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Abstract 

Active AS soil has several negative impacts on the environment due to their ability to severely decrease 

pH-values and mobilize metals bound in the soil. The negative impacts can especially be seen in aquatic 

environments that drains an active AS soil. Active AS soil creates difficulties to reach the environmental 

goals that were set by the Swedish Parliament in 1999. Investigations of the distribution of AS soil in 

Sweden have chiefly been done along the northern coast, Västerbotten, and Norrbotten, but discoveries 

have also been done in Mälardalen and Skåne. During a construction work in Falkenberg 2019, water pumps 

corroded and the presence of yellowish drainage water with low pH-values and high sulphate concentrations 

led to the conclusion that AS soil exists in the area. The focus of this project was to determine the 

distribution and existence of AS soil in Falkenberg, on the west coast of Sweden, to shed light on their 

formational environment, and to evaluate the suitability of ERT methods as an identification tool for these 

soils on the Swedish west coast. The project was carried out from September 2019 to June 2020 as a master 

thesis at the University of Gothenburg in collaboration with SGU. Soil sampling was done during the 

autumn of 2019 with an extendible Edelman auger. Soil sampling was carried out in areas where earlier 

soil-type mapping showed occurrence of organic-rich sediments. The soil samples were collected for 

oxidation and further laboratory analyses, including metal and S analyses at an accredited laboratory. After 

the oxidation of the soil samples, it was concluded that both active and potential AS soil exists in 

Falkenberg. Four sites were classified as active AS soil sites and one was classified as a potential AS soil 

site. This is the first discovered active AS soil outside of the Baltic Basin in Sweden. All the observations 

of AS soil sites were done below 13 m.a.s.l., in clay gyttja, gyttja clay, and sand. When the location of these 

sites was established, ERT measurements were done at one of the sites, H19001, during November 2019 

and February 2020. The results showed that differentiation of the AS soil from surrounding sediments was 

possible at this site. The formation of the AS soil on the west coast of Sweden differs from that along the 

Swedish north coast and is thought to have taken place in shallow protected lagoons and bays during Tapes 

transgression. 
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Sammanfattning 

Aktiva SSJ har flertalet negativa konsekvenser på miljön på grund av deras förmåga att kraftigt sänka pH-

värden i både jord och vatten samt att mobilisera metaller som finns bundna i jorden. De negativa effekterna 

ses framförallt i vattenmiljöer som dränerar en aktiv SSJ. Aktiv SSJ innebär svårigheter att uppnå de 

svenska miljömålen som beslutades av den svenska regeringen 1999. Undersökningar om utbredningen av 

SSJ i Sverige har framförallt gjorts längs den norra kustremsan, Västerbotten och Norrbotten, men 

upptäckter har även gjorts i Mälardalen och Skåne. Under ett byggnadsprojekt i Falkenberg år 2019, ledde 

eroderade vattenpumpar, närvaro av gulaktigt vatten med lågt pH och höga koncentrationer av svavel till 

slutsatsen att SSJ finns i området. Syftet med denna studie var att undersöka utbredning och förekomst av 

SSJ i Falkenberg, på Sveriges västkust, att klargöra dess bildningsmiljö, samt att utvärdera möjligheten att 

använda ERT metoder som en identifikations metod för dessa jordar på den svenska västkusten. Projektet 

utfördes från september 2019 till juni 2020 i from av en masteruppsats på Göteborgs Universitet, i 

samarbete med SGU. Provtagning av jord utfördes under hösten 2019 med en förläggningsbar Edelmann 

borr. Prover togs i områden som under tidigare jordarskartering konstaterats utgöras av sediment med hög 

organisk halt. Jordprover togs för oxidering och vidare analyser i laboratoriet, inkluderat metall och S 

analyser. Efter oxidering av jordproverna kunde det konstateras att både aktiv och potentiell SSJ 

förekommer i Falkenberg. Fyra lokaler klassades som aktiva SSJ och en lokal klassades som potentiell SSJ. 

Detta är den första upptäckten av aktiv SSJ utanför den baltiska bassängen i Sverige. Alla observationer av 

SSJ gjordes nedanför 13 m.ö.h., i lergyttja, gyttjelera och sand. När platserna för dessa lokalerna var 

fastställda utfördes ERT mätningar på en av dessa, H19001, under november 2019 och februari 2020. 

Resultaten visade att det var möjligt att skilja SSJ från omgivande sediment på denna lokal. 

Formationsmiljön för SSJ på den svenska västkusten skiljer sig från den längs norra Sveriges kustremsa, 

och tros ha utgjorts av grunda skyddade laguner och havsvikar under Tapes transgression. 
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Abbreviations and terminology used for soil type description 

 Cl – Clay 

Cl sagr – Clay with a layer of sand and gravel 

gyCl – gyttja clay, a clay with high organic content and ‘yeast’ structure 

grsasiCl – gravely sandy silty Clay where clay is the dominating soil type 

gyCl – gyttja Clay where clay is the dominating soil type 

safCl – fine sand in Clay where clay is the dominating soil type 

sagr – sandy gravely thinner layer 

saSi – sandy Silt where silt is the dominating soil type 

sasiCl – sandy, silty Clay where the clay is the dominating soil type 

siSa – silty Sand where sand is the dominating soil type 

siclSa – silty clayey Sand where sand is the dominating soil type 

 

  



 

  

Glossary 

Dry crust clay/soil – is present in the uppermost clay/soil layers and is caused by drying, ground frost, and 

weathering. The weathering can result in ion exchange and alteration of the clay mineral. 

The cracks in the dry crust clay/soil affect the microstructure so that drainage goes faster 

than the permeability of the soil would allow. (Larsson, 2008) 

Fennoscandian ice sheet – The ice sheet that, during the Weichselian glaciation (c. 115,000 – c. 11,700 

years ago) reached out from the Scandinavian mountains to the east-coast of Schleswig-

Holsten, the March of Brandenburg and Northwest Russia (Weichselian glaciation. (n.d.) 

From Wikipedia. Retrived 2020-04-09 

https://en.wikipedia.org/wiki/Weichselian_glaciation).  

Holocene – a warm period (interglacial) with its onset app. 11 ka y. B.P. (Harff, Björck, & Hoth, 2011) 

Hydraulic conductivity – is a coefficient that describes the speed at which a fluid can flow through a medium 

(Fetter, 2014). 

ICP – SFMS – An isotope analysis method in which a magnetic sector is used as the mass analyzer (SF = 

sector field). This method gives a high mass resolution. Under optimum conditions the 

precision in isotope ratio measurements is better than 0,05 % relative standard deviation 

(ALS, (n.d.). Isotope laboratory. From ALS. Retrieved 2020-05-31 from 

https://www.alsglobal.se/en/isotope-analysis/laboratory) 

Littorina Sea stage – A brackish stage of the Baltic Sea basin, 8500-3000 14C y.B.P. that had a salinity about 

twice as high as today (Ekman, 1953; cited in Sohlenius, Sternbeck, Andrén, & Westman, 

1996). When mentioning the Littorina stage in Denmark it refers to the highest elevation 

of the sea 5750 – 2650 y. B.P((Christensen & Nielsen, 2008). 

Oxidized zone – The oxidized zone is the zone above the ground water table where oxygen has entered the 

soil pores. The oxidized zone can again become reduced when saturated so that reducing 

reactions initiate.  

Postglacial isostatic rebound – During the Pleistocene, the weight of the ice sheet pressed the bedrock 

downwards by several 100 m. When the ice sheet melted, a pressure release occurred. 

The equalization of this pressure difference is continuing today causing an uplift of the 

crust.  After the ice sheets retreat, the rebound of the bedrock was in an initial state rapid 

but has today tapered off to around 9 mm/year (Johansson et al, 2004; Eronen, 2005). 

Reduced zone – The reduced zone is the zone in the soil that is situated below the ground water table and 

where oxygen has not entered hence no reactions between elements bound in the soil and 

oxygen have taken place. 

Regression - (marine) regression occurs as submerged seafloor or land surface is lifted above sea level. 

(marine regression. (2018). From Wikipedia. Retrieved 2020-05-20 

https://en.wikipedia.org/wiki/Marine_regression 

Tapes transgression – is the maximum transgression that followed the initial post-glacial regression. In 

Falkenberg it reached a maximum around 6500 y. B.P. and then reached a level of 12 - 

13 m.a.s.l. (Påsse, 1988 unpublished). The transgression was initiated around 8500 y. B.P. 

https://en.wikipedia.org/wiki/Weichselian_glaciation
https://www.alsglobal.se/en/isotope-analysis/laboratory
https://en.wikipedia.org/wiki/Marine_regression


 

  

and led to the opening of Öresund and Great Belt, and the formation of the Littorina Sea 

(Lundqvist, Lundqvist, Lindström, Calner, & Sivhed, 2011).  

Transgression – a (marine) transgression is a geological event when the sea level rises and the shoreline 

therefore moves landwards, to higher elevations. This results in the land surface being 

flooded by ocean water. Transgressions can be caused by (1) land subsidence, (2) a larger 

volume of water in the ocean or (3) the ocean basins capacity (volume) is decreasing. 

(Marine transgression. (2019). From Wikipedia. Retrieved 2020-05-20 

https://en.wikipedia.org/wiki/Marine_transgression 
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1. Introduction  
Acid sulphate soil (AS soil) exists in many places in the world including Southeast Asia, West Africa, 

eastern Australia, Latin America, and Europe (read in Boman, 2008 from Andriesse & van Mensvoort, 

2006), and is common along coastal areas that once were covered with saline/ brackish water or in anoxic 

wetlands, tidal swamps, and sometimes in lake sediment (Dent & Pons, 1995; Becher, Sohlenius, & 

Öhrling, 2019; Åbjörnsson & Stenberg, 2017). The sediment in which AS soil develop is usually originally 

deposited as organic-rich, fine grained material. Following deposition, degradation of the organic material 

generates an anoxic environment where sulphate-reducing-bacteria decompose the organic matter. This 

process forms iron sulphide, resulting in sulphide-bearing sediment (parent material for AS soil). Sulphide-

bearing sediment constitute no harm in waterlogged condition; and is in this state termed ‘potential acid 

sulphate soil’ (potential AS soil). Problems arise when the sediment are exposed to oxygen, especially in 

soil that lacks adequate buffering capacity. When iron sulphide oxidize, sulphuric acid is created, resulting 

in an acidic environment. The chemical reaction leads to pH values as low as 3 or even 2 (Pousette, 2010; 

Dent & Pons, 1995). In oxidized condition the soil is termed ‘active AS soil’. The acidification entails 

negative environmental effects as it releases metals that prior to acidification had been bonded in the soil 

particles. The release of metals can kill or harm vegetation and aquatic organisms as well as pollute ground- 

and surface water bodies (Dent & Pons, 1995). Furthermore, AS soil have low stability and can be 

problematic during construction work (Pousette, 2010).  

