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Productive Efficiency and Its Determinants in a Changing           
Climate: A Monotonic Translog Stochastic Frontier Analysis 

Richard Mulwa and Jane Kabubo-Mariara 

Abstract 

The changing weather patterns and seasonal shifts are negatively impacting agricultural 
ecosystems and compromising the benefits from production of agricultural goods and services. Such 
impacts include reduced farm returns, reduced household incomes, increase in poverty levels, and 
reduction in farm productivity and efficiency. Using three waves of panel data, this study applies a 
monotonic translog stochastic frontier (SFA) to assess the overall farm efficiency and the influence of 
climatic factors, agro-ecological factors, and household factors on farm level efficiency. From the 
results, farming households are, on average, 63% efficient and could expand output by about 37% and 
still use the same level of inputs. However, this will be determined by a number of exogenous 
determinants such as climatic, agro-ecological, and household factors. Climatic factors such as rainfall 
and temperature decrease and increase inefficiency, respectively. The quasi-fixed factors of education 
and household size decrease and increase inefficiency, respectively, while age of the household head 
decreases inefficiency. 
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Productive Efficiency and Its Determinants in a Changing 
Climate: A Monotonic Translog Stochastic Frontier Analysis 

Richard Mulwa and Jane Kabubo-Mariara 

1. Introduction 

In Kenya, climate change is causing variability in weather factors such as 

precipitation, temperature and soil moisture, and some areas in the country have 

experienced prolonged droughts and increased temperatures, which have compromised 

production of food crops (Mulwa et al. 2016). The projected future impacts could include 

reduced farm productivity and efficiency, reduced farm returns, reduced household 

incomes, and an increase in poverty levels (Mulwa et al. 2016). In a conventional rainfed-

production system, agricultural households use direct factors of production (fertilizer, 

seed, labour, etc.) to produce several agricultural outputs. However, in a changing 

climate, production is also influenced by climate factors (precipitation, temperature, soil 

moisture, etc.). Other factors that influence production include household characteristics 

and agro-ecological characteristics. Climatic factors and agro-ecological factors are 

outside the control of farming households, while production inputs and most household 

characteristics are within the control of the household. The farmer has to decide how to 

combine production inputs subject to his/her exogenous environment. The outcome of the 

farmer’s decisions will influence how much will be produced, and hence production 

efficiency.  

Against this backdrop, this study seeks to answer two key questions: (a) how 

efficient are agricultural households in Kenya in a changing climate setting; and (b) how 

do household factors, agro-ecological factors, and climate factors influence farm 

production. The study also asks what policy decisions can be drawn from these results to 

aid in improving efficiency in a changing climate.  

Despite the increasing number of climate change and variability studies and 

productive efficiency studies, there is a dearth of literature linking climate change and 

variability to farm-level productive efficiency in Africa. This study makes a significant 

                                                 
 Richard Mulwa, Ph.D., CASELAP, University of Nairobi,  P.O. Box 30197-00100, Nairobi. Email: 
richard.mulwa@uonbi.ac.ke. Jane Kabubo-Mariara, Ph.D., School of Economics, University of Nairobi, 
P.O. Box 30197-00100, Nairobi. Email: jmariara@uonbi.ac.ke.  
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contribution to this limited literature by linking the two fields. This is done by 

incorporating climatic factors, namely precipitation, temperature, and the Standardized 

Precipitation and Evapo-transpiration index (SPEI); household characteristics, i.e., 

household size, education of household head, etc.; and altitude, which is a proxy for agro-

ecological zones. Productive efficiency is estimated by use of a monotonic translog 

stochastic frontier (SFA) model.  

Since the publication of Farrell’s article on measurement of productive efficiency 

in 1957, a number of techniques – both parametric and non-parametric – have been used 

to estimate efficiency of production. The non-parametric methods include Data 

Envelopment Analysis (Emrouznejad and Podnovski 2004; Mulwa et al. 2009) and Free 

Disposable Hull (Thrall 1999; Cherchye et al. 2000) and use mathematical programming 

techniques to evaluate the performance of firms or decision making units (DMUs). 

Parametric methods are either stochastic or deterministic and use econometric techniques 

for estimation (Kumbakhar and Lovell 2000; Coelli et al. 2005). 

The main stochastic frontier methods include the Cobb-Douglas and translog 

stochastic frontier models (O’Donnell and Coelli 2005; Sauer et al. 2006). The main 

limitation of the Cobb-Douglas frontier is that it uses only a few parameters and is 

simplistic in that it assumes all firms have same production elasticities and that 

substitution elasticities are equal to one (Battese and Coelli 1992). The translog stochastic 

frontier model has advantages over the Cobb-Douglas because it’s more flexible and 

deals with most setbacks presented by the Cobb-Douglas (Coelli et al. 2005). The 

introduction of the monotonicity in the translog model handles the rare cases of a 

negative technical input–output relationship because it is always assumed that production 

functions monotonically increase in all inputs, i.e., the output quantity must not decrease 

if any input quantity is increased (Henningsen and Henning 2009). This justifies the 

choice of the monotonic translog stochastic frontier model over its counterparts. 

Overall, the approaches used in this study are advantageous over most existing 

methodologies in similar studies for a variety of reasons. First, the study uses three waves 

of panel data, which allows us to exploit the time dimension, unlike cross-sectional data, 

which considers one period. Second, the use of the monotonic translog stochastic frontier 

is methodologically innovative, as the model has not been used in most translog 

stochastic frontier analysis. Further, the farm output is measured in kilocalories produced 

on the farm, unlike most studies, which estimate efficiency using a single output and 

multiple inputs. Finally, our study is country-wide and considers all cropping activities on 
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the farm and is therefore replicable elsewhere in the country and also in other developing 

countries. 

2. Literature Review 

Agriculture is affected in complex ways by climate change and variability (IPCC 

2007). The number of studies on the impact of climate change and variability on crop and 

livestock productivity has increased over the decades, with a more recent focus on 

developing countries in general, and specifically Africa. Most of the studies assess the 

extent to which adaptation options can lessen the expected impact of climate change and 

variability. The bulk of the emerging studies have used the Ricardian model, following 

Mendelsohn et al. (1994). By regressing land values (or net revenue) on climate normals, 

e.g., 30 year averages of climate variables rather than weather factors and other 

exogenous factors, one can then determine the marginal contribution of each input to 

farm income as capitalized in land value (see, for instance, Gbetibouo and Hassan 2005; 

Deressa et al. 2009; Kabara and Kabubo-Mariara 2011). Other studies use similar 

approaches to the Ricardian method, but investigate the impact of climate change on 

nutrition (see, for instance, Kabubo-Mariara and Kabara 2015; Kabubo-Mariara et al. 

2016; 2017). 

Despite the increasing number of climate change and variability studies, there is a 

dearth of literature linking weather and climate change factors and farm-level productive 

efficiency in Africa. Some of the studies have been inspired by Farrell (1957), who 

asserted that environmental factors such as air and water quality, climate and location 

need attention because they affect farm productive efficiency. In Kenya, using a two-

stage semi-parametric approach on household panel data, Ogada et al. (2014) reveal that 

technical efficiency differentials in smallholder farms are influenced by environmental 

factors, production risks, and farmer characteristics. In addition, Mulwa and Kabubo-

Mariara (2017) use a two-stage semi-parametric approach to assess the influence of 

climatic, household, and institutional factors on farm efficiency in Kenya. The study 

revealed that these factors influence productive efficiency either positively or negatively. 

