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ABSTRACT 
 
This thesis presents research aimed at forwarding an understanding of machine learning methods as 
a method of studying complex matrices and environmental phenomena. A number of machine 
learning methods in the form of linear projection algorithms and statistical experimental designs were 
applied for qualitative analysis of different matrices. The used linear projection algorithms included 
principal component analysis (PCA), partial least squares (PLS), orthogonal partial least squares 
(OPLS), and transposed orthogonal partial least squared (T-OPLS). Several different statistical 
designs of experiments (DoE) were also implemented, including face-centred composite design 
(CCF), simplex mixture design, and definitive screening (DS) design. The analysed matrices included 
mammalian cells, wood, and a protein mixture. In addition to biological matrices, this work also 
presents research aimed at forming a multivariate understanding of a specific environmental 
phenomenon, namely the biogenic production of volatile halogenated organic carbons. Through the 
above enquiries, several challenges that exist in machine learning were examined. 

The application of several linear projection algorithms for the spectral interpretation of hyperspectral 
images of human blood cells and PC12 cell line from rats was investigated when applied for spectral 
interpretation close to the detection limit. The achieved results revealed the benefits and the 
shortcomings of T-OPLS under such conditions. A deepened understanding of the T-OPLS 
algorithm was achieved by examining a protein-buffer mixture. The thesis provides therefore the first 
extensive examination of this algorithm and its performance in the analysis of nonlinear, co-
dependent data. Also, the research presented here provided an extensive report on how linear 
projection algorithms with or without DoE may contribute to qualitative interpretation of nonlinear 
spectroscopic data. 

A simplex mixture design and PLS were used to successfully quantify polyethylene glycol (PEG) in 
waterlogged archaeological wood. This study contributed both to the field of wood conservation and 
to the understanding of the performance of the used machine learning methods. Lastly, the biogenic 
production of volatile halogenated organic compounds (VHOCs) was examined. The reported 
research in this thesis was the first of its kind to involve DoE in the field of biogenic VHOC 
production. The acquired results indicate that previously reported formation mechanisms of VHOC 
were dependent on several abiotic factors, making the connection between those factors and the 
formation of VHOCs more complicated than had been previously assumed. By examining the 
biogenic VHOC formation multivariatly for the first time thus contributed to a deeper understanding 
of the formation of VHOCs and also emphasized the need for multivariate approaches, in 
particularly DoE, in any future examinations.  
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waterlogged archaeological wood, volatile halogenated organic carbons, marine algae, design of 
experiments, orthogonal partial least squares, principal component analysis.  
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ANN – artificial neural networks 
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BThB – bromothymol blue 

CCD – charges coupled device 

CCF – face-centred composite design 

C-VBPO – C. officinalis vanadium 
bromoperoxidase 

DA – discriminant analysis 

DFT – density functional theory 

DMEM – Dulbecco’s modified Eagle’s 
medium 

DMS – dimethyl sulphide 

DMSP – dimethylsulfoniopropionate  

DoE – design of experiments 

DOP - dopamine 

DOX – doxorubicin  

DS – definitive screening design 

ECD – electron capture detector 

EDA – exploratory data analysis 

FADH2 – flavin adenine dinucleotide 
hydroquinone 

FF – full factorial design 

F-HG – flavin-dependent halogenase 

GC – gas chromatography 

HEPES – 4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid 

HI-HPO – heme iron dependent 
haloperoxidases 

HPO – cofactor-free haloperoxidase 

IS – internal standard 

IUPAC – International Union for Pure and 
Applied Chemistry 

LOD – limit of detection 

LSPR – localised surface plasmon resonance 

MBN – 4-mercaptobenzonitrile 

MBN – 4-mercapto-benzonitrile 

MCR – multiple curve resolution 

MIMS – membrane inlet mass spectrometry 

MLR – multiple linear regression 

MSC – multiplicative scatter correction 

MWL – milled wood lignin 

NADPH – nicotinamide adenine dinucleotide 
phosphate  

NAS – net analyte signal 
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RCF – rolling circle filter 

RMSE – root mean square error 

ROS – reactive oxygen species 

RSD – relative standard deviation 

RW – recent wood 

SAM – self-assembled monolayer 

SAM-S-HG – S-adenosyl-methionine 
dependent methyl halogenase 

SEM – scanning electron microscopy 
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SNR – signal-to-noise ratio 

SNV – standard normal variance  

TEM – transmission electron microscopy 

ThB – thymol blue 

TOF-SIMS – time-of-flight secondary ion 
mass spectroscopy 

T-OPLS – transposed orthogonal partial least 
squares 

TP – target projection 

T-PLS – target partial least squares 

TrB – trypan blue 

UV – unit variance  
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V-ClPO – vanadium chloroperoxidase 

VHOC – volatile halogenated organic carbons 

V-HPO – vanadium dependent 
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V-IPO – vanadium iodoperoxidase 
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GLOSSARY 
 

Allelopathy– a phenomenon in which an organism produced biochemical compounds to influence 
the growth, survival, and reproduction of other organisms. 

Anexic – the state of a culture where the species present is uncontaminated by any other organisms. 

Apoplast – in plant cells, apoplast is the name of the cell walls combined with the waterfound in 
them. It is found outside the plasma membrane. 

Apoptosis – “programmed” cell death, or cell “suicide”.  

Cytoplasm – all components within a cell which are enclosed by cell membrane. Cell nucleus is not 
included into the definition. 

Cytosol – the liquid inside the cells and is a part of the cytoplasm. 

Cytostatic drug – a drug that inhibints cell proliferation and growth. 

Efflux pump – protein responsible for moving unwanted compounds out of cells. They are present 
in the cell membrane. 

Endocytosis – engulfment of extracellular matter. The term encomapasses phagocytosis (uptake of 
solids) and pinocytosis (uptake of liquids). 

Genotype – the organim’s genetic traits and is one of the factors comprising a phenotype. 
Commonly refers to a specific characteristic, e.g. metabolism.  

Genus (plural genera) - taxonomic rank used in biological classification of organisms. It is followed 
by classification into species. 

Granulocytes -  polymorphonuclear leukocytes, which are characterised by a multi-lobed nucleus. 
Granulocytes include neutrophils, basophils, and eosinophils. 

Heteroscedascicity – unequal variability scatter. It is described by residuals.  

Heterotrophic – an organism which cannot produce its energy resources. 

Leukocytes – a collective denomination of white blood cells that include granulocytes and 
mononuclear leukocytes.  

Meristoderm – a layer on the surface of brown algae. 

Mesocosm – a field experimental setup where natural phenomena are examined under controlled 
conditions. It is a compromise between controlled laboratory experiments and field surveys. 
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Mononuclear leukocytes – white blood cells that contain a one-lobed, non-segmented nucleus. 
This class of leukocytes includes monocytes and lymphocytes.  

Morphology – an organism’s form and structure. 

Motility – an organism’s movement. 

Neoplastic – description of abnormal tissue growth, i.e. a tumour.  

Order – taxonomic rank used in biological classification of organisms. The classification by order is 
then followed by a classification by family, genus, and species. 

Peripheral blood – the blood circulating through heart and blood vessles. Contains, apart from 
leukocytes, red blood cells, thrombocytes, and plasma.  

Phagocytosis – engulfment of solid materials by cells, e.g. nanoparticles or bacteria.  

Pharmacogenomics – the discipline studying how genes influence the respose to drugs. 

Phenotype – the variation of observable characteristics of an organism, with reference to the 
organism as a whole or a specific trait. Is insfluenced both by heriditary traits, i.e. genotype, and also 
environmental factors.  

Phyllym (plural phyla) – taxonomic rank used in biological classification of organisms. It is 
followed by class and then order (see definition of order above). 

Plasma (blood) – the component of blood that carries blood cells.  

Polymorphism – the occurance of different phenotypes in a population of species. 

Strain – a genetic subtype in microbiological organisms. 

Taxon (plural taxa) – a unit formed by a group of at least one population of an organism. 

Thallus (plural thalli) – undifferentiated tissue of a multicellular non-moving organism, e.g. algae. 

Turnover number – the number of enzymatic conversion of substrates per second at a single 
catalytic site 

Viability – within this chapter the term refers to the survivability of cells.  

Zygote – eukaryotic cell formed through fertilisation two gamets, e.g. a sperm and an egg.  
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1. INTRODUCTION 
 
During the Faraday Discussions held in Edinburgh in 2019, Johan Trygg1 stated: 

The challenge is not in data collection but in maximising information in data and transforming data into 
information, knowledge and wisdom. 

 
With this quote, he emphasises that the challenges analysts face today have primarily to do with the 
extraction of relevant information from data. Although data acquisition, especially that of high-
quality data, remains a challenge, it has nevertheless become easier to generate over the last decade, 
both with respect to quality and abundance. Traditionally, various univariate statistical approaches 
have been (and still are) the most basic tool used by analytical chemists to analyse and validate data. 
However, as the analytical methods become more sophisticated and generate more complex data, 
classical statistics comes short. The decomposition and interpretation of high-dimensional data has 
therefore created a need for tools that can accommodate an increase in complexity. Thus, machine 
learning methods provided some of the tools required for the interpretation of complex data. 

Machine learning (which also encompasses multivariate data analysis and chemometrics) can be seen 
as the study of algorithmic and statistical model-based solutions that aim to classify the information 
within data into patterns or to predict behaviour in a system based on a priori information. Interest in 
the application of machine learning methods in chemistry arose from the realisation that traditional 
univariate statistics were inadequate to describe chemical systems, which often were multivariate2. 
This paradigm shift occurred in the late 1960s, resulting in the first analytical publication dedicated to 
pattern recognition3. Finally, Svante Wold coined the term ‘chemometrics’4-6∗ for these machine 
learning methods for extracting chemical information from complex data – a term with which the 
reader will perhaps be more familiar with.  

Chemometric methods were introduced from several sources into analytical chemistry. The first 
historical development occurred in the early twentieth century when quantitative analysis and 
analytical figures of merit (i.e. accuracy, sensitivity, etc.) became integral parts of the analytical 
discipline.  The second push for chemometrics came in the 1960s through 1970’s, when a number of 
theoretical chemometric papers appeared3, 8-12, some of which were dedicated to the determination of 
the number of components in spectroscopic data. A third influence came from the pioneers of 
applied statistics in the 1920s and 1930s, Pearson and Fisher13, who inspired the modern way of 
thinking about multivariate analysis. For instance, Pearson14, and later Fisher and McKenzie15, were 
among the first to formulate the modern definition of what is today called principal component 
analysis (PCA)16 – a data exploratory analysis method broadly applied in analytical chemistry and 

                                                             
∗ Chemometrics, although a part of the machine learning methods and statistics in analytical chemistry, is a 
much narrower definition7. For instance, chemometrics focus largely on multivariate computational methods. 
Despite that, this author will be using the terms machine learning and chemometrics interchangeably from this 
point. 
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other disciplines2, 17. 
 
Eventually, these numerous influences converged, and became chemometrics as an independent 
discipline in the 1980s2, with the appearance of the first dedicated journals, such as the Journal of 
Chemometrics7. Last but not least, the advent of increased computation power since the 1960’s18 has 
been, and still is, expanding the scope of data which machine learning can handle. This, in turn has 
allowed chemometrics to expand beyond the quantitative analytical chemistry into other disciplines 
such as forensics19, pharmaceutics20, metabolomics and metabonomics21-22, proteomics23, and cultural 
heritage studies24-25. 

Another integral part of modern chemometrics is the design of experiments (DoE). As more 
overlaps between statistics and chemistry occurred, the idea of applying experimental design was 
promoted, originally focusing on process optimisation. The principles behind statistical DoE had 
already been established already in the 18th and 19th centuries2; however, the first appearance of 
formalised DoE in chemistry occurred during the early years of the Second World War7, with first 
mentions in literature occurring after the war26. The rationale for introducing DoE into analytical 
chemistry was, again, based on the advantage of considering chemical systems as multivariate rather 
than as univariate. To be precise; the different factors in a chemical system interact, so, designing 
experiments where one factor was varied at a time could lead to erroneous optima. Another 
advantage lies in the reduction of resource consumption by extracting more information from fewer 
experimental runs2, 27.  

In this thesis, the machine learning has been applied to the analysis of biological matrices (see 
Chapters in Part I) and of an environmental phenomenon (see chapters in Part II). The qualitative 
aspect of machine learning presented here relates to data mining, data exploratory analysis, and to 
discriminatory analysis of multivariate data. In the case of quantitative enquiries, machine learning 
was applied as a means of multivariate calibration. However, multivariate calibration methods were 
also utilised in an exploratory capacity. Furthermore, DoE has been applied in several cases (see 
Chapters 2, 3, and 4). In the sections that follow, the reader will be made acquainted with the 
rationale behind the presented research as well as introduced to the theory related to the methods 
applied throughout this work. 
 

1.1 ASSUMPTIONS BEHIND THE APPLICATION OF MACHINE LEARNING  
 
As machine learning approaches have their roots in statistics, there are several ways of looking at 
how data analysis ought to be carried out. From a statistical point of view, many machine learning 
methods, as they are used in chemistry, are perceived not to hold up to scrutiny as the application of 
machine learning in analytical disciplines is of practical character28. It is therefore important to clarify 
which assumptions guided the work behind this thesis.  

17 
 

Statistical approaches in modern statistics can be roughly divided into three groups; classical, 
Bayesian, and exploratory data analysis (EDA). All approaches start in a similar way with postulating 
a scientific enquiry and all end in a conclusion. However, the intermediate steps differ29.  

The so-called classical data analysis approach first postulates a problem, then collects data, creates a 
model, analyses the model, and then draws conclusions. Put differently, the next step after data 
collection is the imposition of a model, followed by estimation and analysis. 

Another approach is Bayesian data analysis. First, a problem is defined and data is collected. Then, a 
model is generated based on the collected data, followed by the application of a prior distribution. 
Prior distribution means the application of the analyst’s own a priori knowledge to the data, thus the 
models are shaped into what they ‘ought’ to be. For example, the variables in the data can be 
weighted prior to modelling. Finally, analysis is performed and conclusions are drawn.  

The last type of approach is called exploratory data analysis (EDA) and is the ‘philosophy’ used in 
this thesis. EDA starts with posing a scientific enquiry, followed by data collection, analysis, and the 
generation of models, from all of which conclusions are drawn. The most significant difference 
between Bayesian and classical approaches compared to EDA is therefore that the former make a 
priori assumptions, meaning that the conclusions drawn become dependent on the validity of the a 
priori assumption. Put differently, the data is not manipulated in any way before it is examined. 
Instead, the EDA approach is more direct allowing data to display its inherent structure, making it 
less objective♠, yet more intuitive and suggestive for modelling data29.  

In this thesis, the guiding assumptions for analysis are those of EDA. Although the research 
presented here will use algorithms which are inherently classical (e.g. such as partial least squares, 
PLS), all of the modelling is guided by the data itself. This means, for instance, that the application of 
exploratory algorithms always comes before the application of algorithms which need a priori 
assumptions. In addition, multivariate calibration algorithms have been, for the most part, used as 
tools for qualitative analysis rather than for the prediction of unknowns. 
 

1.2 THE ADVANTAGES OF MULTIVARIATE METHODS 
 
In chemometrics, the data is often considered as multivariate instead of univariate, which brings 
about several advantages for an analyst. If the data input is complex and large, univariate approaches 
may give an oversimplified view of the system being studied, giving rise to false positives and false 
negatives. Further, univariate methods cannot detect important relationships and synergies between 
variables that may be hidden in the data. This is due to the fact that univariate approaches tend to 
treat variables as being independent of each other, ergo, co-dependency is ignored. In contrast, 
multivariate methods do allow for the isolation of correlating variables and also help identify which 
                                                             
♠ To call upon Gaukroger30, what sciences require from the notion of objectivity is not absolute verisimilitude of reality; 
rather, what is sought is the reliability of interpretation. In that sense, all three approaches provide tools for such trained 
‘objective’  judgements31.   
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negatives. Further, univariate methods cannot detect important relationships and synergies between 
variables that may be hidden in the data. This is due to the fact that univariate approaches tend to 
treat variables as being independent of each other, ergo, co-dependency is ignored. In contrast, 
multivariate methods do allow for the isolation of correlating variables and also help identify which 
                                                             
♠ To call upon Gaukroger30, what sciences require from the notion of objectivity is not absolute verisimilitude of reality; 
rather, what is sought is the reliability of interpretation. In that sense, all three approaches provide tools for such trained 
‘objective’  judgements31.   
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variables contribute most to the variability in the data32-33. In addition, some machine learning 
methods allow for dimensionality reduction, i.e. the many variables in the data set can be reduced to 
a few new variables called latent variables, which carry the main information from all original 
variables34. This reduction in turn makes it easier to visualise large data sets and facilitates a deeper 
understanding of the experimental data. Another advantage lies in the noise reduction achieved by 
using more redundant measurements of the same phenomenon.  

Further, machine learning encompasses techniques focusing on multivariate calibration. One of the 
objectives is to reduce the number of dependent variables that need to be measured33, i.e. responses 
that can be predicted from independent variables. The ultimate goal of multivariate calibration is to 
model a relationship between a set of measured variables and the property one wishes to predict33. 
The most common quantitative example of a dependent variable used in chemistry is the 
concentration of the analyte in unknown samples. Lastly, in similarity to exploratory analyses, 
multivariate calibration models allow for detection of outliers based on both graphical means and on 
a set of statistical assumptions35. 
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2. THESIS DISPOSITION 
 

In the sections below, the reader will be made acquainted with the instrumental and machine learning 
methods used by this author. 

Thereafter, this thesis is split into two parts. Two of the chapters contained in Part I of the thesis 
concern themselves with Raman spectroscopic analysis of, arguably, one the most complex matrices 
an analyst may work with - those of biological origin; human blood cells (Chapter 1), and 
waterlogged archaeological wood (Chapter 2). What unifies the research presented in Part I is the aim 
of resolving and clarifying a number of issues in the Raman spectroscopic analysis of complex 
matrices and mixtures, such as nonlinearity and non-selectivity. Chapter 2 applies DoE of different 
complexity and all chapters in Part I include the utilisation of multivariate projection algorithms. 

In Part II, the methods applied were instead focused on examining of the biogenic production of 
volatile halogenated organic carbons (VHOCs) by temperate marine algae (Chapter 4). In addition, 
Chapter 3 examines the enzyme responsible for VHOC production with Raman spectroscopy, 
thereby creating a bridge between the challenges faced in Chapters 1 and 2. VHOC production has 
been studied extensively in earlier research, especially with gas chromatography, but the research field 
concerned with these compounds largely focused on univariate approaches. The chapters in Part II 
therefore attempt to capture the complex nature of VHOC production via the application of 
multivariate machine learning methods.  

The thesis closes with a discussion of what has been achieved during the author’s research, and how 
it paves way for the future societal and scientific contributions. At the beginning of this thesis, the 
reader may also find a list of abbreviations and a glossary, the latter containing vocabulary 
uncommon to the field of analytical chemistry. 
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3. METHODOLOGY OVERVIEW 
 

To consult the statistician after an experiment is finished is often merely to ask him to conduct a post 
mortem examination. He can perhaps say what the experiment died of.  

R. A. Fisher36 

In the sections that follow, the reader will be introduced into the chemometric methods used 
throughout this thesis. The analytical methods applied as well as the theory concerning specific 
analytes can be found in the introductory sections of Part I and Part II. 
  

3.1 DESIGN OF EXPERIMENTS 
 
A design can be the very first step towards the creation of reproducible and robust methods. A 
designed mathematical space in which experiments are positioned can therefore provide information 
on how sensitive various responses are to variation in experimental factors, as well as being of 
assistance in identifying factors that have the greatest influence on the studied system. In a design, all 
of the studied factors are varied simultaneously in such way as to capture as much variation as 
possible while reducing the number of samples37. This maximization of variation makes the design of 
experiments a suitable first step if one is to work with multivariate analysis at a later stage.  

A prerequisite for a successful design is the analysts’ familiarity with the subject matter, a process 
often overlooked in literature. The familiarisation process may include steps such as trial runs to 
evaluate if an experiment can be run. Another important part of the process is to be able to set the 
relevant ranges for the levels in a design, by, for example, using mathematical estimations or by 
establishing lower and upper limits of detection (LODmin and LODmax) for the selected instrument. 

The aim of performing an experimental design can have several purposes. In the early stages of an 
investigation, it is possible to screen for important factors that affect the system and processes. In 
such designs, the focus lies on identifying (without a priori knowledge) key factors. Within the work 
the author of this thesis did, the majority of the implemented designs were of the screening type as 
such design usually requires fewer experimental runs to generate detailed information. An 
optimization design, on other hand, is often applied after a screening design, which helped to select 
the factors affecting one’s system. Lastly, when optimization has been performed, robustness testing 
is applied to minimize variations that stem from sources beyond the control of the chemist, i.e. noise. 
In other words, robustness testing aims to minimize random errors. 
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3.1.1 FULL FACTORIAL DESIGN (FF) 
 

The simplest screening designs are the so-called 2k factorial design, where 2 represents the two levels 
assigned to each factor – high and low (+1, -1) – and k corresponds to the number of factors 
considered in the design. Thus if the design considers three factors, the resulting number of 
experimental runs will be eight (23). The factors can be qualitative or quantitative27. The full factorial 
2k (FF) design allows for the computation of both the main effects (linear terms, Xi) and the two-
factor interaction effects (cross-terms, XiXj) without any a priori assumptions38, and in turn avoids 
confounding between factors (Equation 1). FF design is an orthogonal design method, which means 
that the scalar product of the columns of any two factors is zero38.  
 

𝑌𝑌 = 𝑏𝑏0 + 𝑏𝑏1𝑋𝑋1 +  𝑏𝑏2𝑋𝑋2 + 𝑏𝑏3𝑋𝑋3 +  𝑏𝑏1𝑥𝑥2𝑋𝑋1𝑋𝑋2 +  𝑏𝑏1𝑥𝑥3𝑋𝑋1𝑋𝑋3 +  𝑏𝑏2𝑥𝑥3𝑋𝑋2𝑋𝑋3 (Eq. 1) 
 

In the equation above, the response Y is acquired as the sum of one constant term (b0), three linear 
terms (b1X1, b2X2, b3X3), three two-factor cross-terms (b1x2X1X2, b1x3X1X3, b2x3X2X3), which leads to a 
23 design. An example of a 23 design is illustrated graphically in Figure 1, which is a representation of 
Equation 1.  

 

Figure 1. Graphical representation of a full factorial (FF) design space with two levels and three factors, i.e. a 23 design. 
The factors are X1, X2, and X3. The (-1) and (+1) stand for the two levels of the design, where (-1) is the low level of a 
factor and (+1) is the high level of a factor. 
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However, if the relationship between the response and factors is not linear, the 2k designs cannot 
adequately describe the behaviour of the studied system. For that purpose there are designs 
presented below which account for quadratic terms (Xi

2). 

The issue with FF arises when the number of factors in the design space starts to increase. For 
instance, a 27 FF design will end up in 128 experiments, which may prove impractical. This factor 
redundancy can be amended with fractional FF designs. By using a fractional FF one assumes that 
not all factors and factor interactions are relevant because they are of negligible size. It is common, 
for instance, that linear terms have more impact than two- and –three factor interactions. Fractional 
FF designs reduce therefore the number of runs and consider primarily main factor effects and two-
factor interaction effects. An example of a fractional FF is one-half fractional FF, 2k-1. The 
disadvantage that may arise is confounding effects, for example the effects of three-factor 
interactions may become confounded with main linear effects38. An alternative way to minimize the 
number of experiments is to calculate quadratic design spaces (see examples in sections 3.1.2 and 
3.1.4). 
 

3.1.2 FACE-CENTRED COMPOSITE DESIGN (CCF) 
 
Modelling nonlinear data produces curved design spaces. In such cases, designs based on nonlinear 
functions are given preference and include quadratic terms (Xi

2), in addition to the linear terms (Xi), 
and cross-terms (XiXj) present in linear designs. Quadratic terms allow for the identification of 
variables causing the design curvature, while cross-terms highlight synergy between different 
variables27. It could be said that with a design that allows for quadratic modelling, the nonlinearities 
are revealed directly, if they are present, due to the mathematical layout of the design.  

In general, the central composite designs enable the estimation of the constant term, linear terms, 
cross-terms, and quadratic terms27 between two or more factors (Equation 2 represents a two-factor 
design built on X1 and X2) 

 

𝑌𝑌 = 𝑏𝑏0 + 𝑏𝑏1𝑋𝑋1 +  𝑏𝑏2𝑋𝑋2 +  𝑏𝑏1𝑏𝑏2𝑋𝑋1𝑋𝑋2 +  𝑏𝑏1𝑥𝑥2𝑋𝑋1𝑋𝑋2 +  𝑏𝑏1𝑥𝑥1𝑋𝑋12 +  𝑏𝑏2𝑥𝑥2𝑋𝑋22   (Eq. 2) 

  

With standardized data (as in the software used in this thesis), the linear coefficient Xi describes the 
positive or negative slope at the origin, i.e. the middle of the standardized scales. The quadratic 
coefficients Xi

2 describe instead the depth of the valley or height of the peak. When the curve is 
pulled down to form a valley (apex at bottom) this is the convex state. The convex state has positive 
coefficients for quadratic terms. When the curve is pulled up to form a peak (apex at top) this is the 
concave state. The concave state has negative coefficients for quadratic terms. An x-coefficient 
around 0 with a positive Xi² component indicates a valley in the middle of the data space. A larger or 
smaller x-coefficient with a positive Xi² component indicates that the middle of the data space is on a 
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slope down to the valley and it is likely that the bottom of the valley is not within the designed data 
space. When the data is plotted in the original, non-standardized coordinate system, the above 
discussion does not hold. When the original scale is desired instead it is recommended to plot a 
contour plot. 
 
An example of this can be found in Chapter 3, where multivariate analysis performed on face-
centred composite (CCF) designed space assisted in highlighting the nonlinear behaviour of the 
studied two-component system.  

 

 

Figure 2. Graphical representation of a face-centred composite (CCF) design in three dimensions (left) and two 
dimensions (right). The CCF design space is composed of points corresponding to corners in a two-level factorial design 
(blue), symmetrical star points positioned on the factor axes (red), and a repeated centre point (yellow). Factor points are 
positioned in the corners of the factorial square, and star points are located on the face of each side of the factorial space 
so that the distance from the centre of the design space (α) equals 1.  
 

A CCF design is created from two designs; a FF design and a star design. In addition to the 
minimum and maximum levels (2k) assigned in a FF, the star design adds centre points and star 
points, which are the mean level of a factor. The values of the maximum and minimum levels are 
assigned as the distance from the star point. The FF backbone of this design reduces the number of 
necessary samples to achieve linear interpolation, which in turn allows for curvature estimation38. 
Each factor has therefore three levels assigned to it; high, low, and mean. Because of this, there are 
some experiments outside the original design space and some in the middle33, 38, with centre points 
providing a built-in estimate of pure error and an estimation of the uniformity of precision39.   

 

3.1.3 SIMPLEX MIXTURE DESIGN  
 
The designs presented so far were constructed using independent variables, i.e. each factor could be 
assigned a value range independently of other factors.  Mixture designs, on other hand, contain 
proportions of different factors, rather than independent factors27. This means that all mixture 
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factors must sum to 1 when expressed as fractions of the mixture. In this way, it is assumed that the 
measured response depends solely on the relative proportions, making the amount of the mixture 
irrelevant29, and this makes it possible to study larger systems37. This means that the effect of the 
absolute quantities of factor variation is not in focus; instead, it is the effect of the factor ratios27.  
 

𝑌𝑌 = 𝑏𝑏1𝑋𝑋1 +  𝑏𝑏2𝑋𝑋2 + 𝑏𝑏3𝑋𝑋3 +  𝑏𝑏1𝑥𝑥2𝑋𝑋1𝑋𝑋2 +  𝑏𝑏1𝑥𝑥3𝑋𝑋1𝑋𝑋3 + 𝑏𝑏2𝑥𝑥3𝑋𝑋2𝑋𝑋3 +  𝑏𝑏1𝑥𝑥2𝑥𝑥3𝑋𝑋1𝑋𝑋2𝑋𝑋3    (Eq. 3) 
 

Equation 3 illustrates that there is no constant and no quadratic factor, and is graphically 
represented by Figure 3. A mixture design is applied in Chapter 2. 
 

 

Figure 3. Graphical representation of a simplex mixture design for 3 factors (corners of the pyramid).  
 

3.1.4 DEFINITIVE SCREENING (DS) 
 

Definitive screening design (DS) is a screening design introduced by Jones and Nachtsheim40. It is 
distinguished from other screening designs in that it includes the estimation of quadratic effects, but 
with fewer experiments necessary. Most screening designs are 2k designs, where the main effects 
could become confounded with cross-terms. DS is instead a three level design which presents some 
advantages, such as the ability to study quadratic effects while allowing for cross-terms. However, DS 
requires that all experimental runs are present for successful modelling; should there be a need to 
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Equation 3 illustrates that there is no constant and no quadratic factor, and is graphically 
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Figure 3. Graphical representation of a simplex mixture design for 3 factors (corners of the pyramid).  
 

3.1.4 DEFINITIVE SCREENING (DS) 
 

Definitive screening design (DS) is a screening design introduced by Jones and Nachtsheim40. It is 
distinguished from other screening designs in that it includes the estimation of quadratic effects, but 
with fewer experiments necessary. Most screening designs are 2k designs, where the main effects 
could become confounded with cross-terms. DS is instead a three level design which presents some 
advantages, such as the ability to study quadratic effects while allowing for cross-terms. However, DS 
requires that all experimental runs are present for successful modelling; should there be a need to 
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remove an outlier experiment or if that experiment fails, the DS design confounds the different 
terms.  

 

3.2 PRINCIPAL COMPONENT ANALYSIS (PCA) 
 
Principal component analysis (PCA)16 is a projection method of exploratory analysis, which enables 
an overview of the data and projects the variation in data into fewer dimensions. More simply put, 
PCA is a multivariate analysis that focuses on simply ‘looking’ at the data and thus enables an easier 
visualisation of hidden structures33.  

The principle behind PCA was originally defined in 18th century by two separate mathematicians, 
Jordan and Beltrami41, but the method fell into obscurity until it was mentioned again by Pearson in 
190114, and Fisher and McKenzie in 192315. PCA became visible again in the 1960’s thanks to the 
work of Herman Wold42. During the ‘boom’ in chemometrics, PCA has become an established 
machine learning method in analytical chemistry, developed and advocated by, among others, Svante 
Wold16, and Bruce Kowalski43. PCA is an eigenvector based multivariate analysis♣ that makes it 
possible to see the intrinsic structure of the data in such way that it highlights the variation and co-
variation in the data. 

An input matrix X, also called an experimental matrix, is created that consists of variables (column 
vectors) and observations (row vectors). The observations are usually measured samples while the 
variables are the parameters describing the observations, such as pH, temperature, or m/z ratios♦. In 
other words, PCA, as well as other projection methods mentioned later on, starts with a two-way 
matrix (K x N), which gives rise to a first-order multivariate model41. PCA is an unsupervised 
method, which means that hidden structures can be found without the need of a priori assumption to 
execute calculation. As such, PCA is best suited for co-linear data to provide a broad picture of the 
data structure, but may miss small unique variation, especially if the sampling size is small. 

PCA projects the data to extract one or several latent variables or principal components (PCs), which 
are linear combinations that give an approximation of the variation in the data. This extraction is 
achieved with the help of the column vectors contained in the X matrix. The first PC represents the 
maximum variation in the data and is established through a least squares fit (Figure 4).  

                                                             
♣ The algorithms used in this thesis (PCA, OPLS, OPLS-DA, and T-OPLS) are all eigenvector based 
methods. Such methods also are called ‘factorial methods’, ‘two-way modelling’ and ‘linear projection 
algorithms’. The denomination ‘linear projection algorithms’ will be used predominantly in this text. 
♦ The column vectors in this thesis are instrument responses, either chromatographic (retention times, min) or 
spectroscopic (wavenumbers, cm-1).  In the literature, several denominations of these column vectors can be 
found: ‘variables’, ‘predictor variables’, ‘real variables’, and ‘manifest variables’. 
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Figure 4. Fitting of a PC on raw data. Observations, or the row vectors, of the X matrix are plotted in a space created by 
three variables (x1, x2, and x3), which are also called predictor variables. Obsi and obsj are observation in the data set, 
projected perpendicularly onto an arbitrary axis. The distance from the observation point to the axis represents the 
residual (ei) for that observation.  
 

In Figure 4, an arbitrary axis is drawn through the observation swarm. Each observation is the 
projected perpendicularly onto this axis. The perpendicular projected distance from the observation 
onto the line represents the residual ei. Through a least square fit, it is possible to find an axis that 
gives the best fit to all points, i.e. minimising the sum of all squared ei, Σ(ei)

2. This line represents the 
first PC describing the maximum variance in the data swarm33. Therefore, all observations contribute 
to the determination of a PC though their squared projection distances.  The second PC is 
orthogonal to the first PC and attempts to approximate the remaining variation, while the third PC is 
orthogonal to the second, and so on. As the calculation proceeds, PCs keep describing less and less 
of the remaining variation until they contain only noise44.  

The interpretation of the PCs is done through projections comprised of score (t) and loading (p) 
vectors. Each PC has corresponding t and p vectors, which together describe the variation. The 
scores are coordinates of observations in a K-dimensional coordinate space defined by PCs. The 
loadings on other hand are coefficients representing the linear combinations of variables for each 
PC33. The scores show how observations are located in relation to each other, while loadings 
illustrate the significance of each variable in relation to the directions in the score plot. The latter 
serves thus as a link between a PC and the variables41. By examining the loadings and scores in 
tandem, it becomes more feasible to represent many variables and their correlation44.  
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Figure 5. The projection of score (t) onto loading (p) vectors in a two dimensional space created from variables x1 and 
x2. (Left): Loading vectors p1 is drawn through the data swarm in the direction of maximum variance, then, a second 
loading vector p2 is drawn explaining the second-largest variation. Each observation (obsi) in the data swarm is then 
projected onto the p1 and p2. The distance from projection to origin become an observation’s new coordinates (t1, t2) and 
represent the score vectors. (Right): Through perpendicular projection onto loading vectors p1 and p2, each observation 
(obsi) in the data swarm is assigned a new coordinates (t1, t2) which can be plotted in a new coordinate system called a 
score plot. The represented data swarm is not the same as in Figure 4. 
 

The projection of t and p in a two dimensional coordinate space is illustrated in Figure 5. The first 
loading vector p1 is drawn in the direction of maximum variation, and p2 is drawn orthogonally to 
p1. Then, the score vectors t are projected perpendicularly onto the p1 and p2. The resulting score 
plot shows the observations with new coordinates – the resulting groupings in the score plot reveal 
the structure of the data, where observation with similar properties governed by the p vectors are 
clustered together. The loading plot shows instead the weights by which each original variable should 
be multiplied in order to be transformed into the new coordinate system.  The proximity of points in 
the loadings plot also reveals the level of correlation between the variables within the components 
selected for plotting.  

The projection of matrix X into a new vector space, i.e. assigning t and p vectors to each observation 
and variable, involves a degree of information loss. Since the projection process is an approximation 
of the X matrix, large squared residuals ei indicate a poor model fit, i.e. is not a good representation 
of the original data33. This residuals for each point can be calculated as ei = xi - tipi, where ei is the 
residual, xi is the corresponding column vector a.k.a. variable, and tipi is the product of the score and 
the loading vector for xi. Thus, PCA decomposes the experimental data matrix X into a model part 
containing the structure of the data and a noise part33, resulting in the following equation (Equation 
4); 
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X =  TP𝑇𝑇  +  E =  𝑡𝑡1�⃗�𝑝1 +  + 𝑡𝑡2�⃗�𝑝2 +  … + 𝑡𝑡𝑖𝑖�⃗�𝑝𝑗𝑗 + 𝐸𝐸   (Eq. 4) 
 

Where X is the input experimental matrix, T is the matrix containing all the score (ti) vectors, PT is 
the transposed matrix of all loading (pj) vectors, and E is the residual matrix containing the residuals 
for observations (ei) and variables (ej). The matrix E is in other words variation that did not fit well 
into the model matrix TPT. 
 

3.3 PARTIAL LEAST SQUARES (PLS)  
 

A second common projection algorithm is partial least squares (PLS), which is a regression method 
based on the similar principles as PCA. Although PLS is primarily known as a tool for prediction of 
unknowns, it can also be used in interpretive manner similar to PCA. 

Instead of one data matrix there are two matrices used, X and Y. The treatment of the two matrices 
can be conceptually seen as producing two separate PCA models that are connected through scores 
from both X and Y sets. One of the aims of PLS is to correlate the X and Y matrices with the 
purpose of prediction of the analyte concentration (or any other quantifiable parameter) in the X 
matrix. Moreover, PLS also aims to determine variables contributing most to the correlation between 
the two matrices. In this way it becomes possible to utilise PLS in order to calculate the 
concentration of the analyte from spectra of similar samples. New Y values are predicted from the X 
matrix; this estimation is called a prediction. Due to this, PLS and its derivatives are considered to be 
supervised methods.  
 

X =  TP𝑇𝑇  +  E (Eq. 5) 

Y =  UQ𝑇𝑇  +  F   (Eq. 6) 
 

Equations 5 and 6 show that the data decomposition for the X and Y matrices occurs in the same 
fashion. However, since, generally speaking, two PCA models are calculated. PLS generates two 
types of loadings; the p loadings projected from the X matrix and q loadings contained in matrix Q. 
The weight loadings, w, that constitute the connection between the X and the Y sides, are slope 
coefficients calculated from regression of each column in X to the score vectors of the Y matrix, u. 
In this way, columns, i.e. variables, in X that are strongly correlated to the u vector have large w 
values. A similar process is done for rows to acquire the t corresponding to the current w vector. In 
total, regular PLS provides five vectors – the vectors t and p, modelling the X matrix, and the 
vectors u and q modelling the Y matrix, together with w that describes the connection between the 
Y and X. 
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The difference is that PLS aims to correlate X and Y matrices to each other through scores from 
both X and Y for the purpose of prediction a response in the X matrix. Additionally, PLS aims to 
determine variables contributing most to the correlation between the two matrices. Thus, the aim of 
PLS is threefold: 

1. Find the best description of trends in the X matrix (given by scores, t). 
2. Find the best description of trends in the Y matrix (given by scores, u). 
3. Find the largest covariance between X and Y matrices (correlation of scores t and u). 

Covariance is the measure of how much the variation in two entities such as single variables or set of 
variables aggregated as vectors vary together.  

If the aim of PLS is prediction, then the calibration is commonly divided into three stages; a 
calibration set, a test set, and a validation set. First, a calibration set, a.k.a. training set, is built 
consisting of standards measurements (which are as close to real samples as possible) measured in 
the same way that will be used for real samples, i.e. the calibration set is the X matrix. These known 
measurements have also their corresponding Y values measured33. A test set is represents future 
predictions against which the models will be tested33. In other words, a test set is a set of standards 
the concentrations of which are to be predicted by the calibration set. A validation set contains real 
samples37. For instance, a calibration set would be a set of standard measurements of all components 
of interest, while the validation set would contain the mixtures of components of interest. 
 

3.4 ORTHOGONAL PARTIAL LEAST SQUARES (OPLS) 
 
Orthogonal partial least squares (OPLS) is a modified version of PLS introduced by Trygg and 
Wold45 that further simplifies the interpretation of correlation between X and Y matrices. It is 
designed to separate the variability in X, which is orthogonal to Y46, from the variation that is 
correlated with Y. This gives two sets of scores and loading from the X matrix: one in which 
variation in X is correlated to Y and the other where the variation in X is not correlated to Y. The 
former give rise to predictive PCs with loading p and the latter to orthogonal PCs with loading po47. 
Predictions generated by OPLS models produce the same results as PLS models. With a lack of a 
statistical design of the calibration set, OPLS may suffer from bleed-over effect, where features that 
should be contained to the predictive loading p bleed-over to orthogonal loadings po and vice versa. 
This bleed-over effect has been illustrated in literature for near-infrared spectroscopy (NIR)48, as well 
as in the research presented herein (Chapter 1 and Chapter 3). In both cases, the bleed-over was 
identified as a consequence of nonlinear response from instrumentation and properties of the 
samples. Other reason for the bleed-over can stem from poor experimental design or lack thereof.  
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3.5 OPLS COMBINED WITH DISCRIMINANT ANALYSIS (OPLS-DA) 
 
Both PLS and OPLS can be used together with discriminant analysis (DA). In this mode, the model 
is used to explain differences between properties of classes selected in the dataset. For instance, the 
experimental matrix X contains measurements from different sampling sites. Then, the different 
sampling sites are set into minimum of two classes (1 and 2). The class designation becomes a Y 
matrix coded as one Y variable with ones and zeros marking representing membership in the 
respective classes. This Y is then correlated against the X matrix. A similar operation can be done by 
using PLS-DA, but since PLS lacks separation between predictive and orthogonal explanations of 
variation, the interpretation tends to become more complicated as the number of classes increases. 
OPLS therefore is usually more optimal choice to combine with DA. In addition, OPLS-DA is 
highly suitable for classification of data having a lot of noise and collinear variables. 
 

3.6 TRANSPOSED ORTHOGONAL PARTIAL LEAST SQUARES (T-OPLS) 
 
Transposed orthogonal partial least squares (T-OPLS) was used in this thesis as a tool in analysis of 
Raman spectroscopic data. T-OPLS has its origins in the work of Feudale and Brown49, who have 
demonstrated a modification of PLS which they called target PLS (T-PLS) adding another specialized 
tool to spectral interpretation. This modification entailed inversion of the experimental matrix, i.e. all 
the spectra were transposed, and then applying a standard PLS algorithm to the experimental matrix. 
This transposition allowed for adding a spectrum of a sought substance as a Y matrix, thus enabling 
isolating variation based on a specific spectral pattern. The results of T-PLS differ from standard 
PLS; the loadings contain what was previously in scores and vice versa.  

When it comes to spectral interpretation, T-PLS faces the same challenges as standard PLS; the 
contribution to scores comes both from correlation connected to the Y matrix and correlation that is 
not related to Y. To avoid this, T-PLS has been modified into T-OPLS by Abbas et al.50 for analysis 
of hyperspectral images of algal carotenoids. In that paper, T-OPLS was denominated as transposed 
OPLS in contrast to Feudale and Brown’s original target PLS. This was done to avoid confusion 
with target projection (TP) introduced by Kvalheim and Karstang51, which is highly similar to OPLS 
and does not include any matrix transposition. 

As OPLS, T-OPLS generates a set of predictive and orthogonal components both of which can be 
projected as score and loading vectors. The predictive scores (t) should resemble the spectral shape 
of the reference spectrum, the Y matrix, while the orthogonal scores (to) account for spectral 
features unrelated to Y. The predictive loadings (p) display the spectral variation with correlation to 
the known reference spectrum. The remaining variations in spectra which do not correlate to the Y 
matrix are explained by orthogonal loadings (po).  
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and does not include any matrix transposition. 

As OPLS, T-OPLS generates a set of predictive and orthogonal components both of which can be 
projected as score and loading vectors. The predictive scores (t) should resemble the spectral shape 
of the reference spectrum, the Y matrix, while the orthogonal scores (to) account for spectral 
features unrelated to Y. The predictive loadings (p) display the spectral variation with correlation to 
the known reference spectrum. The remaining variations in spectra which do not correlate to the Y 
matrix are explained by orthogonal loadings (po).  



32 
 

T-OPLS can thus be utilised to extract both desirable and undesirable patterns, where the latter can 
be seen as a more sophisticated approach to background subtraction. This subtraction is exemplified 
in Chapter 3, where T-OPLS is used to remove unwanted background variation from the matrix by 
averaging the blank signal and setting it as Y. In this way, the predictive component should be 
isolated as a variation based on only Y. All remaining variation in orthogonal components should 
then explain everything else that has no dependency on matrix signal. In Chapter 1, T-OPLS is 
instead utilized to compensate for the low reproducibility of SERS signal by attaching an internal 
standard (IS) to the enhancement surface and then setting the spectrum of the IS as Y. This, in 
theory, would allow for reproducible intracellular SERS quantification of analytes in the cell.  

T-OPLS is a relatively new method in chemometrics and has not been developed and evaluated 
much outside the research group50, 52-53 that originally proposed the algorithm, save for few 
applications for hyperspectral imaging54-55. In the scope of this thesis, it has been shown that T-OPLS 
tends to suffer bleed-over effects48 between its predictive and orthogonal components. This 
shortcoming was corroborated for hyperspectral imaging54, suggesting instead to use methods such 
as weighted OPLS and multivariate curve resolution-alternating least squares (MCR-ALS) to avoid 
the influence from uncorrelated variation. A part of modelling is the validation of models, to verify 
that the anticipated features can be retrieved from models through loadings or, in case of T-OPLS, 
scores. In case of T-OPLS the situation is trickier, since each prediction requires a building of a new 
T-OPLS model. Therefore, it becomes more challenging to employ a test set. However, the issue of 
cross-validation in T-OPLS is not addressed in this work. 
 

3.7 MODEL VALIDATION 
 
In order to determine the quality of a model and increase its reliability one must possess skill as well 
as the right tools of validation. Together with outlier measures such as Hotelling’s T2,56, cross-
validation is fundamental to avoid random correlation.  

A matrix with the dimensions 100 x 100 can, in theory, give rise to 100 PCs. However, not all 
components are relevant. One way to select an appropriate amount of informative PCs is cross-
validation. Cross-validation is often used to determine the number of components that will be used 
in a model. It is achieved by dividing the matrix into groups, until each observation or group of 
observations has been left out from calculation once. When those missing values are predicted their 
sum becomes the first diagnostic of cross-validation – the sum of all prediction errors, Q2. Q2 is an 
evaluation of model’s prediction capability or more simply the goodness of prediction (Equation 7). 
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Equation 7. The goodness of prediction, where N is the number of observations in the dataset, yi, crosspred is the predicted y 
for the sample, i from the cross-validation, and y is the mean for all y values in the calibration set. 

Finally, the full matrix is used in a model that makes a prediction for all samples and those prediction 
errors are summed into R2, which describes the goodness of fit (Equation 8) with the respect to the 
original dataset 44, 57.    
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Equation 8. The goodness of prediction, where N is the number of observations in the dataset, yi, calibpred is the predicted y 
for sample i from the calibration of the whole calibration set, and y is the mean for all y values in the calibration set. R2 
can be calculated with respect to both X and Y matrices. 

The Q2 values are then used to select the number of components to include in the model. The R2 
value is increased when more components are added, but with more components noise will also be 
modelled thus decreasing the value of Q2. Therefore the aim is to concentrate on Q2 while not 
accepting an R2 that is much higher than the Q2 value57.  

Both R2 and Q2 have values between 0 and 1, with 1 representing a perfect fit and prediction, 
respectively. Q2 values serve as a selection criterion for the number of components to include in the 
model. The R2 value is increased when more components are added because more of the variation in 
the model is explained with each component, but with more components comes more noise and 
thus the value of Q2 decreases.  
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Figure 6. The image of R2 vs Q2. As the number of component increases, so does R2, approaching to a value of 1. 
However, the prediction power of the model decreases as more noisy components are calculated: thus, Q2 drops. 
 

Validation is also helped by examination of score and loading vectors to detect outliers. Outliers are 
observations and variables with high leverage32, i.e. have a strong influence on the model. Depending 
on what type of influence the outliers exert upon the model, they are classified as either strong or 
moderate. Strong outliers deviate from the maximum variation in the data swarm, while moderate 
outliers indicate observations that poorly fit the model, being thus connected to residuals. Strong 
outliers often have unique features that separate them from the rest of the observations or have the 
same features, but grossly exaggerated. It is said that strong outliers have high leverage, which can be 
illustrated by is Hotelling’s T2 56, a multivariate generalisation of Student’s t-test . Such outliers create 
a risk of model becoming biased; recognising and mitigating outliers by either complemented 
sampling or removal is thus essential in generating a reliable model47, 57. The outlier mitigation 
process may also give insights and unexpected information about the system under measurement.  