As the Fennoscandian Ice Sheet retreated, many coastal parts of Sweden were covered with water because 

the crust had become isostatically depressed beneath the ice sheet. The highest elevation reached by these 

former seas is referred to as the ‘marine limit’ or the ‘highest coastline’. The Baltic Basin went through a 

series of stages and the saline concentration of the water fluctuated with them. During the stage of the 

Littorina Sea (Fig. 1) salty, nutrient-rich ocean water entered the Baltic Sea through Öresund and Great Belt 

(Westman & Sohlenius, 1999). The highest elevation reached during this stage is called the ‘Littorina limit’ 

(Lindqvist, Lindqvist, Lindström, Calner, & Sivhed, 2011). During this stage, organic-rich sediment was 

deposited at depth on the seafloor and in bays where little mixing of the water occurred. This implies an 

environment conducive for the formation of sulphide soil, as small amounts of oxygen are supplied to the 

bottoms and the lack of mixing allows for deposition of the organic matter before complete degradation. 

The reducing condition is also caused by oxygen consuming bacteria during the degradation of the organic 

material. Today, many areas whit this sediment are situated above (present) sea-level due to the post-glacial 

rebound.  

AS soil is common on the west coast of Finland and in the northern coastal parts of Sweden, where they 

mainly have been observed under the Littorina limit. This, because of the history of the Baltic basin and the 

higher rate of the post-glacial rebound in the northern parts of the Fennoscandian shield that caused a larger 

area of Littorina-Sea sediment uplifted above sea-level. Earlier studies on AS soil has chiefly been focused 

on the northern coastlines of Sweden, and consequently, the distribution in other parts of Sweden is not 

well known. Nonetheless, some studies have discovered AS soil in other parts of Sweden. Areas with AS 

soil have been found in Mälardalen, and a recent discovery of active AS soil was found in paleo lake 

sediments in a region close to Kristianstad, Skåne (Åbjörnsson, Stenberg, & Sohlenius, 2018). AS soil is 

also rather common in Denmark, predominantly in wetlands (Beucher, Adhikari, Breuning-Madsen, Greve, 

Österholm, Fröjdö, Jensen, & Greve, 2016). In both Sweden and Finland, it is common to find potential AS 

soil underneath peat layers, because peat covered areas has such a groundwater table that hinders oxidation 

of the sulphide. To be able to cultivate crops on such land, drainage is needed (Boman, Becher, Mattbäck, 

Sohlenius, Auri, Öhrling, & Eden, 2018). When peatlands are drained, the peat layer will slowly disappear 

as it is oxidized, and further drainage is necessary. This can lead to oxidation of underlying potential AS 
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soil and lead to the formation of active AS soil (Becher, Sohlenius, & Öhrling, 2019). It has been estimated 

that approximately 5 %, or 140 000 hectares, of agricultural land in Sweden is situated on AS soil (Åberg, 

2017, Öborn, 1994), although this number may be a low estimate considering the new findings in 

Mälardalen and Skåne. 

To avoid the problems that arise when a potential AS soil is oxidized, it is of importance to identify the 

distribution and status of the soil. Often, it is possible to get a hint of their presence by certain field 

characteristics like the colour (section 2,5). Geophysical investigations using resistivity (ERT) have been a 

successful identification tool of sulphide soils in earlier studies on the Swedish north coast, in Mälardalen 

and in Finland. This method can enable identification of AS soil over a large area in less time than traditional 

drilling. Drilling will still be needed together with ERT methods. This, because the ERT values of AS soil 

vary largely. It is unknown if it is possible to use this method for identification on the Swedish west coast. 

Due to the occurrence of marine and quick clays being more frequent on the west coast, it might not be 

possible to distinguish sulphidic soils from these clays. This, because the resistivity decreases as the salinity 

in the sediment increases (Rankka, Andersson-Sköld, Hultén, Larsson, Leroux, & Dahlin, 2004). 

AS soil has a large part to play in Sweden’s environmental goals. The Swedish Parliament established 16 

environmental goals in 1999 for a more sustainable ecological future (Sveriges miljömål, 2019). Active AS 

soil create difficulties to reach the goals that refer to; good quality on groundwater, a living aquatic 

environment in streams and lakes, an environment free from pollutants, natural acidification only, a sea in 

balance and a living archipelago, swarming wetlands, and a multitudinous vegetation- and animal life 

(Åberg, 2017). This is because active AS soil affects water bodies with heavy metals, harms vegetation and 

microbiota, and in several cases have led to fish populations being killed. Active AS soil leads to 

impairment of spawning grounds for fish (Åström, & Björklund 1995), thus resulting in a decline in these 

fish populations. Additionally, the acidification seen in water and soil caused by active AS soil is (almost) 

solely a result from anthropogenic activity like lowering of the groundwater (Åberg, 2017), even if the 

formation and uplift of AS soil is a natural process.  

The marine history of Sweden’s west coast and the Kattegat Sea, where the study area Halland is situated 
(Fig. 1), differs from that of the Baltic Sea’s. Parts of Sweden's west coast was also covered by water at 
several different stages (Fig.1). But the Kattegat Sea was never isolated from the ocean, and hence the 
supply of salty- organic-rich water was not as limited.  Following deglaciation, the maximum marine limit 
varies between the southern and northern parts of Halland due to differences in the crustal rebound. The 
area also has a history of regressions and transgressions that have influenced the sediment today situated 
on land. The Tapes transgression is the highest of these transgressions (also called the postglacial limit) and 
was initiated around 9.5 ka cal y.B.P. In the southern parts of Halland it reached a maximum of 10 m.a.s.l., 
while in the middle parts of Bohuslän it reached 30 m.a.sl. (Lundqvist, Lundqvist, Lindström, Calner, & 
Sivhed, 2011) (See section 3.1). Despite its marine history, the Swedish west coast has had no investigations 
of AS soil. The Geological Survey of Sweden (SGU) now wants to investigate the existence and possible 
extent of AS soil on the Swedish west coast, specifically in the areas Falkenberg and Viskadalen. This thesis 
is one of two parallel investigations on this topic and will focus on Falkenberg municipality and its vicinity, 
while the parallel investigation will focus on Viskadalen (Bergström, InPress). In Falkenberg, organic-rich, 
sulphide fetid soil samples have been observed in earlier investigations concerning the Quaternary 
development of the area carried out by Tore Påsse (1982 - 1983, geologist at SGU). More recently, during 
a construction in the city of Falkenberg, lowering of the groundwater led to corrosion of water pumps, 
precipitation of metals, and presence of yellowish water (S. Bjurström, personal communication, 2020-01-
27, construction project manager at Falkenberg municipality). According to U. Hempel (personal 
communication, 2020-02-26, environmental consultant at WSP) measurements in the drainage water 
showed a sulphide concentration of 500 - 600 mg/l and a pH value of 3; this is a strong indication that AS 
soil exists in the area. Furthermore, if active AS soil is discovered in this project, an investigation about its 
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influence on the aquatic environment in the area will be carried out by a fellow student at the University of 
Gothenburg (Lindgren, InPress). 

 

  

Figure. 1. The light blue area represents the highest elevation reached by the Littorina Sea in the Baltic 

Basin on the east coast of Sweden, also referred to as the marine limit in these parts; in the western 

parts it represents western sea extent (marine limit). The marine limit of the western sea equals the 

highest coastline (HK) on the west coast of Sweden. The darker blue area represents HK in the Baltic 

basin.. The study area Falkenberg is highlighted with red, and the county of Halland with lines. Data 

source: Sweden outline retrieved from DIVA-GIS ©; Halland and Falkenberg outline retrieved from 

DIVA-GIS ©; Highest coastline/Marine limit and Littorina Sea, retrieved from SGU© provided by 

Gustav Sohlenius. 
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1.2 Aim and research questions  
This project aimed to investigate if AS soil occur on the Swedish west coast as well as to increase the 

knowledge of the extent and distribution of AS soil. In addition, it is thought that increased knowledge on 

their distribution will shed light on how sulphidic soils form. Drilling was performed with an extendible 

Edelman auger to collect soil samples for pH measurements and further laboratory analyses. To evaluate 

suitable geophysical identification methods for AS soil on the west coast, ERT measurements were carried 

out at selected sites where AS soil was discovered.  

1.2.1. Specific research questions  

• Is it possible to prove or discover the existence of AS soil in Falkenberg municipality? And in that 

case are they potential or active AS soil?   

  

• If present, in what kind of environment did the AS soil in Falkenberg form? Is it possible to say 

anything about the characteristics of the soil in which they most commonly occur in? In what way 

do the findings correspond to the mapping data from Påsse? 

   

• If AS soil is discovered, is it possible to differentiate them from their surrounding sediments by 

their ERT?  
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2. AS soil 
AS soil is commonly associated with fine-grained, sulphide-bearing sediment (<63 μm), but a recent study 

by Mattbäck, Boman, and Österholm (2017) showed occurrence in coarser grain sizes (≥ 63 μm) in Finland. 

And in Australia, the presence of acidic properties in coarser grain-sized sediment has been known for long 

(Dear, Ahern, O’Brien, Dobos, McElnea, Moore, & Watling, 2014). 

