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Abstract
In order for humans to have meaningful interactions with a robotic system, this system should be capable
of grounding semantic representations to their real-world representations, learn spatial relationships and
communicate using spoken human language. End users need to be able to query the system what objects it
already has knowledge of, for more efficient learning. Such systems exist, but require large sample sizes,
thus not allowing end users to teach the system more objects when needed.

To overcome this problem, we developed a non-mobile system dubbed Kille, that uses a 3D camera, SIFT
features and machine learning to allow a tutor to teach the system objects and spatial relations. The system is
built upon the ROS (Robot Operating System) framework and uses Opendial software as a dialogue system,
for which a ROS support was written as part of this project. We describe the hardware of the system, the
software used and developed, and we evaluate its performance.

Our results show that Kille performs well on small learning sets, considering the low sample size it uses
to learn. In contrast to other approaches, we focus on learning by a tutor presenting objects and not by
providing a dataset. Recognition of spatial relations works well, however no definitive conclusions can be
drawn. This is largely due to the small number of participants and the subjective nature of spatial relations.
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1 Introduction
My bachelor’s education has been in Artificial Intelligence and my bachelor’s thesis was in the field of
language technology, about the detection of multi-word expressions. It is therefore only fitting that my
master’s thesis is in the same area, where language technology and artificial intelligence meet. This project
is about recognising objects, learning names for those objects, and the spatial relations between them. In
contrast to machines, humans do not generally learn about new objects or spatial relations from a list of
examples, but instead learn incrementally by seeing examples over time. Learning happens interactively
through dialogue. This thesis describes work on learning objects and spatial relations with a computer in a
similar manner.

A very important feature of robots that are to interact with humans is that the language that is used is
situated. The language relates to the real world and the objects and entities in it. This means that these
robots have to know about the real world, to be able to have a useful conversation or to follow instructions
from a human, whether it is a human tutor or a human wanting the robot to accomplish a certain task.
Children make the connection between words and what they perceive at a very early age, but making this
connection is not an easy task for automated systems. Allowing these systems to link the real world they
perceive with their cameras to their semantic representation is very valuable, and is currently a hot topic in
both academia and the commercial world. It is a step that needs to be taken towards the goal of meaningful
interaction, as without this so called grounding a system would not be capable of grasping the true meaning
of a word. Being able to refer to objects by using words and the relationship between these words and
the real world form the foundations of linguistic communication (Roy, 2005). Grounding is defined as
connecting symbolic descriptions of the real world to non-symbolic properties (Harnad, 1990). Symbolic
descriptions are concepts, like names of objects or other entities. Non-symbolic properties are pixel values,
but also the higher level things that can be combined from these pixel values. The SIFT (Scale-Invariant
Feature Transform) (Lowe, 1999) features used for this work are a good example of can be abstracted
from combining pixel values. SIFT features are descriptions of interesting areas or points in a picture. The
features obtained by combining pixel values can be processed even further. The features are compiled into
models. Non-symbolic properties can become symbolic when a name is attached to them. This happens
when a name is attached to something in the real world (tangible objects), but also when a name is attached
to something that is not tangible, e.g. spatial relations and other things that have a linguistic representation.
By grounding, sensory perception is linked to the real world. The necessity of grounding becomes more
evident when we think of an utterance like put the glass of water next to the jar. The person or robot spoken
to will need to grasp the meaning of glass, of water, and of jar. In addition, it needs to understand which
glass of water and which jar are referred to (Kennington et al., 2015).

Presently, building of models of objects is heavily researched. The vast majority of this research uses large
databases of pictures to apply deep-learning algorithms to, in order to train neural networks that are akin
to a biological brain. This approach is highly successful, but only works when a large database of images
is available. Not only well-known objects for which lots of images are available need to be grounded. The
world contain lots of items that are unique, or otherwise not found in many other places. The world is
constantly changing and systems that operate within the real world will often encounter novel situations
that they have not been programmed for and will need to learn new things or concepts and work with
those. This means end users will have to be able to teach the robots new objects. As the vast majority of
users are computer language-naïve, end users will only be able to do this when the robot speaks a human
language (Lauria et al., 2002). Interactive learning with human language is an active research field (Cooper
& Larsson, 2009; Larsson, 2013; Dobnik, 2009). There is also a lot of interest in communicating with
computers through natural language in its spoken form. This is demonstrated by commercial successes such
as the Google Now and Apple Siri software and the Microsoft Kinect hardware. Spoken language-steered
applications, as well as applications that can perceive the real world through vision or touch are a step towards
incorporating machines into our society even further.
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System Hello, I want to learn some objects!
Presents a book.
User Do you know what this is?
S I do not know what this is.
U This is a book.
S Okay, this is a book. Could you show me more objects?
P a bottle.
U This is a bottle.
S Okay, I learned a ’bottle’.
P the bottle next to the book.
S I see a bottle and a book. Could you tell me where these things are?
U The bottle is to the left of the book.
S Okay.

Table 1: Example conversation of the ideal system.

Robotic systems will not only have to be able to handle known and novel objects, they will also need to be
able to work with spatial relations. Spatial relations are not as straightforward as many that are not familiar
with the field may think (Dobnik, 2009). A phrase like to the left of does not simply mean the object would
have a lower x coordinate if it was drawn in a graph, but is much more nuanced and complicated in human
language and depends on many factors such as the direction an object is facing. There is extensive research
done on this topic (Coventry et al., 2001; Regier & Carlson, 2001), but most of this research does not
attempt to combine geometric representations with other sources. Camera imagery introduces the issue of
inaccuracy, as especially consumer grade cameras show a lot of noise. This has been improved over the last
couple of decades, but inaccuracy related issues still exist.

We want a robotic system that can perceive the world and learn objects and spatial relations. We want a
system that can be asked what it already knows, but that can also take the lead and ask for more samples
when it does not have sufficient knowledge of an object in its database. In addition, it would need to be able
to learn a large number of objects, with only having to see each object a few times. The systemwould have to
interact with humans, so it has to be using human languages in spoken form. An example of a conversation
with such a system can be seen in Table 1.

During the first semester of the second year of the MLT programme a system was built that can perform
some of these tasks, for the Embodied and Situated Language Processing course (Ghanimifard & de Graaf,
2015)1. During this project we worked on software that allows a computer to learn new objects that are
situated in the real world, using a RGB-d (Red, Green, Blue - depth) camera, the Microsoft Kinect. This
system is able to learn new objects and recall those. This master’s thesis addresses some of the issues and
shortcomings of that course project.

In this work we describe the workings of the Kinect Is Learning LanguagE framework, abbreviated as the
Kille framework. This framework represents a learning robot that is using a passive supervised learning
setting for the largest part, which means that the tutor will pick what to teach and what labels to attach to
what it teaches. The framework also incorporates some active learning; it can ask formore samples of objects
it has already learned when it is unsure about them. It is using active learning as a form of transparency
about its knowledge. This form of active learning allows robots to achieve more accurate and faster learning,
but it makes it harder to balance dialogue control, i.e. who gets to take a turn in a conversation. Interactive
learning offers great perspectives on learning improvements. The system does not exclusively use active
learning, as fully active learning has the downside of tutors getting less excited and engaged because they

1Wall-e: https://github.com/mmehdig/wall-e
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are bombarded with questions (Cakmak et al., 2010). Software contributions are the Python application
Kille and the Java application/plugin ROSDial.

We proceed as follows. In Section 2 we look at the hardware involved, in Section 3 we examine the Kille
framework, in Section 4 interactive learning is elaborated and in Section 5 we evaluate the recognition of a
small number of objects, as well as spatial relation recognition. The thesis concludes with a discussion of
current work and suggestions for future work in Section 6.

This thesis and accompanying work is based on the situated learning agents proposal by Simon Dobnik
from the Dialogue Technology Lab at the University of Gothenburg. Preliminary work for this thesis has
been presented during the SemDial 2015 conference hosted in Göteborg (De Graaf & Dobnik, 2015). All
software is available under the BSD license on their respective websites2345.

2Opendial: https://github.com/plison/opendial
3ROS: http://www.ros.org/
4ROSDial: https://github.com/masx/ROSDial
5Kille: https://github.com/masx/Kille
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2 Hardware
The primary goal of the setup used in the experiments is to have a robust, repeatable way of setting up the
system. The secondary goal is to simulate an environment that would be used when a user teaches someone
or something the name of an object or a spatial relation. The setup consists of a computer, a Kinect camera,
two glass pedestals, a table and various objects to test on, that range in size from apple-sized to shoebox-
sized. The camera is mounted stationary to a table. In the experiments, objects are placed on glass pedestals
that are not picked up by the depth sensor as the glass does not reflect the infrared pattern emitted by the
Kinect camera. This makes it so that, for Kinect, after applying the depth-based background removal the
objects appear to be floating in the air. The same situation could be achieved by a person holding the objects,
if the person is just out of Kinect’s view - further than a meter away from the camera. This thus simulates
a normal learning environment, where a tutor actively presents an object by holding it forward. A person
holding the objects in front of them is the ideal situation for learning objects in most cases, but in more
complicated cases other methods have to be used to determine where and what the object of focus is, such
as movement of the object, eye gaze or pointing gestures (Kennington et al., 2015).

The robot of the system is represented by Kinect, an RGB-d (red, green, blue, depth) camera module,
connected to a computer running Ubuntu 12.04. As the camera is mounted to the table, it always perceives
the same region, thus objects have to be actively presented to the device. It is however possible to pair the
camera with a moving robot. The camera module used is Microsoft’s Kinect, a camera developed for the
game computer Xbox 360. For this research a Kinect with version number 1414 has been used, because this
version is best supported by ROS. The depth camera of this version can perceive objects that are between
70 and 300 centimeters removed from it, though a wall limits it from seeing further than 150 centimeters
in this situation. Newer versions of Kinect do have a better range 6 , but are not as well supported outside
of the official Microsoft SDK. Both the RGB and depth sensors have a resolution of 640x480. The Kinect
images are later processed to exclude the background, which is defined as anything more than a meter away
from the camera. This is further described in Section 4.

Figure 1: A Kinect camera. From left to right: infrared projector, RGB sensor, infrared sensor.

Driver support for non-Windows systems is provided by freenect, developed by the OpenKinect group 7.
Kinect combines a speckle infrared pattern projector and an infrared camera to sense depth. As it has only
one ’eye’ it does not perceive the world in stereo, in contrast to humans. Depth information is directly
available and does not have to be abstracted from two RGB frames.

6https://msdn.microsoft.com/en-us/library/hh438998.aspx
7http://openkinect.org/
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Figure 2: A frame from the depth camera of Kinect.

3 The Kille framework
The Kille framework consists of several modules that communicate with each other using the ROS operating
system. The system is built modularily, meaning the modules in the system can be replaced. The dialogue
manager, Opendial, can be replaced by a different dialogue manager and the Kinect system can be switched
with a different camera or robot, should the need arise. Each of the modules in the Kille framework are
discussed in this section, starting with the communication network, ROS. ROSDial was written in Java to
interface with Opendial, while Kille was written in Python, to make use of the OpenCV libraries which are
used for visual processing.

Figure 3 gives an overview of how the modules in the Kille framework work together. The arrows indicate
data flow. Input from the outside world comes from both Freenect and from user utterances or input to
Opendial. The nodes are Roscore nodes, through which communication takes place. The system output
denotes human text input into the Opendial system as a system utterance.
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Kinect driver

.
Kille
handling recognition
uses SIFT algorithm

.

Roscore

. ROSDial
bridging to Opendial

.
Opendial
ASR (speech recognition)
TTS (text to speech)
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user input

.

