed to the gamification features for one
session, we can conclude that within this session, enjoyment and motivation
was increased, but can not state that these positive effects would be present
over a longer period of time and a number of consecutive sessions. There is a
chance that participants get used to the features and their level of enjoyment
and their motivation decreases over time. This can be counteracted with a
reward system and gamification features that keep users engaged continuously,
e.g., with specific rewards for higher levels. Our experiment is only an initial
step and more research is required to understand the long-term motivational
aspects in more detail.

6.6 Conclusion
In this paper, we investigated the impact of gamification on trace link vetting.
We identified suitable gamification features based on existing studies and a
survey, and implemented levels and badges in the traceability management tool
Eclipse Capra. To test the impact of these features, we conducted a controlled
experiment with 24 student participants, comparing the use of Eclipse Capra
with and without gamification features. Specifically, we investigated the impact
of having levels and badges on the correctness and the number of vetted links,
as well as the perceived motivation of the participants and the usability of the
tool.

The results show that our implementation of levels and badge features had
no significant effect on the correctness and amount of vetted links. However,
the participants found the gamified system to be more enjoyable. Furthermore,
participants did not identify differences in the usability of the gamified and the
non-gamified system. The results of our initial survey also showed a difference
in participants’ preferences toward competitive gamification elements (e.g.,
leader boards) compared to non-competitive elements (e.g., levels).

For future work, we see a number of possibilities. First, it is essential to
study the long-term effects of gamification on enjoyment or motivation, and
how to keep subjects engaged over longer periods of time. Our experiment only
serves as an initial indication that gamification indeed increases motivation in
the short term, while it remains to be studied whether this effect wears off over
time. Second, we see the need to replicate our study in an industrial setting
with professional developers. Since the experiment setup requires a ground
truth of which traces are correct and which ones are not, this is a challenging
task. Finally, there is a need to study how a more advanced implementation of
levels and badges affect the vetting task since in this study we only test our
specific implementation.
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Abstract
Traceability is an important aspect in software development that yields a
number of benefits such as facilitating impact analysis and tracking software
changes. However, for companies to reap these benefits, a proper traceabil-
ity strategy needs to be defined and implemented. Existing literature lacks
concrete guidelines for practitioners to systematically define such a strategy.
In this study, we address this gap by defining TracIMo, a methodology for
systematically designing and introducing software traceability in practice. We
used design science research to define and evaluate TracIMo with a case study
in an agile development team of a company in the finance domain. Our results
show that TracIMo is feasible as it allows incremental definition and evaluation
of a traceability strategy that is aligned with the company’s traceability goals
and the existing development process. The evaluation showed that the resulting
traceability strategy yields a number of short-term benefits, including improve-
ments in effort estimation and understandability of tasks. Additionally, this
paper reports practical challenges encountered when designing a traceability
strategy.
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7.1 Introduction

Traceability is defined as “the ability to interrelate any uniquely identifiable
software engineering artifacts to any other, maintain required links over time,
and use the resulting network to answer questions of both the software product
and its development process” [11]. Software engineering artifacts include
artifacts such as requirements, design models, implementation, and tests as
well as process-related artifacts such as tasks and tickets. Traceability is an
important aspect in software development, providing benefits such as supporting
change impact analysis [141,244], program comprehension [167] and compliance
to standards [245]. Even with all the promised benefits, many companies
developing software lack systematic traceability strategies [83]. Trace links are
created and maintained in an ad hoc manner and therefore benefits are not
visible due to the mismatch in the established strategy and the traceability
needs of the company [246]. A traceability strategy is a plan of action for
how traceability should be established and maintained in an organisation. The
strategy defines how traceability activities such as creation, maintenance and
use of traceability should be conducted. This includes defining the purpose
of traceability and how it should be managed both in terms of tools and
processes [10].

One of the reasons for ad hoc traceability is the lack of concrete guidelines
for practitioners on how to establish traceability [83]. This can lead to effort
invested in creating and maintaining trace links which are ultimately incon-
sistent, incomplete and never used [247]. While there is literature reporting
on case studies in which traceability is established (see, e.g., [17,248]), these
studies do not give concrete guidelines that are still generic enough so they
can be easily transferred to other cases. Other studies e.g., Dömges et al. [18],
give abstract descriptions on how to establish and maintain project-specific
traceability that are not directly actionable in practice. Moreover, Cleland-
Huang et al. explicitly point to the lack of guidance for practitioners when
establishing traceability in their paper discussing future research directions for
traceability [34]. An attempt toward addressing a related, but distinct problem
is the study by Rempel et al. [246], which provides a framework for assessing an
existing traceability strategy in companies, in particular the alignment of the
strategy with the traceability needs at the company. This work however, does
not give concrete guidelines to follow when traceability is not yet established.

The aim of our contribution is therefore to extend the state-of-the-art by
defining a methodology for systematically designing and deploying company
specific traceability strategies. We used design science to design and evaluate our
methodology, called TracIMo, short for Traceability Introduction Methodology,
in collaboration with an agile development team in the finance domain.

With this study we answer the following research question:

RQ: How can traceability be established to achieve the goals of the organisation
and yield a measurable impact?

The contribution of this paper is threefold: first, we present a structured
methodology for designing a traceability strategy and introducing traceability
in a software development organizations. It was inspired by and extended
from the traceability strategy assessment procedure in [246]; second, we discuss
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benefits of the introduced traceability strategy; and third, we discuss challenges
and important decisions that need to be made when designing a traceability
strategy in order to maximize its benefits. Our aim is to give both researchers
and practitioners practical insights into how to establish traceability.

The rest of the paper is structured as follows: In Section 2 we discuss previ-
ous studies related to our work. Section 3 describes our research methodology.
In Section 4 we describe the methodology to introduce traceability (TracIMo)
while Section 5 describes how it was evaluated at the company. Section 6 gives
a discussion with respect to the research question and Section 7 compares
TracIMo with similar existing frameworks and methodologies. Section 8 de-
scribes the threats to validity of our study and Section 9 concludes the paper
and outlines future work.

7.2 Related work

A vast amount of traceability research covering various topics is available.
We performed a lightweight systematic mapping study by searching ten top
software engineering publication venues for traceability research (see Table 7.1)
using SCOPUS. We searched for papers that specifically mentioned the term
“traceability" in the title and published in the respective venues. For instance,
the search term used to search the requirements engineering conference was as
follows:

TITLE(“Traceability”) AND CONFNAME(“Requirements Engineering”).

The search was performed on July 2nd and we did not restrict the publication
time of the papers. We screened the identified papers by reading the title and
abstract specifically looking for papers suggesting frameworks or methodologies
for introducing traceability. We also screened for papers reporting industrial
case studies of introducing traceability. This mini-review also allowed us to
identify the main topics of research w.r.t. traceability published in these venues.

Overall the main topics of traceability are research on specific tools and
technologies for managing traceability (e.g., [249, 250]), automation of trace
link creation using information retrieval and machine learning approaches
(e.g. [21, 24, 251]), traceability between specific artifact types, e.g., business
models to architecture [252], requirements to code [253], as well as research that
leverages model-based development techniques for traceability e.g. [247,254].
A large amount of this research is evaluated using example systems from
universities (e.g., [250]) or using example systems taken from industry which are
not publicly available (e.g., [24]). There are only few studies where approaches
are evaluated on running industrial projects (e.g., [255]).

Specifically, there is little research describing how to define traceability
strategies. In practice practitioners struggle with defining traceability strategies
suitable to their specific company needs [34]. In this area most of the research
is focused on designing traceability strategies to support development of safety-
critical products since traceability is mandated by safety standards. For
instance, Nair et al. [256] provide an overview of traceability for safety evidence
certification. They discuss what the goals for traceability of safety evidence are
(e.g., safety assurance and change impact analysis) and propose a traceability
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Table 7.1: Publication venues and the number of papers on software traceability.
Venue No. of

papers

Requirements Engineering Conference (RE) 84
Requirements Engineering Foundations for Software
Quality Conference (REFSQ)

13

International Conference of Software Engineering
Conference (ICSE)

37

Foundations of Software Engineering Conference
(FSE)

9

Transactions of Software Engineering Journal (TSE) 9
Journal of Software and Systems (JSS) 17
Information Software Technology Journal (IST) 14
Requirements Engineering Journal (REEN) 4
ACM Transactions of Software Engineering and Man-
agement (TOSEM)

2

Empirical Software Engineering Journal (EMSE) 9

information model (TIM) which describes the artifacts and trace link types
needed for safety evidence traceability. Rempel et al. [245] provide an approach
to parse safety standards in order to identify which trace link types are needed
in order to fulfill that standard and check the suggested trace link types against
the trace links maintained in the company to determine if they are compliant.

In addition to the mini mapping study, previous systematic literature
reviews such as [61], [25] and [257] on traceability as well as overview papers on
traceability research such as [34] also support our observations. For instance,
[82], [61] and [8] all report that practitioners lack knowledge and guidance on
traceability management and further empirical studies that yield guidelines for
practitioners are needed.

We discuss the few studies that exist on the overall design of traceability
strategies in Section 7.2.1. Additionally, industrial case studies which report on
the introduction of traceability are relevant for our research since they provide
lessons learned and experiences from industry on how to plan for and introduce
traceability. These case studies are discussed in Section 7.2.2.

7.2.1 Frameworks for designing traceability strategies

The study by Rempel et al. [246] discusses the suitability of explicit traceability
strategies for different companies and different projects. The authors study
existing traceability strategies and development processes in 17 companies and
show that there is a mismatch between existing strategies, the development
processes, and the project-specific traceability goals. These findings emphasize
the need to systematically define a traceability strategy based on the current
development process and traceability needs before implementation. The authors
therefore propose a framework to investigate the suitability of already existing
traceability strategies. TracIMo uses the steps provided in this framework to
understand an organisation’s goals and existing process. TracIMo then extends
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the framework with steps that make it possible to design, deploy and evaluate
traceability strategies.

Similarly, the book by Gotel et al. [10] contains a chapter that describes
a traceability process model. This model consists of three main activities:
planning and managing the traceability strategy; creating and maintaining
trace links; and finally using them. The activity for planning and managing of
traceability strategy ensures that the traceability strategy is designed according
to the needs of the specific project or organization. TracIMo assumes similar
concepts and there is some overlap with the steps in TracIMo. However,
TracIMo’s activities are more detailed and concrete and include specific steps,
roles, and work products that are involved in defining a traceability strategy.

Closely related to our study is research on tailoring traceability to specific
domains. Dömges and Pohl [18] define a framework for designing project-
specific traceability strategies. Their work investigates existing tools and gives
guidelines on how to design a traceability management tool that supports
definition of project-specific traceability strategies. Their framework is similar
to ours as it stresses the need to investigate which traceability strategy is
suitable for which project. However, the framework is tool-oriented, defined
on an abstract level (without concrete steps of how each activity should be
conducted), and does not discuss how to measure and evaluate the designed
strategy.

Espinoza and Garbajosa [56] propose a traceability metamodel for the
definition of traceability strategies. The authors report that in order to design
traceability strategies that are not specific to a development process, it is
important that traceability tools support the definition of custom trace links
(e.g., satisfied_by), user roles (e.g., tester), and definition of linkage rules (e.g.,
when a requirement and a test should be linked with a tested_by trace link).
The proposed traceability information model (TIM), i.e., a model describing
artifact types and permissible trace link types in a development environment,
can be used to define company-specific traceability strategies. However, their
work is geared towards defining the traceability information model but not the
process. It does not provide details on aspects such as metrics to evaluate the
process and tool selection.