2.1. Formation of potential and active AS soil 
The formation of a sulphide-bearing sediment occurs in the following way. Degradation of accumulated 

organic matter consumes oxygen, sometimes to such an extent that the environment becomes oxygen-free 

(anoxic). In an anoxic environment, the bacteria will reduce sulphate (SO4
2+) to hydrogen sulphide (H2S) 

and trivalent iron (Fe3+) is oxidized to divalent iron (Fe2+) allowing for the formation of iron sulphide. This 

is what constitutes a potential AS soil. Often iron monosulphides (FeS) is formed (eq. 1) (Becher, Sohlenius, 

& Öhrling, 2019). Under certain conditions the monosulphides can react with sulphur, and pyrite (FeS2) is 

formed (Eq. 2) (Becher et al., 2019).  

 

 
𝐹𝑒𝑂𝑂𝐻 + 𝑆𝑂4

2+ +
9

4𝐶𝐻2𝑂
+  2𝐻+ →  𝐹𝑒𝑆 +  

9

4𝐶𝑂2
 +  

15

4𝐻2𝑂
 

(eq. 1) 

 

 𝑆𝑂4
2+ + 𝐹𝑒3+ →  𝐻2𝑆 + 𝐹𝑒2+  → 𝐹𝑒𝑆2  (eq. 2) 

 

When the sediment is exposed to oxygen both chemical and biological reactions are initiated, and an active 

AS soil is formed. The iron sulphides are then oxidized to sulphuric acid (H2SO4) and iron deposits like 

goethite (α-FeOOH↓) or jarosite (KFe3+
3(SO4)2(OH) 6↓) through complex processes by different species of 

sulphur bacteria (Eq. 3 & 4). The oxidation process facilitates by cracks formed in the dry-crust soil as a 

result of the drainage, which allows for even more oxygen to enter (Becher, 2019). A result of the oxidation 

is that sulphate is produced, and the pH is decreased. 

 
𝐹𝑒𝑆2 +

15

4𝑂2
+ 

7

2𝐻2𝑂
→ 𝐹𝑒(𝑂𝐻)3 + 2𝑆𝑂4

2− + 4𝐻+ 
(eq. 3) 

 

 
2𝐹𝑒𝑆 +

18

4𝑂2
+  5𝐻2𝑂 → 2𝐹𝑒(𝑂𝐻)3  + 2𝑆𝑂4

2− + 2𝐻+ 
(eq. 4) 

 

2.2. Acidifying potential 
The amount of sulphur that an AS soil contains relates to its acidifying potential, and a sulphur content < 

0,06% will not have a significant acidifying effect (Pousette, 2010).The Fe/S-ratio will also influence the 

acidifying effect, where a ratio < 3 generally give a high acidic effect (low pH values), and a ratio > 60 will 

give an insignificant acidifying effect according to Pousette (2010). The acidifying effect also relates to the 

organic content and buffering capacity of the soil, where a high organic content and a high buffering 

capacity will slow the acidic effect (Pousette, 2010). An oxidized active AS soil can again become reduced 

if being waterlogged and anoxic (Pousette, 2010). 
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2.3. Problems related to AS soil 

2.3.1. Negative effects on the environment and human health  

AS soil creates environmental and health concerns because a pH lower than 4 leads to chemical reactions 

that mobilizes metals bound in soil particles (Pousette, 2007). This leads to several negative effects in 

aquatic environments draining AS soil. The cracks seen in the dry-crust soil is an important cause for the 

elements being leached through runoff (Becher et al., 2019). Furthermore, a chronic exposure to elevated 

metal concentrations can pose an actual threat to human health (Fältmarsch, Åström, & Vuori, 2008). 

In Finland, the total release of the metals Aluminum (Al), Cadmium (Cd), Cobalt (Co), Manganese (Mn), 

Nickel (Ni), and Zinc (Zn) into the environment and the Baltic Sea through runoff from AS soil, have been 

proven bigger than the total release of these metals from the Finnish industry (Sundström, Åström, & 

Österholm, 2002).  Studies performed by SGU found that plants growing in streams connected to active AS 

soil contains high concentrations of metals (e.g. Lax, 2005). In Finland, it has been shown that sediment in 

bays where streams draining areas with active AS soil ends, likewise contain high amounts of metals 

(Nordmyr, Åström, Peltola, 2008). Österholm and Åström (2004) calculated that, after trenching of an area 

with AS soil, it takes nearly 30 years for the load of metals and sulphur to be halved, and even longer for 

the negative effects on the environment to reach acceptable values. A low pH and high metal concentration 

can affect many organisms in the soil and the aquatic environment, and drainage to nearby water streams 

can, in some cases lead to fish death. Trout and roach are very sensitive to low pH in water (Becher et al., 

2019). In Finland, several cases of fish death led to an investigation of the extent of AS soil by the Finish 

geological survey (GTK) in 2009 (Sohlenius, Aroka, Whålen, Uhlbäck, & Persson, 2015). 

Whether or not active AS soil harms human health is not well known, but according to Fältmarsch et al. 

(2008) the studies done are alarmingly few. A correlation between consumption of milk from cows grazing 

grass grown on AS soil, and multiple sclerosis (MS) has been demonstrated in a study by Alhonen, Mantere-

Alhonen, and Vuorinen, (1997). The link between Parkinson's (PD) and Alzheimer's (AD) diseases and AS 

soil that has been demonstrated in several studies are discussed in a literature review from Fältmarsch et al. 

(2008). In their study, they found that iron (Fe) was enriched in oats grown on AS soil, and in cow milk 

from cows grazing grass grown on AS soil. Furthermore, Al showed high enrichment in cow milk, while 

Zn instead was found to be enriched in AS soil drainage-waters. Cornett, Markesbery, and Ehmann (1998) 

found a statistically significant link between AD and high amounts of Zn and Fe in the brain. Regarding 

PD, a link with continuing exposure to the individual metals Mn and copper (Cu), and the combined metals 

Fe-Cu, Lead (Pb)-Fe, Cu-Pb have been demonstrated in a study (Gorell, Peterson, Rybicki, & Johnson, 

2004). Additionally, a significant association with Mn and PD was shown in a study performed by Gorell 

et al. (1997, 1998, & 1999). Mn is found in high concentrations in waters draining AS soil, as well as a 

widespread dispersion in crops grown on AS soil. In short, the links found between the metals and AD and 

PD and the fact that these metals are enriched in active AS soil landscapes should be a reason to study its 

influence on the human health, as well as its distribution. 
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2.3.2. Geotechnical properties of AS soil and its impact on the built environment  

The problems related to AS soil is not restricted to the biosphere. The acidity can cause corrosion on pipes 

and other underground metal or concrete constructions (Dear, et al., 2014), which leads to a shorter life 

span and thus increased costs as replacement will be required. Additionally, the mobilization of Fe ions 

causes problem in drainage pipes as the Fe is precipitated in contact with alkaline water (Màcisk, 1994). 

Housing and infrastructure foundations risks being damaged by the corrosion that active AS soil is causing 

on concrete and metal reinforcement. This is because concrete breakdown can be accelerated by several 

minerals forming after FeS2 oxidation (Dear et al., 2014). Additionally, AS soil have high water content 

and a high yield point, which in turn relates to their high compressibility, low undrained shear strength, and 

their vulnerability to creep deformation (Pousette, 2007). Soil with these characteristics show subsidence 

and low stability (Larsson, Westerberg, Albing, Knutsson, & Carlsson, 2007; Westerberg & Andersson, 

2009). Traditional stabilization binders like cement and lime are less effective in AS soil, and other binders 

are thus needed to reach acceptable stability (Andersson, & Norrman, 2004).  

2.4. Distribution and characteristics of AS soil in Sweden 

2.4.1.  Västerbotten and Norrbotten 

Along parts of the northern coast of Sweden, the presence of AS soil has been known for a long time (see 

Sohlenius et al., 2015). The distribution of AS soil coincides with the distribution of silty and clay-rich soil 

(fine-grained soil) shown on SGUs soil-type maps (Sohlenius, Aroka, Wåhlén, Uhlbäck, & Persson, 2015). 

However, the most fine-grained sediments in this area of Sweden are often found superimposed by fluvial- 

or wave-washed sediments (Sohlenius, Persson, Lax, Andersson, & Daniels, 2004). The sedimentation of 

AS-soil parent material took place at depth during the time of the Littorina Sea (Sohlenius et al., 2004).  

Most observations of AS soil occur below 55 – 60 m a.s.l., which indicates sediment uplifted less than 5,0 

ka y. B.P. (Sohlenius et al., 2015). Only a few observations have been made at 80 m.a.s.l. in sediment older 

than 6,5 ka years. However, only 7 investigations were made at this elevation, to compare with 300 

investigations performed at 55 – 60 m.a.s.l. (Sohlenius et al., 2015). Most of the sites with observed AS 

soil were covered by water 3500 years ago and are today situated 35 – 40 m a.s.l. (Sohlenius et al., 2004). 

The total area with AS soil in Norrbotten and Västerbotten is estimated to be at least 600 km2 (Sohlenius et 

al., 2015).   

2.4.2. Mälardalen 

The presence of AS soil in Mälardalen often coincides with the occurrence of ‘gyttja clay’ (organic-rich 

clay) on SGUs soil-type maps.  Most observations in Mälardalen are from low-relief areas that 2000 years 

B.P. consisted of protected, shallow bays with a sea-level 10 m above present (Sohlenius, Persson, Lax, 

Andersson, & Daniels, 2004). 