The policy implication from the two studies is that Kenya has room to improve 

agricultural productivity by addressing climatic, adaptation and farm-level constraints. 

Oyekale (2012), using a stochastic frontier model, found that climate change poses 

serious problems to Nigerian cocoa production. The presence of a high level of 

inefficiency in smallholder farm production in Sub-Saharan Africa has also been 
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attributed to a number of other factors, such as limited use of inputs, limited market 

access and household characteristics (Mkhabela et al. 2010; Alemu et al. 2009).  

 A study on Ethiopian smallholder farms showed that seasonal climate conditions 

(including rainfall and temperature) and agro-ecological setting have significant impact 

on technical efficiency in Ethiopian agriculture (Alemu et al. 2009). The study also 

observed that education, proximity to markets, and access to credit contribute to 

significant reduction in farm inefficiency. In this regard, it is necessary to understand the 

influence of socio-economic characteristics, management practices and environmental 

factors on farm productive efficiency.  

Outside Africa, a number of studies explore the effect of precipitation on food 

production and farm efficiency. Makki et al. (2012) evaluated the impact of climate 

change on productivity and technical efficiency of paddy farms in tidal swamp-land in 

Indonesia. The analysis showed that climate change has a negative effect on farm 

efficiency. Brazdik (2006) groups factors influencing farm efficiency into three broad 

categories: farm-specific variables (intensity of inputs such as labour, fertilizers and 

seeds, farm size, organizational structure such as tenure, and crop variety); economic 

factors (inputs prices); and environmental factors (rainfall, temperature or wet–dry 

periods, and agro-ecological zone). Controlling for environmental factors in technical 

efficiency analysis of smallholder production across different ecological zones has been 

shown to improve the precision of results (Sherlund et al. 2002). The strength of the agro-

ecological argument is reinforced by studies analyzing district-level crop yield and 

precipitation in India (Asada and Matsumoto 2009; Kumar et al. 2004). 

Lobell and Burke (2008) report that a change in growing season precipitation can 

be associated with a significant change in production efficiency. This is supported by 

Henderson and Kingwell (2005), who show that rainfall, along with purchased inputs, 

such as labour and materials, are important inputs to wool production in Australia. In 

India, large decreases in efficiency of crop productivity have been attributed to 

anomalously low precipitation events and extremely high temperatures (Kumar et al. 

2004). 

Despite the increasing number of climate change studies, there is a dearth of 

literature linking climate change and variability factors and farm-level productive 

efficiency in developing countries, where climate change is expected to have more 

adverse impact. In addition, the influence of climatic and agro-ecological factors on farm 

productive efficiency remains less explored in the case of Kenya. Save for Ogada et al. 
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(2014), studies on Kenya have generally examined the influence of farm-specific and 

economic factors on agricultural efficiency (see Kirimi and Swinton 2004; Kibaara 2005; 

Nyagaka et al. 2010; Mulwa et al. 2009). This study is therefore an addition to the limited 

literature on climate change and efficiency. The study has additional advantages over 

existing studies on climate change impacts in that it introduces climate variability 

(weather) and conventional factors of production, which are not considered in a classical 

Ricardian analysis. The study also introduces a methodological innovation by using a 

translog stochastic frontier production function with imposed monotonicity, which has 

not been considered in most stochastic frontier studies. 

3. Methodology  

3.1. Theoretical and Empirical Approaches 

The stochastic production frontier was first proposed independently by Aigner et 

al. (1977) and Meeusen and van den Broeck (1977). Their general setup is 

௜ݕ ൌ ݉ሺ࢞࢏, ሻߚ െ ௜ݑ ൅ ௜ݒ 	⟹ 	݉ሺ࢞࢏, ሻߚ െ   (1)																																					௜ߝ

where the key difference from a standard production function is the appearance of the 

two distinct error terms in the model. The ݑ௜ term captures inefficiency, defined as 

shortfall from maximal output dictated by the production function, ݉ሺ࢞࢏,  ௜ݒ ሻ, while theߚ

terms capture outside influences beyond the control of the producer. 

To estimate Equation (1) via maximum likelihood, the density of ߝ must be 

determined. Once distributional assumptions on ݒ and ݑ have been made, ݂ሺߝሻ can be 

determined by noting that the joint density of ݑ and ݒ, ݂ሺݑ,  ሻ, can be written as theݒ

product of the individual densities, ݂ሺݑሻ݂ሺݒሻ, given the independence of ݑ and ݒ. 

Further, because ݒ ൌ ߝ ൅ ,ݑthen ݂ሺ ,ݑ ሻߝ ൌ ݂ሺݑሻ݂ሺߝ ൅  should be ݑ  ሻ andݑ

integrated out to obtain ݂ሺߝሻ. However, note that not all distributional assumptions will 

provide closed form solutions for ݂ሺߝሻ. With either the half-normal specification of 

Aigner et al. (1977) or the exponential specification of Meeusen and van den Broeck 

(1977), ݂ሺߝሻ	possesses an (approximately) closed form solution, making direct 

application of maximum likelihood straightforward.  The density of ߝ for the half-normal 

is given as 

݂ሺߝሻ ൌ ଶ

ఙ
߶ሺߝ ⁄ߪ ሻΦሺെ ߣߝ ⁄ߪ ሻ																																										 (2a) 

while that of the normal exponential is given by 
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݂ሺߝሻ ൌ ଵ

ఙೠ
Φሺെ ߝ ௩ߪ െ ௩ߪ ⁄⁄௨ߪ ሻ݁ఌ ఙೠାఙೡమ ଶఙೠమ⁄⁄ 																					 (2b) 

where ߶ሺ. ሻ is the standard normal probability density function, Φሺ. ሻ is the standard 

normal cumulative distribution function, ߪ ൌ ඥߪ௨ଶ ൅ ߣ ௩ଶ andߪ ൌ ௨ߪ ⁄௩ߪ . The 

parameterization is quite common and has intuitive appeal, and ߣ can be thought of as a 

measure of the inefficiency-to-noise ratio, i.e., the amount of variation in ߝ due to 

inefficiency versus the variation due to noise. Based on Battese and Corra (1977), 

parameterization ߪଶ ൌ ௨ଶߪ ൅ ߛ  ௩ଶ andߪ ൌ ఙೠమ

ఙೠ
మାఙೡ

మ.  The parameter, ߛ, must lie between 0 

and 1 and can be used as a quick check of the presence of inefficiency. 