RGB frames
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depth frames
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.

req
ues
t

.

system output
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variables

Figure 3: Graphical representation of the modules.
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3.1 Robot Operating System

Robot Operating System (Quigley et al., 2009) (ROS), is an open source operating system for robots that
is commonly used in the robotics community. ROS is natively written in C and C++, but also provides an
interface for various other programming and scripting languages, including Python and Java. Many robots
are supported by the various modules that exist for this communication framework. These modules are
mostly built in a modular way themselves, allowing users to use only certain parts of a module, for example
only the camera of a certain type of robot. In this way, the ROSDial module written for this project can
be used in different robots. The used freenect stack that drives the Kinect camera is another example of
modularity, as the module was written to be used for the Kinect used in the well-known Turtlebot. ROS
was chosen over other frameworks for several reasons. Firstly, it is free and open (Quigley et al., 2009).
Secondly, it has a very elaborate documentation wiki. And thirdly, it has support for Kinect. This Kinect
support is provided by the freenect stack, which in turn makes use of freenect, created by the OpenKinect
community.

The modules communicate with each other in a simple way. Each module of the system sets up a node, on
which multiple topics can be started. In addition to setting up topics, nodes can also subscribe to the topics
of other nodes and receive or publish data over them. This project contains nodes for Kille, ROSDial and
the freenect stack. This all works on top of roscore, the part of ROS that contains the core functionalities of
ROS, most notably communication. Kille subscribes to multiple topics created by freenect stack, in order
to receive the depth frame and the RGB frame from the Kinect camera. Kille also subscribes to ROSDial,
to listen to the questions asked through Opendial. ROSDial, in turn, subscribes to Kille to receive Kille’s
answers to these questions. Everything sent through the topics is expected to be answered with at least a
special message that denotes acknowledgement. The details of this are in the next section.

3.2 Opendial & ROSDial

The dialogue manager used is Opendial (Lison, 2014), a free, open, and domain independent dialogue
system. Opendial was chosen because it is a freely available dialogue system and has support for external
modules. These external modules were a necessity, as Opendial has to connect to ROS. In addition, Opendial
comes pre-packaged with several other NLP tools, like the MaltParser, speech recognition and plugins for
robots. It is written in Java, and therefore an appropriate Java plugin to connect to ROS had to be designed.

Opendial handles all human language input and output, and keeps track of what internal variables to set
depending on what the user uttered, and what has happened with the system before that. These variables
correspond to the information that are extracted from human utterances and are used in further processing.
At this moment the dialogue system supports three different text to speech (TTS) engines, two of which are
included with this project, namely Nuance andMaryTTS. Nuance is capable of speech recognition, but when
MaryTTS is used it has to be coupled with Sphinx ASR to be able to use speech recognition. Every user
utterance received by Opendial is parsed with MaltParser to get a dependency parse, and then run through
an XML file that will set the appropriate variables that are read by ROSDial and Opendial itself. ROSDial
is a module in Java that was written for this project to allow Kille and Opendial to communicate using the
Robot Operating System (ROS) (Quigley et al., 2009) framework. ROS is a large modular framework that
can be used for communication between the various devices and modules a robotic system has.

Three plugins are used at any time. MaryTTS is used for speech synthesis, Sphinx ASR for (local) speech
recognition and MaltParser for part of speech tagging. Sphinx ASR works with a local JSGF grammar
file, which has been written based on the expected sentences. This does however limit the user to object
names and spatial relations that are in the grammar, which means a developer needs to provide the names
of objects and relations that can be learned ahead of running. MaryTTS and Sphinx ASR can be switched
with Nuance, which provides better recognition and a slightly more realistic pronunciation, but Nuance does
not work locally and is not open sourced. MaltParser, based upon the well-known Stanford PoS Tagger, is
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used to parse the incoming sentences.

Opendial interprets domain XML files for its handling of human language, and for setting internal variables.
A variable to do is set after every user utterance understood by the domain. A user-input model is triggered
every time a part-of-speech parse can be made from the input received from the chosen ASR (Automatic
Speech Recognition) module. This model then runs through a series of conditions, which check either just
the user input, or the parse of the user input followed by the user input. The parse is checked in some
cases to extract the name of the object. The noun phrase is chosen as object name, and any adjectives and
subordinate clauses are discarded. In some cases a variable last step is checked in addition to parse and user
utterance, to set the correct new to do. If the user utterance was That is correct, the new value for the to do
variable can become either reinforce object, reinforce relation or both, depending on what the previous step
was. Valuable information, such as the name of the object shown is parsed and passed through to Kille by
setting a variable. In addition to a user input model, there is a machine input model. This model is much
simpler, taking care of (re-)setting variables when the machine utterance is received fromKille via ROSDial.

ROSDial is a Java executable written for this thesis project that starts up a ROS node and an instance of
Opendial. As mentioned in the previous section, ROSDial serves as a bridge between Kille and Opendial,
translating everything to a format that is readable for the recipient. In the direction of Opendial to Kille, this
means grabbing data from different fields parsed by Opendial and putting it into an easily parseable format
for Kille before sending it over. ROSDial periodically polls the to do variable of the Opendial system, to
take action if it has been updated. Because ROSDial starts a new instance of Opendial, and is not a plugin,
triggering ROSDial through Opendial without periodic polling on the ROS side is not possible at this point.
In the direction from Kille to Opendial this means translating a parseable format to human-readable text
that is set as machine output in Opendial. The parseable format is of the form

command:argument-1:argument-2:argument-3:argument-4~object/relation:argument

where everything but command is optional. An example is

detected:2:unknown:gnome,0.402:book,0.1875:~object:box

This lets ROSDial know that Kille detected two objects, their spatial relations are unknown, one of the
objects is a gnome, and the other is a book. Those have been recognised with reasonable certainty, namely
with 0.402% and 0.1875% of the matches with known objects respectively. Kille would like to learn more
examples of the object ’box’. ROSDial is in charge of deciding whether to ask the user for more objects or
spatial relations or not. It sometimes may decide not to, as it may degrade the user experience when the
system takes the lead too often.

An example of a dialogue can be found in the appendices.

3.3 Kille core

Kille is the main module, written in Python. It relies heavily on the OpenCV module, and on the ROS
modules. Kille keeps track of objects and spatial relations it can recognise and also handles all the recog-
nising. ROS cannot communicate directly between the image callback - the module that is called when a
new frame from the camera is received - and the module that receives messages from ROSDial. This is
why Kille works by setting to-go-to stages when receiving input instead of directly moving to these stages.
When Kille is started, it will first check whether it receives frames from the freenect node. These frames
are processed with help of the OpenCV library.

Users of the software can either teach the machine the objects themselves, or they can use an existing
model that they have built previously or that another user has built. However, as spatial relations are partly
subjective, one would need to fit them to their own view by instructing the system to forget about learned
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relations and subsequently re-teaching them. Alternatively, more examples could be added to outnumber
existing examples. Models could be saved in the cloud, where anyone can contribute.

When a new learning or recognition session is started, Kille will try to recover objects and relations from
previous sessions, if those exist. These objects are recovered from files that were saved (pickled) by Kille.
Because of technical limitations8 the SIFT keypoints and frames have to be taken apart to simpler data
structures such as (lists of) lists before saving, and reassembled when loading, but this does not affect per-
formance.

Overall, Kille can handle the following requests:

• Learn an object. Kille will take the currently seen frame and store the SIFT features.
S Hello, I want to learn some objects!
Presents a book.
U This is a book.
S Ok, I learned book.

• Learn a relation.
Presents A book next to a box.
S One of the objects is book, the other is box. Please tell me where things are.
U The book is to the left of the box.
S Okay, this relation is called ’to the left of’.

• Recognize an object.
S Hello, I want to learn some objects!
Presents a book.
U What is this?
S The object is thought to be book.

• Reinforce the last recognised object. Kille will receive this command when the user confirms that
recognising an object was successful. It will then store keypoints and features it is seeing with the
name of the object it had recognised, just like it would normally learn an object.
S Hello, I want to learn some objects!
Presents a book.
U What is this?
S The object is thought to be book.
U Correct.
S Ok, I learned book.

• Unlearn the last learned object. Unfortunately, ASR (Automatic Speech Recognition) is not perfect.
Sometimes this leads to Kille learning names for objects that are incorrect, such as learning bosswhen
it is supposed to learn box. This can also be used when the item was not presented yet when Kille
was instructed to learn the object.
Presents a book.
U This is a gnome.
S Ok, I learned gnome.
U That is not what I said.
S Ok, sorry. I forgot about it.

• Unlearning a specific object. This can be used when the user wants to teach Kinect a more specific
name for different objects of the same class, such as the names of different books, instead of calling

8The pickle library, as well as libraries like it, cannot save keypoints.
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them all book, or to forget about specific objects that were loaded from a file at the startup of Kille.
When this request is received everything Kille knew about the object will be lost.
Presents a book.
U This is a gnome.
S Ok, I learned gnome.
U Forget gnome.
S Ok, I forgot all gnomes.

• Re-learn an object. This can be used instead of unlearning the last object. It is used to attach a new
name to a previously learned object.
Presents a book.
U This is a gnome.
S Ok, I learned gnome.
U I said a book.
S Ok, I learned book.

4 Interactive learning
OpenCV (Open Source Computer Vision) is a library that deals with computer vision and machine learning
of vision objects. It is natively written in C and C++, but has interfaces for various other languages including
Python (Bradski & Kaehler, 2008). It is optimized for real-time applications. Upon receiving a new frame
from the video feed from the Kinect camera in ROS’ format, the frame is converted to the OpenCV format,
which is compatible with Numpy arrays. This is done for the frames coming from the depth sensor of the
camera as well as the frames coming from the RGB sensor. This allows for very fast array manipulation in
the background removal step. The RGB picture is transformed to exclude the background and foreground so
the recognition algorithms can focus only on the object that is in focus, i.e. presented in the middle between
these spaces. Foreground is defined as anything that is closer than 70 centimeters to the camera. This limit is
set because it is a hardware specific limitation of the Kinect. The background is defined as anything further
away than 100 centimeters. This leaves 30 centimeters of space to present objects in, which turns out to
be plenty for the current experiments. In further research this limit is likely not workable, and a moveable
robot has to be used to bring the object within this range. Alternatively a different method of background
extraction can be used, but these have disadvantages as well. An alternative that only works with stationary
robots is frame differencing, comparing frames to find out what the background is (Patel & Patel, 2012).
Figure 2 shows a plush gnome standing on top of a box, with the background removed on the depth feed,
creating a silhouette. In the far left of the image a part of a radiator can be seen in black. Kinect can not
properly detect depth when things are not reflective enough or over-reflective, as this interferes with the
infrared projected pattern. The radiator is reflecting too much of the infrared light for an accurate depth
estimation. The black border around the gnome is an infrared shadow caused by the design of the Kinect
as well as a small miscalibration between the cameras. The Kinect has the infrared projector apart from
the infrared sensor. This casts an infrared shadow in the viewpoint of the infrared sensor. Figure 5 shows
a colour frame from the RGB camera after laying it over the shadow of the depth frame. Recognition is
started on this frame, by finding recognisable points: SIFT features.

4.1 Learning of objects

Object recognition in both computers and humans is achieved by combining the perceived points resulting
from impact of light on the a sensor into higher order features. These features are subsequently stored
in a database, to later see which stored features match the perceived object best. One of the very first
steps is line and corner detection, which is then used to compute more complicated features and shapes
(Serre et al., 2005; Lowe, 1999). The algorithm used in this work is the well-known SIFT (Scale-Invariant
Feature Transform) (Lowe, 1999) algorithm. SIFT was chosen because recognition performance (with few
samples) was favoured over computational speed. SIFT is similar to some of its best-known competitors,
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Figure 4: depth frame with background removed. Figure 5: RGB frame with background removed.

such as SURF (Bay et al., 2006) and ORB (Rublee et al., 2011), but provides better recognition with few
samples (Agrawal et al., 2008). The downside of SIFT compared to these other algorithms is that it is
relatively computationally costly (Agrawal et al., 2008). For this project background removal was applied
before computing features. Everything that is left after background removal is considered the object to be
learned or recognised.