In difference from strong outliers, which are a part of the model matrix (TPT), moderate outliers can 
be identified from examining residuals of the E matrix. Many moderate outliers do not have the 
same profound effect on the models as strong outliers have, but their abundance can serve as an 
indication of lack of homogeneity in the X matrix. It is also common that strong outliers that break 
the trend of your data also have high residual values, but not vice versa.  
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3.8 SPECTRAL DATA PRE-PROCESSING 
 

Spectral pre-processing is a crucial step in the analysis of Raman spectroscopic data. The aim in pre-
processing spectral data before multivariate linear modelling is to reduce the variation between 
spectra that may occlude qualitative spectral analysis or to reduce the precision and accuracy of the 
regression models. For instance, pre-processing may assist in removing baseline effects caused by the 
sample matrix. In this thesis, baseline effects include the interfering florescence and background 
from biological matrices. If pre-processing is successful, the number of features that describe the 
spectral response would be reduced. In terms of linear projection methods, this could mean fewer 
amounts of components containing noise. This in turn leads to better quality regression models and 
interpretation of loading vectors. The choice of methods varies dependant on the dataset and/or the 
purpose of model calculation.  

In Chapters 1 through 3, Raman spectroscopy was used in combination with a variety of linear 
projection methods. All data sets have been subjected to one or several data pre-processing 
strategies, which are explained below.  
 

3.8.1 COSMIC RAY REMOVAL 
 
Cosmic rays arise due to high-energy particles that pass through a Raman detector, which is 
interpreted as a signal. These signals are random and appear as sharp peaks, usually not following the 
expected Raman peak shapes (Gaussian, Lorentzian, Voigt, etc.)58. The cosmic rays can usually be 
easily amended by accumulating several spectra measured from the same sample/spot and then 
calculate their average. This was done in all research presented here where Raman spectroscopy was 
involved.  
 

3.8.2 NORMALIZATION 
 

Normalisation is a standard part of spectral pre-processing, as different spectra of a sample recorded 
at different times can be fluctuating in, for instance, intensity58. When the spectral profile is more 
important than the spectral magnitude, or when the spectral magnitude variations provide additional 
non-quantitative information that disturbs qualitative interpretation and predictions from 
multivariate regression models, it may be advantageous to normalise the spectra before multivariate 
modelling. A simple example is the measurement of a liquid placed in a cuvette with non-constant 
length.  If all components in the sample contribute to the spectral profile, it is still possible to make 
an accurate calibration model and this model will get fewer components with normalisation.  
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Normalisation can involve dividing the individual spectra with its own sum or its own vector length. 
More elaborate schemes are also used, such as the standard normal variance (SNV) normalization. 
SNV normalization involves both a normalisation based on the standard deviation of the magnitudes 
in the individual spectrum combined with a subtraction of the spectral mean.  Each observation 
(row) is centred and then divided by its standard deviation32. This helps with circumventing 
multiplicative and additive effects in spectra. 

Another normalisation strategy is multiplicative scatter correction (MSC)59, which also minimises the 
multiplicative and additive effects in spectra. The correction is done by calculating a mean of all 
observations of interest. The next step is to calculate linear regression slope and intercept for every 
observations and plot them against the observation mean. Each pair of values (slope and intercept) is 
then used for correcting each observation32.  

In this thesis, centring and auto-scaling60-61 were used and are two of the simplest normalisation 
strategies available. By centring the dataset, mean of a centred variable is calculated and subtracted 
from all values of that variable, thus making it possible to analyse data based on covariance 
(Equation 9).  
 

𝑥𝑥�𝑖𝑖𝑗𝑗 = 𝑥𝑥𝑖𝑖𝑗𝑗 − �̅�𝑥𝑖𝑖  (Eq. 9) 

 

In case of linear regression, centring may not be sufficient due to heteroscedasticity of the data, i.e. 
when the variability of a variable is not equal within the range that the variable used for prediction62.  

Auto-scaling is a combination of centring and unit variance scaling (variable is divided by its standard 
deviation, Si). This way, the data is can be analysed based on correlation instead of covariance. The 
calculation is similar to SNV but is applied to columns in the dataset instead of rows (Equation 10).  

 

𝑥𝑥�𝑖𝑖𝑗𝑗 =  𝑥𝑥𝑖𝑖𝑖𝑖−�̅�𝑥𝑖𝑖
𝑆𝑆𝑖𝑖

  (Eq. 10) 

 
All variables become equally important, which also means that weak signals and noise are amplified. 
This can lead to the unfortunate consequence of inflating measurement error and other undesirable 
signals62. For the sake of convenience, this operation is abbreviated ‘UV’ from this point onward. 
 
Outlier removal is also a part of normalisation process and can be easily achieved by using 
dimensionality reduction with, for example, PCA. 
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3.8.3 DERIVATIVES 
 

Derivatives have often been the first method tried to reduce sloping baselines in spectra. Most 
common are the use of first and second derivatives (Figure 7). The second derivative has the merit 
that it actually has a peak, albeit negative, at the original peak position while the first derivative has a 
crossing of the zero-magnitude level along with more confusion due to additional peaks compared to 
the original spectra (see below in Combinations section). It is also possible to use derivatives in 
order to reduce the influence of highly sloping baselines, such as when there is a large fluorescence 
component in Raman spectra. However within this thesis the occurrence of fluorescence was rare: 
the few observations that contained fluorescence were simply removed from calculations of the 
model.  

 

Figure 7. A regular Raman spectrum from a powder mixture of an organic analyte and microcrystalline cellulose causing 
the fluorescence background; 1st derivative of the same spectrum; 2nd derivative of the same spectrum. 
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3.8.4 BASELINE CORRECTION 
 
While the derivatives affect the baseline in a general way, the following methods are algorithmically 
focused on direct adjustments of the baseline by explicitly providing an estimated baseline for 
subsequent subtraction. 
 

3.8.4.1 Rolling Circle Filter 
 
The rolling circle filter (RCF) is based on the difference the radii of curvature of the baseline and the 
Raman peaks63-64. The RCF is applied as the name suggests. A circle is rolled along the baseline from 
below the spectrum and the diameter of the circle determines how intrusive the circle will be into the 
bases of the peaks (Figure 8). Peaks that are narrow compared to the circle diameter will be retained 
but peaks that are wider than the circle diameter will be subtracted by from the baseline shape 
calculated from the rolling operation.   
 

3.8.4.2 Asymmetric Least Squares Smoothing 
 
Asymmetric least squares smoothing employs a series of smoothing operations on the spectrum that 
results in a calculated baseline shape that can be subtracted from the original spectrum (Figure 8). 
The degree of smoothing is governing the peak width of the retained peaks. With less smoothing the 
baseline will grow into the peak bases while with more, there will be a flat baseline below the peak. 
This effect can be achieved with ordinary least square method. However, in such a case, equal weight 
is given to positive and negative residual errors. As negative residuals are undesirable for spectral 
interpretation, the least square method can be altered to have a preference for positive residuals58.  
Different implementations of this type of baseline correction also goes under the names Whittaker 
filtering65, and asymmetric iterative reweighted penalized least squares (airPLS)66, both using the 
‘perfect smoother’ by Eilers67.  
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Figure 8. A regular Raman spectrum from a powder mixture of an organic analyte and microcrystalline cellulose causing 
the fluorescence background; the same spectrum after rolling circle filtering, a circle representing applied circle diameter 
is shown in the original spectrum plot; the same spectrum after application of asymmetric least squares smoothing 
(Whittaker). 
 

3.8.5 PEAK FINDING 
 
Another approach is to do regular peak finding (Figure 9) on the Raman spectrum in the same way 
as applied liquid chromatography but with the difference that the peaks are not integrated but 
preserved in the same frequency scale as the original data. This leaves the significant peaks and their 
original peak shapes intact in the spectrum while the spectral profile between these selected peaks is 
set to zero or down-weighted. Especially for T-OPLS, this is a way to simplify the interpretation of 
spectra.  

Admittedly, this method is a step away from providing quantitative multivariate calibrations where it 
is usually a good idea to keep as close to the original variation in spectra and keeping all relevant 
variables in the calibration model.  
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Figure 9. A regular Raman spectrum from a powder mixture of an organic analyte and microcrystalline cellulose causing 
the fluorescence background; the same spectrum after keeping only larger sharp peaks; the combined effect of 
asymmetric least squares smoothing followed by peak finding. 
 

3.8.6 COMBINATIONS  
 
Sometimes it is also useful to combine pre-processing methods. For example, the first-derivative 
calculation followed by SNV is a viable pre-treatment for Raman spectra of powders and tablets. The 
combination of RCF and peak picking is also useful, especially in the interpretation mode of 
chemometric modelling. 

To reduce the noise that is enhanced by, for instance, derivatives compared to the magnitude of the 
analyte signal, derivative calculations are often combined with smoothing. One common approach is 
to use Savitsky-Golay filters for this purpose58, 68. If long term robustness of a multivariate calibration 
is important, derivatives are also increasing the sensitivity for wavelength or frequency shifts in the 
instrument used, which means that other pre-processing methods may be more favourable in this 
case.  
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4. CHALLENGES ADDRESSED IN THIS THESIS 
 

Although application of machine learning methods is far from new within analytical chemistry (see 
Introduction), many of the challenges encountered at the birth of the discipline still await their 
resolution. In 1979, Wehry and Mamantov69 stated that one of the most significant challenges in 
analytical chemistry at the time was the development of techniques for qualitative and quantitative 
analysis of trace organic compounds in complex samples. Although their definition was aimed at 
organic samples, the issue of separating the analyte signal from its matrix is, arguably, universal for 
many endeavours in analytical chemistry. Forty years later, the Faraday Discussions1 had the topic 
“Challenges in the analysis of complex matrices”, which signifies that the analysis of complex matrices 
remains to this day a central challenge in the analytical field. Faraday Discussions of 2019 concluded 
with recognizing that there seems to be little background knowledge on the samples tested, 
emphasizing the importance of sampling and experimental design.   

In vibrational spectroscopy, there is an ongoing development of methodologies for addressing 
common issues arising in analysis of multidimensional data, such  as interfering/overlapping 
signals34, low signal-to-noise ratio (SNR)70, establishment of limit of detection (LOD) in multivariate 
component systems71-72, pre-processing58, 73, and more. Many of the potential disturbances co-vary 
together with the sample matrix, and even more so as the chemical complexity of the sample 
increases. Some of the spectroscopic challenges that are explored in Part I of this thesis are the issues 
of nonlinearity, non-selectivity, overlapping and co-dependent signals, and calculation of figures of 
merit for multivariate systems. 

The research presented here is not only concerned with biological matrices but also complex 
environmental phenomena. The earth’s environments, be they on micro or global scale, are intricate 
systems influenced by a multitude of factors. A challenge that arises then is how such processes can 
be understood as thoroughly as possible. Multivariate techniques have indeed contributed to better 
understanding of distribution of polycyclic aromatic hydrocarbons (PAHs)74 in the environment, but 
many environmental phenomena still await to be approached as multivariate problems. One such 
example is the production of halogenated volatiles by marine algae, which contribute to the 
degradation of tropospheric and stratospheric ozone. The decades of research dedicated to 
understanding the biogenic production of these volatile halogenated organic carbons (VHOCs) 
showed that the production is influenced by several factors, some of which are directly linked to 
climate change. However, the research has so far considered the influence of factors in a univariate 
fashion, creating thus a knowledge gap with regards to multifactor influences, synergies, and 
interactions. For the research focused on analysis of biogenic VHOC production, the author 
evaluates multivariate machine learning for understanding of influence of abiotic factors on said 
production, contributing thus to the lack of knowledge with regards to how several environmental 
parameters may influence VHOC production. 
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Figure 9. A regular Raman spectrum from a powder mixture of an organic analyte and microcrystalline cellulose causing 
the fluorescence background; the same spectrum after keeping only larger sharp peaks; the combined effect of 
asymmetric least squares smoothing followed by peak finding. 
 

3.8.6 COMBINATIONS  
 
Sometimes it is also useful to combine pre-processing methods. For example, the first-derivative 
calculation followed by SNV is a viable pre-treatment for Raman spectra of powders and tablets. The 
combination of RCF and peak picking is also useful, especially in the interpretation mode of 
chemometric modelling. 

To reduce the noise that is enhanced by, for instance, derivatives compared to the magnitude of the 
analyte signal, derivative calculations are often combined with smoothing. One common approach is 
to use Savitsky-Golay filters for this purpose58, 68. If long term robustness of a multivariate calibration 
is important, derivatives are also increasing the sensitivity for wavelength or frequency shifts in the 
instrument used, which means that other pre-processing methods may be more favourable in this 
case.  
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A detailed description of these challenges, as well as how they were addressed, can be found in the 
introductions to Part I and Part II.  
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PURPOSE OF STUDYING BIOLOGICAL MATRICES
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INTRODUCTION 
 

MACHINE LEARNING APPLIED TO SPECTROSCOPIC DATA GENERATED FROM BIOLOGICAL 

MATRICES 
 
Næs et al.32 listed the following problems that may arise in multivariate calibration and data 
exploration algorithms: 

• The non-selectivity problem – the difficulty of finding all analytical responses in the 
sample. 

• The collinearity problem – when variables have near or exact linear correlations. 
• The nonlinearity problem – when data behaves nonlinearly and linear models cannot 

resolve this issue. 
• Calibration data selection – the quality of the calibration model depends strongly on the 

number of samples and how they are selected. 
• The outlier problem – variables or observations that deviate from the bulk of the data. 

Complex biological matrices studied with Raman spectroscopy are in focus in Part I. Here, the non-
selectivity problem and the nonlinearity problem were the most relevant to study. For example, to 
address selectivity, how should the experiments be designed; which factors should be considered? 
Can we represent and understand the matrix and the matrix effect by using DoE and projection-
based algorithms (PCA, OPLS, T-OPLS)? Also, in the case of nonlinearity, DoE is central. 
Moreover, if the system studied is nonlinear, what can linear projection-based algorithms offer in 
terms of interpreting such systems? 
 

THE NON-SELECTIVITY PROBLEM 
 
International Union of Pure and Applied Chemistry (IUPAC) defines selectivity as the extent to 
which a method or an instrument can be used to determine analytes in matrices or mixtures without 
interference of other components in the matrix or mixture that display similar behaviour75-76. The 
non-selectivity problem is, in essence, the issue of finding the exact response of all constituents in 
the sample, including the analyte itself and its matrix.  

One of the traditional ways of analysing Raman spectroscopy is the selection of a single wavelength 
and subsequent modelling based on univariate approaches. For a univariate analysis to work at its 
best, an analytical utopia should be established where detection of the analyte in a complex matrix 
should follow a set of criteria in order to be easily detectable69. First, if the aim is qualitative enquiry, 
the spectrum of the analyte should be a distinct and reproducible fingerprint that is entirely unique so 
that unambiguous analysis is as simple as possible. This minimizes the overlap with a sample matrix. 
In other words, the challenge here is the requirement of high selectivity, i.e. the input data must be 
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that of pure analyte without any contributions from other species in the matrix. When responses 
others than that of analyte are present, a univariate model will become biased35. Selectivity is much 
harder to address univariately in case of spectra originating from biological matrices, as matrix effects 
on the analyte are unavoidable when working with intact cells or tissues. Secondly, if one wishes to 
perform qualitative and quantitative analysis, the spectrum should be consistent between different 
replicates and independent of the sample matrix. Lastly, the optical properties of the matrix should 
be noninterfering. This utopian scenario has been referred to as ‘white multicomponent systems’77, 
i.e. all spectral information for all chemical species and interferents present is available. This is in 
contrast to grey and black multicomponent systems, for which, respectively, partial information 
regarding all chemical species available or no information is available.   

If the reader finds this to be a tall order, well, it is. Although white multicomponent systems are not 
uncommon, the majority of biological matrices are not amenable to separation of each chemical 
constituent. Hence, the decomposition of spectroscopic signals from such matrices and their 
subsequent classification poses a challenge as it is arduous to estimate the composition of the matrix 
in its entirety, let alone detect one or few analytes within it. However, with multivariate techniques 
one can handle the presence of non-analyte signals, provided that the response is not identical to that 
of the analyte. 

Analyte detection in such mixtures often suffers from overlapping signals, and, in case the of Raman 
spectroscopy, inherently weak biological signals. Having a priori information (e.g. spectra of pure 
chemical species or computed spectra) about such samples can assist in attempts at classification and 
calibration, but the availability of such information is not always guaranteed78.  

Methods for the analysis of these grey and black multicomponent systems77 are therefore are sought 
after. One such approach is the computational approach, where ab initio spectra of pure substances 
are mathematically modelled based on density functional theory (DFT)79. This eliminates the need 
for standards. Apart from the impracticality and resource-intensiveness associated with the 
acquisition of ab initio information, pure spectra do not account for the interactions between the 
analyte and its matrix, nor do they account for how such dynamics may affect spectral output. If the 
goal is to find an approximate correlation to interpreting the spectral data qualitatively, computed 
spectra can have an advantage. In particular, this can be advantageous in case of T-OPLS, as only the 
Y spectrum needs to be calculated. Yet such modelling can become challenging to interpret if the 
matrix effects on the analyte spectrum are large. If, however, quantitative calibration is the goal, it is 
arguably better to base modelling on the signals generated from the analyte in its original milieu or 
from as close to that milieu as possible. 

An alternative way to analyse Raman spectra – which was utilized within the scope of this thesis - is 
to use the full spectrum and to apply multivariate algorithms, which can capture covariance between 
all variables. For instance, comparing two or several models through loading vectors p highlights 
spectral differences. Since PCA is a matrix decomposition method the loadings are, in essence, 
decomposed spectra. The first loading vector, p1, represents the largest spectral variation. When 
using Raman spectroscopy, such variation often includes variation in intensity and in the nature of 
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the signal. The loadings that follow also often contain valuable information.  In such loadings, it is 
possible to detect minor variation in spectral response, as well as in separate overlapping peaks, 
without the need for deconvolution 
 

THE NONLINEARITY PROBLEM 
 
The second requirement for an ideal univariate analysis is linearity. E.g. for calibration there ought be 
a linear relationship between spectral response and analyte concentration35. However, there are a 
number of nonlinearities in Raman spectroscopy, and these can make univariate approaches 
problematic. Some instrumental sources include stray light, baseline drift, and nonlinear detector 
response. When liquids and solutions are analysed, the sample itself can introduce nonlinearity 
through changes in turbidity, solvent composition, and temperature80 . The issue of baseline 
inconsistencies is often solved by using pre-processing techniques such as rolling circle filter (RCF)63, 
wavelet transformation81, or Whittaker filter65. These methods do not resolve all nonlinearities, yet 
they can significantly improve SNR and thus subsequent interpretive power.  

In addition to ‘real’ nonlinear sources listed above, there could also be ‘apparent’ nonlinear sources80. 
These include spectral variations, such as changes in absorption band width and shifts in the position 
of spectral peaks. For liquids and solutions, even the smallest change in temperature may influence 
the width and position of a band80. Changes in the dielectric strength of the solvent and in the 
concentration of equilibrium species can also change the features of bands80.  These factors 
combined can mask smaller shifts in position and band width, and these errors may pose a problem 
when univariate calibration techniques are applied.  

Nonlinearity of univariate character becomes less of a problem if the data is treated multivariatly. 
When nonlinear data is put though multivariate linear algorithms such as PL, the inherent univariate 
nonlinearities are captured better the more PCs are calculated. However, in calibration, if there are 
nonlinear relationships between the X and the Y matrices, the data cannot strictly speaking be well 
and consistently modelled with linear functions.  

If linear algorithms are nevertheless used, there are a number of ways to address nonlinearity. As 
mentioned at the beginning of this section, spectral pre-processing can assist in improving some real 
nonlinear sources32. Another approach is to add extra terms to the X matrix that would represent 
nonlinear terms32. For instance, if quadratic interaction is suspected for variable A, one can add an A2 
variable to the experimental matrix thus including quadratic behaviour into the model. Provided that 
the data input has been designed, such interactions can be easily identified by analysing DoE 
coefficient plots (see examples of coefficient plots in Chapters 3 and 4). Further, the nonlinear data 
can be split into subsets in range, so that linearity is found in each of the subsets. Yet another way to 
avoid nonlinearity in is by deleting the nonlinear regions of the spectrum32 provided that there is 
enough linear variation left at the other regions to make a valid model. Alternatively, it is possible to 
add weighting factors to reduce the significance of the nonlinear region, or approximate the 
curvature in principal components with nonlinear functions80. 
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Last but not least; should linear algorithms be insufficient, nonlinear methods can be applied. Such 
approaches could prove particularly advantageous since linear projection algorithms may face 
difficulty in identifying pure spectra of chemical species from loadings generated from a 
multicomponent matrix82. Some examples of such nonlinear methods are locally weighted regression 
and neural networks32. It should however be noted that nonlinear calibrations require larger sample 
numbers, and, if too few samples are present, issues may arise with both accuracy and precision. 
With the projection-based methods in focus in this work however it is possible to handle the 
presence of non-analyte signals, provided that the response is not identical to that of the analyte and 
that the analyte and the non-analyte spectra vary somewhat independently of each other. 

PLS and OPLS can also be successful when an internal standard (IS) is present83. However, a lot of 
noise in principal components or residuals, may render the model ineffective80. It is advisable to 
apply PLS when only small84 nonlinearities are present if a satisfactory quality of calibration can be 
achieved due to a need for a lesser number of samples to achieve calibration. 
 

RAMAN SPECTROSCOPY  
 
Raman spectroscopy has seen many applications in analytical chemistry since the discovery of Raman 
scattering in 1928, and is a highly selective, non-invasive technique used to observe rotational and 
vibrational modes of molecules. Raman scattering effect occurs when light, typically from a laser, is 
scattered with different wavelengths than those of incoming light. This inelastic scattering of 
photons occurs as a result of a change of polarisability of molecules85. In other words, the 
polarisability of the analyte changes as consequence of vibrations86.  

There are six different types of scattering phenomena. Rayleigh scattering occurs when scattered light 
has the same frequency as the excitation laser, while Raman scattering is when the scattered light has 
a shifted frequency87. The Raman scattering in turn can have two different outcomes, Stokes and 
anti-Stokes Raman. A Stokes shift emits light of lower energy than that originally absorbed and anti-
Stokes does the opposite. Other types of scattering are pre-resonance Raman, resonance Raman, and 
fluorescence, the latter often being the cause of nonlinearities in the baseline component. 

The scattering pattern, or fingerprint, is unique for each compound; therefore it is possible to 
conduct qualitative analysis of complex sample mixtures or individual analytes in a composite matrix. 
This in turn means that since the signal is intrinsic to the studied system, using staining and labelling 
methods becomes obsolete88.  
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Figure 10. Jablonski diagram. (A) infrared absorption; (B) Reyleigh scattering; (C) Stokes Raman scattering; (D) anti-
Stokes Raman scattering; (E) resonance Raman scattering; (F) fluorescence.  
 

Also, in comparison to infrared spectroscopy, Raman enables measurements in aqueous samples 
without the interference of water, which is a weak Raman scatterer. Because of this Raman 
spectroscopy facilitates the analysis of biological systems such as living cells.  

One of the applications of Raman spectroscopy is the study of biological matrices and processes, as 
Raman has the distinct advantage of water not being an interferent. This was of particular advantage 
in Chapter 4, where wood was the examined. There are several analytical techniques for 
quantification and detection of analytes inside biological matrices, ranging from mass spectrometry 
to chromatographic methods57. However, such methods usually involve tedious sample preparation 
steps and long measurement times.  

Yet, as already stated, biological matrices are often complicated chemical system, making 
distinguishing between all the chemical species present a challenge. In Raman spectroscopy, there is 
the additional issue of spectral bands having low intensities and the presence of interfering 
fluorescence.  

As Raman signals are intently weak, complementary techniques that can provide signal enhancement. 
One such method is resonance Raman – by illuminating the sample with a laser wavelength close to 
the electronic absorption of a molecule, its signal can increase by a factor of 106. This process gives 
rise not only to inelastically scattered light, but also to fluorescence and luminescence89. This 
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attenuation of the laser wavelength to a specific molecule can facilitate analysis of complex matrices, 
as it provides higher selectivity and sensitivity because of increased SNR. 

The issue that may arise when using resonance Raman is the occurrence of interfering fluorescence, 
as florescent species may use the same resonance transition wavelength57. Further difficulties may 
arise due to thermal decomposition and photoreaction due to the strong absorption of the excitation 
light57. Here, resonance Raman was not utilised as a signal-enhancement technique here.  

To further increase the sensitivity of the technique, the use of metal colloid nanoparticles to achieve 
signal enhancement from the matrix is possible. Moreover, the presence of the metal enhancement 
surface also quenches fluorescence. This is highly advantageous when working with samples 
containing biological chromophores, such as. DNA. The utilisation of metal surfaces to enhance 
signal is called surface enhanced Raman spectroscopy (SERS), which was used in Chapters 1 and 3. 

 

SURFACE-ENHANCED RAMAN SPECTROSCOPY (SERS) 
 
Despite its advantages in the analysis of complex biological matrixes, Raman spectroscopy’s 
insensitivity renders quantitative (and sometimes qualitative) analysis difficult. This insensitivity 
comes from two factors. Firstly, Raman’s low scattering probability, with only 1 in 108 photons 
scattered, produces weak signals, which makes it impracticable to use when analysing sample 
concentrations below millimolar range57. Secondly, Raman signal struggles with competing 
fluorescence (Figure 10), which may be of higher occurrence than the Raman scattering itself. As a 
consequence of these shortcomings, several other techniques have been developed to address these 
issues, including SERS. SERS is successful both in enhancing the Raman signal and in quenching 
fluorescence.  

In SERS, the surface of a metal interacts with photons generated by an enhanced electric field in the 
close proximity of the metal’s surface, producing a significantly enhanced Raman signal90. The metal 
surfaces usually are composed of noble metals such as gold and silver89, 91, but also other substrates 
such as graphene92; hybrid metal substrates, such as SiO2-encapsulated gold particles; metal alloys; 
and alkali metals93. The enhancement surfaces come in a broad variety of shapes depending on the 
purpose behind their usage.  Some examples are laser-ablated surfaces, electrodes, metal tips, and 
nanoparticles91, 94. Within this thesis, nanoparticle suspensions were the only substrates used to 
achieve surface enhancement. This is due to the fact that SERS enhancement is strongly distance-
dependent, meaning that bulk substrates, such as electrodes or surface structures, are not as suitable 
for the purpose of in situ studies of living cells (see examples in Chapter 1 and 3), because the cell and 
the analyte of interest must be as close to the metal surface as possible83. The desired proximity can 
therefore be achieved by using colloidal substrates, which can be internalized into cells. Despite the 
lack of coherent structure and because of a lower reproducibility compared to solid substrates, 
colloids can disperse throughout the sample giving them an edge in cellular studies.  In addition, 
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colloidal substrates are cheaper to produce, which contributes to their popularity in research95. So, 
only the theory with regard to nanoparticle suspensions will be considered in this section. 

The mechanism behind the surface enhancement phenomenon in SERS is a combination of two 
enhancement mechanisms, that is, chemical enhancement and electromagnetic enhancement. 
Chemical enhancement mechanisms are considered as contributing less to overall enhancement than 
electromagnetic mechanisms.  Chemical enhancement involves molecular interaction with the metal’s 
surface. This kind of enhancement can occur, for instance, by a charge transfer in the creation of a 
new chemical bond (changing thus the molecular polarizability of the analyte), or by chemisorption-
induced resonance Raman scattering44, 47. Chemical enhancement can be negatively influenced by 
parameters such as defects in a metal surface and in oxidation layers.  

Electromagnetic enhancement depends instead on a match between the surface plasmon resonance 
of a metal and laser frequency85. The excitation is achieved by free electrons oscillating in resonance 
with the light44 which results in an effect called localised surface plasmon resonance (LSPR), 
provided that the size of the metal nanoparticle is much smaller than the excitation wavelength96 
(Figure 11). 

 

 

Figure 11. Illustration of the LSPR effect. When incident light interacts with a metal nanoparticle, the oscillating electric 
field initiates the oscillation of the electron cloud. 

LSPR is the frequency resonance between the electron cloud of the metal nanoparticle and the 
incident electromagnetic field97. Interaction with light is determined by the metal surface’s roughness 
and, in case of colloidal nanoparticles, the size, shape, and aggregation state. In addition to the 
aforementioned parameters, the LSPR is also influenced by the refractive index of the medium86 and 
by the wavelength of the incident light. The surface plasmons generate a large electromagnetic field, 
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which decreases by 80% in strength at about 10 nm from the surface of the colloid98. Molecules in 
the vicinity of this field will experience an enhancement of their signal86.  

The greatest drawback of using unmodified colloidal nanoparticles is the issue of the irreproducibility 
of signal enhancement. Since the enhancement is dictated by the colloidal shape and size, it becomes 
difficult to reproduce as colloids aggregate. It has previously been noted that metal nanoparticles 
aggregated into assemblies produce the strongest SERS signals. Although a certain level of 
aggregation is often desirable in order to achieve the highest possible level of sensitivity99-101, too 
extensive aggregation has been previously noted as lowering SERS signals102. For instance, a cluster 
size of up to ca 20 gold nanoparticles has been reported to increase SERS signals, which would then 
decrease beyond this cluster size until the signal increase reached a stable asymptotic value102. 
Reproducibility can be improved by promoting controlled aggregation, by e.g. controlling 
nanoparticle aggregation during synthesisis103, or by evaporating the nanoparticle suspension on a 
surface104. Another approach to control aggregation is by surpassing the aggregation completely. The 
latter can be achieved by modifying the nanoparticle surface so that they remain monodispersed. In 
Chapter 1, this was done by modifying the nanoparticles with a thiol self-assembled monolayer 
(SAM), in order to avoid aggregation105.  
 

CONFOCAL RAMAN MICROSCOPY 
 
Analysis of inter-cellular contents can be enhanced if another Raman sub-technique is used, namely 
confocal Raman microscopy. As the name suggests, a Raman spectrometer is combined with a 
confocal microscope. The confocal properties make the selection of small volumes possible, which 
makes this combination favourable for measuring for instance, living cells and for creating highly 
detailed 2D and 3D. Confocal Raman microscopy is therefore widely used for obtaining high-
resolution Raman images of cells90. These are the subject of study in Chapter 1.  

In a confocal Raman instrument (Figure 12), the laser beam is focused on the sample through a 
microscope objective. Measurements performed in small volumes prevent distant scattered light 
from entering the microscope objective, thus enabling a discriminant illumination of a selected point 
in the sample. The light from anywhere else in the sample is hence nullified.  The light emitted from 
the sample is then passed through the notch filter, the pinhole, and a slit. After passing the slit, a 
holographic grating is illuminated, which in turn disperses the incoming light depending on the 
light’s frequency44. Finally, the light reaches a detector array, usually a charge-coupled device (CCD), 
where it is processed electronically106.  
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Figure 12. The set-up of a confocal Raman spectrometer57. This particular image illustrates an instrument with inverted 
objective; it is not a common set up, rather, the sample is more commonly illuminated from above. 

However, since only a selected point is measured, it becomes necessary to map everything larger than 
a pixel. Fortunately, the confocal Raman set-up used here also allowed for measurements in x-y axis 
thanks to a motorised microscope stage. It is also possible to measure in z-axis if a piezoelectric 
actuator is installed in the microscope57. The optical resolution is in the order of 1 µm in all 
directions, whereas the mechanical resolution of xy-stage and actuator is 0.1 µm.  

Confocal Raman microscopy was used in Chapter 1 for imaging of living cells and for quantification 
of intracellular drug concentrations. In Chapter 2, a confocal Raman setup was used to quantify an 
analyte in archaeological wood. However, the measurement volume was deemed too small, and 
hence confocal Raman setup was not suitable for this particular enquiry. The method could have 
been more suitable for creation of distribution images of the analyte. 
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CHAPTER 1 
T-OPLS METHODOLOGY TO COMPENSATE FOR LOW 

REPRODUCIBILITY OF INTRACELLULAR SERS FOR SUBSEQUENT 

QUANTIFICATION OF DOXORUBICIN 

INTRODUCTION  
 
Modern intensive treatment with anti-cancer drugs is the major cause of  improved cure rates in 
childhood cancer. The effect of  the drugs is determined by the blood and intracellular drug 
concentrations attained during treatment and to the inherent sensitivity of  the cancer cells to the 
different agents107-108. The drugs have a steep dose/efficacy curve, with a narrow therapeutic index, 
which requires careful dosing to balance therapeutic effects and side effects. There are large 
differences between individuals in uptake, metabolism, and in the excretion of  the drugs, which, 
therefore, in some patients, either can lead to a low drug exposure with reduced treatment efficacy, or 
to a dangerously high exposure resulting in unacceptable, sometimes life-threatening side effects. To 
a large extent, these individual differences in drug disposition are caused by polymorphisms in the 
genes involved in drug metabolism, which result in variable drug exposure that may have a significant 
impact on both chance of  cure and severity of  side effects109. 
 
The cancer types in focus in this chapter are leukaemias, the cancers of the blood. One of the 
leukaemias – acute lymphoblastic leukaemia (ALL) – is the most prevalent leukaemia type in Swedish 
children110. In ALL paediatric treatments, it is common practice to dosage cancer drugs in proportion 
to the estimated body surface of the patient. The body surface area (BSA) is calculated as follows47 
(Equation 1.1). 

 

𝐵𝐵𝐵𝐵𝐵𝐵 = �(𝑤𝑤𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑡𝑡 ∙ℎ𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑡𝑡)
3600

  (Eq. 1.1) 

 

Equation 1.1. The body surface area (BSA) formula, where weight is given in kilograms, height in centimetres, and the 
BSA in square meters. 
 

A widely used cytostatic drug doxorubicin (DOX) is one of the alternatives for treating paediatric 
ALL. Despite its efficiency, DOX has a small therapeutic index, which means that there is a narrow 
dosage range between the drug being therapeutically effective and it becoming toxic. For instance, 
DOX poses a risk of cardiotoxicity57. BSA is used mainly due to the fact that conventional methods 
for measuring drug concentrations in blood, as well as in malignant and normal cells, are laborious 
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and time-consuming and are not applicable in a clinical setting as a guide to drug dosing. Yet, DOX 
administration based on BSA has its problems. First and foremost, the BSA approach does not 
account for the inter-individual variability of metabolic genotypes in patients. For example, it can be 
said that the median plasma concentration of DOX varies significantly (22.6-334 ng/mL) between 
children depending on, among other factors, their age111. A second issue lies in the inter-variability of 
a cancer phenotype, meaning that the cancerous cells may develop a resistance towards DOX by 
upregulation of their efflux pumps. Due to these individual variations there is always a risk of 
treatment with DOX becoming either inefficient or toxic if BSA is used a guide to dosing.  

The goal of the research presented in this chapter was to develop a reliable and rapid method for 
measuring drug concentrations inside the blood cells of paediatric cancer patients to circumvent the 
shortcomings of BSA. This would allow for individual dose titration, with the potential of increasing 
cure rates with fewer side effects, and would also provide an invaluable tool for drug development, 
pharmacogenomic studies, and for examining the mechanisms of drug action and resistance. 

The author used a linear projection algorithm T-OPLS in order to arrive at a method capable of  
quantifying anti-cancer drugs intracellularly, which would also assist in illustrating the drug’s 
distribution within the cell. The primary aim of  this enquiry was to make a contribution to the 
established clinically viable method for anti-cancer drug quantification in patients suffering from 
ALL. The cells under scrutiny were lymphocytes, monocytes, granulocytes, and PC12 cells, where the 
first three were white blood cells sampled from human blood of  a healthy individual. PC12 cells, on 
other hand, belong to a cell line derived from pheochromocytoma in rats, the cancer of  adrenal 
medulla. More data was gathered from other types of  blood cells, neutrophils, to evaluate whether 
the method could be used on other types of  white blood cells unaffected by the common blood 
cancers. This was done in part to estimate how healthy cells not involved in ALL are affected. Lastly, 
PC12 cells, which produce various catecholamine neurotransmitters, were used to see if  it was 
possible to separate the DOX signal from the dopamine (DOP) signal, thus accumulating further 
information about the viability of  the developed method. The cells were mapped with surface-
enhanced Raman spectroscopy (SERS), and spectra were collected from each pixel, thus producing 
hyperspectral images. The acquired data for these types of  measurements are a mixture of  analyte 
signals, matrix effects, and noise. To fully utilize all spectral information, and, at the same time, 
separate the essential information from the noise, multivariate analysis is commonly used112 and 
successful calibrations for low amounts of  chemotherapeutic drugs in plasma using SERS have been 
made113. To address the issue of  reproducibility inherent to SERS, gold colloids coated with 4-
mercapto-benzonitrile (MBN) were used, where MBN also functioned as an internal standard (IS)114. 
 
The secondary aim of this research was to examine T-OPLS as a tool for quantification of an analyte 
in a complex biological matrix, as well as to provide further insight into the advantages and 
disadvantages of T-OPLS in spectral analyses. T-OPLS is still a poorly explored machine learning 
method, both with regards to the theory and to its practical application in analytical research. So far, 
T-OPLS has been applied in the context of hyperspectral imaging. Some examples include in situ 
analysis of carotenoids50, 115, paracetamol in tablets55, and halogenated non-volatile compounds in 
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macroalgae52. None of these studies provide a comprehensive investigation and validation of how the 
algorithm functions when applied to complex systems. The exception to this is the comparative 
study by Dumarey et al54, where multivariate curve resolution-alternating least squares (MCR-ALS), 
weighted OPLS, and T-OPLS were evaluated as tools for hyperspectral imaging . The insights 
provided in this chapter contribute therefore towards deeper understanding of T-OPLS. 
 

HYPERSPECTRAL IMAGING 
 
When used for purposes of imaging, confocal Raman spectroscopy allows focusing the laser point on 
a small area of the sample and then moving on to the next point, until the entire area of interest is 
mapped. Each point becomes a pixel in an image and contains a Raman spectrum representing the 
fingerprint of that particular point in the sample. These spectra can then be reconstructed into 
hyperspectral images by putting the intensities of score vectors t at each separate frequency as 
images. This can be achieved by, for instance, plotting the intensity of one peak of interest or the 
whole spectrum116. It is done by first stacking the two-dimensional images into a three-dimensional 
matrix, also called a hyperspectral data cube, where the third axis makes up the spectral axis82.  

 

Figure 1.1. Hyperspectral image generated with point mapping. Images in n and m dimensions may be unfolded to a 
table of spectra (observations), similar to an experimental matrix X used in PCA. If multivariate calculations are made on 
the observations, the results from the multivariate score vectors can be reconstructed as images in the same pixel 
coordinates as the original image.  
 

The hyperspectral data cube is generated in this chapter with point mapping, i.e. a grid is defined 
above the sample surface. A spectrum is then measured at each point of the grid; the points then 
function as pixels in an image82. The size of each pixel and the distance between pixels can be set in 
the instrument. Although point mapping is slow compared to modern alternatives, such as line 
imaging and global imaging, the limitations of the instrument used in this work did not make the use 
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HYPERSPECTRAL IMAGING 
 
When used for purposes of imaging, confocal Raman spectroscopy allows focusing the laser point on 
a small area of the sample and then moving on to the next point, until the entire area of interest is 
mapped. Each point becomes a pixel in an image and contains a Raman spectrum representing the 
fingerprint of that particular point in the sample. These spectra can then be reconstructed into 
hyperspectral images by putting the intensities of score vectors t at each separate frequency as 
images. This can be achieved by, for instance, plotting the intensity of one peak of interest or the 
whole spectrum116. It is done by first stacking the two-dimensional images into a three-dimensional 
matrix, also called a hyperspectral data cube, where the third axis makes up the spectral axis82.  

 

Figure 1.1. Hyperspectral image generated with point mapping. Images in n and m dimensions may be unfolded to a 
table of spectra (observations), similar to an experimental matrix X used in PCA. If multivariate calculations are made on 
the observations, the results from the multivariate score vectors can be reconstructed as images in the same pixel 
coordinates as the original image.  
 

The hyperspectral data cube is generated in this chapter with point mapping, i.e. a grid is defined 
above the sample surface. A spectrum is then measured at each point of the grid; the points then 
function as pixels in an image82. The size of each pixel and the distance between pixels can be set in 
the instrument. Although point mapping is slow compared to modern alternatives, such as line 
imaging and global imaging, the limitations of the instrument used in this work did not make the use 
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of such alternatives possible. On the other hand, point mapping offers a better SNR82 and offers 
better spectral resolution117. Therefore, point mapping can be better suited than line or global 
imaging to the a study of the distribution of compounds with low concentrations118. 

As evident from the way the hyperspectral cube is constructed, it contains abundant and complex 
information. The classical way of analysing the hyperspectral cube begins with spectral pre-
processing (see the section above for more information), which aims to reduce the contributions of 
baseline variations and other undesirable effects, such as cosmic rays. Distribution images such as the 
one seen on the right side in Figure 1.1 may then be generated, often with the aid of multivariate 
algorithms, such as PCA, PLS, 3-way multivariate methods, or artificial neural networks (ANN). This 
chemometric analysis allows for the spatial location of the compounds in the sample. Lastly, 
quantitative parameters can be extracted from the images82. 

The choice of algorithms is dictated by the data available, by the types of noise and nonlinear effects, 
as well as by which compounds are to be detected. The simplest and most straight-forward method 
used is univariate analysis. A single wavelength of a compound is selected, say, a peak at 1000 cm-1, 
and then the distribution of this peak is mapped, thus localising the compound to which this peak 
corresponds. The highest intensity in the image represents the highest abundance of that peak in the 
sample. Alternatively, a peak can be integrated and its area can be used in a similar way to the 
univariate approach above82. The greatest disadvantage of these methods is that they necessitate a 
priori data about the studied compounds, i.e. they require white multicomponent systems77. In the 
scope of this thesis, however, the systems studied are predominantly grey, i.e. only partial a priori 
information is available about the sample. This is not an issue if, as is the case of drug imaging in a 
sample, the analyst has the spectrum of the drug. Unfortunately, if the analyte matrix is complex, 
such as a living cell, identification can be hampered by overlaps from the matrix or can be hampered 
if the analyte has a low SNR. For instance, the spectra of the analyte and the IS in Chapter 1 are 
known, but it is not known how their spectral behaviour is affected by matrix effects and to what 
extent the matrix signals overlap with the analyte. Put differently, the univariate approach in this 
particular case is considered to be not sufficiently selective.  

This non-selectivity issue can be addressed if the images are analysed multivariatly. PCA, for 
instance, is particularly suited in this case as it reduces the dimensionality of the data, thus making it 
possible to sort the noisier parts of the spectra into less relevant components. The scores in the PCA 
are then folded back to form an image which represents pixel variability along the corresponding 
loading vectors. PLS-based algorithms, on their own or combined with DA, are also favourably 
applied when comparing several hyperspectral images. In the case of the PLS-based algorithms, Y 
can be set as a continuous variable, e.g. a concentration variation of the sought analyte. If combined 
with DA, a discreet Y is instead created. OPLS, which is a cousin of PLS that is an interpretable 
cousin, has also been used for imaging purposes119-124. 

The greatest challenge in applying linear projection algorithms, whether it is imaging or for other 
enquiries, is that the loadings can be difficult to relate to chemical species present in the sample82, i.e. 
it can be challenging from loadings alone to verify that we have a model that is valid for the target 
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compound. This problem can become even greater if the data used for imaging suffers from 
nonlinear issues. There are several ways this issue can be addressed; nonlinear algorithms can be 
applied, but, as discussed previously, such approaches require larger amounts of data, which was not 
possible to acquire within this work. Other ways include the application of the DoE and, in case of 
this chapter, the T-OPLS algorithm. T-OPLS is an attractive method for imaging, as its Y matrix can 
be set to the spectrum of the sought substance – the variation irrelevant to the sought spectrum 
should be sorted into orthogonal components, making imaging easier to achieve. Examples of this 
imaging approach can be seen in the works of Abbas et al.50, 52 and Josefson et al.53. Once a 
hyperspectral cube is reduced and then extracted into images, the next step is the interpretation of 
the distribution seen in the images and subsequent quantification. Examples of such quantifications 
can be found in the literature125-126.  
 

CELL IMAGING WITH SERS AND CONFOCAL RAMAN SPECTROSCOPY 
 
Cellular imaging can be roughly divided into targeted and label-free methods. A common targeted 
method in imaging is based on fluorescent probes, which can be engineered to target a specific 
analyte within the cell. This allows visualisation of the distribution of the analyte of interest 
intracellularly. Unfortunately, florescence based imaging does not provide specific molecular 
information, which in turn limits the amount of target probes one can introduce into the cell116. 
Imaging based solely on vibrational spectroscopies, such as Raman and SERS, offers the advantage 
of distinct molecular information for each molecule and thus allows simultaneous identification of 
several intracellular species. In addition, Raman is sensitive to any structural and molecular changes, 
making it advantageous for the study of biological processes127. However, since fluorescence 
interferes with Raman signals, combining fluorescent probes and Raman spectroscopy is a challenge. 
These seemingly incompatible techniques have nonetheless been combined by van Manen and 
Otto128 by utilising semiconductor fluorescent quantum dots. However, their work has not been 
evaluated for the research in this chapter.  

As mentioned earlier, normal Raman has a weak signal. If the aim is to detect an intracellular 
component with a label-free method, this might prove to be a challenge due to limit of detection 
(LOD) limitations. Imaging with standard Raman spectroscopy is therefore limited to the study of 
chromophores, where resonance Raman provides the needed enhancement. To avoid the demerit of 
low signal intensity and interfering fluorescence, Raman microspectroscopy has become an 
interesting alternative for imaging. This in turn means that complex samples such as cells can be 
studied directly, with no or little sample preparation. In addition, SERS can provide stronger signals 
and still allow for cellular imaging if used in combination with a confocal microscopy set-up. 
However, for intracellular imaging to occur, SERS requires the internalisation of metallic 
enhancement surfaces by the cells, which is a disadvantage compared to fluorescence imaging. 
Moreover, since SERS enhances signals of all adjacent molecules, be they matrix or analyte, it means 
that the analyte signals can become lost in the plethora of matrix signals116. One way to resolve the 
analyte from matrix signals is the use of chemometric methods. Such approach is particularly 
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advantageous if the sought analyte is sufficiently distinct from the cellular matrix, or is not intrinsic 
to the matrix. In this work, the analytes of interest were DOX and the catecholamine DOP, both of 
which have spectral features distinct from the cell. 
 

GOLD NANOPARTICLES FOR SERS  
 
SERS enhancement is strongly distance dependent meaning that bulk substrates, e.g. electrodes or 
surface structures, are not as readily applicable to the purpose of imaging intracellular environment 
of living cells. This is due to the fact that the cell and the analyte of interest must have as optimal 
proximity to the metal surface as possible83. The desired proximity can be achieved by using colloidal 
substrates. Despite the lack of coherent structure and low reproducibility compared to solid 
substrates, colloids can disperse throughout the sample giving them an edge in cellular imaging. 

In general, gold colloidal nanoparticles (AuNPs) are considered to be the most advantageous choice 
for the imaging of living cells90. Since gold is inert, the background fluorescence from gold 
nanoparticles and species present in the sample is reduced. The inertness of gold also reduces the 
heat damage to cells97. For this thesis, AuNPs were also advantageous due to their negative surface 
net charge. For spherical colloidal substrates generated LSPR is isotropic, i.e. uniform in all 
directions from the colloidal particle86.  

The surface plasmon band can be adjusted for spherical particles by changing their size – this causes 
the active spectral range to shift towards higher wavenumbers with increasing particle size96. To 
achieve optimal enhancement, the size of nanoparticles should be matched to an appropriate 
excitation wavelength. In addition, the choice of laser for live cell imaging is important to consider 
due to factors such as photo-damage to the cells, auto-fluorescence of the matrix components.  In 
the case of gold specifically, the plasmon resonance condition is readily met both by using near-
infrared (NIR) and by using visible spectral ranges. However, when using AuNPs, wavelengths 
within the range of 600 to 800 nm are considered best. This is due to the fact at shorter excitation 
wavelengths gold produces photoluminescence that potentially can interfere with the SERS signal90. 
Longer wavelengths on the other hand would produce lower signal intensity. Based on these 
considerations, 633 nm wavelength was used throughout this chapter.  
 