The half-normal assumption for the one-sided inefficiency term is undoubtedly 

the most commonly used in empirical studies of inefficiency. However, a variety of 

alternative stochastic frontier models have been proposed, using alternative distributions 

on the one-sided term. Most notably, Stevenson (1980) proposed a generalization of the 

half-normal distribution, the truncated (at 0) normal distribution. The truncated normal 

distribution depends on two parameters ሺߤ,  ௨ଶሻ and affords the researcher more flexibilityߪ

in the shape of the distribution of inefficiency. The truncated normal is given as 

݂ሺݑሻ ൌ ଵ

√ଶగఙೠ஍ሺఓ ఙೠሻ⁄
݁
ିሺೠషഋሻ

మ

మ഑ೠ
మ 																																											 (3) 

When ߤ ൌ 0, this distribution reduces to the half-normal. Unlike the half-normal 

and exponential densities, the truncated normal density has its mode at 0 only when 

ߤ ൑ 0, but otherwise has its mode at ߤ. Thus, for ߤ ൐ 0, the implication is that, in 

general, the DMU is inefficient. The density of ߝ for the normal truncated normal 

specification is 

݂ሺߝሻ ൌ ଵ

ఙ
߶ ቀఌାఓ

ఙ
ቁΦቀ ఓ

ఙఒ
െ ఌఒ

ఙ
ቁ Φሺߤ ⁄௨ߪ ሻൗ 																					 (4) 

In addition, Greene (1980; 1990) and Stevenson (1980) both proposed and used a 

gamma distribution for inefficiency.  

Assuming a single-output, multiple-input cross-sectional setup, we can assume 

the translog production function, which is conceptually simple and imposes no a priori 

restrictions on the structure of the technology. It also satisfies second-order flexibility 

(Diewert 1974) and its logarithmic form has the advantage that inefficiencies are captured 

by an additive rather than a multiplicative term (Henningsen and Henning 2009). The 

stochastic frontier form of the function (Greene 1980; Kaliranjan 1990) can be stated as 

ݕ݈݊ ൌ ݈݂݊ሺ࢞, ሻࢼ ൌ ଴ߚ ൅ ∑ ௜ߚ
ே
௜ୀଵ ௜ݔ݈݊ ൅

ଵ

ଶ
∑ ∑ ௜௝ߚ

ே
௝ୀଵ ௝ݔ௜݈݊ݔ݈݊

ே
௜ୀଵ ൅ ௜ݒ െ   (5)			௜ݑ
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where ݅ ൌ 1,2, … , ܰ are cross-sectional units (or decision-making units); ݅, ݆ ൌ 1,2, … ,ܰ 

are the production inputs; ݈݊ݕ is the natural log of the output of the ݉௧௛	 DMU; and ݈݊ݔ௜ 
is the natural log of the input ݅	of the	݉௧௛	DMU. From Young’s Theorem, ߚ௜௝ ൌ  ௝௜ andߚ

the marginal products are given as 

௜݂ ൌ
௙ሺ࢞,ࢼሻ

௫೔
൫ߚ௜ ൅ ∑ ௝ݔ௜௝݈݊ߚ

ே
௝ୀଵ ൯																							 (6) 

and the second-order derivative is given by 

௜݂ ൌ
௙ሺ࢞,ࢼሻ

௫೔௫ೕ
ቀሺߚ௜ ൅ ∑ ௞ݔ௜݈݊ߚ

ே
௞ୀଵ ሻ. ൫ߚ௝ ൅ ∑ ௞ݔ௝௞݈݊ߚ െ Δ௜௝

ே
௞ୀଵ ൯ െ  ௜௝ቁ  (7)ߚ

where Δ௜௝ is the Kronecker delta, with Δ௜௝ ൌ 1 if ݅ ൌ ݆ and Δ௜௝ ൌ 0 otherwise 

(Henningsen and Henning 2009). Because all input quantities are non-negative and the 

translog functional form guarantees that output is positive, the monotonicity conditions of 

the translog function reduce to 

௜ߚ ൅ ∑ ௝ݔ௜௝݈݊ߚ
ே
௝ୀଵ ൒ 0			∀		݅											 (8) 

The rationale for monotonicity from economic theory is that, in rare cases of 

negative input-output relationship (e.g., excessive fertilizer harming the crops), it would 

be wise to refrain from using as much fertilizer, i.e., increasing the (unused) quantity of 

the input would at least leave the output unchanged (Henningsen and Henning 2009). 

Therefore, if a production frontier is not monotonically increasing, the efficiency 

estimates of the individual decision making units (DMUs) cannot be reasonably 

interpreted. Non-monotonicity would also distort the estimation of the exogenous 

determinant of efficiency, i.e., the technical efficiency effects model, as proposed by 

Batesse and Coelli (1995). To impose monotonicity, Henningsen and Henning (2009) 

suggest a three-step procedure based on Koebel et al. (2003)’s two-step procedure. The 

three steps involve: i) estimating the unrestricted stochastic frontier; ii) obtaining the 

restricted ࢼ parameters by minimum distance estimation; and iii) determining the 

efficiency estimates of the DMUs and the effects of exogenous determinants. This 

procedure is used in the current study. 

3.2. Estimating Efficiency 

After the model parameters are estimated, we can proceed to estimate 

observation-specific efficiency, which is one of the main interests of a stochastic frontier 

model. The estimated efficiency levels can be used to rank producers, identify under-

performing producers, and determine which firms use best practices. This information is 

useful in helping to design public policy or subsidy programs aimed at improving the 
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overall efficiency level of decision making units. Thus far, we have information on how 

to estimate ߪ௨ଶ, which is the unconditional mean of ݑ௜ i.e., it provides information 

regarding the shape of the half-normal distribution on ݑ௜. This information would suffice 

if the interest were in the average level of technical inefficiency in the sample. However, 

if interest lies in the level of inefficiency of a given decision making unit (DMU), 

knowledge of ߪ௨ଶ is not enough because it does not contain any individual-specific 

information. To overcome this problem, Jondrow, Lovell, Materov and Schmidt (JLMS) 

(1982) proposed an estimate ݑ௜	from the expected value of ݑ௜ conditional on the 

composed error of the model ሺߝ௜ ≡ ௜ݒ െ  ௜ gives aߝ ௜ givenݑ ௜ሻ. This conditional mean ofݑ

point estimate of ݑ௜. The composed error contains individual-specific information, and so 

the conditional expectation yields the observation-specific value of the inefficiency. This 

is like extracting signal from noise. 

JLMS (1982) show that the conditional density function of ݑ௜ given	ߝ௜, ݂ሺݑ௜|ߝ௜ሻ is  

ାܰሺߤ∗௜,  ଶሻ, where∗ߪ

௜∗ߤ ൌ
ିఌ೔ఙೠమ

ఙమ
																		 (9a) 

ଶ∗ߪ ൌ
ఙೡమఙೠమ

ఙమ
																			 (9b) 

From these, the conditional mean can be estimated as 

௜ሻߝ|௜ݑሺܧ ൌ ௜∗ߤ ൅
ఙ.థሺ

ഋ∗೔
഑∗
ሻ

஍ሺ
ഋ∗೔
഑∗
ሻ
													 (9c)  

Maximum likelihood estimates of the parameters are substituted into the equation 

to obtain estimates of firm-level inefficiency. This estimator will produce values that are 

guaranteed to be non-negative. Because the conditional distribution of ݑ is known, one 

can derive moments of any continuous function of ߝ|ݑ. The challenge with the JLMS 

efficiency estimator is that it is inconsistent because ݊ ⟶ ∞. This is because, in a cross-

section, as ݊ ⟶ ∞ we have new firms being added to the sample with their own level of 

inefficiency instead of new observations to help determine a given firm’s specific level of 

inefficiency. Second, the JLMS efficiency estimator is not designed to estimate 

unconditional inefficiency; it is designed to estimate inefficiency conditional on ߝ, for 

which it is a consistent estimator. Finally, the JLMS inefficiency estimator is 

is a shrinkage estimator, and, on average, we overstate the inefficiency level of a firm 

with small ݑ௜	,	while we understate inefficiency for a firm with large ݑ௜. 