The SIFT algorithm works by smoothing an image multiple times, subtracting these smoothed images and
picking the stand-out points from there. These resulting stand-out points are groups of pixels where sudden
changes in colour happened. Elimination of weaker stand-out points is applied, which results in so-called
keypoints. An orientation is assigned to each keypoint to make the algorithm robust against rotation. This
is done by taking the orientation of sub-areas around the keypoint and combining them into a single vector.
These keypoints are invariant to location, scale and rotation. Histograms of the rotations from the previous
step of the areas neighbouring the keypoint are combined into a high dimensional vector called the descriptor.
The descriptor of the keypoint holds information of the image at the keypoint and is used to detect similar
descriptors and thereby keypoints. The keypoints of SIFT are scale-invariant, and thus robust against changes
that are introduced by a change of distance from the camera and scaling. In addition, with descriptors, the
algorithm can handle rotation and small changes in illumination (Lowe, 1999). The algorithm is similar to
how primates process visual information (Serre et al., 2005). SIFT makes descriptors, which algorithms
like HARRIS do not (Harris & Stephens, 1988). The SIFT keypoints and their descriptors are stored in an
array paired with their given names.

Figure 6 shows SIFT features on an RGB frame before a background is removed. Every circle indicates a
keypoint. The line(s) in the keypoint show(s) its orientation. The size of the circle indicates the size of the
keypoint. Different sized keypoints result from the different smoothing levels. Very thorough smoothing
results in larger keypoints, as only the very large differences that stretch over a larger area remain. The
colours of the drawn sift features do not indicate anything, and are purely to allow one to distinguish between
keypoints. The background removal is not very precise, but leaves the contour of the object. This contour
is roughly detected by the SIFT algorithm.

No model is created for the full set of objects, but each object is learned separately and added to a database.
For each object added to the database, it is calculated howwell it matches against the perceived, background-
removed, frame. No model of all objects together is created, until the comparing at the time of classifying.
This delaying of inter-comparing of samples in a model is called lazy learning (Atkeson et al., 1997). The
comparing is done in sequence, so the different object models do not interfere with each other. The SIFT
descriptors of the perceived frame are calculated using the before mentioned SIFT library and the SIFT
descriptors of the model are obtained from the database. Currently observed descriptions may not faithfully
represent the reality, because of camera noise and environmental factors such as changes in lighting, which
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Figure 6: View of the book, with SIFT features shown.

makes the algorithm choose different descriptors of the object. The longest descriptor list is taken (whether
this is from the perceived frame or the model), and for each of the descriptors in this list the two closest
matches in the shorter list are found using a nearest-neighbour search algorithm provided by the FLANN
library (Muja & Lowe, 2009). This is further explained later, in Section 5.1.1, on evaluating the system. The
result is a list of tuples of matches. As most of these matches will be incorrect matches, matches where the
descriptors are not much alike, a filter has to be applied. This filtering is done using a ratio test (Lowe, 2004).
The Euclidian distance between the two matches is calculated. If the distance between the two matches is
small, it is likely that both of the matches are not correct matches, but instead are noise. If the first match
is sufficiently large, the match is likely a correct one and is counted. This ratio test requires a threshold,
for which 0.75 has been chosen. As shown by Lowe (2004), a ratio of 0.75 offers a good balance between
keeping correct matches and incorrectly including incorrect ones.

The matches that pass the ratio test are counted, and used for two measures. The first measure estimates
how well the perceived frame matches against the model, by dividing the number of matches by the number
of descriptors in the model. The second measure estimates how well the model fits in the perceived frame,
by dividing the number of matches by the number of descriptors in the perceived frame. The first measure
shows a strong bias towards objects that have relatively few features in the model, as it is easier to find
a match for a larger percentage of those. The second measure has a bias towards frames with relatively
many features, as it is hard for a model with few descriptors to do well against a frame with many of them.
To avoid these biases, the harmonic mean of these two measures is used as the final score for the model.
Algorithm 1 demonstrates pseudocode for this algorithm.

During normal runs, only a single camera frame is processed. In evaluation mode the number of inspected
frames is increased to 10, improving recognition performance slightly, but reducing recognition speed.

If multiple objects with the same name are considered as a match, their results are averaged. The location
of the recognised object is estimated by taking the twenty matches of descriptors with the lowest distance.
Occasionally points will not fall between the bounds of 70 to 100 centimeters away from the camera, because
of shadow introduced by the combination of the infrared projector and the infrared camera. These points
are then not considered as they are not part of the object itself.
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Algorithm 1 Scoring algorithm.
SIFTperceived← calc-descriptors(perceivedframe)
for all occurence in database do

SIFTmodel← get-descriptors(occurence)
matches← FLANN.match(SIFTmodel, SIFTperceived)
for all tuple in matches do

if tuple[0].distance < 0.75 * tuple[1].distance then
good← good+ 1

end if
end for
measure1← good

length(SIFTmodel)

measure2← good

length(SIFTperceived)

score← 2·measure1·measure2
measure1+measure2

end for
return object with the highest score

4.2 Learning of spatial relations

Spatial relations are expressions that describe the spatial location of objects. Basic spatial expressions con-
sider only a single object, while non-basic expressions (relations) consider an object relative to another. An
example of sentence with a non-basic spatial expression is ”The chair is to the left of the couch.”. In this
example the chair is positioned relative to the couch, of which the position is assumed to be known. The
chair is called the figure, trajectory or target object, the couch is called the ground or landmark (Talmy,
1975). In this work, only non-basic spatial expressions, called spatial relations, are discussed.

Spatial relations are built up with a few concepts. The clearest is geometry; angles and distances between
objects. Another concept is the frame of reference. Spatial relations with reference frame are called intrinsic
spatial relations, and spatial relations without one are called deictic spatial relations (Logan & Sadler, 1996).
A reference frame is a mapping between concepts (i.e. to the left of ) and perception. Typically, reference
frames are either viewer-based or object-based. In an object-based reference frame it matters which way
the object is faced. Anything in the direction of the backrest of a chair will be considered behind. Object
size can also play a role, for example when considering if something is near. It is very difficult to construct
rules based on this (Maillat, 2012), and constructing these rules is beyond the scope of this work.

The third concept is object function (Coventry & Garrod, 2004). For example, the back of a chair may
either be the backrest of the chair in an object-based reference frame, but it might also mean other sides,
depending on where the observer is located (Dobnik et al., 2014), in a viewer-based reference frame. In
addition to the difference between basic, deictic and intrinsic relations, spatial relations can be directional,
e.g. to the left of, or topological, e.g. near (Dobnik, 2009).

Spatial relations are vague. This means that their reference, the location in the real world, is not precise.
Spatial relations exist as regions, where different places within the region have different degrees of applica-
bility to the spatial relation. This is represented in the form of a spatial template (Logan & Sadler, 1996).
An object that is 30 cm to the left but also 10 cm up might still be considered to the left, but is not as typical
to the left as it would be if the object was 2 cm up. How many cm is allowed for this spatial relation to
still be considered to the left depends on many factors, including the size of the landmark and target object,
and the person judging the situation. Each spatial relation has its own spatial template, but similar relations
have similar templates. There are two basic components of space that appear to be important for spatial
relations, namely proximity and direction (Regier & Carlson, 2001).

Kille’s job is to learn and recognise spatial relations without being explicitly instructed about spatial templates
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and reference frames. Kille’s first step to accomplish this is to recognise the objects that are presented. Then,
if both of the objects are reliably recognised, Kille takes the coordinates of the top twenty best recognised
features of both objects. The ranking of features is based on the Euclidian distance between the SIFT vector
of the feature in the model and the SIFT vector of the feature in the perceived object. It then averages
those to obtain a center point for the object. This center point of the landmark is subtracted from the center
point of the target object to obtain relative coordinates. The averaging of the twenty keypoints gives a good
estimation of the center of the object, and is a simpler alternative to the Attentional Vector-Sum (AVS)
model by Regier & Carlson (2001).

By only training on the centroid of the two objects and not their edges, the method used in this work cannot
detect the shape of the objects like the AVS model can. The shape of the object is effectively ignored. This
could raise issues when the dimensions of objects are significantly different, e.g. tall and thin versus cubes.
The AVS model was not favoured because the twenty keypoints can be all over the object instead of at the
edges, which the AVS model requires. Applying AVS without having detected edges leads to poor results,
because the distance to the closest point could vary much. Finding only the keypoints that are at the edge
of the object, so that AVS can be applied, is not possible with SIFT, although a bounding box around the
keypoints could be calculated and used as an alternative to true edges.

By taking twenty points, a cut is made in the computational resources required to process spatial relations.
Substracting the coordinates results in three numbers, one for the x-, y- and one for the z-coordinate, e.g.
x = 125, y = 40, z = 14 for the relation to the left of. As an example, from the point of view of a person
presenting items, for to the left of only x would be non-zero; x would be a negative value. For on the right
of there would be a positive value for x. The y and z coordinates would be at 0. The other coordinates are
not zero due to different sizes of objects, imperfect learning of objects, camera noise, and difference in the
chosen ’best keypoints’. Another possible issue is that relative distances in three dimensions are represented
instead of angles and distance between objects. The system has some representation of distances, but those
representations may not be the ideal ones to represent some of the spatial relations. This might make it
harder to distinguish between directional and topological relations. In the evaluation (Section 5) is shown to
what extent these problems affect performance.

Algorithm 2 SVC training algorithm.
for all spatial-relations in database do

locationobject1← average(x, y, zof20bestmatchesobject1)
locationobject2← average(x, y, zof20bestmatchesobject2)
relativelocations← locationobject1− locationobject2

end for
SV C ← train-svc(relativelocations)

Kille learns spatial relations using a Linear Support Vector Classifier (SVC), also known as Support Vector
Machines (SVM). An SVC is a supervised machine learning classifier, that performs well with relatively little
data compared to other classifier algorithms, which was the main criterion for using this classifier. Support
Vector machines place samples on a map and attempt to draw lines that separate the different possible
outcomes by the greatest margin possible (Cortes & Vapnik, 1995). With linear SVC as applied, only linear
lines are drawn. This is scaled to the number of input dimensions, three in the case of Kille. This means that
the SVC will try to create hyperplanes that separate the samples as well as possible in a three dimensional
space, consisting of x, y, and z coordinates, respectively width, height and depth. As there is no online
learning (learning where samples can still be added after the classifier has gone through initial training), the
SVM is retrained every time a sample is added. This does entail more computing, but this has no significant
effect on the performance of Kille because the domain that is worked in is small and manageable. This is
due to the computational cost of training a SVC with such little samples being dwarfed by the computational
cost of recognizing the objects and obtaining the coordinates, and immediate responses not being required
in a conversational setting.
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5 Evaluation
The performance of learning single objects is evaluated, as well as the performance of learning spatial rela-
tions. Both are tested without the use of ASR to avoid learning names or phrases that were not intended to
be learned at that point.