2.4.3. Skåne 

Åbjörnsson et al., (2018) found 5 areas with active and potential AS soil in Skåne. The dominating soil type 

that active and potential AS soil was found in were gyttja, and gyttja clay. But AS soil was also found in 

coarse-, medium-, and fine-grained sand (Åbjörnsson et al., 2018). Three of the observed areas are situated 

in lake sediment. One of the two other areas consisted of a strait 2000 y. B.P. that connected Skälderviken 

to Öresund, and the other area consisted of a shallow bay surrounded by peatlands during the Littorina-Sea 

stage (Åbjörnsson, 2018).  
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2.5. Field characteristics of AS soil 
Colour, thick rust/iron precipitates, smell of sulphur, and minerals such as KFe3+

3(SO4)2(OH) 6, are 

characteristics that can be observed in field and hint that the soil could be an AS soil. The colour of AS soil 

differs between the north and the south of Sweden. The AS soil of northern Sweden generally have a black 

colour and is hence given the name ‘Svartmocka’ (English translation: Black ‘suede’ soil). The black colour 

is caused by the dominating sulphide mineral being FeS (Sohlenius et al., 2004). In Mälardalen, the 

dominating sulphide mineral is FeS2 and the colour is instead influenced by the gyttja content of the soil, 

hence the typical colour is slightly green (Sohlenius, 2011). The sandy AS soil can however be difficult to 

identify by colour, although they occasionally can have a dark grey colour (Becher et al., 2019).  

A typical AS soil generally consists of three zones; one unsaturated zone, a transition zone, and a saturated 

zone situated below the lowest groundwater table. The unsaturated zone can have a pH-value of < 4, which 

then successively increases downwards the profile to reach a pH-value > 7 in the saturated zone (Pousette, 

2010; Becher et al., 2019). This pattern will give a typical look to a pH curve plotted against depth (Åström, 

2001 Fig. 2). The unsaturated zone (the dry-crust soil) usually has substantial amounts of rust precipitates 

in the cracks; this is generally more common in the northern parts of Sweden (Becher et al., 2019). 

Occasionally, these rust precipitates can be seen in waterways that stand in hydraulic connection to active 

AS soil. At times the water can be clear due to the acid condition causing particles to flocculate and settle 

(Becher et al., 2019). At other times Al is precipitated in waterways, consequently giving the water a cloudy 

character (Becher et al., 2019).  

  

Fig. 2. An illustration of the typical pH curve plotted against soil depth for an active AS soil, where the pH in the 

upper part of the soil horizon have a slightly higher value caused by liming. The pH-value is then decreasing in the 

oxidized zone, and increasing again in the reduced, waterlogged zone. Picture from Åström, 2001.  
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2.6. Geophysical measurements as an identification tool for AS soil 
ERT measurements at AS soil sites in Sweden have been performed in Norrbotten, Västerbotten, and 

Mälardalen in 2007 as an evaluation of the suitability of geophysical methods to differentiate AS soil in the 

field (Sohlenius, Persson, & Bastani, 2007). The measurements showed that AS soil has a lower resistivity 

than surrounding fine-grained sediment and hence, can be distinguished from the surrounding fine-grained 

non-sulphide sediment (Sohlenius et al., 2007). The lower resistivity that AS soil exhibit is thought to be 

caused by the relatively high concentration of chloride and sulphide in the soil, as these elements cause low 

resistivity (Sohlenius et al., 2007; Suppala, Lintinen, & Vanhala, 2005). The study also found that the AS 

soil along the northern coast of Sweden (Västerbotten and Norrbotten) have a higher resistivity than in 

Mälardalen (table 1, from Sohlenius et al., 2007). This could relate to the occurrence of AS soil in 

Mälardalen (gyttja clay), as clay have a lower resistivity than silt, in which AS soil often occur in along the 

northern coast (Sohlenius et al., 2007). 

 

 

 

  Area Site Resistivity Sulphide-

bearing sediment (omh.m) 

Resistivity surrounding 

sediments (omh.m) 

Table 1. Resistivity values of AS soil sites investigated by Sohlenius et al., 2007. Table from Sohlenius et al., 

(2007), modified to English. 
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3. Quaternary history  

3.1. Deglaciation processes in Halland and Quaternary development of Falkenberg 
Halland was deglaciated between 15-17 cal ka B.P. (Stroeven et al., 2016) (Fig. 4 from Dahlqvist et al., 

2019). C14 dating of shells found in glacial clay in the Falkenberg region suggests that the ice left the coastal 

plain around 17.0 ka cal y.B.P. (14.0 ka 14C y. B.P.) (Påsse, 1988 unpublished). Several findings of 

Foraminifera have been observed in the glacial clay that reveals an arctic depositional environment with 

high salinity (Påsse, 1988). The topographic character of Halland consists of a bedrock dominated 

landscape with valleys (sprickdaler) that follow bedrock fractures. These fractures were deeply weathered 

during the Mesozoic and excavated during the Cenozic (Lidmar-Bergström, 1996). During deglaciation in 

Halland, the ice margin formed calving bays in the fracture valleys and fjords, evidence that relatively deep 

water existed (Hillefors, 1979). The dominating ice-flow direction during the deglaciation was from N 50°E 

(Påsse, 1988 unpublished). As the ice retreated portions of the land surface in Halland was situated below 

sea level, the marine limit, because of the isostatic depression. The marine limit in northern Halland reached 

a maximum level of 90 m.a.s.l. while in the more southern parts, Falkenberg included, the marine limit 

reached app. 55 – 65 m.a.s.l. (Länsstyrelesen Hallands län, 2011; SGU, n.d.; fig. 3 from Påsse, 1988 

unpublished). The differences between the northern and southern parts is a result from the isostatic pressure 

differences of the ice. The coastal flexure being larger to the west, also caused the sea to reach larger depths 

at the coastal plains as compared to the inlands. Portions of the bedrock uplands in northern Halland were 

drowned by the late-glacial sea where water depths of about 10 – 20 m occurred (Hillefors, 1979).  An 

approximation of the ice-margin retreat for the total area (map sheet Ae nr 86) is 500 years, and the 

deglaciation rate has been calculated to 65 m/year for the same area (Påsse, 1988 unpublished). From app. 

17.0 ka cal y.B.P. to app. 10.3 ka cal y.B.P. a relative fast regression took place in Falkenberg and its 

vicinity caused by the isostatic rebound (Fig 3. from Påsse, 1988 unpublished). Following the post glacial 

regression, a protected bay evolved around 13.7 ka y. B.P. in the area of Ätran valley (area contoured with 

black in Fig. 4, from Dahlqvist et al., 2019). A transgression was initiated around 9.5 ka cal y.B.P. (8.5 ka 
14C y.B.P.) with smaller regression-phases . It reached a maximum of 12 – 13 m.a.s.l. in Falkenberg around 

10.3 ka cal Y.B.P. (6.7 ka 14C y.B.P.) (Påsse, 1998). This transgression is called the Tapes transgression 

(Lundqvist et al., 2011). Following the Tapes transgression, a regression to the present shore level took 

place (Fig. 3, Påsse, 1988 unpublished).  
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Figure 3. The shore-level displacement in the Falkenberg region from deglaciation till today, where the zero-line represent 

the present sea level (from Påsse, 1988 unpublished)The 14C dates shown on the axis have been calibrated using the 

interface Oxcal 4.3 (Bronk Ramsey, 2020) and IntCal13 curve (Reimer et al., 2013). The transgression was initiated around 

10.3 ka cal YBP (9.2 ka .14C YBP), the Tapes transgression that reached its maximum level of 12 – 13 m.a.s.l. around 7.6 

ka cal YBP (6.7 ka 14C YBP) in the Falkenberg region. 



 

12 
  

  

Figure 4. A reconstruction of the isostatic rebound in the Falkenberg region from the deglaciation till today (from 

Dahlqvist et al., 2019). The light grey area in A illustrates the ice margin. The red line represents the present shoreline, 

and the area inside the black line was examined with Airborne geophysics by Dahlqvist et al. (2019). Ätran valley are 

situated within this area and parts of it was investigated in this study. 
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4. Methods 

        4.1. Classification of AS soil 
The Swedish-Finnish classification system for AS soil as described in Klassificering av sura sulfatjordar I 

Finland och Sverige (Boman et al., 2018) is applied to the classification of the locations as far as is 

possible. This classification defines an AS soil as a soil that contains sulphides (reduced condition/potential 

AS soil) or sulphates (oxidized condition/active AS soil) with a pH-value below 4 or prone to a decrease 

below 4. However, if the pH in field measures between 4 and 4,5 and this soil is underlain by a potential 

AS soil, the soil will still be classified as an active AS soil. The Swedish-Finnish classification also includes 

soil with a high organic content, such as peat and mire, but these need a decrease in pH to below 3 to be 

considered an AS soil (Boman et al., 2018). The system divides the soil into 7 different diagnostic materials 

(Table 2). The localities are then divided into 3 different types depending on what type of diagnostic 

material the soil constitutes (Table 3).This study will not investigate the diagnostic material of the sites 

(Table 2), but will solely use the pH measured in field and pH measured after oxidation of the soil samples 

for classification (Table 4).   

 

 

 

 

 

 

 

 

  

Table 2. The Swedish-Finnish classification system will be applied to the classification of the locations in this study. The system 

divides the soil into 7 different diagnostic materials depending on the amount of sulphide content, water-soluble sulphate, and pH-

value in field and after oxidation. 

Soil material  [%] Field pH pH after oxidation

Sulphide material  ≥ 0,01% dry weight sulphidecontent

Hyper sulphide material <4 (minerogenic soils) <3 (organic soils) < 4 /< 3

Pseduo hyper sulphide material <4 (minerogenic soils) <3 (organic soils) < 4 - 4,5 / < 3 - 3,5

Hypo sulphide material >4 (minerogenic soils) >3 (organic soils) ≥ 4,6 / ≥ 3,6

Mono sulphide material ≥ 0,01% dry weight acid volatile sulfide

Sulphate material ≥ 0,05%  water soluble sulfate <4 (minerogenic soils) <3 (organic soils)

Psedudo sulphate material  4 - 4,5 (minerogenic soils) 3 - 3,5 (organic soils)
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Classification of sites Field pH 

Acid sulphate soil  

 
 

Soil with either sulphate- or hyper 

sulphide material, or pseudo material 

underlain by hyper sulphide material 

Active acid sulphate soil 
Soil with sulphate- and hyper sulphide 

material or pseduo sulphate material 

underlain by hyper sulphide material  

Potential acid sulphate soil Soil with hyper sulphide material 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

    

Classification Description 

Active acid sulphate soil Oxidized horizon with a field pH < 4 or a 

horizon with field pH < 4,5 underlain by 

a sulphide soil with a oxidized pH < 4 

Potential acid sulphate soil Reduced horizon where field pH is > 6 

and after oxidation < 4 

Non acid sulphate soil Oxidized horizon with a field pH > 4  

Non potential acid sulphate 

soil 

Reduced horizon with a oxidized pH > 4 

Table 3. Classification of sites based on soil material. 