The same technique as used in JLMS (1982) can be used to obtain observation-

specific estimates of the efficiency index, ݁ି௨೔. Battese and Coelli (1988) show that 
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௜ሻߝ|ሺ݁ି௨೔ܧ ൌ ݁ିሺఓ∗೔ା
భ
మ
ఙ∗మሻ

஍ቀ
ഋ∗೔
഑∗
ିఙ∗ቁ

஍ቀ
ഋ∗೔
഑∗
ቁ
															 (10) 

This estimator is bounded between 0 and 1, with a value of 1 indicating a fully 

efficient firm. Similar expressions for the JLMS (1982) and Battese and Coelli (1988) 

efficiency scores can be derived under the assumption that ݑ is exponential, truncated 

normal and Gamma (Kumbhakar and Lovell 2000). 

3.3. Stochastic Frontier and Panel Data 

Schmidt and Sickles (1984) mention three problems with cross-sectional models 

that are used to measure inefficiency. First, the ML method, used to estimate parameters 

and the inefficiency estimates using the JLMS formula, depends on distributional 

assumptions for the noise and the inefficiency components. Second, the technical 

inefficiency component has to be independent of the regressor(s) – an assumption that is 

unlikely to be true if firms maximize profit and inefficiency is known to the firm 

(Mundlak 1961). Third, the JLMS estimator is not consistent, in the sense that the 

conditional mean or mode of ሺߝ|ݑሻ never approaches ݑ as the number of firms (cross-

sectional units) approaches infinity. However, if we have panel data, some of these 

rigidities can be removed. However, to overcome some of these limitations, the panel 

models make other assumptions, some of which may or may not be realistic. 

If we consider a time-invariant technical inefficiency model – a case in which 

inefficiency is assumed to be constant over time and individual-specific – the 

unobservable individual effects of the classic panel data model is the base from which 

inefficiency is measured. The model can be expressed as 

௜௧ݕ ൌ ݉ሺ࢞௜௧, ሻߚ ൅   (11)																																											௜௧ߝ

௜௧ߝ                               ൌ 	 ௜ݑ												௜ݑ௜௧െݒ ൒ 0,																																								 

݅ ൌ 1,… ݐ			ܰ, ൌ 1,… , ܶ																	 

where ݉ሺ࢞௜௧,  ሻ is a linear in parameters function of the variables in the vector ࢞௜௧, andߚ

௜ݑ ൒ 0 is the time-invariant technical inefficiency of individual ݅. This model utilizes the 

panel feature of the data via ݑ௜ which is specific to an individual and does not change 

over time. The stochastic panel model with time-invariant inefficiency can be estimated 

under either the fixed effects or random effects framework (Wooldridge 2010). Which 

framework to select depends on the level of relationship one is willing to assume between 

inefficiency and the covariates of the model. Under the fixed effects framework, 

correlation is allowed between ࢞௜௧ and ݑ௜, whereas under the random effects framework, 



Environment for Development Mulwa and Kabubo-Mariara 

10 

no correlation is present between	࢞௜௧ and ݑ௜. Neither of these approaches requires 

distributional assumptions on ݑ௜ and are, thus, labeled as distribution-free approaches. In 

the fixed effects framework, we assume ݂ሺ. ሻ is linear in ࢞௜௧ (e.g., the log of input 

quantities in a translog production function model). Therefore, the time-invariant 

inefficiency panel data stochastic frontier panel model can then be written as 

௜௧ݕ ൌ ଴ߚ ൅ ࢞௜௧
ᇱ ࢼ ൅ ௜௧ݒ െ    (12)												௜ݑ

							ൌ ሺߚ଴ െ ௜ሻݑ ൅ ࢞௜௧
ᇱ ࢼ ൅                                                      																																										௜௧ݒ

							ൌ ሺߙ௜ሻ ൅ ࢞௜௧
ᇱ ࢼ ൅                                                      																																											௜௧ݒ

where 		ߙ௜ 	ൌ ଴ߚ െ  ௜ are allowed toߙ ௜ and thusݑ ,௜. Under the fixed effects frameworkݑ

have arbitrary correlation with 	࢞௜௧. The fixed effects panel methods yield consistent 

estimates of ࢼ, but ߙො௜ is a biased estimator of ݑ௜  because ݑ௜ ൒ 0 by construction. 

Nevertheless, after ߙො௜ is obtained, a simple transformation can be applied to recover 

ො௜ݑ ൒ 0, which will be consistent provided  ܶ ⟶ ∞. A disadvantage of the FE approach is 

that no other time-invariant variables, such as gender, region, soils, etc., can be included 

in 	࢞௜௧ because doing so entails perfect multicollinearity between ߙ௜	and the time-

invariant regressors. 

Under the Random Effects (RE) framework, it might be plausible to assume that 

 ࢞௜௧. When the assumption of no correlation between the	 ௜ is uncorrelated withߙ

covariates and firm inefficiency is indeed correct, then estimation of the stochastic 

frontier panel data model under the random effects framework provides more efficient 

estimates than estimation under the fixed effects framework. An important empirical 

advantage of the random effects framework is that time-invariant variables, such as 

gender, race, etc., may be included in the 	࢞௜௧ vector of explanatory variables without 

leading to collinearity with ߙ௜. 

Under the time-varying technical inefficiency models, the implication is that an 

inefficient DMU learns over time. Models in which the inefficiency effects are time-

varying are more general than the time-invariant models, in the sense that the time-

invariant models can be viewed as special cases of the time-varying models. Battese and 

Coelli (1992) propose a stochastic frontier production function for (unbalanced) panel 

data which has firm effects which are assumed to be distributed as truncated normal 

random variables, which are also permitted to vary systematically with time. The model 

may be expressed as: 

௜௧ݕ ൌ ଴ߚ ൅ ࢞௜௧
ᇱ ࢼ ൅ ௜௧ݒ െ ݅															,	௜௧ݑ ൌ 1,… ,ܰ, ݐ ൌ 1,… , ܶ					 (13) 
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where ݕ௜௧	is (the logarithm of) the production of the ݅௧௛  DMU in the time period ݐ; ࢞௜௧ is 

a vector of  input quantities of the ݅௧௛ DMU in the time period ࢼ ;ݐ is a vector of 

parameters to be estimated; ݒ௜௧ are random variables which are assumed to be ݅. ݅. ݀	 ∼

ܰሺ0, ௜௧ݑ  ௩ଶሻ, and independent of theߪ ൌ ௜݁ሺିఎݑ
ሺ௧ି்ሻሻ, where the ݑ௜ are non-negative 

random variables which are assumed to account for technical inefficiency in production 

and are assumed to be truncations at zero of the ݅. ݅. ݀	 ∼ ܰሺ0,  is a ߟ ௨ଶሻ  distribution; andߪ

parameter to be estimated. The panel of data need not be balanced. The imposition of one 

or more restrictions upon this model formulation can provide a number of the special 

cases of this particular model which have appeared in the literature.  For instance, setting 

 to be zero provides the time-invariant model set out in Battese and Coelli (1988). The ߟ

additional restriction of ߤ ൌ 0 reduces the model to the Pitt and Lee (1981) model. An 

additional restriction of ܶ ൌ 1  turns it into the original cross-sectional, half-normal 

formulation of Aigner et al. (1977). 