Additionally, Mäder and Gotel [258] describe steps for defining project
specific traceability which consists of the first three steps in TracIMo but do not
go as far as tool selection and evaluation of the traceability strategy designed.

7.2.2 Case studies on introducing traceability

Arkley and Riddle [17] describe tailoring traceability to meet the business
needs of a company. Based on an investigation of why the company needed
traceability, they derived a successful traceability strategy. This work is
similar to ours as it stresses the importance of understanding why specific
projects or companies require traceability before introducing any traceability
strategy. However, the tailoring approach is not systematized and therefore
the steps are not easily transferable. Asuncion et al. [58] conducted a case
study on designing and implementing an end-to-end traceability management
tool. From the lessons learned in the case study, they provide guidelines
on how to establish traceability. While the guidelines are useful, they are
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Figure 7.1: The design science process we followed for this contribution.
Adapted from [259].

more tool-oriented than process-oriented. Similarly, Kirova et al. [32] report
their experiences of implementing an automated traceability environment for a
mobile phone company. The study provides guidelines that practitioners should
consider when introducing traceability. While some of these guidelines overlap
with the steps proposed in our methodology, we give concrete details on how
to instantiate these steps. Panis [248], describe a successful implementation of
traceability at Teradyne. The author describes the trace link types maintained
as well as traceability benefits such as identifying unimplemented requirements,
identifying the rationale of requirements during implementation and so on.
The study gives recommendations for success such as making sure traceability
is available everyday tasks of developers and not a separate report. Stål et
al. [255] report on a successful industry developed traceability solution to
support continuous integration and delivery at Ericsson. In this study, the
authors report how the solution maps to the needs of the company by first
eliciting these needs through interviews with practitioners. This study shows
how to align the needs of the company to the solution as well as how to evaluate
the traceability solution.

In summary, there are very few studies on the introduction of traceability
which leaves practitioners with a knowledge gap on how to establish trace-
ability in software development projects. Our study aims to address this gap
by providing TracIMo, a methodology to introduce traceability with concrete,
actionable steps and activities. We also report on practical insights into how it
was used to establish traceability in a company.

7.3 Research Method

In this study, we used design science [68] as our research method. Design science
allows the researcher to systematically investigate a problem, create artifacts to
solve the problem, and evaluate how the artifacts solve the problem in a certain
context [68]. The aim of design science is to solve a real world problem through
designing innovative artifacts. We used design science because the problem we
study (how to systematically introduce traceability) is a practical problem and
the goal of our research was to design and evaluate an artifact (a methodology
for how to systematically introduce traceability). We followed the design
science activities described by Peffers et al. [259]: 1) problem identification and
motivation, 2) Define the objectives for a solution, 3) Design and Development,
and 4) Evaluation. These activities are described in the next subsections.
Figure 7.1 shows the design science research methodology process of our study.



7.3. RESEARCH METHOD 159

7.3.1 Problem identification and motivation

This first step in design science is aimed at understanding the problem. In
our case, the business analyst (BA) of a company reached out to us with a
traceability problem. This was followed by emails and phone conversations
where two researchers collected data to understand what the problem was. The
BA explained that at that point in time, the organisation’s development process
lacked traceability and, as a result, manual impact analysis was time consuming
and error prone. If a change was required all artifacts related to the change
needed to be manually identified. Additionally, in many cases development
artifacts were out of sync because the change set identified during a change
was incomplete. The company therefore wanted to introduce traceability to
deal with this problem but did not have the necessary expertise for such an
endeavour. From a research perspective, this was a valid problem that is not
only relevant for this particular company but also for many others as reported
e.g., in Mäder et al. [123] and Maro et al. [82]. Design and introduction of a
traceability strategy is a challenging task for organizations because there are
no systematic guidelines for practitioners on how to introduce traceability [85]
(see also Section 7.2). As such, practitioners can end up managing traceability
in an ad hoc manner that where created trace links are not used as they do
not support the activities in the development lifecycle.

7.3.2 Define the objectives for a solution

From previous work on software traceability (e.g., [18,26,48,82,83,260] discussed
in Section 7.2) we know that ad hoc definition of a traceability strategy is
bound to fail since it leads to wasted effort in creating and maintaining trace
links which are not used or underused. A traceability strategy needs to be
systematically designed in order to reap benefits. Currently, practitioners
struggle with defining tailored traceability strategies due to the many aspects
involved in making the strategy a success, e.g., making sure the strategy captures
stakeholders’ needs, is aligned with the development process and supported
with proper tools [10]. Our objective is therefore to provide an instrument to
help practitioners with the definition and evaluation of traceability strategies
for their specific contexts. We achieve this by defining a methodology for
systematically designing and introducing traceability strategies.

7.3.3 Design and development

In this step, we developed a methodology to systematically introduce trace-
ability, TracIMo. Before designing TracIMo, we went through literature on
traceability to find studies that provide theories and frameworks on how to
introduce traceability. To the best of our knowledge we are aware of the related
work described in Section 7.2. None of the papers mentioned there provides
a methodology with concrete steps and activities for defining a traceability
strategy that the company could use to design their traceability strategy. How-
ever, various papers, e.g., [83] and [19], call for the need of more guidelines for
practitioners on designing and implementing traceability strategies.

We (the researchers together with the BA at the company) used these
existing studies as a foundation to derive a more fine-grained and concrete
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methodology to introduce traceability at the company. The aim was to make
sure that the method captures all tasks necessary to not only design but
also introduce and evaluate traceability in an industrial setting. We used
the assessment framework by Rempel et al. [245] as a starting point and
analyzed which steps would be needed to allow the design, deployment and
measurement of a traceability strategy in a systematic manner. This led to
addition and modification of some steps to the Rempel framework. For instance,
the assessment steps were extended to also include the definition of metrics
that would allow tracking the success of the designed traceability strategy in
a project team or an organisation over a longer period of time. Importantly,
we added steps for adapting tools, deploying the strategy, and measuring its
effects in the organisation.

The design of the methodology was done in an iterative manner through
brainstorming sessions between the researchers and between the researchers
and the BA at the company. The researchers created the first version of the
methodology, discussed and improved it in several brainstorming sessions and
once a stable version evolved, it was shared with the BA of the company to
gauge its feasibility and facilitate further improvements. This was done over
a period of two months. The resulting methodology was then used to design,
introduce and evaluate a traceability strategy at the company.

7.3.4 Evaluation

In this step we evaluate the applicability of our design artifact (TracIMo).This
was done by using TracIMo to design a traceability strategy for the company
we collaborated with. The next subsections describe our case, data collection
procedure, and how we analyzed the collected data.

7.3.4.1 The case and context

We applied TracIMo to an agile development team of a company in the finance
domain to introduce traceability. The company is a digital mortgage advice
company located in Amsterdam, whose main business is to provide customer-
tailored advice about mortgage products and connect customers to money
lenders. The company develops a web-application where customers can register,
select mortgages, provide documentation for eligibility, and book appointments
with mortgage advisers. The company is small, where the IT department
consists of around 14 employees. The main problem for the company was the
inability to perform impact analysis when a change requests comes in. From
time to time, the company receives changes from the central federal bank on
how mortgages should be issued including how the rates should be calculated.
The company translates the change request into requirements which are then
broken down into tasks and assigned to developers for implementation in the
system. Due to lack of traceability, the impact analysis of the new requirements
is performed manually and therefore time-consuming and error prone. We used
the steps defined in TracIMo to design a traceability strategy that would tackle
this challenge in the company. The development team in the IT department
was our unit of analysis.
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7.3.4.2 Data collection

We the researchers used TracIMo to define and deploy a traceability strategy
for the company. This was done by performing each step as prescribed in
TracIMo in several iterations and in close contact with the company. After
the traceability strategy was defined, we deployed it at the company and
collected data to understand its feasibility, again as prescribed by TracIMo.
Data was collected for evaluation in three iterations. The first iteration was
conducted in the same week as the designed methodology was deployed. We
conducted one semi-structured interview with the product owner to get his
opinion and feedback on how to improve the strategy. We interviewed the PO
because he was not involved in the initial design of the strategy to get his
opinion on how the strategy works and fits in their development activities. The
interview was recorded and transcribed for analysis. We also conducted one
focus group meeting with the lead developer and the BA to elicit their feedback.
During the focus group, the researchers took notes which were later used in
the analysis. The second iteration was conducted after two weeks. This made
sure that the interviewed stakeholders had time to work with the traceability
strategy. We conducted one interview with the BA via Skype to understand
how the traceability strategy works out for them. The third iteration was
conducted after five months where we interviewed the BA and one developer
for more feedback on how the strategy worked. All interviews were recorded
and transcribed. We also collected data from the bug tracking system used by
the company. For instance, we collected the number of closed tickets per sprint
since the measurement plan required this data to evaluate the different metrics.

7.3.4.3 Data analysis

We used thematic coding to analyze the transcribed data. The two researchers
first coded one interview separately and later held a coding workshop to discuss
the codes they came up with and harmonize them. The codes were inspired by
TracIMo and our research question. For example, we had a code specifically for
the traceability process and for challenges. The harmonized codes were then
used for the rest of the interview transcripts. In total we coded four interviews.
We also coded the notes that were taken in the focus group meeting using the
same codes. The data collected from the bug tracking system was analysed
using the metrics defined using TracIMo.

7.4 TracIMo: A Methodology to Introduce
Traceability

In this section, we describe TracIMo, the Traceability Introduction Methodology,
which can be used to establish traceability strategies in companies. The
methodology, depicted in Fig. 7.2, consists of ten steps which are split into two
phases. Since TracIMo reuses and extends parts of Rempel et al.’s traceability
assessment methodology [246], Fig. 7.2 indicates whether each step was reused
as is, modified, or added. One step was reused, four steps were enhanced and
five steps are added. We also describe the purpose, the inputs and outputs, as
well as the activities for each step.
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Figure 7.2: Schematic overview of TracIMo, indicating which steps have been
reused or modified from Rempel et al. [246] and which were added. The dashed
lines represent going back to previous steps for refinement since TracIMo is
iterative.

7.4.1 Phase 1: Define traceability strategy

The aim of TracIMo’s first phase is to understand the issues and the goals of
the company and prepare a suggestion for a suitable traceability strategy.

7.4.1.1 Steps 1 and 2 – Analyse Development Process and
Traceability Goals

The purpose of Step 1 is to understand the development process of the company
while the purpose of Step 2 is to identify traceability goals. Since these steps
use the same data as their foundation, they are presented together.

Activities The main activities in these steps are:

[a] Collect data on the development process and traceability goals. This data
can be collected through interviewing members of the development team,
observing the development team or studying process documentation
that describes the development process and traceability needs, or a
combination of these data collection techniques. This should be done
in close collaboration with the company and include different roles e.g.,
developers and analysts in order to get the full picture of the development
process and traceability needs. For interviews, we propose an interview
guide that we have created and made available as part one of the online
appendix1. While observations and document analysis are good ways to

1https://tinyurl.com/y3n96ldq
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determine the status quo within the organisation, interviews are the main
source of information about practiced process and traceability goals.