Table 4. Classification of sites based on their field pH and pH after oxidation as described 

above. The classification follows that of the Swedish-Finnish classification scheme. 
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4.2. Calibration of 14C dates 
All radiocarbon dates retrieved from Påsse (1988 unpublished), or stated together with the abbreviation cal 

and given in this report, have been calibrated in this study with the interface OxCal (Bronk Ramsey, 2020) 

and Intcal13 curve (Reimer et al., 2013). The calibrated BC ages with the highest probability was used to 

calculate an average cal BC age. To retrieve calibrated ages in y.B.P. 1950 (present) was added to the 

calculated cal BC average. 

 

4.2. Selection of sampling sites 
Suitable sites for soil sampling were mainly located with the help of field observations of sulphide fetid soil 

made by Påsse (1986) that performed soil type mapping in the area. These observations are marked with a 

G on SGUs map sheet Ae nr 86 (Lantmäteriverket today Lantmäteriet, 1986) (appendix 1). The markings 

were made to show where in the area peat and clay gyttja were overlain by earlier (older) flood plain 

sediment. The map sheet was georeferenced in ArcGIS (Version 10.3.1; ESRI, 2016) and thereafter used 

in the selection. The following data was downloaded from SLUs download service ‘geodata extraction 

tool’: Jordartskartan (SGU), Höjddata_2M (Lantmäteriet), Orthophoto (Lantmäteriet), and Terrängkartan 

(Lantmäteriet). This data was used together with the observations from Påsse (1986) in the selection of 

suitable sampling sites in ArcGIS (Version 10.3.1; ESRI, 2016). The criteria for suitable sampling sites was 

based on the accessibility by car, the proximity to the markings on the map sheet, and located in low-lying 

terrain below the marine limit. Initially the sampling sites were planned to be carried out in different soil 

types to include coarser grain-sizes in the analysis (Fig. 5). This plan was later discarded as drilling in sandy 

soil types made it difficult to reach deep. 

 

4.3. Site description 
The study area is situated in Falkenberg municipality in the county of Halland. All the sampled sites are 

situated below the marine limit (Fig. 6). South of Falkenberg, the marine limit was situated 60 – 61 m.a.s.l., 

and north of Falkenberg at 63 – 64 m.a.s.l. (Påsse, 1998). Most of the sampled sites are located on cultivated 

fields and selected to be a minimum of 10 meters distance to waterways. A few samples were taken in 

central Falkenberg. A total of 15 sites were sampled.  

The Quaternary sediments in the area of Falkenberg are a result of the earlier-mentioned deglaciation 

(section 3.1) together with the distribution and depth of the marine waters (Påsse, 1988 unpublished). The 

sediments are dominantly post-glacial in age, although some glacio-fluvial deposits, glacial clay, and till 

exists (Fig. 5). The dominating post-glacial sediment is wave-washed material up to a level of 15 m.a.s.l. 

The distribution of glacial clay in the region generally coincides with the valley of the river Ätran. In the 

outlet area of Ätran sand and silt have accumulated to a fluvial delta. The highest observed deltaic deposits 

are found at 15 m.a.s.l. (Påsse, 1988 unpublished). Excavations in the deltaic deposits have shown 

embedded layers with organic material, including peat. C14 dating of the peat layers gave an age of 7,5 ka 

cal y.B.P. (6,6 ka 14C y. B.P.) (Påsse, 1988 unpublished). C14 dating have also been done north of Falkenberg 

in marine clay from two different transgression-phases, which have given an age of 8,0 ka cal y.B.P. and 

7,6 ka cal y.B.P. (7,2 ka and 6,8 ka 14C y. B.P) (Påsse, 1988 unpublished).  

. 
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Figure. 5. The map illustrates the distribution of the sampled sites in Falkenberg. Ramsjön, the blue transparent area seen in the 

map, was a former lake that was drained in the 1900’s in order to cultivate the land. The area of Ramsjön was retrieved from Ecknell 

C©. Data source: GSD Höjddata, grid 2+, retrieved from Lantmäteriet©; Sweden outline retrieved from DIVA-GIS ©; Halland and 

Falkenberg outline retrieved from DIVA-GIS ©; and Jordarter_25_100_jk2, retrieved from SGU©.  
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Figure. 6. All the sampled sites are situated below the marine limit as seen in the map. The marine limit is marked with transparent 

blue and represents the highest level reached by the seas on what today is land. A total of 15 sites were sampled in Falkenberg. Data 

source: Orthophoto, retrieved from Lantmäteriet©; Sweden outline retrieved from DIVA-GIS ©; Halland and Falkenberg outline 

retrieved from DIVA-GIS ©; and Högsta kustlinjen, retrieved from SGU© provided by Gustav Sohlenius. 
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4.4. Field work 
During the period from the 26th of September 2019 to the 22nd of January 2020, soil sampling was 

conducted in both Falkenberg and Viskadalen. A total of 35 sites were sampled in both Viskandalen and 

Falkenberg, 15 of these located in Falkenberg and are a part of this study (Fig. 6). The elevation for the 

sample sites were retrieved in ArcMap (Version 10.6; ESRI 20) from a DEM-raster. Geophysical 

measurements were performed during 2019-11-20 and 2020-02-19 at one site in Falkenberg (Fig. 7). 

 

  

Figure 7. The yellow and red line represents the geophysical profiles that were made in 2019-11-20 at site H19001 after a 9 weeks 

oxidation period of the collected soil samples. The green line represents the geophysical profile that was made in field 2020-02-

19. Data source: The area of Ramsjön was retrieved from Ecknell C©. Data source: Orthophoto retrieved from Lantmäteriet©. 
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4.4.1. Soil sampling 

Soil samples were collected with an extendible Edelmann auger with a full length of 3,20 m. Soil was 

collected every 10 cm downwards in each hole as far as was possible. The soil was then placed along a 

folding rule next to the representing sampling depth, where pH-measurements were done with a WTW 340i 

(©Weilheim, 2004) directly, and thereafter soil type determination was done. Occasionally, soil colour was 

determined with a Munsell chart. Soil samples for oxidation in laboratory, grain-size analysis, and metal 

and sulphur analysis were collected for those samples that had (1)  soil from the oxidized horizon (a pH 

close to 4,5 or below this), (2)  soil from the reduced horizon overlain by an oxidized horizon (a high pH 

but below a soil with pH 4,5 or lower), (3) a dark coloured soil, (4) a soil that was identified as gyttja clay, 

or (5) a soil with rust precipitates. The soil samples were put in airtight plastic bags and stored in a 

refrigerator at the Department of Earth sciences in Gothenburg, Västra Götaland.  

4.4.2. Geophysical measurements 

ERT is an electric surveying method where electrical currents are induced into the ground to reveal the 

changes in resistance, which can help identify ground material. Different soils and sediments have a high 

range of and relatively characteristic electric conductivities, thus it is possible to distinguish different 

materials with ERT measurements.  

Choice of locations for geophysical profiles was based on the sub-samples that had a pH below 4 after 9 

weeks of oxidation in the lab. The geophysical data was acquired with ERT with a set-up of 1 m electrode-

distance, 4 measurements per electrode, and roll-along layout. Profile 1 and profile 2 (Fig. 7) were done 

with this layout. A measurement with a setup of 0,25 m electrode-distance, 4 measurements per electrode, 

and a roll-along layout was later done to get a higher resolution in the data (Profile 3, fig. 7).   

4.5. Laboratory analyses 

Oxidation of soil samples is the main method to determine if the soil is an AS soil. Soil samples for 

oxidation were therefore sub-sampled from all the investigated sites. Samples for grain size distribution, 

Loss On Ignition (LOI), Inductively Coupled Plasma Sector Field Mass Spectrometry (ICP-SFMS) 

analyses were sampled from the locations listed in Table 3. Samples for metal and S analyses were collected 

form the sites listed in table 3 and for site H19001 soil from the chip tray were sent for analysis at an 

accredited laboratory. Due to the prevailing circumstances during the year 2020, no grain-size analysis was 

made in the laboratory but was instead determined in field.  