In most research, a bias in the data is bad, but a slight bias both reflects a realistic learning scenario, as well
as increases the rate of learning. Skočaj et al. (2011) showed that the order and way objects are presented
has a big influence on the rate of learning. Therefore a slight bias in the data has been introduced. This is
done by presenting items in a normal way, instead of using the same pixel frame each time for learning. The
system learns from a different frame showing roughly the same thing, but not exactly the same thing. These
things would be perceived as the same thing to a human, but are not a perfect pixel copy and therefore not
perceived as the same thing to a computer. Thorough testing has been done, to test the bias the system has
for training data. Bias is the degree to which the system is tuned towards training data, instead of real world
data. It is important to test for re-substitution, errors that appear when testing on training data, as well as
testing on new data. In this experiment this means testing the recognition of objects if they are presented in
a different manner or if they are different objects altogether than the original learned objects. Three tests are
conducted to test object recognition, one on the training set, one on a set with noise introduced in the form
of rotation of the training objects, and one where the training objects have been substituted with objects
of the same category. Spatial relations are tested for the system’s capability to learn them, as well as their
fuzziness and the personal preferences of two human testers. Because spatial relations are vague concepts
depending on several contextual factors (e.g. preference, the way the observer is raised, point of view) the
notion of spatial relations differ between people. This makes it important to have more than one tester.

5.1 Object recognition

5.1.1 Task

The way item names are learned by Kille allows the system to reliably recognise objects with only few
learning samples. Often only a single sample is needed, because a nearest neighbour algorithm is used
to match current views with the saved sets of features. Nearest neighbour search is an effective way of
finding the most similar features in a set. The low number of samples required is in contrast to other object
recognition algorithms that require a large number of samples to build reliable recognisers (Skočaj et al.,
2011). The trade-off of the nearest neighbour analysis is that classification is slower and requires a lot of
memory as a dataset has to be memorised. This is in contrast to classification where a more abstract model
of the features is created. Nearest neighbour analysis is not the slowest or most accurate method available.
As an example, Figure 7 shows a green circle (the object to be classified) and two possible classes to classify
to. This green circle can be classified to either the blue squares or the red triangles. If k = 3, the three closed
samples are observed (the solid line circle). In this case this circle includes two red triangles and one blue
square, which means the green circle is classified as a red triangle. If k = 5 (dashed circle) it is classified
to the blue square class, as the blue squares are in the majority (Altman, 1992). In Kille this works slightly
differently, but is based upon the same idea. Distance to the sample feature is calculated using the euclidean
distance over the multi-dimensional vector a feature consists of. Instead of immediately classifying using the
class that occurs most within the k closest neighbours of the sample feature, the features are taken and used
for further calculation. This is done with k = 2.

Another alternative for searching through the candidate features is exhaustive search. Exhaustive search
entails searching through the full search space to find the best possible match. This alternative is by far the
slowest, and is beyond practical use on current hardware because of the time it takes.

The recognition performance is tested on ten different categories of objects. The objects that were chosen
are typical household objects of appropriate size for the Kinect sensor. Due to the design of the Kinect,
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Figure 7: Visual aid for KNN classification. By Antti Ajanki AnAj - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=2170282.

reflective objects do not result in a proper depth reading, making Kille only see parts of the object after
removing the background. The objects are placed upon a glass pedestal, which is transparent enough to not
get picked up by the depth sensor of Kinect. This ensures that only the object is in view. The used categories
are:

• apple
• banana
• bear
• book
• cap
• car
• cup
• paint can (later referred to as ’paint’)
• shoe
• shoebox

5.1.2 Data representation

When a lot of data is produced by testing a system, it can be difficult to show this data in amanner that reflects
the data both honestly as well as accurately. This subsection demonstrates how to avoid giving a skewed
view of the data, and introduces a measure that allows for easy observable but still accurate representation
of testing data.

Testing data is represented in multiple manners, to provide a clear view of the performance of the system.
With the way Kille scores objects, every model receives a positive score for the object perceived. If an apple
is shown, there will be a positive score for the model for apple, but also a positive score for the models
for ball, cup, car, box, etc. The difference is the degree in which the models match the object. A better
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match is a match that maximises the distance from the second match. A larger distance generally means
less similarity between objects, and a better match. When the data is represented in a standard way, e.g.
showing data for each model for each object, the graph becomes cluttered and it becomes impossible to read
how well the system performs.

In order to represent the information in one graph or table, a new measure is presented. The second goal is,
in addition to representing more information in a clear way, to eliminate this skewed view that measures such
as accuracy can give, as is demonstrated in the previous subsection. Optimally, a measure would include
information about

• whether the recognition was correct or not.

• if it was: how close the recognition was to incorrect.

• if it was not: how close the recognition was to correct.

Here a measure is presented that succeeds in including these pieces of information and that is also easy to
read. This measure is referred to as Correct - next, taking the score (as calculated by Algorithm 1) that would
be the correct recognition, and subtracting the highest score that is not this correct recognition.

An example of correct recognition by an agent is shown in Table 2. An apple is presented to the system.
The system has models for apple, banana and car. The system gives the apple a confidence score of 0.8, the
banana a score of 0.2 and the car a score of 0.7. This results in a correct - next score of 0.8− 0.7 = 0.1.

Apple Banana Car
Apple 0.8 0.2 0.7

Table 2: Example of possible test results of a correct recognition. The correct - next score is 0.8− 0.7 = 0.1.

Table 3 contains an example of incorrect classification. Again, an apple is presented to the system, and the
system has models for apple, banana and car. In this case the system gives the apple a lower confidence
score, of 0.5. The banana receives a score of 0.7 and the car a score of 0.4. The system will incorrectly
claim the object observed is a banana. The correct - next score in this case is 0.5− 0.7 = −0.2.

Apple Banana Car
Apple 0.5 0.7 0.4

Table 3: Example of possible test results of an incorrect recognition. The correct - next score is 0.5− 0.7 = −0.2.

With this measure, positive scores mean recognition was successful, but they also indicate how easy the
object was to distinguish from others. A higher score means a more distinct recognition. Negative scores
indicate incorrect recognition, where the score also indicates how close the system was to classifying cor-
rectly. Higher (closer to zero) means the system was closer to being right. In every case a higher score
means better recognition.

To demonstrate how this measure makes data easier to read, baseline recognition for the apple is demon-
strated in a more traditional way, as well as with the correct - next measure. The traditional way is demon-
strated in Figure 8. The graph contains data only for one object. Ideally, all tested objects are represented
in one graph, so they can also be compared with each other. Doing this in the traditional way results in
a graph with one hundred lines, 10 lines for each of the 10 objects. Such a graph would not be readable.
From Figure 8 one can tell that recognition of the apple has been successful three out of four times, and
that it was a relatively close call when recognition failed. When recognition was successful, the difference
between the apple and the banana is much more pronounced.
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Figure 8: Recognition scores over four learning rounds. An apple was shown to the system.

Figure 9 shows the same data, but in a ’compressed’ form, into the correct - next measure. The same data
can be extracted from this graph, except for information about what objects were close matches, and what
label was incorrectly classified with negative scores. This is a trade-off, as the graph is much easier to read.
Recognition was successful three out of four times, but when it was not successful the classifier wasn’t far
off. A major disadvantage of this measure is that it does not represent the performance of objects that were
not the best incorrect recognition (banana) or the correct object (apple). If the scores for the other objects
are close, it tells us that the model for the correct object may not be good enough, or that it simply looks a
lot like the other objects and is therefore hard to classify. If the scores for the other objects are not close
(like in the example in Figure 8), it suggests that the model for the correct object is good, but that its model
has much in common with another model.

Figure 9: Recognition scores for the apple over four learning rounds using correct - next.

It is important to note that the system can not calculate correct-next, as it does not know what the correct
object is. The introduced measure is solely for post-testing analysis.
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Three sets of object recognition evaluation were performed, one as a baseline, and two incorporating noise,
in the form of rotation and in the form of showing similar objects from the same category, respectively.

5.1.3 Procedure

The first evaluation of object recognition uses only the base object for a category, tested in four learning
rounds. This evaluation provides the baseline recognition performance, i.e. the performance of the system
at optimal conditions. The objects are shown almost exactly - as accurately as possible - as how they were
taught. Note that even when objects are not moved, there are still differences between successive scans. In
this experiment, however, objects have been moved in between learning and recognising. The experiment
consists of four rounds. In each of these rounds the objects are learned and the recognition performance is
recorded. This means, first object 1 is shown and learned, then object 2, then object 3, up to object 10. After
this, object 1 is shown (but not learned) and the recognition scores are tested and recorded. Then follows
object 2, all the way to object 10 again, only testing for recognition scores. The third and fourth round
are identical to the first and second round, starting by learning object 1 again. The learning is cumulative,
meaning that for the second round it is possible that the model for the item as it was shown in the first round
is matched, instead of the one shown in the second round. Scores are calculated as in Algorithm 1 in Section
4. The highest score of all models of items learned up to the testing moment is picked as winning score.
This tests the ability to learn objects and reinforce knowledge about them.

The second and the third test incorporate noise. Evaluating the classifier in this way is important, because
it is not only valuable to recognize objects in the ideal situation, but also in more difficult situations. These
evaluations do not offer an overly optimistic view of the true performance of the system, like the baseline
tests do. The second evaluation tests the recognition of the ten base objects when they are rotated. Each
object is observed in eight different rotations, 0 degrees (facing the camera), 45 degrees turn, 90 degree
turn, 135 degree turn, 180 degree turn (with the backside (if applicable) of the object to the camera), 225
degrees turn, 270 degrees turn and 315 degrees turn. The objects are the same as the objects used for the
baseline testing, thus the 0 degree evaluation is the same evaluation as the fourth round from the first set
of evaluations. This tests whether the data is representative of data the system may encounter in real world
situations.

5.1.4 Results
apple banana bear book cap car cup paint shoe shoebox

apple .343 .227 .076 .046 .099 .058 .126 .074 .053 .166
banana .201 .357 .058 .035 .085 .087 .148 .066 .046 .124
bear .080 .121 .260 .074 .089 .091 .120 .099 .074 .136
book .142 .233 .074 .496 .114 .197 .246 .130 .085 .220
cap .122 .208 .076 .049 .146 .096 .103 .083 .061 .114
car .104 .183 .053 .067 .077 .414 .119 .076 .069 .149
cup .099 .145 .063 .066 .091 .052 .330 .094 .054 .120

paint .119 .140 .075 .076 .083 .147 .121 .221 .062 .111
shoe .078 .123 .070 .056 .079 .116 .124 .076 .319 .103

shoebox .190 .332 .099 .188 .145 .305 .313 .166 .111 .376

Table 4: Baseline test results, averaged over the four testing rounds. The first column indicates what item has been shown, whereas
the first row indicates what the scored item is. The correct guess, the diagonal, is underlined, and the object that received the highest
score (so the one that would be picked as recognized object) is printed in bold face. Values that are both bold face and underlined
are correct guesses.

Table 4 shows the recognition scores for the ten objects in the first test, the baseline test. The scores indicate
that out of the ten objects, only the cap was recognized incorrectly, as the system thought it was seeing a
banana. This is on average over the 4 rounds of learning. The apple was also recognized incorrectly, but
only once. The full data is shown in Table 11 through Table 14.
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average standard deviation correct−next
apple .127 .099 .116

banana .121 .101 .155
bear .114 .059 .123
book .94 .122 .250
cap .106 .053 -.062
car .131 .110 .231
cup .111 .088 .185

paint .115 .051 .075
shoe .114 .076 .196

shoebox .222 .115 .044

Table 5: The average column indicates the average score, a high score shows the object is generic and looks much like the other
objects. Standard deviation is calculated over the values of each of the four tests, and thus are not the standard deviation over the
values in the table, as those have been averaged over the four rounds. The correct−next column shows the correct (underlined)
value minus the highest value that is not correct. These values indicate how hard an item is to recognize, its uniqueness. These are
plotted in Graph 10.