INTRACELLULAR UPTAKE OF NANOPARTICLES 
 
The most common way to introduce nanoparticles into the cell is through endocytosis from an 
external solution. The uptake is dependent on the size of the nanoparticles, toxicity, and by which 
endocytic mechanism uptake occurs116, 129. Factors that influence the uptake also include the particles’ 
surface charge, and the cell type that internalises the nanoparticles130. In general, smaller 
nanoparticles mean lower toxicity and a higher likelihood of internalisation, and if they are spherical, 
the internalisation is further favoured129, 131. It has also been shown that nanoparticles tend to be 
dispersed through the cytoplasm or congregate near the nuclear membrane132-133. The particles used 
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in this chapter were spherical and 60 nm in diameter, which suggests cellular entry through clathrin-
mediated endocytosis and/or caveolae-mediated endocytosis134.  These uptake mechanisms are 
referred to as receptor-mediated endocytosis, and that occurs when nanoparticles exposed to cell 
media become coated with proteins, which then interact with the receptors on the cell membranes129. 
The process of the protein coating of nanoparticles is referred to as opsonisation.  
 

THIOL SELF-ASSEMBLED MONOLAYERS AS AN INTERNAL STANDARD 
 
If SERS is used for quantitative imaging, it is crucial that the enhancement is consistent135. A major 
problem in the use of colloidal nanoparticle suspensions for surface enhancement is the 
reproducibility of the enhancement factor, which is determined by the aggregation, roughness, size 
and shape of the metal colloids, as well as by the physiosorption of the analyte to the enhancement 
surface83, 136-137. There have been numerous advances in research where the issue of SERS 
reproducibility has been examined for both qualitative and quantitative investigations138-142 However, 
many of the reproducible SERS methods published cannot be applied if the goal is the internalisation 
of SERS substrates into living cells. 

Provided that internalisation is successful, the application of colloidal nanoparticles for imaging of 
living cells involves uncontrollable distribution within the cell and the irreversible uptake may cause 
problems, especially in time-dependent studies97. A further challenge, which was mentioned in the 
beginning of this chapter, is non-selectivity. All molecules in the vicinity of SERS substrate are 
enhanced, generating complex spectra of matrix species and the analyte.   

Both issues can be addressed by coating the colloidal nanoparticles with molecules that would 
saturate the enhancement surface116, but would not interfere with the analyte. The signal of the 
analyte will not be optimally enhanced with such a coating; however, this trade-off allows for 
correction of the enhancement factor. One example of such functionalisation is self-assembled 
monolayers (SAMs)83. SAMs provide high coating percentage, minimized random interactions with 
non-analyte molecules, and minimized interaction between the nanoparticles and the matrix83,105. 
Using the SAM principle, we developed a method where the colloids are coated with a monolayer of 
a Raman active substance143. The choice of the SAM molecule was pivotal; not only was it crucial to 
in ensuring cellular uptake, but also in making sure that the molecule could be used to compensate 
for the irreproducibility of the sought SERS signals. The Raman signal from the monolayer was 
therefore used as an internal standard (IS) to allow for normalisation of the enhancement. This 
method was first applied by Lorén et al83, 143 – the research here draws upon those insights. In 
principle, the IS will be enhanced in a similar way to the analyte so that the signals are enhanced 
simultaneously, and the ratio between them will be constant114.  Thiols are a common choice for 
SAM when working with AuNPs144. These sulphur-containing compounds are favoured when 
coating AuNPs because the Au-S bond is quite strong (40 kcal mol-1) 145. Adsorption of thiols to 
AuNPs is a chemically irreversible process that can be described by following equilibrium:  
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  RSH + Au ↔ RS-Au + ½ H2   (Eq. 1.2) 
 

Equation 1.2. Adsorption equilibrium of thiols to gold surfaces, where RSH is the general formula for a thiol and Au is 
the gold adsorption site145. 
  

The adsorption of the thiols to gold is very rapid, but is followed by a reorganisation of thiol groups 
on the gold surface, a process that can take days146. The adsorption process can be described by the 
Figure 1.2:  

 
 

Figure 1.2. The stages of the self-assembly of a thiol on gold surface: (A) physisorption/chemisorption, (B) ‘ lying-down’ 
phase formation, (C) initiation of ‘standing-up’ phase, (D) completion of ‘standing-up’ phase146. 
 

The first stage of the self-assembly of thiols involves both physisorption through van der Waals 
interactions between each molecule, and chemisorption through covalent binding of the sulphur to 
the gold surface (Figure 1.2A). Both mechanisms determine the structure of the SAM. After these 
initial sorption processes, the SAM starts to grow. The growth is most favourable in defective sites of 
the AuNPs, in which the thiol molecules ‘lie down’ (Figure 1.2B). Through this nucleation of lying 
down thiols, the SAM reaches saturation and thiols start to ‘stand up’ (Figure 1.2C), a process that 
can take up several days until it finalises (Figure 1.2D). Finally, the surface coverage (θ), which is a 
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measure of how many absorption sites are occupied divided by how many sites are available76, 
reaches a maximum at ca θ = 1/3146.  

 

Figure 1.3. (Left): Structure of 4-mercapto benzonitrile (MBN) attached to gold surface. (Right): spectrum of MBN 
coated AuNPs. The spectrum was pre-processed with RCF. Baseline between peaks was detected by using Savitzky-
Golay derivative filters.  

In this chapter, AuNPs have been coated with an arenethiol, 4-mercapto benzonitrile (MBN) 
(Figure 1.3), a substance previously used as an IS83, 143. This particular thiol was chosen due to its 
small size, which is in angstrom (Å) range. The small size of the thiol would ensure that the 
enhancement of nearby molecules would not be reduced (remember the 80 % percent enhancement 
loss at the distance of 10 nm98). In terms of coverage, arenethiols have in general lower surface 
coverage compared to alkanethiols, with some reported values of θ = 1/10147. No value could be 
found in literature specifically for MBN. 

In our measurements, MBN displayed distinctive peaks at 365, 583, 1074 (C-H in-plane 
deformation148-149), 1176 (C-H in-plane deformation148-149; C-CN stretching149), 1582 (aromatic 
stretching148-149), and 2228 (-C≡N stretching149-150) cm-1.  The peak at 583 cm-1 has been previously 
observed in DFT calculated spectra149, but has not been assigned. At neutral pH, this SAM was 
expected to have neutral net charge. This could be disadvantageous since it has been shown that 
positively or negatively charged functionalised nanoparticles penetrate the cells faster than non-
functionalised or neutral nanoparticles151.  

MBN is notable for its strong Raman signal and peaks that fall outside the fingerprint region. Our 
pre-studies have shown that a 1:1 blend of 1 mM MBN and AuNPs produced a clear and strong 
signal. The extent of the MBN coverage on AuNPs was examined with time-of-flight secondary ion 
mass spectrometry (TOF-SIMS) (results courtesy of Dr. John Fletcher; results were not examined 
further in this thesis). It was shown that the AuNP surface reaches saturation when approaching 10 
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mM MBN at a volume mixture of 1:1 with AuNPs.  
 

HUMAN WHITE BLOOD CELLS 
 
Figure 1.4. illustrates the blood cells found in humans. The white blood cells studied here were 
monocytes, neutrophils, and lymphocytes (red circles in Figure 1.4). The first two cell types stem 
from the precursor myeloblast, while the lymphocytes stem from lymphoblast. Myeloblast and 
lymphoblast neoplasticity are behind acute myeloblastic leukaemia (AML) and ALL, respectively, and 
are two of the most common leukemia types. Leukaemia, a cancer affecting the bone marrow, is the 
most common childhood cancer in Sweden, constituting 30 % of all cases, and ALL is particularly 
prevalent in younger children110. Overproduction of lymphoblasts occurs in the bone marrow and 
has adverse effects on the normal production and function of other blood cells. In time, the 
cancerous cells overpopulate the bone marrow and start to migrate to other tissues.  

Monocytes are phagocytic cells, meaning that they can take up solid matter throgh their endocytotic 
mechanisms152. There have been a number of studies on nanoparticle uptake mechanisms in 
cancerous monocytic cell lines, such as THP-1153-154 and U937155, and there have also been studies on 
primary (i.e. cells from normal donor tissue) monocytes156-157.  Neutrophils, the main constituents of 
the granulocyte fraction in human blood, are also phagocytic and follow similar endocytic pathways 
as monocytes. 
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Figure 1.4. Differentiation of blood cells in humans (image license: CC BY-SA 3.0)158. Cell types studied in this chapter 
are marked with red circles. No differentiation was made between T and B lymphocytes. The granulocyte fraction 
(basophils, neutrophils, and eosinophils) mainly consists of neutrophils, and so no differentiation was made between the 
granulocytes. The orange circles mark the lymphoblast and myeloblast, the cell types affected by ALL and AML, 
respectively. 
 

In the research presented below, all of the mentioned white blood cells were primary, acquired from 
a healthy male donor. Due to ethical concerns, we were hesitant to request blood from ALL patients 
before a reliable method was established. Also, blood from a healthy individual was readily available 
at the time. ALL cell lines from human paedeatric patients are commercially available, and would 
have been a suitable alternative for this research enquiry. Examples of ALL cell lines include 
variations of CEM and CCRF-CEM cell lines, MOLT-3, and TALL-104. Using such cell lines would 
make the developed method more comparable to the literature, as many intracellular drug 
quantification studies have been performed on cancerous cell lines. However, this was not done 
because of the need of having a robust method before an attempt was made to measure cancer cells, 
which may have had a high biological intervariability in terms of drug uptake and efflux.  An 
additional rationale behind using healthy cells instead of equivavelent cancerous cell lines  was that 
cancerous cells have been shown to accumulate nanoparticles more readily compared to their healthy 
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counterparts159-162. As the toxicity of cytostatic drugs also affects healthy tissue, we also wanted to 
first establish a method for healthy cells in order to examine the issue of the side effects associated 
with chemotherapy. 
 

DOXORUBICIN (DOX) 
 
DOX belongs to a group of naturally occurring antibiotics called anthracyclines. DOX was first 
isolated in 1967 from bacteria, and is still successfully used for treating a wide range of neoplastic 
abnormalities such as different solid tumours,  lymphomas, leukaemias, and paediatric cancers163. 
DOX enters cells through passive diffusion and accumulates predominantly in cells exhibiting high 
proliferation rates. Due to its planar structure, DOX intercalates with DNA, which in turn inhibits 
macromolecular synthesis by topoisomerase II163. In addition to acting as a topoisomerase poison, 
DOX also affects DNA through the hydroxyquinone moiety to form DOX-iron complex. This 
generates reactive oxygen species, which cause a breakage of the DNA chain163. Together, these 
mechanisms ensure that the replication of the DNA double-helix is halted – in turn, various 
metabolic and growth processes are disturbed, and, in time, apoptosis is induced.  

 

 

Figure 1.5. Structure of doxorubicin (DOX). 
 

DOX possesses a positive net charge at the neutral pH164 of the cellular environment. The drug is a 
chromophore and has a distinctive Raman spectrum, suggesting that label-free detection of DOX 
should be possible. Eliasson et al.165 and Yan et al.166 have reported spectral features of DOX 
measured over silver colloids. These bands are listed in Table 1.1.  
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Band Bond 

352 cm-1 C-C-O in-plane deformation 

450 cm-1 C=O in-plane deformation 

1200-1300 cm-1 In-plane bending of C-O, C-O-H, C-H, respectively  

1406 cm-1 Ring vibrations 

1433 cm-1 Ring vibrations 

1517 cm-1 Ring vibrations 

1640 cm-1 H bonded C=O stretch  

 

Table 1.1. Spectral features of DOX measured with silver colloids165-166. 
 

QUANTIFICATION AND DETECTION OF CYTOSTATIC DRUGS WITH RAMAN IMAGING 
 
Lin et al.167 have attempted to track the cytotoxic effect of DOX in single cells with Raman 
spectroscopy. Their results have suggested that no significant spectral changes have occurred in the 
proteins and the DNA of the cell. They concluded that on the whole Raman spectroscopic imaging 
does not offer any advantages compared to conventional cytotoxicity assays, unless only the cell 
nucleus is subjected to analysis. However, their study, as well as other studies168-171, did not have as its 
aim the quantification of the drug itself; instead, the focus lay on the detection of the effects of the 
drug. A common observation in such studies is that the signal of DNA and proteins changes in cells 
treated with cytostatic drugs compared to control. 

In contrast, the research dedicated to the in situ quantification of a drug in living cells is limited, 
although the interest in developing such methods exists172. Some examples include the research 
performed by Eliasson et al.165, 173, Abbas47,  and Lorén et al.83, 113, 143, which suggests that 
quantification of sub-millimolar concentrations of DOX is possible, both in blood plasma and 
intracellularly in lymphocytes. Another study has reported the successful intracellular quantification 
of the drug theraphthal in A549 cells174. A promising alternative is to extract the chemical 
components of the cells such as proteins, DNA, and RNA and quantify them separately, as was done 
by Draux et al.127. In other words, if it is not possible to detect the drug itself, it is possible to 
quantify its effect on the cellular distribution of biomolecules. Despite that possibility, the ability to 
quantify intracellular drugs for purposes of improved patient dosage would not be achieved with 
such a method, unless a correlation between dosage and DNA deterioration is firmly established. 
Furthermore, methods based on cellular extractions are too laborious and resource intensive to be 
readily applicable in a clinical setting.  
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PC12 CELLS 
 
The PC12 cell line was first isolated from rats’ adrenal medulla in 1976, and is distinguished by its 
synthesis and storage of the neurotransmitter DOP. The cells contain large dense-core vesicles 
containing DOP and other catecholamines175.  PC12 cells are primarily used in neuroscience 
research. Here, the PC12 cells were used as a model for cells different from the blood cells to see if 
novel information would be revealed when applying machine learning methods for hyperspectral 
imaging and spectral interpretation.  
 

DOPAMINE 
 
DOP has two ionisable functional groups resulting in two pKa values. However, if pH is greater than 
12, the molecule can exist as a zwitterion. This means that, depending on the pH of the DOP’s 
environment, it may exist as a mixture of anionic, cationic, and zwitterionic forms176. At a 
physiological pH of 7, the pH of cellular environment, DOP exists primarily in its cationic form177. 
The reference spectra for cationic DOP measured at pH 5 can be seen in Figure 1.6. 

 

 

Figure 1.6. The ionic of dopamine (DOP)178. 
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METHODS 
 

WHITE BLOOD CELLS 

MATERIALS AND STOCK SOLUTIONS 
 
A stock solution of DOX 1 mM was prepared by the dilution of a 2mg/mL doxorubicin 
hydrochloride solution (Sigma Aldrich, Sweden) with MilliQ water. The stock solution was then 
diluted in order to achieve desired concentrations in each individual cell fraction. 

Spherical gold colloids, AuNPs, 60 nm in diameter, were obtained from BBI Solutions 
(Sittingbourne, Kent, UK), with the following properties: a mean size of 57.0 - 63.0 nm, a mean 
diameter 59.6 nm, a gold chloride concentration of 1.26, the number of particles per mL was 
2.60*1010, number of moles particle per mL 4.3175*10-14 , the molar particle concentration 
(moles/L) was 4.3175*10-11,and the mass of gold per mL was 5.68*10-5.The colloidal coating, 4-
mercapto benzonitrile (MBN), was purchased from SynChem OHG (Felsberg-Attenburg, Germany) 
and was dissolved in EtOH (90 %) to a concentration of 10 mM. The MBN stock solution was then 
further diluted with EtOH to concentration of 1 mM in order to be used for the coating of AuNPs. 
Dulbecco’s phosphate buffer saline (PBS) with Ca2+ and Mg2+ (Fisher Scientific, Sweden) and 1 M 
HEPES (Fisher Scientific, Sweden) were used to prepare a washing buffer for by mixing 400 µL 1 M 
HEPES (Fisher Scientific, Sweden) with 39.6 mL PBS.  Dulbecco’s modified Eagle’s medium, 
DMEM (Fisher Scientific, Sweden) combined with iron-fortified calf serum (Sigma Aldrich, Sweden) 
was used as cell incubation medium.  

8-chambered Nunc™ LabTek™ coverglass (Thermo Scientific, Sweden) was used for cell cultures. A 
10 mM solution of poly-L-lysine hydrobromide (PLL), 30-70 kDa (Sigma Aldrich, Sweden) dissolved 
in milliQ was used to coat LabTek™ chambers. 

Boric acid (Sigma Aldrich, Sweden) and sodiumtetraborate-10-hydrate (Labassco, Mölndal, Sweden) 
were used to prepare a borate buffer with final pH of 8.2. This was done by first preparing a 0.2 M 
solution of boric acid and a 0.05 M solution of sodiumtetraborate-10-hydrate. Then, 50 mL of boric 
acid solution was mixed with 7.3 mL of sodiumtetraborate-10-hydrate, and finally diluted with MilliQ 
to a total volume of 200 mL. The resulting borate buffer was used to dissolve γ-irradiated lysed 
powder of poly-D-lysine hydrobromide (PDL), >300 kDa (Sigma Aldrich, Sweden), to give a final 
coating solution of 10 mM. The solution was subsequently used to coat LabTek™ chambers. 

Trypan blue, TrB (Sigma Aldrich, Sweden), was used to prepare an aqueous (0.4%) cell stain for 
evaluation of cellular viability. The differentiation between living and dead cells is based on the fact 
that dead cells become permeable and hence absorb colour, becoming blue.   
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COATING OF GOLD COLLOIDS 
 
AuNPs were mixed in individual Eppendorf tubes with 1 mM MBN in EtOH solution at a ratio of 
1:1. The number of tubes corresponded to the number of chambers to be examined. The Eppendorf 
tubes were stored at 6 °C for ~48 h.  

Before use, the Eppendorf tubes with the colloid solution were centrifuged for 5 minutes at 5000 
rpm. The supernatant was aspirated from each tube and pellets were resuspended with 200 μL 
milliQ. The process of centrifuging and washing with MilliQ was repeated in total of 3 times.  

Non-coated colloids were centrifuged for 5 min at 5000 rpm without any washing required. 
 

ADHESIVE COATING OF THE COVERGLASS 
 
LabTek™ coverglass with 8-chamberes was used. Each chamber was filled with 200 µL 10 mM PLL 
dissolved in MilliQ or 10 mM PDL dissolved in borate buffer and left to coat at RT for 30 minutes. 
Then, all wells were aspirated and washed two times with 200 µL MilliQ. The coverglass was then 
placed in a fume hood to air dry for at least 10 minutes or until cell seeding.  
 

CELL PREPARATION AND INCUBATION 
 
Different protocols were used depending on whether the cells were crypreserved or fresh.  

Protocol 1: Cryopreserved cells 

The cells were donated,  prepared, and cryopreserved by Dr. Mats Bemark.  

The cells were treated with one of the DOX concentrations (0, 11 or 40 mM) and were thawed in a 
water bath (~37.5 °C). The cells were thereafter diluted dropwise with 4 mL DMEM in a Falcon 
tube. The contents of the Falcon tube were then divided into Eppendorf tubes and centrifuged at 
1900 rpm for 10 min. After centrifugation the supernatant was aspirated and each cell pellet was 
resuspended using 250 µL of calf serum and DMEM (1:9) mixture.  

200 µL of the resuspended cell pellet was transferred to an individual chamber on a LabTek™ 
coverglass (Figure 1.7).  
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Figure 1.7. Coverglass distribution of one cell batch. All chambers contained cells treated with the same DOX 
concentration, 0, 11 or 40 mM.  

A washed colloid pellet was added into each test chamber and the coverglass was put in a CO2 
incubator for ~16-24 h.  

After the incubation, all chambers were aspirated and washed two times with a PBS+HEPES buffert 
mix. One of the control chambers was stained with 100 µL of aqueous solution of TrB (0.4 %), for 4 
min to assess post-incubatory cell viability. The cells remained in the PBS+HEPES buffer 
throughout the measurements.  

One test chamber was examined per day. Cells were selected visually under the microscope and as 
many cells as possible were measured during the day. After measurements, the test chamber was 
stained with TrB to assess of cell viability as described in the paragraph above. Test chambers that 
were not examined were aspirated and each were refilled with 200 µL of fresh calf serum and 
DMEM (1:9) mixture, and were put back into the incubator until the following day. The post-
incubation steps were repeated for each chamber until all test chambers has been examined. On the 
final measurement day, the second control well was stained with TrB for a viability assessment. 
 

Protocol 2: Fresh cells 

Cells were donated and  prepared by Dr. Mats Bemark.  

Each cell fraction (VT = 400 μL) was transferred to a Falcon tube and dropwise diluted with  
DMEM to a total volyme of 3 mL. The contents were shaken gently. 200 μL of cell suspension was 
transfered to coated coverglass chambers as follows (Figure 1.8): 
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stained with TrB to assess of cell viability as described in the paragraph above. Test chambers that 
were not examined were aspirated and each were refilled with 200 µL of fresh calf serum and 
DMEM (1:9) mixture, and were put back into the incubator until the following day. The post-
incubation steps were repeated for each chamber until all test chambers has been examined. On the 
final measurement day, the second control well was stained with TrB for a viability assessment. 
 

Protocol 2: Fresh cells 

Cells were donated and  prepared by Dr. Mats Bemark.  

Each cell fraction (VT = 400 μL) was transferred to a Falcon tube and dropwise diluted with  
DMEM to a total volyme of 3 mL. The contents were shaken gently. 200 μL of cell suspension was 
transfered to coated coverglass chambers as follows (Figure 1.8): 
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Figure 1.8. Coverglass distribution for each fresh cell batch. Each chamber contained a cell fraction treated with one of 
the four DOX concentrations. The test row contained cells that were subjected to Raman measurements, while a control 
row functioned solely as a post-incubation viability test control.  
 

A washed colloid pellet was added to each chamber. The coverglass was then put into CO2 
incubator. Incubation time varied from short-term (1-5 h) to long-term (16-24 h) depending on the 
purpose of the experiment.  

All coverglass chambers were aspirated and washed twice with 200 μL PBS+HEPES after 
incubation. Prior to measurement, each chamber in the control row was stained with 100 μL TrB (4 
%) for 4 min. The control chambers were then washed repeatedly with PBS+HEPES, and the cells 
were counted under a microscope. 

The cells remained in the PBS+HEPES buffer throughout the measurements. Each chamber in the 
test row was examined under microscope in order to select suitable cells, for measurement with 
respect to their viability and type. Each measurement was done over a total of 10 cells per chamber, 
starting with the chamber with highest concentration of DOX. All test chambers were measured 
during the same day. After all measurements were completed the test row was stained with TrB as 
described earlier.  
 

INSTRUMENTATION 
 
Cell analysis was performed using a confocal Raman spectrometer (Dilor Labram INV) equipped 
with a confocal microscope (Olympus), holographic grating (900 grooves/mm), and a charged 
coupled device (CCD). The laser (He/Ne) excitation wavelength was 632.8 nm and the cells were 
examined under 100x magnification. The cells were mapped by the xy-stage of the microscope in 1 
μm or 1.5 μm steps, and covered an area from 36 to 121 μm. Some of the measurements were 
mapped in several layers along the z-axis, with 0.5 to 2 μm between each layer. Optimal instrument 
parameters were selected based on pre-studies, when the maximum signal was sought. The optimal 
pinhole size was selected to be 900 µm and the optimal measuring time 2x1secs. No preference was 
given to either a 1000 or a 500 µm slit size.  
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DATA ANALYSIS 
 

The spectral data was recorded with LabSpec 4.18. The spectral files were then converted through 
in-house software into .mat datasets and were subsequently examined in Matlab R2013a. Plots for 
each observation were examined visually to detect and remove observations containing fluorescence 
and/or interferences produced by cosmic rays. The base line correction, iteratively re-weighted 
penalized least squares, was done based on a script described by Zhang et al.66, followed by ratio 
calculations between the DOX and MBN signals.  

The datasets were imported into SIMCA 13.0.3 (Umetrics, Umeå, Sweden), where they were 
modelled by various multivariate techniques, including T-OPLS50, 179 and OPLS-DA180. Generation, 
unfolding, and post-modelling reassembly of hyperspectral images was done by in-house software 
(DeterminatorIV 0.540) and routines from the Python Matplotlib. In the case of the T-OPLS 
models, the datasets were mean centred and was unit variance scaled where necessary. In the OPLS-
DA models, the datasets were mean centred only.  
 

PC12 CELLS 
 
A DOX (Sigma Aldrich) standard stock solution of  1 mM was prepared in MilliQ water and stored 
at -20°C. An isotonic solution, pH 7.4, was prepared according to an earlier published protocol181. 
Series of  dopamine concentrations (Sigma Aldrich) in isotonic solution were prepared by consecutive 
dilution of  the stock solution of  dopamine (10 mM). Aliquots of  the dopamine stock were made, 
with pH 7.4 (in isotonic solution) and pH 5 (adjusted with 0.1M HCl), and stored at -20°C. 
 
A stock solution for adenine (Sigma Aldrich), 10 mM, was prepared in 3 M HCl. Guanine (Sigma 
Aldrich) stock solution, 10 mM, was prepared in 5 M HCl. Cytosine (Sigma Aldrich) was dissolved in 
1 M HCl to a final concentration of  10 mM, and uracil (Sigma Aldrich) was dissolved in 1 M NaOH 
to a final concentration of  10 mM. 60 nm gold nanoparticles, AuNPs, were purchased from BBI 
solutions (Cardiff, UK). 
 
The internal standard 4-mercapto-benzonitril (MBN) (Synchem UG & Co. KG, Felsberg, Germany) 
was dissolved in 95% ethanol to a final concentration of  10 mM.  Cell washing was prepared by 
mixing CaCl2 and MgCl2 free phosphare buffer saline, PBS (Sigma Aldrich), with a 1 M solution of  
HEPES (Sigma Aldrich), to a final HEPES concentration of  10 mM.  
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PREPARATION OF AUNPS 
 

AuNPs were mixed with 0.5 mM of  MBN solution to a final MBN concentration of  100 µM. The 
mixture was stored for 24 hours at 4 °C, in order to allow the MBN monolayer to stabilize. Prior to 
usage, the colloid mixture was washed according to procedures described in Josefson et al.182. 
 

PREPARATION AND INCUBATION OF CELLS 
 
PC12 cells from the adrenal glands of  Rattus norvegicus were purchased from the American Type 
Culture Collection (Manassas, VA). Cells were grown on mouse collagen IV coated flasks (25 cm2) in 
a phenol red-free RPMI-1640 culture medium (Fischer Scientific, Sweden) supplemented with 10% 
horse serum (Sigma Aldrich, Sweden)  and 5% fetal bovine serum (Sigma Aldrich, Sweden) in an 
incubator at 37ºC in 7% CO2 

and at 100% humidity. The growth medium was replaced every 1-2 
days during the lifetime of  all cultures. Cells were split every 7 days. The cell suspension was mixed in 
a vortex shaker and 1 mL of  the cell solution was mixed with 7 mL of  cell growth media and 
transferred to a clean 25 cm2 

culture flask. The culture was subcultured 10 times before the cells were 
used for measurements.  
 
Prior to AuNPs incubation, an 8-well sticky slide (LRI AB/Ibidi, Lund, Sweden) was attached to a 
Raman grade CaF2 microscope slide (Crystran Ltd., Poole, UK). The cell suspension was then seeded 
into five wells. For one well, uncoated AuNPs were added to the cell suspension in a 1:1 volume 
ratio. Four more wells were prepared by adding washed MBN functionalized AuNPs in a 1:1 volume 
ratio. The slide was then put into an incubator with 5% CO2 and at a temperature of  37.1 °C for 1 h. 
Thereafter, DOX was added to wells containing MBN-colloids to reach final concentrations of  100, 
50, and 1 µM of  DOX. To one well no DOX was added. Cells were incubated again for 30 minutes.   
 
All wells were aspirated and washed twice with a PBS+HEPES solution, then refilled with 400 µL 
PBS+HEPES solution prior to measurement. 
 

PC12 MEASUREMENTS 
 
Spectra were collected with a Dilor Labram IV Raman spectrometer equipped with an inverted 
confocal microscope (Olympus) and a piezoelectric stage. The excitation wavelength was 632.8 nm 
and the cells were examined under 100x magnification.  Spectra were collected within the spectral 
range 370-2270 cm-1. A charge coupled device (CCD) was utilized as detector. Measurements were 
performed by mapping a 12x12 µm pixel grid in xy-plane over one cell at a time, measuring a total of  
8 cells per well.  To ensure measurement inside the cells, the laser was first focused on the surface of  
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the cell and then the focus was adjusted to a 2 µm depth. In each pixel, the spectrum was measured 
twice and the spectral acquisition time was 2 s. The morphology of  the cells was evaluated visually 
before and after in order to assess their viability.  
 

MEASUREMENT OF REFERENCE SOLUTIONS 
 
Reference solutions of  DOX (100, 50, and 1 µM), dopamine (0.1, 1.5, 5, 7.5 and 10 mM), adenine (5 
mM), cytosine (5 mM), guanine (5 mM), and uracil (5 mM) were obtained by mixing stock solutions 
with non-coated AuNPs on a separate CaF2 slide with an attached 8-well sticky slide. MBN (0.5 mM) 
was measured as is, without any additional non-coated colloids. Reference spectra were obtained by 
using an average of  10 spectra, accumulated for 30 s each. 
 

DATA ANALYSIS 
 
SIMCA 14.1 (MKS Data Analytical Solutions, Malmö, Sweden) was used for the construction of  
PCA and T-OPLS models. Generation, unfolding, and post-modelling reassembly of  hyperspectral 
images was performed with in-house software (DeterminatorIV 0.54) and with routines from the 
Python Matplotlib183. Interpolation of  spectra was performed with an in-house Python script. After 
baseline correction with RCF63, an in-house algorithm for peak finding184 based on finite state 
automaton with inputs from Savitzky-Golay first and second derivative filters were applied. The 
baseline between the peaks was then subtracted. These corrections were done to remove the 
influence of  noise at the baseline and thus to remove its influence on the subsequent multivariate 
models. In addition, the interpretability of  spectra was improved.  
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RESULTS AND DISCUSSION 
 

A crucial objective of this chapter was to find a way of ensuring colloidal entrance into living cells, 
which is a prerequisite to the project’s main goal – the detection and quantification of intracellular 
DOX. Being able to develop methods capable of detecting and quantifying anti-neoplastic drugs 
inside living blood cells is of analytical interest, because they would enable easy tracking of 
concentration variations of a drug at the location where it is therapeutically active in the patient. This 
would in turn reveal potential under- or over dosages of the patient and further individualise the 
treatment strategy used for them.   

Lymphocytes were the first choice selected to represent ALL. Lymphocytes were chosen because the 
precursors of lymphocytes, lymphoblasts, are the central cell type in the occurrence of ALL. 
However, as it will be shown later in this chapter, lymphocytes had to be replaced with other cell 
models. The cell models studied apart from lymphocytes were neutrophils and monocytes. The cells 
used were either fresh or cryopreserved. The rationale for using cryopreservation is to halt biological 
processes, a common practice in clinical applications, where cells and tissues sampled for analysis are 
often cryopreserved185. Furthermore, in a clinical setting it would be impractical to need to analyse 
fresh cells – it would mean that the peripheral blood sample had to be taken from the patient and 
then analysed within a frame of 24 hours. Therefore, there is a need of protocols for the 
development of cryopreservation that would still maintain good cell viability, and allow prolonged 
storage. That process would allow for long-term storage and would facilitate sampling strategies that 
do not require fresh blood, making the method more clinically suitable. 

Measuring living cells was considered to be crucial since dead cells become permeable, which means, 
for instance, that colloids and residual DOX could accumulate in a dead cell. Therefore, dead cells 
were not considered representative for the purposes of this chapter, which deals with identification 
and quantification of DOX. The differentiation between dead and living cells was done through q 
visual assessment of their vitality, and through staining with trypan blue (TrB). 

In earlier experiments, the cells were treated with DOX dosages of 0, 11 or 40 mM. However, in the 
later experiments with granulocytes and monocytes, lower concentrations were chosen (0, 0.11, 0.4 
and 11 μM) in order to imitate plasma concentrations of DOX in ALL paediatric patients. The 
concentrations were calculated based on the median plasma concentration found in children treated 
for ALL, 62.8 ng/mL111. As the experiments with neutrophils and monocytes did not reveal the 
presence of DOX, the dosage range was increased to 1, 5, and 100 μM for PC12 tests. 

Proof of colloidal internalisation and of the presence of DOX was achieved by microscope 
experimental observation and by subsequent analysis of acquired spectral data by multivariate linear 
projection algorithms. During the analysis, the T-OPLS models were constructed in such way as to 
detect spectral features of the analytes, DOX and DOP, and the IS, MBN (Figure 1.9). The 
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presence of spectral features of the latter inside the cells served as evidence of AuNPs’ presence 
inside the cellular environment. 

 

Figure 1.9. The reference spectra of MBN-coated AuNPs (black), 100 µM DOX and uncoated AuNPs (blue), and 10 
mM cationic DOP and uncoated AuNPs (red). The spectra were pre-processed with RCF. The baseline between peaks 
was subtracted by using a peak finding finite automaton based on Savitzky-Golay derivative filters, leaving medium to 
strong peaks.  
 
During the course of  the project several challenges arose that had to be solved in order to detect 
DOX. In addition to difficulties in the selection of  cells capable of  colloidal internalisation, we also 
faced difficulties when adhering cells to the coverglass surface and in the cryopreservation of  cells.  
 

CELL ADHESION 
 
One of the first issues to solve was poor cellular adhesion to the surface of the coverglass. The 
evaluation of cell adhesion was performed by visual examination of cell motility under microscope 
magnification. Cells need to be as immobile as possible for SERS measurement, otherwise they 
would move out of the laser focal point thus rendering the measurement useless. This was a 
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particular problem when studying lymphocytes, which lack the desired capabilities of adhesion to 
surfaces and tissues.  

Initially, a MilliQ water solution of poly-L-lysine, PLL (30-70 kDa), was used but proved to be 
unsuccessful as an adhesive coating for lymphocyte immobilisation. To promote adhesion PLL was 
switched to poly-D-lysine, PDL (> 300 kDa), based on the assumption that the dextro variant of the 
polymer would not be subjected to degradation by cellular metabolism. The higher molecular weight 
of the protein was supposed to increase adhesion further186. Adhesion was still failing.  

It was later realised that the pH of the PDL solution can influence the adhesion quality of the cells. 
The solutions were previously made in MilliQ water and had acidic pH of ~3-4. The pH of the PDL 
solution was therefore increased towards the alkaline range, ~8, by dissolving PDL in borate buffer 
instead of in MilliQ. This improved the adhesion of lymphocytes. However, when coated or 
uncoated AuNPs were added to lymphocytes the adhesion was failing again, suggesting that the 
presence of colloids somehow disrupted the fastening of the cells to the PDL treated glass surface. 
Interestingly, when trypan blue (TrB) was added during viability tests, adhesion was again successful. 
The mechanism for this phenomenon is unknown and no description of it was found in the 
literature. Unfortunately, TrB is a chromophore with a high fluorescence and therefore adhesion 
promoted by it was not feasible for the purposes of measuring cellular spectra and presence of DOX 
by SERS.  

Other cell types that were used, neutrophils and monocytes, did not display the same adhesion 
problems as lymphocytes. The only factor that increased motility was prolonged incubation times. 
Therefore short-term incubation times (< 5 h) were deemed optimal for neutrophils and monocytes.  
 

ANALYTE DETECTION IN CRYOPRESERVED LYMPHOCYTES 
 
The blood samples used in the experiments with cryopreserved lymphocytes contained both 
monocytes and lymphocytes. Lymphocytes were selected by their visual characteristics during each 
measurement, differentiating them thus from monocytes. The selection was made through an 
evaluation of motility and size. Lymphocytes, which did not adhere well, displayed mainly Brownian-
type motion. Lymphocytes are also smaller with a size range of roughly 5-8 µm in diameter. 
Monocytes on the other hand displayed an amoeba-like motility and were larger, 8-10 µm. 

To build an OPLS regression model, the common way is to have more than one Raman spectrum 
with known concentrations to span a calibration range. However, when analysing images of 
biological samples introducing an analyte with known concentrations into cells is difficult. To 
overcome this, using T-OPLS similarly to a one-point standard is possible. The experimental 
observation and T-OPLS models have shown that lymphocytes do not internalise colloids (Figure 
1.10) 

79
 

 

 

Fi
gu

re
 1

.1
0.

 H
yp

er
sp

ec
tra

l i
m

ag
e 

of
 o

ne
 ly

m
ph

oc
yt

e 
tre

at
ed

 w
ith

 4
0 

m
M

 D
O

X
 a

nd
 in

 M
BN

-c
oa

te
d 

A
uN

Ps
. T

he
 c

el
l w

as
 m

ap
pe

d 
in

 4
 la

ye
rs

, 0
.8

 µ
m

 a
pa

rt,
 w

ith
 th

e 
to

p 
la

ye
r s

ho
w

n 
to

 fa
r t

he
 ri

gh
t i

n 
ea

ch
 ro

w
. I

m
ag

e 
a)

 is
 th

e 
to

ta
l i

nt
en

sit
y 

of
 th

e 
sig

na
l f

or
 th

e 
ly

m
ph

oc
yt

e,
 w

he
re

 th
e 

br
ig

ht
es

t p
ar

ts
 re

pr
es

en
t t

he
 c

el
l d

er
iv

ed
 fr

om
 

po
3 

in
 a

 T
-O

PL
S 

m
od

el
.  

Im
ag

e 
b)

 is
 th

e 
di

st
rib

ut
io

n 
of

 D
O

X
, c

) t
he

 d
ist

rib
ut

io
n 

of
 M

BN
 si

gn
al

 fr
om

 A
uN

Ps
, a

nd
 d

) t
he

 ra
tio

 b
et

w
ee

n 
D

O
X

 a
nd

 M
BN

 si
gn

al
s. 

Th
e 

gr
ey

 p
ix

el
s i

n 
th

e 
im

ag
es

 a
re

 p
ix

el
s t

ha
t w

er
e 

re
m

ov
ed

 b
ec

au
se

 th
ey

 w
er

e 
ou

ts
id

e 
th

e 
m

ea
su

re
d 

ar
ea

. I
n 

ca
se

 o
f r

ow
 D

, t
he

 g
re

y 
pi

xe
ls 

m
ar

k 
lo

ca
tio

ns
 w

ith
 a

 n
eg

at
iv

e 
co

nc
en

tra
tio

n 
w

he
n 

th
e 

ra
tio

 b
et

w
ee

n 
D

O
X

 a
nd

 M
BN

 w
as

 c
al

cu
la

te
d,

 a
nd

 th
es

e 
w

er
e 

th
er

ef
or

e 
re

m
ov

ed
. T

he
 im

ag
es

 w
er

e 
ba

se
d 

on
 sp

ec
tra

 T
-O

PL
S 

m
od

el
 c

al
cu

la
te

d 
on

 fu
ll 

sp
ec

tra
.



78 
 

particular problem when studying lymphocytes, which lack the desired capabilities of adhesion to 
surfaces and tissues.  

Initially, a MilliQ water solution of poly-L-lysine, PLL (30-70 kDa), was used but proved to be 
unsuccessful as an adhesive coating for lymphocyte immobilisation. To promote adhesion PLL was 
switched to poly-D-lysine, PDL (> 300 kDa), based on the assumption that the dextro variant of the 
polymer would not be subjected to degradation by cellular metabolism. The higher molecular weight 
of the protein was supposed to increase adhesion further186. Adhesion was still failing.  

It was later realised that the pH of the PDL solution can influence the adhesion quality of the cells. 
The solutions were previously made in MilliQ water and had acidic pH of ~3-4. The pH of the PDL 
solution was therefore increased towards the alkaline range, ~8, by dissolving PDL in borate buffer 
instead of in MilliQ. This improved the adhesion of lymphocytes. However, when coated or 
uncoated AuNPs were added to lymphocytes the adhesion was failing again, suggesting that the 
presence of colloids somehow disrupted the fastening of the cells to the PDL treated glass surface. 
Interestingly, when trypan blue (TrB) was added during viability tests, adhesion was again successful. 
The mechanism for this phenomenon is unknown and no description of it was found in the 
literature. Unfortunately, TrB is a chromophore with a high fluorescence and therefore adhesion 
promoted by it was not feasible for the purposes of measuring cellular spectra and presence of DOX 
by SERS.  

Other cell types that were used, neutrophils and monocytes, did not display the same adhesion 
problems as lymphocytes. The only factor that increased motility was prolonged incubation times. 
Therefore short-term incubation times (< 5 h) were deemed optimal for neutrophils and monocytes.  
 

ANALYTE DETECTION IN CRYOPRESERVED LYMPHOCYTES 
 
The blood samples used in the experiments with cryopreserved lymphocytes contained both 
monocytes and lymphocytes. Lymphocytes were selected by their visual characteristics during each 
measurement, differentiating them thus from monocytes. The selection was made through an 
evaluation of motility and size. Lymphocytes, which did not adhere well, displayed mainly Brownian-
type motion. Lymphocytes are also smaller with a size range of roughly 5-8 µm in diameter. 
Monocytes on the other hand displayed an amoeba-like motility and were larger, 8-10 µm. 

To build an OPLS regression model, the common way is to have more than one Raman spectrum 
with known concentrations to span a calibration range. However, when analysing images of 
biological samples introducing an analyte with known concentrations into cells is difficult. To 
overcome this, using T-OPLS similarly to a one-point standard is possible. The experimental 
observation and T-OPLS models have shown that lymphocytes do not internalise colloids (Figure 
1.10) 
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Figures 1.10 shows a lymphocyte mapped in four layers with signal intensities. The left-most images 
in each row represent the bottom of the cell (where the cell touches the coverglass) and the right-
most images represent the top of the cell. A T-OPLS model was created using MBN and DOX 
reference spectra as Y matrices. Separate T-OPLS models were created for each Y. The model was 
calculated on four cells (only one cell is shown here) and the diagnostics for the model gave 
cumulative values of R2X = 0.996, R2Y=0.959, and Q2=0.955.  

The first set of images in Figure 1.10A shows the total signal intensity from a lymphocyte. The 
brightest parts of the image represent the cellular outline, showing the location of the cell in the 
mapped window frame. The image furthest to the left in Figure 1.10A is the layer measured closest 
to the coverglass surface, -1.2 µm in z-axis, and is representative of the cell surface. 

The second set of images (Figure 1.10B) represents the distribution of DOX detected during 
measurements, with brighter pixels indicating a higher presence of DOX, and darker or black pixels 
point to either very low DOX enhancement or to its absence. As it becomes evident from looking at 
Figure 1.10B, there was no DOX related signal issuing from the cell. When compared to Figure 
1.10A; the comparison reveals that despite the presence of a cell within the image frame, there was 
no overlap of DOX signal in the same pixels as in Figure 1.10A. The exception was the layer to the 
far left, the top surface of the cell, where there seemed to be some DOX present. This can be 
explained either by smaller amounts of DOX leaking into the cell medium from dead cells or by left 
over DOX which was not washed away. This extracellular DOX possibly got enhanced and detected 
because of the presence of AuNPs on the cell’s exterior.  

A similar situation can be seen in Figure 1.10C: although the absence of a MBN signal is not as 
apparent, the images are inconclusive on whether a MBN signal is present within the cell. 
Experimental data has, however, led to the assumption that the colloids have not been internalised. 
In the course of experiments, no MBN signal was detected in the pixels corresponding to the 
mapped cell. The last four images in Figure 1.10D represent the ratio of the DOX and MBN signals. 
The ratio of DOX and MBN was calculated in order to compensate for signal enhancement from 
colloidal aggregates, which produce much stronger signals compared to isolated AuNPs. If DOX 
enhancement was present, it would mean that the colloids had internalised and were able to produce 
that enhancement. With colloidal presence inside a cell, it should therefore have been possible to 
detect the MBN signal, since colloids are coated with that substance. In other words, where there 
was a DOX signal, there also must have been a MBN signal present. However, by calculating the 
relative enhancement ratio of DOX and MBN signals gave hyperspectral images with no signal 
present. The exceptions are the image to the far right (bottom of the cell) and the image to the far 
left (top of the cell) in Figure 1.10D, where there seems to be a signal enhancement, and the 
presence of DOX outside the cell. The behaviour observed in Figure 1.10 is representative of all 
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lymphocytes that were modelled in this particular data set, as well as in other data sets containing 
lymphocyte measurements•. 

At first, the result was puzzling, since Eliasson et al.173 have reported a successful acquisition of 
rhodamine 6G spectra in 30-40 % of all lymphocytes measured: rhodamine 6G has a similar entry 
pathway to DOX57. Similarly, Abbas47 has reported the detection of 11 µM DOX inside lymphocytes. 
Both cases suggest successful colloidal internalisation. Upon closer scrutiny of their work, however, 
it was understood that, just as in results here, the measurements were done on a mixed sample of 
lymphocytes and monocytes, but no differentiation was made between the two cell types. Hence, it is 
assumed that their tests were performed indiscriminately on both cell types.  

DOX could thus not be measured in lymphocytes due to an absence of surface enhancement 
provided by internalised colloids. In turn, it was concluded that lymphocytes are not capable of 
internalising colloids. This can be attributed to the inherently low phagocytic capacity of 
lymphocytes187, although the phagocytic activity is not entirely absent. The detection of DOX 
achieved by Eliasson et al.173 and Abbas47 can be explained by successful AuNP internalisation by 
monocytes, which possess more active endocytosis. 
 

ANALYTE DETECTION IN CRYOPRESERVED GRANULOCYTES  
 
The granulocyte fraction consists of neutrophils, basophils and eosinophils. Neutrophils comprised 
the largest percentage (ca 90-95 %) in samples, and hence no visual differentiation was made 
between the cell types. Neutrophils were chosen over previously used lymphocyte/monocyte 
fractions due to their higher phagocytic capacity. Despite that, cells that qualified as viable produced 
puzzling spectra, and just like lymphocytes, did not reveal any spectral features of either cell content 
or DOX and MBN.  

This led to unreliable measurements and produced inconsistent results upon determination of the 
presence of colloids and DOX inside the cellular matrix. T-OPLS models were constructed to 
analyse the data further. 

                                                             
• Over the course of this project, a total of 193 lymphocytes, 201 neutrophils, and 500 monocytes were measured and 
analysed with linear projection algorithms. 
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Figure 1.11. An example of a living granulocyte treated with 11 µM DOX with presence of MBN-coated AuNPs. The 
reference spectra of DOX (blue, top spectrum) was plotted together with T-OPLS score vector t1 (black, lower 
spectrum).  
 

Figure 1.11 shows that there was no or weak correspondence between the score vector t and the set 
Y variable, i.e. the DOX reference. A cell that had internalised AuNPs was expected to display a 
signal enhancement of the cell interior, including DOX. In such a case, the score vector t would have 
greater spectral resemblance to the DOX reference spectra. In other words, the cells that were 
deemed to be alive by visual assessment of their motility and morphology did not display signal 
enhancement of either DOX or the cellular matrix. This led to the conclusion that the few successful 
measurements were done on dead cells; because when cells die their membranes become permeable, 
thus letting colloids in.  