[b] Analysis of the data to derive process goals and traceability goals. This is
achieved by going through the data collected either through interviews,
documentation or observations. Thematic coding can be used to analyse
the transcribed interviews, observation notes, or process documentation.
The coded data can then be used to derive a conceptual model of the
process which can be modelled using a language like SPEM2 or Essence3 or
a non-formal format that shows the flow of information between activities.
This information is later used in Step 6 to derive the traceability process
and ensure that the traceability process is aligned with the development
process.

Coded data from the interviews can be used to derive process and trace-
ability goals. Process goals state what the organisation wants to achieve
with the different activities in their development process. For instance,
in the requirements engineering activity, one of the process goals could
be to effectively identify which requirements have already been validated
from the requirements engineer’s perspective. This information is later
important to identify conflicts with the traceability goals and also identify
traceability goals that do not support any process goal. The traceability
goals in turn describe what the organisation would like to achieve with
the introduction of traceability. Both types of goals should also include
a rationale that describes the goal further and clearly states why it is
important for the organisation.

As an addition to the Rempel et al. framework, TracIMo uses the
Goal/Question/Metric (GQM) approach [84] to achieve a standardised
format for the goals. They follow the format purpose, issue, object,
viewpoint. Purpose is a verb such as “increase”, “decrease”, or “limit”,
the issue describes the problem being addressed such as “correctness”
or “speed”, the object defines what the goal pertains to such as “effort
estimations” or “test coverage”, and the viewpoint is one of the roles
such as “developer”, “product owner”, or “customer”. An example of a
goal defined using GQM could be “increase the correctness of identifying
change sets for a given requirement, from the developer’s point of view."

[c] Derive metrics for traceability goals. The GQM approach is also used to
define questions and metrics that allow understanding if a goal has been
achieved and measuring the success of the derived strategy. For each
traceability goal, questions are defined whose answers help understand if
the goal has been achieved. For each question, metrics are defined that
provide quantitative and qualitative evidence to answer the questions.
For instance, the example traceability goal “increase the correctness of
identifying change sets for a given requirement, from the developer’s point
of view” could be associated with the metric “fraction of the number
of artifacts in the change set identified during change impact analysis
using trace links and the actual number of artifacts changed”. If this

2https://www.omg.org/spec/SPEM/About-SPEM/
3https://www.omg.org/spec/Essence/About-Essence/
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metric is close to one, then the trace links fulfill the goal of identifying
a correct change set. Additionally, a measurement plan is required for
each metric that defines how and when to collect the information. For
instance, a measurement plan can state that measurements are taken at
the end of each sprint, some after two sprints and some at the end of the
project. The measurement plan should also include details how the data
for the metrics will be collected, who will be responsible for taking these
measurements and how the measurements will be communicated.

[d] Create exemplary traceability scenarios. Another addition to Rempel
et al. is that TracIMo recommends the definition of scenarios. These
scenarios are concrete examples for how trace links are going to be
used. Scenarios are a helpful tool in the evaluation of the goals and the
traceability information model. We recommend to define a small set of
typical exemplary artifacts as they would be created during development
and describe how these artifacts should be related to each other and
to which purpose. Each traceability goal can be associated with one
or several scenarios. A good starting point for definition of traceability
usage scenarios is the work by Bouillon et al. [4], who conducted a survey
with 56 traceability practitioners and identified a list of 29 traceability
usage scenarios relevant for practitioners.

Output The outputs of step 1 and 2 are:

[a] a conceptual model of the process, including roles, activities, artefacts,
and tools that are used in the development process;

[b] the process goals along with their rationales;

[c] the traceability goals along with their rationales;

[d] traceability metrics and a measurement plan; and

[e] exemplary traceability scenarios.

7.4.1.2 Step 3 – Derive Traceability Information Model

The purpose of this step is to define a company-specific Traceability Information
Model (TIM) that adheres to the traceability needs of the company. A TIM
captures the semantics of the trace links and provides the structure of the
links. It defines which artifact types can be linked to each other and which
cardinalities and directions the links have. Depending on the traceability goals,
a link can also carry additional meta-data, such as when it was created or who
created it.

Input The inputs to this step are:

[a] the process model from Step 1;

[b] the traceability goals from Step 2; and

[c] the traceability scenarios from Step 2.
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Activities To derive the TIM, the following activities should be conducted:

[a] Identify trace link types and traceable artifacts from the traceability goals
and the process model. The traceability goals inform which link types
are needed as well as the semantics they have to carry, while the process
model informs which traceable artifacts are available in the development
process. For instance, system requirements and software requirements are
produced in the requirements elicitation process and a relevant traceability
goal could be “to understand how system requirements are broken down
into software requirements from the point of view of the business analyst”.
Based on this traceability goal and the associated traceability scenarios, we
derive a trace link type that connects system requirements to the software
requirements it generates. The use of traceability scenarios constitutes
an extension in comparison to Rempel et al. [246]. Additionally, if one
system requirement can have many associated software requirements, but
one software requirement only has one parent system requirement, the
link cardinality can be defined as one to many (1..*), for this link type.
When identifying traceable artifacts, it is important to check that these
artifacts can be uniquely identified in the development process, as this is
a pre-requisite for traceability implementation. In case artifacts cannot
be uniquely identified, unique naming schemes should be introduced. To
derive the complete TIM, all traceability goals should be analyzed in this
way.

[b] Represent the link types in a model. After all the link types have been
identified, they should be represented in a model for easy presentation.
A common way to represent a TIM is to use UML class diagrams or a
similar formalism. Textual representation is also possible, but for easy
visibility during discussions on the TIM, TracIMo recommends a graphical
representation. Figure 7.3 shows an example of a TIM with one link
type called “generates” that connects system requirements to software
requirements. The example also shows that one system requirement can
generate many software requirements.

[c] Identify duplicate trace paths. Once the TIM is developed it should be
checked for different trace paths that link the same elements and have
the same semantics. The traceability scenarios can again support this
task since it is possible to apply the created TIM to the selected artifacts
and see how they would be connected. Duplicates should be removed
from the TIM as they will add to the effort of creating and maintaining
links but do not yield benefits.

Output The output of step 3 is:

• the traceability information model (TIM).

7.4.1.3 Step 4: Assess Process Goals against Traceability Goals

The purpose of Step 4 is to assure that process goals and traceability goals
are compatible and achievable. In particular, it is necessary to evaluate if all
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Figure 7.3: An example of a simple TIM with one trace link type (generates)
which connects system requirements to software requirements.

process goals that require traceability are covered by at least one traceability
goal.

Input The required inputs are:

[a] the process goals from Step 1;

[b] the traceability goals from Step 2;

Activities To assess the traceability goals w.r.t. the process goals, the fol-
lowing activities should be performed:

[a] Identify process goals that require traceability. Each process goal has
to be evaluated to understand how traceability can support it. This is
supported by the rationales of the process goals. For instance, a process
goal that is related to translating requirements into a high-level system
model has a relation to traceability since the elements in the system
model should be traceable to the requirements they address. This step
will yield a list of process goals that have to be aligned with traceability
goals.

[b] Match traceability goals to specific process goals. The list of relevant
process goals is then matched to the traceability goals to ensure that
there is alignment between what the organisation aims to achieve with
the development process and what it expects from a traceability strategy.
This is done by going through all the process goals that require traceability
identified previously, and checking if each of these goals have at least
one corresponding traceability goal that supports the process goal. This
step can lead to a refinement of the goals or even to revisiting the goals
internally to determine which are of highest priority in case some goals
cannot be fulfilled.

Output The outputs of this step are:

[a] an assessment report of the process goals against the traceability goals,
represented as a table relating the process goals and the corresponding
traceability goals;

[b] a list of refined process and/or traceability goals (optional).

7.4.1.4 Step 5: Assess Traceability Goals against TIM

The purpose of Step 5 is to assure that the TIM’s structure supports the
traceability goals. In particular, it is necessary to evaluate if the TIM supports
the storage and analysis of all necessary information to achieve them.
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Input The required inputs are:

[a] the traceability goals from Step 2;

[b] the traceability scenarios from Step 2; and

[c] the TIM from Step 3.

Activities To assess the TIM w.r.t. the traceability goals, the following steps
should be taken:

[a] Identify trace link types associated with each traceability goal. Traceability
goals often imply that certain artifacts should be traceable to each other.
A traceability goal about being able to identify missing test cases, e.g.,
implies that test cases are connected to requirements, to design models, or
to source code. Such information can also be derived from the rationales
of the goals.

[b] Check that all required link types are represented in the TIM. In this
step, it is not only important to check that the TIM contains all required
links, but also that the TIM has no links that are not connected to any
traceability goals. In addition to Rempel et al., example trace links for
specific traceability scenarios from Step 2 should be created to determine
if the TIM’s expressiveness is sufficient. In case of misalignment, the
goals and the TIM are revisited iteratively until converging towards a
solution. This provides an early evaluation of the suitability of the TIM.

Note that these assessment steps are iterative and can lead to changes in
the traceability goals, the TIM as well as the process goals.

Output The outputs of this step are:

[a] an assessment report of the traceability goals against the TIM, represented
as a table relating the traceability goals to a description of how the TIM
supports them; and

[b] a list of exemplary trace links created for specific traceability scenarios.

7.4.1.5 Step 6: Derive traceability process

The purpose of this step is to define an explicit traceability process. The
traceability process defines the traceability activities (e.g., creation, mainte-
nance and usage of trace links), as well as the roles responsible for each of
the activities. It also defines a workflow of how and where in the development
process, trace links will be created and maintained as artifacts evolve. If any
automation will be used to create links or enforce the traceability workflow,
this also needs to be defined in the traceability process. Finally, the traceability
process describes how and when to use established trace links.
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Input The inputs to this step are:

[a] the process model from Step 1;

[b] the traceability goals and associated metrics from Step 2;

[c] the traceability scenarios from Step 2;

[d] the TIM from Step 3.

Activities To derive the traceability process the following activities are
conducted:

[a] Identify when trace links will be created. The current process model is
used as a foundation to define the process stages in which links will be
created. In order to understand when this should happen, the traceability
goals, their associated traceability scenarios, and the TIM can be used.
For instance, a scenario could show that links between requirements and
test cases should be created during requirements analysis. The concrete
link type is defined by the TIM. Existing activities in the process model
can be extended or new activities can be created.

[b] Identify which roles will create trace links. The roles responsible for
creating certain link types are partially prescribed by the activity in
the process model. If a link is created during requirements analysis,
e.g., the roles involved in this activity are candidates to take on the
responsibility for the creation of the link. However, the analysis based on
the traceability scenarios and traceability goals may show that additional
roles need to be involved. The viewpoint that is part of the traceability
goal can be a helpful pointer here.

[c] Identify when trace links will be updated or deleted. In order to avoid that
the trace model becomes stale, trace links need to be updated or even
deleted. This can, again, happen during existing activities in the process
or during newly defined activities, if necessary. It is possible that several
activities are extended to update or delete links.

[d] Identify which roles will update or delete the trace links. Likewise, who is
responsible for the update or deletion of trace links needs to be defined
in the process model.

[e] Identify when and how trace links will be used. Using the traceability
goals and the traceability scenarios, the activities in which the traceability
information is used are defined. At this stage, it is also important to
describe how and when the links are used (e.g., to find dependencies or
identify missing tests).