Depending on any particular application, a large number of model choices could 

be considered. For example, does one assume a half-normal distribution or the more 

general truncated normal distribution for the inefficiency effects? If panel data is 

available (as is our case), should one assume time-invariant or time-varying efficiencies?  

When such decisions must be made, it is recommended that a number of the alternative 

models be estimated and that a preferred model be selected using likelihood ratio tests.  

In addition, one can test whether any form of stochastic frontier production function is 

required at all by testing the significance of the ߛ parameter. If the null hypothesis, that ߛ 

equals zero, is accepted, this would indicate that ߪ௨ଶ is zero and the ݑ௜௧ term should be 

removed from the model, leaving a specification with parameters that can be consistently 

estimated using ordinary least squares. 

3.4. Modelling Exogenous Determinants of Inefficiency 

A question that is often asked is whether a DMU’s level of inefficiency is 

dependent upon observable characteristics and, if so, how should this relationship be 

modeled in the context of a stochastic frontier? At various points in time, researchers 

have deployed a simpler, two-step analysis to model the influence of specific covariates 

on firm-level inefficiency. Pitt and Lee (1981) were the first to implement this type of 

approach, albeit in a slightly different form. Ali and Flinn (1989), Kalirajan (1990), 

Bravo-Ureta and Rieger (1991), Wollni and Brümmer (2012) and many others followed 

this two-step approach. This approach constructs estimates of observation-specific 

inefficiency via the Jondrow et al. (1982) conditional mean in the first step, and then 
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regresses these inefficiency estimates on a vector of exogenous variables ࢠ௜ in a second 

step. A negative coefficient of the exogenous variable in the regression is taken as an 

indication that firms with larger values of the variables tend to have a lower level of 

inefficiency (i.e., they are more efficient).  

Criticisms against this two-step procedure have long pointed toward the biases 

that arise at various stages of the process; most prominently, the first stage model is 

misspecified (Battese and Coelli 1995). As explained in Wang and Schmidt (2002), if ࢞௜ 

and ࢠ௜ are correlated, then the first step of the two-step procedure suffers from omitted 

variable bias. Even when ࢞௜ and ࢠ௜  are uncorrelated, ignoring the dependence of the 

inefficiency on ࢠ௜ will cause the estimated first-step technical efficiency index to be 

underdispersed, so that the results of the second-step regression are likely to be biased 

downward. In conclusion, this two-step analysis method has no statistical merit and 

duplication of this approach should be avoided. 

The statistically acceptable one-step estimation method of investigating 

exogenous effects on inefficiency was first introduced in the truncated-normal model by 

Kumbhakar et al. (1991) and Reifschneider and Stevenson (1991). It was later deployed 

by Huang and Liu (1994) and Battese and Coelli (1995), each using slightly different 

algebraic forms for the pre-truncated parameterization of the mean function of ݑ௜. All 

these studies assume that the mean of the distribution of the pre-truncated ݑ௜ is a linear 

function of the exogenous variables under investigation. That is, they abandon the 

constant-mean assumption on ߤ, and assume, instead, that the mean is a linear function of 

some exogenous variables, that is, 

௜ߤ ൌ ࢏࢛ࢠ
ᇱ ࢛࣋		  (14) 

d ࢛࣋ is the corresponding coefficient vector As before, maximum likelihood estimation 

can be carried out to obtain estimates of ρu along with all other model parameters. The 

Battese and Coelli (1995) model is equivalent to the Kumbhakar et al. (1991) 

specification, with the exceptions that allocative efficiency is imposed, the first-order 

profit maximising conditions are removed, and panel data is permitted. The Battese and 

Coelli (1995) model specification which is used in this analysis may be expressed as 

௜௧ݕ ൌ ଴ߚ ൅ ࢞௜௧
ᇱ ࢼ ൅ ௜௧ݒ െ ݅															,	௜௧ݑ ൌ 1,… ,ܰ, ݐ ൌ 1,… , ܶ	  (15) 

where ݕ௜௧	is the log of the production of the ݅௧௛  DMU in the time period ݐ; ࢞௜௧ is a vector 

of  input quantities of the ݅௧௛ DMU in the time period ࢼ ;ݐ is a vector of parameters to be 

estimated; ݒ௜௧ are random variables which are assumed to be ݅. ݅. ݀	 ∼ ܰሺ0,  ௜௧ areݑ ;௩ଶሻߪ
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non-negative random variables which are assumed to account for technical inefficiency in 

production and are assumed to be ݅. ݅. ݀	 ∼ ܰሺߤ௜௧,  :௨ଶሻ  truncations at zero, withߪ

௜௧ߤ ൌ ௜௧ࢠ
ᇱ ࣋		  (16) 

where ࢠ௜௧ is a vector of variables which may influence the efficiency of a firm; and ࣋ is a 

vector of parameters to be estimated. 

4. Data  

4.1. Description 

This study used rural household survey data sets for the periods 2004, 2007, and 

2010. Tegemeo Institute of Agricultural Policy and Development, Egerton University 

conducted the surveys in collaboration with Michigan State University.1 The collected 

data were from 2,297, 1342 and 1313 households for the three years respectively, spread 

over 24 districts in Kenya. For our analysis, however, we used 3933 (1311 households 

per panel) from 22 districts across the country. The districts were drawn from six out of 

the eight provinces in the country. The selected districts cover four main agro-ecological 

zones, with sub-categorizations. These include coastal lowlands, lowlands, lower and 

upper midlands, and highlands (lower and upper). The districts vary in a range of agro-

climatic conditions (i.e., rainfall, temperature, drought conditions/precipitation-

evapotranspiration index, and elevation). The two districts which were dropped are 

located in the arid agro-ecological zones where crop production is hardly practiced 

(unless under irrigation) and the dominant activity is cattle ranching. The household data 

captures socio-economic characteristics including age, education, and household size. 

Household income sources, besides crop and livestock, include salary earning and 

individual business activities. 

The survey data was also complemented by data on climate variables, namely, the 

SPEI (Standardized Precipitation-Evapotranspiration Index), rainfall and temperature. 