These results were suspected to be due to the failing phagocytic activity of neutrophils as a 
consequence of cryopreservation. The protocol was therefore changed and the cryopreservation step 
removed. Protocol 1 therefore needed extensive revision in order for it to fit the handling of fresh 
cells. The greatest change lay in addressing the inconvenience of the centrifuging step. The generated 
cell pellets from fresh fractions were too small resulting in too few cells per test chamber. Another 
change was based on the assumption that starving phagocytic cells through the omission of calf 
serum would improve the colloid internalisation154, 187. Lastly, the incubation time was significantly 
reduced, to 5 hours or shorter, to minimize potential cytotoxicity induced by AuNPs; it has been 
shown that the internalisation for this cell type occurs already after 30 minutes157. The revisions 
resulted in Protocol 2. 
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ANALYTE DETECTION IN FRESH NEUTROPHILS  

 
The viability of granulocytes was improved by the omission of cryopreservation and by omitting 
thawing steps, however, the internalisation of the colloids was still failing and similar inconsistencies 
were displayed in models and spectra as has had occurred with cryopreserved neutrophils.  

It was shown by Bratneck et al.157 that neutrophils display phagocytosis only towards particles coated 
with opsonins, molecules which promote phagocytosis by cells. Non-opsionised particles are not 
internalised and are instead trapped outside the cell by neutrophil extracellular networks (NETs). 
This would explain to the inconsistent results with both cryopreserved and fresh granulocyte 
fractions. Neutrophiles were therefore abandoned as a cell model for the detection of DOX. 
 

ANALYTE DETECTION IN FRESH MONOCYTES  
 
Bratneck et al.157 reported that gold nanoparticles, coated and uncoated, were internalised by 
monocytes. Hence, lymphocyte/monocyte fractions were reinstated as cell models for DOX 
detection experiments. The cell preparation Protocol 2 was used as described earlier.  

Monocytes were selected for measurements by visual characteristics as described above. Through 
experimental observations it was concluded that the cells had successfully internalised colloids. The 
success can be in part be linked to work reported by Eliasson et al.173 and Abbas47 – the successful 
internalisation experiments in their work could have been performed on monocytes, not 
lymphocytes. Monocytes were subjected to both long-term and short-term incubation. Both proved 
successful, but, in case of the former, the adhesion to the coverglass was reduced. Short-term 
incubation showed lower motility and also showed internalisation after as soon as 3 hours. The 
incubation time was further decreased in later experiments to first 2 h and then 1 h. These results are 
in line with those reported by Bratneck et al.157, who observed colloidal internalisation after 30 
minutes. 
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successful, but, in case of the former, the adhesion to the coverglass was reduced. Short-term 
incubation showed lower motility and also showed internalisation after as soon as 3 hours. The 
incubation time was further decreased in later experiments to first 2 h and then 1 h. These results are 
in line with those reported by Bratneck et al.157, who observed colloidal internalisation after 30 
minutes. 
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Figure 1.12. DOX reference spectrum (blue, top spectrum) compared to score vectors t (black, bottom spectrum)from 
T-OPLS models for (A) a single monocyte treated with 11 µM DOX and incubated with uncoated AuNPs, and (B) a 
single monocyte treated with 11 µM DOX and incubated with MBN-coated AuNPs.  
 

Unfortunately, multivariate analysis proved tricky in terms of DOX quantification. The T-OPLS 
models that were done with monocytes incubated with uncoated AuNPs pointed to a detectable 
presence of DOX, as it is evident from Figure 1.12A. 

Although far from optimal, some of the component’s peaks could be correlated to the DOX 
reference spectrum (Figure 1.12A). The situation was however worse when it came to the T-OPLS 
modeling of monocytes incubated with MBN-coated AuNPs (Figure 1.12B), where there was no 
observable correlation between the principal component and DOX reference spectra. These results 
suggest that it was not possible to detect, and therefore quantify, DOX in the presence of MBN-
coated AuNPs with this particular protocol.  
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There was therefore a discrepancy between experimentally acquired information and the T-OPLS 
models. Although models that were calculated suggested that both DOX and colloids were 
internalised by monocytes, it was impossible to discern a clear DOX component from the rest of the 
cellular noise if the colloids were coated with MBN. There could be several explanations for this.  

Firstly, the difference in signal intensity between MBN and DOX signals could be too high, making 
it hard to detect in images when calculating the DOX/MBN ratio. Another scenario could be that 
DOX did not reach sufficient proximity to the surface of AuNPs to be able to produce signal 
enhancement. This could be attributed to the fact that AuNPs coated with MBN have a neutral net 
charge, and hence no attraction between DOX and the surface of AuNPs occurs or is limited. It is 
more plausible that attraction is limited rather than non-existent, since SAMs usually do not coat a 
colloidal surface fully146. It is also a possibility that the reference spectrum for DOX used to calculate 
T-OPLS models was not of sufficient quality. On the other hand, a T-OPLS analysis was performed 
with a DOX reference spectrum generated by Abbas47 (results not shown) without any improvement. 
Further experimental work would be required to address the issues of DOX detection. Yet another 
possibility would be the failed uptake of the nanoparticles; like neutrophils, monocytes prefer the 
internalisation of opsonized matter, a process that may have been disrupted by MBN coating and/or 
absence of calf serum in the cell medium. Lastly, the acquired results could indicate a flaw in the 
experimental procedure, which was identified in literature that was published three years after the 
experiments performed here. It was reported there that DOX (50 µM) was not observable in the 
cytosol until after 48 h188. Our incubations with the drug lasted between 1 h and 24 h in the 
experiments discussed above.  
 

DETECTION OF DOX AND DOPAMINE IN PC12 CELLS 
 
As DOP is produced in abundance by PC12 cells and has distinctive peaks, PC12 cells were chosen 
in order to evaluate T-OPLS performance further. The T-OPLS models were built on a data set 
containing 24 cells treated with DOX at different concentrations (1, 50, and 100 µM) and MBN-
AuNPs, 8 cell treated only with MBN-AuNPs, and 7 blank cells treated with uncoated AuNPs. 
Therefore, DOP signals were expected to be in both blanks and samples, whilst MBN and DOX 
were expected to be modelled in samples only. Each sample cell was mapped with 144 pixels, and 
each blank cell was mapped with ca 149 pixels. In case of an optimal model, the predicted score must 
resemble the reference spectra of the analyte or IS of interest.  

Hyperspectral images revealed that T-OPLS was prone to false positives. The score vectors isolated 
MBN peaks in blanks, despite the blanks not having any MBN present. Thus, the pattern in Y was 
‘coaxed’ out of spectra whether they contained the substance represented by Y or not. To illustrate 
this, images of the DOX/MBN and DOP/MBN ratios were made using the full spectral range 
(Figure 1.13). By dividing with MBN reference spectrum, the differences in enhancement should 
have been compensated, showing the distribution of DOX and DOP. 
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Hyperspectral images revealed that T-OPLS was prone to false positives. The score vectors isolated 
MBN peaks in blanks, despite the blanks not having any MBN present. Thus, the pattern in Y was 
‘coaxed’ out of spectra whether they contained the substance represented by Y or not. To illustrate 
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(Figure 1.13). By dividing with MBN reference spectrum, the differences in enhancement should 
have been compensated, showing the distribution of DOX and DOP. 
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Figure 1.13. MBN corrected hyperspectral images showing the distribution of DOX and DOP. To the left are images of 
three PC12 cells treated with 100 µM DOX and MBN-AuNPs. The first column shows the bright-field image of the cell 
along with the mapping grid. The second column is the distribution of DOX after MBN correction, and the third 
column is the distribution of DOP after MBN correction. To the right are three PC12 cells treated only with MBN-
AuNPs. The first column shows the bright-field image of the cell along with the mapping grid. Second column is the 
distribution of DOX after MBN correction, and the third column is the distribution of DOP after MBN correction. All 
images were mapped using the full spectra.  

Both sets of images in Figure 1.13 were calculated based on loadings from three T-OPLS models, 
where Y = MBN, Y = DOX, and Y = DOP. The loadings from those models were then used to 
arrive at the distribution images above. All the images are of comparable intensity range (ca 0.2-0.6), 
with the exception of the top-most cell treated with 100 M DOX and MBN-AuNPs, which had a 
maxima at 2.64 (DOX/MBN) and 0.4 (DOP/MBN). Where MBN was present, the images have no 
or low intensity (black areas) – the presence of black areas within an image frame shows that 
colloidal internalisation was indeed successful in that cell. 

Comparing distribution of DOP and DOX in DOX treated cells revealed that both substances have 
been modelled and that they occupy overlapping, but not identical, regions of the cells. These results 
suggested that DOX and DOP could indeed be separated and that enhancement correction with IS 
worked. We expected that the distribution of DOX would have been more uniform in one region of 
the cell, as DOX accumulates predominantly in cell nucleus, while DOP would have been more 
evenly distributed throughout the cell. However, there was no consistent behaviour between cells in 
terms of DOX and DOP distribution. On examination of the images of PC12 cells, which were 
treated only with MBN-AuNPs, it was realised that the DOX signal was modelled, although there 
ought to have not been a DOX signal in those cells. Since the distribution of the alleged DOX 
follows similar, although not identical pattern to that of DOP (compare the images DOX/MBN and 
DOP/MBN), an issue of false positives was suspected. False positives could also partially explain 
what was observed in DOX-treated cells, where there was no consistent distribution pattern between 
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DOX and DOP. The occurrence of false positives could have been caused by overlapping spectral 
regions with broad peaks, since DOX, DOP, and cellular matrix have broad and/or weak vibrations 
in the same region of the spectra. Further, it was observed that MBN tended to be modelled in cells 
that were blank, and should not have had any MBN present (results not shown). 

To verify the source of the false positives, the author performed a spectral interpretation of the 
scores generated by nine T-OPLS models.  The first shortcoming became apparent when the 
background correction methods used were scrutinised. To achieve better DOX resolution with 
background corrections, RCF was used as it offered on the whole better peak resolution, especially 
for the small peaks originating from the cell. However, some of the DOX signals could not be 
observed. The corrections worked well for peaks over a certain SNR, but for peaks with low SNR 
the chosen background corrections failed to distinguish between low intensity peaks and noise. As 
such, better cell response peaks were gained, but DOX signal, which was potentially low, cannot be 
seen as clearly when hyperspectral images were constructed. These finding suggest that, below a 
certain SNR, performing RCF in combination with T-OPLS and other baseline correction methods 
used here (see Methods section) was infeasible.  

The second part of the interpretation of T-OPLS scores looked at which peaks could have caused 
the occurrence of false positives. The results of this examination were compiled in Table 1.2: note 
that the list of peaks is not exhaustive. The table shows cases of overlapping signals and of 
covariation, two terms that ought not to be confused with each other. The former means that the 
signals of two or more substances appear at the same wavelength, but do not covary with each other 
in any way. On the other hand, covariation refers to two or more species that have signals that are 
dependent on each other. If the signal of one compound changes, so does the signal of the covarying 
compound. For instance, covariation can be caused by molecular interactions while overlaps can 
stem from molecules having the same or similar vibrations and thus they give rise to signals at the 
same wavenumber. Næs et al.32 mentioned covariation as a potential pitfall encountered in 
multivariate modelling under the term collinearity (see Introduction to Part I). The reader ought to 
be aware that the terms covariation58 and collinearity32 are not entirely appropriate in the context of 
this research as they imply linear correlation. With T-OPLS, it was not possible to ascertain whether 
the dependency between signals was indeed linear. Hence, the author proposes to use the terms 
linear and nonlinear co-dependencies, instead, the presence of which, along with overlaps, 
contributed to the false positive behaviour observed. 

The presence of co-dependencies creates certain implications for PLS-based modelling, as PLS is 
capable of discriminating between overlapping signals, but performs worse when separating co-
dependent signals, especially if they are caused by nonlinearities. This was clearly true for T-OPLS as 
well shedding light on the appearance of false positives. Using a co-dependent signal as an example, 
consider, for instance, the peak at ~1074 cm-1 in Table 1.2. It was one of peaks present in the MBN 
reference spectrum that was used as Y for T-OPLS modelling. This peak appeared in the predictive 
score vectors t for all models where Y = MBN spectrum. However, the peak also appeared in the 
first orthogonal score vectors to1, indicating that this peak varied as a consequence of a substance 
other than MBN. When models where Y = DOP were examined, the peak appeared only in to1 
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Figure 1.13. MBN corrected hyperspectral images showing the distribution of DOX and DOP. To the left are images of 
three PC12 cells treated with 100 µM DOX and MBN-AuNPs. The first column shows the bright-field image of the cell 
along with the mapping grid. The second column is the distribution of DOX after MBN correction, and the third 
column is the distribution of DOP after MBN correction. To the right are three PC12 cells treated only with MBN-
AuNPs. The first column shows the bright-field image of the cell along with the mapping grid. Second column is the 
distribution of DOX after MBN correction, and the third column is the distribution of DOP after MBN correction. All 
images were mapped using the full spectra.  

Both sets of images in Figure 1.13 were calculated based on loadings from three T-OPLS models, 
where Y = MBN, Y = DOX, and Y = DOP. The loadings from those models were then used to 
arrive at the distribution images above. All the images are of comparable intensity range (ca 0.2-0.6), 
with the exception of the top-most cell treated with 100 M DOX and MBN-AuNPs, which had a 
maxima at 2.64 (DOX/MBN) and 0.4 (DOP/MBN). Where MBN was present, the images have no 
or low intensity (black areas) – the presence of black areas within an image frame shows that 
colloidal internalisation was indeed successful in that cell. 

Comparing distribution of DOP and DOX in DOX treated cells revealed that both substances have 
been modelled and that they occupy overlapping, but not identical, regions of the cells. These results 
suggested that DOX and DOP could indeed be separated and that enhancement correction with IS 
worked. We expected that the distribution of DOX would have been more uniform in one region of 
the cell, as DOX accumulates predominantly in cell nucleus, while DOP would have been more 
evenly distributed throughout the cell. However, there was no consistent behaviour between cells in 
terms of DOX and DOP distribution. On examination of the images of PC12 cells, which were 
treated only with MBN-AuNPs, it was realised that the DOX signal was modelled, although there 
ought to have not been a DOX signal in those cells. Since the distribution of the alleged DOX 
follows similar, although not identical pattern to that of DOP (compare the images DOX/MBN and 
DOP/MBN), an issue of false positives was suspected. False positives could also partially explain 
what was observed in DOX-treated cells, where there was no consistent distribution pattern between 
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for the small peaks originating from the cell. However, some of the DOX signals could not be 
observed. The corrections worked well for peaks over a certain SNR, but for peaks with low SNR 
the chosen background corrections failed to distinguish between low intensity peaks and noise. As 
such, better cell response peaks were gained, but DOX signal, which was potentially low, cannot be 
seen as clearly when hyperspectral images were constructed. These finding suggest that, below a 
certain SNR, performing RCF in combination with T-OPLS and other baseline correction methods 
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this research as they imply linear correlation. With T-OPLS, it was not possible to ascertain whether 
the dependency between signals was indeed linear. Hence, the author proposes to use the terms 
linear and nonlinear co-dependencies, instead, the presence of which, along with overlaps, 
contributed to the false positive behaviour observed. 

The presence of co-dependencies creates certain implications for PLS-based modelling, as PLS is 
capable of discriminating between overlapping signals, but performs worse when separating co-
dependent signals, especially if they are caused by nonlinearities. This was clearly true for T-OPLS as 
well shedding light on the appearance of false positives. Using a co-dependent signal as an example, 
consider, for instance, the peak at ~1074 cm-1 in Table 1.2. It was one of peaks present in the MBN 
reference spectrum that was used as Y for T-OPLS modelling. This peak appeared in the predictive 
score vectors t for all models where Y = MBN spectrum. However, the peak also appeared in the 
first orthogonal score vectors to1, indicating that this peak varied as a consequence of a substance 
other than MBN. When models where Y = DOP were examined, the peak appeared only in to1 
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vectors, suggesting therefore that DOP did not cause the covariation observed in Y = MBN models. 
For models where Y = DOX on the other hand the peak can be seen in both t and to1 vectors. 
However, since the model where Y=DOX calculated on blank cells (DOX b in Table 1.2) did have 
this peak in t, it could not have originated from DOX, since blank cells did not have DOX. 
Therefore, the covariation with the MBN signal at 1074 cm-1 stems from the cell matrix. Similar co-
dependent behaviour was observed for numerous peaks (Table 1.2). 

Nonetheless, there were several peaks that T-OPLS had identified as dependent on one substance 
only. For a peak to be attributed to a single chemical species with certainty, certain criteria had to be 
met. The MBN peak at 365 cm-1, for instance, was present in t vectors where Y = MBN, meaning 
that the response at that wavenumber was correlated to the spectrum of MBN. The absence of that 
peak in to1 shows that at 365 cm-1 there was no other correlation apart from MBN. In all other 
models where Y was not MBN, the peak was consistently present in to1 vectors in models 
containing samples. If the variation of that peak was dependent on DOX or DOP, then it would also 
be present in the t vectors of models where Y was either DOX or DOP. The peak could also have 
originated from the cell matrix; if it was the case, the peak would show up in to1 of MBN models 
and be present in the t and/or to1 vectors of models performed on blanks. It is noteworthy that this 
peak was absent from the reference spectrum used for MBN as a Y matrix, although earlier 
experimentation and literature148-150 indicate that this peak should have been present in an MBN 
spectrum. Its absence was likely to be due to an accidental removal by the baseline correction 
method used here. This indicates that although the Y did not contain this wavenumber, the 
remaining peaks of MBN present in the Y could have a linear co-dependency with the absent peak. 
T-OPLS was, in other words, able to model peaks that were missing, but which ought to have been 
there.  

For MBN, the peaks that were identified as unique were 365, 549, 583, 706-708, 773-779, 1178, 1199, 
and 2228 cm-1. Observe that some of those peaks were not present in the reference spectrum of 
MBN, and were likely lost in a background correction similar to 365 cm-1. Similarly, DOP also had 
independent peaks at 947-951, 1211-1217, and 1590-1595 cm-1. The reader has undoubtedly noted 
that many of the peaks were given as ranges; this variation in peak position was concluded to be due 
to spectral shifts caused by matrix effects. For DOX, however, no peaks could be identified as free 
from co-dependency or as an overlap with other species present in the matrix. This provided another 
reason as to why DOX was not clearly seen in hyperspectral images, and hence not possible to 
quantify. Naturally, this could also have been caused by the fact that no DOX was accumulated in 
the cells due to too short incubation times (see earlier discussion in Analyte detection in fresh 
monocytes). If that was indeed the cause behind the lack of a clear DOX signal, the images 
presented in Figure 1.13 can only be interpreted as representing false positive DOX signal. 
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vectors, suggesting therefore that DOP did not cause the covariation observed in Y = MBN models. 
For models where Y = DOX on the other hand the peak can be seen in both t and to1 vectors. 
However, since the model where Y=DOX calculated on blank cells (DOX b in Table 1.2) did have 
this peak in t, it could not have originated from DOX, since blank cells did not have DOX. 
Therefore, the covariation with the MBN signal at 1074 cm-1 stems from the cell matrix. Similar co-
dependent behaviour was observed for numerous peaks (Table 1.2). 

Nonetheless, there were several peaks that T-OPLS had identified as dependent on one substance 
only. For a peak to be attributed to a single chemical species with certainty, certain criteria had to be 
met. The MBN peak at 365 cm-1, for instance, was present in t vectors where Y = MBN, meaning 
that the response at that wavenumber was correlated to the spectrum of MBN. The absence of that 
peak in to1 shows that at 365 cm-1 there was no other correlation apart from MBN. In all other 
models where Y was not MBN, the peak was consistently present in to1 vectors in models 
containing samples. If the variation of that peak was dependent on DOX or DOP, then it would also 
be present in the t vectors of models where Y was either DOX or DOP. The peak could also have 
originated from the cell matrix; if it was the case, the peak would show up in to1 of MBN models 
and be present in the t and/or to1 vectors of models performed on blanks. It is noteworthy that this 
peak was absent from the reference spectrum used for MBN as a Y matrix, although earlier 
experimentation and literature148-150 indicate that this peak should have been present in an MBN 
spectrum. Its absence was likely to be due to an accidental removal by the baseline correction 
method used here. This indicates that although the Y did not contain this wavenumber, the 
remaining peaks of MBN present in the Y could have a linear co-dependency with the absent peak. 
T-OPLS was, in other words, able to model peaks that were missing, but which ought to have been 
there.  

For MBN, the peaks that were identified as unique were 365, 549, 583, 706-708, 773-779, 1178, 1199, 
and 2228 cm-1. Observe that some of those peaks were not present in the reference spectrum of 
MBN, and were likely lost in a background correction similar to 365 cm-1. Similarly, DOP also had 
independent peaks at 947-951, 1211-1217, and 1590-1595 cm-1. The reader has undoubtedly noted 
that many of the peaks were given as ranges; this variation in peak position was concluded to be due 
to spectral shifts caused by matrix effects. For DOX, however, no peaks could be identified as free 
from co-dependency or as an overlap with other species present in the matrix. This provided another 
reason as to why DOX was not clearly seen in hyperspectral images, and hence not possible to 
quantify. Naturally, this could also have been caused by the fact that no DOX was accumulated in 
the cells due to too short incubation times (see earlier discussion in Analyte detection in fresh 
monocytes). If that was indeed the cause behind the lack of a clear DOX signal, the images 
presented in Figure 1.13 can only be interpreted as representing false positive DOX signal. 
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In order to clarify the T-OPLS models further, the majority of the regions of the spectra that were 
overlapping and co-dependent were removed. Peaks that did not shift their position were left in. 
After the exclusion of regions where overlap or co-dependency were suspected, a comparison was 
made between those models as in Table 1.2. It was observed that some peaks separated from earlier 
observed co-dependent signals. This was clear in particular in the case of MBN peaks. For instance, 
the peak at 1074 cm-1 has been identified as stemming from MBN alone once the spectra were 
trimmed, rather than from MBN and as stemming from a co-dependency between MBN and cell 
signals. Other MBN peaks that were resolved from other sources were 547, 1584, and 2178 cm-1. 
Unfortunately, the removal of spectral regions did not have the same positive effect on the 
resolution of DOP and DOX signals, with the exception of the DOP peak ~1394-1398 cm-1.  

Lastly, we plotted hyperspectral images univarietly, that is, by selecting only one wavenumber instead 
of a full spectrum. The idea was that a single wavenumber clear of co-dependency and overlaps may 
have produced clearer distribution images.  

 

Figure 1.14. Hyperspectral images of PC12 cells plotted univariatly with reference to 365 cm-1 peak of MBN. The upper 
row contains three cells treated with 100 M DOX and MBN-AuNPs, and bottom row contains three cells treated only 
with MBN-AuNPs. 

When using the univariate approach, the false positive issue mentioned earlier remained as illustrated 
clearly in Figure 1.14 – a MBN signal was found where there should have been none (blanks). 
Similar images were done for a peak of DOP at 1590 cm-1, but the images looked exactly the same as 
images for 365 cm-1, as well as for other MBN peaks, e.g. 1074 cm-1. Put differently, the univariate 
application made things worse, implying that there were spectral overlaps between 365 cm-1 and the 
cell and analytes. This was in contrast to the multivariate modelling performed here, which clearly 
indicated the 365 cm-1 peak as independent of any influence that may have caused false positives.  
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In order to clarify the T-OPLS models further, the majority of the regions of the spectra that were 
overlapping and co-dependent were removed. Peaks that did not shift their position were left in. 
After the exclusion of regions where overlap or co-dependency were suspected, a comparison was 
made between those models as in Table 1.2. It was observed that some peaks separated from earlier 
observed co-dependent signals. This was clear in particular in the case of MBN peaks. For instance, 
the peak at 1074 cm-1 has been identified as stemming from MBN alone once the spectra were 
trimmed, rather than from MBN and as stemming from a co-dependency between MBN and cell 
signals. Other MBN peaks that were resolved from other sources were 547, 1584, and 2178 cm-1. 
Unfortunately, the removal of spectral regions did not have the same positive effect on the 
resolution of DOP and DOX signals, with the exception of the DOP peak ~1394-1398 cm-1.  

Lastly, we plotted hyperspectral images univarietly, that is, by selecting only one wavenumber instead 
of a full spectrum. The idea was that a single wavenumber clear of co-dependency and overlaps may 
have produced clearer distribution images.  

 

Figure 1.14. Hyperspectral images of PC12 cells plotted univariatly with reference to 365 cm-1 peak of MBN. The upper 
row contains three cells treated with 100 M DOX and MBN-AuNPs, and bottom row contains three cells treated only 
with MBN-AuNPs. 

When using the univariate approach, the false positive issue mentioned earlier remained as illustrated 
clearly in Figure 1.14 – a MBN signal was found where there should have been none (blanks). 
Similar images were done for a peak of DOP at 1590 cm-1, but the images looked exactly the same as 
images for 365 cm-1, as well as for other MBN peaks, e.g. 1074 cm-1. Put differently, the univariate 
application made things worse, implying that there were spectral overlaps between 365 cm-1 and the 
cell and analytes. This was in contrast to the multivariate modelling performed here, which clearly 
indicated the 365 cm-1 peak as independent of any influence that may have caused false positives.  
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CONCLUSIONS  
 

Several issues concerning method development have been addressed. The cell adhesion problems 
were solved for granulocytes and monocytes by switching from PLL to PDL. Longer incubation 
times promote cell detachments, thus shorter incubation times were recommended. The cell 
adhesion protocol devised within this thesis did not work for lymphocytes.  

It has been demonstrated through the course of this work that healthy, living lymphocytes were not 
capable of colloid internalisation in light of their inherently low phagocytic activity. This claim was 
supported both by experimental observation, multivariate analysis, and the literature. Therefore, the 
quantification of this type of cells based on the utilised methods, i.e. SERS and Raman spectroscopy, 
was not appropriate. Lymphocytes as a model would have been ideal due to the fact that the 
developed method aimed to improve treatment strategies for ALL patients. Internalisation also failed 
when neutrophils were used as model cells, since they did not display phagocytic activity towards 
particles without opsonins. To validate whether internalisation has occurred or not, the method in 
this chapter could have been complemented with other techniques, such as transmission electron 
microscopy (TEM). Such techniques would have enabled tracking of the AuNPs internalisation in 
the cellular compartments116. Internalisation could also have been improved if cancerous cell lines 
had been used, as they are more permeable to nanoparticulate matter. But as we had issues in 
detecting DOX in healthy cells, we did not validate the method in cancerous cells.  

Internalisation did succeed in monocytes – this conclusion was based on the experimental 
observations, where a signal enhancement was observed in cellular interior and from hyperspectral 
images. If this evidence of the colloid internalisation of monocytes was further supported by for 
instance TEM, it would be feasible to use monocytes as a model for ALL in the future, since both 
lymphocytes and monocytes are: a) morphologically similar and; b) to the author’s knowledge do not 
display differences in the accumulation of DOX. Also, monocytes could provide a good model in 
similar projects where the focus lies on acute myeloid leukaemia (AML) instead of on ALL. Yet, with 
current machine learning methods it was not possible to determine the presence of DOX inside 
monocytes at the levels of DOX investigated in this work. The reason for this was suspected to be a 
failed accumulation of DOX inside the cytosol within the used incubation time frames and/or that 
the used DOX concentrations were below the instrument’s and the method’s LOD. Establishing a 
LOD would therefore be of benefit if DOX calibration were to be established in the future. Yet, as 
the methods applied here rely on multivariate data analysis, the LOD must also be calculated 
multivariatly. Although LOD does not increase sensitivity per se, its establishment can be argued to 
be of good analytical practice. Unfortunately, there are currently no standardised methods available 
that would allow for multivariate LOD calculations. Initial enquiries have been made by the author 
into this matter, as it is significant for both for this chapter and for Chapter 3. For a further 
discussion on multivariate LOD, see Appendix 1.1 at the end of this chapter.  

Moreover, it is still unclear why earlier investigators were able to detect DOX inside the blood cells, 
while attempts to do so in monocytes and PC12 cells within this thesis had low levels. Apart from 
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not sufficient accumulation times during incubation with DOX, another reason for failing to detect it 
in the presence of MBN-coated AuNPs can be attributed to the lack of attraction between the 
positively charged DOX and the neutral MBN-modified gold surface. If that is the case, it would be 
interesting to attempt to replace MBN with another IS that would possess a negative net charge. 
Alternatively, it would be possible to further investigate how the extent of the MBN coating 
influences the DOX signal enhancement. If this detection issue were clarified, it would be possible to 
impose further improvements on the method by developing a DOX calibration curve based on 
OPLS. Such a curve would make it possible to find intercellular DOX concentrations.  

After peak analyses had been performed on the score vectors from T-OPLS modelling done on 
PC12 cells, it was concluded that T-OPLS could indeed separate signals of IS from analytes and the 
matrix. MBN did not suffer the same bleed-over effects between its principal and orthogonal vectors 
as had occurred in models performed on monocytes. This was likely to be due to the use of a 
different pre-processing strategy compared to the one used on blood cell spectra. This different 
strategy resulted in distinct spectral features of MBN with many strong, clear peaks, several of which 
were outside the fingerprint region. Moreover, T-OPLS was able to model peaks for IS that were 
absent from its reference spectrum, but which ought to have been there. Unfortunately, DOX and 
DOP fared worse in T-OPLS as their spectra had spectral regions that overlapped with each other 
and with the cell signal. Hence, the origin of many peaks unrelated to MBN remained ambiguous, 
both with respect to which substance a peak corresponded and whether it was a matter of spectral 
overlap or signal co-dependency. 

Co-dependency as the source of ambiguity was not anticipated during the conception of this enquiry, 
but was highlighted during the T-OPLS analysis of PC12 cells. These co-dependencies became 
evident in Table 1.2. and in hyperspectral images, where signals between the IS and the analytes 
(DOX or DOP) – sometimes even between analytes – were not separated by T-OPLS into 
appropriate components. To establish whether the observed co-dependencies were linear or 
nonlinear, it would have been beneficial to apply DoE, since such correlating signals when observed 
in the application of linear projection algorithms can be an indication of the presence of quadratic 
and cross-terms. Indeed, the observed non-selectivity between MBN and DOX was in itself an 
indication of a poorly-designed experimental space. Unfortunately, considering the matrix in which 
analytes were measured, it would not have been possible to create a design where the factors chosen 
for the analysis (AuNP entry, cytosol analyte concentration, etc.) could be controlled. For instance, 
by varying the AuNP coating, the uptake could be affected, thus introducing another factor into a 
design space which would be out of control.  

In summary, the research presented in this chapter did contribute towards understanding the 
advantages and the shortcomings of T-OPLS as a tool for intracellular imaging, quantification, and 
qualitative spectral interpretation. Because of the PLS-based nature of T-OPLS we have arrived at 
the conclusion that although it can give an advantage when separating of overlaps and modelling 
absent peaks that have linear co-dependencies, T-OPLS performs poorly when faced with the task of 
separating numerous and versatile co-dependencies. As a linear algorithm, T-OPLS is strongly 
dependent on the spectra to have linear co-dependencies only for optimal functionality. The good 
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separation of the MBN signal indicates also that the algorithm needs the presence of strong to 
medium, clearly resolved peaks, which are not attributes that can be ascribed to biological matrices. 
To improve upon the algorithm, 2-way cross-validation (i.e. cross-validation in both columns and 
rows) as it is used in PCA, would have been beneficial. At present, T-OPLS only has cross-validation 
in rows, meaning that until 2-way cross-validation is available, there is not enough information to go 
on to provide the necessary improvements. 
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APPENDICES FOR CHAPTER 1 

 
APPENDIX 1.1 –  THE QUEST FOR MULTIVARIATE LOD 

INTRODUCTION 
 
Among the traditional ways of analysing Raman spectroscopy are the selection of a single wavelength 
and subsequent modelling and/or imaging based on univariate approaches82. However, to achieve a 
robust univariate model two basic requirements need to be fulfilled. The first is selectivity, i.e. the 
input data must be that of pure analyte without any contributions from other species in the matrix. 
When responses others than that of analyte are present, a univariate model will become biased. The 
second requirement is linearity, i.e. there should be a linear relationship between the spectral 
response and the analyte concentration35. While the linearity requirement can be amended with 
nonlinear solutions, selectivity is much harder to address when spectra originate from for example. 
biological matrices. With multivariate techniques, however, one can handle the presence of non-
analyte signals, provided that their response profiles are not identical to that of the analyte and that 
the non-analyte signal is varying somewhat independently of the analyte variation.  

All analytical methods’ development benefits from validation. The analytical chemist delving in 
Raman spectroscopy of multicomponent matrices must therefore concern him/herself with 
appreciating any shortcomings by performing an evaluation of basic analytical parameters. In 
analytical chemistry, the most common way to validate a method is to use figures of merit, which are 
measures describing the quality of a method. The afore-mentioned real and apparent nonlinear 
sources in Raman spectroscopy (see section The nonlinearity issue) provide a challenge not only in 
multivariate analyses described in this thesis, but also in estimating multivariate analytical figures of 
merit.  

One way to make low Raman signals more interpretable is by applying multivariate tools instead of 
the traditional univariate ones35. Chemometric tools for qualitative and quantitative analysis have 
been gaining steadily in popularity, particularly in the evaluation of spectroscopic responses35. One 
prominent use of multivariate tools is constructing predictive calibration models in order to quantify 
an analyte. When it comes to calibration, multivariate tools can be defined as implicit modelling 
methods, the opposite of explicit methods where a theoretical model is imposed on experimental 
data (see difference between EDA and other statistical approaches in section 1.1 Assumptions 
behind the application of machine learning). In other words, implicit methods incorporate 
variance in the data set that is does not necessarily stem from the analyte of interest192. This enables 
the use of a better statistical starting point, which in turn provides improved accuracy. For 
quantitative enquiries, a multivariate calibration model aims to find a predictive model that relates the 
instrument responses to concentrations193, i.e. that attempts to predict unknown concentrations of 
the analyte.  



94 
 

separation of the MBN signal indicates also that the algorithm needs the presence of strong to 
medium, clearly resolved peaks, which are not attributes that can be ascribed to biological matrices. 
To improve upon the algorithm, 2-way cross-validation (i.e. cross-validation in both columns and 
rows) as it is used in PCA, would have been beneficial. At present, T-OPLS only has cross-validation 
in rows, meaning that until 2-way cross-validation is available, there is not enough information to go 
on to provide the necessary improvements. 

  

95 
 

APPENDICES FOR CHAPTER 1 

 
APPENDIX 1.1 –  THE QUEST FOR MULTIVARIATE LOD 

INTRODUCTION 
 
Among the traditional ways of analysing Raman spectroscopy are the selection of a single wavelength 
and subsequent modelling and/or imaging based on univariate approaches82. However, to achieve a 
robust univariate model two basic requirements need to be fulfilled. The first is selectivity, i.e. the 
input data must be that of pure analyte without any contributions from other species in the matrix. 
When responses others than that of analyte are present, a univariate model will become biased. The 
second requirement is linearity, i.e. there should be a linear relationship between the spectral 
response and the analyte concentration35. While the linearity requirement can be amended with 
nonlinear solutions, selectivity is much harder to address when spectra originate from for example. 
biological matrices. With multivariate techniques, however, one can handle the presence of non-
analyte signals, provided that their response profiles are not identical to that of the analyte and that 
the non-analyte signal is varying somewhat independently of the analyte variation.  

All analytical methods’ development benefits from validation. The analytical chemist delving in 
Raman spectroscopy of multicomponent matrices must therefore concern him/herself with 
appreciating any shortcomings by performing an evaluation of basic analytical parameters. In 
analytical chemistry, the most common way to validate a method is to use figures of merit, which are 
measures describing the quality of a method. The afore-mentioned real and apparent nonlinear 
sources in Raman spectroscopy (see section The nonlinearity issue) provide a challenge not only in 
multivariate analyses described in this thesis, but also in estimating multivariate analytical figures of 
merit.  

One way to make low Raman signals more interpretable is by applying multivariate tools instead of 
the traditional univariate ones35. Chemometric tools for qualitative and quantitative analysis have 
been gaining steadily in popularity, particularly in the evaluation of spectroscopic responses35. One 
prominent use of multivariate tools is constructing predictive calibration models in order to quantify 
an analyte. When it comes to calibration, multivariate tools can be defined as implicit modelling 
methods, the opposite of explicit methods where a theoretical model is imposed on experimental 
data (see difference between EDA and other statistical approaches in section 1.1 Assumptions 
behind the application of machine learning). In other words, implicit methods incorporate 
variance in the data set that is does not necessarily stem from the analyte of interest192. This enables 
the use of a better statistical starting point, which in turn provides improved accuracy. For 
quantitative enquiries, a multivariate calibration model aims to find a predictive model that relates the 
instrument responses to concentrations193, i.e. that attempts to predict unknown concentrations of 
the analyte.  



96 
 

To evaluate the precision and sensitivity of Raman response for purposes of quantification and 
detection, limit of detection (LOD) is one of the fundamental analytical parameters that can be 
calculated. If there is a poor SNR, and if the studied concentrations are near the detection limit, 
LOD estimation can be challenging. Nonetheless, for purposes of multivariate calibration, it is 
advisable to find a LOD value for the analyte of interest before constructing a calibration model. 
There are several methods for estimating LOD in spectroscopy, but due to the heterogenic nature of 
data studied, each data set requires dissimilar calculations. Moreover, LOD calculations proposed in 
literature often do not take into account all of the uncertainties present72. There is therefore a need to 
develop LOD calculations along with multivariate statistics that can be applied to a wide variety of 
data.  

Bearing various sources of nonlinearity in mind (for instance spectroscopic nonlinearities and matrix 
effects), the need to quantify and predict analyte concentration becomes clear. Further, finding a 
unified estimation of analytical parameters becomes challenging in the sense that a plethora of 
nonlinearities require dissimilar mathematical methods to create a fitting model84. LOD is one of the 
basic analytical tools for method evaluation in a Raman spectroscopic measurement; yet, there is to 
date no well-developed standard for multivariate LOD estimation within Raman spectroscopy72.  

The main challenge in multivariate LOD estimation is that Raman signals are not constrained to a 
specific analyte, i.e. analyte signals may often be confounded with other responses. There are 
strategies that can be used to address this relying on standard deviation (SD) of the blank based on 
residuals or on the net analyte signal (NAS). However, these strategies consider only the uncertainty 
in the signal measurements, and disregard sources of uncertainty in calibration concentrations72.  

In multivariate calibration the leverage h for each observation assumes different values depending on 
the composition of the sample. As the leverage is different for different samples, when approaching 
LOD calculation in a multivariate calibration, it is plausible to consider a LOD interval rather than a 
single LOD value. In this way, the LOD values within the interval will depend on the variability of 
the matrix composition, thus minimizing the propagation of concentration errors into the standard 
error in predicted concentrations72. Therefore, it is necessary to estimate the calibration 
concentration uncertainties in a reliable manner (either from replicate reference measurements or 
from error propagation considerations).  

The aim of this research was to elucidate whether it was possible to establish LOD calculations 
inspired by Allegrini et al.72 – as is or modified – for full-spectrum responses. Before exploring 
multivariate LOD calculations, the author wished to gain a deeper insight into how Raman spectra 
behave when used for multivariate calibration with linear projection algorithms. With regards to this 
aim, a series of simulations were performed containing spectra of three substances; two interferents 
and one analyte, following the simulation described in Allegrini et al.72. Each substance had one 
single peak.. By gradually adding interfering features and nonlinear behaviours (noise, quadratic 
function, co-dependencies, baseline variations, overlaps, etc.) to the simulated spectra, the aim was to 
see where standard OPLS start to fail in quantification and prediction. This investigation was highly 
relevant for the research in this thesis where T-OPLS was applied; because little information exists 
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on how the algorithm functions, so modelling with T-OPLS based on simulated spectra would 
provide the much needed insights into its capabilities and shortcomings. Successful simulated data 
would also allow the application of the method to real data taken both from previous projects25, 47, 57, 

194 and from new experiments. 
 

RESULTS  
 
Using Python scripts with numpy library v1.19.0, data sets containing 100-5000 randomly generated 
spectra with Gaussian peak shapes were generated. The data sets differed in the type of noise that 
was added; spectra with noise only in spectral signal, and spectra with noise in signal + 
concentration. All noise was additive and no nonlinearities were added. In each data set, one of the 
two interfering components had a slight overlap between the spectral features of the analyte, but 
each substance had a concentration variation independent of each other. Thus, the simulation was 
aimed at examining the effect of the overlap and noise on the behaviour of OPLS, when co-
dependency was avoided using randomised concentration combination for the analyte and the 
interfering compounds. The response for all substances was linearly proportionate to their 
concentrations. 

In each of the simulations, OPLS models were calculated with varying amounts of noise added to the 
Y vector. The Y vector described the analyte concentration variation. With spectral noise on the 30% 
standard deviation in relation to the maximum spectral magnitude and no noise in concentrations on 
the Y side, there was a complete separation between the analyte peak in the p loadings and the 
interfering peaks in the po loadings irrespective of the training set size that was varied in the range of 
100, 500, and 5000 samples.  

For all models, at least two OPLS-components were always used even when the second component 
caused a lower Q2. For the noise levels on the concentration side, the relative standard deviation 
(yRSD) was set to 5 %, 10 %, 15 %, and 30 % relative to the maximum concentration. 

At 5 % yRSD the p loadings for the 100 sample model showed some hints of interfering peaks while 
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100 and 500 sample models show similar results. At 15 % yRSD there were interfering peaks for the 
100 and 5000 sample models but less so for the 500 sample model. At 30 % yRSD, there were clear 
interfering peaks for the 500 and 5000 sample models but only weak ones for the 100 sample model, 
where they were possibly hidden by the larger noise level in the p loadings due to few samples 
(Figure 1-A). On the orthogonal side of the model there were clear analyte peaks for all three 
models in the 30% yRSD po loadings, while the analyte peak was not expected due to the normal 
function of OPLS. Weak hints in the 15 % yRSD po loadings, weak hints for 100 and 500 sample 
models at 10 % yRSD po-loadings, and no hints for any sample number at the 5 % yRSD level.  
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To evaluate the precision and sensitivity of Raman response for purposes of quantification and 
detection, limit of detection (LOD) is one of the fundamental analytical parameters that can be 
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function, co-dependencies, baseline variations, overlaps, etc.) to the simulated spectra, the aim was to 
see where standard OPLS start to fail in quantification and prediction. This investigation was highly 
relevant for the research in this thesis where T-OPLS was applied; because little information exists 
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on how the algorithm functions, so modelling with T-OPLS based on simulated spectra would 
provide the much needed insights into its capabilities and shortcomings. Successful simulated data 
would also allow the application of the method to real data taken both from previous projects25, 47, 57, 

194 and from new experiments. 
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The Q2-values for the 100 sample models were: (0.90, 0.87 (3 comp), 0.84, 0.68, 0.26) for the yRSD 
% levels: (0, 5, 10, 15, 30), respectively.  
 

 

Figure 1-A. Predictive loading vectors p from an OPLS model where Y = analyte concentration. The predictive loadings 
show variation dependent on the selected Y from model with 100, 500, and 5000 samples, (red, blue, black) from models 
with 30 % yRSD noise on the X and Y sides. The peaks of the analyte signal was present at x = 500. Interfering 
component peaks 1 and 2 were located at x = 200 and x = 400.  
 

Thus it can be seen that when the noise in spectra is high at the same time that the noise in 
concentration levels increase, there exists a limit for OPLS where the y-predictive vs orthogonal part 
of the model blend due to the noise level but not due to the relative independence of interferences 
and analyte spectral contributions. This effect appears to be alleviated somewhat by using more 
spectra per model. The Q2 value will, as usual, be helpful here. For the 30 % yRSD the Q2 is clearly 
low at (0.26, 0.39, 0.38) for the 100, 500, 5000 model sample sizes while at 10 % yRSD level,  the Q2 
values are at (0.84, 0.85, 0.86). As regular OPLS is a linear method, non-linear effects will also appear 
as higher noise levels to the standard OPLS algorithm as this cannot be modelled directly. This may 
be one reason why there is also a blend effect for non-linear models. However, these results also 
mean that the blend effect cannot be taken as a pure signal for the presence of non-linear effects 
when measurements are close to the noise level.     
 

SUMMARY 
 
It was observed that OPLS becomes less suitable at certain levels of noise, regardless of sample size. 
The bleed-over effects could therefore have been caused by a mixture of smaller nonlinearities and 
low SNR. It should be noted that the enquiry reported here was a slight expansion of the LOD 
concept in the sense that it covered the interpretability of OPLS models at low SNR levels. This was 
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in contrast to traditional multivariate LOD calculations attempts, which deal more with the 
predictive ability at low SNR levels.  

The original aim which instigated this enquiry, the development of multivariate LOD calculations, 
would necessitate the deconstruction of typically observed linear and nonlinear effects in Raman 
spectroscopy. This was done through the simulation of spectra that resemble real Raman spectra as 
closely as possible, but that would provide an opportunity to study separately the influence of each 
possible linear and nonlinear effect on multivariate modelling separately. An additional enquiry was 
to see how different response functions (e.g. linear or quadratic response) influence modelling when 
present within the same spectrum. This in particular was intended to relate to the quadratic response 
and bleed-over effects observed in the literature48 and in the author’s own research194, since, in case 
of the latter, the reasons behind the majority of the reported behaviour could not be explained. 
Unfortunately, the author was not able to make further enquiries into this matter. Future 
investigations are recommended which include nonlinear effects at low SNR and which extend the 
simulated spectral peak combinations with peak shapes common in Raman in addition to the already 
simulated Gaussian peaks, such as Lorentzian, Gauss-Lorentzian, and Voigt peaks. 
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CHAPTER 2 
RAMAN SPECTROSCOPIC METHOD FOR IN SITU 

QUANTIFICATION OF PEG IN ARCHAEOLOGICAL 

WATERLOGGED WOOD  
 
INTRODUCTION  
 
When artefacts of wood are excavated, they must undergo a conservation process that preserves the 
structural integrity of the artefacts before they are incorporated into humanity’s cultural heritage. 
Although initially appearing structurally sound upon excavation, waterlogged archaeological wood is 
usually severely degraded. In waterlogged archaeological wood such degradation is often caused by 
bacteria inhabiting the anaerobic waterlogged environments of archaeological finds of this kind 
(bogs, sediments, ocean floor, etc.)195. These erosion bacteria are capable of degrading many wood 
constituents, thus compromising the integrity of the cell walls195-197. 

Should such wood be dried without the necessary conservation steps, the material will suffer 
anisotropic shrinkage. To prevent this, waterlogged archaeological wood is often impregnated with a 
consolidator, e.g. the water soluble polymer polyethylene glycol (PEG).  

In Sweden, one of the major conservations projects with PEG is the warship Vasa198. PEG enters 
the wood by slow passive diffusion, a process spanning decades. The wood is spray treated or 
submerged in aqueous solutions of PEG. The process is slow in part due to the fact that the PEG 
concentration has to be kept low in order to avoid large osmotic pressures that can damage the 
artefact further199-200. Nevertheless, the impregnation of Vasa with PEG was an apparent success and 
became thus widely used for other object of waterlogged archaeological wood. Since the 
impregnation with PEG became popular, it has been criticised due to PEG’s hygroscopicity, which 
has contributed to a weakening of the wood matrix, and to chemical instability199, 201. 

The process of impregnation requires continuous and reliable monitoring in order to determine 
whether PEG impregnation is complete. In the case of Vasa, the quantification of PEG levels has 
been done by sampling cores of the ship’s wood, from which PEG was extracted and then quantified 
by chromatography or spectrophotometry202. Clearly, such quantification attempts are both resource-
intensive and destructive to the cultural heritage. The development of methods that would permit 
PEG quantification without the destruction of archaeological artefacts is therefore of analytical 
interest.  

There have been attempts to develop in situ, non-destructive analytical techniques. Jeremic et al.203 
and Gierlinger et al.204 used Raman spectroscopy to estimate the ratio between wood constituents 
and PEG spectral bands. These bands were found to be proportional to PEG concentration. 
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Although simple to implement, these methods are lacking in the sense that they were developed for 
microanalysis and do not produce absolute values. This makes them unreliable to base conservation 
strategies upon. Another study used Raman band ratios in PEG impregnated archaeological wood. 
In it, a calibration was created based on known mixtures of PEG and wood205. Unfortunately, few 
details of the validation procedure were reported. The common drawback of these studies is that it is 
assumed that the levels of wood constituents are constant and are used therefore as internal 
standards. However, this approximation is not true for the most archaeological wood as some of 
these constituents (e.g. cellulose) are also subjected to microbial decay197, 206.  
 
