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The Tilling of Land in a Changing Climate: Panel Data  

Evidence from the Nile Basin of Ethiopia 

Hailemariam Teklewold and Alemu Mekonnen 

Abstract 

Empirical studies point to reduced tillage as a means to increase yields and reverse land 

degradation. A relatively neglected avenue of research concerns why farmers increase tillage 

frequencies. Using household plot–level panel data from the Nile Basin of Ethiopia, this article applies a 

random effects ordered probit endogenous switching regression model to empirically investigate the 

impact of weather events and other conditioning factors on farmers’ choice of tillage intensity and the 

effect of changing tillage frequencies on differences in farm returns. Results indicate that, while low-

frequency tillage is more likely in drier areas, plot-level shocks (such as pests and diseases) are key 

variables in the choice of high-frequency tillage. Adoption of a low-till approach leads to increasing 

farm returns in low-moisture areas but high-frequency tillage provides higher returns in high-rainfall 

areas. Understanding how farmers’ tillage options correlate with climatic conditions and farm 

economies is salient for developing effective adaptation and mitigation plans. 
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The Tilling of Land in a Changing Climate: Panel Data 

Evidence from the Nile Basin of Ethiopia 

Hailemariam Teklewold and Alemu Mekonnen 

1. Introduction 

Soil tillage has long been one of the key components of smallholder farming 

systems, although reduced or zero tillage is being increasingly promoted as part of 

conservation agriculture as a sustainable agricultural practice (Ding et al. 2009; Kassie et 

al. 2015; Teklewold et al. 2013). Conventional tillage, which uses the traditional ox-plow 

with subsequent repeated tillage, is aimed at loosening the soil, controlling weeds and 

enhancing the penetration of moisture deep into the soil (Temesgen et al. 2008). 

However, there is a great concern that excessive tillage is a leading cause of high levels 

of surface runoff and soil erosion from arable fields, contributing to losses of soil and 

water, plant nutrients and organic matter (Hoogmoed et al. 2004). Soil erosion by water 

or wind due to intensive cultivation, deforestation and overgrazing represents the most 

important soil degradation process and affects more than 1 billion hectares globally (FAO 

2003). A similar soil degradation trend, with annual levels ranging from 16 to over 300 

ton per hectare, is observed in Ethiopia (Tesfaye et al. 2014). Intensive tillage also tends 

to engender accelerated oxidative breakdown of organic matter, with accelerated release 

of increased volumes of CO2 to the atmosphere, which have the potential to contribute to 

greenhouse gas emission (Lal et al. 1998; Kassam et al. 2009). IPCC (2001) reported that 

land use and land cover change and agricultural practices contribute about 20 percent of 

the global annual emission of carbon dioxide. 

The agricultural and resource management literature has thoroughly documented 

the biophysical benefits of a minimum tillage system, a key component of conservation 

                                                 
 Hailemariam Teklewold, hamtekbel@yahoo.com, Environment and Climate Research Center, Ethiopian 
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agriculture.1 With its capacity for moisture conservation, reduced tillage is an important 

climate change adaptation strategy that farmers can use as a means to increase crop-water 

use efficiency to stabilize the variability of yield which is particularly important in dry 

land farming (Ding et al. 2009; McCarthy et al. 2011; El-Shater et al. 2016; Grabowski et 

al. 2016). Less frequent tilling promotes the sequestration of carbon in agricultural soils, 

leading to improved soil organic carbon and subsequently promoting soil fertility and 

enhancing yields (Wilman 2011).  

The synergies between adaptation and mitigation due to reduced tillage are 

attractive because they offer the chance to make more efficient use of limited resources 

for reducing the effect of climate damage. Low-tillage agriculture offers mitigation 

potential by increasing the ability of soil to store carbon while simultaneously enriching 

the soil (Paustion et al. 1995). A similar study found that, under sub-tropical conditions, 

zero-tillage increases soil carbon from 0.1 to 0.7 metric tons per hectare per year. Lal 

(2004) also shows that the carbon equivalent (CE) emissions for different tillage methods 

are 35.3 kg CE/ha for the conventional till method of seedbed preparation and 7.9 kg 

CE/ha for minimum till. 

Despite the aforementioned benefits, uptake of reduced tillage by smallholder 

farmers in developing countries remains sluggish and a number of important constraints 

to widespread adoption have been highlighted (Kassam et al. 2009; Andersson and 

D’Souza 2013; Tessema et al. 2015; Grabowski et al. 2016; Ngoma et al. 2016). There is 

also growing evidence that the benefits from conservation agriculture come from the 

interaction of reduced tillage with mulching and crop rotations (Thierfelder et al. 2013). 

However, in a situation where there are various market imperfections and institutional 

failures, competition for resources among alternative uses in the crop-livestock mixed 

farming system is an important factor limiting the diffusion of conservation agriculture, 

through constraining on-farm labor use and retention of crop residue (Valbuena et al. 

2009; Magnan et al. 2011; Baudron et al. 2014; Tessema et al. 2015). Specifically, 

farmers have to make trade-offs between using crop residue for soil mulching and 

livestock feeding. 

                                                 
1 Conservation agriculture, constituting a set of principles such as reduced tillage with minimum soil 

disturbance, permanent soil cover through retention of crop residues, and crop diversification, has been 

promoted as an important resource management strategy to sustainably increase crop yields and alleviate 

land degradation problems (FAO 2014). 
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In many parts of the developing world, conventional tillage in smallholder 

farming systems typically includes a sequence of soil plowings, from 2 to 12 passes, to 

get a fine seedbed for ease of crop germination (Hobbs and Gupta 2003; Mouazen et al. 

2007) and as a means of weed control, both before and after the crop has emerged, which 

allows for higher farm productivity (Hobbs et al. 2008; Givens et al. 2009). For instance, 

in Ethiopia, wheat and teff2 farm land is prepared by ox-plow three to five times before 

planting (Ito et al. 2006; Temesgen et al. 2008). Agronomic research results in Ethiopia 

also indicate that grain yield increased with an increasing number of plowings (IAR 

1998). While low tillage facilitates the intensification of crop production, due in part to 

reduced land preparation time, as well as reduced risk of soil erosion, low tillage also 

permits a greater accumulation of weeds, which increases labor demand for weeding or 

reliance on agro-chemical weed control (Chan and Pratley 1998; Uri 1998; Fuglie 1999; 

Knowler and Bradshaw 2007; Teklewold et al. 2013). 

A relatively neglected avenue of research concerns farmers’ actual options for 

tillage frequency, as well as short-term productivity differences due to repeated 

cultivation. Previous empirical studies have examined the determinants and impacts of 

reduced tillage, considering farmers’ tillage options to be limited to the dichotomous 

choice of whether or not to switch to a long-term no-till regime (Kassie et al. 2015; 

Kassie et al. 2010; Teklewold et al. 2013; Wilman 2011; Grabowski et al. 2016; Ngoma 

et al. 2016). While these studies concluded that reduced tillage increases farm 

productivity, they are imposing an a priori restriction that this effect is constant across 

the number of times that a farmer tills. To the best of our knowledge, empirical evidence 

on the heterogeneous effect of tillage frequency on farm economies is scarce, and 

discussions of the implications of such evidence are virtually non-existent. For this 

reason, our paper aims to fill this gap in the literature. In addition, despite the recent 

evidence that drought significantly increases the adoption of soil and water conservation 

systems (Asfaw et al. 2016), understanding the ways in which climatic conditions affect 

the intensity of tillage is badly lacking. Therefore, we wonder how household, farm and 

climate characteristics affect tillage frequency, and how the farm return is impacted due 

to differences in tillage frequency. By using an ordered selection equation instead of a 

binary selection equation, we are able to take into account the extra information available 

from observing tillage frequencies. Thus, instead of only correcting for systematic 

                                                 
2 Teff (Eragrostis tef) is a fine grain predominantly grown in Ethiopia. 
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differences between those who till and those who do not till, we also take into account 

unobserved differences among those who use different tillage intensities, to better 

understand individual farmers’ decisions and the impact of changing tillage on farm 

economies. 