Table 5 gives a clearer view of the true performance of the system on the baseline objects. The average
column shows the score each object gets, averaged over all models. A high score is better than a low score.
Some objects are harder to recognize than others, such as the cap and the shoebox. This can have multiple
explanations. The possible explanation that the score calculation method using the geometric mean of the
two matching scores as explained in Section 4 still favours objects with more features than others, such as
the shoebox, is ruled out. This is the case because the apple, with the second lowest number of features,
does also score quite high, as well as the car. It is likely because the objects with lower scores are more
similar to other objects, i.e. relatively many of their features also match features in other objects.

The correct−next column indicates how hard an item is to recognize, given that other items are presented as
well. It shows uniqueness, how likely it is that the shown item is confused with the next most highly ranking
item. This data is the received score for the correct object (the score for the best model of apple when an
apple is shown) minus the highest score given to an incorrect object (in the example of the apple, the score
for the best matching object that is not the apple). This means that for objects that score above zero, the
object was recognized correctly. Distinct objects have a high score, i.e. there is a large distance between
the matched object and other objects. The system is more likely to correctly recognize objects if they are
distinct. This score is also represented in Figure 10, for each of the rounds. In the graph this represents both
if the object was recognized correctly and if there were any other candidates close to being recognized. Of
the total of 4 × 10 = 40 guesses, the graph contains 5 incorrect recognitions, one for the apple and 4 for
the cap.

Figure 10 shows how the recognition performance looks like withmore learning iterations, from only once to
four times. One can observe that learning the object an additional time does not always improve recognition.
This can be because the distractor objects (the other 9) were also learned an additional time. The objects
differ in recognition over the rounds - with the exception of the banana, which may have just by coincidence
received a good score in the first round, or a bad score in the fourth - but show a clear average.

As seen in Figure 11, the system performs significantly worse when objects are rotated. There is a difference
between objects. This is expected, as many of the objects have very differently looking sides. A book is
square or rectangular and large from the front, but appear as a small rectangle when looking at it from
the side. Apples look very much alike from every side, which explains why they are recognized well after
rotation. 315 degrees rotation is the same as 45 degrees, but then rotated in the opposite direction. This
is the reason that the graph is quite symmetric, 45 degrees having roughly the same scores as 315 degrees,
90 degrees scores similar to 270 degrees, and the scores for 135 degrees rotation are close to those of 225
degrees rotation. The scores at 180 degrees rotation (seeing the back of the object) are better for some of
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Figure 10: Baseline performance of object recognition, averages over four rounds. This table shows incremental learning. These
scores are the correct-high scores before averaging took place. The averaged correct-high scores are in Table 5.

Figure 11: Performance of object recognition after object rotation. The scores are calculated using the correct-high measure. The
raw data is in Table 15 through Table 22 in the appendices.

the objects than the scores at 135 and 225 degrees rotation. This is the case for the book, the car, the cup
and the paint can. This is a result of the back of the object being similar to the front.

The third evaluation tests performance with other objects belonging to the same category. Each category
consists of four different objects. This tests how well objects from the same category (e.g. apples, books,
shoes) can be recognized after having only learned four iterations of a base object from the category. Of
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Figure 12: Performance of object recognition with the baseline object, that was used for training, and three other objects that the
system was not trained on.

course, some categories consist of more similar objects than others. Different apples look much more alike
than different shoes and are therefore expected to be recognized more reliably. Results of these tests are in
Figure 12. This graph shows the original (baseline) score, as well as the scores for three other objects of
the same category as the original object. Considering some objects second, some third and some fourth is
merely an artefact of labelling, and does not indicate any sorting or further reasoning.

The system is not capable of reliably recognizing objects from the same category from which it has learned
items previously without learning an instance of those items first. Only the apple and the shoebox in the
evaluation were recognized well, where the shoebox is responsible for the majority of false recognition of
other objects.

A couple of things can be concluded from the object evaluations. Firstly, there is a limited effect of using
more samples on quality of recognition with the chosen SIFT approach. Performance on trained objects
with the same angle is high, given the small number of samples, but does not improve significantly given
more samples. Secondly, it can be concluded that objects are not recognized well when they are shown
from a different side than they were trained on. This is expected behaviour, as the algorithm only looks for
patterns on the object, which are different on different sides for many objects. Finally, it is observed that
objects from the same category, but that look a-similar to the trained object, are not recognized well either.
This is also expected, for the same reason, the algorithm only looks for patterns, which may be absent on
other objects, even from the same category.
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5.2 Spatial relations

This subsection describes how spatial relations were taught to the system, and how testing took place. The
purpose of the test is not only to evaluate the performance of the system, but also to evaluate how spatial
relations can be learned. The locations tested can be found in Figure 13. They are spaced out in sixteen
places in a two dimensional plane, not utilizing the y-axis (height). The y-axis is still enabled in Kille. This
allows for testing that is more akin to the real world, as a human would not be able to disable their height
sensors either. The results will demonstrate whether Kille learns to ignore the, in this case, meaningless data
from the y-axis.

5.2.1 Procedure

The test took place only in the lateral plane, to keep testing thorough, but still within reasonably size, given
the time constraints. Testing in a 3-dimensional volume, whichwould include also descriptions such as below
and under, will be done in future work. Locations of the object were controlled by dividing an imaginary
circle around the landmark (the car from the baseline experiments) into eight directions, 45 degrees apart.
One location close, and one further away from the center, for each of the directions. This totals to the 16
placements seen in Figure 13.
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Figure 13: Figure showing the placement locations of the objects. 1 and 9 have been slightly relaxed, as Kille would not be able
to see the car behind the book otherwise. The avoidance of occlusion is necessary because the system can not know which item is
occluded if it is completely occluded. The car is facing towards 3. The human observer is standing behind 13, facing towards the
car and the Kinect.

The placement of points 1 and 9 was slightly relaxed, because Kille will not be able to recognise the object
in the back if they overlap too much from its point of view and will therefore not be able to judge that there
are two objects. Theoretically, it would be possible to judge that one of the objects is hiding behind the
other, but this is not implemented in Kille for a couple of reasons. The main reason is that the system would
not be able to tell whether the tutor or user really is showing two items, or simply asked the wrong question,
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i.e. where are these? instead of what is this?. Voice recognition and object recognition errors need to be
considered. Secondly, it would be impossible to know what object is hiding behind the other, unless item
tracking is implemented, and item recognition is run even when the tutor or user does not ask about the
objects.

At these 16 places the target object (the book from the baseline experiments) is placed, and the correct
spatial relation is taught to the system by a human. The car is placed in the center. These objects were chosen
because they are the least likely to cause bad relation classification as a result of bad object recognition, as
they are the most distinct. The volunteer is instructed to stand behind the objects, with the objects between
Kille and them the volunteer.

A total of 48 placements, by repeating the teaching three times. The order of placement is randomized by
assigning a number to each of the placements and running these through a randomisation tool. Random
order is necessary, as spatial relations are fuzzy and judgement of them may depend on judgement of the
previous placement. A main goal for the system is to learn to ignore the third, irrelevant, y-dimension. Six
spatial relations were used, namely to the left of, to the right of, in front of, behind of, near and close to.
These spatial relations are frequently used in literature (Landau, 1996). Both near and close to have been
chosen to investigate if there is any perceived difference between them. This bundles two different kinds
of relations together: projective and topological relations. Projective relations (to the left of, to the right of,
in front of and behind of ) work with two dimensions; orientation in context of the reference frame and
proximity. Topological relations (near and close to) only work with a single dimension; proximity (Dobnik,
2009). The test setup gives both features. The 16 positions capture distance from the center at 2 degrees
and at 8 different angles. They are discretised to fixed units, rather than continuous. The classifier is not
instructed about these differences, and has to decide for itself whether the parameters are important.

5.2.2 Task

The test was performed by two evaluators. It was not feasible within the time frame of this work to test
with more evaluators. By using more than a single evaluators there is some measure of agreement in their
judgement. Spatial relations are fuzzy, but the extent of this fuzziness differs between the spatial relations.
If the two evaluators do not agree which spatial relation is presented, it is not fair to expect the system to
perfectly predict the spatial relation either. It shows that different people have different reference frames
and/or different spatial templates. These concepts are explained in Section 4.2.

The two volunteers give their judgements individually, so as to not coordinate on the meaning and con-
sciously or subconsciously reach agreement. Disagreement also indicates how hard it is to learn that spe-
cific spatial relation. If the evaluators do agree, the system and spatial relation are judged not to be tuned
specifically to a single the person (at least, not tuned to an extent that the system agrees consistently only
with one person and not with the other). It is also judged that the spatial relation is easy to learn, in the
specific context of the test.

During the evaluation, the volunteer and a second volunteer tested the learned spatial relations. They did this
by taking the same 16 placements, in randomised order, and judging what they would each call the spatial
relation. They did this independently of each other, and wrote down their judgement without sharing them.
The system was then queried what it thought of the placement. The system’s guess was written down, as
well as whether the two volunteers agreed with the system or not.

As the relations are fuzzy, the volunteers can agree with the system even if they think a different spatial
relation was more suitable. For example, the volunteer can consider position 4 in Figure 13 to best fit the
description near, but they could agree with the system if it judges the position as behind, close or to the right
of.
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5.2.3 Results

Figure 14 visualises the spatial relations as they are learned by Kille. The data points shown are the same
data points Kille used to train its models. The data points can be found in Table 25 in Appendix 7. Because
it is hard to draw conclusions when the data points are clustered together, Figure 15, Figure 17 and Figure
18 show the important data separately. The same data is averaged and input into a bargraph in Figure 16.
This graph is useful to see the data in the scatterplots in only a few points and serves as a figure to reference
to, as it can be hard to tell actual averages from a 3d scatterplot.

Figure 14: 3d scatterplot with the data from Table 25, found in Appendix 7. The spatial relations that the system has learned are
shown in 3d, in a way that shows how Kille learns them. This corresponds with an inverse view point of the teacher, which is
standing at the opposite side of Kille. Vertical drop-lines are drawn to aid the reader in understanding the 3d aspect on 2d paper.
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Figure 15: 3d scatterplot with the data from Table 25, found in Appendix 7. This plot shows only the relations to the right of and
to the left of

.

Figure 16: Average x, y and z values for the tested spatial relations.

Figure 15 contains the data points for the spatial relations to the right of and to the left of. One can observe
that the learning of these spatial relations functioned well, as there is a clear cut between negative x and
positive x. The data points are not exactly at 0 on the z-axis or y-axis, but are close. They average closely
to z = 0 and y = 0 as seen in Figure 16.
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Figure 17: 3d scatterplot with the data from Table 25, found in Appendix 7. This plot shows only the relations behind of and in
front of.

Figure 17 contains a 3d scatterplot with only the spatial relations in front of and behind shown. There is
a clear distinction between front and behind. in front of only has data points on the negative side of the
z-axis, in the direction of Kille, away from the human tutor. behind only has points with positive z, away
from Kille, closer to the human tutor. One can observe that the data points for behind have lower y-values,
that behind happens to be closer to the floor of the room. This is also visible in Figure 16. This is a result
of Kille being positioned on a slightly higher level (from the floor, so in the y-plane) than the objects. It is
looking down upon the objects, which results in objects closer appearing as being higher.

The data points for close to and near in Figure 18 are not as easy to interpret. The volunteer does not
have a clear concept of the difference between near and close to in this spatial setting. There may not be a
difference in this setting, but this may be different when objects have a (different) function. In Section 4.2
was discussed that spatial descriptors differ depending on the function of an object. This may also apply
to the spatial relations discussed in this thesis. This is unlikely, however, as the book and the car are not
functionally related. Finally, the difference between near and close is found to be rather personal (Fisher &
Orf, 1991). The volunteer does not show signs of having a clear concept of the difference, but this does not
mean that other people would not have judged differently.
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Figure 18: 3d scatterplot with the data from Table 25. This plot shows only the relations close to and near.