[f] Identify which roles will use the trace links. Finally, which roles are going
to use the trace links is defined. The viewpoint in the traceability goal
can give insight into this. It is important to note that the respective roles
need access to the trace model and the artifacts the trace links connect
in order to use them effectively.
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[g] Integrate measurement plans. The definition of the traceability goals also
included metrics and associated measurement plans. Collecting the data
needed and recording the measurements should be included as explicit
activities in the traceability process along with responsible roles and a
defined way to access the information.

The outcome of each activity should be captured in a traceability process
model. Among other things, it contains the link types to be created, how they
will be created, who will create them and how the links will be updated. The
process can be documented in different ways based on the level of formality
required. If a formal description is necessary, e.g., to integrate it into an existing
formal process description, modelling languages such as SPEM or Essence can
be used. On the more informal end of the spectrum, wiki entries or even just
informal communication within the team can be used. However, TracIMo
recommends to document the traceability processes in written form in order to
be able to revisit and evolve it. The aforementioned modelling languages also
provide hints on what should be documented. Activities, e.g., should include a
purpose, input and output, the role responsible, and the concrete steps to be
taken.

Output The output of this step is:

• a traceability process model.

7.4.2 Phase 2: Refine, deploy, and evaluate strategy

The aim of the second phase of TracIMois to deploy the traceability strategy
and evaluate its effectiveness.

7.4.2.1 Step 7: Select and Customize tool

Once the conceptual traceability strategy is created, the company needs to
think about tool support for the different activities that need to be carried out.
These activities include creation, maintenance and use of trace links. If tool
support does not already exist, a traceability management tool needs to be
selected and customized to support the different traceability activities.

Input The input to this step is:

[a] the process model defined in Step 1;

[b] the TIM defined in Step 3; and

[c] the traceability process defined in Step 6.

Activities The following activities are conducted in this step:

[a] Identify tool requirements from the traceability process. The TIM and
the process provide information about which links have to be created
and which artifacts need to be supported. The need to link requirements
stored in spreadsheets to design models in UML, e.g., means that the
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traceability tool has to support tracing to and from spreadsheets, and to
and from UML models. Additionally, the tool needs to support granularity
and different link directions if so specified by the TIM. The process model
also provides other information such as the existing tool chain. Additional
requirements might be elicited here, e.g., if the solution can be commercial
or has to be available without license fees.

[b] Analyze existing traceability tools and select tool based on derived tool
requirements. Scientific literature provides some guidance on traceability
tool selection that can be used to facilitate the process. Rempel et al. [48],
e.g., gives an overview of steps to elicit tool requirements and important
factors to consider. Additionally, Gotel and Mäder [16] provide character-
istics that can be used to compare different traceability tools. The latest
work is a study by SteghÃűfer [261] which defines categories that can be
used to assess trace links aimed at helping practitioners identify which
tools are suitable for their needs. The paper uses factors and guidelines de-
fined in Maro et al. [26] to define concrete traceability tool characteristics
and provides an evaluation of 23 existing traceability tools based on these
characteristics. We recommend that a systematic assessment of the tools
is done using the categorisation defined by SteghÃűfer [261] or Rempel
et al. [48]. However, the characteristics or criteria from these studies
should only be used as a starting point and the systematic assessment
should focus on the traceability tool requirements from the company
which are inferred from the existing development process, existing tool
chain, existing skills and knowledge, as well as the traceability goals and
the TIM. In case there is not tool to support the traceability needs of
the company, the company can develop an in-house solution. It should
be noted that in some cases, more than one tool is needed to satisfy the
traceability goals of the company.

[c] Customize selected tool. Since every company has unique requirements
when it comes to traceability, it is common that the selected traceability
tool needs to be customized to fit the company needs. At the very least
the tool needs to use the TIM defined in previous steps. Additional
customisations can, e.g., include collection of data for use in the metrics.
It is important to ensure that the selected tool can be customized in a
reasonable time frame and cost.

Output The outputs of this step are:

[a] an assessment report of existing traceability tools and reasons for selecting
the tool which can be used to justify how the tool was selected and how
it fits the company needs;

[b] a customized traceability tool or an off-the-shelf traceability tool or an
in-house developed tool.

7.4.2.2 Step 8: Deployment of the designed traceability strategy

The purpose of this step is to deploy the traceability strategy, which consists of
the traceability process and customized traceability tool, at the organisation.
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TracIMo recommends to deploy the process incrementally, i.e., one project at a
time.

Input The inputs of this step are:

[a] the traceability process from Step 6; and

[b] the customized traceability tool from Step 7.

Activities The following activities are required for the deployment:

[a] Create a deployment schedule. This schedule defines when the tool
will be installed at the company, when training takes place, when the
traceability tasks will start and who will be responsible for each process.
To ensure a successful deployment, it should be scheduled explicitly. In
agile environments, the roll-out can e.g., be included as a task in sprint
planning or the velocity can be lowered for the sprints in which the new
activities are introduced.

[b] Create baseline measurements. In order to measure the effectiveness of
the traceability strategy, it is important to create a baseline against which
the new process can be compared. For this purpose, initial measurements
according to the measurement plan for the metrics associated with the
traceability goals should be taken now. This also ensures that the
necessary steps to collect measurements used to evaluate the metrics are
in place.

[c] Inform all involved stakeholders. All involved stakeholders should be
informed of the process, how it is going to affect their work and what
is expected of them. For instance, it is important to make the roles
responsible for each task in the traceability process aware of their new
duties. It is also important to ensure that those who create the links
know whom they create them for. This can be done by distributing the
process documentation created in Step 6 as well as the deployment plan.
Personal discussions with the stakeholders can ensure buy-in and alleviate
anxiety associated with the changes.

[d] Train involved stakeholders. Before deployment, all stakeholders should
participate in training activities such as workshops that demonstrate the
new activities and allow the responsible roles to develop the skills to
perform them. These workshops can also be used to teach the relevant
tools.

[e] Integrate the traceability tool into the development tool-chain. The trace-
ability tool has to be included into the development tool-chain and
installed on the machines of all stakeholders that produce or consume
trace links before the process is rolled out.

[f] Roll-out the process. Once training is complete and all necessary tools are
in place, the traceability process can be rolled out. Again, this roll-out
should be scheduled accordingly and can have an impact on the velocity
in the first sprints after roll-out since additional time might be required
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for on-the-spot training or due to issues that occur when the traceability
process is applied in practice for the first time.

Output The outputs of this step are:

[a] a deployment plan describing the concrete steps and their timing to
introduce traceability tools, practices, and training;

[b] baseline measurements before the roll-out of the traceability process; and

[c] a deployed traceability strategy used by the involved stakeholders.

7.4.2.3 Step 9: Evaluation

The purpose of this step is to evaluate the deployed process in order to find
out if the traceability goals are achieved and identify areas of improvement.

Input The inputs to this step are:

[a] baseline measurements before the roll-out of the traceability process from
Step 8; and

[b] traceability goals and associated metrics from Step 2.

Activities While there are different ways to evaluate the deployed process,
TracIMo recommends the following evaluation activities:

[a] Immediate evaluation of the strategy during the deployment period. The
evaluation is performed by collecting data according to the measurement
plans and analysing it using the metrics defined in Step 2. It is also
helpful to observe how the stakeholders work with the process and tool
and also discuss the process with the stakeholders. The discussions could
be informal meetings, focus groups or structured interviews depending
on the company and availability of the stakeholders. Since unanticipated
challenges can occur, lessons learned from the deployment should quickly
be taken up and the tool and process improved as necessary.

[b] Long term evaluation of the strategy. The metrics defined in Step 2 can
also be used to monitor the success of the strategy over a longer period
of time, in particular in terms of improvement over the baseline. For
instance, after the first three months, the measurements can be analyzed
to identify areas of improvement and traceability goals that are not
fulfilled by the existing traceability strategy. Additionally, a qualitative
evaluation of the established strategy should be conducted. The involved
stakeholders can be interviewed for their views in the strategy in order
to elicit areas of improvement.
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Output The output of this step is an evaluation report that contains details
on how well the traceability strategy works and which areas need improvement.
The evaluation report also contains the measurements that were taken to show
to what extent the goals have been achieved with the deployed strategy as well
as lessons learned and recommendations for future improvement. Depending on
the organizations’ requirements, this report can be a formal report or informal
documentation stored as, e.g., a wiki page.

7.4.2.4 Step 10: Anchor process and tool

The purpose of this step is to anchor the new process and tool within the
team and the organisation. This step requires that the traceability strategy is
deployed and used in the organisation.

Activities TracIMo recommends the following activities to ensure that the
deployed process is anchored:

[a] Continuously educate developers and stakeholders. Both current and new
employees need to be educated about traceability, its benefits, and the
necessary steps to incorporate it into the development process continu-
ously.

[b] Integrate traceability in reviews. To ensure that traceability activities
are performed, their outcome can be included in code reviews and sprint
reviews or other opportunities for feedback. In code reviews, the guidelines
can, e.g., state that new test cases need to be traced to the original
requirement for the review to pass. Likewise, in sprint reviews the trace
model can be reviewed to find missing links or links that need to be
updated or deleted.

[c] Include traceability metrics in dashboards. Many development teams use
dashboards (see, e.g., [262]) to visualise the current state of the product
being developed. Some metrics about traceability can be evaluated
automatically and integrated into these dashboards to provide a view on
the quality and number of trace links and how they support the team.
Indirect metrics (e.g., accuracy of estimates) can also be visualised this
way to incentivise stakeholders to stick to traceability practices.

Such steps often require a more formalised definition of the traceability process.
If this was not done in Step 6, the traceability process description should be
revisited. At this point, going through another iteration of TracIMo can also
be useful to establish additional process and traceability goals and refine the
process to accommodate more teams.

Output The outputs of this step are:

[a] updated training material for the development process and the traceability
strategy;

[b] guidelines for including traceability in reviews; and

[c] automated measurement of relevant data for traceability metrics and
inclusion in dashboards.
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7.5 Application of TracIMo in a company

To evaluate TracIMo, we applied it in a company in the finance domain. As
previously mentioned, the company develops a web-application which cus-
tomers use to select mortgages, provide documentation for eligibility, and book
appointments with mortgage advisers.

This section describes how TracIMo was applied to introduce traceability
in the company. Since some of the steps (e.g., Step 1 and Step 2) require the
same data, they can be carried out in parallel.

7.5.1 Step 1 and 2: Analyze existing process and
identify traceability goals

To understand the development process and the traceability goals for the com-
pany, we conducted two interviews, one with the business analyst and one with
the lead developer. The interviews were conducted via Skype and each interview
lasted around one hour. The interview guide we used is described as part 1 of
our interview guide document available online4. Both interviews were recorded,
transcribed and analyzed. We used the thematic coding approach [263] on the
transcribed data. Examples of the codes we used are “process goal", “traceability
goal", “traceable artifact", “traceability challenge", and “trace link type". These
codes are derived from what TracIMo prescribes. Even though we know exactly
what we are looking for in the transcripts, the thematic coding approach ensures
that we derive this information systematically and therefore avoid missing any
needed information. Two researchers then used the data to build the conceptual
models of the process and the abstract goals. These were checked with the
interview partners for accuracy and correctness. Based on the traceability goals
and process goals, we applied GQM to derive potential metrics. For example,
in an interview with the lead developer he said:

“Sometimes we underestimate tickets because we forget about some parts of
the system which should be touched by the changes and that’s a problem."