In this paper, we address three methodological issues that have not received much 

attention in the literature. Firstly, from a data point of view, our analysis uses a 

comprehensive household and plot-level panel data set with detailed farm characteristics 

and rich socio-economic information, combined with a set of geo-referenced weather 

variation indicators. This helps us to control unobserved heterogeneity and to examine 

the role of various socio-economic, biophysical and weather variables in determining 

variation in the frequency of tillage among farmers, as well as the effect of tillage 

intensity on farm households’ income. Second, because land preparation is costly, 

farmers may decide to reduce frequency of land preparation in poor growing seasons. In 

other words, the data on farm outcomes could be non-random and estimation using 

ordinary least squares could be biased. Furthermore, we observe frequency of tillage, and 

thus a conventional sample selection approach is not applicable. We overcome this issue 

by using a recent development in econometrics – a random effects ordered probit 

endogenous switching regression – and extend the binary sample selection process (till or 

not till) to ordinal sample selection to control potential sample selection bias in multiple 

tillage options, in order to disentangle the effects of additional tillage (Bourguignon et al. 

2007). Third, the moisture-conserving effect of reduced tillage implies that weather 

variation is an additional driver determining tillage, given that farmers respond to the 

impacts of climate change on their production base and land management. Given the lack 

of evidence on the potential effects of increased frequency of extreme weather events on 

tillage intensities in the Sub-Saharan African countries at large, our detailed study of 

Ethiopia is important to account for its potential for climate change adaptation and 

mitigation for smallholder agriculture. 

2. Study Areas, Data Sources, and Sampling Procedure 

The current study is based on plot-household level data from the farm household 

survey conducted as part of the “Adaptation to Increase Resilience to Climate Change in 

Ethiopian Agriculture” project, which was implemented by the Environment and Climate 

Research Center at the Ethiopian Development Research Institute. The survey was 

conducted from March to May, in both 2013 and 2015. The target population is drawn 

from the five regions in the Blue Nile Basin of Ethiopia: Amhara, Oromia, Tigray, 



Environment for Development Teklewold and Mekonnen 

5 

Benshangul-Gumuz and the Southern Nations and Nationalities People’s (SNNP) Region. 

The basin covers about two-thirds of the country’s land mass and contributes nearly 40 

percent of its agricultural products and 45 percent of its surface water (Erkossa et al. 

2014). The areas selected represent different agro-ecological settings, with altitudes 

ranging from 800 to over 3000 meters above sea level. The farming system of the basin 

can be broadly categorized as a mixed crop-livestock farming system, where over 98 

percent of the area is covered by annual crops (Erkossa et al. 2014). We thus limit our 

analysis to the annual crop plots, where repeated plowing is common. 

The sampling frame considered the traditional typology of agro-ecological zones 

in the country. These are Dega (cool, humid, highlands), Weina-Dega (temperate, cool 

sub-humid, highlands), Kolla (warm, semi-arid lowlands), and Bereha (hot and hyper-

arid). The sampling frame selected woredas3 in such a way that each class in the sample 

matched the proportions for each class in the entire Nile basin. Accordingly, the survey 

was carried out in a total of twenty woredas from the five regional states (three from 

Tigray, three from Benshangul-Gumuz, six from Amhara, seven from Oromia, and one 

from SNNP). This resulted in a random selection of 50 farmers from each woreda and a 

total sample size of 1000 households. After cleaning inconsistent responses and attrition 

(due to people moving away or passing away), the sample for this study is composed of a 

total of 4365 farming plots for 929 farm households in 2013, while the follow-up survey 

in 2015 covers 921 households4. In both years, a structured questionnaire was prepared, 

and data were collected from household heads using trained and experienced enumerators 

with knowledge of the local language. 

As part of the household survey, we collected data on household characteristics, 

including asset endowments, quantity of livestock, crops produced, agricultural practices 

used, and methods and frequency of land preparation and other farming operations. 

Information was gathered on farmers' perceptions about farm characteristics, including 

slope, fertility and depth of the soil, and different types of plot-level shocks affecting crop 

production. The survey also recorded geo-referenced household-level latitude and 

longitude coordinates using hand-held Global Positioning System (GPS) devices, which 

                                                 
3 A woreda is an administrative division equivalent to a district. It is the third-tier administrative unit in 

Ethiopia, after region and zone. 

4 The attrition (less than 1%) is relatively small given the sample size. This is true attrition: either the 

household left the village or the respondent passed away.  
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allow for the linking of household-level data to historical temperature and precipitation 

data. 

3. Methodological Approach 

3.1. Conceptual Framework  

Building on the economic theory of the agricultural household model, this paper 

aims to examine the determinants of a household’s decision on tillage intensity and to 

quantify the effect of tillage frequency on farm returns. Conceptually, differences in farm 

income due to tillage are attributable to: 1) Observable differences in the characteristics 

of farm households with different tillage intensities. For example, farms having lower 

intensity of tillage tend to have good soil, and good soil is usually associated with higher 

farm productivity. 2) Unobservable self-selection. For example, people may choose 

higher intensity of tillage simply because they want to use less farm labor for weeding or 

get rid of excessive soil moisture, and they regard tillage as the proper method for doing 

so. Sorting out the relative importance of these factors helps us understand the 

implications of the rising trend of policy intervention favoring reduced tillage, as well as 

the associated complementary practices such as weed control packages. For example, if 

the productivity difference stems solely from self-selection, then the trend of intervention 

towards reduced tillage simply reflects the fact that more people are choosing to have 

higher productivity, suggesting that reduced till itself is not solely a reason for the rising 

of productivity. Conversely, if people with similar characteristics behave differently 

under different tillage intensities, then the rising trend of intervention towards reduced till 

may have a profound impact on farm productivity. 

Therefore, we propose a new panel data sample selection model for estimating the 

impact of tillage intensity of farm earnings through a comparison of net farm income 

from different tillage frequencies, where both the selection and the income equation 

contain individual effects, which are allowed to be correlated with the observable 

variables. 

3.2. Empirical Model 

We model farmers’ choice of tillage frequency and the outcome variable (net farm 

income per hectare) in a random effects ordered probit endogenous switching regression 

framework, based on a panel of farm-plot level data (Dubin and McFadden 1984; and 

Bourguignon et al. 2007). This framework has the advantage of evaluating the various 
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tillage frequencies and also captures self-selection bias (Mansur et al. 2008; Wu and 

Babcock 1998). The rationale behind the endogenous switching regression model is that 

the choice of tillage frequency may not be random; instead, farmers may endogenously 

self-select into tillage choice decisions, so decisions are likely to be influenced by 

unobservable characteristics (for example, expectation of yield gain from adoption, 

managerial skills, motivation) that may be correlated with the outcomes of interest. 