All objects have been shown on the same point in the y-axis, on a lateral plane, yet the y-values are not all
equal. This is a result of the camera not being in the exact same horizontal plane as both objects are (i.e. it
looks slightly down upon the objects), and random differences in the twenty SIFT features that are picked
to calculate an object’s centroid. The method of calculating centroids and subtracting their coordinates also
leads to non-zero values for the Y-axis. An example is in Figure 19, where two objects are shown. These
objects are standing on the same Y-plane, but Kille would assign a higher Y-value to the right object than it
would to the left object, because the right object is much taller.

..

.

.

.

Figure 19: Two imaginary objects standing next to each other and their centroids. The objects are standing on the same y-plane,
but subtracting the coordinates of their centroids will give a non-zero result.
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To test the recognition performance, the volunteers were instructed to choose the best spatial relation for each
of the 16 locations. The order in which the locations were judged was picked at random. Each location was
judged twice. Table 6 gives insight in the agreement and disagreement between the two human evaluators.
The first column indicates the choices of the first human evaluator (later also called Volunteer 1), and the
first row indicates the choices of the second human evaluator (Volunteer 2). The agreement is indicated with
its own row. This row shows how often the two evaluators agreed about what spatial relation was displayed.
The By chance row indicates the odds that the agreement was a result of chance. This is calculated by
taking the number of times each volunteer picked the spatial relation, and dividing it by the total number of
judgements made by this volunteer. The resulting values from both volunteers are subsequently multiplied.
To exemplify, the By chance value for the spatial relation behind is 4

32 ·
5
32 = 0.01953. These by chance

values are a necessary part in calculating Cohen’s κ. Cohen’s κ is a statistic that measures agreement between
judges (Artstein & Poesio, 2005).

behind front left right close near total
behind 3 0 1 1 0 0 5
front 0 5 1 2 1 0 9
left 1 0 2 0 0 0 3
right 0 0 0 3 0 0 3
close 0 2 0 1 4 0 7
near 0 1 0 2 2 0 5
total 4 8 4 9 7 0 32

Agreement 3 5 2 3 4 0 17
By chance .01953 .07031 .01172 .02637 .04785 0 .17578

Table 6: Agreement between the human evaluators.

κ is a more robust alternative to the simpler percentage agreement of total guesses, because it takes into
account agreement that occurs by chance. Calculation is performed by dividing the number of chance-
corrected agreements by the number of chance-corrected guesses. This results in a Kappa of 17−0.17578

32−0.17578 =
0.52866 for exactly correct guesses. This is a reasonable agreement for a task like this, where there are
several alternatives a volunteer can choose from.

behind front left right close/near total
behind 3 0 1 1 0 5
front 0 5 1 2 1 9
left 1 0 2 0 0 3
right 0 0 0 3 0 3

close/near 0 3 0 3 6 12
total 4 8 4 9 7 32

Agreement 3 5 2 3 6 19
By chance 0.01953 0.07031 0.01172 0.02637 0.08203 0.20996

Table 7: Agreement between the human evaluators. Close and near have been combined into a single spatial relation.

Table 7 is based around the same data as Table 6, but close and near have been collapsed into a single
spatial relation. This is achieved by adding all guesses for those spatial relationship together. The κ can
be calculated in the same way, resulting in the slightly higher value of 19−0.20996

32−0.20996 = 0.59107, for exactly
correct guesses.

Table 8 shows the number of incorrect guesses (guessed relation is not applicable to the presented situation),
the number of correct guesses (guessed relation is applicable, but not the best guess possible), and the number
of exact correct guesses (where the volunteer and the system make the exact same judgement). As a result
of these definitions, Exactly correct is included in the number for Correct, because any guess that is exactly
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Volunteer 1 Volunteer 2 Percentage
Incorrect 13 12 39%
Correct 19 20 61%
Exactly correct 9 9 25%
Guesses 32 32 100%

Table 8: Table indicating the number of correct guesses. Exactly correct is included in Correct, and only counts when the guess
the system made is exactly the same as that of the volunteer. This is in contrast to Correct, which also counts when the volunteer
considers the system’s guess correct although not necessarily their first choice.

correct must be at least applicable to the situation. Given the specific constraints of the experimental context
and setup of this project, it is hard to compare the results with other research. The correct recognition seems
promising, however, given the difficulty of spatial relation recognition and that each relation has only been
taught on average 48

6 = 8 times.

Confusion Table 9 displays which spatial relations are often confused with one another. The system fre-
quently confuses close and near with other relations like in front of and to the right. Likewise, other spatial
relations are often unjustly classified as near or close. This does not mean that the model of these spatial
relations is incorrect. Topological and projective descriptions are non-mutually-exclusive, which means a
spatial relation could be described with the same degree of accuracy to to the right and near. Even within
the topological or projective descriptions non-mutual-exclusiveness takes place. As an example, volunteer
1 may classify a layout as to the left of, while volunteer 2 may classify it as behind. Volunteer 1 may still
agree that behind is a good description, even though it was not their first choice.

The agreement confusion matrix for volunteers versus Kille is in Table 9. The guesses volunteers have made
have been added together, resulting in a total of 64 guesses. Cohen’s κ is 16−0.19385

64−0.19385 = 0.24772, much lower
than the κ for intra-human agreement, but still positive.

behind front left right close near total
behind 4 2 0 1 0 2 9
front 0 5 3 3 6 0 17
left 0 6 1 2 0 0 9
right 4 1 0 4 0 1 10
close 1 9 1 0 1 2 14
near 1 1 1 0 1 1 5
total 10 24 6 10 8 6 64

Agreement 4 5 1 4 1 1 16
By chance .02197 .09961 .01318 .02441 .02734 .00732 .19385

Table 9: Confusion matrix of human guesses and Kille guesses. The left column indicates the human guess, the top row indicates
Kille´s guess. Bold face indicates that the human volunteer and Kille made the same guesses. The data is for both evaluators
combined.

The agreement where close and near have been collapsed together is presented in Table 10. The κ coefficient
is 19−0.22412

64−0.22412 = 0.29440. This is much lower than the agreement within the human evaluators, but still
reasonable.
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behind front left right close/near total
behind 4 2 0 1 2 9
front 0 5 3 3 6 17
left 0 6 1 2 0 9
right 4 1 0 4 1 10

close/near 2 10 2 0 5 19
total 10 24 6 10 14 64

Agreement 4 5 1 4 5 19
By chance .02197 .09961 .01318 .02441 .06494 .22412

Table 10: Confusion matrix of human guesses and Kille guesses. This table combines close and near to one spatial relation.

The test results show reasonable agreement on things that are hard to learn, as discussed in Section 4.2. At
a κ of 0.53, agreement between human evaluators is quite high. Agreement between human evaluators and
Kille is acceptable at a κ of 0.29. This demonstrates that Kille is performing better than chance, even with
the relatively small number of training instances. Despite the reasonable performance, tests on a larger scale
are necessary to arrive at definitive conclusions.
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6 Concluding remarks
We designed and implemented a system that uses Kinect and a dialogue system that is able to do situated
learning by example from a human tutor. The system has been built modularly, allowing for easy replacement
of parts of the system if the robot setup changes or new demands for the system arise. The parts chosen for
the system are

• the SIFT algorithm, because of its performance with small number of samples.

• the Kinect camera, because it is a cheap 3d camera, and good open source drivers (freenect) are
available.

• the ROS framework, because it interfaces well with Kinect.

• OpenDial, because it makes it easy to write dialogue, and because it is easy to interface with ROS.

The Kille framework built for this thesis combines these modules. A plugin for OpenDial, that has been
dubbed ROSDial, had to be written to do this.

Several issues in the field of embodied and situated language processing are discussed in this work. The
main issue is the grounding of objects and of spatial relations. Grounding (linking semantic representation
to perceived objects) is very important in conversation (Roy, 2005; Kennington et al., 2015). The system
is able to ground both objects and spatial relations as they are being demonstrated by a tutor, using human
language in spoken form. Examples of the conversations the system has with tutors are displayed in Table 1
in the introduction and in the table in Appendix 7. The system remembers objects across sessions.

Object learning is achieved by combining pixels caught by a light sensor into high order, SIFT, features.
These features are stored, and retrieved during the recognition stage. A nearest neighbour algorithm is
applied to find the best matching set of stored features to the features calculated from the pixels of the
perceived object. The harmonic mean of two measures is taken, to reduce biases towards perceived frames
with few features, and towards frames with many features.

To learn spatial relations, first object recognition is run, to find the landmark and the target object. The
top 20 SIFT features between these objects are taken and their location (x, y and z values) are averaged.
This gives a good estimation of the respective center of the objects. Only twenty points are used to reduce
the computational resources required. The average location of the target object is subtracted by the average
location of the landmark. The result is a triplet, of x, y and z values. These values are input into a Linear
Support Vector Classifier (SVC). SVC work relatively well with little data, compared to other classifier
algorithms. The same method is applied to recognise spatial relations, but instead the trained SVC is asked
what spatial description fits best.

We test the system on these two applications, object learning and spatial description learning. Our contri-
bution here is the application of tutor learning in these domains.

A large problem the system in tackles object learning is the need of many other systems, usually build upon
neural networks, for vast amounts of training data when learning to recognize objects and spatial relations.
The presented system can successfully learn objects and spatial relations, using very few samples. A single
learning sequence provides great recognition. Providing the system with more samples does not improve
recognition results significantly. When a large number of samples is available, it is preferred to switch to a
neural-network based system, as they are much more successful when data is available. In addition, having
a lot of samples slows down a SIFT based approach significantly (Chesney & Koelewijn, 2015).

We also tested the system’s recognition performance of items that were presented from a different side than
they were trained. We found that recognition does not perform well. This is to be expected, as SIFT only
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has a limited tolerance for rotation. This problem can be dealt with relatively easily, by asking the tutor to
rotate the object when teaching, and storing the feature sets of multiple of the visible frames. Given Figure
11, capturing these feature sets needs to happen more often than 8 times per full rotation, as at 45 degrees
(so 8 total for 360 degrees) performance already drops by a lot. A problem with this approach is that it will
add ambiguity for objects, as one object viewed from the front may look like another object viewed from
the side.

Furthermore, we tested recognition of different objects that fall into the same category as the ones that were
taught. With the exception of categories that have objects that look alike, recognition was poor during the
category tests. Improving performance for category learning does not have a (relatively) easy solution like
the solution we have seen to improve recognition of objects that have been rotated. To achieve knowledge
of categories, instances of each object to be added to the category will have to be presented. In situations
where this is not an option, such as situations where the number of objects in a category is too large, the
traditional learning methods have to be applied, such as the system described by Skočaj et al. (2011). These
systems can also be combined with the system as presented in this thesis. The advantage of doing this is
that the traditional learning method can take care of common items, of which it has a database, while the
method described in this work can take care of unique items.

The spatial relations tests took place on z-axis (depth) and x-axis (left, right), but not on the y-axis. This
choice was made to allow for good testing without requiring too many samples and thus testing time. Tests
took place with two participants, and therefor no definitive conclusions about the fuzziness of spatial relations
or about the effort it takes a machine to learn the spatial relations can be drawn from the tests. The non-
mutual exclusiveness (in many cases multiple spatial relations can be matched to a single situation) makes it
even harder to draw conclusions. The test results have a reasonable agreement between evaluators, though
the evaluators often did not agree on (the best) choice for the observed spatial relation. The tutor and testers
have been instructed to use the system’s point of view as a reference frame. When more reference frames
are taken into consideration, like in a more realistic situation, the agreement would be lower.

In conclusion we show that our situated dialogue system can successfully learn objects and spatial relations
from a tutor. It is able to learn using spoken human language, and give feedback about the knowledge it has
acquired.