As wood is a complex biological matrix, it contains several chemical species that may vary and 
potentially complicate quantification. In Norway spruce (Picea abies), the species used in this study, 
the lignin and hemicellulose content are at about 27 % each and cellulose at 40 %. The remaining 6 
% are extractives (waxes, alcohols, terpenoids etc.) and inorganics207.  
 
In this chapter, the first steps towards an in situ, non-destructive Raman spectroscopic method for 
quantification of PEG in waterlogged archaeological wood are reported. A method of this kind 
would enable rapid measurements directly on the sample without any sample preparation or 
destruction208. 

As the chemistry of archaeological wood is highly heterogeneous and amorphous, a simplex mixture 
design was used to reflect variation in PEG and to include the two major constituents of wood – 
cellulose and lignin. Since the matrix of PEG is complex, undesired effects inherit in Raman 
spectroscopy such as photoluminescence might obscure PEG signals. Alternatively, the signals of the 
various chemical species present may overlap209-210. To address this, the accumulated spectra were 
analysed with projection-based multivariate algorithms of principal component analysis (PCA) and 
orthogonal partial least squares (OPLS). The latter was used to build calibration models aimed at 
predicting PEG concentrations by seeking the maximum covariance211 between the Raman spectra 
and the known concentrations of the mixture design components.  
 

WATERLOGGED ARCHAEOLOGICAL WOOD 
 
Waterlogged archaeological wood is a delicate matrix, both with regards to its physical properties and 
also considering the challenges in conservation of such cultural heritage. One of the main challenges 
in preservation of waterlogged archaeological wood is its weakening upon drying. To prevent the 
collapse of such objects upon drying, archaeological artefacts of this nature are often impregnated 
with polyethylene glycol (PEG). However, since the impregnation process relies on passive diffusion 
once the artefact has been submerged in PEG, it is a lengthy process. Therefore, there is an interest 
in having a continuous monitoring of the impregnation process, as this ought to be non-destructive 
towards the analysed cultural heritage. The objective in Chapter 4 was to develop an in situ method 
for the quantification of PEG in waterlogged archaeological wood. 
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Wood is a heterogeneous matrix, with common constituents varying greatly depending on the extent 
of degradation197, 206 and wood species. The main chemical species present in wood are hemicellulose, 
lignin, and cellulose. The celluloses are polysaccharides and lignin is made up of phenolic units 
forming a polymer chain. Both lignin and hemicellulose are present in wood at about 20-30 % of the 
dry weight, while cellulose constitutes about 50 % of the dry weight in most wood types. The 
cellulose polymers are mainly ordered into microfibrils, held together by both intermolecular 
hydrogen bonding and van der Waals interactions (Figure 2.1). These aggregations exhibit varying 
degrees of ordering, with regions of both crystalline and amorphous structures present in wood206-207.  
 
Lignin on other hand is a crosslinked polymer - commonly described as amorphous - of three 
precursor alcohols; coniferyl, sinapyl, and p-coumaryl (Figure 2.1). Unlike cellulose, lignin is highly 
disordered and lacks the constant structure that may be ascribed to certain species of wood212.  
 
 

 
Figure 2.1. Left: lignin where p-coumaryl has no branching, coniferyl has one methoxy group (R2) and sinapyl has two 
methoxy groups (R1 and R2). Right: glucopyranose. Cellulose is a series of polymers of glucopyranose (1-O-4) with 
alternating stereochemistry of the monomers.  
 
 
Hemicellulose consists mainly of xylose, galactose, and xylose arranged into a branched 
heteropolysaccharide. The order of polymerisation is in places random and in places amorphous207 

The relationship between the aforementioned three main constituents of wood is not fully 
understood. Currently, how hemicellulose, lignin, and cellulose relate is described roughly as follows: 
hemicellulose and lignin form a network in which cellulose microfibrils are entwined, offering 
rigidity, but also resistance to bacterial degradation213-215 

Here, the method is developed with Norway spruce (Picea abies), a softwood, which compared to 
hardwoods has a simpler morphology206.  
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METHODS  

THE CALIBRATION SET: PREPARATION OF MILLED WOOD LIGNIN (MLW) 
 

In the simplex mixture design, the lignin was represented by milled wood lignin (MLW), which was 
prepared in house according to the procedure described by Björkman216. The steps of wood meal 
drying with P4O10 and milling it in toluene were omitted. The drying was instead performed over 
silica gel, which resulted in a somewhat coarser and oxidized product. 

For the extraction of lignin, a fine wood meal was prepared, and extractives were removed per 
established procedure217. The wood meal was grinded with a Retsch rotor mill to mesh 40 from 
recent sapwood of Norway spruce (Picea abies). Then, 8 g of the wood meal was place in a Whatman 
603 cellulose thimble (VWR, Sweden) and was subsequently extracted in a Soxhlet set-up with 200 
mL acetone (GC-grade, Fisher Scientific, Sweden) for a minimum of 24 circulations. The Soxhlet set-
up was heated by a water bath at temperature 65-70 °C and was only partially covered with tin foil to 
avoid thermal decomposition of lignin218.  

After three extractions, the average amount of extractives was 0.8 ± 0.2 wt%, which corresponds to 
the range reported in literature for Norway spurce217, 219. The product was then dissolved in AcOH 
with 10 % water, and then precipitated by a dropwise addition to water. The precipitate was collected 
by centrifugation and then washed until it reached neutral pH. The yield was recorded to be 30 %, 
which is consistent with earlier reports216. Raman spectroscopic analysis of MWL showed a clean 
lignin spectrum (see Figure C in Appendix 4.1 at the end of this chapter). The peaks of MWL are 
similar in shape to the lignin found in wood220. 
 

THE CALIBRATION SET: THE MIXTURE DESIGN 
 
The statistical design of experiments is used to model the response-factor space with a mathematical 
expression. One type of design of experiments is called a mixture design in which the sum of 
components present must always add up to 100 %. The response then depends then on the relative 
proportions in the mixture, not their absolute concentrations. There are a number of mixture designs 
that accommodate different needs. If the aim of the experiment is to test the responses of an 
untested mixture, then a simplex design is suitable37.  
  
PLS may perform better in relation to multiple linear regression (MLR)221 when applied to a mixture 
design since the factors in the design are correlated. In the best of cases, a PLS models should be 
able to separate the three different components from the three factors varied in the design222; MLW, 
cellulose, and PEG. A similar behaviour was expected for OPLS models performed in this chapter.  
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To represent the holocellulose component of wood (cellulose + hemicellulose), cellulose from 
cotton linters were used (Sigma Aldrich, Sweden). Both cellulose and hemicellulose have been 
reported to have similar Raman spectra220, 223, which were confirmed by spectral analysis of cellulose 
from cotton linters (Figure 2-B in Appendix 2.1). 
 
Calibration standards were mixed as per simplex lattice mixture design222 (Figure 2-E and Table 2- 
E in Appendix 2.2) using cellulose powder, MWL and PEG-4000 (3500-4500 Da, synthesis grade, 
Merck, Sweden) in concentrations ranging from 0 to 100 %. Mixtures were prepared through 
grinding cellulose powder and MWL in a porcelain mortar, transferring the powder into a vial and 
then adding the aqueous PEG solution. The suspensions were composed of 2/3 of water to emulate 
the water ratios in waterlogged softwoods and moderately degraded waterlogged archaeological 
wood224. After thorough stirring, the suspensions were transferred onto microscope slides for 
spectroscopic analysis. 
 
The design contained seven levels with 22 points, calculated using JMP® software (version 13, SAS 
Institute Inc.). Centre and end points of the design were triplicated to evaluate the precision of the 
method. An additional set of six measurements were prepared to create a test set, three of which 
were located at the design centre (25:25:50) and three at the design exterior (10:10:80).  
 

THE VALIDATION SET  
 
The validation set consisted of samples of archaeological waterlogged wood (AW) and recent wood 
(RW), both Norway spruce. The RW was acquired from the same sapwood from which MWL was 
prepared. The subsamples of RW with dimensions 1x3x5 cm were submerged in aqueous 20 wt% 
solution of PEG-4000 (3500-4500 Da, synthesis grade, Merck, Sweden) for 3 months.  

The AW was taken from a circular pole excavated in Motala Ström (a river in Sweden) in 2010. The 
pole was found at the site along with other poles driven into the river bed, and it is believed that they 
were a part of a fishing station.  No dendrochronological examination was performed on this 
particular sample, but the majority of the poles found at the site have been dated to the 11th century. 
After recovery, the pole was stored in a waterlogged state at 8 °C. In the spring of 2017, the sample 
was submerged in an aqueous PEG-4000 solution of 20 wt%.  

Subsamples were taken from RW and AW by cutting cross-sections by hand with a double-edged 
razor blade. Each subsample was ca 5x5 mm with a thickness of 100 µm. The cuts were made along 
the longitudinal axis, as it is the main transport route in wood. The samples were placed on Raman 
grade CaF2 microscopy slides (Crystran LTD., UK) fitted with a 8-well sticky slide (ibidi GbmH, 
Germany). Wells not containing samples were filled with water to ensure a humid environment 
around the samples. Calibration standards described in the section above were analysed in the same 
fashion.  
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INSTRUMENTATION AND MEASUREMENTS 
 

The Raman spectrometer (Dilor Labram IV, Horiba, France) was equipped with a coupled charge 
device (CCD) detector and an inverted confocal microscope (Olympus IX70, Japan). The excitation 
wavelength used was 632.8 nm He/Ne laser with intensity of 2 mW at the sample. A 950 
groves/mm grating was used to record between 200 and 3200 cm-1. Each acquisition was measured 
with an x10 objective and was triplicated for 20 seconds and then averaged into a single spectrum.  
The focal spot was calculated to 5 µm. All samples were photobleached for 6 minutes before spectral 
acquisition in order to reduce photoluminescence (PL). The photobleaching was not detrimental to 
the Raman signals from RW or AW (see results of the analysis in Results and Discussion).  

The RW and AW samples were analysed in five and six different spots, respectively (Figure 2.2) 
 

 

Figure 2.2. Photos of the AW (left) and RW (right) test material. The marked areas represent sampling sites. AW1 and 
AW2 come from the same pole found in Motala Ström river. Areas 1.2 and 2.2 were the utmost layer of the pole.  
 

The sites were selected at different depths of the wood sample to accommodate for the spread of 
PEG concentrations. In the case of AW samples, the selection of sites was also governed by the 
distance to the exterior of the original pole, since surfaces exposed to water were more decayed. This 
would reflect the variation in lignin and cellulose content, as the latter were being subject to 
microbial degradation. Three sections were sampled in sequence from each subsampling site in 
attempt to account for the heterogeneous nature of the material. Since the laser spot (5 µm) was 
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smaller than the wood micromorphology (Figure 2.3), nine randomized acquisitions were performed 
in each section, thus resulting in 27 acquisitions per subsampling site.  

 

Figure 2.3. Micrograph of AW. In the centre, a purple dot marks the diameter of the laser spot: 5 µm with X10 
magnification of the confocal microscope.  
 

The standard mixtures were assumed to be more homogenous, and so only 5 acquisitions were 
performed for each standard. These acquisitions were regarded as separate observations and were 
used individually to construct the calibration model.  
 

PEG EXTRACTION 
 
After the Raman analysis was complete, the PEG content in AW and RW was estimated by 
extracting samples with MeOH. PEG content was estimated gravimetrically. The triplicate sections 
were dried in a desiccator for a week and then weighed. The dried samples were then placed in 2 mL 
MeOH (GC-MS grade, Merck, Sweden). The MeOH was changed daily until no further weight 
change was noted after subsequent 24 h drying in the desiccator. There was no change in weight 
after 72 h of extraction. 

As the weight loss was caused by the loss of extractives, and, in case of AW, by degradation 
products, the error was estimated. To estimate the error originating from other compounds than 
PEG, sample material which was not subjected to PEG impregnation was treated according to the 
same extraction scheme that was described above. AW and RW extracted 1.5 and 0.8 wt%, 
respectively with a relative standard deviation (SD) of ca 50 % (n=6). This corresponds to the 
extractive contents in spruce219 and the error found between PEG extraction with MeOH in 
archaeological wood for HPLC202. The error of gravimetrical determination was assumed to be 
equivalent to the average extracted +2 SD, which gives an error of 1.6 and 3 wt% for RW and AW. 
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SPECTRAL PRE-PROCESSING  
 
To reduce the contribution of nonlinear sources (read more in the Methodology section) originating 
from the samples and the instrument80, the data was pre-processed using rolling circle filter (RCF)63 
with the circle radius set to 98 cm-1. RCF was performed using an in-house Python 3.5 script.  

As Raman spectroscopy is sensitive to molecular conformations, orientation, and ordering225, spectral 
discrepancies were expected in the samples in the calibration set and the validation set, and cannot be 
considered originating from representative concentrations.  All data was scaled to unit variance 1 
(α=1) (UV).  
 

MULTIVARIATE CALIBRATION AND MODEL VALIDATION 
 
OPLS models were constructed using the calibration set. The models were validated using cross-
validation and root mean square error (RMSE) of estimation37, the latter calculated for the validation 
set.  The quality of OPLS predictions was evaluated using a linear regression of the observed vs. 
predicted values. The coefficient, which is equivalent to R2Y, the slope, and the intercept were 
determined. The significance was tested with Student’s t-test to highlight any systematic errors.  

All PCA and OPLS models were constructed in a SIMCA 15.0.1 (Sartorius Stedim Biotech, Umeå, 
Sweden). 

 

RESULTS AND DISCUSSION 
 

In this study, the goal was to achieve the prediction of PEG content based on Raman response. This 
is commonly achieved by regression analysis, where, in this case, the relationship between 
uncorrelated variables (PEG concentration) and correlated variables (Raman spectra) is evaluated. 
Revealing covariance between the correlated and uncorrelated variables allows prediction. The 
uncorrelated variables, i.e. PEG concentrations, were held in matrix Y, and correlated variables 
represented by Raman spectra of samples in the mixture design were held in matrix X. 

The mixture design herein was used under the assumption that PEG’s response depends on the 
relative proportions of other wood components, represented here by cellulose and MWL, rather than 
by their absolute amounts. The predicted wt% values calculated by the models below give the ratio 
of PEG to MWL and cellulose. Therefore, any other species present in the matrix not based on 
saccharide or lignin chemistry were not accounted for in the design. 
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PHOTOBLEACHING EXPERIMENTS  
 
Raman signals can be optimized through photobleaching, which aims to bleach chemical species 
causing the interfering PL. The benefit of such a procedure is that the contribution of PL can be 
reduced, thus improving noise which could otherwise mask relevant Raman signals. A prolonged 
exposure to the laser could also change the properties of the studied analytes, thus changing the 
spectral response226. 

The material in this study produced a significant amount of PL. The Raman spectra generated from 
both AW and RW showed a clear trend in which the background noise diminished upon longer 
exposure. However, it has been reported that prolonged exposure to a 514 nm laser reduces lignin 
signals227 and that lignin absorbs radiation at 633 nm228. Because of these exposure effects, the 
photobleaching had to be evaluated.  
 
AW and RW were exposed to a laser for 30 minutes with spectral acquisition carried out at the 1, 2, 
3, 4, 5, 6, 7, 8, 9, 15, 19, 20, 25, and 30 minute points. The integral of the 1566-1637 cm-1 lignin band 
was calculated for each spectral acquisition. The integral of the area of PL was also calculated. 
Measurements were performed on both early and late wood. Integrals were calculated in the LabSpec 
5 (Horiba) software, which cuts a straight line between the start and end point of the integral. 
 

 
 
Figure 2.4. Integrals of Raman band of lignin at 1566-1637 cm-1 in early AW (red), late AW (green), early RW (purple), 
and late RW (light blue). Blue is the average integral underneath the Raman band for all four samples, that is a measure of 
the PL.  
 
Integrals of Raman bands acquire from AW and RW samples were calculated and subjected to a 
Student’s t-test (Table 2.1). A decrease of Raman signals was observed for RW, but not for AW. This 
could be due to the absence of some of the extractives in AW, such as stilbene219. It is therefore likely 
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that it is not the signal of lignin that has been deteriorated, but rather other aromatics that absorbed 
the light at the incident wavelength of 633 nm.    
 
The photoluminescence decayed exponentially. After 2 minutes, the intensity of the Raman signal 
was halved, and after 15 minutes the curve flattened at ca 1/5 of the original signal intensity. 
However, since 633 nm is at the end of the absorption curve for lignin, it is possible that some 
photochemical degradation of lignin may have occurred. Yet, the photobleaching performed here did 
not affect the Raman intensity for lignin in a way that would have undermined this study. 
  

Sample p-value Slope 
(intensity%/min) 

R2 

AW early 0.579 - - 

AW late 0.229 - - 
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the PLS models to come229. The PCA model resulted in 8 components (R2X = 0.995 and Q2 = 
0.993). The individual components present in the mixture design separated into separate loading 
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The remaining loading vectors p5-p8 feature some peaks of the factors in the design, but were 
considerably noisier (results not shown). Thus, loadings under a certain R2 value were not 
considered.  

There was a large spread between replicate measurements, but a smaller spread between replicated 
mixtures, suggesting that there was a higher degree of similarity between replicated mixtures but that 
individual measurements varied more. It is likely that 5 replicates were too few to accurately 
represent the content variation in the standard mixtures. The largest spread was caused by three 
replicates of the 100 wt% PEG standards. Upon inspection of the original spectra it was revealed 
that part of the variation stemmed from the variation of the CaF2 (the microscope slide) band at 320 
cm-1. It was concluded that the placement of the focal plane and consequently the focal volume was 
the origin of the observed variation. Since it was a variation unrelated to PEG content, it was 
expected that subsequent OPLS modelling should sort it into orthogonal components. 
 

OPLS OF THE CALIBRATION SET 
 
OPLS is applied favourably to designed experimental spaces such as mixture designs37, since the 
general variations can be separated into variance correlated to the Y matrix, while any variation that 
is not correlated to Y matrix is instead described in the model’s orthogonal components48. As neither 
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MWL nor cellulose was of interest when quantifying in RW and AW, only PEG concentrations were 
included into the Y matrix. 

The OPLS model with best predictability was achieved by applying unit variance (UV) scaling in the 
spectral range of 350-3200 cm-1, not including the band of CaF2 at 320 cm-1. Spectral artefacts were 
detected at 479-510, 610-670, and 700-790 cm-1. These were ascribed to the variation caused by the 
RCF background correction, and as they varied systematically with PL, they were considered to be 
noise, and thus were removed from the model. 

The OPLS model consisted of 1+4+0 components (predictive + orthogonal in X + orthogonal in Y) 
with R2X = 0.962, R2Y = 0.902, and Q2 = 0.758. The predictive loading vector p and the first 
orthogonal loading vector po1 are plotted in Figure 2.6 for the spectral region 800-1700 cm-1. 

 

Figure 2.6. OPLS loadings of the calibration set. The predictive loading p (black) showed the bands of PEG (844, 1141, 
1230, 1280, and 1478-1485 cm-1). The orthogonal loading po1 (blue) described the bands for cellulose (378, 1097, 1122 
and 1376 cm-1), i.e. variation unrelated to PEG. 

The reader needs to be reminded that the loading vectors do not represent Raman spectra, but the 
weight of each wavenumber in relation to a component. An absolute high value means therefore that 
the wavenumber has higher importance (leverage) in describing variation in the predictive loading 
vector, while low values represent low correlation. The ‘noisy’ appearance of the loadings in Figure 
2.6 was caused by UV scaling. 

The bands of PEG were found in the predictive loading p (844, 1061, 1141, 1230, 1280, and 1478-
1485 cm-1)230. A broad band at 2670-3000 cm-1 was also observed, but as that region contains 
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hydrogen vibrations from water, PEG, and cellulose, the signals were too confounded to separate. 
This region was therefore not included into the model.  

The first orthogonal loading vector po1 included the bands of cellulose (1097, 1122, and 1376 cm-

1)220. The bands of lignin were less apparent, but po1 has a weak indication of bands 1297 and 1600 
cm-1. However, upon the examination of the score plot of the model it became clear that 
observations separate according to lignin content along to1 (results not shown), which suggests that 
the variation caused by lignin must have been separated into po1. This separation entails that 
cellulose and lignin could also be quantified with the method described here, however, that was 
outside the scope of this study. 

The second orthogonal loading po2 resembled p, with many of the same bands present but which 
were smaller and broader. This component was therefore interpreted as a representative of the 
intensity variation of PEG, which was uncorrelated to its concentration. Figure 2.7 provided 
support for this interpretation; the spread seen along to2 was uncorrelated to the concentration. The 
separation between three 100 wt% PEG standards was likely to have occured due to the placement 
of the focal plane in the sample, which provides further support for the above interpretation and 
reminds the reader that we a used confocal setup. 

 

Figure 2.7. Score scatter plot of t1 vs. to2 of the OPLS model. Colouring according to PEG content (wt%). 
 

The remaining orthogonal components were found to be noisier variations of the second and first 
components and were hence not considered further in the analysis.  
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PREDICTION OF RW AND AW IN THE CALIBRATION SET 
 
The RMSE of cross-validation and RMSE of estimation were calculated to 16 and 12 wt%, 
respectively. The accuracy of the method was therefore not high. The R2Y = 0.902 indicated 
however a strong linear model (Figure 2.8). The Student’s t-test did not show any indication of 
systematic error. 

 

Figure 2.8. Predicted content of PEG of calibration model vs. observed PEG content of calibration standards. The 
dashed line shows the actual correlation, while the solid line shows the desired (i.e. perfect) correlation. Here, R2 equals 
R2Y. 
 

As the wood constituents and PEG of the calibration set was separated into two components, the 
predictions performed on the validation set should also differentiate between the two components. 
As mentioned earlier, because the first orthogonal component predicted the content of lignin and 
cellulose, there is an expectation of further method development. The poor accuracy of the 
calibration model could in part be attributed to the afore-mentioned large variation between 
replicates.  
 

PCA OF THE VALIDATION SET 
 
To gain a comprehensive overview of the validation set, PCA models were calculated. The validation 
set consisted of responses from AW and RW. The model resulted in 5 components, with R2X = 
0.986 and Q2 = 0.989. PEG concentration gradient was observed in the fourth score vector t4 
(Figure 2.9). 
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Figure 2.9.PCA score scatter plot of the validation set showing t3 vs. t4. Colouring according to PEG content (wt%).  
 

It is clear from Figures 2.9 that the validation set showed that observations separated according to a 
PEG concentration gradient. This in turn indicated that the subsequent OPLS regression would be 
able to predict the PEG content in the validation set.  

PEG content in AW and RW was determined gravimetrically to 33-75 and 21-46 wt%, respectively 
(Table 2.2). To address the narrow ranges, the AW and RW samples were tested separately and 
grouped. Individually, these ranges were narrow, but when grouped they spanned more than a half 
the design space (21-75 wt%).  
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Sample PEG ± 0.01 (mg) PEG ± 0.1 (wt%) Y(Pred) for PEG (wt%) 

AW 1.1 5.68 32.5 53.3 

AW 1.2 10.7 74.8 81.2 

AW 1.3 3.39 43.9 57.6 

AW 2.1 5.07 38.4 54.5 

AW 2.2 6.12 65.1 66.0 

AW 2.3 4.72 66.9 62.4 

RW 1 9.52 46.1 45.8 

RW 2 4.38 30.3 37.0 

RW 3 3.32 29.9 32.6 

RW 4 3.44 20.8 32.4 

RW 5 4.47 33.3 42.8 

 

Table 2.2. PEG content determined by weight loss during MeOH extraction. Y(pred) is the predicted value for PEG 
(wt%) calculated by the OPLS model. The error represents the cumulative error of the weighing. The calculated error 
was 3.0 and 1.6 wt% for AW and RW, respectively. 
 

OPLS PREDICTION OF THE VALIDATION SET 
 
The validation set contained both RW and AW samples. The predicted PEG content acquired from 
the OPLS model was plotted against the gravimetrically determined PEG content (Figure 2.10). The 
statistics corresponding to the linear regression can be found in Table 2.3. 
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Figure 2.10 Predicted vs observed plot of the validation set. Triangles represent RW subsamples and rhombi represent 
AW subsamples. The solid line stands for perfect correlation and the dashed line represents a least squares linear 
regression for both AW and RW. 
 

The RMSE of prediction was high, but not higher than that of the calibration set. The value was 
higher for AW, suggesting a higher heterogeneity of the decayed wood, as well as higher contribution 
from PL. The data was linear as evident from R2Y, however, all linear regressions had a tendency to 
overestimate the PEG concentration. This was evident from that the intercept was significantly 
larger than 0, while the slope was smaller than 1. The interpretation of this was that low PEG 
content was overestimated, but that the systematic error was reduced at higher PEG content.  
 

Validation set 

(Number of 
observations) 

RMSE of prediction 
(wt%) 

R2Y Intercept (p-
value) 

Slope (p-value) 

AW (6) 13 0.795 35 (0.001) 0.52 (0.017) 

RW (5) 8 0.749 20 (0.054) 0.58 (0.058) 

AW + RW (11) 11 0.816 18 (0.013) 0.77 (0.000) 

 
Table 2.3. Validation set statistics for the predicted vs. observed values. The data represents AW and RW individually, as 
well as together. The p-value corresponds to the value of the Student’s t-test at 95 % confidence interval. 



116 
 

Sample PEG ± 0.01 (mg) PEG ± 0.1 (wt%) Y(Pred) for PEG (wt%) 

AW 1.1 5.68 32.5 53.3 

AW 1.2 10.7 74.8 81.2 

AW 1.3 3.39 43.9 57.6 

AW 2.1 5.07 38.4 54.5 

AW 2.2 6.12 65.1 66.0 

AW 2.3 4.72 66.9 62.4 

RW 1 9.52 46.1 45.8 

RW 2 4.38 30.3 37.0 

RW 3 3.32 29.9 32.6 

RW 4 3.44 20.8 32.4 

RW 5 4.47 33.3 42.8 

 

Table 2.2. PEG content determined by weight loss during MeOH extraction. Y(pred) is the predicted value for PEG 
(wt%) calculated by the OPLS model. The error represents the cumulative error of the weighing. The calculated error 
was 3.0 and 1.6 wt% for AW and RW, respectively. 
 

OPLS PREDICTION OF THE VALIDATION SET 
 
The validation set contained both RW and AW samples. The predicted PEG content acquired from 
the OPLS model was plotted against the gravimetrically determined PEG content (Figure 2.10). The 
statistics corresponding to the linear regression can be found in Table 2.3. 

117 
 

 

Figure 2.10 Predicted vs observed plot of the validation set. Triangles represent RW subsamples and rhombi represent 
AW subsamples. The solid line stands for perfect correlation and the dashed line represents a least squares linear 
regression for both AW and RW. 
 

The RMSE of prediction was high, but not higher than that of the calibration set. The value was 
higher for AW, suggesting a higher heterogeneity of the decayed wood, as well as higher contribution 
from PL. The data was linear as evident from R2Y, however, all linear regressions had a tendency to 
overestimate the PEG concentration. This was evident from that the intercept was significantly 
larger than 0, while the slope was smaller than 1. The interpretation of this was that low PEG 
content was overestimated, but that the systematic error was reduced at higher PEG content.  
 

Validation set 

(Number of 
observations) 

RMSE of prediction 
(wt%) 

R2Y Intercept (p-
value) 

Slope (p-value) 

AW (6) 13 0.795 35 (0.001) 0.52 (0.017) 

RW (5) 8 0.749 20 (0.054) 0.58 (0.058) 

AW + RW (11) 11 0.816 18 (0.013) 0.77 (0.000) 

 
Table 2.3. Validation set statistics for the predicted vs. observed values. The data represents AW and RW individually, as 
well as together. The p-value corresponds to the value of the Student’s t-test at 95 % confidence interval. 



118 
 

The discrepancy in PEG prediction observed between wood samples of the validation set and the 
standard mixtures of the calibration set could have been caused by directionality of the microfibrils 
in the sampled wood. While the microfibrils in the cellulose standards of the calibration set were 
probably random (as the cellulose was simply suspended in a liquid), in wood the microfibrils are in 
contrast highly ordered within the cell walls206. Since not all Raman vibration modes are accessible 
from all directions, the orientation of the microfibrils ought to have influenced the signal231. 
Therefore, the PEG overestimation resulted from the fact that less cellulose was detected in the 
wood. This was further supported by the fact that as cellulose became less important, the 
overestimation also declined.  
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CONCLUSIONS 
 
Quantification of PEG content in AW and RW wood was successfully achieved through OPLS 
modelling in which a designed calibration set (MLW, PEG, and cellulose) was used. The validation 
performed suggests a reliable method and the results presented herein show great promise for future 
development of an in situ methodology for PEG quantification in wood. It was also shown that 
OPLS calibration could be used to predict contents of wood (MLW and cellulose) and that it could 
discriminate between the wood component and the PEG. However, the current method suffers 
from low accuracy.  
 
The conclusion was that the overestimation of PEG was caused by the high organisation of 
directionality of microfibrils in the cell walls of the wood samples compared to the random 
organisation in the calibration samples of cellulose. Gierlinger et al.231 suggested modelling the 
intensity loss of cellulose in OPLS. This would allow for correction of the accuracy of PEG 
calibration model by using the predictive component from such a model. The issue with microfibril 
directionality could also be attributed to that confocal Raman setup was used: the measured focal 
spot was much too small to represent an average signal from the wood matrix. This shortcoming can 
be ameliorated if a non-confocal Raman setup is used. For instance, using Raman instrumentation 
equipped with optical fibres would enable measurement of a bigger focal area, thus averaging the 
signal from a larger sample spot. In addition, using such a setup would also completely eliminate the 
destructive aspect of the method developed by us.  
 
It is likely that the calibration set model can predict the content of MLW and cellulose apart from its 
ability to predict PEG content. This was stipulated upon examination of the orthogonal component 
po1, which could predict lignin and cellulose content. If such a model were to be developed it could 
provide a detailed insight into the extent of PEG impregnation as well as into the state of the decay 
in archaeological artefacts. This would add a further edge when selecting the of best conservation 
treatment. 
 
The method presented here could also be utilized when monitoring the impregnation of 
archaeological wood with other consolidation agents, as long as its spectral features are dissimilar 
enough to wood constituents. In addition, the method may be adapted to other types of wood 
provided the source of MWL is changed. In the case of Norway spruce and in a majority of 
softwoods, the main constituent of lignin is coniferyl. In hardwoods, on other hand, the main lignin 
constituent is sinapyl. Therefore, the best calibration can arguably be achieved by using MLW 
extracted from the same species as the one being analysed.  
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The discrepancy in PEG prediction observed between wood samples of the validation set and the 
standard mixtures of the calibration set could have been caused by directionality of the microfibrils 
in the sampled wood. While the microfibrils in the cellulose standards of the calibration set were 
probably random (as the cellulose was simply suspended in a liquid), in wood the microfibrils are in 
contrast highly ordered within the cell walls206. Since not all Raman vibration modes are accessible 
from all directions, the orientation of the microfibrils ought to have influenced the signal231. 
Therefore, the PEG overestimation resulted from the fact that less cellulose was detected in the 
wood. This was further supported by the fact that as cellulose became less important, the 
overestimation also declined.  
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CONCLUSIONS 
 
Quantification of PEG content in AW and RW wood was successfully achieved through OPLS 
modelling in which a designed calibration set (MLW, PEG, and cellulose) was used. The validation 
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The method presented here could also be utilized when monitoring the impregnation of 
archaeological wood with other consolidation agents, as long as its spectral features are dissimilar 
enough to wood constituents. In addition, the method may be adapted to other types of wood 
provided the source of MWL is changed. In the case of Norway spruce and in a majority of 
softwoods, the main constituent of lignin is coniferyl. In hardwoods, on other hand, the main lignin 
constituent is sinapyl. Therefore, the best calibration can arguably be achieved by using MLW 
extracted from the same species as the one being analysed.  
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APPENDICES FOR CHAPTER 2 

APPENDIX 2.1 – RAMAN SPECTRA OF CALIBRATION AND VALIDATION SETS 

 
Figure 2-A.  Untreated  Raman spectrum of aqueous polyethylene glycol (PEG).  

Band (cm-1) Assignment Band (cm-1) Assignment 

581 v(C-C)232 1396 w(CH2), v(C-C)230 

844 r(CH2)230 1478-1485 δ(CH2)230 

860 (shoulder) r(CH2), v(CO)230 1445 (shoulder) δ(CH2)230 

1061 r(CH2), v(CO)230 1459 (shoulder) δ(OCC)230 

1141 v(CO)230 2890 v(CH2)232 

1125 (shoulder) v(C-C), w(CH2)230 2847 (shoulder) v(CH2)232 

1230 t(CH2)230 2942 (shoulder) v(CH2)232 

1280 t(CH2)230 2783 (shoulder) v(CH2)232 

1362 w(CH2), v(C-C)230   
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Table 2-A. Peak assignment, where v = stretching, t = twisting, r = rocking, δ = bending230, 232. 

 

Figure 2-B. Untreated Raman spectrum of wetted cellulose powder. 

 

Band (cm-1) Assignment Band (cm-1) Assignment 

353 Cellulose220 1094 v(CC), v(CO)233 

381 Cellulose220 1122 Cellulose220 

436 Cellulose220 1337 v(CC), v(CH2)
233  

457 Cellulose220 1376 δ(HCC), δ(HCO), 
δ(HOC)233 

520 Cellulose220 1461 δ(HCC), δ(HCO)233 

901 δ(HCC), δ(HCO)233 2740 Cellulose220 

1059 v(CC), v(CO)233 2895 v(CH), v(CH2)
220 

 
Table 2-B. Peak assignment of cellulose powder from cotton linters suspended in water, where v = stretching, δ = 
bending220, 233. 



120 
 

APPENDICES FOR CHAPTER 2 

APPENDIX 2.1 – RAMAN SPECTRA OF CALIBRATION AND VALIDATION SETS 

 
Figure 2-A.  Untreated  Raman spectrum of aqueous polyethylene glycol (PEG).  

Band (cm-1) Assignment Band (cm-1) Assignment 

581 v(C-C)232 1396 w(CH2), v(C-C)230 

844 r(CH2)230 1478-1485 δ(CH2)230 

860 (shoulder) r(CH2), v(CO)230 1445 (shoulder) δ(CH2)230 

1061 r(CH2), v(CO)230 1459 (shoulder) δ(OCC)230 

1141 v(CO)230 2890 v(CH2)232 

1125 (shoulder) v(C-C), w(CH2)230 2847 (shoulder) v(CH2)232 

1230 t(CH2)230 2942 (shoulder) v(CH2)232 

1280 t(CH2)230 2783 (shoulder) v(CH2)232 

1362 w(CH2), v(C-C)230   

 

121 
 

Table 2-A. Peak assignment, where v = stretching, t = twisting, r = rocking, δ = bending230, 232. 

 

Figure 2-B. Untreated Raman spectrum of wetted cellulose powder. 

 

Band (cm-1) Assignment Band (cm-1) Assignment 

353 Cellulose220 1094 v(CC), v(CO)233 

381 Cellulose220 1122 Cellulose220 

436 Cellulose220 1337 v(CC), v(CH2)
233  

457 Cellulose220 1376 δ(HCC), δ(HCO), 
δ(HOC)233 

520 Cellulose220 1461 δ(HCC), δ(HCO)233 

901 δ(HCC), δ(HCO)233 2740 Cellulose220 

1059 v(CC), v(CO)233 2895 v(CH), v(CH2)
220 

 
Table 2-B. Peak assignment of cellulose powder from cotton linters suspended in water, where v = stretching, δ = 
bending220, 233. 



122 
 

 

Figure 2-C. Untreated Raman spectrum of wetted milled wood lignin (MWL).  

 

Band (cm-1) Assignment 

1273 Guaiacyl ring233 

1336 Syringyl ring220, 234 

1453 Guaiacyl ring233 

1598 Aryl-ring233 

1658 Coniferyl aldehyde233 

2945 Stretching of OCH3
233 

3072 Lignin220 

 

Table 2-C. Peak assignment of MWL in water220, 233-234. 
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Figure 2-D. Untreated Raman spectrum of archaeological wood (AW). The sample contained signals from lignin (blue 
arrows), cellulose (red arrows), and PEG (orange arrows).  
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Figure 2-D. Untreated Raman spectrum of archaeological wood (AW). The sample contained signals from lignin (blue 
arrows), cellulose (red arrows), and PEG (orange arrows).  
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APPENDIX 2.2 – THE MIXTURE DESIGN 
 

 
Figure 2-E. Augmented simplex lattice design with 7 levels of the calibration standards: cellulose powder, PEG, and 
MWL. Triangles and dots represent triplicates and signlicates, respectively. The percentage is presented as wt%.  
  

125 
 

Run PEG (mg) Lignin (mg) Cellulose (mg) Run PEG (mg) Lignin (mg) Cellulose (mg) 

1 33 50 17 19 17 50 33 

2 17 0 83 20 50 0 50 

3 33 33 33 21 17 33 50 

4 0 0 100 22 50 50 0 

5 100 0 0 23 17 67 17 

6 0 100 0 24 50 33 17 

7 17 17 67 25 33 33 33 

8 83 0 17 26 0 17 83 

9 33 17 50 27 17 83 0 

10 0 50 50 28 0 100 0 

11 0 83 17 29 100 0 0 

12 50 17 33 30 0 0 100 

13 0 0 100 31 10 10 80 

14 100 0 0 32 80 10 10 

15 0 100 0 33 10 80 10 

16 83 17 0 34 50 25 25 

17 33 33 33 35 25 50 25 

18 67 17 17 36 25 25 50 

 

Table 2-E. Augmented simplex lattice design of calibration standards listed according to the randomized analysis 
sequence. The SD of the measurements standards was ± 1 m



124 
 

APPENDIX 2.2 – THE MIXTURE DESIGN 
 

 
Figure 2-E. Augmented simplex lattice design with 7 levels of the calibration standards: cellulose powder, PEG, and 
MWL. Triangles and dots represent triplicates and signlicates, respectively. The percentage is presented as wt%.  
  

125 
 

Run PEG (mg) Lignin (mg) Cellulose (mg) Run PEG (mg) Lignin (mg) Cellulose (mg) 

1 33 50 17 19 17 50 33 

2 17 0 83 20 50 0 50 

3 33 33 33 21 17 33 50 

4 0 0 100 22 50 50 0 

5 100 0 0 23 17 67 17 

6 0 100 0 24 50 33 17 

7 17 17 67 25 33 33 33 

8 83 0 17 26 0 17 83 

9 33 17 50 27 17 83 0 

10 0 50 50 28 0 100 0 

11 0 83 17 29 100 0 0 

12 50 17 33 30 0 0 100 

13 0 0 100 31 10 10 80 

14 100 0 0 32 80 10 10 

15 0 100 0 33 10 80 10 

16 83 17 0 34 50 25 25 

17 33 33 33 35 25 50 25 

18 67 17 17 36 25 25 50 

 

Table 2-E. Augmented simplex lattice design of calibration standards listed according to the randomized analysis 
sequence. The SD of the measurements standards was ± 1 m



 
 

  

 
 

PART II  
APPLICATION OF MACHINE LEARNING METHODS FOR ANALYSIS OF PRODUCTION 

OF BIOGENIC VOLATILE HALOCARBONS 



 
 

  

 
 

PART II  
APPLICATION OF MACHINE LEARNING METHODS FOR ANALYSIS OF PRODUCTION 

OF BIOGENIC VOLATILE HALOCARBONS 



128 
 

INTRODUCTION 

MACHINE LEARNING IN THE ANALYSIS OF ENVIRONMENTAL PHENOMENA 
 

Machine learning, especially where it focuses on multivariate methods, is not uncommon in 
environmental sciences235-236. The intrinsic multi-variability of environmental data can stem 
from three main sources: natural sources affected by geographical and temporal influence due 
to natural phenomena, anthropogenic sources that interfere with natural variability, and 
experimental errors originating from (for example). sampling and data evaluation236. PCA and 
DA are examples of tools used extensively in environmental analysis74, 236. PLS is used as well, 
although to a lesser extent, while the application of OPLS and statistical DoE appears to be 
uncommon.  

One area of interest in the scope of this thesis was the biogenic production of volatile 
halogenated organic carbons (VHOCs) by marine algae. Halocarbons have been a subject of 
scientific scrutiny for several decades. For example, one of the unknowns of early scientific 
inquiry was the total concentrations of stratospheric bromine. Early investigations into its 
nature and behaviour revealed that the total amount of inorganic bromine radicals in the 
stratosphere exceeded the expected concentrations by 3.7 ppt. This was surprising as it had 
been assumed that the largest contributions of inorganic bromine was mainly due to 
anthropogenic sources such as biomass burning237. However, those early results indicated that 
there must be other sources of inorganic bromine than had been previously believed. Since 
then, a better understanding has been achieved with regard to the sources that contribute to 
VHOC species in the atmosphere. In addition to anthropogenic emission, there are some 
terrestrial sources such as volcanic eruptions, forest fires, and marshes. However, the 
anthropogenic contributions of brominated halocarbons to the atmosphere are not significant 
on a global scale compared to natural sources238.  Among the natural sources of VHOCs – 
especially iodinated and brominated ones – are marine algae 

Many of the machine learning challenges were highlighted here, such as the analysis of 
nonlinear236 multivariate systems and the issue of non-selectivity. However, the primary aim 
of the chapters in this part of the thesis was to fill in the existing knowledge gaps with 
regards to VHOC production by drawing on linear machine learning methods. Many 
knowledge gaps exist in this area of research, many of which were identified in a recent 
publication by Keng et al.239. The most relevant of those knowledge gaps for the scope of this 
thesis are listed below: 

• Too few studies about the diurnal and seasonal variations in environmental factors, and 
research focused on a longer exposure to environmental change. Such enquiries would 
provide an insight into biological adaptation in marine algae and how such adaptations 
influence VHOC emissions. 
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• Multifactor studies to determine the interactive effects of environmental change on 
algal VHOC emissions. 
 

• A more standardised approach to VHOC research is necessary to make studies in the 
field more comparable. 

Compared to many other environmental phenomena such as emissions of polycyclic 
hydrocarbon (PAH), the production of VHOCs using multivariate approaches has largely not 
been. This may seem odd considering that VHOC emissions, like many other natural 
phenomena, are influenced by a multitude of factors. One of the exceptions is the study done 
by Granfors et al.240, where OPLS-DA was applied to the evaluation of the differences in 
VHOC production in newly formed ice and older ice. Univariate enquiries have been made 
into the influence of factors such as exposure to light, pH, and temperature, affirming their 
impact on biogenic VHOC production. The issue that remains unaddressed, however, is 
whether environment factors interact and how such interactions influence the biogenic VHOC 
production239, 241. The need for insights into multifactor interaction is reflected in the first two 
points in the list above. To accommodate this lack of knowledge, DoE was used to create a 
design space where several factors previously proven to influence algal VHOC production are 
varied simultaneously and then qualitatively studied by means of PCA, OPLS, and OPLS-DA. 
The results of this endeavour are reported in Chapter 4. Moreover, the author believes that the 
methods used in Chapter 4 may provide a starting point towards standardized procedures in 
research regarding VHOC emissions (see the last point in the list above).  

An additional knowledge gap that has been identified in this thesis is the localisation of 
enzymes involved in VHOC production within their algal matrix – where in the algae are those 
enzymes located? The lack of information regarding the enzymes’ localisation is an issue that 
influences other, more general enquiries about VHOC production. As will be discussed later, 
the gene expression for those enzymes, and, possibly, their localisation in the algal tissue, 
changes in response to environmental stressors. This localisation challenge was considered in 
Chapter 3, where DoE and several multivariate linear algorithms were used in an attempt to 
acquire a distinct spectroscopic signal of the enzyme responsible for the biogenic VHOC 
production. Raman spectroscopy, confocal Raman spectroscopy, and SERS were used as 
analytical methods in that chapter. For theory on these methods, see the introduction of Part I. 
Chapter 3 can be seen as connecting Part I and Part II, as it focuses on a knowledge gap that 
exists in VHOC research, but which was examined using methodologies similar to those in 
Part I. 
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THE CHEMISTRY OF VHOCS 
 
VHOCs∇ are volatile and short lived species with atmospheric lifetimes varying from a couple 
of minutes to several months244. Bromocarbons and especially iodocarbons have the shortest 
lifetimes in the atmosphere. All VHOCs are characterized by having one to four carbon atoms 
and at least one halogen atom. However, the most common compounds are methane 
derivatives. In this thesis, compounds examined are listed in Table 1. 
 

VHOC Formula Atmospheric lifetime (days) 
Chloroiodomethane CH2ClI 0.1 
Dibromomethane  CH2Br2 123 
Dibromochloromethane CHBr2Cl 59 
Bromoform CHBr3 24 
Diiodomethane CH2I2 0.003 
Iodomethane CH3I 7 
Dichlorobromomethane CHCl2Br -  
Bromoiodomethane CH2BrI 0.04 

 
Table 1. List of studied VHOCs. Atmospheric lifetimes are listed as in Montzka et al.244. The atmospheric lifetime 
for CHCl2Br was not reported by Montzka et al. 
 

Global distributions of VHOCs are generally the highest at the sites of phytoplankton blooms, 
coastal zones, oxygen-minimum zones, and upwelling regions245-246. These geographical 
locations have especially high VHOC emissions during the summer months247.  

The halogen constituents influence the halocarbons’ reactivity – chlorinated species are the 
most stable and the iodinated species are the most reactive. Brominated halocarbons have been 
of particular interest since these species have sufficient stability to reach the atmosphere while 
at the same time being rather short-lived. In Table 1 the atmospheric lifetimes of some the 
investigated naturally produced VHOCs are listed. CHB3 and CH2I2 are considered the most 
interesting of naturally produced bromide VHOCs, as they contribute to the atmosphere the 
majority of halogen species. 

Through a variety of mechanisms, VHOCs degrade into inorganic halides and other reactive 
species, mostly through photochemical degradation. The majority of the reactions involving 

                                                             
∇ To avoid confusion, the reader should note that the research presented in Part II only concerns the production 
of alkane-derived VHOCs, which are just one type of volatile halocarbons. Other volatile halocarbons also exist, 
for instance, volatile aldehydes242-243, but are not covered in the scope of this work. Henceforth, unless specified 
otherwise, the author refers to ‘halocarbons’ or ‘VHOCs’ as meaning alkane-derived VHOCs. Such VHOCs are 
defined by their having atmospheric lifetimes shorter than half a year244. 
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biogenic VHOCs happen in the troposphere. The formed radicals and inorganic volatiles are 
then involved in a wide range of reactions, including oxidation of mercury, cloud formation, 
ozone destruction, methane destruction, and several climate-relevant atmospheric processes 
(e.g. NOx and oxidation of sulphur(IV))248-256.   

The contribution VHOCs have to the troposphere and stratosphere indicates that further 
studies should take place with the main aim of elucidating the mechanism behind their 
production and by which parameters this production is affected.  
 

VHOC PRODUCTION 
 
In marine environments, the emissions of VHOCs have both abiotic and biotic sources. The 
biotic emissions involve a wide range of marine taxa, including micro- and macroalgae and 
bacteria (Figure 13). 
 

 

Figure 13. A schematic illustration of some of the known biotic and abiotic processes that contribute to VHOC 
emissions. Met = methionine; SAM = S-adenosyl-methionine; DOM = dissolved organic matter; MT = 
methyltransferase; SAM-S-HG = S-adenosyl-methionine-dependent methyl-halogenase; V-HPO = vanadium 
dependent haloperoxidase; HPO = cofactor-free haloperoxidases; HI-HPO = heme iron dependent 
haloperoxidase. 
 