Tillage Frequency Choice Model 

In the first step, we model the choice of frequency of tillage using the random 

effect ordered probit model. In a multiple tillage setting, farmers are assumed to compare 

the expected utility under each number of tillings and choose the tillage intensity that 

provides the highest expected utility. The model involves a latent variable for tillage 

frequency function (h*). We assume that the thi  farm household ) ., . ,.1( Ni   decides to 

choose a number of tillings at time )T..., ,1t(  t   based on the maximization of an 

underlying utility function:  

itiit
*
it uzh  i = 1, . . .,N; t = 1, . . . , T  (1) 

Because the utility level of individual farmer *
ith  is unobserved, the observed level 

of tillage hit is assumed to be related to the latent variable *
ith  for ith = 1, 2, . . . J 

categories of tillage (McKelvey and Zavoina 1975). Furthermore, itz  are vectors of 

explanatory variables for the tillage frequency choice equation.  represents unknown 

parameter vectors to be estimated and   is a random individual-specific effect, which is 

possibly correlated with itz . itu  are unobserved disturbances, which are assumed to 

follow a normal distribution with mean zero and variances t,u  and are assumed to be 

uncorrelated with itz . 

Moreover, if the unobserved individual effects are correlated with the explanatory 

variables in the first step, then the random effects ordered probit may give inconsistent 

results. This is likely to be the case because unobserved individual effects (such as skills, 

motivation and social characteristics) are likely to influence the choice of tillage 

frequency. Our econometric approach exploits the panel nature of our data to control for 

this prospect, building on the correlated random effect estimation approaches originally 

developed by Mundlak (1978) and now widely applied to non-linear panel data 

estimation (see Wooldridge 2002).The correlated random-effects framework 

parameterizes the individual-specific effect in the selection equation (1) as a linear 

function of the mean of time-varying controls, as a proxy for removing the time-invariant 
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individual effects.5 This approach mimics the identification strategy of fixed-effects 

estimation that can be applied to nonlinear models.6 

Outcome Equations 

In the second step, the relationship between the outcome variable and a set of 

control variables X (plot, household and location characteristics) is estimated by a fixed 

effect model for the chosen tillage frequency. The outcome equation for each tillage 

category j  is given as: 

jxy itjjititj  ith if         
for j= 1, . . . , J  (2) 

where syitj '  is the outcome variable of the 
thi  farmer for tillage category j at time t and the 

error term )s'( itj  is distributed with 0)z,x(E itj   and 2
jitj )z,x(var  . itjy  is observed if 

and only if tillage j  is used. The error term it  comprises unobservable individual effects 

i  and idiosyncratic effect ite .  

For the selection bias, assume the error terms for the selection and outcome 

equations can be decomposed into an individual effect (   and  ) and an idiosyncratic 

effect ( ite  and itu ), where each error component is assumed to be normally distributed 

and correlated with the component of the same dimension as in the other equation. If the 

s'eit  and s'u it  are not independent, the OLS estimates in Equation (2) will be biased. A 

consistent estimation of 
j  requires inclusion of the selection correction terms of the 

alternative choices in (2). From the estimation results of Equation (1), we derive the 

Inverse Mills Ratio (IMR)7 variables that will be added as additional explanatory 

variables in the second-stage outcome equations. The second-stage equation of the 

multinomial endogenous switching regression in (2) is specified as: 

jxy itjitjjjititj  ith if       ˆ  for j= 1, . . . , J (3) 

                                                 
5 Discussion of the application of Mundlak (1978) to panel data selection models is found in Wooldridge 

(1995). Mundlak (1978) showed that, in linear panel data models, such a correlated random-effects strategy 

is identical to fixed-effects estimation. 

6 The result indicates that the null hypothesis (that all coefficients of the mean of plot-varying covariates 

are jointly statistically equal to zero) is rejected (Table 4). Hence, the result supports the presence of 

correlation between unobserved household fixed effects and observed covariates. 
7 The inverse Mill’s Ratio )( itj  is defined as the ratio between the standard normal probability 

distribution function and the standard normal cumulative distribution function evaluated at each itz  for 

itjh . 
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where 
j  is the parameter of coefficients for itj̂  showing the covariance between s   

and su .  

Self-selection models that are estimated in a two-stage procedure have been 

criticized for being sensitive to misspecification (Wu and Babcock 1998). The lack of 

identification is particularly a problem when variables affecting the choice decisions ( itz ) 

are the same as those affecting the subsequent outcome equations ( itx ). This is because, 

though the correction term )( itj  is non-linear, this may not be sufficient in some cases 

and may lead to problems of multicollinearity (Khanna 2001; Wu and Babcock 1998). 

Accordingly, to enable identification, we established a set of selection instruments 

hypothesized to directly affect the tillage frequency choice decisions but not the outcome 

variables. Examples include number of oxen owned and social capital (number of 

relatives in and outside the village, and number of groups of which the household is a 

member). These are included in the selection equations but not in the net farm income 

outcome equations. We conduct a simple post-estimation test to check the validity of the 

instruments. The results confirm that, in nearly all cases, these variables are jointly 

significant in the tillage choice equations but not in the net income regression equations. 

A simple correlation analysis between these instruments and the outcome variable also 

shows that there is insignificant correlation. 

Estimation of Average Effects of Tillage 

The average treatment effect on the treated (ATT) is the estimand that is most 

commonly of interest to obtain an unbiased estimate of the average effect of more rounds 

of tillage. The ATT answers the question of how the average outcome would change if 

everyone who used a lower tillage frequency had instead used a higher tillage frequency. 

We define low-till as zero or one tilling, and high-till as two or more rounds of tilling. 

In observational studies, where control over the assignment of the frequency of 

tillage is less likely, the tillage choice status is likely to be dependent on outcomes and 

thus a biased estimator of the average effect of tillage on the population. However, the 

ATT is used to compare the expected net farm income in the case of high-frequency 

tillers with the counterfactual income of low-frequency tillers. The expected net farm 

income under the actual and counterfactual hypothetical cases is computed as follows, by 

applying Equation (3): 

Average net income for actual high-frequency tillers: 

itjjjitjititj x)jh|y(E   (4) 
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Counterfactual net income if high-frequency tillers had decided to low till: 

itj11itjit1it x)jh|y(E 
 

(5) 

Equation (4) represents the expected outcome of high-frequency tillers that were 

actually observed in the sample, whereas Equation (5) denotes the counterfactual 

expected outcome if high-frequency tillers had opted for low-till. These expected values 

are used to compute unbiased estimates of the effects of tillage frequency. The average 

effect of tillage conditional on high-tillage users (the ATT) is defined as the difference 

between Equations (4) and (5): 

)()(x)jh|y(E)jh|y(ATT 1jitj1jitit1itititj   (6) 

4. Model Specification 

To select a comprehensive set of drivers that are known to affect farmers’ 

decisions on tillage frequency, we explore a rich set of literature on technology adoption 

(D’Souza et al. 1993; Fuglie 1999; Neill and Lee 2001; Arellanes and Lee 2003; 

Gebremedhin and Scott 2003; Lee 2005; Bandiera and Rasul 2006; Marenya and Barrett 

2007; Knowler and Bradshaw 2007; Ricker-Gilbert and Jayne 2009; Wollni et al. 2010; 

Kassie et al. 2010, 2011; Holden and Lunduka 2012; Arslan et al. 2013; Asfaw et al. 

2016). Based on these empirical works and economic theory, we have summarized 

household, plot, and climate variables in our empirical specifications. These include input 

and output market access, household composition, education, asset ownership (including 

livestock ownership), various sources of income, participation in credit and off-farm 

activities, social capital and networks (membership in formal and informal 

organizations), current shocks/stresses experienced in crop production, participation in 

extension services, type of crops produced, land tenure, temperature, intensity and 

variability of rainfall. A wide range of plot-specific attributes such as soil fertility, depth, 

slope, farm size in hectares, walking distance of plot from residence, and detailed 

agricultural practices are also considered in the empirical specification. Table 1 provides 

the definitions of the variables used in our analysis and the mean values for the entire 

sample for the 2013 and 2015 cropping seasons. Below, we focus on describing those 

variables that are not common in the adoption and impact literature. 