From this quote, we derived the goal improve the accuracy of effort esti-
mations for tasks, from the lead developer’s point of view which is detailed
in Table 7.2. Table 7.2 also shows the rationale of the goal and the metrics
derived for evaluating the goal. Further details on the metrics derived for all
the traceability goals can be found in our supplementary material describing
the case study5. The researchers investigated each goal and proposed a number
of possible metrics. These metrics were analysed for feasibility together with
the BA to see if the data needed to evaluate the metrics is actually available
and a subset was selected. Measurement plans for when the measurements
should be taken were created for each metric. For instance, the number of
deviating tasks is to be measured at the end of each sprint by the BA. For each
goal, we also derived traceability scenarios which were later used to asses if the
traceability goals are achieved. An example of a scenario defined for goal 3 is
also included in Table 7.2.

The results of step 1 and 2 are: 1) the process model, which includes a de-
scription of the development process activities and process goals as summarized

4https://tinyurl.com/y3n96ldq
5https://tinyurl.com/y6dmd8u9
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Figure 7.4: Organization structure of the company.

in Table 7.4; and, 2) traceability goals which are summarized in Table 7.5.2.
Additionally, the traceability goals include questions, metrics and scenarios
as exemplified in Table 7.2. A summary of the development process at the
company is given below.

Development process at the case company: The development team
uses Scrum and comprises the following roles: product owner, scrum master,
developer, and quality engineer (tester). The developer role is refined into
back-end developers, front-end developers, UI designers and web designers.
In addition, a business analyst is responsible for breaking down high-level
requirements into user stories and assuring that the development of the software
coincides with business goals and regulatory requirements.

The company is structured into four value teams: operations, execution-
only, sales qualified and the analytics team (cf. Figure 7.4). A value team is a
group of people with different expertise (development, marketing, operations)
that work together to achieve a defined goal. The development team is a
horizontal group distributed over four different value teams. Each value team
has dedicated developers that implement features to achieve the team’s goal.
Some of the developers are located abroad and therefore work remotely.

Each value team works autonomously and has a Scrum master who ensures
that the Scrum principles are applied correctly and helps team members to
address any obstacles. Each value team also has its own product owner who is
responsible for defining the team’s focus by defining the scope of each sprint. It
is possible that some of the development team members are assigned to tasks
belonging to different value teams.

Sprints last two weeks. At the beginning of these two weeks, a planning
meeting is held to decide which tasks need to be accomplished in the sprint and
to assign the tasks to responsible developers. Once a developer is done with a
task, they send a pull request. If this is accepted, the changes are deployed
to the testing system. Once testing is complete, the feature is released. The
sprint ends with a retrospective meeting to reflect on how the sprint went and
identify how the process can be improved. Furthermore, at the beginning of
each sprint, the product owners from the four value teams gather to coordinate
the overall direction and to analyze which steps should be taken next in the
roadmap by identifying issues with high business value. Every morning during
the sprint, the development team and each value team have separate stand-up
meetings.
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Table 7.2: Goal/Question/Metric to identify traceability goals and metrics
Goal 3: Improve the accuracy of effort estimations for tickets from the lead

developer’s point of view.

Rationale: One of the main tasks for the lead developer is to estimate the effort
a certain implementation task is going to have. This has a major
influence on the sprint and on the schedule for the developers since it
essentially determines how many tickets the team will tackle during a
sprint and how much time they can devote to each ticket. Increasing
the accuracy of the effort estimation is therefore a goal. Trace links
can support this goal by providing insight into dependencies between
artifacts and requirements, and by helping to identify which parts of
the code have to be touched for a change. Since an estimation can
never be 100% accurate, an additional dimension is how confident
the lead developer feels with his estimations. If trace links do in
fact support the estimation, the lead developer should become more
confident in estimating over time and high confidence estimations
should become more accurate at the same time.

Question 1: How much does the estimated effort differ from the actual effort?
Metrics:

• Average number of tasks per sprint (analysis of Product Back-
log/JIRA tickets)

• Average number of deviating tasks per sprint (analysis of
Product Backlog/JIRA tickets)

• Percentage of deviating tasks per sprint (derived)

• Initial estimation for each task in story points (analysis of
Product Backlog/JIRA tickets)

• Updated estimation for each task in story points (analysis of
Product Backlog/JIRA tickets)

• Average increase/decrease in effort per task (derived)

• Number of JIRA comments about effort per task (analysis of
JIRA tickets)

Question 2: How confident is the lead developer in the estimation of tasks?
Metrics:

• Likert scale confidence
1 – not confident at all
5 – very confident
per task
(Questionnaire with lead developer)

• Number of low confidence tasks that required a change (anal-
ysis of Product Backlog/JIRA tickets)

• Number of high confidence tasks that required a change (anal-
ysis of Product Backlog/JIRA tickets)

Scenario: Given a ticket, it should be possible to identify those parts of the
system that are affected by the change in the ticket. By being able
to conduct a change impact analysis down to the code, copy, and
wireframe level, the lead developer can make better estimations of the
tickets. This means that a ticket needs to be linked to requirements,
model elements, implementation, tests, copy, wireframes and art
designs.
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7.5.2 Step 3 and 5: Derive traceability information
model and Assess traceability goals against TIM

We analyzed the development process, traceable artifacts and the traceability
goals and designed a Traceability Information Model (TIM). Existing traceabil-
ity practices were taken into account to ensure that the designed TIM supports
them. We carried out step 3 and 5 together because of the synergy that exists
between the steps. Since the TIM is derived from the traceability goals, we
also assessed the TIM with respect to the traceability goals during the creation
of the TIM. This ensured that the resulting TIM will fulfill all the traceability
goals. This also means that the TIM is created in iterations.

Whether the traceability goals can be achieved or not depends on the
expressiveness of the TIM as well as the traceability practices that are put into
place. Since we focus on the TIM, the object of the analysis are the artifacts
that are connected via trace links and the semantics of these links. In this step,
we also used the scenarios defined in Step 2 in the assessment. An example
a traceability scenario for traceability goal 3 is shown in Table 7.2. Using
this scenario, we assessed if the TIM supports tracing between all relevant
artifacts, i.e., from tickets to requirements, model elements, implementation,
tests, copies, wireframes and art designs. As can be seen in Figure 7.5, the
TIM supports these link types and this scenario. From a ticket, there are
direct links to requirements, copies, wireframes and art designs. Additionally,
transitive links exist from tickets to model elements, implementation and tests.
We also investigate which granularity level the TIM requires, if any and if
that is sufficient to fulfill the goal, which is to improve the accuracy of effort
estimation. The evidence used in the assessment is mainly the structure of
the TIM, e.g., that the right kinds of artifacts are connected to achieve the
desired goal. Table 7.5.2 shows all the traceability goals and how the TIM
helps to achieve them. The descriptions also provide hints for the practices,
e.g., that some trace links can be used for analysis once they are established.
After several iterations of feedback from the BA, the TIM shown in Figure 7.5
emerged, which was later deployed in the company. All links in the model are
one-to-one (one link can connect exactly two artifacts) and unidirectional as
indicated by the directed arrows.

7.5.3 Step 4 Assess process goals against traceability
goals

Using the process model and the traceability goals, we assessed the process
goals with respect to the traceability goals. This is to ensure that each
process goal that requires traceability is covered by at least one traceability
goal. This analysis was first done by two researchers who read all the process
goals to identify goals that required traceability and identified the matching
traceability goal(s) from the list of traceability goals derived from step 2.
For instance, one of the process goals is to improve the understanding of the
relationship between code and requirements, from a developer’s point of view.
In the assessment, we matched this goal with traceability goal 4, to increase
efficiency of identifying artefacts relevant to a change from BA’s point of
view. This is because traceability goal 4 is fulfilled by having trace links from
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Figure 7.5: Initial traceability information model. Links shown as dotted lines
were already captured at the company.

tickets to requirements, requirements to model elements, model elements to
implementation and implementation to tests. This makes the artifacts relevant
to a change not only visible for the BA but also for the developer. The result
of the analysis was then shown to the BA for confirmation and feedback and is
summarized in Table 7.4.
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Table 7.3: Assessment of Traceability Goals against the TIM
Traceability Goal How the TIM supports the goal

Goal 1: Increase the
awareness of stakeholders
about product changes
from the BA’s point of
view.

The change impact analysis enabled by the existence of
trace links, allow the business analyst to communicate
product changes to the stakeholders and to give an
indication which impact they have. For instance, the
links show which artifacts are connected to a task and
if these artifacts require stakeholders that are not in
the development team to be involved. The BA can spot
this and inform the appropriate stakeholders.

Goal 2: Improve the vis-
ibility of the decision ra-
tionale from the develop-
ment team’s perspective.

Links between requirements and tickets allow the de-
velopers to go to the requirement(s) associated with a
ticket in order to read the rationale of the requirement.

Goal 3: Improve the ac-
curacy of effort estima-
tions for tasks from the
Lead Developer’s point of
view.

Links between the tickets and the model elements allow
identifying all aspects of the system that are affected by
a change. The transitive links to the implementation
and tests indicate the code elements that need to be
changed. This change impact analysis improves the
overview and should support the development team in
estimating the ticket. For instance if a ticket is con-
nected to many complex classes, then it is an indication
that the ticket needs more effort.

Goal 4: Increase the effi-
ciency of identifying arti-
facts relevant to a change
from the developers’ point
of view.

This goal can be achieved due to the same reasoning as
for Goal 3.

Goal 5: Increase the effi-
ciency of identifying arti-
facts relevant to a change
from the BA’s point of
view.

This goal can be achieved due to the same reasoning as
for Goal 3.

Goal 6: Improve the visi-
bility of the dependencies
of the process steps from
the lead developer’s point
of view.

The process steps correspond to different activities that
need to be performed by different stakeholders. For
instance, copy needs to be provided before the web
page can be programmed. The existence of a trace link
between a requirement and copy thus indicates that the
step has been done. The developers can therefore plan
for tasks based on these dependencies e.g., the task of
copy writing will be planned before that of web page
development.

Goal 7: Improve the visi-
bility of progress from the
PO’s point of view.

The TIM makes it easier to track progress since it clearly
identifies the elements affected by a change. When com-
paring with which elements have already been changed
(e.g., tests, customer content, models) to which have to
be changed, a notion of completeness can be derived.
Notably, however, traceability does not help establish-
ing to which degree the different elements have already
been completed, just if they have been touched at all.
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Table 7.4: Assessment of Process Goals against Traceability Goals
(cf. Table 7.5.2). The table shows which process goals map to which
traceability goals and how the achievement of the traceability goal
supports the achievement of the process goal.

Current Practice Process Goal Support by Traceability Goals (TG)

Requirements Engineering: The POs and
the BA are responsible for the requirements en-
gineering tasks which are to elicit requirements
from the different value teams, document these
requirements and make sure they are translated
into actionable tasks. The requirements are writ-
ten in Google Drive spreadsheets so that they
can be easily shared. When requirements come
from external entities, e.g., regulation boards,
they are in PDF format.

Process Goal 1: Elicit all require-
ments from the product owner/BA’s
point of view.
Process Goal 2: Allow breakdown
of all requirements into actionable
tasks from a product owner/BA’s
point of view.
Process Goal 3: Improve the identi-
fication of related requirements from
the product owner/BA’s point of view.

Supported by TG 5 to increase the efficiency
of identifying artifacts relevant to change from
the BA’s point of view. Even though the
traceability goal is formulated from the lead
developer’s point of view, both the BA and
PO can use links between tickets and require-
ments to identify related requirements, e.g.,
if the requirements are linked to the same
ticket.