4.5.1. Oxidation of soil samples 

Soil samples for oxidation were stored in a chip tray in a laboratory environment (Fig. 8). The soil samples 

were sprayed with deionized water to keep them under field capacity (moist). These samples were taken 

both from the reduced- and oxidized zone. This was done to see if the pH would have a dramatic drop to < 

4 for minerogenic soil organic content < 20%, and < 3 for organic soil, organic content ≥ 20% (Larsson, 

2008) when exposed to oxygen. The first pH measurements on the soil samples were carried out after 6 

weeks for the first eight sample locations (H19001 – H19008). For the rest of the samples, pH measurements 

were carried out after nine weeks. For the samples that could not be classified as a potential or active AS 

soil at this time, new pH measurements were carried out every 14 day until the pH showed a value below 4 

or was stabilized. A stabilized pH is thought to be reached when the decrease is less than 0,1 pH units 

during a 14 days period (Boman et al., 2018). 
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Figure. 8. The chip trays in which the soil samples were stored and oxidized. The soil samples were sprayed with deionized water 

to keep them under field capacity during the 9 weeks oxidation time.  
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4.5.2. LOI  

To be able to classify the soil based on organic content (percentage/dry weight), loss-on-ignition (LOI) 

measurements were carried out. The sites chosen were those that were already classified as an active AS 

soil or suspected to be a potential AS soil in field (table 5). The samples were first air dried for 5 days, then 

ground with a porcelain pestle. 5 g of the ground samples were then dried in a drying cabinet at 105 °C for 

1 hour in a crucible that prior to this were dried in the drying cabinet at 105 °C for 15 minutes. The samples 

were then cooled in a desiccator and weighed. After this the samples were put in a cool muffle oven set to 

550 °C. When this temperature was reached, the samples were left in the oven for 2 hours. When cooled 

for 20 minutes the samples were put in a desiccator for approximately 45 minutes for further cooling and 

then weighed. LOI were calculated with the equation: 

 

 
𝐿𝑂𝐼 = 100 − ((

𝑊𝑒𝑖𝑔ℎ𝑡 𝑎𝑓𝑡𝑒𝑟 550°𝐶

𝑊𝑒𝑖𝑔ℎ𝑡 𝑎𝑓𝑡𝑒𝑟 105°𝐶
) ∗ 100) 

(eq. 5) 

 

 

 

 

 

LOI- analyses   

Sample site Sampling depth [m] 

H19016 1,4 

H19017 0,4 

H19018 2,3 + 2,4 

H19019 1,8 

H19022 0,8 

H19022 1,3 

H19030 0,7 + 0,8  

H19031 0,9 + 1,0 

H19032 0,6 

  

Table 5. List over sites where LOI-analyses 

were carried out. 
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4.5.3. ICP-SFMS analyses 

Metal and Sulphur analyses were conducted at the accredited laboratory ALS Global in Umeå, 

Västerbotten, with the analys package M1-c/LE. The elements analyzed were Arsenic (As), Barium (Ba), 

Beryllium (Be), Cd, Co, Chromium (Cr), Cu, Fe, Pb, Mercury (Hg), Mn, Ni, Phosphorus (P), Sulphur (S), 

Strontium (Sr), Vanadium (V), and Zn.  

4.6. ERT data analyses 
Processing and analysis of the ERT data was done in the inversion software RES2DINV version 3.57 (Loke, 

2004). The inversion creates a model of the ground, where the resistivity in each cell is adjusted to the 

measured values. A correction for the topography is an initial step before processing the data, that were 

done in ArcMap (Version 10.6; ESRI 20) with a DEM-raster, and the text file created from this correction 

were inserted in the DAT-file containing the ERT data. 
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5. Results  
The results are reported based on the classification that was made after the oxidation of the soil samples. 

Only sites that could be classified as a potential or active AS soil site are presented here, for results from 

all sites see appendix 2. Of the 15 locations in this study, 4 were classified as active AS soil sites and 1 as 

a potential AS soil site. 
 

5.1. Active AS soil   
Out of the 15 sampled locations in Falkenberg 4 had a field pH below 4.5  and were underlain by a potential 

AS soil, hence these sites are classified as an active AS soil site (Table 4 & fig. 9). All these locations 

coincide with the area of the now drained lake Ramsjön (Fig. 9). Ramsjön was an inland lake that formed 

as the speed of the isostatic land rise overtook the postglacial transgression. It was surrounded by smaller 

lakes and peatlands (Rosenberg, 2005, July). In May 1852 the 6 km long Ramsjökanal (English: Ramsjö 

canal) was dug by hand to drain Ramsjön for agricultural purposes. Since the Ramsjökanal did not drain 

Ramsjön fully, another excavation was done again in 1909 (Rosenberg, 2005, July).  

 

The soil type of all 4 sites is postglacial silt and peat according to the soil-type map, and its surroundings 

constitutes of highmoor (mossetorv) and lowmoor (kärrtorv) peat (SGU, Jordarter 1:25000-1:100000) (Fig. 

5). According to the map sheet used in the delineation of the sample sites, the soil type is ‘marsh’ peat 

within coarse silt (appendix 1). An estimation of the area containing active AS soil was drawn from the 

area of the soil type marsh peat within fine silt to 2,9 km2(Fig. 5). The drillings done during fieldwork 

showed a stratigraphy of sandy silt, then a gyttja clay layer overlying a peat layer at site H19001 (Fig. 10). 

The soil samples taken for oxidation at site H19001 consists of gyttja clay (Fig. 10). At H19016 the oxidized 

samples consist of sandy silty clay and gyttja clay (Fig. 11), and at site H19030 they constitute clay (Fig. 

12). At site H19032 a peat layer was observed at a depth of 0,7 m, and both below and above this AS soil 

was observed (Fig. 13). Sample H19032: 3 consists of silty sand with a pH of 2,75 after a 9-week oxidation 

period (Fig. 13). As also can be seen in figures 10, 11, 12, and 13 the measured field pH in the top layer is 

above 5 or 6, and then drops below 4,5, to then rise above 6 or 7 deeper in the horizon. This pattern is 

typical for an active AS soil as described by Pousette (2010), Becher et al., (2019), and Åström (2001). The 

elevations for the sites are app. 10 – 13 m.a.s.l (Fig. 10, 11, 12, & 13). 
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Figure 9. The figure illustrates the distribution of the four sites classified as active AS soil sites. Also 

seen is that all the four sites are situated in the former lake Ramsjön. Data source: The area of 

Ramsjön was retrieved from Ecknell C©. Data source: Orthophoto retrieved from Lantmäteriet©. 
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Sample site ID: H19001 

  

Figure 10. The pH measurements carried out in field are illustrated by the black line, and the oxidized samples are 

illustrated by red dots. The groundwater level is illustrated by the blue line. For explanation of the sediment log see 

soil type in log and description for soil type abbreviations. 
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Sample site ID: H19016 

  

Figure 11. The pH measurements carried out in field are illustrated by the black line, and the oxidized samples are illustrated by red dots. The 

groundwater level is illustrated by the blue line. For explanation of the sediment log see soil type in log and description for soil type abbreviations. 



 

27 
  

Sample site ID: H19030 

  

Figure 12. The pH measurements carried out in field are illustrated by the black line, and the oxidized samples are illustrated by red 

dots. The groundwater level is illustrated by the blue line. For explanation of the sediment log see soil type in log and description for 

soil type abbreviations. 
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Sample site ID: H19032 

 

 

  

Figure 13. The pH measurements carried out in field are illustrated by the black line, and the oxidized 

samples are illustrated by red dots. The groundwater level is illustrated by the blue line. For explanation 

of the sediment log see soil type in log and description for soil type abbreviations. 
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5.2. Potential AS soil  
At the location H19031, one of the samples were measured to have a pH of 3,13 after 9 weeks of oxidation. 

In the field, the pH value was 6,51, and thus this site is classified as a potential AS soil. The site is situated 

in between an area of wetlands, the river Ätran, and cultivated land (Fig. 14). The soil type consists of clay 

as reported by the soil type map (SGU, Jordarter 1:25000-1:100000). The drilling from the fieldwork 

confirms this classification (Fig., 15). The measured pH-values in field and the oxidized pH-values can be 

seen in figure 15. 
 

The environment at site H19031 where the potential AS soil was encountered, today consists of restored 

wetlands and smaller ponds. According to I. Danielsson (personal communication 2020-03-23, ecologist at 

Falkenberg municipality) the restoration was initiated in 1984, before this the site was used as a clay quarry 

(appendix 3, fig 35). The site is situated in the valley of the river Ätran, and the riverbanks consists of 

floodplain sediments. The area where the drilling was performed consist of a relatively thick clay layer 

interbedded with thinner silty sandy layers (Fig. 15). The last meter of the observed stratigraphy seems to 

be gyttja clay, and the whole sequence contains organic material. At a depth of 1,6 m remnants of wood 

was observed (Fig. 15). Precipitates of iron were observed at app. 1 m depth, and a smaller amount 

of sulphides at 0,5 – 0,6 m (Fig. 15). The elevation for the site is 8,66 m.a.s.l (Fig. 15). 
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Figure 14. Orthophoto over the site where potential AS soil was found, the location for the drilling 

is marked with a green triangle. The wetlands and ponds seen in the map was initially restored in 

1984 and onwards (personal communication, 2020-03-23, with I. Danielsson, ecologist at 

Falkenberg municipality). The location is situated in the valley of the river Ätran, seen in the upper 

part of the map. Data source: Orthophoto retrieved from Lantmäteriet©. 
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Sample site ID: H19031 

  

Figure 15. The pH measurements carried out in field are illustrated by the black line, and the oxidized samples are illustrated by red 

dots. The groundwater level is illustrated by the blue line. For explanation of the sediment log see soil type in log and description for 

soil type abbreviations. 
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5.4. Summarized results  

5.4.1 Observed characteristics of AS soil in Halland, western Sweden 

The AS soil of western Sweden have rust precipitates in the oxidized horizon. These precipitates occur in 

cracks, but also seem to occur sporadically in the oxidized part of the horizon.  They often occur in the soil 

type gyttja clay but was also observed in sand. They often have a gray colour in reduced condition. At site 

H19001 at 1,5 m depth the colour was identified with the Munsell chart to 5y3/1. The sediments are made 

up of transgression sequences that at times are interrupted by a regression sequence made up of peat. All 

sites classified as AS soil sites were located beneath the limit for Tapes Transgression, in Falkenberg below 

13 m.a.s.l. A lot of large wood remnants have been observed in the stratigraphy of the AS soil, and 

sometimes shell remnants. Pictures from the active AS soil sites can be seen in figure 16, 17, and 18, and 

from the potential AS soil site in figure 19. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 16. Pictures from site H19001 where the active AS soil layer can be seen in the top picture (a), and the peat layer can be 

seen in the bottom picture (b). Photo: Christian Öhrling, SGU. 

a b 
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Figure 17. Pictures from site H19030 where the sample just above the oxidized sub-sample can be seen 

in a, and the sample below can be seen in b. In the lower picture, c, a part of the horizon from the top 

can be seen, and the oxidized sub-sample from the depth 0,7 can be seen. 

a b 

c 
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figu  

 

a b c
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Figure 19. The sub-sample from site H19031 that had a pH-value of 3,13 after oxidation can be 

seen in picture a. The rust precipitates can be seen in picture b, and a part of the horizon can be 

seen in picture c. 

a b 

c 
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5.4.2. Laboratory analyses 

No high organic content was found in any of the samples where LOI-analyses were carried out (table 6). 