There has been relatively little research on the effects of climate and other farm-

related shocks (such as droughts, water-logging, untimely or uneven distribution of 

rainfall, and incidence of pests and diseases) on tillage. Climatic variables are included to 

show how differences in seasonal temperature and precipitation influence farmers’ choice 
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of combination of adaptation practices and the resulting farm income. Temperature and 

rainfall data for each parcel were interpolated from meteorological stations near the study 

areas over the years 2000-2014. The Thin Plate Spline method of spatial interpolation 

was used to impute the parcel-specific rainfall and temperature values using geo-

referenced information such as elevation, longitude and latitude.8 It is expected that 

higher temperatures and shortfall of rainfall increase the use of moisture-conserving 

practices such as reduced tillage. 

In addition, in order to identify heterogeneity in the monthly pattern of rainfall, 

we used Oliver’s (1980) Precipitation Concentration Index (PCI),9 analyzed at seasonal 

scale. This index is constructed for the major cropping season, April-September. The PCI 

value varies across the areas under study, ranging from values higher than 16 in Tigray to 

lower than 11 in Benshangul-Gumuz. This indicates a much higher concentration of 

growing season rainfall in Tigray than in Benshangul-Gumuz. Greater riskiness, shown in 

higher rainfall heterogeneity, is expected to increase the use of reduced tillage as an 

agricultural water management practice. 

It should be recognized that, in developing countries like Ethiopia, meteorological 

stations are sparse and hence reliable rainfall data at micro-level is scarce (Demeke et al. 

2011). Hence, in addition to the objective rainfall data, we also considered self-reported 

rainfall shocks. We followed Quisumbing (2003) to construct the subjective rainfall index 

based on respondents’ rainfall satisfaction in terms of timeliness, amount, and 

distribution. The individual rainfall index was constructed to measure the farm-specific 

experience related to rainfall in the preceding seasons, based on such questions as 

                                                 
8 The Thin Plate Spline is a physically-based, two-dimensional interpolation scheme for arbitrarily spaced 

tabulated data. The spline surface represents a thin metal sheet that is constrained not to move at the grid 

points, which ensures that the generated rainfall and temperature data at the weather stations are exactly the 

same as data at the weather station sites that were used for the interpolation (see Wahba 1990). This method 

is one of the most commonly used to create spatial climate data sets (e.g., Di Falco et al. 2011; Deressa et 

al. 2010). Its strengths are that it is readily available and relatively easy to apply, and that it accounts for 

spatially varying elevation relationships. Given that our area of study is characterized by significant terrain 

features, the choice of the Thin Spline method is reasonable. 

9 The PCI is described as:    
2

m
2
m rrX50PCI , where rm is the amount of rainfall in the mth month. 

The PCI is a powerful indicator of temporal distribution of precipitation; as the precipitation becomes more 

concentrated, the value increases. PCI values of less than 10 indicate uniform monthly distribution of 

rainfall (low precipitation concentration); values between 11 and 15 indicate moderate precipitation 

concentration; PCI between 16 and 20 indicates irregular distribution; and values above 21 indicate very 

high precipitation concentration (strong irregularity) (Oliver 1980). 
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whether rainfall came on time at the start of the growing season, whether there was 

enough rain at the beginning of and during the growing season, whether the rain stopped 

on time and whether there was rain at harvest time. Responses to each of these questions 

(either yes or no) were coded as favorable or unfavorable rainfall outcomes. By averaging 

over the number of questions asked (five questions), we created an index that provides a 

value close to one for the best outcome and zero for the worst outcome. 

We also created a farm-level shocks index capturing the most common shocks 

affecting crop production: pest and disease pressure; drought; flood; hailstorm; and 

erratic rainfall. Based on agronomy and climate literature, these shocks are hypothesized 

to affect the choice of intensity of land preparation. Farmers’ responses to the presence of 

each of these shocks (either yes or no) were coded as unfavorable or favorable 

disturbance outcomes. By averaging over the number of shocks about which we asked 

(five questions), we created an index that provides a value close to one for the highest 

level of shocks. 

To account for the effect of farm features on tillage practices, we include several 

plot-specific attributes, including soil fertility,10 soil depth,11 plot slope,12 spatial distance 

of the plot from farmer’s home (in minutes walking) and choice of crops grown. On 

average, 75 percent of land owners operate on about four parcels, each about 0.25 ha, and 

these plots are often not spatially adjacent (as far as 15 minutes walking time from the 

farmer’s residence). The variable distance to plot is an important determinant of 

adaptation practices through its effect on increasing transaction costs on the farthest plot, 

particularly costs for transporting bulky materials/inputs associated with tillage practices. 

5. Results 

5.1. Characterizing Tillage Frequency  

As a prelude to the econometric analysis, we provide some descriptive insights on 

the frequency distribution of repeated cultivation over time. We measure tillage intensity 

by the number of oxen-plow passes on the farm from the last season’s harvest to planting 

                                                 
10 The farmer’s perception of each plot’s soil fertility is ranked as “poor”, “medium” or “good.” 

11 The farmer’s perception of each plot’s soil depth is ranked as “deep”, “medium deep” or “shallow.” 

12 The farmer’s perception of each plot’s slope is ranked as “flat”, “medium slope” or steep slope.” 
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time. The literature usually refers to a “low till” operation when there is only one plow 

pass or zero tillage. Fig. 1 display the frequency distribution of the number of tillings 

during the 2013 and 2015 cropping season in our data set. We see that the frequency of 

tillage in 2013 and 2015 is not constant. This means we observe changes in tillage 

frequencies between 2013 and 2015, where there is a decline of low till and an increase 

of high-frequency tillage. The distributions in 2013 are left-skewed while the 2015 

distributions are relatively skewed to the right. The mode is two plowing passes in 2013 

(observed on about 40 percent of the plots) and three plowing passes in 2015 (observed 

on about 34 percent of the plots). Few plots (about 9 percent) are under a low-till system 

(zero tillage or only one pass). Farmers report higher frequencies of tillage (more than 

two passes) on 80 percent of the plots in 2015 and on 60 percent of the plots in 2013.  

The cross-classifying matrix shows a statistically significant correlation in a 

household’s tillage frequencies between the 2013 and 2015 cropping season. However, 

there is also a dynamic aspect of mobility over time of in terms of the tillage intensity 

status of a given farm plot, which is described using the tillage transition matrix shown in 

Table 2. The percentage of immobility, with the same tillage frequency, ranges from 12 

percent (i.e., 12 percent of plots received five or more times plowing in both years) to 34 

percent (i.e., 34 percent of plots received three times plowing in both years). Of the ten 

percent of farming plots that received low tilling (less than two passes) in 2013, only 15 

percent of those plots continued with low-till operations in 2015, while more than 58 

percent of the plots with low till in 2013 changed to high tillage frequency (two or more 

passes). Similarly, 27 percent of the plots were plowed three times in 2013. Of these 

plots, about 34 percent still received three passes of plowing in 2015, 24 percent received 

less than three passes in 2015, and about 42 percent received more than three passes in 

2015. The change in households’ tillage frequency status between 2013 and 2015 is also 

confirmed by the high Chi-squared value [
2
1


(16)=60.39; p=0.000], which allows us to 

reject the null hypothesis of independent tillage intensities between the two years at the 1 

percent significance level. The results support the evidence of alternating tillage 

frequency as a common practice among farm households (Wilman 2011).  