The SPEI is a multi-scaler drought index based on climatic data, which takes into account 

both precipitation and potential evapotranspiration in determining drought. It captures the 

main impact of increased temperatures on water demand. The SPEI data was obtained 

from the Global SPEI database and covers the period between January 1901 and 

                                                 
1 http://www.tegemeo.org/. 
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December 2013 (Begueria and Vicente-Serrano 2013). Rainfall data was obtained from 

the CHIRPS (Climate Hazards Group InfraRed Precipitation with Stations) data archive. 

CHIRPS is a 30+ year quasi-global rainfall dataset, which incorporates satellite imagery 

with in-situ station data to create gridded rainfall time series for trend analysis and 

seasonal drought monitoring (Funk et al. 2014).  

Temperature data was sourced from the Global Historical Climatology Network 

version 2 data set and the Climate Anomaly Monitoring System (GHCN CAMS). GHCN 

CAMS is a high-resolution analysis of global land surface temperatures from 1948 to 

present, and captures most common temporal-spatial features in the observed climatology 

and anomaly fields over both regional and global domains (Fan and van den Dool 2008). 

In addition, we also included altitude (in metres above sea level or ‘masl’) as an indicator 

of elevation of the household. This is directly related to the agro-ecological zones, which 

are mainly classified based on altitude, rainfall, and temperature. Note that, in 2004, 

altitude readings were not taken, but this was done for the other panels. Altitude is, 

however, a time-invariant variable and the mean readings for 2007 and 2010 were 

assumed for 2004. 

The variables described in this section can be broadly classified into two: the 

production function variables, and the exogenous determinants of inefficiency. The 

descriptive statistics of all the variables used in our analysis are shown in the subsequent 

subsections. The analysis was done using “R” statistical software. 

4.2. Production Function Variables 

Farm outputs are captured in kilocalories per acre quantities, with an overall mean 

of 2739.87 kilocalories. This is a summation of all edible kilocalories produced in the 

respective farms. Farm inputs considered in the paper include seed, fertilizer, pesticides, 

herbicides, fungicides, insecticides, and labour. Due to aggregation challenges, seed for 

different crops, and different types of fertilizers, were converted into Kenyan shillings 

(Kshs) equivalents. An equivalent conversion was done for fungicides, herbicides, 

pesticides, and insecticides. These were then summed up as damage control (D/C) inputs. 

We also converted farm labour into man equivalent units (MEU). The descriptive 

statistics of the variables used in the first stage of analysis are shown in Table 1 below. In 

this stage, kilocalories produced per acre was used as the dependent variable. 
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Table 1. Production Function Output and Input Variables  

 Year 2004 2007 2010 Full Data 

 Variables Mean Std. Dev. Mean Std. Dev. Mean 
Std. 
Dev. Mean Std. Dev. 

KiloCal/Acre 2,653.26 1,662.21 2,895.99 1,557.78 2,670.37 1,591.38 2,739.87 1,607.78 

Seed cost (Ksh.) /Acre 178.32 178.60 221.81 194.85 280.18 195.82 226.77 194.40 

Fertilizer cost (Ksh.)/Acre 324.41 334.49 74.44 152.24 390.89 327.59 263.25 315.14 

D/C inputs costs (Ksh.) 
/Acre 

90.08 116.63 67.48 86.63 75.14 92.50 77.57 95.60 

Labour- Man Equiv. 
Units/Acre 

59.63 28.14 32.52 24.34 31.34 24.00 41.16 28.70 

 N 1311 1311 1311 3933 

4.3. Inefficiency Model Variables 

These are further classified into household characteristics and agro-ecological and 

climatic variables. Details of household characteristics are provided in Table 2. For the 

three panels combined, mean household age was about 59.28 years. About 43% of the 

households had persons who were employed and earning a salary outside of farm 

activities. The education level also varied over the years, with mean education being 6.5 

years. In addition, a majority (74%) of the household heads were members of social 

groups dealing with various social issues. Finally, female-headed households constituted 

25% of the total sample.  

Table 2. Household Descriptive Statistics by Year 

Year 2004 2007 2010 Full Data 

Variable Mean 
St. 
Dev. Mean 

St. 
Dev. Mean 

St. 
Dev. Mean 

St. 
Dev. 

Age 59.28 13.34 58.71 13.36 60.43 13.23 59.28 13.34 

Age Squared 3,692.15 1,604.57 3,624.96 1,597.73 3,826.51 1,610.97 3,692.15 1,604.57 

Female HH Head 0.25 0.43 0.24 0.43 0.27 0.44 0.25 0.43 

Salaried household 0.47 0.5 0.45 0.5 0.5 0.5 0.47 0.5 

Education (years) 6.46 4.77 6.44 4.74 6.51 4.85 6.46 4.77 

Dist. to Main Road 1.06 1.33 0.53 0.84 0.46 0.91 0.68 1.08 

Dist. to Extension 5.29 5.79 4.58 5.06 5.4 5.1 5.09 5.34 

Group membership 0.76 0.43 0.75 0.43 0.7 0.46 0.74 0.44 

 N 1311 1311 1311 3933 

Also considered in the analysis was altitude, which was selected to represent 

agro-ecological factors, while the other variables in Table 3 are climatic factors. Note that 
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altitude is same for all the years as a fixed effect, unlike temperature and precipitation 

which show variability over time. 

Table 3. Agro-Climatic Factors Descriptive Statistics by Year 

Year 2004 2007 2010 Full Data 

Statistic Mean 

St. 

Dev. Mean St. Dev. Mean 

St. 

Dev. Mean 

St. 

Dev. 

Altitude (masl) 1,620.80 485.37 1,620.80 485.37 1,620.80 485.37 1,620.80 485.37 

Peak Mean Rain  93.32 27.78 112.65 30.75 109.8 37.52 105.26 33.37 

Peak Mean Rain  

sq. 9,479.23 5,352.12 13,634.78 6,760.85 13,463.42 8,424.77 12,192.47 7,218.43 

Peak Mean SPEI  -0.78 0.37 0.97 0.4 0.2 0.5 0.16 0.8 

Peak Mean SPEI 

sq. 0.64 0.44 1.12 0.69 0.32 0.29 0.69 0.6 

Peak Mean 

Temp.  20.24 2.53 20.1 2.61 20.61 2.64 20.32 2.6 

Peak Mean 

Temp. sq. 416.12 106.48 410.97 
 

108.82 431.63 112.49 419.57 109.62 

5. Results and Discussion 

5.1. Farm Productive Efficiency  

Efficiency modelling was done using “R” statistical software. The first step in our 

stochastic frontier analysis was to determine which model – between Cobb-Douglas and 

translog – best fits our data. This was done by estimating the error components time-

invariant stochastic frontier (Batesse and Coelli 1992) using both Cobb-Douglas and 

translog production functions. The models were unrestricted, i.e., we did not impose any 

monotonicity or quasi-concavity restrictions. The mean efficiency score for the Translog 

function was 70.82 while that of the Cobb-Douglas function was 69.61. To determine 

which model fits our data best, we used the log likelihood ratio test, which is expressed as 

െ2ሺlnሾܮሺܪ଴ሻሿ െ lnሾܮሺܪଵሻሿ				  (17) 

where ܮሺܪ଴ሻ and ܮሺܪଵሻ are the values of the log likelihood functions under the null 

hypothesis (ܪ଴:	ߚଵଵ ൌ ଶଶߚ ൌ ଵଶߚ ൌ 0) and alternate hypothesis (ܪଵ:ܪ଴ ൌ  ሻ (Coelli݁ݏ݈ܽܨ

et al. 1998), i.e., we test that the extra ߚ௦ included in the translog model are not different 

from zero. From our analysis, the log likelihood value for Cobb-Douglas is -4310.3, 
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while that of the translog is -4269.3. The Chi-square value at 10 d.f. is 82.16, against a 

tabulated value of 18.31 at the 5% level of significance. We therefore rejected the null 

hypothesis and adapted the translog model as our model of choice. Having established 

that the translog model was the best fit to our data, we also estimated an error 

components time-variant translog model (Coelli et al. 1998) whose mean efficiency was 

71.66. Figures 1a, 1b and 1c show the distribution of efficiency scores in the three 

models. The efficiency scores distribution in the three models is similar, with most 

households in the 80% category. 