Software Design: At the beginning of projects,
the developers design a high-level overview either
on the white board (stored as pictures) or in a
UML modelling tool (stored in the corresponding
format).

Process Goal 4: Improve the under-
standing of the software requirements
from a developer’s point of view.
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Process Goal 5: Allow creation of
a high-level design based on the re-
quirements from a developer’s point
of view.

Supported by TG 2 to improve the visibility
of the design rationale from the development
team’s perspective, and achieved using a sim-
ilar reasoning as for Process Goal 3.

Development: The developers work on the tick-
ets assigned to them and produce code. The
code is written manually in PHP and stored in
git repositories.

Process Goal 6: Allow implement-
ing new features from a developer’s
point of view.
Process Goal 7: Allow implement-
ing changes of existing features from
a developer’s point of view.
Process Goal 8: Improve the iden-
tification of artifacts that need to
change from a developer’s point of
view.

Supported by TG 4 to increase the efficiency
of identifying artifacts related to a change.
Trace links from tickets to other development
artifacts show which artifacts are affected by
the change described in the ticket.

Process Goal 9: Improve the under-
standing of the relationship between
code and requirements from a devel-
oper’s point of view.

Supported by TG 4 and achieved using a
similar reasoning as for Process Goal 8.

Process Goal 10: Improve the plan-
ning process for future changes from
a developer’s point of view.

Supported by TG 6 to improve the visibility
of the process steps. Trace links allow to de-
termine which parts of the process need to be
executed first and therefore plan accordingly.
A missing link from model to implementation,
e.g., indicates that the code has not yet been
written.
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Quality Assurance: The developed feature is
tested against its requirements to verify that it
works correctly. The company has dedicated
testers who write tests for implemented features.
The tests are stored in git repositories together
with the code they test.

Process Goal 11: Improve the un-
derstanding of requirements from a
tester’s point of view.

Supported by TG 2 and achieved using a
similar reasoning as for Process Goal 3.

Process Goal 12: Allow verifying
features from a tester’s point of view.

Supported by Traceability Goal 4 and
achieved using a similar reasoning as for Pro-
cess Goal 8.

Process Goal 13: Improve the un-
derstanding of which artifacts need to
be tested after a change is made from
a tester’s point of view.

Project Management: This activity is associ-
ated with planning development and following up
on the progress of development to make sure that
features being developed align with the goals of
the company.

Process Goal 14: Improve the un-
derstanding of software requirements
from a PO/BA’s point of view.

Supported by TG 2 and achieved using a
similar reasoning as for Process Goal 3.

Process Goal 15: Improve effort
estimation of requirements from a
PO/BA’s point of view.

Supported by TG 3, which is geared towards
improving accuracy of effort estimation. PO
and BA can use links between the require-
ments and tickets and to other development
artifacts to see how many artifacts will need
to be inspected and changed.

Process Goal 16: Allow prioritizing
requirements from a PO/BA’s point
of view.
Process Goal 17: Improve require-
ments’ progress monitoring from a
PO/BA’s point of view.
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7.5.4 Step 6: Derive traceability process

In this step, we defined how trace links were going to be created, maintained
and used. The inputs we considered for this step were the process model, the
traceability goals, metrics, scenarios and the defined TIM. Since the BA was
already responsible for conducting the manual impact analysis, we decided that
he should also create the trace links because he knows the system well and
was already creating links implicitly in the existing development process. The
BA is also responsible for updating the links when artifacts evolve. Due to
the difficulty in tracking what has changed manually, it was decided that the
BA will need tool support to help maintain the trace links. This requirement
was noted and later used when selecting the traceability tool. The end users of
the trace links will be the development team, the lead developer, the product
owner as well as the BA. Due to the fact that there were no existing links and
the systems developed at the company already had a large number of artifacts,
the links will be created in a retrospective manner. To reduce the load for the
BA, the links will also be created incrementally. For each sprint, the BA will
create links to tickets planned for the sprint and make these links available
to the developers. This is a lightweight approach for creating links as the BA
can focus the effort on the links that yield immediate benefits. Furthermore,
links between development artifacts are also created incrementally, e.g., links
between model elements and implementation and between implementation and
tests. These links can be reused the next time a change involves an artifact
that already has trace links.

We used the metrics and measurement plan defined in Step 2 to define
a data collection strategy for inclusion in the traceability process. The data
from JIRA, e.g., the average number of tickets per sprint, can be automatically
obtained from the JIRA system. We agreed that data that had to be elicited
from stakeholders, e.g., developers and the product owner, will be collected by
the BA.

7.5.5 Step 7: Select and customize tool

To select a suitable tool that will support the defined traceability strategy, we
considered the existing development process, the tools used in the company, the
TIM and the traceability process defined for the company. The tools used in the
development process are depicted in Table 7.6. We also considered additional
tool-specific requirements. For instance, it was important to the BA to have tool
support in terms of notifications when artifacts evolve, so that he can update
the respective trace links. The BA also wanted the developers to have as little
change as possible in their tooling. One additional but important requirement
from the company was to use an open source tool that would require little
customization, because the change was driven by the BA’s interest and had no
budget for acquiring a commercial tool. This also means that knowledge on how
to customize the tool needs to be available. We used the tool categorization
defined in [261] where the authors have analyzed 23 existing traceability tools,
to select a tool to use. This categorisation evaluates the traceability tools using
six main characteristics: 1) information storage, which describes where the tool
stores the trace links; 2) level of integration, which describes whether the tool
is a holistic tool supporting all software engineering activities or a standalone
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Table 7.5: Characteristics used to assess the tool and possible values.
Characteristic Possible value

Information storage Centralised, Distributed, Separate Model, Inline
Level of integration Holistic, Hybrid, Separate
Tool type Application Lifecycle Management (ALM), Require-

ments Management, Standalone traceability tool, In-
tegration tool, Special purpose tool, Link recovery
tool

Integration context Tool-chain specific, Framework, Generic
Configuration
options

Traceability Information Model, Artifact adapters,
Visualisation

Automation Link generation, Consistency checking, Workflow en-
forcement

traceability tool; 3) Tool type, which describes if the tool has a specific purpose
e.g., requirements management; 4) integration context which describes which
other tools the traceability tool can be integrated with; 5) configuration options
which describe which parts of the tool are customisable; and 6) automation
which describes which trace activities the tool automates. Table 7.5 shows the
six characteristics and possible values. We disregarded commercial tools and
remained with five tools whose categorisation is shown in Table 7.7.

Based on the tool assessment and the requirements from the company,
we selected Eclipse Capra [69] due to the following reasons: 1) it allows the
definition of a custom TIM; 2) it can be extended to support additional artifact
formats; 3) the visualization can be customized; 4) it supports link maintenance
through notifications; and 5) the researchers have the knowledge needed to
customize it.

Table 7.6: Development artifacts and tools at the company.
Artifact Tool

Requirements and Copy Google Drive (Spreadsheets)
Change sets PDF
Tickets Jira
Customer content Media wiki
Models Papyrus
Code and Tests Git (PHP code)
Wireframes Axure (exported as PNG)

The fact that the researchers are familiar with the customisation of the tool
was probably the most relevant. Since Eclipse Capra is based on the popular
Eclipse IDE6, it requires the use of this development environment. Additionally,
both the BA and the LD had prior experience with using tools based on the
Eclipse IDE. However, the company did not use Eclipse at this point in time.
This meant that a rather heavy-weight new tool had to be integrated into the

6http://www.eclipse.org
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development tool-chain. A traceability plug-in for JIRA, e.g., would have had
less impact on the tool-chain. However, a plug-in that fulfilled the requirements
of the company and allowed achieving the traceability tools was not available.
In the end, the willingness of the BA and the lead developer to adopt a new
tool that would also allow them to work with the UML models of the software
(see below), the fact that Eclipse Capra could be adapted quickly and without
additional cost, and that work with Eclipse would be limited to the BA and the
lead developer while the rest of the team would only use the results, trumped
the concern of introducing a new tool.

In order to support the new traceability process at the company, the
traceability management tool Eclipse Capra was customized in three ways: 1)
the company-specific TIM from Step 3 was created and incorporated in the
tool; 2) two artifact adapters were implemented, one to support linking to and
from requirements in Google spreadsheets and one to support linking to and
from PHP code; and 3) the visualization of the tool was customized to include
direction of the links and to allow filtering based on selected tickets. Overall,
this customization took around 3 weeks where one student developer from the
university worked on creating the adapter to link to Google spreadsheets and
one researcher spend some hours on the rest of the customization.

To use the tool, the BA or the lead developer would import the artifacts
into an Eclipse workspace and create the links between them. The links can
be shared using a git repository so that it is available to both the BA and the
lead developer. After the links are created, the tool can automatically generate
a graphical representation of how the artifacts are related to each other. For
each ticket, such a graph is uploaded by the BA in the bug tracking system
JIRA so that the developers have a clear understanding of the relationships
between the different artifacts concerning the ticket. To maintain the links,
the tool has a notification feature that shows warnings on artifacts that have
changed and are associated with trace links. The responsible person can thus
check if the trace links need to be updated as well.

7.5.6 Step 8: Deploy process and tool
The deployment was scheduled to take place during one week. During that week,
the two researchers were present full time at the company. The schedule (which
can be found on page 18 of the online appendix7) was created in collaboration
with the BA and the BA communicated this to his team. On the first day, the
researchers were introduced at the company and explained the purpose of the
visit during the morning stand-up meeting. Since this was communicated to
the development team before our arrival, it was brief. Additionally, since only
the BA and lead developers were going to be working with the traceability tool
and the rest of the developers would only use the images in the JIRA tickets,
the development team required no training on the tool but only information
on how to use the links.

7https://tinyurl.com/y6dmd8u9
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Table 7.7: Assessment of traceability tools [261].
Name License Type Information

Storage
Level of in-
tegration

Integration
context

Configuration
options

Automation

Tarski EPL Standalone Separate
model

Separate Framework
(Eclipse)

TIM Link genera-
tion

Eclipse
Capra

EPL Standalone Separate
model

Separate Framework
(Eclipse)

TIM,
Adapters,
Reporting

Consistency
checks

RecCycle EPL Requirements
Management

Separate
model

Hybrid Framework
(Eclipse)

TIM None

OpenTrace AGPL Link recovery Inline Separate Tool-chain
specific
(GATE)

Reporting Link genera-
tion

OpenCert OSS Special Pur-
pose (Safety
certification)

Centralised Hybrid Framework
(Eclipse)

Reporting Unknown
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After setting up the tool, an initial workshop with the researchers, the BA
and the lead developer was conducted. This revealed an important aspect:
some projects only had requirements, tickets, source code and tests, but were
missing design models. We had two options to solve this challenge: 1) to add
support in the TIM to link tickets to code; or 2) to create the missing design
models. The BA and lead developer decided to create the missing design models
since one of the best practices for the company is to have such models for all
projects in order to facilitate comprehension of the system without referring to
code. Enforcing this best practice through the TIM ensures consistency and
adds an additional incentive for the company to maintain the design models.

In order to reduce the effort of creating the models, we reverse-engineered
the current source code and created a UML model and relevant diagrams using
the existing PHP code and BOUML [264]. The resulting UML models were
imported into Papyrus8 and thus became viewable and editable within Eclipse.