The involvement of biotic and abiotic sources in VHOC emissions is therefore a complex 
process which connects the production, degradation and transport of VHOCs in marine 
environments257. The reader should note that the separation between the definition of biotic 
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and abiotic production is not clear cut. Biogenic or biotic production may refer to the primary 
production of VHOCs, i.e. that enzymatic processes are necessary for their production. The 
biogenic production may also be secondary in the sense that products produced by enzymatic 
reactions react with something else to produce VHOCs. Therefore, some secondary biogenic 
production mechanisms are called abiotic in the literature. 
 
Biotic production of VHOCs occurs in a significant number of organisms and the reason 
behind this production varies between them. In macroalgae, VHOCs may functions as 
antioxidants258, while cyanobacteria259-261 and phytoplankton262-263 may use VHOC production 
as a way to excrete surplus of halide ions264-265. 

The biotic production or halogenated organic compounds is chiefly associated with six 
different enzymes families. One class of enzymes – vanadium dependent haloperoxidases (V-
HPOs) – is examined in Chapter 3. Other halogenating enzymes include cofactor-free 
haloperoxidases (HPOs), nonheme iron-dependent halogenases (NI-HG), S-adenosyl-
methionine-dependent methyl-halogenase (SAM-S-HG), heme iron dependent haloperoxidases 
(HI-HPOs), nonspecific methyltransferases, and flavin-dependent halogenases (F-HG)266. The 
difference between halogenases and haloperoxidases is that the latter oxidises halides with the 
aid of H2O2, while the former depends on other co-substrates, such as Fe(II) and flavin 
adenine dinucleotide hydroquinone (FADH2)

267. Since algae have been the subject of research 
in this part of the thesis, the relevant enzyme reactions involve V-HPOs, SAM-S-HG and 
nonspecific methyltrasferases. HPOs and HI-HPOs are considered, but only in relation to 
results in Chapter 4. These enzymes may be behind VHOC emissions from alga-associated 
bacterial communities and may have contributed to the results observed in Chapter 4. 
 

PRODUCTION BY ALGAE  
 
Algae produce both stable and volatile halogenated compounds, all of which play a role in their 
defence and function. Production of several non-VHOC halogenated volatiles by algae and 
cyanobacteria has also been connected with allelopathic effects, i.e. the release of halogenated 
species influences the populations of other organisms through the disruption of, for example, 
their growth and reproduction268. Another example is the presence of hormone-like derivatives 
which are involved in cell-to-cell signalling and which store organic iodine, monoiodotyrosine 
and diiodotyrosine. Unlike many other organohalogens, these iodinated tyrosines are formed 
spontaneously, without enzymatic catalysis269-270 and do not seem to contribute to the 
formation of VHOCs. Apart from iodinated hormone derivatives, iodine metabolism on the 
whole seems to be closely connected to V-HPO activity in both macroalgae and 
phytoplankton264, 271-273. Other halogenated non-volatile halogenated species in algae include 
phloroglucinols, phlorotannins, polysaccharides, terpenes, and fatty acids269.   
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To date, the only known enzymatic mechanisms in algae∅ specifically involved in the 
production of alkane-derived VHOCs are the production of monosubstituted halomethanes by 
SAM-S-HG, nonspecific methyltransferases generating di-and polysubstituted halomethanes, 
and formation of haloforms assisted by V-HPO-generated HOX274-276. The purpose of SAM-S-
HG and methylation mechanisms is to ensure rapid antioxidant action by detoxifying ROS’. 
This is also supposedly done to regulate apoplastic reserves of iodine and bromine277.  

The formation of monosubstituted halomethanes (also named as methyl halides and 
monohalogenated methanes) by SAM-S-HG is shown in the equations below (Equations 11 
and 12, where X is a halide):  
 

𝐶𝐶𝐶𝐶3𝑅𝑅𝐵𝐵+ +  𝐶𝐶𝐶𝐶3 → 𝐶𝐶𝐶𝐶3𝐵𝐵𝑅𝑅 + 𝐶𝐶𝐶𝐶3+  (Eq. 11) 
 

𝐶𝐶𝐶𝐶3+ + 𝑋𝑋− →  𝐶𝐶𝐶𝐶3𝑋𝑋    (Eq. 12) 
 

The formation CH3X is made possible by the donation of CH3
+ from sulfonium compounds 

(CH3RS+) such as S-adenosyl-L-methionin275 and dimethyl-b-propionthetin278.  

Di- and polysubstituted volatile halocarbons such as dibromoiodomethane (CHBr2I) are 
produced by a different mechanism that likely involves methylation by non-specific 
methyltransferases279. The mechanism of non-specific methyltransferases is hypothesised to 
involve a successive halogenation of enols at C=O groups, followed by the loss of C1. This 
produces secondary products, such as CH2X2 and CHX3

280. Manley275 has called this 
mechanism a “biochemical accident” as methyltransferases lack substrate specificity. Because 
of this non-specificity, a plausible hypothesis has been suggested. This is that if methyl halides 
are indeed synthesised by nonspecific methyltransferases, their production should be 
widespread among different types of organisms and may be related to the availability of 
necessary methyl donors. This has been confirmed by finds of methyltransferases not only in 
algal taxa, but also in marine bacteria281 (see the section Production by bacteria for more). An 
alternative proposition is that the enzymatic catalysis involved in di- and polyhalogenation 
should be attributed to V-HPOs282, but it is not clear whether V-HPOs are involved as primary 
or secondary biogenic producers of these VHOCs.  

Another halogenating mechanism in algae involves the oxidation of halides by H2O2 catalysed 
by V-HPOs. In plant cells, H2O2 originates from two main sources. Intracellular H2O2 
originates predominantly as a by-product of photosynthesis, i.e. photorespiration and thylakoid 
electron transport chain. The other sources are extracellular and stem from the apoplasts, 
where the H2O2 pool is generated by the cell wall, by oxidases located in the plasma 
membrane, and by secretory peroxidases283. In seaweeds, nicotinamide adenine dinucleotide 
                                                             
∅ It should be stressed that the consensus surrounding these formation mechanisms has been established only for 
brown macroalgae, but the assumption is that this is true for other phyla. 
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and abiotic production is not clear cut. Biogenic or biotic production may refer to the primary 
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phosphate (NADPH) oxidase is understood to be a contributory factor unlike secretory 
peroxidases, which are not present in seaweeds284-285.   

Haloforms (CHX3) seem to be a result of secondary biogenic production by V-HPO, as they 
form as a result of reactions of HOX with organic compounds in seawater. In addition, 
haloforms form as an abiotic decay product from other VHOCs. Nevertheless, algae from 
temperate, polar, and tropical regions have been identified as greater contributors of CHBr3 to 
the atmosphere compared to other sources of the haloform286-287.  

The production of VHOCs is strongly species and phyla dependent. Brown, green, and red 
algae have all been seen to contribute to VHOC emissions. Of those, brown algae are 
considered to be the most active producers, although this stipulation probably results from the 
fact that more studies have been performed on brown algal species239. Production within a 
phylum varies between species. For example, an order of the brown algae, Fucales (e.g. Fucus 
and Ascophyllum genera) has much higher bromination activity compared to their iodination 
activity. For Laminariales, which are also brown algae (e.g. Laminaria and Saccharina genera) the 
situation is reversed288-290. The variation also depends on the geographical location. VHOC 
emissions are generally lower in polar species of algae than in temperate and subtropical 
species291-295.  
 

Vanadium Dependent Haloperoxidases (V-HPOs) 
 
V-HPOs have been found in terrestrial organisms, such as the fungus Curvalaria inaequalis and 
the lichen Xanthoria parietina, but they have proved to be most abundant in a number of marine 
species, such as the flavobacterium Zoebellia galactanivorans, and, most notably in the vast 
majority of marine algae. V-HOPs have been isolated from red (Rhodophyta), brown 
(Phaeophyta), and green (Chlorophyta) macroalgae and from several species of microalgae 
living both in open oceans and in the sea ice. Despite not being associated with extremophile 
organisms, V-HPOs are remarkably stable both in vivo and in vitro. Their resistance to high 
temperatures, to the presence of detergents, organic solvents, and high levels of reactive 
oxygen species (ROS) such as H2O2

286, 296-297, makes V-HPO attractive for potential applications 
in industry288.  

The exact function of V-HPOs is a matter of speculation.  Some have suggested that V-HPOs 
assist in the management of a surplus of halides298, while others have attributed their VHOC 
production to antibacterial and antifouling activity265, 268, 275, 286, 299-300. In macroalgae, the reactive 
intermediates produced by V-HPOs seem to facilitate the cross-linking of phlorotannins and 
alginates both of which are necessary for the attachment of macroalgal zygotes to the sites of 
growth301. Another hypothesis, which at the time of writing is the most prevalent one, is that 
V-HPOs function as protectors against oxidative stress by acting as reactive oxygen species 
(ROS) scavengers275, 302-303. The truth may lie somewhere in between the two and is depend on 
the organisms in which V-HPOs are present. 
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All V-HPOs are distinguished by the presence of the vanadium (V) cofactor at their active site 
and catalyse the oxidation of halides by hydrogen peroxide, H2O2. At the time of writing, three 
algal V-HPO structures have been fully characterised. The first structure was determined for 
Acsophyllym nodosum304, and it was later followed by structures for V-HPO from two red marine 
macroalgae, Corallina officinalis305 and Corallina pilulifera306.  

The V-HPO-catalysed oxidation of halides by H2O2 produces reactive intermediates, such as 
hypohalous acids (HOX, where X is a halogen) (Equation 13). 
 

𝑋𝑋− +  𝐶𝐶2𝑂𝑂2 + 𝐶𝐶+ → 𝐶𝐶𝑂𝑂𝑋𝑋 +  𝐶𝐶2𝑂𝑂  (Eq. 13) 
 

Due to their reactive nature, these intermediates react with nucleophilic acceptors, a reaction 
which in turn generates a wide variety of halogenated organic species, including alkane- and 
alkene-derived VHOCs307. In spite of V-HPOs having been known to science for several 
decades, there is currently no thorough understanding as to how the reactions occur at their 
active sites288. The initial step of the catalytic cycle involves the coordination of H2O2 to the 
vanadate, which forms a stable peroxo-vanadate intermediate308-310. As the redox state of the 
vanadium does not change during the turnover, it has been proposed that the vanadium 
cofactor activates H2O2 by acting as a Lewis acid311. The following step, the oxidation of the 
halide, remains unclear. Possibly, one of the oxygens in H2O2 is protonated which allows the 
initial halide oxidation. Then, this is followed by a nucleophilic attack of the halide, which 
breaks the peroxide bond and forms HOX and XO-. There are no indications to suggest that 
the organic substrates that react with HOX are bound to V-HPOs active site.  A kinetic study 
indicated that this catalytic cycle of V-HPOs follows a bi-bi ping-pong mechanism312; however, 
this was reported only for one of the three possible V-HPO subclasses.  

V-HPOs are divided into subclasses based on the most electronegative halide they can oxidise. 
However, the origin for this halide selectivity in the V-HPO family is uncertain312-313. 
Chloroperoxidases (V-ClPOs) have so far been found in a variety of terrestrial organisms, 
while V-BrPOs and V-IPO are prevalent in marine species. V-ClPO can oxidase all three 
halides (Cl-, Br- and I-). V-ClPOs are inhibited by chloride at lower pH, suggesting a 
competitive mechanism, while at high pH the enzyme follows Michaelis-Menten kinetics314. In 
a difference between the two other V-HPO variants, V-ClPOs’ active site seems to contain 
phenylalanine instead of a second histidine residue. Bromoperoxidases (V-BrPOs), which 
oxidize Br- and I- have been attributed the above mentioned bi-bi ping-pong mechanism. 
Iodoperoxidases (V-IPOs) can only oxidise I-, and have lower affinity for the halide substrate 
but a higher rate of oxidation rate than V-BrPO289.  

The decades of studies dedicated to V-HPOs have amassed a large quantity of data. The data 
from any one source cannot for the most part be compared with the data from any other 
source. As Tarakhovskaya et al.290 point out, detailed studies of the enzyme have been 
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predominantly focused on those that were isolated from a few brown macroalgae species, and 
the protocols used vary greatly between different studies. From the analytical point of view, 
these protocols are also poorly validated. Thus, there remains a considerable knowledge gap 
regarding V-HPOs, their interspecies variation, and their contribution to the global production 
of VHOCs both from natural habitats and from the expanding seaweed cultivation industry.  
 

The Influence of Biotic and Abiotic Stressors on VHOC Production in Algae 
 
Adaptation to environmental stressors has an impact of generation of H2O2 and other ROS284, 

315-316, thus affection the secondary biogenic production of VHOCs by V-HPOs. Iodine and 
bromide anions functions as antioxidants in response hydroxyl radicals generated from H2O2 

during oxidative stress. Küpper et al.317 suggest that the algae bind halides to store them as 
organohalides in order to be accessible in case of a stress scenario. It has also been reported 
that in response to stressors, the production of VHOCs by V-HPOs is upregulated, as well as 
the expression of V-HPOs in different tissues. For instance, the increase in gene expression of 
a V-IPO has been observed in Laminaria digitata subjected to predation318. A connection 
between breakdown products of algal cell walls following a bacterial attack also have been 
observed to oxidative stress and, in extension, increased VHOC production319-320. Some other 
stressors include changes in light condition, temperature variation, and CO2 and nutrient 
limitation321.  

The fact that irradiance levels trigger increased VHOC emissions suggests that it is connected 
to photosynthesis, due to higher release of H2O2

239. The connection to photosynthesis was 
shown by Manley and Barbero322and Goodwin et al.323, where the addition of a photosynthetic 
inhibitor decreased the production of VHOCs. Photosynthesis is also impacted by changes in 
temperature324-325. Increasing temperatures of seawater has been connected to increased 
photosynthetic activity in some of the seaweeds243, 326, and associated therefore with increased 
H2O2. However, the influence of temperature seems to be strongly species-dependent239, and 
be a function of short-term induced stress by changed temperature327-328. Too little studies are 
published where the effect of long-term seasonal variations on algae was examined. This in 
turn makes it difficult to assess the impact of increasing ocean temperatures associated with 
climate change on biogenic VHOC production. 

Changes in pH of the surrounding seawater have also been quoted to influence the 
performance of the V-HPOs. Within an optimum range between pH 4 to 8.3, the enzyme 
remains functional279. Upon acidification, VHOC production has been reported to increase 
under laboratory condition329-330 due to induced oxidative stress, while mesocosm studies did 
not report any noticeable effects of ocean acidification on VHOC production331-333. However, 
at the time of writing of this thesis, the studies concerning the influence of pH on VHOC 
production are limited to the ones quoted here. Yet another parameter that affects 
photosynthesis and photorespiration in algae is the changes in salinity334-335 – hypersaline336 and 
hyposaline conditions have both been attributed to increased VHOC production. For instance, 
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hyposaline conditions have been observed to increase the production of several iodinated 
VHOCs327. Some of the known stressors have been multivariatly explored in Chapter 4. 

An increase in H2O2 in the surrounding seawater has been cited as a cause of increased V-
HPO activity. The stage of an alga’s development also influences production. A recent study 
by Lemensheva et al.316 found dramatic increase of V-HPO activity during zygote development 
in Fucus vesiculosus, where the activity of brominating V-HPOs was of particular note as it was 
close to the activity observed in adult individuals. This was attributed to the increase of H2O2 
during the fertilisation stage, likely due to extracellular sources. 

The reader should have noticed by now that all studies dedicated to the impact of 
environmental parameters on algal VHOC production, are single-factor studies. In a recent 
review, Keng et al.239 have pointed out the lack of studies where the influence of multifactor 
interactions on VHOC emissions is investigated. This knowledge gap is addressed by a study 
in Chapter 4, which describes a first-of-a-kind study about the simultaneous impact of several 
environmental factors on biogenic VHOC emissions. 
 

The Localisation of the V-HPOs in Algae 
 
V-HPOs can be found in the cytosol and the apoplast, where the latter is located outside the 
plasma membrane and is used by chloroplasts during photosynthesis. Their location coincides 
in part with the sites of H2O2 production in algal cells, which may explain their inherent 
resistance to high H2O2 levels337-338. V-HPOs contribute to the intracellular regulation of H2O2 
in algae, and are, in fact, more effective H2O2 scavengers when compared to intracellular 
ascorbate peroxidase  and catalase enzymes290. In some algal species, it has been shown that 
iodine has a decreasing gradient from the meristoderm to the apoplasm, reaching highest levels 
in the external cell layers (ca 80 % of the total iodine content). This iodine distribution makes it 
easily accessible for mobilisation against induced oxidative stress288, 339. A similar extracellular 
speciation of bromine has been observed in other brown algae, while in red algae bromine was 
found to be stored intracellularly340. As these halide storages are species dependent, the author 
of this thesis hypothesises that they might coincide with the location of V-HPOs, as no explicit 
explanation for this have been made to date. 

Although the location of the V-HPOs is established on cellular level, it is still not known 
exactly where in the algae’s thallus they can be found. Wever and van der Horst286 have located 
V-BrPOs near the surface of a green macroalga. Other sources also suggest that some V-BrPO 
and V-IPO are present in extracellular compartments288. However, seaweeds are very different 
in their physiology making interspecies comparisons unreliable. The extent of the variation of 
V-HPO presence in the different thalli of algae has been elegantly demonstrated by 
Tarakhovskaya et al290. For instance, in Fucus serratus, the algae used in the research reported in 
Chapter 4, the majority of V-HPO activity was found in the middle thallus. In addition, as has 
been speculated by some sources cited in the above section, it is possible that stressors may 
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predominantly focused on those that were isolated from a few brown macroalgae species, and 
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induce varying expression of V-HPOs in different tissues: this makes the questions regarding 
the localisation of these enzymes of further interest. 

To address this knowledge gap, enquiry discussed in Chapter 3 was dedicated to establishing 
a spectroscopic and chemometric method for the qualitative detection of a V-HPO. As will be 
shown, the Raman spectroscopic signal of the vanadium bromoperoxidase from Corallina 
officinalis (C-VBPO) was not sufficiently specific. This in turn meant that it would not be 
possible to spectroscopically localise the enzyme inside its algal matrix, as was the aim of 
research presented in Chapter 3. To circumvent this issue, the author focused instead on the 
products of the enzymatic reaction, i.e. on the halogenated organic compounds. The premise 
was that if the conversion could be detected with Raman spectroscopy, it would then be 
possible to track the placement of vanadium bromoperoxidases in living algae specimens. As 
the compounds of interest, VHOCs, are volatile, it was deemed unfeasible to develop method 
for tracking their production spectroscopically. Instead, the starting point for the enquiry was 
to use methods that would allow spectrocolourimetric detection; when the enzyme catalysed 
the halogenation of a dye, the dye would change colour, thus enabling the tracking of this 
change inside algae with normal Raman. This was indeed shown with o-dianisidine, where 
haloperoxidase activity was detected as a development of a dark reddish brown colour where o-
dianisidine was iodinated by the haloperoxidases274, 341. This process could be developed further 
by studying the resulting staining with Raman spectroscopy by establishing a quantification 
method for the detection of the conversion of o-dianisidine to halogenated o-dianisidine. 
However, o-dianisidine is highly toxic and its use is regulated by the Swedish Work 
Environment Authority (AFS 2014:43; 47-49 § )342.  

As the University of Gothenburg actively works for the phasing-out of dangerous chemicals, 
other alternatives for staining were sought. An alternative colorimetric assay has been reported 
where a solution of isolate vanadium peroxidase enzyme from macroalgae was able to 
brominate thymol blue (ThB) thus converting it into bromothymol blue (BThB)343. The 
conversion was detected with UV-Vis. As it is plausible that the behaviour of an isolated 
enzyme is not representative of its behaviour in its natural matrix, it would be of interest to 
study the halogenation by vanadium dependent haloperoxidases with their matrix (the algae) 
intact.  

Since both ThB and BThB have distinct Raman spectra344, it was expected that a data set with 
good SNR would be acquired to be used in multivariate modelling .The primary aim was 
therefore to observe the conversion of ThB to BThB, visually and spectroscopically, and then 
attempt to quantify the conversion with Raman spectroscopy. In order to account for variation 
that may stem from several factors, the experiments were designed using an FF design where 
the concentrations of reactants needed for ThB-to-BThB conversion (H2O2, Br-, and ThB) 
were varied simultaneously. The results of these experiments were inconclusive and are 
therefore not reported in this thesis. The issue of enzyme localisation thus remains an 
interesting analytical challenge.   
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PRODUCTION BY BACTERIA 
 
As can be seen from the literature overview in the sections above, much of the research 
regarding biogenic VHOC production has been focused on macroalgae, cyanobacteria and 
some microalgal species. Several studies have been made of the halogenation reactions of 
ethers, aldehydes, esters, aromatics etc. by marine bacteria345-346, but less research has been 
focused specifically on the possible contribution of marine bacteria to VHOC emissions. 
Halogenation processes in bacteria are attributed to HPO and HI-HPO enzymes347. In marine 
strains, however, the production of VHOC stems from different sources. 

Bacteria have been reported to degrade methyl halides and also to use them for growth348-350. 
However, studies by Fujumori et al.351 and Klein281 indicate that bacteria are capable of 
producing methyl halides. Both these sources have shown that different strains of marine α-
proteobacteria produced CH3I, CH3Cl, and CH3Br. Additional studies have shown the 
production of CH3I by marine strains352-353. Monohalogenated methanes were also observed to 
be produced in three flavobacteria, one γ-proteobacteria281. CH3I was the most common 
among the produced monohalogenated methanes. The laboratory studies performed by Klein 
were also supported by long-term field observations, where it was noted that CH3I was the 
most common VHOC in surface seawater during winter and spring upwelling. This production 
was attributed both to bacteria and photosynthesis-dependent organisms present in the near-
surface layer. However, the contribution of bacteria was deemed higher.   

Flavobacteria Vibrio campbelli was the only bacterial strain that showed a production of CHBr3, 
albeit a low one. Similarly, a low CHBr3 contribution to total emissions was observed in the 
field. The biochemical process behind CHBr3 in bacterial synthesis is unknown, but appears to 
be associated with growth rate281. This suggests that although bacteria may contribute to 
CHBr3 production, algae remain the chief contributors of CHBr3 to the atmosphere. On the 
other hand, depending on the season, the bacterial contribution to CH3I seems to be of greater 
importance than the algal contribution.  

Apart from the contributions of algae, emissions of CH2Br2 have been connected to the 
bacterial decomposition of CHBr3 through hydrolysis354 (see the section Bacterial 
degradation below). The concentrations of CH2Br2 in Klein’s281 study however did not show a 
proportionate production of CHBr3, which suggest that CH2Br2 from photoplankton and algae 
was not its only source.  It has been stipulated that this could be due to presence of V-HPOs 
in bacteria or to the nonspecific phosphatase enzymes281, which have a high resemblance to the 
active site of V-HPOs and have been shown to have a limited haloperoxidase activity266, 355. 
Although the presence of V-HPOs was not indicated in genomes of the bacterial strains 
studied by Klein, V-IPO from marine flavobacteria Zobellia galactanivorans has been successfully 
isolated and structurally solved356, indicating that some species of flavobacteria may possess V-
HPO activity. The writer of this thesis also speculates that the contribution may have stemmed 
from bacterial HPOs and HI-HPOs. 
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In summary, the role of bacteria in VHOC emissions is still unclear, although there are 
indications that they contribute to the production of iodinated VHOC. This contribution has 
seasonal variations and is related to the rate of bacterial growth. 
 

OTHER FORMATION MECHANISMS 
 
As mentioned earlier, haloforms, i.e. bromoform (CHBr3) and iodoform (CHI3), are postulated 
to be the result of the reaction between V-HPO-formed HOX and organic substrates. The 
organic substrates that are suspected to be involved in a reaction with HOX are ketones 
present in seaweed or dissolved organic matter (DOM)286, 357. The hypothesis, based on ketone 
involvement, comes from observations of Bonnemaisonia hamifera, which produced CHBr3 and 
CH2Br2. Ketones supposedly decay via haloform reaction to form halogenated VHOCs 
(Equation 14) and this reaction is similar to the enol halogenations described in the sections 
above 278, 358-359. 
 

𝐾𝐾𝐾𝐾𝑡𝑡𝐾𝐾𝐾𝐾𝐾𝐾 +  3𝑋𝑋2 +  𝑂𝑂𝐶𝐶− →  𝐶𝐶𝐶𝐶𝑋𝑋3 + 𝐶𝐶𝐶𝐶𝐶𝐶𝑏𝑏𝐾𝐾𝑏𝑏𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎 + 3𝑋𝑋− + 2𝐶𝐶+ (Eq. 14) 
 

If ketones are involved in the VHOC formation, such mechanism would require V-HPOs to 
be located at or close to the surface of the thalli. The presence of these enzymes on the surface 
of the thalli has indeed been shown for some macroalgae286. It is however possible that there 
are other isoenzymes present throughout the algae which contribute to VHOC production 
through different mechanisms.  

Another possibility is that HOX is released into surrounding seawater, as it is lipophilic and 
easily diffuses through cell membranes302. Once in seawater, HOX reacts with DOM to form 
unstable halogenated compounds, which then decay into haloforms286 and other brominated 
compounds. The reaction of HOX with DOM is shown in Equations 15 and 16. 
 

𝐶𝐶𝑂𝑂𝑋𝑋 + 𝐷𝐷𝑂𝑂𝐷𝐷 → 𝐷𝐷𝑂𝑂𝐷𝐷(𝑋𝑋)   (Eq. 15) 
 

𝐷𝐷𝑂𝑂𝐷𝐷(𝑋𝑋)𝑛𝑛 → 𝐶𝐶𝐶𝐶𝑋𝑋3 + 𝐷𝐷𝑂𝑂𝐷𝐷(𝑋𝑋)𝑛𝑛−3  (Eq. 16) 
 

Other organic substrates have been suggested as sources of polyhalogenated methanes, such as 
methyl compounds present in seawater (e.g. methionine and dimethylsulfoniopropionate 
(DMSP))360.   

Apart from HOX, other halogen radicals are produced via photochemical degradation. This 
degradation occurs near the surface of the seawater, and the resulting halogen radicals then 
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react with DOM to produce monohalomethanes361-362. This mechanism is applicable to CHBr3 
and CH3I emissions362-363. There is more on degradation mechanisms in the next section. 

 

VHOC DEGRADATION 

HALIDE SUBSTITUTION 
 
In seawater, VHOCs can undergo a number of degradation reactions, which decompose them 
completely, or which lead to the formation of other VHOCs. The high abundance of chloride 
in seawater causes the nucleophilic substitution of brominated and iodinated halomethanes 
(Equation 17) and haloforms (Equation 18 and 19). 
 

𝐶𝐶𝐶𝐶3𝑋𝑋 +  𝐶𝐶𝐶𝐶− → 𝐶𝐶𝐶𝐶2𝐶𝐶𝐶𝐶   (Eq. 17) 

𝐶𝐶𝐶𝐶𝑋𝑋3 +  𝐶𝐶𝐶𝐶− → 𝐶𝐶𝐶𝐶𝑋𝑋2𝐶𝐶𝐶𝐶   (Eq. 18) 

𝐶𝐶𝐶𝐶𝑋𝑋2𝐶𝐶𝐶𝐶 +  𝐶𝐶𝐶𝐶− →  𝐶𝐶𝐶𝐶𝑋𝑋𝐶𝐶𝐶𝐶2   (Eq. 19) 
 

The rate of the reaction varies depends on temperature and which VHOCs are involved. For 
iodine substitution, the reaction is faster than for bromine364. This type of degradation lasts 
from a few years to several decades, and is slower at lower temperatures365-366. 
 

HYDROLYSIS  
 
As was shown in Equation 14, ketones, enols, and other smaller organic molecules367 can 
contribute to the formation of halomethanes and haloforms. However, the formation of such 
compounds can be due to the hydrolysis of halogenated ketones etc.358, 368, rather than to them 
being by-products of the halogenation in Equation 14. Monohalogenated methanes and 
haloforms themselves also undergo degradation via hydrolysis. 

In the case of CH3X, the H2O or OH- act as nucleophiles and the reaction is similar to the 
halide substitution (Equation 20). 
 

𝐶𝐶𝐶𝐶3𝑋𝑋 +  𝐶𝐶2𝑂𝑂 →  𝐶𝐶𝐶𝐶3𝑂𝑂𝐶𝐶 +  𝐶𝐶+ +  𝑋𝑋− (Eq. 20) 
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Haloforms on the other hand follow a different hydrolysis mechanism, suggested by Hine369 
and later refined by Robinson370 (Equations 21-24). 
 

𝐶𝐶𝐶𝐶𝑋𝑋3 +  𝑂𝑂𝐶𝐶− →  𝐶𝐶𝑋𝑋3− +  𝐶𝐶2𝑂𝑂  (Eq. 21) 

𝐶𝐶𝑋𝑋3− →∶ 𝐶𝐶𝐶𝐶𝐶𝐶2 +  𝐶𝐶𝐶𝐶−    (Eq. 22) 

:𝐶𝐶𝐶𝐶𝐶𝐶2 +  𝐶𝐶2𝑂𝑂 → 𝐶𝐶𝑂𝑂 + 2𝐶𝐶𝐶𝐶𝐶𝐶   (Eq. 23) 

𝐶𝐶𝑂𝑂 +  𝐶𝐶2𝑂𝑂 →  𝐶𝐶𝑂𝑂2−    (Eq. 24) 
 

Compared to halide substitution, hydrolysis seems to occur at lower temperatures371. This may 
suggest that when the temperature of the oceans increases because of climate change the halide 
substitution mechanism may become more frequent. 
 

PHOTOLYSIS 
 
Photolysis of VHOC occurs both in the oceans and in the atmosphere. In the case of the 
latter, degradation is faster in the atmosphere than degradation in the oceans371. In both cases, 
the reaction starts with the cleavage of the C-X bond.  The halide radical then formed goes on 
to react with oxygen in the atmosphere, which leads to the formation of inorganic halide 
species (X, HOX, HX, XO, etc.). In the oceans, photolysis occurs mainly in the first few 
meters below the sea’s surface372 and plays a role in the degradation of brominated and 
iodinated compounds (Equations 25-28).  

 

𝐶𝐶𝐶𝐶2𝑋𝑋2 + ℎ𝜈𝜈 →  𝐶𝐶𝐶𝐶2𝑋𝑋 ∙ + ∙ 𝑋𝑋  (Eq. 25) 

𝐶𝐶𝐶𝐶2𝑋𝑋 ∙ +  ∙ 𝑋𝑋 → 𝐶𝐶𝐶𝐶2𝑋𝑋 − 𝑋𝑋   (Eq. 26) 

𝐶𝐶𝐶𝐶2𝑋𝑋 − 𝑋𝑋 +  𝐶𝐶2𝑂𝑂 →  𝐶𝐶𝐶𝐶2𝑋𝑋𝑂𝑂𝐶𝐶 + 𝐶𝐶𝑋𝑋 (Eq. 27) 

𝐶𝐶𝐶𝐶2𝑋𝑋𝑂𝑂𝐶𝐶 +  𝐶𝐶2𝑂𝑂 →  𝐶𝐶𝐶𝐶2𝑂𝑂 + 𝐶𝐶𝑋𝑋 +  𝐶𝐶2𝑂𝑂  (Eq. 28) 
 

The rate of this reaction is unknown, but has been estimated to be ca 30 days in seawater372. 
Unlike the atmospheric reactions, the cleavage of C-X bond is followed by a recombination of 
the CH2X∙ and ∙X radicals, which produces an unstable intermediate, CH2X-X. This 
intermediate then reacts with the hydroxyl ions in water to produce halomethanol, which, 
finally, degrades because of the reaction with water373-374.  
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BACTERIAL DEGRADATION 
 
The bacterial degradation of VHOCs in the oceans is a process that is even less understood 
than the bacterial VHOC production375. An example of a marine bacterium Methylobacter 
marinus was shown to degrade CHBr3, but not CH2Br2

376. A similar conclusion was made for 
three other strains of marine proteobacteria, which produced both CH2Br2 and CHBr2Cl as 
products of CHBr3 degradation377. CH2Br2 , in turn, was degraded by other strains through 
bacterial oxidation348. The degradation rates of VHOCs observed in the Arctic Ocean suggest 
that the degradation mechanism must be bacterial378. Few studies have specifically been made 
on marine bacteria. The majority of studies about dehalogenation by bacteria focus on the 
degradation of anthropogenic halogenated organics in terrestrial environemnets375.  However, 
the dehalogenation displayed by strains from other environments may give an indication of 
possible degradation mechanisms in natural environments.  

Allard and Nielson379 mention in their overview several strains of methylotrophs380, nitrotrophs 
and other bacteria that are capable of VHOC degradation. Further examples show the 
degradation of CHBr3 to other polyhalogenated VHOCs by non-marine bacteria381. 
Monohalogenated methanes, for instance, may be subjected to degradation by bacterial 
methyltransferases by substituting the halogen with another functional group or with another 
halogen382.  A strain isolated from agricultural soil has shown the reduction of CH3Br to 
CO2

383, suggesting hydrolysis, possibly by hydrolytic dehalogenases375. Degradation of CH3Br 
was also observed in mixed soil bacterial flora384. The degradation mechanisms of 
halomethanes by bacteria has been attributed to enzymatic reactions of methane 
monooxygenases and corrin-dependent enzymes379. 

To the author’s knowledge, there are currently no publications that consider the bacterial 
degradation of polyhalogenated VHOCs in the marine environment. Similarly, there are no 
studies to date that focus on the degradation of iodinated VHOCs. 
 

RAMAN SPECTROSCOPY 
 
In Chapter 3, similarly to Chapters 1 and 2, Raman spectroscopy and its variations were used 
alongside machine learning methods. The theory for these methods can be found in the 
introductory part to Part I of this thesis. 
 

GAS CHROMATOGRAPHY 
 
Gas chromatography (GC) is the separation technique in which the separation of compounds 
is based upon the partition of the analytes between a gaseous mobile phase and a liquid or 
solid stationary phase through a separation column. It was developed in the late 1950s and 
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early 1960s, with the biggest breakthrough for environmental analysis being the development 
of bonded fused silica capillary columns in the 1980s. Another considerable contribution to 
the established of GC as an technique in the environmental analysis was the development of 
electron capture detector (ECD)31. The development of the ECD detector and fused silica 
capillary columns allowed for analysis of halogenated compounds in ppb and ppt 
concentration. 
 
For easy transport of the compounds through the column, they must be sufficiently 
volatile31,32. Separation of compounds takes place in the column and the compounds elute from 
the column depending upon their retention by the stationary phase. Compounds which are 
greatly attracted to the stationary phase will tend to elute later on the column than those less 
attracted. The gases used should be inert, dry and free of oxygen to prevent damage to the 
column. Typically nitrogen, helium, or hydrogen gases are used as carrier gases.  
 

PURGE AND TRAP (PT) 
 
In Chapters 4 and 5, VHOCs produced by marine algae were quantified with a GC-based 
method. In seawater, the concentrations of these compound is low, ranging from amolL-1 to 
pmolL-1 27,28. Since VHOC concentrations are low, it was necessary to pre-concentrate the 
volatiles from the artificial seawater (ASW) into the gaseous phase. Different methods for the 
determination of volatile organic compounds in water have been compared previously, such as 
membrane inlet mass spectrometry (MIMS), purge and trap (PT) gas chromatography-mass 
spectrometry (GC-MS), and static headspace gas chromatography. Of the three, MIMS and PT 
showed the lowest detection limits29. PT is a dynamic headspace technique in which VHOCs 
are purged out of the sample matrix by a stream of inert gas and carried into a sorbent trap 
where they are concentrated and thereafter introduced into a GC for analysis30.  
 
The PT technique is suited for low molecular weight and slightly water soluble volatile organic 
compounds30. PT has three main processes. It starts with extraction of volatile compounds 
from the sample matrix by purging it with an inert gas with simultaneous adsorption of the 
volatiles. These would be followed by desorption, either by use of an elution solvent or 
heating. In this thesis, heating was used for desorption step. Certain variables such as 
properties of the analytes, sample temperature, flow rate, duration of purging, sample matrix, 
etc. determine the purge efficiency. The last process is the trapping of the compounds, the 
efficiency of which is dependent on the properties of the target compounds and the sorbent 
materials used in the trap. The efficiency is further increased by cooling the trap.  
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ELECTRON CAPTURE DETECTOR (ECD) 
 
The detector used in GC setup in this thesis was an electron capture detector (ECD), which is 
one of the detectors commonly used for environmental analysis. The internal chamber of the 
ECD is lined with a radioactive β-emitter, normally 63Ni or 3H. The carrier gas is ionised by the 
β-radiation as it passes through the detector to generate free electrons33, which would move to 
the anode side of the detector due to potential gradient. This will generate an ionisation 
current. This makes it highly sensitive for compounds containing electronegative elements like 
halogens, and hence ECD is particularly suited for VHOC analysis31,33. 
 
Ekdahl and Abrahamsson27 showed a simple and sensitive method for determination of 
VHOCs in seawater with an automated PT pre-concentration and subsequent separation and 
detection with GC-ECD and GC-MS. The detection limits of amolL-1 to fmolL-1 and fmolL-1 
to pmolL-1 for GC-ECD and GC-MS were obtained, respectively. GC-ECD combined with 
PT as proposed by Ekdahl and Abrahamsson was the method applied in Chapters 6 and 7. 
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CHAPTER 3 
CONCEPTUAL APPLICATION OF DESIGN OF EXPERIMENTS, 
PCA, OPLS, AND T-OPLS FOR DISCRIMINATING PROTEIN 

SIGNAL FROM BUFFER MATRIX  
 
INTRODUCTION  
 

Marine environments are dynamic biotopes, subject to complex biogeochemical processes. To 
further understand these, there is interest in developing methodologies that would allow the 
study of biogeochemistry in situ in e.g. living organisms. Marine algae are one of the largest 
groups of organisms that contribute to the complexity of the seas; for instance, they correlate 
with a number of climate-relevant gases, such as dimethyl sulphide (DMS)385, CO2

386, and 
halocarbons387-388.  

In the case of halogenated compounds, marine phytoplankton and macro-algae have been 
recognised as the primary biogenic source of  volatile halogenated compounds (VHOC) into 
the atmosphere288. Due to the number of implications which VHOCs have for atmospheric 
chemistry and global biogeochemical processes302, 322, 389, such as the destruction of 
tropospheric and stratospheric ozone, they have drawn wide scientific interest390. These 
compounds are formed in part through the activity of vanadium-dependent haloperoxidases 
which were first discovered in the brown alga Ascophyllum nodosum over three decades ago391. 
Since then, they have been isolated from and studied in several algal species282, 305, 392-396.  
However, there is still no information regarding the tissue location of these enzymes, and, 
currently, there are no established methods for tracking the enzymes responsible for VHOC 
production in situ. Additionally, the influence of climate change on the formation of VHOC, 
and the associated enzyme activity, is yet to be fully understood397 (see Chapter 4 for further 
investigation of this issue). In order to further our understanding of underlying mechanisms 
behind the biogenic VHOC production, there is a need to develop new methods for studying 
the behaviour of vanadium-dependent haloperoxidases.  

A well-studied representative of these enzymes is the vanadium bromoperoxidase from the red 
alga Corallina officinalis (C-VBPO). The structure and activity of the isolated C-VBPO have been 
studied with multiple techniques over the years305, 398-400, but no attempts have so far been made 
to develop methodologies for in situ study of this enzyme. Raman-based methods present an 
attractive alternative for studies of protein structure and behaviour186, 401-403, as well as for in vivo 
studies85. However, since biological matrices often produce weak Raman signals404, signal 
enhancement methods can be applied to address this issue. Among the frequently utilised 
Raman spectroscopic methods used for this purpose is surface-enhanced Raman spectroscopy 
(SERS), which relies on surface plasmon resonance on metal surfaces for the signal 
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enhancement405. SERS has been successfully applied several times in the investigation of 
protein structure and catalytic activity401, 403, 406-408, thus demonstrating the potential of the 
technique in studying C-VBPO.  

To establish a viable in situ methodology, we sought to establish a protocol that would allow 
separating the C-VBPO signal from its algal matrix. For this purpose we selected Raman 
spectroscopy as we, in the long term, aimed to establish a method that would be non-
destructive and which would impose minimum damage upon living organisms. To achieve this, 
we wished to establish the spectral fingerprint of C-VBPO as well as to evaluate what factors 
may have affected its response if surface-enhanced Raman spectroscopy (SERS) was involved. 
Enhancement surfaces commonly used in SERS include e.g. metal films, metal-coated 
electrodes, colloidal suspensions, surfaces prepared with nanolithography, etc409. As the aim of 
our enquiryinvestigation was to offer a methodology that would contribute to the further 
development of in situ study of VBPOs, colloidal nanoparticle suspensions were used. These 
are often applied in studies of living cells as they can disperse evenly through the sample and 
can also be internalized by cells through passive uptake mechanisms116, 410-412. However, as algae 
do not have the same passive uptake mechanisms as mammalian cells, one of the few ways of 
ensuring SERS within living algal cells is through the intercellular biosynthesis of colloidal gold 
nanoparticles (AuNPs) 413-414. Since such nanoparticles are unmodified per default, we wanted 
to study how C-VBPO responses would behave when interacting with unmodified AuNPs.  

Acquired SERS responses were evaluated using chemometric methods. As a first step, we 
applied statistical design of experiments in a simpler system investigating fundamental factors 
during SERS measurements of C-VBPO. For this purpose, a composite face-centred design 
(CCF) was used to investigate the influence of enzyme concentration, time and number of 
AuNPs. The experiments were evaluated by intensities of discrete Raman peaks as responses. 
We also expanded the evaluation to involve spectral profiles. In the latter case, spectral 
interpretation was made by principal component analysis (PCA)16, and orthogonal projections 
to latent structures (OPLS)45. In addition to standard OPLS, we also calculated transposed 
OPLS (T-OPLS) models52, 54.  

METHODS 

CONSUMABLES 
 
Vanadium bromoperoxidase from the red alga Corallina officinalis (C-VBPO), 5 M H2SO4, and 
Trizma® base were bought from Sigma Aldrich (Stockholm, Sweden) and 60 nm citrate-
stabilised gold nanoparticles (AuNPs) were purchased from BBI solutions (Cardiff, UK).  8-
welled sticky-slides for mounting on microscope slides were purchased from ibidi GmbH 
(Planegg/Martinsried, Germany). Raman grade CaF2 microscope slides were acquired from 
Crystran Ltd. (Poole, UK). 
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PREPARATION OF ENZYME SOLUTIONS 
 
50 mM Tris-SO4 was prepared by dissolving Trizma® base in Milli-Q water (18.2 Ω) and then 
brought to pH 8.3 with 5 M H2SO4. Adequate buffer capacity is often only reached at 
concentrations higher than 25 mM. But higher concentrations can inhibit enzyme activity due 
to ionic strength. In addition, higher ionic strength influences aggregation of AuNPs. Suitable 
initial concentrations were therefore between 10 to 25 mM. After addition of the enzyme, the 
pH value changed by more than 0.05 units. The concentration of the buffer was then increased 
to 50 mM. Up to this concentration, the buffer was not expected to interfere with biological 
systems. Lyophilized C-VBPO powder was dissolved in 50 mM Tris-SO4 to a final 
concentration of 1000 µg/L, and was then further diluted with Tris-SO4 to 500 µg/L and 0.1 
µg/L. Both the enzyme and the Tris-SO4 were allowed to equilibrate to RT (ca 22 °C) before 
mixing. The C-VBPO solutions were split into aliquots and stored at -20 °C until used.  
 

INSTRUMENTATION 
 
Spectral data was collected using a Czerny-Turner415 Raman spectrometer (Dilor Labram INV, 
Horiba) outfitted with an inverted confocal microscope (Olympus IX70). Spectral read-out 
was visualised with LabSpec 5 spectroscopy suite software (Horiba). The instrument was 
equipped with a holographic grating (950 grooves/mm) and detection was facilitated by a 
charged coupled device (CCD). All measurements were performed in a ca 5 µm laser spot 
within each well. Pinhole aperture was set to 400 µm, slit to 100 µm, and the laser was further 
focused through a microscope objective (X10). The excitation source was a 632.8 nm He/Ne 
laser with laser power ~2 mW at the sample. For each sample, a total of 10 spectra were 
collected for 30 seconds each within the 291-2222 cm-1 spectral range and were then averaged 
into one spectrum per sample. The instrument was calibrated against a Si signal before each set 
of measurements were performed.  
 

SAMPLE PREPARATION AND SERS RUNS 
 
The experiments were performed according to the generated CCF design. The run order was 
modified and split over the course of several days to make experimental execution feasible. 
Thus, 5 min, 24h and 48 h samples were run on three separate days. Each day, the samples 
were run in a random order. Similar division was done for blanks.  

An 8-welled sticky-slide was mounted on top of a Raman grade CaF2 slide. New slides were 
prepared when necessary. The enzyme solutions were distributed in the wells together with 
varying amount of AuNPs, so that the volume ratio between the sample solution and AuNPs 
suspension was always 1:1. For samples with 2.6 · 109 particles, the AuNPs solution was added 
as is to C-VBPO samples. The samples with  5.2· 109 and 1.04· 1010 particles were prepared by 
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enhancement405. SERS has been successfully applied several times in the investigation of 
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(Planegg/Martinsried, Germany). Raman grade CaF2 microscope slides were acquired from 
Crystran Ltd. (Poole, UK). 
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first spinning down double and quadruple amounts of AuNPs for 5 min at 5000 rpm, 
discarding the supernatant, and then re-suspending the resulting pellet with Milli-Q water. The 
resuspended AuNPs were immediately mixed with samples.  The analysed final concentrations 
of C-VBPO after dilution with AuNPs were 0.05 µg/L, 250 µg/L, and 500 µg/L.  These 
concentrations correspond roughly to 0.004, 18, and 35 enzyme units. After mixing the 
samples with AuNPs, the mixtures were incubated at RT (~22 C°) for 5 min, 24h, or 48h. 
Blanks were prepared with Tris-SO4 in a similar fashion as the samples. 
 

DESIGN OF EXPERIMENTS 
 
The experimental design matrices were generated and analysed in MODDE 12 (Sartorius 
Stedim Data Analytics AB, Umeå, Sweden). Two composite face-centred (CCF) design 
matrices were created; one for C-VBPO samples and one for blanks. The designs were created 
separately to better illustrate the spectral contribution from the blank signal, which might have 
been overlooked if it had been included in a design with samples. Three factors were examined 
in the designs, each having three levels – the enzyme concentration (0.004, 18, and 35 units), 
the incubation time of the sample with AuNPs (5 min, 24 h, and 48 h), and the amount of 
AuNPs present (ca 2.6 · 109, ca 5.2· 109, and ca 1.04· 1010). The particle numbers were logged 
before input into the design matrix. In the design matrix of blanks, the concentration factor 
was omitted.  

The designs included 4 replicates for each combination of factors, as well as 4 centre points. 
This gave rise to 60 C-VBPO samples and 40 blanks. An additional 4 centre points were 
measured for samples to account for possible variability in precision between days. Prior to 
modelling, the data was pre-treated with a rolling-circle filter (RCF)63 with circle radii  set 
approximately to 98 cm-1. This was done in order to avoid the inclusion of signals below the 
baseline so that they would not be interpreted as true signals, and to compensate for baseline 
drift. Responses were measured as the intensities of peaks representing enzyme and Tris-SO4 
signals. All models for CCF designs were fitted with multiple linear regression (MLR)416 in the 
mean auto-scaled mode. Additionally, models were normalised through log transformation. 
Non-significant factors that caused a deterioration of the predictive abilities of the regression 
model were removed. Q2 was used as a measure of the goodness of fit based on generalized 
cross-validation417.  
 

DATA PRE-TREATMENT AND ANALYSIS 
 
Orthogonal projections to latent structures (OPLS) algorithm and its variations were run in 
SIMCA 15.0.1 (Sartorius Stedim Data Analytics AB, Umeå, Sweden). File conversions and 
data-pre-treatments not available in SIMCA were performed with in-house Python 3.4 scripts. 
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All modelled data was first pre-treated with RCF. Model diagnostics can be found in 
Appendix 1.1 (Table 1-A). 