We also provide the frequency distributions of tillage intensity for the three 

categories of the amount of rainfall in the growing season (Table 3). The result indicates 

a gradual decrease of low-till operations as one moves from the low-rainfall tercile to the 

highest tercile. Conversely, repeated tillage is more common in the high-rainfall tercile 

than in the low-rainfall tercile. In 2013, for instance, just fewer than 40 percent of plots in 



Environment for Development Teklewold and Mekonnen 

14 

the low-rainfall tercile but 66 percent of the plots in the high rainfall tercile were plowed 

more than twice. Similarly, in 2015, the share of plots under high tillage (three or more 

passes) is 68 percent in low-rainfall areas and 75 percent in high-rainfall areas. This also 

confirms that the share of plots with repeated tillage increased over time in both low- 

rainfall and high-rainfall conditions. Table 3 further shows that high frequency of tillage 

is more dominant in areas where rainfall variability is lower, while the share of plots with 

a low number of tillings is high in low-rainfall areas. We find prima facie support for the 

oft-cited assertion that, because low-tillage conserves soil moisture, its adoption is one 

strategy that agricultural producers can use to reduce the risk associated with a low 

amount of rainfall and high precipitation variability (Asfaw et al. 2016; Ngoma et al. 

2016). 

6. Econometric Results 

6.1. Determinants of Tillage Intensity 

We model the first stage random effects ordered probit models with five ordered 

categories of tillage participation: from low till (zero or one plowing) to high tillage 

frequency (up to five passes of plowing). The results of the first stage analysis – the 

estimation of the pooled and random effects ordered probit model of how much tillage to 

pursue – is presented in Table 4. The qualitative results of the two models in terms of the 

sign and significance of variables are almost the same, despite the significance of the 

random effects. A likelihood ratio test of the random effects ordered probit model against 

the ordered probit model [
2
1


=402; p=0.000] suggests that we can reject the null 

hypothesis of no variability and shows that there is enough variability between plots to 

favor a random-effects ordered probit regression over a standard ordered probit 

regression. The discussion of results is then based on the random effects ordered probit 

model. The Wald test that all regression coefficients are jointly equal to zero is also 

rejected [χ2(65) = 1413; p = 0.000], suggesting the model fits the data reasonably well. 

One assumption on which the ordered probit method is based is zero covariance 

between two observations. With panel data, as used in this paper, this amounts to the 

assumption that the error term of the individual farm households is uncorrelated over 

time. If uncorrelated, the effect of clustering on tillage frequency is assumed to be similar 

for all farmers. It might well be, however, that the tillage frequency of individual farmers 

is correlated over time. The result shows that the null hypothesis (that the inter-temporal 

correlation coefficient is zero) is rejected )]000.0(147.0[  p , suggesting that the 
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individual variance component is not negligible and consequently the random effects 

model is justified. For about 85 percent of the farm plots, the tillage frequency changes 

over time. For the remaining 15 percent of the farm plots, the frequency of tillage in the 

previous year equals the frequency of tillage in the later year. 

The effect of climatic shocks, represented by mean temperature and rainfall and 

variability of rainfall variables, indicates that farmers choose different tillage intensity 

depending on the climate they face, holding other variables constant (Table 4). The role 

of both temperature and precipitation in determining the choice of intensity of tillage 

reveals the direct bio-physical effect of climate change on changing tillage as an 

adaptation practice. We find a positive effect of the amount of rainfall on the intensity of 

tillage. The result provides empirical evidence to show that farmers generally follow a 

low-till production system by reducing the frequency of tillage to conserve the available 

moisture on-farm for a weather shock, represented by the average of the shortage of 

rainfall. The result is in agreement with other studies, which also have observed that 

tillage frequency in semi-arid areas where there is a shortage of rainfall is lower than in 

higher rainfall areas (Tarekegne et al. 1996; Ngoma et al. 2016). Yadeta et al. (2001) 

observed tillage frequency ranging from three passes in Nazareth (a low-rainfall area in 

Ethiopia) to 12 passes in western Wellega (a high-rainfall area in Ethiopia). We also 

provide evidence on the importance of rainfall distribution in determining tillage 

frequency. As expected, the parameter estimate for rainfall variability is found to be 

negatively associated with tillage frequency, implying that the higher the variability of 

rainfall during the growing season, the lower the frequency of tillage.  

With regard to temperature, we find a negative correlation between mean growing 

season temperature and choice of tillage frequency. For instance, in communities with 

elevated temperature during the growing season, farmers generally reduce the frequency 

of tillage to keep moisture in the soil. The result also points to the inverted U-shaped 

relationship between tillage frequency and temperature. The quadratic climate 

coefficients are significant, implying that the tillage choice response function to 

temperature is nonlinear. These results imply that reduced tillage is an important land 

management system in low-rainfall areas, supporting the hypothesis that farmers 

traditionally adapted to climate risk by changing their practices (Shiferaw et al. 2014). 

The low-till adaptation practices function as in-situ conservation of the available moisture 

in order to support effective plant growth and reduce crop failure. These findings also 

confirm the notion that climate variability is one of the critical “drivers of choice of land 
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management methods” in many smallholder agrarian households as a method to improve 

agricultural water productivity in rainfed systems (Ngoma et al. 2106). 

The effect of rainfall and plot-level shocks in determining the tillage intensity is 

as anticipated. The rainfall satisfaction index is found to be negatively and significantly 

associated with tillage frequency. The results suggest that the probability of reducing 

tillage intensity is high in areas/years where rainfall is perceived to be favorable in terms 

of timing, amount and distribution. On the other hand, the probability of tillage intensity 

is positively and significantly influenced by plot-level disturbances. In the presence of 

plot-level shocks (such as pests, disease and weeds), farmers increase tillage frequency as 

a control method. 

The parameter estimates for credit constraints are positive and significant. We 

followed the approach of Feder et al. (1990) to construct a credit-access variable. This 

measure of credit tries to distinguish between farmers who choose not to use available 

credit and farmers who do not have access to credit. In our study, credit-constrained 

farmers are defined as those who need credit but are unable to get it. The estimation 

results reveal that the frequency of tillage increases for credit-constrained households. 

This suggests that farmers who need credit but are unable to find it face liquidity 

constraints for the purchase of agro-chemicals and are more likely to increase tillage as a 

means for controlling weeds and pests. 

The effect of extension services on the practice of reducing tillage is 

indeterminate a priori. Although Ethiopia’s Climate Resilient Green Economy strategy 

advocates conservation agriculture (with zero or reduced tillage as one component) as 

one of the climate change adaptation options (FDRE 2011), still farmers are advised by 

extension agents about frequent land preparation starting from the onset of rain. The latter 

is to soften the surface soil and prepare a good seedbed to allow easier seeding of crops. 

The estimation results show that contact with extension agents has a positive and 

significant effect on reducing tillage intensity. This is similar to the findings of El-Shater 

et al. (2016) who found a positive effect of extension services on the adoption of zero-

tillage in Syria. 

Social capital as measured by a household’s participation in a number of rural 

institutions significantly influences the choice of tillage frequency. One would expect the 

positive role played by such local institutions in adopting low tillage systems. Member 

households of these institutions are in a better condition to access information about the 

benefits of reducing tillage and to obtain financial resources for the purchase of agro-
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chemicals for the control of pests and diseases, which must be controlled in some other 

way in the case of reduced tillage (Teklewold et al. 2013). However, contrary to our 

expectation, participation in rural associations carries an unexpected sign. This might 

corroborate the dark side of social capital, as in Di Falco and Bulte (2011), where social 

capital may reduce incentives for hard work and induce inefficiency, such that farmers 

may exert less effort in control of weeds and pests and hence substitute frequency of 

tillage as a pest control method. 