Once the development artifacts were in place, the BA selected one project
to work on. For this project baseline metrics were noted down so that they can
be used for comparison later on. Using Eclipse Capra, the BA imported all the
artifacts relevant to the project, i.e., requirements, design models, code, and
tests and created four types of links: 1) from requirements defined in Google
spreadsheets to tickets in JIRA; 2) from requirements to model elements in
UML; 3) from model elements to implementation code written in PHP; and 4)
from implementation to tests which were also written in PHP.

At the end of the first day, the two researchers and the BA had a meeting
to discuss if the process and the resulting links are sufficient. As shown in
Figure 7.5, all the links were from requirements to other artifacts, including
tickets. However, the developers use tickets and not the requirements during
the sprints. The developers therefore needed to know which artifacts are related
to a single ticket and not necessarily to the whole requirement. We therefore
modified the TIM and made it “ticket-centric”. This is depicted in Figure 7.6,
where a requirement is linked to a ticket and the rest of the development
artifacts are linked from a ticket. While the deployed TIM was already assessed
using the scenarios in a “dry run" manner in step 5, the need for this change
was only visible once the tool was deployed and actual trace links were created.

From day two to day five, the BA continued to create the links while the re-
searchers were present to fix any issues that arise. The researchers also observed
how the team worked and conducted interviews and focus group meetings with
the team members as a first step towards evaluating the traceability process.
Details on evaluation are given in Section 7.5.7.

7.5.7 Step 9: Evaluate process and tool

For an initial evaluation during the deployment stage, we used focus groups
and interviews with the members of the development team to evaluate both the
process and tool. The evaluation started on the second day of the deployment
week. During the stand-up meeting, the business analyst showed examples of
the links to the team and asked them for feedback. The researchers took note
of the feedback from the team and met with the business analyst afterwards to
discuss the needed changes. The developers explained that the links were too

8https://www.eclipse.org/papyrus/
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Figure 7.6: Evolved traceability information model. Links shown as dotted
lines are captured in JIRA. Note that all development artifacts are now linked
via the Ticket and the roadmap has been removed.

fine grained and that they preferred links on a higher level of granularity, for
instance to link to the class and not to the method in the PHP code. Based
on the evaluation of day one and two, we made changes to the TIM and the
granularity of the links. To further evaluate the deployed process and tool, we
also interviewed the product owner, in order to get his opinion on the process
and the links that were created by the BA. We used an interview guide that
we defined and made available online9. Additionally, we conducted a focus
group meeting with the BA, two front-end developers and the lead developer
to discuss and prioritise the previously elicited goals and how the new process
would help achieve them. Based on the feedback collected from the interview
with the product owner and focus group, we further customized the tool and
provided a new version to the company. The changes made to the tool were
mainly bug fixes. Early evaluation helped us tailor the process and tool, as
exemplified by how the TIM evolved.

For the later evaluation steps, we used the metrics defined in Steps 1 and 2
of TracIMo. After two weeks, we conducted an interview with the BA via Skype
to discuss how the links were used, which qualitative short-term benefits were
evident, and if the company was facing any issues with the process or the tool.
Five months after the pilot deployment, we conducted two additional interviews,
one with the business analyst and one with a developer. These interviews
investigated the benefits and challenges brought by the new traceability process.
All the interviews were recorded, transcribed and analysed. Evaluation after
several sprints enabled us to elicit short-term benefits of traceability. We also
collected quantitative data from JIRA tickets. From January 2017 to May
2017, we collected data for 134 tickets, associated with four projects. After

9https://tinyurl.com/y3n96ldq
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the introduction of traceability, we collected data for 17 tickets in which trace
links were used associated with the same projects. Since the sample size of the
latter tickets is small, we do not perform statistical analysis. However, we use
the data to indicate trends. We identified the following benefits:

Estimation of tasks One of the challenges at the company was difficulty in
estimating how much effort a task will need. In the interviews, the business
analyst and one developer reported that the links embedded in the tickets
made task estimation easier and more accurate since the developers could now
not only see how many elements are associated with the tickets, but also which
elements these are (e.g., classes, methods, tests, etc.).

Additionally, the developer reported improved estimation especially for tasks
that affect third-party libraries, as such dependencies were not visible without
the trace links. Table 7.8 shows that the number of incorrectly estimated
tickets slightly decreased for three projects (A, B and C) after the introduction
of traceability. With support from the qualitative data from the interviews,
this is an indication that Traceability Goal 3 is met by the current traceability
process. However, we will need to collect more data to be able to quantify this
improvement.

Task Understandability The developer reported that the traceability graph
embedded in the ticket makes tasks more understandable. The traceability
graph is beneficial for novice developers, as they can see which artifacts are
affected by the task and how these artifacts are connected:

“The advantage [of the new traceability approach] is, you can see which part
of the system or the communication between the models and some parts of your
code [are related to the task]. So it is some kind of visualization and makes it
easy to understand." – [Developer]

Trace links to the requirements help developers understand the rationale
of the different tasks. Our metrics from JIRA show the number of comments
decreased after the introduction of traceability (cf. Table 7.8). A further
analysis of these comments showed a decrease in the number of comments that
suggested changes to the tickets or discussed dependency issues, indicating that
developers understand the tasks and do not have to discuss them further. This
is in line with Traceability Goals 2, 4 and 5. However, as previously mentioned,
more data is needed to confirm this.

Detecting missing artifacts Through the links, the development team
was able to identify missing artifacts. This was reported by the BA after a
sprint planning meeting. If a ticket is, e.g., linked to a model element and this
model element to implementation but not to tests, the latter are missing. The
developers still have to investigate whether the tests were required or not but
this investigation is simplified since the relevant elements are already identified.

7.5.8 Step 10: Anchor process and tool
The traceability strategy and tool needs to be anchored at the company. After
the pilot study, the company needed to define how this new strategy will be
adopted by all the development projects at the company. While this anchoring
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Table 7.8: Selected metrics from the JIRA Ticketing system before and after
the introduction of traceability.

Project Total
no. of
tickets
before

Total
no. of
tickets
after

Wrong
esti-
mates
before

Wrong
esti-
mates
after

No. of
com-
ments
before

No. of
com-
ments
after

A 10 2 2 0 6 0
B 5 5 2 1 13 1
C 117 9 25 1 124 6
D 2 1 0 1 1 0

step is very important to ensure long-term benefits of traceability in the
company and to develop the capabilities within the organisation, we could
unfortunately not follow this process to its conclusion since the company was
acquired and there was a change of personnel which hindered the progress of
the project.

7.6 Discussion
In this section, we discuss the results of the study with respect to the research
question stated in Section 7.1:

RQ: How can traceability be established to achieve the goals of the organisation
and yield a measurable impact?

There are two parts to the research question: the first part is about how
to design a traceability strategy and the second part is about ensuring that
the designed strategy yields measurable benefits. We designed TracIMo which
guarantees both. In this section we discuss key points w.r.t. to designing a
traceability strategy in Section 7.6.1 and measuring the impact in Section 7.6.2.
Additionally, we encountered several challenges as a result of the traceability
strategy we designed. These challenges are discussed in Section 7.6.3.

7.6.1 Designing a tailored traceability strategy
The study proposes a methodology to define a traceability strategy for software
development organisations. The steps in this methodology (cf. Figure 7.2)
are geared towards analyzing the needs of the company and making sure
that the specific traceability strategy is tailored accordingly, regardless of the
development process used. Steps 1 to 5 of the framework have already been
shown to be effective in practice [246] for assessing traceability strategies. We
extended these steps and added steps 6 to 10 to allow us to define and refine a
traceability strategy for a development team that is used in practice.

A particular strength of the proposed method is the alignment between the
process goals and the traceability goals. By using GQM [84], an established
technique from software process improvement, we were able to achieve both
aspects. As shown in Tables 7.5.2 and 7.4, this thorough analysis allowed us
to define a traceability information model that is specific for the company.
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It also ensured the traceability goals and process goals are compatible. In
communicating with the company, the clearly defined goals also allowed us
to discuss the scope of the changes and what is realistically achievable with
traceability and gave us a way to evaluate the defined traceability strategy.

We also exploited GQM’s strengths by defining metrics that allowed us
to measure the benefits of traceability. Each goal was associated with a
number of metrics. For some of them, data was collected as a baseline before
the introduction of traceability. Compared with data after traceability was
introduced, advantages could be identified as shown in Table 7.8.

The iterations built into phase 2 of the method also proved helpful. This is
particularly evident in the evolution of the traceability information model. We
discovered the issues with the TIM only through deployment and evaluation of
traceability in practice. Since the method was iterative and a second iteration
was planned for the time the researchers were present at the company, the
issues could be quickly addressed.

Using TracIMo, we were able to design a tailored traceability strategy that
fits the company’s agile team needs. Several studies discuss traceability for plan-
driven development processes (e.g. [7, 17, 58]), where traceability is focused on
development artifacts that are assumed to be persisted and maintained over the
development life-cycle. Traceability is therefore a requirements-centered activity
where links are created from requirements to other development artifacts like
design models and code [14,108]. In this agile context, however, the development
is driven by the tickets rather than the requirements. Even though tickets are
derived from requirements, developers are used to dealing with tickets. The
lifetime of a ticket is the sprint(s) where it is worked on. When a ticket is
marked as done, developers do not look at it again. We believe this is the
case for many agile projects [265]. We tailored the traceability process to the
development process of the company by defining a ticket-centric traceability
strategy. As shown in Figure 7.6, tickets are linked to development artifacts
such as requirements, design models and transitively to code and tests. This
means that the links created are specific to a specific ticket. The advantage of
this task-centric traceability approach is that it allows for incremental creation
of links in situations where links are created retrospectively. However, as the
trace model grows, filtering mechanisms are needed since existing links between
development artifacts which were created with previous tickets may not be
relevant for current tickets. In our case, we implemented a filtering mechanism
that allowed the BA to filter out unnecessary links before attaching the trace
links graph in the tickets.

7.6.2 Measuring the impact of the traceability strategy

From the interviews and our measurements, we gathered qualitative and quan-
titative data to support three benefits: 1) improvement in effort estimation, 2)
improvement in task understandability and 3) improvement in identification of
missing artifacts, as reported in Section 7.5.

As discussed in [30], defining traceability goals and ensuring that a company
captures the information required to fulfill these goals is a first step towards
ensuring the return on investment (RoI) of traceability. We observed in our
case that the benefits we elicited are due to Goal 2 (improve visibility of
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decision rationale), Goal 3 (improve accuracy of effort estimation), Goals 4 and
5 (increase efficiency of identifying artifacts relevant to a change). While the
designed TIM and process are aimed to fulfill all goals, further evaluation is
needed to elicit the benefits of Goals 1, 6 and 7.

Having said this, one of the major challenges of traceability is the inability
to measure its RoI [8,19]. This is because the benefits of traceability require
time to manifest and may be affected by other factors such as the type of
project and employee turnover [30]. It is also difficult to determine the entire
cost of traceability in the development life-cycle [19]. One of our long-term
goals was to investigate the RoI of traceability for the company, however, due
to organisational changes that occurred at the company, this data collection is
no longer possible. While it is possible to quantify the amount of effort invested
to design the traceability strategy, deploy the strategy at the company and the
average amount of time it takes the BA to create links, even with these kinds
of measurements, it is difficult to quantify the RoI after a short time. It was
only possible to observe perceived benefits in a qualitative manner using the
follow-up interviews.