RESULTS AND DISCUSSION 

DESIGN OF EXPERIMENTS 
 
The choice of using a designed experimental space was motivated by the need to investigate 
how different factors of the experiment (time, amount of C-VBPO, and number of AuNPs) 
influence the spectral response of C-VBPO. This in turn, would provide the information 
necessary to make further optimization to allow for in situ monitoring of the enzyme. For that 
purpose, we selected discrete Raman peaks to represent the C-VBPO and Tris-SO4 responses. 

The number of AuNPs was selected as a factor to enable us to understand in which way the 
enhancement-available surface would affect the C-VBPO enzyme signal, as well as to account 
for any possible AuNPs-induced denaturation of the enzyme. The factor incubation time, was 
to examine how long the AuNPs and the enzyme needed to equilibrate to reach a discernible 
spectral signature. Lastly, the number of enzyme units was evaluated in order to see whether 
there is a linear dependency in the SERS response. 

Using a designed experimental matrix has several advantages; the factors become orthogonal, 
which means that the influence of each factor on a chosen response can be evaluated 
separately. Additionally, when spectral variations are scrutinized using OPLS modelling, the 
fact that the variations are made in a design improves the ability to get a contrast between 
generally varying spectral features in the experiments and the spectral features correlating with 
the Y matrix in OPLS48.  

A design based on a quadratic model was given preference in order to identify factors that may 
cause curvature. A composite face-centred (CCF) design was chosen to be able to model 
square terms. CCF design is an extension of a 2k full factorial design27 augmented with centre 
points and star points33, 38.   
 

EXPERIMENTAL OBSERVATIONS 
 
Through subtraction of the average spectrum of all blanks from the average spectrum of all 
samples (Figure 1.1) it is apparent that despite several overlapping signals across the measured 
spectral range, C-VBPO containing samples had signals sufficiently different compared to the 
blanks. For tentative assignments, see Table 1.1.  
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Figure 3.1. Difference between the average spectra of all C-VBPO samples and all Tris-SO4 blanks. Negative 
peaks belong primarily to the Tris-SO4 signal while positive peaks stemmed from C-VBPO.  
 

The peaks assigned by us as Tris-SO4 were in good correlation with the literature418-421.  Peaks 
stemming from SO4

2- and HSO4
- species422-423 and protein peaks were also detected116, 424-427 . 

Based on Figure 3.1 we selected the peak 570 cm-1 to represent the pure Tris-SO4 signal and 
1651 cm-1 to represent the C-VBPO signal in subsequent CCF modelling. In general, few of 
the C-VBPO peaks were well separated from overlapping buffer signals. 
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Table 3.1. Tentative assignments of Tris-SO4 and C-VBPO peaks based on subtraction of average spectra of all 
blanks and all samples. Abbreviations used in the table: n. a. = not assigned; δ = in-plane deformation; ν = 
stretching; φ= bending; γ = out-of-plane deformation. The table continues on the next page. 

Blanks  
(Tris-SO4) 

C-VBPO - Tris-SO4 Tentative  assignment 

 373 C-VBPO (n.a.) 

384  Tris-SO4 (n.a.) 

488  Tris-SO4 (n.a.) 

 562 C-VBPO (n.a.) 

570  Tris-SO4 ν4(SO4) 422 

671  Tris-SO4 (n.a.) 

766  Tris-SO4 (n.a.) 

811  Tris-SO4 (n.a.) 

 819 Protein C-C stretch424 

 872 Pro, Val, hydroxyl-Pro, Trp C-C stretch424 

880  δ(HCC) Tris; HSO4-418, 422 

 995 Phe424 

997  Tris δ(HNC)+ν(CC); SO4116, 423 

1074  ν(CO) Tris418, 421 

 1076 Carbohydrates425 

 1141 C-VBPO (n.a.) 

1176  Tris-SO4 (n.a.) 

1265  ν(CC) Tris421 

1290  δ(OH) Tris421 

 1303 δ(CH2) twisting, wagging, collagen (protein assignment),  
Amide III39 

1328  Tris-SO4 (n.a.) 
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Blanks  
(Tris-SO4) 

C-VBPO - Tris-SO4 Tentative  assignment 

 1379 CH3 rocking (enz) 

1385  Tris-SO4 (n.a) 

 1398 C-H rocking; C=O sym stretch, CH2 deformation,  
NH deformation39, 424 

1430  Tris-SO4 (n.a.) 

 1432 CH2 vibrations (enz) 

 1495 C-C stretch benzenoid ring424 

1545  Tris-SO4 (n.a.) 

 1580 δ(C= C), phenylalanine, C= C olefinic stretch in proteins;  
Phe, Tyr116, 424 

1595  Deprotonated Tris δ(NH2); δ(NH2) 420-421 

1617  Tris-SO4 (n.a.) 

1630  Tris δ(NH2)420 

 1651 Amide I; amide I α-helix 424 

 1714 Leu, Asp, Tyr; C=O424 

1720  Tris-SO4 (n.a.) 

 1732 C-VBPO (n.a) 
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EVALUATION OF THE CCF DESIGN  
 
First, we examined how different factors influence the signal of C-VBPO by examining the 
intensity of the amide I peak at 1651 cm-1 in a contour plot (Figure 3.2).  

 
Figure 3.2. A contour plot shows how the signal intensity of the 1651 cm-1 peak (C-VBPO) varied with time and 
number of enzyme molecules present, when the Time [h] were 5 min (left), 24 h (middle), and 48 h (right). AuNP 
value, Gold [#], was the logged particle numbers, and Enzyme [#]was the number of enzyme units (0.004-35 
units). The intensity values for 1651 cm-1 peak are given as numbers within the plot. 
 

The contour plot in Figure 3.2 shows a nonlinear response in the intensity of the 1651 cm-1 
peak (amide I vibration), which consists of the C=O stretching of the amide group the  N-H 
and C-N vibrations of the peptide backbone428. The intensity always increases with longer 
incubation times (comparing plots from left to right), as well as with higher numbers of 
AuNPs (compared along the y-axis). The model for the 1651 cm-1 peak, has linear, quadratic, 
and cross-term dependencies of the factors in the design (Figure 3.3).  
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Figure 3.3. Coefficient plot displaying the significant terms of a model describing the variation in intensity at 
1648 cm-1 (C-VBPO). The model was log-transformed 10log(Y). 
 

Thus, the signal at 1651 cm-1 was linearly dependent on the incubation time (Time), and amount 
of gold (Gold). The signal also had a quadratic dependency on the enzyme concentration 
(Enz*Enz) and there was a small synergy effect between Enz and Gold. The linear 
dependencies for Time and Gold in the model had a positive sign, i.e. the signal increases with 
longer incubation time and more AuNPs. For high gold amounts, the enzyme response had a 
relative increase up to the mid-point of the design, after which there was a decrease of the 
relative response. This was consistent with the negative sign of the quadratic term for the 
enzyme factor which indicates the presence of a convex surface in the contour plot (Figure 
3.2). This convex surface was also slightly affected by the Enz*Gold cross-term; increased 
elevation at higher gold amounts caused the skewed ridge in the contour plot. 

The expected behaviour would have been that there was more response the more C-VBPO we 
add. However, the results suggested otherwise. A similar behaviour of the Enz term was also 
observed in other peaks stemming from both Tris-SO4 and the enzyme (results not shown). 
Interestingly, with lower number of AuNPs, the apex of the C-VBPO’s amide I response was 
shifted towards lower enzyme concentrations. This may indicate that there was a saturation of 
the enzyme on the surface of the AuNPs. To make a rough estimation of the number of 
enzyme units per nanoparticle, some geometrical assumptions were made. Assuming that the 
C-VBPO units and the AuNPs were spherical, a kissing number429 could be estimated, i.e. a 
number of non-overlapping spheres that touch one common sphere.  If the spheres had the 
same diameter, 12 enzymes would be arranged in an icosahedron formation around one 
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AuNP. But the reported diameter of C-VBPO was of course smaller, ca 150 Å305, compared to 
the 60 nm nanoparticle. Thus, the size ratio is 1:4, and there ought to be 16 times more 
enzymes units per AuNP. This gives a kissing number of 192 enzyme units/AuNP. Therefore, 
even at the highest concentration of enzyme used in this study, i.e. 35 units, there was a gross 
surplus of AuNPs in all samples. Thus, the saturation of AuNPs’ surface by C-VBPO was 
impossible. This could mean turn that the available enhancement surface was dominated by 
Tris-SO4.  

Another possibility was the interaction of the buffer with the C-VBPO backbone; earlier 
studies have confirmed that such interaction exists and that it influences the position of the 
amide I band, especially at high concentrations of Tris430. The concentration of Tris-SO4 in this 
study, however, was kept constant at 25 mM, and so the interaction with the enzyme should 
have been moderate and less variable. Therefore, it can be concluded that the interaction 
causing the nonlinear behaviour did not stem from either the saturation of AuNPs by C-
VBPO, or from a variation in Tris-SO4 concentration, as it was kept constant.  

Next, Tris-SO4 peak at 570 cm-1 was modelled to represent the blank signal. The peak 
displayed linear behaviour since no significant quadratic terms were present.  This resulted in 
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Figure 3.4. A contour plot shows how the signal intensity of the 570 cm-1 peak (Tris-SO4) varied with time and 
number of enzyme molecules present, when the Time [h] were 5 min (left), 24 h (middle), and 48 h (right). AuNP 
value, Gold [#], was the logged particle numbers, and Enzyme [#] was the number of enzyme units (0.004-35 
units).The intensity values for 570 cm-1 peak are given as numbers within the plot. 
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Figure 3.3. Coefficient plot displaying the significant terms of a model describing the variation in intensity at 
1648 cm-1 (C-VBPO). The model was log-transformed 10log(Y). 
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The magnitude of 570 cm-1 peak increases therefore, just like in the case for 1648 cm-1 peak, 
with longer incubation times (Time) and higher amounts of gold (Gold) (Figure 3.5).  

 

Figure 3.5. Coefficient plot displaying the significant terms for the intensity at 570 cm-1 (Tris-SO4). The model 
was 10Log (Y+0.1) transformed. 
 

Somewhat surprisingly however, there also was a linear dependency on Enz, suggesting that 
the amount of enzyme added was negatively correlated with the magnitude of the Tris-SO4 
peak at 570 cm-1. More specifically, the intensity of 570 cm-1 decreased when the amount of C-
VBPO increased. A similar behaviour was noticed when other Tris-SO4 peaks were modelled.  
In general, there was a trend observed for both C-VBPO and Tris-SO4, where peak intensities 
decrease with more enzyme added. This was observed despite the fact that the Tris-SO4 
concentration was constant and was higher than the enzyme concentration. One hypothesis 
would be that it is some other factor than the interaction between Tris-SO4 and C-VBPO 
caused this decrease in relative response as it affects both the Tris-SO4 and the enzyme in the 
same direction, with the exception of the initial increase of 1651 cm-1 response for high gold 
amount before the degradation of the response sets in.   
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PCA ANALYSIS 

PCA OVERVIEW OF THE ENTIRE DATA SET 
 
The nonlinearity of SERS signal becomes further apparent when performing multivariate 
modelling with PCA. The PCA algorithm has been explained in detail16 in literature and earlier 
in this thesis, and will therefore be noted here briefly in relation to our data.  

Comparing two or several models through loading vectors p, which represent how the 
variables relate to the samples in the modelled data, highlights spectral differences. Since PCA 
is a matrix decomposition method where in essence loadings are decomposed spectra. Loading 
vectors capture the main variation in the data, of which the first vector p1 represents the 
largest variation, which in our case was contributions from both the spectral as well as intensity 
variation. The loadings that follow – p2, p3, and so on – can also contain valuable information. 
We observed that later loadings were able to separate overlapping peaks without the need for 
deconvolution as well as highlight smaller peaks. We therefore recommend that less-significant 
loadings are examined as much as possible in order to understand the spectral variations. 
However, for the sake of brevity, only the first loading vectors from PCA models are 
thoroughly discussed within the scope of this chapter.  

Normally, PCA loadings are normalized separately for each model. To be able to compare the 
magnitudes of loadings between models, the loadings were de-normalised, i.e. multiplied by 
their eigenvalues. Through the de-normalisation it becomes possible to compare the relative 
contributions in signal between, say, different enzyme concentrations. Also, the models were 
not centred or scaled. In this way the p1 are roughly representative of the average spectrum in 
each point in the design space.  

The first loading vectors for PCA models performed on all blanks and all samples respectively 
were compared (Figure 3.6). Model diagnostics for this and the PCA models that will follow 
were reported in Table 3-B in Appendix 3.1. One experiment with the combination of 
factors 24 h, 18 enzyme units, and 1.04 ·1010 particles was, after an examination of the score 
plots (results not shown), identified as a strong outlier, i.e. it deviated greatly from the general 
variation in the data. Due to its unique spectral shape it was excluded as it skewed the models 
significantly. The reason for this deviation was due to an unidentified sample contamination, 
which introduced alien spectral features into the model’s loadings in the 700-940 cm-1 range, 
masking the contribution from the 880 cm-1 peak.  
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Figure 3.6.  De-normalised loading line plot comparing the first two loading vectors p1 from a PCA model 
performed on all samples containing C-VBPO (black) and all blanks (blue). Data in these models was pre-treated 
with RCF and ranged from 602-1800 cm-1. 
 

The spectral range was limited to 600-1800 cm-1 for PCA analysis as it contained all of the C-
VBPO’s peaks. Figure 3.6 shows that the loading vector of models that contained C-VBPO- 
displayed more pronounced features in 700-940 cm-1 and amide III regions (1200-1500 cm-1), 
as well as at 1715 cm-1. Despite the partial overlap with the C-H deformation of Tris-SO4 at 
1430 cm-1, the signal at 1430 and the shoulder peak at 1441 cm-1 for C-VBPO had a larger 
magnitude compared to blanks. Lastly, the C-VBPO loading shows a clear amide I peak at 
1648 cm-1, while the δ(NH2) vibration of Tris-SO4 at 1590 cm-1 is more pronounced in the 
blank loading. 

C-VBPO is classified as an α+β type protein and has been reported to comprise 19 α-helices, 8 
310-helices, and 14 β-strands (mostly hairpin-type) in each of its 12 subunits305, 431. We, 
therefore, expected to see indications of chiefly α-helical structures in our spectra. Conversely, 
the lack of α-helical vibrations would serve as an indication of structural changes.   

To demonstrate the above changes and to increase the understanding of studied system, we 
will present in sections below results from analyses with PCA with respect to the three main 
factors in the design – enzyme concentration, time, and number of AuNPs. 
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DEPENDENCY ON CONCENTRATION 
 
First, we examined how the spectrum of C-VBPO changed with varying concentrations. A 
difference was observed in 700-900 cm-1 region in enzyme-containing samples, a range which 
is expected to contain a number of protein vibrations (Figure 3.7A).   

Figure 3.7.  (A) De-normalised loading lines p1s for concentration dependency; 0.004 units (black), 18 units 
(blue), and 35 units (red). (B) De-normalised loading lines p1s comparing the spectral pattern for all blanks (black) 
and the lowest concentration of C-VBPO (blue). The two spectral patterns are not identical, but demonstrate high 
degree of similarity.   

A rough calculation of the amino acid composition of C-VBPO432 indicated that the most 
abundant (≥ ~5 %) residues are – in decreasing order -  Ala, Leu, Gly, Ser, Asp, Glu, Phe, Val, 
Ile, Pro, Arg, and Asn. The vast majority of these residues have medium to strong, and often 
broad, bands within the specified range433. A strong amide I band for α-helical structure is 
often reported to be around 1650 cm-1 or in the 1640-1658 cm-1 range, which resonates with 
the 1651 cm-1 observed by us. At this wavenumber, a contribution from protein-associated 
water was also expected434. The high intensity of the amide I band at 1651 cm-1 suggested a 
high abundance of α-helical structures. This was further supported by the fact that the signal 
for this peak was much higher than in the 1235-1240 cm-1 range, where β-sheet and random 
coil structures have their vibrations427.  

All the C-VBPO signals assigned by us (Table 3.1) - 880, 1430-1441, 1648, and 1715 cm-1 - 
increased with increasing concentration, showing that a concentration dependency exists, 
although not a linear one. This was illustrated by the intensity of the 1651 cm-1 peak which first 
increases from 0.004 units to 18 units, but then decreased when concentration increased to 35 
units. Other enzyme peaks behaved similarly. We relate this to our observations in MODDE 
models for the 1651 cm-1 peak, where there were significant cross-terms and quadratic terms 
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dependent on the number of enzyme units (Figure 3.2). The low concentration loading in 
Figure 3.7A resembled the average spectrum for the Tris-SO4 blank (Figure 3.7B), suggesting 
that concentration of C-VBPO at 0.004 units falls below the detection range for this method.  
 

STABILITY AND BEHAVIOUR OF C-VBPO OVER TIME  
 
The spectrum of a protein may change over time401 as a consequence of nanoparticle-induced 
denaturation and/or changes in the secondary structure435. To identify potential changes, we 
first examined if any structural changes in C-VBPO had occurred over time by comparing 
three models; each model was based on how long the enzyme was incubated with gold (Figure 
3.8).  

Figure 3.8.  (A) De-normalised loading lines of the first loading vectors for C-VBPO samples incubated for 5 
min (black), 24 h (blue), and 48 h (red). (B) Time dependency in blanks, 5 min (black), 24 h (blue), and 48 h (red). 

Our PCA models demonstrate that there were several variations in intensity occurring over 
time. The peaks 880, 999, 1431-1441 and 1715 cm-1 all increased over time in enzyme samples 
(Figure 3.8A), whereas in the blanks these peaks reach a maximum at 24 h before reducing in 
intensity at 48 h (Figure 3.8B). This suggests that the main contribution to these bands stems 
from C-VBPO vibrations. The Tris-SO4 peak at 1590 cm-1 peak decreased over longer 
incubation times in samples which can be seen as an indication of a stabilisation of the buffer-
protein-gold interaction. Indeed, it has been reported for other proteins that the initial 
adsorption to the surface of AuNPs is completed within the first 10 min, yet the 
conformational changes continue for at least 48 h436. For the 1651 cm-1 peak, however, the 
loadings show that the signal is at its highest in 5 min samples, which contradicts what has 
been observed in MODDE the models (Figure 3.2). This could mean that the intensity at this 
wavenumber depends on contributions from Tris-SO4 and C-VBPO signals at 1590 cm-1 and 
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1651 cm-1, respectively. We still interpret the band at 1651 cm-1 as an enzyme band, despite the 
presumed interference of Tris-SO4 signal. 

Next came the question of the stability of the protein over time. If the majority of protein had 
lost its structure, other changes in the spectrum would be expected, e.g. a red-shift for the 
amide I peak to 1660-1670 cm-1 indicative of a decrease in α-helical folds434, 437. Such a shift has 
not been observed by us. This was further supported by the fact that some protein peaks 
became clearer only after longer incubation times, such as 1441 cm-1. Furthermore, the 880 cm-

1 peak of α-helix/β-sheet Trp as well as the amide I peak did not decrease upon longer 
incubation, suggesting yet again that C-VBPO’s higher structures are conserved.  

A reliable way of indicating that a protein has not denatured is that the disulphide (S-S) bridges 
remain intact and show in a SERS spectrum438. Disulphide bridges ought to be present in 
bromoperoxidases, with each monomer containing eight such bridges311. However, the typical 
wavenumbers associated with S-S (ca 430-550 cm-1) were absent in our spectra. We concluded 
that this was not due to denaturation, but rather due to the fact that vanadium 
bromoperoxidases from the Corallina species do not contain disulphide bridges431.  

With the results reported here, it can be concluded that C-VBPO has not lost its higher 
structural features over time. We base this claim on the fact that the intensity of enzyme peaks 
changes over time, but not their position. An exception to this was the peak at 1651 cm-1, 
which could be confounded with a signal from Tris-SO4. 
 

DEPENDENCY ON AUNP NUMBER 
 
Next, PCA models were performed to see how the amount of AuNPs affected the SERS 
signals. The signal for 880 cm-1 seems to initially increase up to 5.2 ·109 particles but decreased 
dramatically at 1.04 ·1010 particles (Figure 3.9). 
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loadings show that the signal is at its highest in 5 min samples, which contradicts what has 
been observed in MODDE the models (Figure 3.2). This could mean that the intensity at this 
wavenumber depends on contributions from Tris-SO4 and C-VBPO signals at 1590 cm-1 and 

 

B A 

163 
 

1651 cm-1, respectively. We still interpret the band at 1651 cm-1 as an enzyme band, despite the 
presumed interference of Tris-SO4 signal. 

Next came the question of the stability of the protein over time. If the majority of protein had 
lost its structure, other changes in the spectrum would be expected, e.g. a red-shift for the 
amide I peak to 1660-1670 cm-1 indicative of a decrease in α-helical folds434, 437. Such a shift has 
not been observed by us. This was further supported by the fact that some protein peaks 
became clearer only after longer incubation times, such as 1441 cm-1. Furthermore, the 880 cm-

1 peak of α-helix/β-sheet Trp as well as the amide I peak did not decrease upon longer 
incubation, suggesting yet again that C-VBPO’s higher structures are conserved.  

A reliable way of indicating that a protein has not denatured is that the disulphide (S-S) bridges 
remain intact and show in a SERS spectrum438. Disulphide bridges ought to be present in 
bromoperoxidases, with each monomer containing eight such bridges311. However, the typical 
wavenumbers associated with S-S (ca 430-550 cm-1) were absent in our spectra. We concluded 
that this was not due to denaturation, but rather due to the fact that vanadium 
bromoperoxidases from the Corallina species do not contain disulphide bridges431.  

With the results reported here, it can be concluded that C-VBPO has not lost its higher 
structural features over time. We base this claim on the fact that the intensity of enzyme peaks 
changes over time, but not their position. An exception to this was the peak at 1651 cm-1, 
which could be confounded with a signal from Tris-SO4. 
 

DEPENDENCY ON AUNP NUMBER 
 
Next, PCA models were performed to see how the amount of AuNPs affected the SERS 
signals. The signal for 880 cm-1 seems to initially increase up to 5.2 ·109 particles but decreased 
dramatically at 1.04 ·1010 particles (Figure 3.9). 
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Figure 3.9. De-normalised loading lines, p1s, for amount of AuNPs. 2.6 ·109 (black), 5.2 ·109 (blue), and 1.04 
·1010 (red) particles.  
 

A similar behaviour was observed for the C-H deformation peaks 1430 and 1441 cm-1, the 
amide I peak at 1651 cm-1, and the 1715 cm-1 peak. The majority of the peaks attributed to 
Tris-SO4 displayed similar behaviour. This effect could be attributed to a saturation of the gold 
surface, and, thus, a LODmax for the method. Alternatively, protein-induced aggregation could 
have been the cause. However, even at the highest concentration of C-VBPO measured (35 
units) there should have been plenty of surface area available in light of the large surplus of 
AuNPs (see earlier discussion about kissing number). In fact, higher concentrations of C-
VBPO seem instead to have had a stabilising effect on AuNPs aggregation (Figure 3.10).   
 

 

Figure 3.10. Aggregation of AuNPs as visualised under x10 magnification in sample vs. blank solutions after 24h 
incubation with 5.2 · 109 particles. The biggest clusteres have been measured to be ca 0.5 µm. (A) Blank (Tris-
SO4), (B) 0.004 units C-VBPO, (C) 35 units C-VBPO.  
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Aggregation was compounded further upon longer incubation times in samples that contained 
little to no enzyme, as well as at higher amounts of AuNPs. Hence, it was unlikely that the 
aggregation has been caused by protein-gold interaction. We concluded therefore that the 
reduction of the signal was due to aggregation induced by the Tris-SO4 buffer. The non-linear 
response in the PCA model in Figure 3.9 could have been skewed by the inclusion of low-
concentration samples, which have, as mentioned above, a spectral profile virtually identical to 
blanks (Figure 3.7B).  

Since aggregation could have had an unfavourable effect on the signal, another PCA model 
was made by excluding all 0.004 unit samples. Upon the exclusion of low-concentration 
samples, the model loadings did not change significantly. The time-dependency PCA models 
were also changed to exclude low-concentration samples. The model diagnostics improved 
slightly, but the shape of the loadings remained virtually the same (results not shown).   

To summarise the findings above: our attempt to compare the intensity variations using PCA 
models for each level in the design did not reveal sufficient detail to enabled us to identify the 
source of the variation that  was confounded between Tris-SO4 and the enzyme.  
 

OPLS ANALYSIS 
 
In Table 3.1 we listed the peaks identified through an examination of the average spectra of 
blanks and samples, respectively. As this comparison only illustrated the difference between 
blanks and samples without any reference to a factor, and since the first evaluation of the 
design was made on selected peaks, we looked for a more rational method to enable us to 
study all peaks at the same time. For this purpose we selected OPLS analysis.  

OPLS has the advantage over PLS and net analyte signal (NAS)192 that it separates systematic 
variation from the sought response, i.e. the Y matrix45. OPLS operates on the entire design 
response vector, i.e. the entire spectral profile in contrast to design modelling, where the 
responses are evaluated one peak (or any other univariate feature) at a time. For further 
discussion relating to NAS, see Appendix 3.2 at the end of this chapter. 

In the OPLS models that follow, we set each of the varied factors in the CCF design – number 
of enzymes, number of AuNPs, and time – as Y variables. If there was a linear variation in the 
data that was stemming solely from one factor, OPLS ought to have been able to isolate it into 
a separate predictive component, p. The remaining variation, i.e. unrelated to Y, is described 
by orthogonal components, po. All models were calculated only for enzyme containing 
samples, blanks were excluded. For purposes of qualitative spectral interpretation, mean 
centring of models was optimal. 

As a sanity check, we calculated a model for blanks where Y was set as Enz. The model failed 
to calculate components – this was expected as the blanks did not contain any C-VBPO and 
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hence no variation dependent on Enz was found by OPLS. The reason behind this action was 
the previously observed peak dependencies in Chapter 1; OPLS and T-OPLS algorithms have 
been observed by us to find the analyte pattern where there ought to be none. 

 

Figure 3.11. Predictive loadings p and orthogonal loadings po of an OPLS model calculated on enzyme samples, 
where Y was the enzyme concentration (p =black and po=light blue), time (p=dark blue), or number of AuNPs 
(p=red and po=green). No orthogonal loadings were calculated by the model where Y = time variation. Marked 
peaks exemplify some of the more prominent differences found between the models. All models were mean 
centred, including the Y vector. 
 

Several peaks appeared both in predictive and orthogonal loadings (Figure 3.11). This bleed-
over of spectral features from predictive to orthogonal components in OPLS has been noted 
earlier for nonlinear systems48. This confirmed the conclusion from the first evaluation of the 
design, that we have a nonlinear response. For Tris-SO4 signals we were not able to pinpoint a 
single explanation as to why some peaks followed a linear behaviour, while other behaved 
nonlinearly. Several peaks appeared only in orthogonal loadings in sample and/or blank 
models, suggesting that there are factors influencing the spectral profile which were not 
covered by our design. Such factors could be day-to-day temperature fluctuations or buffer’s 
pH.  Example of the peaks include 714, 811, 898, 1141, 1245, and 1580 cm-1.  
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T-OPLS ANALYSIS 
 
Transposed OPLS (T-OPLS) is a method where an OPLS model is created between the X 
matrix and the spectrum of a pure component of interest as the Y matrix 52, 54. Here, T-OPLS 
was used to separate the enzyme signal by setting the Y as the average spectrum of blanks. 
Since the y in T-OPLS models were based on blank signals only, the predictive scores t ought 
to represent signals that are related to the pattern of y, i.e. that of Tris-SO4. Orthogonal scores 
to, on other hand, should show spectral patterns that are unrelated to the Tris-SO4 signal. In 
other words, T-OPLS was used here as a more sophisticated way of background subtraction.  

 

Figure 3.12. T-OPLS model performed on all samples, where y was the average signal of all blanks (green). The 
predictive score vector t (black) describes the variation related to the blank, i.e. Tris-SO4 signal only. The 
orthogonal score vectors to1 and to2 (blue and red) are signals unrelated to Tris-SO4. The dashed grey line shows 
the subtracted averages from Figure 3.1. The model was mean centred, including the y vector. 
 

All peaks in T-OPLS predictive and orthogonal scores were noted and analysed. In the 
orthogonal scores, the spectral region containing amide I signals (~1500-1700 cm-1) was 
showed better resolved details compared to previous OPLS models (Figure 3.12). For 
instance, the peak of 1580 cm-1, which was previously observed in orthogonal loadings of 
sample and blank OPLS models, had in T-OPLS been isolated as unrelated to Tris-SO4. Also, 
the peak at 1651 cm-1 was isolated by T-OPLS, which was previously observed in both Figure 
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3.1 and in OPLS. Notably, there were an extensive number of peaks that appeared both in t 
and to, further indicating the nonlinear behavior of some spectral features. These vibrations 
may stem from the matrix effect of Tris-SO4 and C-VBPO.  

Nevertheless, the majority of the identified peaks were unique to orthogonal scores of the T-
OPLS model. T-OPLS was capable of isolating peaks previously unobserved either the 
subtractive spectrum (Table 3.1) or in OPLS models. These include  OH-bending of 
proteins424 (587 cm-1), vibrations of amino acids Met, Phe, Pro, Val, and Tyr in α-helical and β-
sheet structures (700, 856, 973, 1040, 1106, and 1188 cm-1) 116, 424, 427, an amide III vibration424 at 
1223 cm-1, and C-C stretch of a benzenoid ring424 at 1499 cm-1. The majority of the protein 
vibrations were attributed to Pro, Phe, and Tyr.  

Comparisons between peaks noted in OPLS and T-OPLS reveal that many of the peaks that 
have been identified are confounded. For instance, peaks marked as stemming from C-VBPO 
in Table 3.1, such as 562, 1141, 1332, and 1714 cm-1, behave in OPLS and T-OPLS models in 
a way that suggests that these signals have a contribution from Tris-SO4. The peaks 819, 995, 
1076, 1398, 1495, 1580, and 1732 cm-1 also have an unclear origin, although comparison 
between OPLS and T-OPLS models suggests that C-VBPO contributes primarily to these 
peaks. Only a few peaks could have been said to stem solely from C-VBPO (1303 and 1651 
cm-1) and Tris-SO4 (1617 and 1720 cm-1). For more information see Table 3.2.  

In OPLS, some peaks only showed in orthogonal loadings indicating that their response was 
affected by factors other than those included in the design. In T-OPLS, some of those peaks 
(714, 811, 898, and 1141cm-1), were observed in both t and to, adding to the argument that 
those peaks were influenced by factors outside the design.  
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3.1 and in OPLS. Notably, there were an extensive number of peaks that appeared both in t 
and to, further indicating the nonlinear behavior of some spectral features. These vibrations 
may stem from the matrix effect of Tris-SO4 and C-VBPO.  

Nevertheless, the majority of the identified peaks were unique to orthogonal scores of the T-
OPLS model. T-OPLS was capable of isolating peaks previously unobserved either the 
subtractive spectrum (Table 3.1) or in OPLS models. These include  OH-bending of 
proteins424 (587 cm-1), vibrations of amino acids Met, Phe, Pro, Val, and Tyr in α-helical and β-
sheet structures (700, 856, 973, 1040, 1106, and 1188 cm-1) 116, 424, 427, an amide III vibration424 at 
1223 cm-1, and C-C stretch of a benzenoid ring424 at 1499 cm-1. The majority of the protein 
vibrations were attributed to Pro, Phe, and Tyr.  

Comparisons between peaks noted in OPLS and T-OPLS reveal that many of the peaks that 
have been identified are confounded. For instance, peaks marked as stemming from C-VBPO 
in Table 3.1, such as 562, 1141, 1332, and 1714 cm-1, behave in OPLS and T-OPLS models in 
a way that suggests that these signals have a contribution from Tris-SO4. The peaks 819, 995, 
1076, 1398, 1495, 1580, and 1732 cm-1 also have an unclear origin, although comparison 
between OPLS and T-OPLS models suggests that C-VBPO contributes primarily to these 
peaks. Only a few peaks could have been said to stem solely from C-VBPO (1303 and 1651 
cm-1) and Tris-SO4 (1617 and 1720 cm-1). For more information see Table 3.2.  

In OPLS, some peaks only showed in orthogonal loadings indicating that their response was 
affected by factors other than those included in the design. In T-OPLS, some of those peaks 
(714, 811, 898, and 1141cm-1), were observed in both t and to, adding to the argument that 
those peaks were influenced by factors outside the design.  
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CONCLUSIONS 
 

To evaluate whether Raman spectroscopic methods together with chemometrics can be used to 
develop in situ methodologies for marine sciences, we have here performed an extensive qualitative 
spectral interpretation of the two-component system of C-VBPO and Tris-SO4. The chemometric 
methods applied were able to partially discern wavenumbers that distinguished C-VBPO from its 
matrix. By first constructing a CCF design, we were able to pinpoint several sources of nonlinearities 
that stemmed from quadratic behaviour at several wavenumbers, as well as to identify synergies 
between the studied factors.  

Due to the nonlinear behaviour of the system, it is clear that a fool-proof peak assignment cannot be 
reached with the method used; however, our initial aim was not to scrutinize the chemistry of the 
system. Rather, we sought to find from which sources the different peaks stem and by what factors 
they were affected, an aim in which we have succeeded. The issues with peak assignment were 
identified as: a) overlapping contributions from C-VBPO and Tris-SO4; b) issues stemming from 
chemical interaction between the two, and; c) influence of factors which were not accounted for in 
the design.  

T-OPLS combined with a designed experimental space, in particular, makes possible the separation 
of relevant signals from a multicomponent matrix, which otherwise can be missed during spectral 
interpretation and PCA and OPLS modelling. Compared to more traditional spectral interpretation 
strategies, our method facilitates a more accurate evaluation of spectral features, by revealing 
complex matrix effects. Also, our methods highlight spectral effects such as peak confounding and 
hidden peaks, which can be easily overlooked during an interpretation of multicomponent spectra, 
where peaks are investigated one by one.  

Our method can be of benefit for in situ detection of other algal components, such as lipids and non-
volatile halogenated substances50, 52. 
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CONCLUSIONS 
 

To evaluate whether Raman spectroscopic methods together with chemometrics can be used to 
develop in situ methodologies for marine sciences, we have here performed an extensive qualitative 
spectral interpretation of the two-component system of C-VBPO and Tris-SO4. The chemometric 
methods applied were able to partially discern wavenumbers that distinguished C-VBPO from its 
matrix. By first constructing a CCF design, we were able to pinpoint several sources of nonlinearities 
that stemmed from quadratic behaviour at several wavenumbers, as well as to identify synergies 
between the studied factors.  

Due to the nonlinear behaviour of the system, it is clear that a fool-proof peak assignment cannot be 
reached with the method used; however, our initial aim was not to scrutinize the chemistry of the 
system. Rather, we sought to find from which sources the different peaks stem and by what factors 
they were affected, an aim in which we have succeeded. The issues with peak assignment were 
identified as: a) overlapping contributions from C-VBPO and Tris-SO4; b) issues stemming from 
chemical interaction between the two, and; c) influence of factors which were not accounted for in 
the design.  

T-OPLS combined with a designed experimental space, in particular, makes possible the separation 
of relevant signals from a multicomponent matrix, which otherwise can be missed during spectral 
interpretation and PCA and OPLS modelling. Compared to more traditional spectral interpretation 
strategies, our method facilitates a more accurate evaluation of spectral features, by revealing 
complex matrix effects. Also, our methods highlight spectral effects such as peak confounding and 
hidden peaks, which can be easily overlooked during an interpretation of multicomponent spectra, 
where peaks are investigated one by one.  

Our method can be of benefit for in situ detection of other algal components, such as lipids and non-
volatile halogenated substances50, 52. 

  



172 
 

APPENDICES FOR CHAPTER 3 
 

APPENDIX 3.1 – TABLES  
 
Table 3-A. Model diagnostics for five PCA models. Each row stands for a model performed on a group of samples that 
had the same characteristic, such as that all included samples were measured after 48 h. 

Samples R2X(cum) Q2X(cum) Blanks R2X(cum) Q2X(cum) 

0.004 units 0.999 0.994 5 min 0.997 0.984 

18 units 1 0.994 24 h 0.999 0.996 

35 units 1 0.998 48 h 0.999 0.996 

5 min 0.994 0.988 - - - 

24 h 1 0.998 - - - 

48 h 0.999 0.996 - - - 

2.6 ·109  particles 0.999 0.992 2.6 ·109 particles 0.997 0.988 

5.2 ·109  particles 0.996 0.988 5.2 ·109  particles 0.999 0.996 

1.04 ·1010 particles 0.999 0.992 1.04 ·1010 particles 1 0.996 

 

Table 3-B. Cumulative model diagnostics for all OPLS-based models. 

Model type y vector Components 
(p+po+u) 

R2X(cum) R2Y(cum) Q2(cum) 

OPLS Enz 1+1+0 0.96 0.153 0.125 

OPLS Time 1+0+0* 0.904 0.253 0.23 

OPLS Gold 1+1+0 0.956 0.235 0.191 

T-OPLS Average 
spectrum of all 
blanks 

1+2+0 0.971 0.99 0.99 
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APPENDIX 3.2 – COMPARISON BETWEEN OPLS AND NAS 
 
Net-analyte signal (NAS) is a popular method for quantification of analytes. We used NAS as 
described by Bro and Andersen439 to see if it could extract further information which would have 
been relevant to our enquiry, and if NAS was comparable to OPLS for the discrimination of signals 
from C-VBPO and Tris-SO4. The research into the subject indicated that NAS alone would have not 
given us the interpretative power that we sought. This is due to the fact that NAS contains all the 
variation, regardless if that variation is correlated to the Y response or not. We have thoroughly 
examined the NAS option and performed NAS calculations before reaching these conclusions. A 
more extensive rationale for our decision can be found below. 
 
NAS is a predictor of the predictive Y matrix (YPred), which is useful if the Y is not known (i.e. the 
varying concentrations of the sought analyte). However, due to the design, the YPred is readily 
available from OPLS modelling (see Equation 3-A). Moreover, we did not seek a determination of a 
Y; rather, we sought to understand how the Y matrix relates to our spectral responses, something 
that cannot have been achieved with NAS.  

𝑌𝑌𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓𝐾𝐾𝐶𝐶 𝑁𝑁𝐵𝐵𝐵𝐵 =
 𝐶𝐶𝐶𝐶𝐾𝐾𝐾𝐾𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐾𝐾𝐶𝐶 𝑠𝑠𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑠𝑠𝑝𝑝𝐶𝐶𝐶𝐶𝐾𝐾𝐶𝐶𝐶𝐶 × 𝑅𝑅𝐶𝐶𝑅𝑅𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝐶𝐶𝐾𝐾𝐾𝐾 𝑣𝑣𝐶𝐶𝐶𝐶𝐾𝐾𝐾𝐾𝐶𝐶 𝐾𝐾𝑓𝑓 𝐾𝐾ℎ𝐶𝐶 𝑂𝑂𝑌𝑌𝑂𝑂𝐵𝐵 𝑚𝑚𝐾𝐾𝐶𝐶𝐶𝐶𝐶𝐶 =
𝑌𝑌𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓𝐾𝐾𝐶𝐶 𝑂𝑂𝑌𝑌𝑂𝑂𝐵𝐵        (Eq. 3-A) 

NAS calculation as per Bro and Andersen includes the regression vector to predict YPred by 
multiplying the regression vector with each spectrum (see Equation 3-B). Thus, such a calculation 
incorporates all variation corresponding to the variation in all the loadings acquired by OPLS 
models. This means in turn that NAS does not discriminate between the predictive component and 
the orthogonal component, while OPLS does. The latter is therefore more suited for the purpose of 
our study which was focused on qualitative analysis and signal discrimination. 

 
𝑁𝑁𝐵𝐵𝐵𝐵 =  (𝑌𝑌𝑌𝑌𝑌𝑌𝑤𝑤𝑌𝑌 𝑓𝑓𝑓𝑓𝑌𝑌 𝑂𝑂𝑌𝑌𝑂𝑂𝑆𝑆)

𝑅𝑅𝑤𝑤𝑤𝑤𝑌𝑌𝑤𝑤𝑅𝑅𝑅𝑅𝑖𝑖𝑓𝑓𝑖𝑖 𝑣𝑣𝑤𝑤𝑣𝑣𝑡𝑡𝑓𝑓𝑌𝑌2
 ×  𝑅𝑅𝐶𝐶𝑅𝑅𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝐶𝐶𝐾𝐾𝐾𝐾 𝑣𝑣𝐶𝐶𝐶𝐶𝐾𝐾𝐾𝐾𝐶𝐶𝑇𝑇  (Eq. 3-B) 

When it comes to the measure of sensitivity, it becomes clear upon the examination of the NAS 
calculation that the parameter sensitivity is equivalent to the regression vector gained from OPLS 
(see Equation 3-C). Thus, again, no new information could have been gained in applying NAS to 
our case. 

       

𝐵𝐵𝐶𝐶𝐾𝐾𝑠𝑠𝐶𝐶𝐾𝐾𝐶𝐶𝑣𝑣𝐶𝐶𝐾𝐾𝐵𝐵𝑁𝑁𝑁𝑁𝑆𝑆 = 𝑁𝑁𝑁𝑁𝑆𝑆
𝑌𝑌𝑌𝑌𝑌𝑌𝑤𝑤𝑌𝑌

= 𝑅𝑅𝐶𝐶𝑅𝑅𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝐶𝐶𝐾𝐾𝐾𝐾 𝑣𝑣𝐶𝐶𝐶𝐶𝐾𝐾𝐾𝐾𝐶𝐶  (Eq. 3-C) 

Although prediction was not sought in our article per se, NAS could indeed have been used a 
deconvolution tactic to improve the quality of interpretation by, for instance, using norm(NAS) also 
known as the scalar NAS. However, as research in chromatography has revealed (we found that our 
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APPENDICES FOR CHAPTER 3 
 

APPENDIX 3.1 – TABLES  
 
Table 3-A. Model diagnostics for five PCA models. Each row stands for a model performed on a group of samples that 
had the same characteristic, such as that all included samples were measured after 48 h. 
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1.04 ·1010 particles 0.999 0.992 1.04 ·1010 particles 1 0.996 
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spectral measurements suffer from the similar issues as the ones described for chromatography, i.e. 
peak overlap) there are clear drawbacks to scalar NAS application440, including the nonfulfillment of 
the Euclidean metric at k<2 

We also found during our examination of the NAS concept a consensus with previously published 
critique441, specifically the realization that NAS failed to represent the behaviour of (O)PLS 
predictions. Again, prediction was not our aim, but the existing evidence suggests that comparing 
predictions made by OPLS versus those of NAS would not provide any new insights which would 
help us achieve the aim of our enquiries.  
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CHAPTER 4  
MULTIVARIATE EXAMINATION OF THE EFFECT OF ABIOTIC 

ENVIRONMENTAL FACTORS ON THE PRODUCTION OF 

VOLATILE HALOCARBONS BY MARINE ALGAE   
 
INTRODUCTION  
 

Production of halogenated compounds by algae has been associated with environmental parameters 
as increasing temperature of ocean waters319, 327-328, 442. Change of abiotic factors such as light327, 330, 442, 
salinity327, nutrient concentration327 and temperature327-328 have been shown to impact the formation 
of volatile halogenated organic compounds (VHOCs) by marine macroalgae. In addition, H2O2 
variations319, 443 and elevated pH have also been shown to influence response of macroalgae in 
production of VHOCs. It has also been suggested that the reactive halogen species released due to 
V-HPOs activity in algae react abiotically with dissolved organic matter (DOM) to form halogenated 
organic compounds302, 357. Global warming and further uncontrolled eutrophication of the oceans 
may lead to a change in the current conditions. This may result in an unknown escalation of VHOCs 
emission into the global environment in the future. 

To investigate how different environmental factors influence each other in production of VHOCs 
simultaneously, it would be of benefit to use statistical design of experiments (DoE). DoE permits 
enhanced assessment of interactions as variables are changed together compared to varying one 
factor at a time. On investigation of the relative impact of a number of factors on a specified 
response such as how environmental factors simultaneously influence production of VHOCs, 
screening designs are one of the DoE approaches often used. The simplest screening designs such as 
full and fractional factorial designs, consider chiefly linear interactions. By studying literature 
concerning biogenic VHOC production, the author of this thesis found no concrete evidence that 
would suggest linear dependency between VHOC production and abiotic factors. It meant therefore 
that the choice of the design had to consider nonlinear interactions, i.e. the chosen design had to 
consider cross terms and/or quadratic terms. One of such designs is definitive screening (DS) design 
proposed by Jones and Nachtsheim. The DS requires few experiments, its main effects are 
completely independent of two-factor interactions, they are not confounded as their estimation is not 
biased by second-order effects and enable estimation of quadratic effects if present40, 444-445. The DS 
design calculates therefore only linear and quadratic interactions. Therefore DS was deemed suitable 
as the initial screening design. Methodology-wise, examining the influence of multiple environmental 
parameters on biogenic VHOC production by means of DoE and multivariate projection algorithms 
is unprecedented. 
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Effects of abiotic environmental factors on production of VHOCs by algae have been well studied as 
well as methods for analysing the VHOCs in water at very low quantities446. Here, an established 
purge and trap (P&T) gas chromatography electron capture detector (GC-ECD) method was utilized 
as described by Ekdahl and Abrahamsson446 to measure VHOCs. In this work, the factors chosen for 
closer scrutiny were light intensity, dissolved organic matter (DOM), H2O2 concentration, salinity, 
and pH.  All these factors have previously been studied without consideration for the possible factor 
interactions, that is, each environmental factor was considered one at a time, a shortcoming that was 
also pointed out in the recent review by Keng et al.239. Any synergies and/or antagonistic effects have 
to date not been considered thoroughly. Thus, there is an interest in developing new methods for 
studying the complexity of biogenic halocarbon production multivariatly. Methodology-wise, 
examining the influence of multiple environmental parameters on biogenic VHOC production by 
means of DoE and multivariate projection algorithms as was done here is unprecedented. 
 

VHOC PRODUCTION BY FUCUS SERRATUS 
 

Fucus serratus has been shown to have highest activity of V-BrPO and V-IPO in the middle thallus, 
which are the mature parts of the alga’s blades. Compared to other Fucales, F. serratus had third 
highest V-BrPO activity and fourth highest V-IPO activity.  Highest H2O2 production was also 
found in the middle thallus followed by the lowest part of the frond axis, and, compared to other 
Fucale reported by Tarakhovskaya et al.290, the alga had second-highest production of H2O2 in the 
middle thallus. Here, middle thalli of an alga specimen collected at the shores of Gothenburg were 
studied. Mechanical damage to algal tissue, which here was induced by cutting the thalli, is expected 
to increase the production of CHBr3

447 and possibly other halocarbons. However, since this study 
was not quantitative but aimed to examine the relative distribution of VHOCs, the contribution of 
cutting was considered irrelevant.  
 

CHOICE OF ENVIRONMENTAL PARAMETERS 
 
Production of VHOCs by algae was observed to significantly reduce after approximately six hours 
during an incubation study. CH3I production by Macrocystis pyrifera showed a linear response for 
about six hours448. Meristiella gelidium production of CHBr3 and CH2I2 slowed down after about one 
to two hours319. Sampling was therefore planned at the beginning, after three hours and after six 
hours from start of experiment. The incubation time was not a factor in the DS design itself. 

Temperature was also considered as one of the abiotic factors that affects release of VHOCs327-328. 
During this study, the temperature was kept constant. This was due to shortage of resources – the 
phytotron that was available for use only had constant temperature function. 

With consideration that the DS works at three levels for assessment of curvature40, the choice of 
three different levels for each factor were based on below considerations. The normal and/or 
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average values for each factor were taken as midpoints, and two extremes were assigned as the 
minimum and the maximum. The average values were adopted to reflect the natural habitat 
of the sampled Fucus serratus as closely as possible. The values were also chosen as to enable 
exposure of algae to stressors but relating it to possible environmental factors variations. 
 