Bio-physical characteristics are also found to be important determinants of the 

choice of tillage frequency. As expected, plot access, as measured by residence-to-plot 

distance, has a negative impact on the frequency of tillage. Farmers are more likely to 

apply a greater number of tillings on nearby plots. The plot distance is an important 

determinant of tillage intensity because of increased transaction costs on the farthest plot, 

particularly the cost of transporting bulky materials/inputs. Plots grown with cereal crops 

(such as maize, wheat and teff) are more likely to receive repeated cultivation than other 

types of crops (such as legumes). Farmers are also more likely to increase plowing 

frequency if the plot is planned for growing improved crop varieties. 

6.2. Impacts of Tillage Intensity 

As stated above, in the second stage, we estimate the fixed effects regression on 

net crop income for each tillage frequency level, taking care of the selection bias 

correction terms from the first stage. We don’t present the second stage estimation results 

here for the sake of space. However, it is worth mentioning that a good number of 

variables in the fixed effects model have shown significant correlation with the outcome 

variable and that there are differences between the outcome equations’ coefficients 

among the different tillage frequencies. This illustrates the heterogeneity in the sample 

with respect to crop net income. The intra-class correlation in the fixed effects model 

indicates that more than 90 percent of the variance in the net income equation is due to 

differences across panels. This means that the variation in each equation coming from 

cross-sectional data is higher than that occurring across time. Hence, we can say that the 

higher proportion of the variation in the model is caused in part by individual 

heterogeneity. 
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From the fixed effects regression estimates, we derive the unconditional and 

conditional average effect of the choice of various tillage frequencies.13 The 

unconditional average effect is presented in Table 5. The unconditional average effects 

compare net farm income from the choice of frequent tillage (more than one plowing) 

relative to low-till practice (zero or one tillage). The result indicates that farmers using 

repeated tillage earn higher net crop income, on average, than low-tillage users. This 

approach, however, would drive misleading conclusions, because the approach doesn’t 

consider that the difference in the outcome variable may be caused by observable and 

unobservable characteristics. Therefore, the unconditional estimates would yield biased 

and inconsistent estimates. 

We compute the true average tillage effects of net crop income under actual and 

counterfactual conditions by comparing the net farm income variable of farm households 

who practiced a high frequency of tillage with the outcome variables that would have 

been found if the households had practiced minimum tillage (zero or one tillage). This is 

done based on Eq. (6). Table 6 reports the aggregate size of the effects. In order to 

determine the average tillage effects for high-tillage users, we compare columns A and B 

of Table 6. Column C presents the impact of various tillage frequencies on net crop 

income, computed as the difference between columns A and C. Results show the 

adoption of more than one round of tillage provides higher net farm income compared 

with low-tillage practices, defined as zero or one tillage (Table 6). In all counterfactual 

cases, farm households that actually use more than one round of tillage would have 

earned lower income if they had not used more than one round of tillage. Importantly, 

compared with low tillage, the effect of tillage (two or more times) shows a similar trend 

on farm income as tillage frequency increases. The greatest farm income (3.7 thousand 

birr per hectare) is obtained from four rounds of tillage. Compared with low tillage, 

plowing the farm more than four times still increases farm income by 11 percentage 

points. But this productivity-enhancing effect of tillage declines when tillage exceeds 

four rounds of tillage. 

Table 7 shows the net farm income effect of additional tillage. Farm income from 

adoption of three-times tillage is significantly higher (17.5 thousand birr per hectare) 

                                                 
13As a robustness check, we replicate our estimation procedure using the pooled model specification and 

estimate the average treatment effects. The results don’t change much (detailed estimation results from the 

pooled multinomial endogenous switching regression is available from the authors upon request). 
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compared with farm income with only two-times tillage (15.8 thousand birr per hectare). 

Similarly, the potential additional gains of farm income from using four rounds of 

plowing are statistically significantly higher by 14 percentage points compared with three 

rounds of tillage. The results from more than four tillings show a similar trend compared 

with four rounds of tillage; the net income effect (1.1 thousand birr per hectare) is 

positive and significant but with a decreasing trend from tillage beyond four passes. The 

results show the nonlinear effects of tillage intensity on farm income. 

We also report and discuss the conditional average effects of tillage on net farm 

income disaggregated by quartiles of growing season rainfall intensity. Unlike either of 

the previous results, Table 8 presents the decomposition analysis, which enables us to 

partition the farm return differences with a different frequency of tillage across quantiles 

of rainfall amount. This helps test potential heterogeneous effects of the frequency of 

tillage across quantiles of the rainfall amount. Overall, we find that lower frequency of 

tillage provides higher returns at the lower quantile of the rainfall amount. The additional 

tillage effect from two rounds of plowing is about 3.2 thousand birr per ha in the lower 

tail of rainfall intensity, while this effect is about 1.7 thousand birr per hectare in the 

upper tail of the rainfall amount. The results agree with Suddick et al. (2010), who state 

that low tillage decreases evaporation and increases in-situ soil moisture retention, which 

can increase yields in drought years. 

In contrast, we find opposite effects of tillage on the fourth quantile of the rainfall 

distribution, i.e., higher net income using higher frequency of tillage is obtained at the 

higher tail of the rainfall amount. This implies again that reducing tillage might conserve 

moisture in low-rainfall areas. The result corroborates the substantial agronomic evidence 

that argues that reduced or zero tillage offers opportunities to farmers in terms of soil and 

moisture conservation. While the effects of reduced tillage on yield were significant in 

drier areas where moisture is the major limiting factor, increased tillage frequency also 

helps farmers avoid excess soil moisture in high-rainfall areas (Kimble et al. 2007; 

Ngoma et al. 2016). The asymmetric effects of tillage intensity on farm productivity in 

different agro-ecological regions raises a concern about the relevance of blanket 

recommendations or one-size-fits-all approaches. 

7. Conclusions 

This study examines the determinants of households’ decisions on tillage 

frequency and quantifies the effect of tillage frequency on farm income. We use a farm 

household-plot level panel data collected in 2013 and 2015. We employ a random effect 
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ordered probit endogenous switching regression to estimate net farm income for each 

level of frequency of tillage.  

The results show the nonlinear effects of tillage intensity on farm income. 

Compared with low tillage (zero or one passes), tilling two or more times a year increases 

farm income, more so as tillage frequency increases. But this productivity-enhancing 

effect of tillage declines when tillage frequency is greater than four rounds of tillage. In 

relation to rainfall, we find that, while lower frequency of tillage provides higher returns 

at the lower quantile of the rainfall amount, higher net income with higher frequency of 

tillage is generated at the higher tail of the rainfall distribution. 

We found that high frequency of tillage is more dominant in areas where rainfall 

variability is lower. The share of plots with low frequency of tillage is high in low-

rainfall areas. The results support the idea that, because low-tillage conserves soil 

moisture, its adoption is one strategy agricultural producers can use to reduce their risk 

associated with a low amount of rainfall and high precipitation variability. The results 

also reveal that changing tillage frequency over time is common among farm households. 

This has implications affecting the climate mitigation potential of low-tillage, which is 

often promoted as a method to improve the ability of agricultural soil to store carbon 

while simultaneously enriching the soil. 