The estimates from the three models (Cobb-Douglas, translog time-invariant 

model and translog time-varying model) are shown in Table 4. Note that none of these 

models has monotonicity or quasi-concavity restrictions imposed. In the three models, the 

gamma parameter ሺߛሻ is significantly different from zero, indicating inefficiency. In 

addition, in the time-varying efficiency model, the effect of time is negative and 

significantly different from zero, indicating declining efficiency over time. This is 

supported by mean efficiencies from the time-varying inefficiency model, which were 

75.69, 71.79, and 67.50 for the periods 2004, 2007, and 2010, respectively. Therefore, 

estimating time-invariant inefficiency models would be erroneous as such a model would 

assume constancy of efficiency over time.  
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Figure 1a. Translog Time-Invariant Efficiency                   

 

Figure 1b. Cobb-Douglas Time-Invariant Efficiency 

 

Figure 1c. Translog Time-Varying Efficiency 
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Table 4. Model Estimates of Time-Invariant and Time-Varying Inefficiency Models 

Dependent variable: Log Kilo calories 

 VARIABLES 

Model 1 Model 2 Model 3 
 Time-invariant 

Cobb-Douglas 
Time-invariant 

Translog 
Time-varying 

Translog 

Constant 7.6521*** 7.9922*** 7.9803*** 
Log Seed 0.0519*** -0.0650** -0.0749** 
Log Fertilizer 0.0154** 0.0538** 0.0732** 
Log Other Inputs 0.0334*** 0.0626* 0.0532 
Log MEU 0.0190 -0.0276 -0.0191 
Log Seed Sq.  0.0133** 0.0163*** 
Log Seed * Log Fert.  0.0036 0.0045 

Log Seed * Log Other Inputs  0.0011 0.0019 

Log Seed * Log MEU  0.0171** 0.0178** 
Log Fert. Sq.  -0.0336*** -0.0349*** 

Log Fert. * Log Other Inputs  -0.0010 -0.0015 

Log Fert. * Log MEU  0.0182*** 0.0142** 
Log Other Inputs sq.  -0.0061 -0.0058 

Log Other Inputs * Log MEU  -0.0041 -0.0024 

Log MEU sq.  -0.0328** -0.0415** 
Sigma sq. 0.7102*** 0.6788*** 0.7618*** 
Gamma 0.3754*** 0.3520*** 0.4245*** 
Time   -0.1913*** 
Log Likelihood value -4310.33 -4269.25 -4262.31 

5.2. Determinants of Inefficiency  

Given evidence of time-varying efficiency, we estimated a technical inefficiency 

effects model (Coelli et al. 1998) which includes the exogenous determinants of technical 

inefficiency and also incorporates the time-varying aspect of inefficiency. This was 

estimated using a translog model with imposed monotonicity restrictions and exogenous 
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determinants of inefficiency, as discussed earlier. Note that quasi-concavity2 restrictions 

were not imposed, although, after imposing monotonicity, we tested for quasi-concavity, 

which held in our model. Table 5 presents the results of this model (with one model using 

rainfall and temperature as climate variables, and the other using SPEI as the climate 

variable). Note that a number of exogenous variables influence inefficiency, and 

variables with negative signs tend to decrease inefficiency while those with positive signs 

tend to increase inefficiency. For instance, in Model 1, salaried households, education, 

and membership in a social group are expected to decrease inefficiency. Increased 

rainfall has a negative sign, and hence it tends to decrease inefficiency. Therefore, 

households in areas receiving more rainfall are likely to be more efficient. In addition, 

temperature increases inefficiency and therefore is not favourable for agricultural 

production. SPEI has an inverted U-shaped relationship with inefficiency, with SPEI 

increasing inefficiency, but only to a certain point where it assumes a positive 

relationship, as shown by the negative sign of the quadratic form of SPEI. 

                                                 
2 Henningsen and Henning (2009) argue that there is not necessarily any technical rationale for production 
functions to be quasi-concave. They therefore suggest abstaining from imposing quasiconcavity when 
estimating (frontier) production functions. However, they propose checking for quasiconcavity after the 
econometric estimation because some standard results of microeconomic theory (e.g., convex input sets) do 
not hold in the case of non-quasiconcavity. 
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Table 5. Unrestricted Translog Technical Inefficiency Effects Models 

VARIABLES Model 4 Model 5 
Rainfall and Temperature SPEI 

Constant 8.1870*** 8.2170*** 
Log Seed -0.0396 -0.0494* 
Log Fertilizer 0.0619*** 0.0601** 
Log Other Inputs 0.0076 0.00001 
Log Labour (MEU) -0.0872* -0.0835* 
Log Seed Squared 0.0178*** 0.0185*** 
Log Seed * Log Fert. 0.0024 0.0024 
Log Seed * Log Other Inputs 0.0013 0.0021 
Log Seed * Log MEU 0.0051 0.0071 
Log Fert. Sq. -0.0277*** -0.0249*** 
Log Fert. * Log Other Inputs -0.0026 -0.0022 
Log Fert. * Log MEU 0.0131** 0.0124** 
Log Other Inputs Sq. 0.0062 0.0034 
Log Other Inputs * Log MEU 0.0017 0.0034 
Log MEU Sq. 0.0042 -0.0023 
Age 2.1597*** -22.8880** 
Age Sq. -0.0112*** 0.1960** 
House Hold Size 1.2767** 7.8233** 
Female Headed HH 15.4040*** 64.7850** 
Salaried H. Hold -1.2112*** 18.6000** 
Educ. In years -0.8264*** -7.9670** 
Dist. To Road 3.7975* 10.6700** 
Dist. To Extn. 1.6526** 9.9675** 
Member Soc. Grp -15.3110** -111.2400** 
Elevation (masl) 0.0090*** -0.0123* 
Mean Rain -95.2090** - 
Mean Temp 40.2020*** - 
SPEI - 22.0610** 
SPEI sq. - -328.7300** 
Sigma Sq. 116.4900** 462.4900** 
Gamma 0.9987*** 0.9997*** 