To make sure that the amount of time invested in applying TracIMo is
manageable, we provide our recommendations on how to effectively apply
TracIMo in Section 7.6.4.

7.6.3 Challenges of traceability
We encountered five challenges as well as important decisions that needed to
be made during the design of the traceability strategy:

[a] trace link granularity;

[b] scope of the trace links;

[c] the need for intermediate artifacts;

[d] time required to create links; and

[e] adoption of the traceability process.

While these challenges are not new to the research community, we discuss
how we encountered them and dealt with them in order to provide more
practical insights for both practitioners and researchers.

Trace link granularity Several studies (e.g., [82, 118, 123]) report that it
is difficult for companies to know the right level of granularity for the trace
links. In our study we also encountered this challenge. This was especially
tricky for design artifacts (models) and implementation artifacts (code). During
the first day of deployment, links were created as fine-grained as possible. A
ticket was, e.g., linked to a specific UML attribute in a UML class and to
a specific PHP method in a PHP class. The feedback from developers was
that there were too many links, making the traceability graph difficult to
understand. The development team suggested to use more coarse-grained links
on the class level for both the models and the code. However, in the follow-up
interview, the BA reported that there are still tickets for which it makes sense
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to create links to detailed design and implementation. We thus decided that
the granularity of the links will be determined by the granularity of the ticket.
If the ticket contains low-level implementation details, then it will be linked
to detailed implementation and design and vice versa. As a rule of thumb,
the granularity between the connected artifacts should match [123]. As a
consequence, traceability tools and the TIM should provide support for linking
to different levels of granularity so that users are flexible.

Scope of trace links While links are created with respect to specific tickets,
the traceability graph for a certain model element shows all existing links. If
ticket A is, e.g., linked to model element B, but model element B was previously
linked to ticket C, the developers see all this information in the traceability
graph. This can be confusing as the developer is only interested in links to the
ticket she is working on. To overcome this challenge, we developed filtering
mechanisms that limit the links to those related to the ticket. This was done by
making sure that the traceability graph contains links only to a selected ticket.
While this solution worked for the company, more sophisticated solutions exist.
For instance, the traceability tool Yakindu Traceability [266] provides a query
language that can be used to query the trace model depending on what links
the user is interested in. Additionally research to process unstructured natural
language trace queries [267] and visual trace queries [268] also exist.

Introduction of intermediate development artifacts for traceability
purposes As described in Section 7.5, supporting the traceability goals and
using the TIM as intended required to introduce UML models of the current
software in some projects. As a consequence, the BA now needs to introduce
new model elements that are necessary to fulfill a requirement. This is necessary
to show the new elements in the traceability graphs. The company will thus
make the models the gold-standard and introduce new elements in the model
before they are implemented. A potential drawback of this approach is that
model and source code might get out of sync and therefore the model will not
be used. To solve this, notification mechanisms need to be put in place to
notify the BA of new classes that do not exist in the model. Such mechanisms
could automatically detect changes in the source code and send a summary of
these to the BA to incorporate corresponding changes in the UML model.

In more general terms, achieving traceability goals might make it necessary
to create new types of artifacts that need to be maintained and integrated
into the process. This can be costly and might require additional changes to
roles, activities, and processes. In the case of the organisation, using a UML
model of the entire software was considered best practice, so that the creation
of the full UML model was considered a positive side aspect. In other cases,
however, the introduction of new development artifacts can be a liability and
the overall cost of introducing models into a development process is very hard
to estimate [269].

Time taken to create links Creating trace links in retrospect when plenty
of development artifacts already exist is a time consuming task. For instance,
we measured that it took the BA approximately 30 minutes to create seven
links to one ticket, which means an average of 4.2 minutes to create one link.
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Note that this time involves the time to decide on what needs to be linked
and to locate the artifacts to be linked. This is a well known traceability
problem [14]. There is research on automation of this process (e.g., [21,25,226])
but the resulting links are not 100% correct and have to be checked manually,
which is also a time consuming task especially if the tool produces many false
positives [220]. Since trace links are created for specific tickets in this case, the
BA does not need to create all links at once. It is sufficient if the developers
have links for the tasks they are working on in a particular sprint. This means
that the task of creating links can be performed incrementally and is therefore
manageable for the BA.

Adoption of the traceability process We faced some resistance by the
lead developer who did not make time for creating or using trace links. This
is because the lead developer had a lot of experience in the system. Even
though in the interview he showed an interest in traceability, he did not have
an immediate need for trace links and therefore was not motivated to create
them. He was not the main beneficiary of the trace links, either, but still
one of the best candidates to create the links due to his experience in the
system. Resistance to change is a well known challenge in change management
literature [270]. Specifically for traceability, the creators of the links are usually
not the ones who benefit the most since they already know the system well [82].
This serves as a reminder that for each change introduced in a company, it
is crucial to make sure that all people who will be affected are involved in
the change. It is also important to ensure that all the involved stakeholders
understand clearly what the change is and how they will benefit from it.

7.6.4 Reflections on applying TracIMo
In this section, we give our reflections on the experience of applying TracIMo
to the company. Since TracIMo consists of ten steps and may seem like a heavy
weight approach, we give the following four recommendations on how it can be
applied effectively.

Carry out several steps at the same time. While TracIMo consists of
ten distinct steps, in a realistic setting, some of these steps can be carried out
together in order to leverage the synergies between them. For instance, Steps 1
and 2 both use data from the development process and can be carried out
together. The same is true for Steps 3 and 5.

Choose the right roles Applying TracIMo in a company requires data from
different roles. It is important to choose these roles with care in the beginning in
order to reduce the number of iterations needed to design a working traceability
strategy. For instance, in our case, we had the BA as the main point of contact.
However, we also interviewed developers and product owners in order to get
the full picture at the company. In cases where TracIMo will be used without
the help of researchers (which is what we envision), an experienced person
with a senior/managerial role at the company with intimate knowledge of the
development process as well as the developed product should take the lead in
conducting the steps. This has the advantage that the person already has a lot
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of information required by TracIMo and will thus reduce the time needed to
perform some of the steps that require data collection. Care has to be taken,
though, that all stakeholders are included and implicit biases do not yield an
unsuitable traceability strategy.

Define metrics based on available data TracIMo requires the definition of
metrics in order to measure how the defined traceability strategy is performing.
It may be tempting to define metrics whose data is not yet available and for
which systematic measurements need to be established. While these metrics
may prove useful, this is recommended if and only if there is no alternative data
available that can be used to measure that particular aspect. We recommend
to define metrics that use already available data in the development process, or
data that can be automatically collected to reduce the amount of effort needed
in data collection.

Mind the level of formality For steps that require documentation, TracIMo
gives recommendations on which notations are available. For instance when
defining the traceability process, on one end of the spectrum, it is possible to
use a formal language such as SPEM and on the other end, one can use wikis
to document the process. In a realistic setting, we recommend that the level of
formality matches with what is expected in the organisation. For example if
an organisation follows agile principles where there is a need for little docu-
mentation, the traceability strategy can be lightly documented. However, if a
company is in a safety critical domain and requires the process to be formally
documented, a formal language can be used. This is to ensure that the amount
of effort spent on defining the traceability strategy is minimized.

7.7 Threats to Validity

In this section we describe the limitations of our study first with respect to the
design of TracIMo and second with respect to how TracIMo was evaluated.

To design TracIMo, we modified and extended the steps in Rempel et
al.’s [246] methodology and added our own. When reasoning about which
steps are needed, our aim was to make sure that we cover all the steps needed
to design, implement and evaluate a traceability strategy. To verify that the
methodology makes sense we used a number of brainstorming sessions with
the researchers and the BA from the company. As such, there is a chance that
the methodology may be lacking some steps that are specific to other contexts.
The company we conducted the study with is small, has one small development
team and uses agile development methodologies in their development process.
Therefore, TracIMo needs to be applied in other contexts to verify both it’s
applicability and generalizability.

With respect to evaluation of TracIMo, we used a case study in our design
science cycle where we designed a traceability strategy using TracIMo at a
company. There a number of threats to validity applicable to the case study
which are discussed below using the categories defined by Runeson and Höst [64].
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Construct validity Construct validity aims to verify that the concepts that
are researched are understood by subjects of the research. To evaluate the
designed traceability strategy, we had multiple interviews and focus groups after
the introduction of traceability. To make sure that the interviewees understood
the concepts we were researching we introduced the topic of traceability to
all respondents before the interview and gave examples. We also performed
member checking with the BA to verify the data from the interviews.

Internal validity Internal validity is relevant when a causal relationship is
investigated. The immediate benefits of traceability constitute such a causal
relationship. Researchers have to make sure that there are no other factors that
could affect this investigated relationship. While there were several speculated
benefits, we only reported benefits where other influencing factors could be
excluded. Additionally, during the study, the company went through several
changes: 1) a change in the development process (from an isolated development
team to a cross cutting development team); 2) a merger with another company;
and 3) one of the developers left the company. While we continued the study
according to the planned methodology, the changes in the company may have
an effect on our results, especially since developers had less time to work
with the links during the merger. This also led to less data being available
for quantitative evaluation. Additionally, the lead developer was reluctant
to create trace links. We attribute this to the fact that he already knew the
system well and thought that trace links would not be useful for him but only
for the other developers.

External validity External validity refers to how the results of the study
can be generalized. Since we evaluated the methodology with one case study
in one company, the particularities of this company might have been conducive
to the application of TracIMo. We believe that the steps in TracIMo are
generic enough and independent of the context, however, further case studies
are needed to verify this. The results, however, including the process and
traceability goals, the TIM supporting these goals, and the concrete steps in
the process are specific to the case company. Since design science is an iterative
process, we believe additional validation in other organisations is thus needed
to conclusively proof TracIMo’s generalizability.

Reliability This validity threats refers to whether the study is repeatable.
We have documented our case study process as much as possible. For instance,
our interview guide10 and the detailed description of the case study11 are also
available online. This is to ensure that other researchers who want to repeat the
study have all the materials they need and to allow practitioners to use TracIMo
as a basis for defining a tailored traceability strategy for their organisation.

10https://tinyurl.com/y3n96ldq
11https://tinyurl.com/y6dmd8u9
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7.8 Conclusions and Future Work
This paper presents TracIMo, a methodology to systematically design and
introduce a traceability strategy in companies. It describes the different steps in
the methodology and demonstrates how this can be applied in practice through
an industrial case study. While TracIMo can be used to introduce traceability
in development companies employing different development processes, we
conducted our study with an agile development team. This led to the creation of
a “ticket-centric” and incremental traceability strategy can be used to effectively
create trace links in retrospect.

Our study also revealed a number of benefits of traceability which can
serve as an encouragement to companies thinking about adopting traceability.
The main takeaway is that, in order to gain benefits from traceability, it is
crucial to define specific traceability goals upfront, and design a traceability
strategy that will enable the development team to reach these goals. This
requires tailoring the traceability information model and the traceability tool
and deriving metrics that to measure how the goals have been fulfilled.

While we encountered several challenges and have proposed solutions for
these challenges, further validation of these solutions is needed. As part of
our future work, we plan to further evaluate the benefits of traceability in
order to elicit long term benefits of our approach and devise strategies to
quantitatively measure the return on investment of traceability, from the set of
metrics derived. Additionally, since TracIMo was only evaluated in one case, we
plan to replicate the study with other companies to further check the feasibility
of the methodology.
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