The study shows that increasing farm productivity due to tillage is beneficial to 

the farmer. But this is at a cost to him and the environment, and the natural resource base 

on which farming depends (Hobbs et al. 2008). This is a challenge for crop production in 

the next decade: to produce more food from less land by making more efficient use of 

natural resources and with minimal impact on the environment. 

The purpose of changing tillage frequency generally falls into the following three 

categories: to achieve improved productivity, a private economic decision for the 

individual farm households; to improve the welfare (lifestyle) of the household, a private 

non-economic decision for the farm households; and/or to improve or preserve the 

environment and the natural resource base, a decision with possible benefits or costs to 

the society. While we address the first category in this study, the latter two points may be 

an area of future research.  
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Appendix: Tables and Figures 

Table 1. Description and Summary Statistics of the 
 Variables Used in the Regression 

Variables Descriptions 2013 2015 Total 

Gender Sex of the head (1=if female) 0.09 

 

0.12 

 

0.10 

 Age Age of the head, years 50.12 (12.52) 51.81 (12.73) 51.00 (12.66) 

Familysize  Familysize 7.91 (2.30) 8.21 (2.40) 8.07 (2.36) 

Education  Householdheadeducation, years 1.76 (3.00) 1.75 (2.93) 1.76 (2.96) 

Farmsize  Farm size, ha 1.82 (1.39) 2.00 (1.39) 1.92 (1.39) 

Ox  Numberof oxen owned 1.64 (1.15) 1.83 (1.57) 1.74 (1.39) 

Offarm 1= if off-farm labor participation 0.22 

 

0.19 

 

0.20 

 Credit 1=ifcreditconstraint 0.59 

 

0.44 

 

0.52 

 Expenditure Annualhouseholdexpenditure, Birr 3711.14 (6620.27) 5337.33 (5112.66) 4555.99 (5940.93) 

Distoutmkt Distance to output markets, km 10.45 (4.82) 9.68 (3.80) 10.05 (4.34) 

Disinputmkt  Distance to input markets, km 10.51 (4.26) 10.42 (1.86) 10.46 (3.24) 

Extcont  1=if extension contact (at least once 

in a month) 0.63 

 

0.96 

 

0.80 

 Infoclimate 1=if farmer is well informed about 

climate change 0.75 

 

0.79 

 

0.77 

 Relative Number of relatives in and outside the 

village 29.24 (34.16) 20.96 (30.20) 24.93 (32.43) 

Totgroup  Number of groups the household 

is a member 6.28 (2.16) 3.93 (2.33) 5.06 (2.54) 

Rainindex Rainfall disturbance index (1=best) 0.53 (0.24) 0.18 (0.07) 0.35 (0.25) 

Plotindex Plot level disturbance index 

(0=best) 0.25 (0.22) 0.06 (0.06) 0.15 (0.19) 

Plotdist Plot distance from residence, min 12.14 (16.28) 14.57 (17.37) 13.40 (16.91) 

Tenure 1=if own the plot 0.83 

 

0.85 

 

0.84 

 Dark 1=if dark soil type plot 0.37 

 

0.37 

 

0.37 

 Red 1=if red soil type plot 0.44 

 

0.44 

 

0.44 

 Higfert 1=if highly fertile soil plot 0.35 

 

0.38 

 

0.37 

 Medfert 1=if medium fertile soil plot 0.54 

 

0.51 

 

0.52 

 Flatslp 1=if flat slope plot 0.65 

 

0.61 

 

0.63 

 Medslp 1=if medium slope plot 0.31 

 

0.36 

 

0.34 

 Depdpth 1=if deep depth soil plot 0.44 

 

0.48 

 

0.46 

 Meddpth 1=if medium depth soil plot 0.47 

 

0.41 

 

0.44 

 Improvedvar 1=if grow improved crop varieties 0.24 

 

0.24 

 

0.24 

 Maize 1=ifgrowmaize 0.60 

 

0.20 

 

0.39 

 Wheat 1=ifgrowwheat 0.12 

 

0.15 

 

0.13 

 Tef 1=ifgrowtef  0.09 

 

0.19 

 

0.14 

 Rainfall Average annual rainfall, mm 

(2000-2013) 779.68 (262.14) 804.21 (276.22) 792.42 (269.81) 

Temperature Averagemonthlytemperature, 0C 

(2000-2013) 19.82 (2.52) 19.97 (2.59) 19.90 (2.56) 

PCI Percepitationconcentrationindex 10.26 (2.42) 20.58 (5.13) 15.62 (6.56) 

Elevation Altitude (meter above sea level) 2244.54 (420.48) 2227.44 (416.68) 2235.65 (418.57) 

Observations (Household/plots) 929/4365 921/4697   

* Numbers in parentheses are standard deviations. 
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Table 2. Transition Matrix for Changing Tillage Frequency 

  

  

Tillage frequency in 2015 (%) Total in 2013 

(%) 1 2 3 4 5 
T

il
la

g
e 

fr
eq

u
en

cy
 

in
 2

0
1
3

 (
%

) 1 14.57 27.73 26.89 17.37 13.45 9.67 

2 8.43 20.34 32.64 23.76 14.83 39.54 

3 7.49 16.75 33.69 27.39 14.68 26.64 

4 6.44 17.01 32.87 26.44 17.24 11.89 

5 9.71 23.40 29.80 24.72 12.36 12.26 

Total in 2015 (%) 8.60 19.84 33.85 24.02 13.69   

 

Table 3. Distribution of Tillage Frequency Based on Amount  
of Rainfall in the Growing Season 

Rainfall in the growing season Year 
Tillage frequency (%) 

1 or less 2 3 4 5 or more 

Total 

amount 

(mm) 

1st tercile (<505) 
2013 10.39 48.34 28.15 6.19 6.93 

2015 11.35 20.27 40.6 20.34 7.44 

2nd tercile (505-783) 
2013 9.08 31.53 26.39 17.1 15.9 

2015 8.52 19.99 23.57 27.59 20.34 

3rd tercile (>783) 
2013 8.21 44.72 24.34 10.19 12.55 

2015 5.47 19.91 32.55 25.85 16.23 

Variability 

(PCI) 

1st tercile (<13) 
2013 8.94 36.34 26.48 14.12 14.12 

2015 9.69 22.14 27.65 23.73 16.79 

2nd tercile (13 - 21) 
2013 8.2 38.87 25.72 13.36 13.85 

2015 4.66 17.81 27.7 29.82 20 

2nd tercile (>21) 
2013 10.93 48.37 27.24 6.28 7.18 

2015 12.32 20.64 41.44 19.25 6.36 
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Table 4. Parameter Estimates of the Ordered Probit Model with  
Mundlak’s Approach for Tillage Intensities 