PH 
 
The net uptake of CO2 by coastal and marginal seas is about 20% of the world ocean’s uptake of 
anthropogenic CO2

449 resulting in acidification of sea water. Mtolera et al.330 observed an increase 
in VHOCs production from pH 8.2 to 8.8.  Studying different pH levels may show general 
influence of VHOC production. The normal pH of seawater is approximately 8.2 pH units450. As 
mentioned in the section Influence of biotic and abiotic stressors on VHOC production in 
algae, the influence of acidification on VHOC production is uncertain. Since mesocosm studies 
indicated that pH change did not have any influence of VHOC production, it is plausible to assume 
that pH change alone would not cause a change in VHOC emissions. The author hypothesised 
therefore that pH may play a role in multifactor interactions, by either increasing or by decreasing 
VHOC emissions.  The maximum was therefore chosen as pH 9.2 to maximise the stress 
applied. pH 7.2 was chosen as the lower limit for the same reason.  
 
 

LIGHT INTENSITY 
 
Varying irradiance has been shown to affect VHOC production327, 330, 442. In general, it has been 
found that higher light intensities are associated with higher VHOC production compared to low or 
dark conditions327, 330. In most algal species studied, the production of CHBr 3 and other halocarbons 
increased292, 322, 372 at higher irradiance with the exception of CH3I

292. CHBr3 production was shown 
to increase almost triple for light compared to dark conditions322. For Fucus serratus, the production of 
VHOCs increased from 3 to 12 h of irradiation451. It was also observed that di-halogenated 
compounds had high production rates compared to tri-halogenated VHOCs in longer periods of 
light442. In laboratory incubation studies, Sundström et al.447 maintained irradiation levels between 600 
and 15 µmol photons m-2 s-1, while Mtolra et al.330 had an irradiation range between 400 and 1500 
µmol photons m-2 s-1. Similar trend with higher VHOC emissions in response to irradiance levels has 
also been observed in natural habitats372, 452. At the sampling site of Fucus serratus, the irradiance was 
estimated post-collection to be ca 169 µmol photons m-2 s-1. To simulate dark conditions, the lower 
level was set to 4 µmol photons m-2 s-1; to induce stress the highest level was set to 334 µmol photons 
m-2 s-1.  
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average values for each factor were taken as midpoints, and two extremes were assigned as the 
minimum and the maximum. The average values were adopted to reflect the natural habitat 
of the sampled Fucus serratus as closely as possible. The values were also chosen as to enable 
exposure of algae to stressors but relating it to possible environmental factors variations. 
 

PH 
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292. CHBr3 production was shown 
to increase almost triple for light compared to dark conditions322. For Fucus serratus, the production of 
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light442. In laboratory incubation studies, Sundström et al.447 maintained irradiation levels between 600 
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µmol photons m-2 s-1. Similar trend with higher VHOC emissions in response to irradiance levels has 
also been observed in natural habitats372, 452. At the sampling site of Fucus serratus, the irradiance was 
estimated post-collection to be ca 169 µmol photons m-2 s-1. To simulate dark conditions, the lower 
level was set to 4 µmol photons m-2 s-1; to induce stress the highest level was set to 334 µmol photons 
m-2 s-1.  
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SALINITY 
 
Salinity of the water has been associated with the rate of production of VHOC by 
macroalgae327, 442. Hyposaline (22 PSU) medium showed increased VHOCs production whereas 
hypersaline (50 PSU) decreased production of VHOCs. Normal salinity of seawater450, 36 psu was 
used as the midpoint, 22 and 50 PSU were taken as the minimum and maximum, respectively, as 
was used by Bondu et. al442  in order to stress macroalgae. 
 

H2O2 CONCENTRATION 
 
H2O2 is a by-product of photosynthesis and is utilized in oxidation of halides to form reactive 
HOX intermediate in production of VHOC311, 453. Meristiella gelidium showed increased production 
of tri-halomethanes, especially bromo-chloro compounds upon addition of H2O2. Iodinated 
compounds showed no significant increase in production on addition of H2O2

319. Addition of H2O2 
to algae was observed to increase formation of brominated compound286. Bromoform 
production decreased on removal of H2O2 while it was enhanced in presence lower concentrations 
(100 µM) than higher concentrations (1 mM) of H2O2 on studying green macroalgae322. Artificial 
stressing of macroalgae with H2O2 concentrations more than 3 mM have been shown to cause 
cell damage443, 454. 3 mM was therefore taken as the maximum concentration, 1.6 mM as the midpoint 
and 0.25 mM as the minimum.  
 

DOM 
 
HOX reaction with DOM is one of the mechanisms that contribute to production of halocarbons286, 

322. Reactive DOM was shown to be a contributor in CHBr3 and CH2Br2 production. Production of 
both VHOCs was enhanced for nearshore seawater compared to offshore seawater. The same was 
observed at the mouth of a river during precipitation period as reactive DOM was suspected to 
be of terrestrial origin357. CHBr3 production by Ulva lactuca decreased when DOM was removed from 
the seawater medium322. Use of oxooctanoic acid as an organic substrate in presence of 
bromoperoxidases and H2O2 lead to formation of CHBr3, CH2Br2 and CH3(CH2)4Br455. To represent 
the natural environment of Fucus serratus, the DOM concentrations of Skagerrak (90-160 µM)456 
were considered since they apply to the shores of Gothenburg. In many aquatic systems, 
dissolved fulvic acid accounts for ca 40-60% of the DOM. Humic substances varies between 50% in 
the coastal environment to 10% in the open sea457. Humic acid, glycolic acid, and alginic acids, 
together with other cell metabolites increase the production of brominated VHOCs458. 

To represent DOM humic acid was used. The concentrations for the humic acid were estimated 
using levels of fulvic acid expected in DOM. The minimum point was obtained by subtracting the 
difference between the midpoint and the maximum point from the midpoint. The resulting values 
were 56, 112, and 168 µM. 
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METHODS 

ALGAE 
 
Fucus serratus was collected from the Gothenburg’s shores. The alga was sampled in a glass bottle 
and completely submerged in natural seawater. The container was covered with black plastic bag to 
reduce effects due to direct sunlight. The alga was kept refrigerated and used the following day. 
The algae leafs were cut in whole pieces   of approximately 1.5 g wet weight and incubated in 
150 ml of artificial seawater (ASW) of differing salinities as indicated by the design matrix. 10 g wet 
algal weight per litre of medium has been shown to be optimal weight35. The algae samples were 
freed of any foreign objects by washing with ASW prior to the placement into the incubation bags. 
 

ARTIFICIAL SEAWATER MEDIUM 
 

36 PSU Artificial seawater (ASW) medium was prepared according to Kester et al39. NaF was 
omitted in the mixture due to its toxicity. The salts used are NaCl (˃99.5%Merck), Na2SO4 

anhydrous (99%, Merck), KCl (99.0-100.5%, Sigma Aldrich), NaHCO3 (99.5%, Merck), KBr 
anhydrous (≥99%, Sigma Aldrich), H3BO3 (˃99.5%, Fluka), MgCl2 hexahydrate (Merck, CaCl2 

hexahydrate (98%, Sigma Aldrich) and SrCl2 hexahydrate (99-103%, Merck). The actual masses 
are shown in Appendix 10. The salts were dissolved in ultrapure MilliQ water (Elga Purelab Flex, 
18.2MΩ). ASW was then nutrient enriched according to the F2 medium procedure56. 22 and 50 
PSU ASW was also prepared the same way but with adjustment of reagents to meet the required 
concentrations as shown in Appendix 10. The salinities of the ASW were verified with a salinity 
meter (Atago PAL-03S Pocket refractometer). They were found to be slightly higher than expected 
values. However, this was not a problem because the salinity meter only measures chlorinity and not 
the sum of chlorinity and conductivity hence higher values observed39. The values were 22, 35 and 
50 PSU respectively. 
 

PH ADJUSTMENT 
 
In order to obtain the required pH values of 7.2, 8.2 and 9.2, the pH of the ASW media were 
adjusted  with  either  0.1M  NaOH  or  HCl.  A pH meter (Metrohm  691)  was  used  for 
measuring. The 0.1M NaOH was prepared from NaOH pellets (˃99% Riedel-de Haen) and 
0.1M  HCl  was  prepared  from  concentrated  HCl  (≥37%,  Sigma  Aldrich). 
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INCUBATION OF ALGAE 
 
Tedlar® bags were filled with 150ml of the required media. The bags with media were incubated in 
the phytotron (CLF Plant Climatics, Model LT-36VL, Emersacker, Germany) overnight to 
acclimatise to the temperature and the different light irradiances. The light source was white 
fluorescent bulbs (Philips 700 series, 32 watts Alto 2). The required irradiances were obtained by 
shading the different sections of the phytotron with black plastic bags. The photon flux rates were 
verified with an irradiance meter (Model LI-1400 data logger). The actual irradiance values are 
shown in Appendix 9. 

 

After the media were left overnight in Tedlar® bags, the correct volume of concentrated 
H2O2    (≥30%,  Sigma  Aldrich)  was  pipetted  into  the  media  to  obtain  the  required 
concentrations as shown in Table 1. Different masses of humic acid (technical grade, Sigma Aldrich) 
were then added accordingly as in design matrix. This was followed by addition of algae mass. The 
Tedlar® bags were then sealed and air space removed using a glass sampling syringe (100ml 
Perfektum hypodemic, Popper and Sons Inc). This was done to ensure that no VHOCs in the water 
were lost to the air within the bags. The calculation of volumes of H2O2 pipetted and mass of humic 
acid added are shown in Appendices 7 and 6, respectively. 
 

SAMPLING 
 
After adding all the required ingredients and removing air space in the Tedlar® bag, approximately 
40ml of sample aliquot was immediately extracted using a glass syringe (100 ml Perfektum 
hypodemic, Popper and Sons Inc.). This was the sample for 0 hour. The samples were kept 
in glass sample vials with no head space sealed with PTFE septa (Chromacol Ltd) to avoid VHOCs 
escaping from the medium. The tedlar bags were placed back in different light intensities in the 
phytotron accordingly. Each sample coincided with a blank. The only difference between every 
sample and its blank was that the blank did not contain algae. Sampling was repeated after 3 and 
6 hours for every sample and blank. 
 

MEASUREMENT OF VHOCS 
 
A custom built P&T system with a GC-ECD chromatography system (Varian CP 3800 GC) was 
used. Samples were filtered through a 0.20µm sterile filter (Sarstedt Acr. & Co.) to remove 
particulate matter. The P&T GC-ECD system has been explained previously by Ekdahl and 
Abrahamsson23. The  P&T  system  has  electrically  actuated  valves,  mass  flow  controllers  and  
specially designed electronics. All tubing is made from stainless steel. The sample is injected using a 
syringe fitted with a filter through a valve into a 27.8 ml sample loop. The sample will then be 
transferred to a purge chamber. The purge chamber is mounted in two aluminium blocks. The 
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lower block is heated to 70°C to increase extraction efficiency while the upper block is cooled to 
approximately 0°C with a circulating mixture of water/glycol to minimise amount of water vapour 
in the gas. Ultrapure N2 was used as purge gas. The trap is made of stainless steel tubing filled with 
adsorbent (VOCARB, Superlco). It is placed in an aluminium block held at 0°C by an aluminium 
plate cooled by circulating water/glycol mixture. The cooling plate is pushed out of the trap during 
desorption. The trap is then rapidly heated to 240°C for desorption of the compounds. 
 

GC-ECD 
 
The separation of compounds was carried out with a Varian CP 3800 GC equipped with a 
63Ni ECD. The column used is a 57m capillary column with an internal diameter of 320µm. The 
column flow was 3.7 ml/min. Film thickness in the column was 1 µm, and the stationary phase was 
DB-624. Ultrapure N2 was used as the carrier gas and make-up gas with flow rate of 20 ml/min. 
The temperature program for the column oven is as shown in Table 4.2 below. The detector was 
set to 300°C.  
 
 

Rate (°C/min) Temperature (°C ) Time (min) Total (min) 
Initial 240 0.00 0.00 
14 24 6.49 14.70 
10 70 0.00 19.20 
3 80 0.00 22.54 
5 95 0.00 25.54 
12 160 0.00 30.95 
40 230 3.30 36.00 

    
Table 4.2 The temperature program for the column oven. 
 
Following VHOCs have been measured: iodomethane (CH3I), iodoethane (CH3CH2I), 
dibromomethane (CH2Br2), dichlorobromomethane (CHCl2Br), chloroiodomethane (CH2ClI), 
dibromochloromethane (CHBr2Cl), bromoiodomethane (CHBr2I), bromoform (CHBr3), and 
diiodomethane (CH2I2). 
 

DATA ANALYSIS 
 
PCA and OPLS-DA multivariate statistical analysis was performed using SIMCA software (version 
15.0.2 Sartorius Stedim Data Analytics AB, Umeå, Sweden). Data was pre-treated by centering. 
The experimental design matrix (DSD) and contour plots were generated in MODDE 12 software 
(Sartorius Stedim Data Analytics AB, Umeå, Sweden). 
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RESULTS AND DISCUSSION 

PCA ANALYSIS 
 

A PCA model was calculated including samples measured immediately after the introduction of algae 
into Tedlar® bags (referred to as 0 hours from this point onward) and at 3 hours after incubation, 
and blanks 0 and 3 hours after incubation. The samples collected at 6 hours and the corresponding 
blanks were not included into the model as they reached instrumental saturation. Unfortunately, the 
sample from experiment number 1 (see Table 4-A in Appendix 4.1) could not be measured due to 
instrumental error. The blanks followed the same DS matrix as the samples but were without any 
added algae. The resulting PCA model had 4 components with R2X(cum) value of 0.977 and 
Q2(cum) value of 0.792 (Figure 4.1).  
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Figure 4.1 Score (top) and loading (bottom) scatter plots showing the first two score and loading vectors, respectively. 
The score plot shows blanks at 0 hours (blue), blanks at 3 hours (green), samples at 0 hours (red), and samples at 3 hours 
(yellow). The loading plot shows instead the how different VHOCs have affected the distribution seen in the score plot. 

 
Blanks at 0 and 3 hours follow a similar trend and were notable because of a higher production of 
CH3I, which then decreased after 3 and 6 hours of incubation. The PCA model showed that most 
samples containing algae had a relative increase in VHOC concentration compared to the blanks, 
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with the exception of CH3I and CH3CH2I. It should be noted that there was a slight production of all 
other halocarbons in the blanks. There was, however, a net production of VHOC in all samples, 
which was calculated by subtracting the blank (results not shown).As 3 hours passed, the samples 
displayed a significant increase in the VHOC production (Figure 4.2).  

 

 

Figure 4.2. Loading column plot showing the influence of each VHOC on the model, where green column represent the 
impact of VHOCs along the first loading vector p1, and blue columns represent the impact of VHOCs along the second 
loading vector p2. 

Figure 4.2 shows which of the VHOCs had the greatest influence on the model and how significant 
they were (indicated by confidence interval bars). Along the first loading vector p1 the formation of 
all VHOCs, except CH3I, was significant. The formation of CH3I was instead significant along the p2 
vector. CH3CH2I was not significant in any vector, and was therefore disregarded from further 
analysis. The VHOCs that had the greatest influence on the separation along the first PC were (in 
decreasing order of importance) CHBr3, CHBr2Cl, CH2ClI, CH2BrI, CH2Br2, CHCl2Br, and CH2I2. 
The separation observed along the second PC was instead caused by (in decreasing order of 
importance) CH3I, CH2ClI, and CH2I2. It was clear that the reason for the separation of blanks and 0 
hour samples from the 3 hour samples was caused by a higher production of iodinated VHOCs 
(CH3I, CH2ClI, and CH2I2) by blanks, and other VHOCs, mainly CHBr3, in case of the 3 hour 
samples. These results agree with the well-established formation mechanisms of brominated and 
iodinated VHOCs, where HOX, a by-product of photosynthesis, reacts with DOM (for formation 
mechanisms, see Part II). The PCA model also suggests that CH3I follows a different formation 
pathway, which has been shown previously in the literature (see Part II on VHOC formation 
mechanisms). 
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To further investigate the dependencies between different abiotic factors and VHOC formation, 
OPLS and OPLS-DA models were calculated. For OPLS models, the Y was one of the factors at a 
time (pH, irradiance, humic acid concentration, H2O2 concentration, and salinity). However, 
regardless of Y, OPLS failed to calculate any components suggesting that there was no linear 
relationship between the observations (blank and sample measurements) and the selected Y. OPLS-
DA did not show any difference between, for instance, high and low concentrations of H2O2 in 
samples. The only OPLS-DA models that detected a difference between subsets of samples and/or 
blanks were dependent on time, i.e. if the measurement was taken at 0 or 3 hours. Thus, OPLS-DA 
did not provide any more information than was already observed in PCA. 

As no OPLS model was possible to calculate, it stood to reason that the design would reveal 
quadratic interactions and/or contribution from both linear and quadratic terms. Based on the 
observations gained from the PCA model, a selection of the more significant VHOCs was made for 
further detailed analysis of the DS design. The coefficient and contour plots for all remaining 
VHOCs can be found in Appendix 4.2. 
 

DS ANALYSIS 
 

The analysis of how different factors have contributed to the formation of VHOCs was done 
through the interpretation of coefficient and contour plots. The responses of several VHOCs were 
gathered following the design matrix (Appendix 4.1), where samples were taken at 0 and 3 hours. To 
arrive at the coefficient and contour plots presented here, the 0 hour samples were subtracted from 
the 3 hour samples. The resulting difference was used to calculate DS models. All DS models were 
fitted with PLS. No models could be calculated for 6 hours samples due to an oversaturation of the 
GC-ECD detector. Normally, this could be addressed by diluting the samples. However, the sample 
volumes were too small and no replicates had been made. Therefore, 6 hour samples were not 
modelled. A similar issue of too high response occurred in 3 hour samples for CH2Br2 and CHCl2Br, 
but since not all the measurements were oversaturated, these two VHOCs remained part of the 
design. The used design matrix can be found in Appendix 4.1 together with model statistics. 

The coefficient plots show whether factors are linear (X) or quadratic (X2) and if they have a 
negative or positive correlation with the sought response, which in this case is the production of 
VHOCs. In the coefficient plot, the significance of the factors is usually shown with confidence bars 
similar to Figure 4.2. However, no confidence bars could be calculated, as the model had too few 
degrees of freedom. One of the reasons behind this was the loss of one of the experiments spanning 
the design space due to instrumental error (experiment number 1 in Table 4-A, Appendix 4.1). The 
loss of one of the experiments in a DS design may potentially lead to confoundings between terms. 
Another reason for the lack of confidence bars was the lack of a sufficient number of centre points 
in the design space.  
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with the exception of CH3I and CH3CH2I. It should be noted that there was a slight production of all 
other halocarbons in the blanks. There was, however, a net production of VHOC in all samples, 
which was calculated by subtracting the blank (results not shown).As 3 hours passed, the samples 
displayed a significant increase in the VHOC production (Figure 4.2).  

 

 

Figure 4.2. Loading column plot showing the influence of each VHOC on the model, where green column represent the 
impact of VHOCs along the first loading vector p1, and blue columns represent the impact of VHOCs along the second 
loading vector p2. 

Figure 4.2 shows which of the VHOCs had the greatest influence on the model and how significant 
they were (indicated by confidence interval bars). Along the first loading vector p1 the formation of 
all VHOCs, except CH3I, was significant. The formation of CH3I was instead significant along the p2 
vector. CH3CH2I was not significant in any vector, and was therefore disregarded from further 
analysis. The VHOCs that had the greatest influence on the separation along the first PC were (in 
decreasing order of importance) CHBr3, CHBr2Cl, CH2ClI, CH2BrI, CH2Br2, CHCl2Br, and CH2I2. 
The separation observed along the second PC was instead caused by (in decreasing order of 
importance) CH3I, CH2ClI, and CH2I2. It was clear that the reason for the separation of blanks and 0 
hour samples from the 3 hour samples was caused by a higher production of iodinated VHOCs 
(CH3I, CH2ClI, and CH2I2) by blanks, and other VHOCs, mainly CHBr3, in case of the 3 hour 
samples. These results agree with the well-established formation mechanisms of brominated and 
iodinated VHOCs, where HOX, a by-product of photosynthesis, reacts with DOM (for formation 
mechanisms, see Part II). The PCA model also suggests that CH3I follows a different formation 
pathway, which has been shown previously in the literature (see Part II on VHOC formation 
mechanisms). 
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The contour plot shows the influence of both linear and quadratic factors. As shall be illustrated, no 
models were free from the influence of quadratic terms, meaning that the contour plots always 
display some degree of curvature. If the terms in the model were only linear, then the contour plot 
would have displayed straight lines (see example Figure 3.4 in Chapter 3). More on how quadratic 
terms should be interpreted can be found in section 3.1.2 in the beginning of this thesis. The redder 
the colour in the contour plot, the higher the estimated production of VHOC, while the bluer the 
colour, the lower the estimated production. The patterns of the contour plots at different salinities 
were identical for 22, 36, and 50 PSU for all VHOCs. Therefore, only the 36 PSU plots were shown 
in Figure 4.3 and contours plots that follow. The reader should note that the 0 and the negative 
values shown in the contour plots did not represent measured concentrations. Instead, these values 
were values calculated by the design model to span the design space.  

Table 4.2 shows a summary of the factors used in the design and their levels (low, medium, high). 

Factor Shorthand Low Medium High 
pH pH 7.2 8.2 9.2 
Salinity (PSU) Sal 22 36 50 
Humic acid concentration (mM) DOM 0.56 1.12 1.68 
H2O2 concentration (mM) H2O2 0.25 1.63 3 
Irradiance (µmol photons m-2 s-1) Lig 4 169 334 

 
Table 4.2. The factors used in the calculation of DS design models. 

Earlier investigations have shown that marine macroalgae produce all of the known VHOCs, 
including the ones examined here294-295, 319, 454. Current research indicates that most of VHOCs are 
produced as by-products of photosynthesis (see Part II) through scavenging of H2O2 and other 
ROS. This would mean that the response to different environmental stressors should be the same, 
which would have led to a similar response in the design space. Also, the formation of CH3I would, 
according to theory, differ from the formation of other VHOCs. During the investigation of 
coefficient and response contour plots it was evident that brominated VHOCs, with the exception of 
CHBr3, seemed to have been formed through similar mechanisms, while CH3I formed following a 
different pathway. The other iodinated VHOCs, CH2ClI and CH2I2, had a similar pattern in the 
design space as the brominated VHOCs. The response contour plots also revealed that the 
formation of VHOCs was far more complicated than had previously been thought, which was 
indicated by the presence of curvature in the design space. 
 

INTERPRETATION OF THE DS DESIGN 
 
The VHOCs CH2I2, CH2Br2, CHCl2Br, CHBr2Cl, CH2BrI, and CH2ClI all showed a similar circular 
concave pattern. The maxima observed in the contour plots corresponding to those compounds was 
dependent on the negative quadratic terms for pH (pH*pH) and humic acid concentration 
(DOM*DOM). The position of the maxima was determined by the magnitude of the linear terms for 
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pH and DOM (Figure 4.3 and Appendix 4.2). Thus the quadratic terms for the concentration of 
humic acid and pH had on the whole a significant positive contribution to the production of 
VHOCs compared to other factors in the design. Among the linear terms, there was a positive 
relationship between an increased VHOC formation and pH and DOM terms. The influence of 
DOM reported here supports the findings of laboratory experiments performed with the V-HPO 
enzyme and different DOM, where the production of brominated VHOCs was dependent on the 
chemical composition of DOM458. The exception from this was CH2I2 which had a negative linear 
pH term (Figure 4.3). 

 

Figure 4.3. Coefficient (top) and response contour (bottom) plots showing the influence of five different factors on 
formation of CH2I2. The contour plot shows the influence of four factors at salinity 36 PSU on the production of CH2I2. 
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To exemplify how the design model for a VHOC can be interpreted and related to existing literature, 
the results observed for CH2I2 were interpreted as follows. The formation of CH2I2 specifically was 
predicted to have a maximum at low irradiance, pH range from ca 7.6 to 8.6, low-medium to high 
humic acid concentrations, and high H2O2 concentrations. As for most VHOCs, CH2I2 formation 
followed a circular concave pattern. Production was estimated to drop as irradiance increased, and to 
halt completely at medium and low H2O2 concentrations and high pH.  

Similarly to many other VHOCs produced by algae, the increased production of CH2I2 has been 
associated with light-induced stress330, 459 through the production of H2O2 during photosynthesis. 
Although H2O2 in the design was indeed connected to increased CH2I2 formation, it was not 
associated with high irradiance. Thus, H2O2 produced through photosynthesis, which was 
independent from the H2O2 added to the incubation bags, could not have caused the observed 
maximum. The mechanism for CH2I2 formation could be dependent on other parameters than light-
induced stress. The stressor inducing the CH2I2 production could instead be induced by other ROS. 
An increased ROS production may have been caused by oxidative stress induced by bacterial 
infection. Küpper et al.258 have shown that CH2I2 was produced as a result of a burst in ROS 
scavenging to mitigate bacterial growth. It has also been demonstrated that iodinated compounds 
such as CH2I2 tend to have higher emissions in response to the presence of oligoguluronates, which 
are generated during the degradation of the cell walls by bacteria460.  

Therefore, at lower irradiance, the extracellular H2O2 added to the incubation medium may have 
induced stress, but it was less likely to be connected to photosynthesis. At medium irradiance and 
salinity of 36 PSU, the production of CH2I2 was estimated to still be high, although lower than at the 
predicted maximum. The decrease in CH2I2 at those ‘normal’ conditions could have been caused by 
competing degradation mechanisms. The degradation of CH2I2 via photolysis is the primary 
degradation pathway of this VHOC in seawater461. According to earlier reports, the degradation of 
CH2I2 happens after 12 to 30 minutes462-463. 

Another explanation of the production of  CH2I2 by Fucus serratus under darker conditions could be 
connected to the activity of nonspecific methyltransferases, as has been shown for the production of 
CH2Br2

280. However, there has been to date no concrete evidence to suggest that involvement of 
methyltransferases in algae can result in CH2I2 production. The author of this thesis speculates that 
the bacteria themselves could have also contributed to CH2I2 production, possibly by methylation of 
CH3I. This assumption was based on the earlier observations of CH2Br2

348, 352, 376, 464. 

The production of CH2I2 has been shown to have strong correlation with total chlorophyll (chl a) 
and total bacteria counts together with the acidification of seawater in mesocosm studies performed 
in the Arctic462. This study showed an interaction between bacterial abundance and the acidification 
level, which the author interprets as a nonlinear behaviour of CH2I2 production. It was shown that 
there was a negative correlation between bacterial abundance and CH2I2 production, while at the 
same time CH2I2 had increase production per bacteria upon acidification. It was concluded that the 
observed increase of CH2I2 in the seawater was either due to an increased CH2I2 production by 
bacteria or by a decrease in bacterial degradation as a response to acidification. As evident from 
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Figure 4.4, the pH*pH term had a negative correlation with CH2I2 production, which could support 
the connection between acidification and increased CH2I2 emissions. It was however not possible to 
correlate this to bacteria directly as no bacterial analysis of the samples was performed. 

An interesting exception from the circular concave pattern observed for CH2I2 and the majority of 
VHOCs, was CHBr3, which had a unique formation predicted by the design. Instead of the circular 
concave pattern, the formation of CHBr3 followed an ellipsoidal concave pattern (Figure 4.4). 

 

 

Figure 4.4. Coefficient (top) and response contour (bottom) plots showing the influence of five different factors on 
formation of CHBr3. The contour plot shows the influence of four factors at salinity 36 PSU on the production of 
CHBr3. 
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After 3 hours of incubation, maximum production was predicted at high humic acid concentrations, 
medium H2O2 levels, low irradiance, and high pH. The production of CHBr3 was estimated to stop 
completely at medium irradiance, low to medium pH, medium humic acid concentrations, and low 
and medium H2O2 concentrations. The deviation from the behaviour observed for all other 
brominated VHOCs was caused by a negligible negative pH*pH term and a strong DOM*DOM 
term. In addition, compared to other brominated VHOCs, CHBr3 displayed stronger dependence on 
linear terms for pH and for humic acid, which had a positive correlation with CHBr3 production. As 
the pH term was positive, it meant that the CHBr3 emissions were predicted to increase upon 
increasing pH.  The most dominant quadratic contributions were Lig*Lig (positive), H2O2*H2O2 
(negative), and DOM*DOM (positive).  

In the literature, the main formation mechanism for CHBr3 has been ascribed to the activity of V-
HPO enzymes in seaweeds286. V-HPO produce reactive halogenated intermediates such as HOX, 
which then react with ketones and/or DOM. Indeed, Liu et al.458 showed that the presence of humic 
acid increased the production of brominated VHOCs, including CHBr3. This resonates with the 
observation in Figure 4.4, where the highest production was observed for high humic acid 
concentrations. The connection between high pH and high CHBr3 production in samples was harder 
to explain. In previous publications, it was observed that an increase from pH 8.0 to 8.8 led to higher 
CHBr3 levels. However, at low irradiance, the exact opposite was true330. Here, the highest 
production was estimated to be found at high pH levels and low irradiance, which does not conform 
to previously reported results. 

Production decreased between 4.1 µmol photons m-2 s-1 and 169 µmol photons m-2 s-1, but then 
increased again at 334 µmol photons m-2 s-1. Higher irradiance did therefore influence the production 
of CHBr3 as interpreted by the positive quadratic term Lig*Lig. This increase could be due to light 
induced stress, which in turn increased the production of H2O2 and the activity of V-HPOs. The 
dependency on H2O2 concentration was shown to have a strong association with the production of 
brominated VHOCs460. It was nevertheless puzzling that the highest production was observed at low 
irradiance. Contrary to what was found here, the evidence in the literature states that higher 
irradiance causes high production of CHBr3

292, 322, 372, 459. For instance, the increase of concentration of 
CHBr3 has been observed to increase between 3 and 9 hours incubation with high irradiance 
exposure, and then decrease when reaching the 12 hour mark451. With the short incubation times 
reported here, the highest production of CHBr3 ought to have been estimated at highest irradiance, 
which was not the case. Alternatively, the observed lower production at 334 µmol photons m-2 s-1 
could be explained by there being competing degradation mechanisms at the highest irradiance, thus 
decreasing the overall CHBr3 estimation at that irradiance. CHBr3 has been reported to be degraded 
by bacterial hydrolysis376-377, abiotic hydrolysis370, and photolysis286, 397, 465. Although photolysis and 
hydrolysis may have seemed to be a likely degradation pathways to an explanation of the observed 
results, it is too slow372 to have occurred in the incubations performed here.  

The dependence on low irradiance could indicate that bacterial production of CHBr3 could have 
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The relationship between CH3I formation and DOM was more complicated since the enzymatic 
pathway differs from the other VHOC through the methylating enzymes. However, the contour and 
coefficient plots reveal that the formation of CH3I was positively dependent on DOM in a convex 
pattern while having a somewhat weaker negative dependence on pH in a concave pattern. The 
involvement of DOM could be attributed to abiotic hydrolysis of halogenated humic acid, which can 
result in the production of CH3X

358, 368. Although the humic acid molecule indicates susceptibility to 
both acidic and basic hydrolysis, it is not known whether the hydrolysis of halogenated DOM species 
is fast enough to have occurred within the frame of a 3 hour incubation. Production of CH3I 
increased roughly by two orders of magnitude after 3 hours of incubation, suggesting that 
production of this VHOC was linked to biological processes by algae and/or bacteria, both of which 
have been identified as sources of CH3I

239, 281. The optimal combination of factors for highest CH3I 
production was found to be at pH 8 to 8.4, highest humic acid concentration, and low and high 
H2O2 concentrations, and lowest irradiance. The influence of the linear and the quadratic 
H2O2*H2O2 terms was low compared to other factors. As one of the factors contributing to 
highest CH3I production was low irradiance, this author stipulates that production of this VHOC 
was not solely connected to photosynthesis. Nightingale292 observed that for the brown algae 
Asocphyllum nodosum high irradiance did not result in increased CH3I emissions, which seems to 
suggest that the production of CH3I was not strictly linked to photosynthesis. On other hand, 
phytoplankton and cyanobacteria have been identified as main contributors of CH3I

466.  

At medium irradiance (169 µmol photons m-2 s-1), the production of CH3I decreased and halted at 
low pH, but increased again at highest irradiance (334 µmol photons m-2 s-1). This suggests that if 
photosynthesis was involved, its contribution would stem primarily from a stress-related response to 
high irradiance, similarly to that observed for CHBr3. The decrease in production of CH3I due to low 
pH has been previously noted in the literature329, and was reflected by the negative quadratic term 
pH*pH in Figure 4.5 which indicates a decrease at both low and high pH values. A possible 
contribution to CH3I production from algae not associated with H2O2-dependent pathways could be 
the production of CH3X by SAM-S-HG enzymes. In near-dark conditions (4 µmol photons m-2 s-1) 
the CH3I production may be instead explained by bacteria351-353. This is feasible as the algae were not 
pre-treated in any way before being incubated – therefore, any bacterial strains associated with the 
Fucus serratus would have been present in the sample. The results observed by this author were 
therefore in line with the observations made by Manley and Dastoor448 and Klein281, which identified 
CH3I production as stemming both from the algae themselves and from the associated bacterial 
colonies. In particular, CH3I production was associated with cellular destruction caused by bacteria, 
possibly because of the involvement of bacterial nonspecific methyltranspherases382. Vibrio spp., 
which was shown by Klein281 to produce CH3I, are widespread in coastal waters in Sweden, including 
the sampling site of Fucus serratus that was used for experiments here467. These bacteria are thallus 
associated and are responsible for the degradation of components of the macroalgal cell walls468, 
including fucoidan, a polysaccharide found only in brown seaweeds. As the degradation of algal cell 
walls and the bacterial production of CH3I have not been indicated to be light dependent, the author 
hypothesises that the maximum at low irradiance could be caused by algae-associated bacteria.  
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CONCLUSIONS 
 

The DS design clearly showed that production of VHOCs is not as straightforward as it seems. The 
connection between increased pH and increased production of brominated VHOC and CH2I2 has 
been shown in earlier laboratory experiments, where for instance an increase from pH 8.0 to 8.8 led 
to higher CHBr3, CHBr2Cl and CH2I2 levels330. The nonlinear formation was indicated in this 
investigation, where a lowered light intensity decreased the amounts formed, even if light intensity 
has a large impact on photosynthesis, and, thereby, on the formation of H2O2. In this investigation, 
there was a positive linear dependence between pH and VHOC production, but in general a negative 
correlation with the quadratic term pH*pH.  A decrease in production of CH3I due to low pH has 
also been previously noted in the literature329. 

Surprisingly, most of the VHOC did not show a high dependency on light intensity contrary to 
earlier studies. Investigations have shown that the increase in production with increasing light 
intensity could be due to light induced stress, which in turn increased the production of H2O2 and 
the activity of V-HPOs. The dependency on H2O2 concentration was shown to have strong 
association with the production of brominated VHOCs460. Contrary to what was found here, the 
evidence in the literature states that higher irradiance causes higher production of VHOCs292, 322, 372, 

459. For some of the other VHOCs, the influence of irradiance was more pronounced, which could 
indicate competing formation/degradation mechanisms. For CH2I2 it should be noted that there was 
a possible degradation mechanism as it has been reported to occur within the time frame of the 3 
hour incubation462. 

The influence of H2O2 is related to light-induced stress, and it has been shown that algae respond 
rapidly to light-induced stress with an increased activity of V-HPO286,330, 459, and thereby with the 
formation of HOX. In the case of the research reported here, the influence of H2O2 was not at all 
clear cut. The responses for the individual VHOC all show different dependencies with both 
negative and positive linear relationships as well as with positive and negative H2O2*H2O2 terms. 
This indicates that more factors have been involved in the production of VHOCs which were not 
considered in the design space.  

Another uncertain influence on the observed results was the role of bacteria. The dependence on low 
irradiance for the majority of VHOCs could indicate that bacterial production and/or degradation of 
VHOC occurred in the experiments. This is a possibility since the algae and the ASW medium were 
not anexic.  

Although the author of this thesis attempted to connect the observed behaviour to existing 
knowledge regarding production and degradation mechanisms, it was obvious that the available 
knowledge on how certain VHOCs behave is insufficient. The results obtained here indicate that 
some production mechanisms, such as the high production of CHBr3 caused by high irradiance, may 
depend on abiotic factor in a different manner than previously established in the literature. Similarly, 
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some of the achieved results contradicted already established mechanisms or indicated that 
previously unknown mechanisms may have been involved. These discrepancies were interpreted by 
the author as stemming from nonlinear factor interactions, and possibly interactions that were not 
considered by the DS design, i.e. two- or multifactor cross-terms (for example Sal*pH). As the study 
of this type was unprecedented, previously published results indicate a fallacy in how biogenic 
VHOC emissions should be considered. The results of DoE presented here should serve as a strong 
incentive to encourage the multivariate paradigm in VHOC-dedicated research. The design used here 
was unfortunately not able to assist in distinguishing which mechanism could have caused an 
increase or decrease in VHOC production. For the majority of analysed VHOCs, the salinity seemed 
to influence Fucus serratus less on the whole compared to, for instance, humic acid. There were some 
similarities in production patterns (i.e. response contour plots), which may suggest that these 
VHOCs follow similar or co-dependent production mechanisms. An example of such similarity was 
the production of CH2BrI and CHCl2Br, which followed an identical pattern (see contour plots in 
Appendix 4.2). CH3I have been shown by this enquiry to follow a completely different formation 
pattern, which was consistent with earlier reported results in the literature. 

Keng et al.239 point out that the majority of incubation studies are short term, lasting from 30 
minutes to 3 months. Such short-term stresses cannot be representative of the full life-cycle of algae 
and in turn how that influences the dynamics of VHOC production. In our study, the short-term 
incubation and other resource-limiting factors produced results which are far from exhaustive. 
However, the insights provided here are the first to illustrate previously unknown relationships 
between various environmental factors. In response to the need of more research regarding 
multifactor interactions239, the principle behind our methodology can be germinated into a wide 
range of future laboratory and mesocosm studies devoted to elucidating the effects on biogenic 
VHOC production. In addition to the benefit of studying multifactor interactions, a usage of DoE 
and other multivariate methods may contribute to more standardised procedures within the field. 
Further, the DS analysis also indicated that many mechanisms could be dependent or co-dependent 
on the production and degradation by bacterial communities associated with algae. This calls for 
more research regarding the contribution of bacteria to emissions of VHOCs from the seas, as too 
few mechanisms are currently known.  

It is the hope of the author that the knowledge amassed from future multivariate laboratory and 
mesocosm studies could be then used to study the production of VHOCs in the algae’s natural 
environment. 
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APPENDICES FOR CHAPTER 4 

APPENDIX 4.1 – THE DESIGN MATRIX 
 

Exp No  Run Order  pH Salinity Light H2O2 DOM 
1  3  8.2 50 334 0.25 0.56 
2  9  8.2 22 4 3 1.68 
3  11  9.2 36 4 0.25 1.68 
4  1  7.2 36 334 3 0.56 
5  4  9.2 22 169 3 0.56 
6  6  7.2 50 169 0.25 1.68 
7  7  9.2 22 334 1.63 1.68 
8  8  7.2 50 4 1.63 0.56 
9  5  9.2 50 334 3 1.12 
10  10  7.2 22 4 0.25 1.12 
11  2  8.2 36 169 1.63 1.12 

 

Table 4-A. The DS design matrix consisting of 10 experimental runs and 1 centre point run (exp No 11). Experiment 
number 1 could not be measured due to instrumental error. The factors considered were pH, salinity (psu), irradiance 
(light, µmol photons m-2 s-1), H2O2 concentration (mM) and humic acid concentration (DOM, mM). 
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Figure 4-A. Summary of fit for all VHOCs considered in the DS design. Green columns show R2 values and blue the Q2 
values. 

  R2 Q2 
CH3I 0.99778 0.871397 

CH3CH2I 0.993851 0.759485 
CH2Br2 0.999637 0.783173 

CHCl2Br 0.990333 0.748869 
CH2ClI 0.977219 0.463065 

CHBr2Cl 0.994105 0.857217 
CH2BrI 0.991355 0.786265 
CHBr3 0.999009 0.714184 
CH2I2 0.999538 0.882499 

 

Table 4-B R2 and Q2 value corresponsing to Figure 4-A. 
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APPENDIX 4.2 – RESPONSE CONTOUR PLOTS FOR OTHER VHOCS 
 

 

Figure 4-B. Coefficient plot (top) and contour plot (bottom) for CH3CH2I. 
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Figure 4-C. Coefficient plot (top) and contour plot (bottom) for CH2Br2. 
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Figure 4-D. Coefficient plot (top) and contour plot (bottom) for CHCl2Br. 
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Figure 4-C. Coefficient plot (top) and contour plot (bottom) for CH2Br2. 
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Figure 4-D. Coefficient plot (top) and contour plot (bottom) for CHCl2Br. 
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Figure 4-D. Coefficient plot (top) and contour plot (bottom) for CHCl2Br. 



200 
 

 

Figure 4-E. Coefficient plot (top) and contour plot (bottom) for CH2ClI. 
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Figure 4-F. Coefficient plot (top) and contour plot (bottom) for CHBr2Cl. 
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Figure 4-E. Coefficient plot (top) and contour plot (bottom) for CH2ClI. 



200 
 

 

Figure 4-E. Coefficient plot (top) and contour plot (bottom) for CH2ClI. 
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Figure 4-F. Coefficient plot (top) and contour plot (bottom) for CHBr2Cl. 

201 
 

 

Figure 4-F. Coefficient plot (top) and contour plot (bottom) for CHBr2Cl. 
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Figure 4-G. Coefficient plot (top) and contour plot (bottom) for CH2BrI. 
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Figure 4-G. Coefficient plot (top) and contour plot (bottom) for CH2BrI. 
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Figure 4-G. Coefficient plot (top) and contour plot (bottom) for CH2BrI. 
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CONCLUSIONS AND LOOKING TO THE FUTURE 
 

My name is Truth and I am the most elusive captive in the universe. 
Carl Sandburg 

 

The research presented in this thesis represents a comprehensive contribution to understanding how 
complex biological matrices and environmental phenomena can be approached through machine 
learning methods. The achieved results have shown several benefits of using DoE and linear 
projection algorithms in the study of complex multicomponent systems. In addition, the results 
presented here were of assistance in identifying several knowledge gaps, while also contributing to a 
deeper understanding. Several issues found in machine learning methods when applied to data 
generated from complex measurements have been in focus in this thesis, such as non-selectivity and 
nonlinearity; how these issues impact the performance of the algorithms; and how methods should 
be developed to address them. 

Although the nonlinearity issue was not resolved with linear projection algorithms per se, the author 
concludes that these algorithms are suitable tools in identifying nonlinear behaviour. From an 
analytical point of view, applying such algorithms before turning to more complex nonlinear 
algorithms (e.g. neural networks, regression trees, etc.) allows for experiments that are more 
resource-efficient. The balancing act between generating information that is of as high quality as 
possible and aiming to reduce resource consumption is, after all, one of the social responsibilities of 
the modern analytical chemist469-470. Linear projection algorithms perform most strongly, however, if 
the experimental space was statistically designed and if, when interpreting, several different 
algorithms are used in combination. In spectral analysis particularly, such interpretative approach is 
of great benefit, as it gives a more accurate representation of the analyte and matrix behaviours – as 
has been shown throughout this thesis, linear algorithms combined with DoE facilitate the detection 
of hidden peaks, nonlinearities, false-positives, and complex interactions between chemical species. 
This kind of EDA-based thinking is in stark contrast to a common fallacy in spectroscopy, where a 
few peaks are analysed or ‘convenient’ spectral regions are examined, thus missing potential false-
positives and other features which threaten the validity of a method. 

Unfortunately, the insights linear projections algorithms offer are limited if the studied system is too 
complex, regardless of whether DoE was used or not. This was illustrated in Chapters 1 and 3, which 
shed light onto the possibilities and shortcomings of T-OPLS and also were the first thorough 
examination of this algorithm. T-OPLS was like OPLS capable in separating overlaps. In addition, as 
was shown in Chapter 3, T-OPLS offers more in-depth information for qualitative spectral 
interpretation compared to solely using PCA and/or OPLS. T-OPLS is therefore an excellent tool 
for highlighting hidden spectral features and complex matrix effects. T-OPLS was, however, not 
deemed capable of pinpointing where the nonlinearities originate and how they should be 
interpreted. The presence of co-dependencies in turn caused the issue of false-positives, which 
suggests that T-OPLS was not sufficiently selective unless certain conditions were met. In Chapter 1, 
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the non-selectivity between the IS and the analytes, DOP and DOX, was caused in part by the lack 
of statistical design, thus making T-OPLS unsuitable. The nature of the performed analysis would 
not have made DoE possible. However, the research reported in Chapter 1 illustrates how a method 
can fall short if no proper design is in place.  

A designed experimental space was analysed with T-OPLS in Chapter 3. Although the analysis of the 
design made it clear that several peaks followed nonlinear behaviour, T-OPLS could not be fully 
relied on to corroborate the observations made in the analysis of DoE. The design did however 
contribute to the understanding of where the co-dependencies may have originated – something T-
OPLS alone could not do. The investigation of T-OPLS reported here was by no means exhaustive. 
More studies where the experiments are statistically designed would be of great benefit in 
understanding T-OPLS – in particular, such a design would clarify whether the co-dependency in 
signals stems from linear or nonlinear sources. The author of this thesis strongly recommends a 
systematic examination of T-OPLS using simulated Raman spectral responses, which follow a DoE 
matrix. The results in Chapters 1 and 3 stress yet again the need for designed experiments to facilitate 
interpretation of calculations performed by linear projection algorithms, especially in systems with 
low SNR and nonlinear effects. A possible future way of working to get fully functional nonlinear 
modelling with Raman and SERS data would be to have a well-developed general nonlinear deep-
learning ANN model. In order to generate enough data for such a model, it could be built through a 
collaborative effort of academia and industry. This model would supply the foundation for how 
Raman spectra behave in different situations. To adapt to the new research task, it would be possible 
to add a couple of hundreds of spectra preferably from designed experiments and to retrain the last 
layers of the ANN. Alternatively, the last layers of the ANN may be replaced by an OPLS model as a 
shortcut to interpretability. This way of working already exists for image analysis and is called 
transfer learning. 

DoE is a cornerstone for increased understanding of complex systems and phenomena in general 
and lends itself to the study of both linear and nonlinear systems in a well-defined and efficient 
manner. Similar to the sentiment expressed during the Faraday Discussions1, the author of this thesis 
wished to put more emphasis on the importance of experimental design and on  knowledge of the 
sample matrix. This was achieved by highlighting the benefits of a designed experimental space in 
Chapters 2 and 4. In the case of Chapter 2, a mixture design combined with PLS proved to be a 
robust method for quantification of an analyte in a complex biological matrix. In Chapter 4 DoE 
helped to illustrate the complexity of an environmental phenomenon in such a way previously 
assumed knowledge may be called into question. The research in Chapter 4 in particular shows that 
even for a natural system of high complexity, it is possible to construct representative design spaces. 
Although this particular application was a short-termed laboratory study, it is more than plausible to 
use DoE on a much larger scale, both for laboratory, mesocosm, and even for field studies. In 
situations where designed experiments are in need of complementary tools, it would be ideal to have 
nonlinear modelling methods that provide easily interpretable results. One obstacle in the experiment 
interpretations has been that such methods have not been readily available during the thesis work.  
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One of the basic premises behind DoE is the reduction of the required experimental runs; 
application of DoE should therefore ameliorate the practical disadvantages of large scale, long-term 
environmental studies. Further, DoE offers a more comprehensive and objective interpretation tool, 
which provides a solid statistical foundation. The multivariate nature of DoE along with the 
aforementioned benefits makes it particularly attractive for the study of natural phenomena and 
complex biological matrices. The author of this work hopes therefore for the expanded 
implementation of statistically designed experimental spaces in environmental sciences and in 
analytical spectroscopy.  
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