LOI-analyses were carried out at 3 of the four AS soil sites (table 6). The Fe/S-ratio for all the sites classified 

as an AS soil site are below 60. Two samples at two different sites had a ratio above this and a pH of 7,78 

(H19030, 1 m) and 6,2 after 9 weeks oxidation period (table 7). The sites with a Fe/S-ratio below 3 showed 

the lowest pH-values, although sites with a ratio above 3 also showed low pH-values. The site with the 

lowest Fe/S-ratio did not show the lowest pH value. The lowest pH-value measured was at site H19016 

with a Fe/S-ratio < 3 and a pH value < 3. A Fe/S-ratio < 3 did not always give a pH-value < 3 (table 7).  

 

Table 6. Shows the results from the LOI-analys. LOI is an analytic way of determining the organic content in a soil 

LOI- analyses         

Sample site Depth [m] 

LOI 

[%] Sample 

Classified as AS soil & LOI in same 

layer 

H19016 1,4 0,9 H19016:1 Yes 

H19017 0,4 0,1 H19017:1 No, but close to limit 

H19018 2, 3 + 2,4 0,9 H19018:2 no 

H19019 1,8 0,1 H19019:2 No, but close to limit 

H19022 0,8 0,4 H19022:4 No 

H19022 1,3 0,4 H19022:3 No 

H19030 0,7 + 0,8  0,4 H19030:1 Yes 

H19031 0,9 + 1,0 1,1 H19031:1 No, different soil type from H19031:3 

H19032 0,6 0,0 H19032:2 Yes 
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Table 7. The table shows some summarized results from the analyses carried out in the laboratories.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

                

Sample 

site 

Depth 

[m] 

Field 

pH 

Oxidized 

pH Fe/S 

S  

[mg/kg DS] 

Fe 

 [mg/kg DS] 

LOI  

[%] 

H19001 0,9 4,11 3,92 7,97 3690 29400 - 

  1,5 7,03 3,12 0,96 29000 27700 - 

H19016 1,4 4,32 2,28 1,42 7200 10200 - 

  1,8 5,56 - 2,06 1410 2910 - 

  2,6 6,46 2,95 1,54 12300 19000 - 

H19030 0,7 4,31 3,97 5,27 2390 12600 0,4 

  1 4,93 - 50,66 381 19300 - 

  1,3 7,41 7,78 95,52 335 32000 - 

H19031 1 6,14 6,2 338,52 135 19300 1,1 

  1,5 6,56 - 35,67 684 24400 - 

H19032 0,6 4,29 3,33 8,59 1840 15800 0 

  1,3 6,62 4,58 2,35 4980 11700   
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The analyses for metal and S showed that at site H19001 and H19030 an enrichment of metals can be seen 

in the horizon underlying the active AS soil horizon (table 8 & 9).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  Sample site H19001 H19001 

  Sample depth [m] 0,9 1,5 

    Active AS soil Potential AS soil 

ELEMENT        

As, arsenic mg/kg DS 6.04 7.64 

Ba, barium mg/kg DS 55.9 48.3 

Be, beryllium mg/kg DS 0.640 0.813 

Cd, cadmium mg/kg DS 0.150 0.424 

Co, cobalt mg/kg DS 5.74 9.74 

Cr, chromium mg/kg DS 31.6 25.8 

Cu, copper mg/kg DS 24.8 20.6 

Fe, iron mg/kg DS 29400 27700 

Hg, mercury mg/kg DS <1 <1 

Mn, manganese mg/kg DS 209 542 

Ni, nickel mg/kg DS 14.6 22.1 

P, phosphorus mg/kg DS 597 552 

Pb, lead mg/kg DS 9.04 8.39 

S, sulfur mg/kg DS 3690 29000 

Sr, strontium mg/kg DS 17.3 77.8 

V, vanadium mg/kg DS 74.3 45.4 

Zn, zinc mg/kg DS 48.7 83.5 

Dry substance at 

105°C % 65.8 61.8 

Table 8. The results from the metal and Sulphur analyses done at ALS Global in Umeå, 

Västerbotten.  
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  Sample site H19030 H19030 H19030 

 Sample depth [m] 0,7 1 1,3 

    

active AS 

soil 

no AS 

soil 

no AS 

soil 

ELEMENT         

As, arsenic mg/kg DS <3 <3 4.75 

Ba, barium mg/kg DS 22.5 51.3 114 

Be, beryllium mg/kg DS 0.125 0.736 1.33 

Cd, cadmium mg/kg DS <0.1 <0.1 <0.1 

Co, cobalt mg/kg DS 1.41 7.13 13.0 

Cr, chromium mg/kg DS 6.50 17.0 27.5 

Cu, copper mg/kg DS 2.31 16.1 21.8 

Fe, iron mg/kg DS 12600 19300 32000 

Hg, mercury mg/kg DS <1 <1 <1 

Mn, manganese mg/kg DS 71.8 187 1080 

Ni, nickel mg/kg DS 2.82 13.4 25.5 

P, phosphorus mg/kg DS 459 589 748 

Pb, lead mg/kg DS 2.76 7.19 12.4 

S, sulfur mg/kg DS 2390 381 335 

Sr, strontium mg/kg DS 20.5 14.1 56.3 

V, vanadium mg/kg DS 21.2 44.7 61.1 

Zn, zinc mg/kg DS 9.45 45.8 76.2 

Dry substance at 

105°C % 84.4 80.9 78.1 

Table 9. The results from the metal and Sulphur analyses done at ALS Global in Umeå, Västerbotten.  
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The concentrations for site H19016 and H19032 however do not follow the pattern seen at sites H19001 

and H19030. At site H19016 the highest metal concentrations were found in the active AS soil layer (table 

10). And at site H19032 an enrichment can be seen in the underlying horizon for 5 metals (Be, Co, Mn, Ni. 

S, & Sr), while 12 metals were instead found at higher concentrations in the active AS soil layer (table 11). 

To see concentrations for analyzed metals at site H19031 see appendix 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  Sample site H19016 H19016 

  Sample depth [m] 1,4 1,8 

    

Active AS 

soil 

not 

classified 

ELEMENT        

As, arsenic mg/kg DS <3 <3 

Ba, barium mg/kg DS 19.0 6.59 

Be, beryllium mg/kg DS 0.260 0.120 

Cd, cadmium mg/kg DS 0.499 <0.1 

Co, cobalt mg/kg DS 7.02 1.32 

Cr, chromium mg/kg DS 13.4 1.80 

Cu, copper mg/kg DS 7.56 0.862 

Fe, iron mg/kg DS 10200 2910 

Hg, mercury mg/kg DS <1 <1 

Mn, manganese mg/kg DS 95.5 47.8 

Ni, nickel mg/kg DS 11.2 3.05 

P, phosphorus mg/kg DS 268 400 

Pb, lead mg/kg DS 4.27 <1 

S, sulfur mg/kg DS 7200 1410 

Sr, strontium mg/kg DS 6.52 3.93 

V, vanadium mg/kg DS 16.6 5.09 

Zn, zinc mg/kg DS 19.0 19.8 

Dry substance at 

105°C % 62.5 78.5 

Table 10. The results from the metal and Sulphur analyses done at ALS Global in Umeå, 

Västerbotten.  
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  Sample site H19032 H19032 

  Sample depth [m] 0,6 1,3 

    

Active AS 

soil   

ELEMENT        

As, arsenic mg/kg DS 5.10 <3 

Ba, barium mg/kg DS 36.8 35.5 

Be, beryllium mg/kg DS 0.330 0.355 

Cd, cadmium mg/kg DS <0.1 <0.1 

Co, cobalt mg/kg DS 2.71 3.70 

Cr, chromium mg/kg DS 21.1 10.7 

Cu, copper mg/kg DS 15.2 8.10 

Fe, iron mg/kg DS 15800 11700 

Hg, mercury mg/kg DS <1 <1 

Mn, manganese mg/kg DS 112 147 

Ni, nickel mg/kg DS 6.16 6.36 

P, phosphorus mg/kg DS 558 485 

Pb, lead mg/kg DS 4.27 3.24 

S, sulfur mg/kg DS 1840 4980 

Sr, strontium mg/kg DS 11.8 28.6 

V, vanadium mg/kg DS 32.2 27.4 

Zn, zinc mg/kg DS 23.8 23.0 

Dry substance at 

105°C % 61.4 82.9 

Table 11. The results from the metal and Sulphur analyses done at ALS Global in Umeå, 

Västerbotten.  
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5.3. Geophysical profiles  
The ERT measurements showed that a layer with low resistivity is situated at the depth of the AS soil 

horizon. This layer has a resistivity of 25 ohm m (Fig. 20, 21, and 22). The location of the borehole is 

marked in the profiles. The depth of the oxidized sub-samples is marked with red lines (see fig. 10 for 

depths). In profile 1 the borehole is situated at 10 m into the profile. (Fig. 20). In profile 2 the borehole is 

situated app. 29 m into the profile (Fig. 21), and profile 3 the borehole is situated at 10 m into the profile 

(Fig. 22). When profile 3 was measured the ground water level was situated at 0,45 m under the ground 

surface. 

 

 

 

 

 

 

  

Figure 20. The figure shows the inversed data from the resistivity measurements carried out at site H19001 for profile 1 

with a set-up of 1 m electrode spacing. The borehole at the site are marked out with a black line, and the sampling depths 

of the oxidized sub-samples are marked out with red lines in the figure. 
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Figure 21. The figure shows the inversed data from the resistivity measurements carried out at site H19001 for profile 

2 with a set-up of 1 m electrode spacing. The borehole at the site are marked out with a black line, and the sampling 

depths of the oxidized sub-samples are marked out with red lines in the figure. 
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Figure 22. The figure shows the inversed data from the resistivity measurements carried out at site H19001for profile 3, with 

a set-up of 0,25 m electrode spacing. The borehole at the site are marked out with a black line, and the sampling depths of the 

oxidized sub-samples are marked out with red lines in the figure. The purple line represents the groundwater level at the time 

for the resistivity measurements. 
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6. Discussion  
The following discussion will cover the specific research questions of this study and will cover sites 

where AS soil could be proved, but also sites that fall close to the limit of an AS soil site. The metal 

concentrations and the Fe/S-ratio will also be discussed.   