Variables 
Random effects Pooled ordered probit 

Coefficient Std. error Coefficient Std. error 

Gender 0.015 0.058 0.024 0.040 

Age 0.003* 0.002 0.002* 0.001 

Family size -0.002 0.008 0.004 0.005 

Education 0.010 0.007 0.004 0.004 

Farmsize -0.021 0.013 -0.024** 0.010 

Ox 0.004 0.014 0.011 0.010 

Offarm 0.167*** 0.035 0.159*** 0.029 

Credit 0.111*** 0.027 0.117*** 0.023 

Expenditure (10-5) 0.303 0.257 0.270 0.207 

Distoutmkt 0.002 0.003 0.002 0.003 

Disinputmkt 0.007 0.005 0.004 0.004 

Extcont -0.109*** 0.040 -0.059* 0.033 

Infoclimate -0.024 0.035 -0.043 0.029 

Relative -0.0002 0.0005 0.00004 0.0004 

Totgroup 0.065*** 0.007 0.050*** 0.006 

Rainindex -0.298*** 0.084 -0.214*** 0.070 

Plotindex 0.326*** 0.093 0.254*** 0.078 

Plotdist -0.004*** 0.001 -0.004*** 0.001 

Tenure -0.020 0.037 -0.021 0.037 

Dark -0.080** 0.038 -0.044 0.034 

Red 0.077** 0.037 0.077** 0.033 

Higfert 0.201*** 0.051 0.182*** 0.051 

Medfert 0.103** 0.047 0.097** 0.047 

Flatslp -0.017 0.077 -0.027 0.076 

Medslp -0.037 0.077 -0.043 0.076 

Depdpth 0.026 0.054 0.016 0.054 

Meddpth 0.025 0.052 0.014 0.051 

Improvedvar 0.125*** 0.031 0.107*** 0.028 

Maize 0.315*** 0.031 0.306*** 0.030 

Wheat 0.407*** 0.039 0.381*** 0.038 

Tef 0.760*** 0.038 0.697*** 0.037 

Rainfall 0.006* 0.003 0.0005 0.003 

Rainfall-square(10-5) -0.058 0.274 -0.034 0.255 

Temperature -26.929*** 3.746 -22.913*** 3.584 

Temperature-square 0.615*** 0.092 0.512*** 0.087 

PCI 0.021* 0.013 0.016 0.013 

Rainfall X PCI (10-4) 0.400** 0.200 0.435** 0.194 

Elevation -0.0001 0.0002 -0.0001 0.0002 

Year-2015 -0.248 0.290 -0.191 0.272 

Constant -290.39*** 38.587   

1  
-289.14*** 38.586 -251.70*** 37.121 

2  
-288.17*** 38.585 -250.53*** 37.120 

3  
-287.40*** 38.585 -249.63*** 37.120 

4  
0.172*** 0.016 -248.92*** 37.120 

N 9041    

Joint significance of location variables: χ2 (19) 288.33*** 526.25***  

Joint significance of time varying variables: χ2 (8) 19.04*** 34.65***  

Joint significance of selection instruments: χ2 (3) 77.72***   

Model significance Waldχ2 (65)=1413*** LR χ2 (65) = 1959*** 

2
u  0.172*** (0.016)  

LR test vs. Oprobit regression: χ2(4) = 402.01 Prob>χ2 = 0.0000 

Note: *, ** and *** indicate statistical significance at 10, 5 and 1% level. 
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Table 5. The Unconditional Average Net Farm Income Effect of Tillage Frequencies 
(Results from Fixed Effect Estimation) 

Number of tillage Net farm income (Birr/ha) Tillage effects 

1 or less 13610.82 (118.03) - 

2 15165.42 (126.97) 1554.60(173.35)*** 

3 17780.10(148.35) 4169.27 (189.58)*** 

4 16455.73 (182.01) 2844.90(216.93)*** 

5 or more 14526.38(126.42) 915.55(172.95)*** 

Note: figures in parenthesis are standard errors; *, ** and *** indicate statistical significance at 10%, 5% 

and 1% level, respectively. 

Table 6. Average Expected Net Farm Income (Birr/ha) and Conditional Tillage 
Frequency Effects (Results from Fixed Effect Estimation) 

Outcome 

Tillage status 

Tillage Effects 

(C) 
High frequency tillage, (j= 2, 

3, 4,5) 

(A) 

One tillage, (j=1) 

(B) 

)2TQ(E jit   - )2TQ(E it1   12741.62 (205.40) 11532.03 (186.65) 1209.589 (277.54)*** 

)3TQ(E jit   - )3TQ(E it1   17523.96 (256.24) 13880.62 (215.96) 3643.34 (335.11)*** 

)4TQ(E jit   - )4TQ(E it1   16048.97 (364.83) 12301.05 (105.91) 3747.91 (293.01)*** 

)5TQ(E jit   - )5TQ(E it1   18769.97 (403.84) 17545.47 (407.23) 1223.50 (573.13)*** 

Note: ‘j’ represents tillage frequency; figures in parentheses are standard errors; *, ** and *** indicate 

statistical significance at 10%, 5% and 1% level. 

Table 7. Average Expected Net Farm Income (Birr/ha) and Additional Tillage 
Effects (Results from Fixed Effect Estimation) 

Outcome 

Tillage status 

Additional Tillage Effects 

(C) More tillage, (j= 2, 3, 4, 5) 

(A) 

Lower tillage, (j=1, 2, 3, 4) 

(B) 

)2TQ(E it2   - )2TQ(E it1   12741.62 (205.40) 11532.03 (186.65) 1209.59 (277.54)*** 

)3TQ(E it3   - )3TQ(E it2   17523.96 (256.24) 15805.00 (235.21) 1718.96 (347.83)*** 

)4TQ(E it4   - )4TQ(E it3   16048.97 (364.83) 14061.23 (171.41) 1987.74 (358.18)*** 

)5TQ(E it5   - )5TQ(E it4   19497.97 (429.84) 18403.37 (538.03) 1094.60 (688.59)*** 

Note: ‘j’ represents tillage frequency; figures in parentheses are standard errors; *, ** and *** indicate 

statistical significance at 10%, 5% and 1% level. 
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Table 8. Average Expected Net Farm Income (Birr/ha) and Additional Tillage 
Effects (Results from Fixed Effect Estimation) 

Outcome (Rainfall quantile) 

Tillage status 

Additional Tillage Effects 

(C) More tillage, (j= 2, 3, 4, 5) 

(A) 

Lower tillage, (j=1, 2, 3, 4) 

(B) 

)2TQ(E it2   - )2TQ(E it1      

I 13143.18 (347.88) 9923.89 (253.80) 3219.29 (430.62)*** 

II 10543.96 (319.21) 10653.11 (322.15) -109.14 (453.52) 

III - - - 

IV 16416.7 (552.38) 14726.78 (502.00) 1689.91 (746.42)*** 

)3TQ(E it3   - )3TQ(E it2      

I 11273.22 (263.06) 10795.54 (233.00) 477.67 (351.42)*** 

II 14108.07 (368.88) 11911.92 (378.68) 2196.15 (528.65)*** 

III 20915.57 (766.33) 11595.23 (333.57) 9320.33 (835.79)*** 

IV 25933.43 (438.76) 22001.32 (609.81) 3932.10 (751.26)*** 

)4TQ(E it4   - )4TQ(E it3      

I 9604.691 (277.74) 11787.58 (188.59) -2182.89 (472.40)*** 

II 16240.82 (535.88) 13527.76 (310.89) 2713.06 (599.81)*** 

III 23899.78 (961.98) 15220.29 (435.00) 8679.485 (914.86)*** 

IV 20936.87 (280.79) 15905.86 (371.23) 5031.012 (642.14)*** 

)5TQ(E it5   - )5TQ(E it4      

I 13565.50(434.48) 10346.00(522.10) 3219.51 (679.23)*** 

II 19294.24 (760.21) 15202.05 (396.56) 4092.18 (857.42)*** 

III 19060.25 (677.82) 13639.13 (357.34) 5421.12 (766.25)*** 

IV 19981.03 (987.01) 13031.44 (764.69) 6949.59 (1248.58)*** 

Note: ‘j’ represents tillage frequency; figures in parentheses are standard errors; *, ** and *** indicate 

statistical significance at 10%, 5% and 1% level; Rainfall quantiles: I=less than 620 mm; II= 620 – 720mm; 

III=720-1094 mm; and IV= greater than 1094 mm. 
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Figure 1. Frequency Distribution of Tillage Intensity 
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