6.1 Future research

A few issues need to be addressed in future research. Firstly, the system can not recognise a spatial relation
when the landmark and target object are opposite to the way they were learned. If the target object is above
the landmark, then the landmark is below the target object. This requires that below is learned, which was
not the case, and an inappropriate description was generated. This issue can be worked around by learning
the counterpart of each spatial relation, if this exists. Most relations where a counterpart is not obvious, such
as relations like next to or around, can be seen as their own counterpart. Using confidence scores for the
spatial relations the system would be able to more easily understand spatial relations it already knows when
they are referred to by a human tutor or instructor.

Secondly, when the system mishears the name of an object or relation, it will learn it with this wrong name.
A common example encountered during testing is mishearing boss for box. In a situation where no GUI is
present, and where the tutor does not hear the mistake in Kille’s confirmation, the object would have to be
re-learned. The system can handle re-learning when the tutor notices the mistake immediately, but has no
way to correct the names of items or relations that were learned earlier. A feature to add in the future is to
be able to deal with clarification from the tutor at a later stage in conversation, where all instances of boss
could be added to box. This also might prove useful for tweaking ontologies, where items may need to be
merged.

Thirdly, a different way of finding out how confusable objects are, could be used in post-testing analysis.
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For example, when one shows the system an apple, the system could give a top 10 of matching models,
with their score and ranking. Ideally, the various models for apples would be the most highly ranked, only
being followed by other object models after. A measure could be to count the number of models for apple
in the top 10, akin to the precision measure as it is commonly applied in information retrieval. This can
be expanded by checking topmost results at different cut-offs, or by checking top ranked models until all
models for the apple are found. Precision could also be used to test quality of models, if the confusability is
known.

Knowing the name of a spatial relation and the names of the objects involved are not the only thing necessary
for proper understanding of the relation. The interpretation of spatial relations and objects changes based on
experience. In addition, meaning of linguistic expressions is often underspecified. In these cases, context, or
world knowledge, is necessary to grasp the meaning of the expression (Dobnik et al., 2013). To solve these
problems, a robot needs to be aware of the frame of reference. This is especially true for non-static robots
(Dobnik et al., 2014). To achieve this a robot needs a good model of the world around it, and it needs to
observe the objects’ interaction over temporal sequences. It would need to create a mapping of objects that
are not currently visible (Dobnik, 2009).

The system picks its object of focus based solely on the object being the only visible object in the camera
field. The tutor must bring the object into the system’s focus. This is not a reliable method any more when
the robot is not able to perform proper background removal, such as when the tutor points at an object that
is in the background. In the future, a robot needs to look around and single out the object by interpreting
the tutor’s eye-gaze or pointing. The objects still need to be singled out before running learning algorithms,
to prevent noise and bad recognition. Bad recognition occurs when the surroundings are seen as part of the
object, and when the same surroundings are visible when a different object is learned or recognised. This
is possibly not an issue with a large number of samples and a different learning algorithm, one that is more
robust against noise, for example with 3D models of objects.

Studies have shown that eye contact and eye gaze are important indicators in a social learning context (van
Gog & Scheiter, 2010; Mayer, 2010). In future solutions of the object and spatial relations learning problem
where systems have anything representing eyes, it is important for the robot to hold proper human-like eye
contact and use eye gaze to indicate whether something is clearly understood or if there are any uncertainties.
Humans are able to pick up on this and help the system faster (Thomaz & Cakmak, 2009).
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7 Appendices
Appendix A: An example of a short dialogue with the system.

S Hello, I want to learn some objects!
Presents a book.
U What is this?
S The object is thought to be book. Could you show me more of book?
Presents a book in a different location and orientation.
U This is a book.
S Ok, I learned book.
Presents a box.
U Do you know what this is?
S I don’t know what this is.
U This is a box.
S Ok, I learned box.
Presents a gnome.
U What is this?
S I don’t know.
U This is a gnome.
S Ok, I learned gnome.
Presents a gnome and a box.
U What is this?
S One of the objects is gnome, the other is box. Please tell me where these things are.
U The box is to the left of the gnome.
S Ok, this relation is called ’to the left of’.
U What is this?
S The box is to the left of the gnome.
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Appendix B: Object recognition evaluation data

Baseline
apple banana bear book cap car cup paint shoe shoebox

apple .324 .200 .053 .034 .037 .037 .092 .082 .029 .108
banana .133 .383 .013 .013 .019 .089 .056 .068 .051 .087
bear .055 .085 .180 .068 .086 .057 .117 .063 .067 .117
book .132 .217 .065 .441 .082 .193 .169 .140 .080 .199
cap .122 .120 .081 .036 .070 .063 .057 .050 .031 .115
car .027 .171 .031 .040 .042 .364 .037 .070 .062 .144
cup .076 .149 .055 .055 .026 .041 .237 .050 .025 .108
paint .123 .156 .060 .037 .074 .181 .092 .194 .052 .114
shoe .048 .076 .070 .036 .063 .122 .117 .066 .312 .127
shoebox .152 .162 .075 .146 .083 .319 .124 .156 .122 .296

Table 11: Raw data for the baseline tests, first learning round.

apple banana bear book cap car cup paint shoe shoebox
apple .258 .300 .050 .038 .057 .067 .113 .048 .052 .154
banana .278 .426 .047 .025 .093 .083 .152 .056 .036 .174
bear .053 .141 .268 .050 .075 .105 .095 .087 .065 .128
book .133 .241 .050 .471 .077 .156 .315 .109 .063 .259
cap .103 .205 .057 .056 .145 .099 .114 .092 .064 .109
car .093 .171 .065 .037 .075 .397 .198 .051 .078 .142
cup .063 .144 .054 .063 .058 .037 .282 .088 .029 .086
paint .075 .125 .080 .054 .052 .139 .118 .266 .062 .141
shoe .036 .161 .072 .042 .089 .121 .116 .093 .329 .073
shoebox .141 .325 .108 .149 .098 .265 .434 .167 .114 .432

Table 12: Raw data for the baseline tests, second learning round.

apple banana bear book cap car cup paint shoe shoebox
apple .357 .190 .075 .039 .137 .081 .129 .070 .066 .169
banana .207 .348 .071 .063 .148 .082 .161 .086 .053 .111
bear .060 .130 .317 .075 .096 .091 .125 .125 .085 .139
book .161 .218 .096 .596 .132 .195 .250 .133 .099 .221
cap .133 .237 .062 .036 .218 .102 .113 .096 .073 .121
car .113 .200 .052 .113 .106 .390 .077 .092 .089 .112
cup .126 .170 .055 .060 .142 .063 .338 .120 .080 .120
paint .145 .119 .085 .099 .070 .125 .136 .189 .062 .090
shoe .069 .118 .066 .083 .082 .088 .128 .073 .320 .133
shoebox .263 .493 .101 .221 .198 .307 .336 .176 .113 .344

Table 13: Raw data for the baseline tests, third learning round.
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apple banana bear book cap car cup paint shoe shoebox
apple .432 .217 .128 .071 .167 .048 .169 .094 .065 .232
banana .188 .270 .101 .038 .079 .094 .222 .053 .043 .125
bear .154 .129 .275 .103 .097 .113 .141 .122 .081 .162
book .142 .258 .085 .477 .165 .243 .252 .139 .099 .201
cap .128 .271 .102 .069 .149 .120 .130 .094 .077 .110
car .182 .190 .065 .078 .085 .504 .165 .090 .046 .198
cup .130 .116 .086 .085 .137 .069 .463 .118 .081 .165
paint .134 .159 .073 .113 .138 .141 .138 .237 .072 .097
shoe .160 .135 .074 .062 .081 .131 .134 .071 .316 .079
shoebox .203 .349 .114 .235 .202 .331 .356 .164 .095 .433

Table 14: Raw data for the baseline tests, fourth learning round.

Rotation test
apple banana bear book cap car cup paint shoe shoebox

apple .571 .368 .197 .179 .280 .205 .182 .205 .214 .427
banana .160 .161 .203 .161 .112 .112 .112 .160 .107 .283
bear .053 .071 .261 .095 .087 .058 .082 .089 .095 .179
book .095 .055 .109 .508 .055 .073 .094 .095 .079 .169
cap .086 .121 .113 .144 .259 .069 .070 .088 .090 .194
car .133 .110 .124 .157 .094 .440 .120 .135 .111 .186
cup .175 .122 .144 .137 .099 .092 .297 .156 .127 .243
paint .099 .083 .106 .134 .096 .078 .088 .380 .080 .177
shoe .085 .055 .095 .154 .065 .045 .068 .078 .347 .095
shoebox .167 .211 .146 .210 .115 .120 .088 .152 .101 .420

Table 15: Raw data for the rotation tests, 0 degrees.

apple banana bear book cap car cup paint shoe shoebox
apple .609 .414 .281 .267 .212 .169 .246 .230 .176 .430
banana .235 .400 .216 .217 .125 .196 .216 .164 .140 .346
bear .120 .064 .137 .106 .083 .086 .092 .103 .076 .123
book .192 .127 .208 .261 .217 .182 .125 .179 .102 .337
cap .151 .098 .133 .124 .116 .035 .069 .113 .079 .168
car .246 .125 .201 .174 .111 .211 .164 .166 .136 .333
cup .255 .161 .123 .215 .111 .175 .186 .217 .100 .298
paint .113 .085 .104 .131 .092 .060 .105 .103 .073 .153
shoe .058 .107 .115 .120 .088 .069 .047 .075 .102 .160
shoebox .140 .171 .123 .180 .153 .133 .092 .117 .095 .262

Table 16: Raw data for the rotation tests, 45 degrees.
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apple banana bear book cap car cup paint shoe shoebox
apple .438 .267 .199 .219 .169 .146 .200 .154 .127 .338
banana .500 .444 .282 .229 .235 .193 .169 .235 .203 .456
bear .148 .071 .109 .125 .080 .088 .106 .087 .082 .145
book .122 .333 .125 .222 .173 .132 .154 .201 .121 .347
cap .068 .104 .090 .145 .049 .063 .050 .093 .059 .168
car .292 .131 .133 .162 .119 .082 .198 .149 .096 .279
cup .500 .316 .168 .265 .159 .242 .231 .235 .159 .518
paint .105 .079 .082 .157 .072 .061 .086 .091 .092 .157
shoe .139 .158 .174 .169 .110 .090 .097 .130 .116 .207
shoebox .271 .182 .135 .300 .151 .151 .153 .146 .123 .395

Table 17: Raw data for the rotation tests, 90 degrees.

apple banana bear book cap car cup paint shoe shoebox
apple .600 .313 .207 .155 .147 .146 .123 .154 .168 .234
banana .200 .314 .161 .147 .253 .212 .200 .181 .170 .376
bear .148 .066 .153 .130 .086 .080 .120 .101 .103 .171
book .118 .150 .104 .133 .136 .065 .121 .131 .089 .264
cap .173 .138 .109 .121 .077 .049 .133 .130 .076 .163
car .123 .077 .170 .172 .088 .134 .111 .147 .105 .243
cup .200 .255 .118 .295 .167 .172 .193 .129 .122 .298
paint .052 .078 .119 .155 .064 .048 .063 .120 .067 .173
shoe .035 .034 .068 .050 .054 .035 .037 .052 .066 .061
shoebox .125 .222 .149 .157 .096 .121 .079 .112 .114 .374

Table 18: Raw data for the rotation tests, 135 degrees.