The same interpretation can be given to other non-climatic variables. The mean 

efficiency scores for these two models were 64.22 and 64.24 respectively and the 

distribution of these efficiencies are as shown in Figures 2a and 2b. The distributions of 

these models are similar and have more spread compared to the time-invariant and time-

varying models. 
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Figure 2a. Unrestricted Inefficiency Effect Model 1      

 

      Figure 2b. Unrestricted Inefficiency Effect Model 2 

 

5.3. Imposing Monotonicity in Technical Inefficiency Effects Model 

Monotonicity was imposed on these two models and the estimates from the 

resultant monotonic models are shown in Table 6. The coefficient “Fitted model” in both 

models comprises the combined effect of the coefficients of the production model. The 

other variables remain the same as in the unrestricted models. The climate variability 

(weather) factors have the correct signs in the monotonic models, although they are not 

significant. Most of the other variables in Model 2 (SPEI) are significant, and we can 

draw policy conclusions from this model.
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Table 6. Technical Inefficiency Effects Models with Imposed Monotonicity 

VARIABLES Model 6 Model 7 
(Rain and Temperature) (SPEI) 

Constant 0.12764 0.1379 
Fitted Model 0.98556*** 0.9840*** 
Age 1.87145 -4.4240*** 
Age sq. -0.00965 0.0382*** 
Household Size 0.90734* 1.6783** 
Female Headed HH 14.30459 11.2730*** 
Salaried H. Hold -2.17408 2.4380 
Educ. In years -0.50815 -1.4309** 
Dist. To Road 3.07179 2.5985* 
Dist. To Extn. 1.47502 1.9713** 
Member Soc. Grp -10.99495 -21.6590** 
Elevation (masl) 0.00332*** -0.0045** 
Mean Rain -81.86291 - 
Mean Temp 37.11204 - 
SPEI - 0.6006 
SPEI sq. - -71.4850*** 
Sigma Sq. 99.43130 93.4540*** 
Gamma 0.99849*** 0.9984*** 

The adjusted coefficients of the models with imposed monotonicity are as shown 

in Table 7. These are compared with those from the unrestricted models (without 

monotonicity). These coefficients are different and therefore making inferences or 

policies from non-monotonic production functions may result in different interpretations.
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Table 7. Adjusted Coefficients for Models with Imposed  
Monotonicity and Unrestricted Models 

 Models with Monotonicity Unrestricted Models 
 
VARIABLES 

Model 8 Model 9 Model 10 Model 11 
Rainfall and 

Temperature 
SPEI Rainfall and 

Temperature 
SPEI 

Constant 7.9123 7.8971 8.1870 8.2170 
Log Seed 0.0220 0.0229 -0.0396 -0.0494 
Log Fertilizer 0.0445 0.0507 0.0619 0.0601 
Log Other Inputs 0.0064 0.0048 0.0076 0.00001 
Log MEU 0.0022 0.0006 -0.0872 -0.0835 
Log Seed Sq. 0.0063 0.0064 0.0178 0.0185 
Log Seed * Log Fert. 0.0000 0.0001 0.0024 0.0024 
Log Seed * Log Other Inputs 0.0014 0.0019 0.0013 0.0021 
Log Seed * Log MEU 0.0004 0.0001 0.0051 0.0071 
Log Fert. Sq. -0.0062 -0.0068 -0.0277 -0.0249 
Log Fert. * Log Other Inputs -0.0002 -0.0006 -0.0026 -0.0022 
Log Fert. * Log MEU 0.0002 0.0002 0.0131 0.0124 
Log Other Inputs sq. -0.0004 0.0004 0.0062 0.0034 
Log Other Inputs * Log MEU 0.0034 0.0027 0.0017 0.0034 
Log MEU sq. -0.0003 -0.0001 0.0042 -0.0023 

The efficiency scores of these models are as shown in Figures 3a and 3b. The 

mean efficiencies are 63.67 and 63.91, respectively. These efficiencies are marginally 

higher than those of the unrestricted models, but statistically not different. The dispersion 

of the scores is also very similar to that of the unrestricted models. The implication is that 

adjusting for monotonicity gives the model grounding in economic theory and the results 

obtained from the model are more reliable than those from unrestricted models. The 

efficiency scores and dispersion are not very different from the unrestricted model, but 

the coefficients are different. 



Environment for Development Mulwa and Kabubo-Mariara 

25 

Figure 3a. Restricted Inefficiency Effects Model 1 

 

      Figure 3b. Restricted Inefficiency Effects Model 2 

 

 

6. Conclusions and Recommendations 

In this analysis, we have demonstrated how efficiency can be estimated from a 

monotonic translog frontier model, an approach that has not been applied in most 

efficiency studies. The data used were panel data from three waves, and exogenous 

determinants of efficiency were included in the model. From the results, farmers in 

Kenya are, on average, 63% efficient and thus could expand output by about 37% and 

still use the same level of inputs. Therefore, even without utilizing more seed, fertilizer, 

labour and damage control inputs, it is feasible for farmers to significantly expand farm 

level production, and hence efficiency. However, this will be determined by a number of 
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exogenous variables, which are climatic, agro-ecological, and household factors. Climatic 

variability factors such as higher rainfall tend to decrease inefficiency, while increased 

temperature increases inefficiency. From a policy perspective, these can be addressed 

though planned or autonomous adaptation of technologies such as improved seed and 

irrigation.  

Some household factors do influence inefficiency, either positively or negatively. 

While some of them can be addressed through policy, others are more or less fixed in the 

short term. The quasi-fixed factors such as education tend to decrease inefficiency, while 

household size increases inefficiency. Addressing these from a policy perspective would 

require long-term policy decisions such as investments in education and family planning. 

Age of the household head tends to decrease inefficiency, and it is expected that older, 

experienced farmers are more efficient. Targeting therefore needs to be focused on the 

younger farmers, so as to train them on climate change and variability adaptation 

techniques, and also good agronomic practices. In addition, some traditional knowledge 

can be borrowed from the older farmers in tackling climate change and variability. 

Membership in farmer groups is a measure of social capital and decreases inefficiency. 

Farmer groups and other groups could therefore be a good entry point of introducing 

adaptation and other farming techniques. Distance to extension agents tends to increase 

inefficiency, and farmers who are farther from extension agents tend to be more 

inefficient. This could be explained by their limited access to extension due to distance. 

This can be addressed by increasing extension funding from national and county 

governments so as to increase the number of extension agents at county levels. County 

governments can also facilitate extension agents and ensure that public extension services 

are reaching all households in the respective counties. 
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Appendix 

Appendix 1: Variables Used in the Model 

Production function Exogenous inefficiency determinants 
 

Dependent variable   
  Production variables 

 
Household  
Variables 

Climate  
Variables 

Agro-Ecological  
variable 

Kilocalories/Acre 
 

Seed cost Age Peak Mean rainfall Altitude (masl) 

  Fertilizer cost Age squared Peak Mean rainfall sq.  

  Damage control inputs costs  Household size Peak Mean SPEI  

  Labour (MEU)  Female-headed  Peak Mean SPEI sq.  

  Seed cost  Salaried households  Peak Mean temp.  

   Education Peak Mean temp. sq.  

   Distance to main road   

   Distance to extension   

   Member of social group   

 

 