apple banana bear book cap car cup paint shoe shoebox
apple .485 .205 .120 .160 .118 .107 .136 .089 .090 .304
banana .146 .226 .162 .190 .185 .119 .101 .136 .133 .347
bear .108 .079 .103 .114 .085 .040 .086 .090 .093 .135
book .100 .140 .098 .254 .099 .094 .125 .143 .069 .303
cap .088 .074 .111 .130 .058 .046 .106 .117 .074 .155
car .165 .104 .130 .184 .085 .128 .078 .088 .109 .213
cup .270 .226 .184 .272 .175 .103 .186 .209 .148 .286
paint .110 .071 .076 .166 .065 .065 .049 .107 .056 .113
shoe .077 .056 .072 .091 .059 .055 .067 .082 .080 .108
shoebox .242 .146 .141 .224 .151 .080 .160 .108 .106 .346

Table 19: Raw data for the rotation tests, 180 degrees.
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apple banana bear book cap car cup paint shoe shoebox
apple .571 .429 .178 .234 .257 .175 .200 .152 .157 .526
banana .381 .489 .217 .217 .256 .129 .197 .224 .231 .687
bear .120 .106 .125 .091 .066 .077 .063 .083 .076 .138
book .327 .145 .154 .168 .113 .078 .133 .143 .122 .250
cap .141 .140 .105 .164 .066 .097 .088 .178 .083 .213
car .273 .167 .205 .176 .159 .180 .149 .184 .165 .315
cup .109 .206 .161 .309 .109 .098 .104 .186 .103 .291
paint .126 .091 .113 .230 .116 .090 .113 .090 .093 .229
shoe .061 .061 .079 .084 .074 .080 .055 .083 .092 .126
shoebox .100 .140 .133 .168 .120 .113 .052 .106 .084 .291

Table 20: Raw data for the rotation tests, 225 degrees.

apple banana bear book cap car cup paint shoe shoebox
apple .387 .327 .222 .261 .243 .176 .182 .149 .191 .530
banana .323 .333 .137 .135 .184 .211 .154 .146 .164 .259
bear .207 .079 .154 .132 .129 .082 .115 .100 .139 .247
book .176 .204 .190 .124 .171 .156 .074 .232 .090 .289
cap .198 .114 .160 .191 .078 .083 .092 .120 .120 .163
car .259 .094 .092 .198 .143 .135 .206 .149 .103 .250
cup .304 .203 .140 .187 .130 .137 .211 .144 .122 .366
paint .155 .094 .110 .166 .073 .110 .139 .135 .074 .221
shoe .195 .089 .177 .095 .110 .102 .064 .125 .097 .298
shoebox .094 .115 .140 .115 .174 .149 .128 .112 .074 .337

Table 21: Raw data for the rotation tests, 270 degrees.

apple banana bear book cap car cup paint shoe shoebox
apple .870 .556 .365 .384 .286 .289 .303 .278 .276 .771
banana .244 .311 .215 .159 .275 .168 .152 .149 .201 .256
bear .111 .098 .087 .085 .078 .042 .086 .086 .090 .136
book .070 .101 .103 .418 .063 .043 .067 .094 .090 .159
cap .170 .167 .096 .192 .112 .098 .127 .096 .072 .213
car .302 .190 .167 .282 .129 .158 .228 .168 .126 .303
cup .163 .120 .131 .127 .091 .077 .239 .135 .083 .263
paint .087 .086 .091 .139 .060 .062 .079 .088 .086 .162
shoe .027 .036 .083 .068 .028 .031 .031 .070 .138 .117
shoebox .101 .146 .141 .143 .104 .080 .080 .098 .096 .273

Table 22: Raw data for the rotation tests, 315 degrees.
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Category test

apple banana bear book cap car cup paint shoe shoebox
apple .714 .545 .229 .248 .259 .214 .233 .222 .220 .523
banana .220 .357 .214 .217 .198 .176 .144 .168 .148 .419
bear .096 .088 .153 .117 .088 .069 .084 .084 .097 .176
book .112 .104 .119 .264 .083 .096 .104 .106 .087 .213
cap .156 .121 .134 .173 .158 .104 .092 .116 .092 .231
car .302 .202 .181 .192 .145 .240 .169 .164 .138 .309
cup .287 .226 .175 .196 .188 .133 .201 .178 .147 .390
paint .137 .166 .113 .164 .100 .101 .115 .190 .091 .183
shoe .089 .129 .123 .168 .111 .105 .077 .124 .174 .217
shoebox .130 .190 .132 .188 .118 .118 .101 .131 .090 .324

Table 23: Average scores for the category tests. Correct object for recognition is underlined, actual recognized object is in bold.
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Appendix C: Spatial Relations recognition data

Position Volunteer 1 Correct Volunteer 2 Correct System
1 front 1 front 1 close
16 front 1 front 1 left
15 left 0 left 0 front
3 right 1 near 1 near
9 front 1 front 0 right
14 behind 0 left 0 front
12 right 1 right 1 left (reversed)
7 close 0 close 0 front
2 front 1 near 1 close
5 behind 1 behind 1 behind
8 close 1 front 1 front
4 right 1 close 1 behind
11 right 1 right 1 right
13 behind 1 behind 1 behind
6 close 0 close 0 front
10 right 1 front 1 front
8 front 1 close 1 close
13 behind 0 behind 0 near
11 right 0 right 0 behind
14 left 0 behind 0 front
6 close 0 near 0 front
2 front 1 close 1 front
10 right 1 front 1 right
16 left 1 front 1 left
5 close 0 close 0 front
3 right 0 near 0 behind
12 right 1 behind 1 left (reversed)
15 left 0 left 0 front
9 front 0 front 0 close
4 close 1 close 1 near
7 close 1 near 1 left
1 front 1 front 1 front

Table 24: Raw data of the judgements of the system and the two volunteers. The positions refer to Figure 13.
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Relation x y z
behind -5.899248922 -25.7971297566 25.159424
behind 52.9700973764 -24.9458936331 195.67029
behind -57.0941310379 -18.9379494358 68.503113
behind -4.3814409614 -51.240354757 256.68207
behind 67.0083699163 -32.7869058768 125.02954
behind -1.6550292595 -29.0200090595 52.835754
behind -55.9691280509 -19.1350315506 42.56366
behind -15.2305940117 -39.2762856292 178.24469
behind -37.4383432306 -15.9563714241 40.804688
behind -38.562405956 -14.053581619 42.562622
behind 43.003867391 -24.3954195658 57.236633
behind -2.2385462063 -30.3543536631 107.99451
behind 38.7201667751 -15.572121242 58.849121
behind 3.4483884939 -30.6087150945 58.872498
close to 72.7331371642 -11.2203694394 10.517578
close to 54.3019892837 -15.0657236041 80.633301
close to -21.1237416391 1.1127229295 13.848206
close to -30.7813648752 -17.5059283565 29.64386
close to -9.3702505482 6.0984597678 0.52471924
close to 17.5434653754 9.8496034133 -27.456421
in front of -37.5979425732 11.1356734346 17.597504
in front of 74.3171698838 13.5407262161 -47.650391
in front of -11.6953726596 23.1944491884 -48.567078
in front of 0.9896407064 37.0970454915 -31.111084
in front of -48.0301906822 34.2280911177 -90.871063
in front of 26.8227118405 12.3563162023 8.064209
in front of 62.9723123823 35.1807219369 -91.95636
in front of -33.2209731208 8.4519599375 -100.03784
in front of 14.8578042958 8.9498172336 -42.96521
in front of -48.6649611618 8.4341749048 -111.38696
in front of -51.4155054475 18.17266025 -61.303833
near -19.803331764 1.110220119 -6.265564
near -22.0670463778 27.3381341133 -22.026855
near 47.7529627723 -16.7268485134 133.88611
near 34.9246418589 13.953116239 -33.744812
to the left of 94.0828955603 0.2178101032 34.702332
to the left of 34.9697452105 -1.7134549314 -41.730896
to the left of 68.4664465039 22.4244404381 -96.07373
to the left of 51.4144018082 -4.1318802992 -31.933655
to the left of 91.1628222604 -8.9677426905 18.767456
to the left of 107.1119922032 -7.4924531064 18.740112
to the left of 57.5061813588 -4.6578077119 77.872559
to the right of -46.2187566287 -7.5654384444 -37.416016
to the right of -50.0468429392 -18.0584898837 119.21436
to the right of -85.0512020825 3.2073099111 -0.59783936
to the right of -96.7378584092 -20.4079432733 4.9558105
to the right of -115.0828989861 -6.7493251141 -42.250366
to the right of -61.7103790912 -8.1859568248 9.7546997

Table 25: Data the system attached to each of the taught spatial relations.

44



Appendix D: Installation manual

The system has only been tested on Ubuntu 12.04, because of the requirement of drivers for the camera
and compatibility for those with ROS. Please use Ubuntu 12.04 if you would like to try this software. It is
possible to run the software in a virtual machine, yet this is not recommended because some host systems
do not manage to properly forward all three virtual USB devices Kinect offers. Different RGB-d cameras
should also work, as long as they provide /camera/depth/image raw and /camera/RGB/image color through
ROS. This has not been tested.

After installing Ubuntu, update all software with:

apt-get update && sudo apt-get upgrade

Reboot the machine and run these commands another time. Ubuntu 12.04 is an old version, and running the
command once is likely not enough as a reboot is necessary for some updates. If you are running Ubuntu
in a virtual machine, install the guest extensions that allow forwarding of USB devices.

Execute the following commands to install ROS:

sudo sh -c ’echo ”deb http://packages.ros.org/ros/ubuntu precise main” > \
/etc/apt/sources.list.d/ros-latest.list’

wget https://raw.githubusercontent.com/ros/rosdistro/master/ros.key -O - \
| sudo apt-key add -

sudo apt-get update
sudo apt-get install ros-hydro-desktop-full
sudo rosdep init
rosdep update
echo ”source /opt/ros/hydro/setup.bash” >> ~/.bashrc
source ~/.bashrc
sudo apt-get install python-rosinstall

Install freenect drivers:

sudo modprobe -r gspca_kinect
echo ’blacklist gspca_kinect’ | sudo tee -a /etc/modprobe.d/blacklist.conf
sudo apt-get install ros-hydro-freenect-stack

Install Oracle’s Java:

sudo add-apt-repository ppa:webupd8team/java
sudo apt-get update
sudo apt-get install oracle-java8-installer
sudo apt-get install oracle-java8-set-default

Make sure Java is installed correctly. The software requires Java 1.8 or higher.

java -version
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Install ROSJava:

sudo apt-get install ros-hydro-catkin ros-hydro-ros
sudo apt-get install ros-hydro-rosjava python-wstool

If a workspace for ROS does not exist yet, create one:

mkdir -p ~/catkin_ws/src
cd ~/cat kin_ws/src

Download Kille by cloning the github into the src folder:

git clone https://github.com/masx/Kille.git Kille

Generate the build and devel directories:

cd ..
catkin_make

ROSDial works best with Opendial 1.3. This can be saved to any folder of choice. Download it from it’s
offical site at opendial-toolkit.net, and edit the Nuance or Sphinx plugins to exclude the confidence scores
they provide. Then download only ROSDial from the github below. Alternatively, download the ready
edited version of Opendial and ROSDial:

git clone https://github.com/masx/ROSDial
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Appendix E: User manual

Three terminal windows are required to boot the whole system. First open up the freenect drivers and
roscore, with the command:

roslaunch freenect_launch freenect.launch

Then, run the following command in a new window:

rosrun kille kille.py

Finally, open up the third terminal and navigate to the folder that contains the ROSDial and Opendial folders.
Execute the following command:

./ROSDial_start ROSDial.ROSDial

This will start ROSDial and Opendial, providing a GUI where it is possible to type or speak your commands.

ROSDial allows for multiple TTS and ASR systems. The default is MaryTTS with Sphinx ASR. In the event
those need to be switched to Nuance, edit the domain.xml file in the ROSDial folder. Obtain your Nuance
key from the Nuance website.
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