6.1. Discussion based on the research questions 
 

6.1.1. Existence of AS soils in Falkenberg municipality, on the west coast of Sweden 

The existence of active and potential AS soil on the west coast of Sweden, in Falkenberg and Viskadalen, 

have through this study together with the parallel investigation by Bergström (InPress) been discovered.  

This is the first discovery of active AS soil outside of the Baltic Basin in Sweden.  A total of five sites can 

be classified as AS soil sites in Falkenberg, where four of these sites were classified as an active AS soil. 

The land use at these sites is agricultural and probably an indirect cause of the oxidation of the iron sulphides 

(the direct cause being lowering of the groundwater). One site was classified as a potential AS soil. Even 

so, observations of iron precipitates in the stratigraphy indicate that the site was once exposed to oxygen 

and hence active AS soil likely existed at this site prior to the restoration of the wetlands (see chapter 5.2.). 

Studying historical orthophotos shows the historical land use being agricultural which surely means a 

lowering of the ground water have been done at the site recently, and hence could be a possible explanation 

concerning the observations of rust precipitates (appendix 3).  

The area of active AS soil in Falkenberg, estimated to app. 2,9 km2, is just an estimation and the total area 

of active AS soil is still unknown. At some sites where no AS soil was encountered, rust precipitations 

above the groundwater level and lower pH values closer to the ground surface was observed (appendix 2, 

& 5), being  characteristics for AS soil sites (Pousette, 2010; Becher et al., 2019), and this indicates that the 

applied drilling method may have influenced the number of sites being classified as AS soil sites. This, as 

failure to reach deep enough could mean that analyses only were performed on layers overlying the AS soil. 

At these locations, the drilling was hampered by sand that can be overlying deeper AS soil, as is the case 

in Västerbotten and Norrbotten (Sohlenius et al., 2004). At site H19001 the active AS soil layer was also 

superimposed by sand with rust precipitations, which adds to the argument above.  

 

The time for when the sulphates were initially oxidized can also influence the acidification that can be seen 

in the soil today. The grain size and the grain-size distribution of the sediment will further influence the 

leaching process of the sulfuric acid, which in turn will affect the pH measurements. Moreover, a well 

sorted sand (i.e. a sand with mainly one grain size) will have a quicker leaching process than an unsorted 

sediment (i.e. a sediment with clay, sand and silt) or a clay. This is caused by the pores being larger in a 

sorted sediment without finer sediment particles blocking the pore spaces.  
 

6.1.2. Formational environment and characteristics of soil type 

All the locations where active AS soil was found in Falkenberg, H19001, H19016, H19030, and H19032, 

are located in the former, now drained, Ramsjön. These sites are also situated in a soil type called marsh 

peat within coarse silt, being silt with a varying content of organic material. The formational environment 

of this soil type is thought to originate in protected, shallow lagoons. Diatomaceous analyses done on the 

sediments showed a marine depositional environment (Påsse, 1988 unpublished). Most likely, the water 

in Ramsjön kept the sulfides under reduced condition and the drainage evoked the oxidation reaction of 

these soils. This is the case for most of the discovered active AS soil in Sweden, where observations have 

been done in areas of drained lake sediments or drained wetlands (Sohlenius et al., 2015). Although the 

initial formation of the sulphides took place in lagoons as the land rose out of the sea, further formation 

might have taken place in Ramsjön after isolation.  
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Påsse (1988 unpublished) writes about a gyttja clay and peat superimposed by sand south of Backhult (4i) 

situated in the same area as the sites H19001, H19016, H19030, and H19032 (Fig. 5 & appendix 1). Shell 

fragments of Cardium eduele, Littorina littorea, and, Bittium reticulatum was found in the gyttja clay, 

being remnants of marine mollusks requiring higher water temperatures (Påsse, 1988 unpublished).The 

same stratigraphy as described above was observed at site H19001, where shell fragments were encountered 

at a depth of 1,1 – 1,5 m (Fig. 10). This depth also corresponds to the layer with encountered AS soil. A 

similar stratigraphy was observed at site H19030 with gyttja clay at 1,1 – 2,0 m depth, and shell fragments 

at 1,4 – 1,6 m depth (Fig. 12). No samples for oxidation was taken at the same depth as the shell fragments 

at H19030 and the grain size differs between the depths, hence it is unknown if this depth contains AS soil. 

At site H19016 and H19032 no shells were encountered. However, at site H19032 a peat layer was 

encountered in between the AS soil. No analyses of the observed shell fragments at site H19001 and H19030 

were done. Påsse (1988 unpublished) dated shells found north (Munkagård 4i) of the AS soil sites to 15.2 

ka cal y.B.P. (12.8 ka 14C y.B.P) and 16.0 ka cal y.B.P. (13.4 ka 14C y. B.P). (Bänared 4i), these shells are 

said to be different species from the ones found south of Backhult (Fig. 16 in Påsse, 1988 unpublished). 

Furthermore, these sites are situated above 13 m.a.sl., i.e. at a higher elevation than the active AS soil sites.  

Nevertheless, the consistent stratigraphy between the active AS soil sites allows for a conclusion that the 

depositional environment for the active AS soil in fact is marine, and the silty marsh peat indicates a 

shallow, protected lagoon environment. Although there are internal differences in the stratigraphy of the 

sites H19001, H19016, H19030, and H19032 (Figs. 10, 11, 12, and 13) their proximity and the overall 

similar stratigraphy allows for a conclusion that the formational environment is the same for all four sites. 

 

The stratigraphy at site H19001 with peat underlying marine gyttja clay marks a time of a terrestrial 

environment followed by a marine transgression. The site is situated at a level of 10,7 m.a.s.l., hence the 

peat was probably formed around 11.4 – 8.3 ka cal y.B.P. (10.0 – 7.5 ka 14C y.B.P.) when this elevation 

was raised above sea level (Fig. 3). This leads to the conclusion that the marine gyttja clay was deposited 

after 7500 y B.P. and hence, during the Tapes transgression. At site H19032 a peat layer was encountered 

at a depth of 0,7 m, in between the oxidized samples with a pH < 4 (0,5 m, 0,6 m, and 1,2 m). Diatomic 

analyses in marine gyttja (layer E and C, appendix 6) carried out by Påsse (1988 unpublished) at a site east 

of the AS soil sites (Lismossen (3i – 3j), appendix 1) give ages of 8,0 ka cal y.B.P. and 7.6 ka cal y.B.P. 

(7.2 ka 14C y.B.P. & 6,8 ka 14C y.B.P.). These ages represent two separate transgressions as the dated marine 

gyttja are interbedded with a peat layer (appendix 6, layer D). The ages given of the marine gyttja also 

corresponds to the time of Tapes transgression. Furthermore, the marine mollusks Cardium eduele, 

Littorina littorea, and, Bittium reticulatum found by Påsse (1988 unpublished) in the marine gyttja clay 

indicates a time with warmer temperatures (Påsse, 1988 unpublished). The shells are remnants from the 

Holocene and likely the Tapes transgression that reached its maximum at the same time as the Holocene 

Climatic Optimum (Lindqvist et al., 2011). The maximum level, 12 - 13 m.a.s.l., for the transgression was 

reached around 7.6 ka cal y.B.P. (6.7 ka 14C y. B.P.) in Falkenberg (Fig. 3 from Påsse, 1988 unpublished). 

The discovered AS soil in Falkenberg are all situated below 13 m.a.s.l. (Fig. 10, 11, 12, and 13), hence 

these sites were drowned with water during the Tapes transgression.  In the parallel investigation conducted 

by Bergström (InPress) in Viskadalen, AS soil were found below the maximum level for the Tapes 

transgression in this area (18,5 m at Veselången). This allows for the conclusion that the AS soil found in 

Halland, at least in Viskadalen and Falkenberg, were formed during the Tapes transgression (9,5 – 7,6 ka 

cal y.B.P). 

 

The area just west of where site H19031 is located, is described by Påsse (1988 unpublished) as fluvial 

deltaic deposits with an elevation at 10 m.a.s.l. (2j, appendix 1). Excavations done in the deltaic deposits 

showed interbedded layers of peat at the elevation 11,80 – 11,78 m.a.sl. and 10,05 – 10,00 m.a.s.l., with an 

age of 7,5 ka cal y.B.P. (6.6 ka 14C y.B.P), corresponding to Tapes transgression. He also writes that 

organic deposits of gyttja and peat are superimposed by sand in another location west of H19031 

(Kristineslätt), at an elevation of 9 – 10 m.a.s.l, with an age of 7.9 – 9.5 ka cal y.B.P. (7.1 – 8.5 14C y. B.P.). 

Around this time, the shoreline was raised in a fluctuating trend to 12-13 m.a.s.l.(Tapes Transgression) (Fig. 
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3, Påsse, 1988 unpublished). The paleogeographic history illustrated in figure 4 (Dahlqvist et al., 2019) 

shows that the environment constituted a marine bay at 13.7 ka y. B.P., and at 6.0 ka y. B.P. a river valley 

existed. In between this time the deltaic plain described by Påsse (1988 unpublished) was deposited. The 

elevation of site H19031 are app. 8,60 m.a.s.l. Hence the site is protected by the deltaic deposits when these 

rose above sea level, and surrounding hills probably protected the location before this.  In a study of the 

late- and post-glacial geological evolution of the southern Kattegatt’s connection to the Great Belt, the 

writers found indications of a tidal environment (Bendixen, Jensen, Boldreel, 

Clausen, Bennike, Seidenkrantz, Nyberg, & Hübscher, 2017). The formation of the sulphides at site 

H19031 most likely has its origin from the Tapes transgression like the active AS soil sites discussed above. 

The formational environment of the sulphides at site H19031 most likely constituted of a protected bay 

where the calm conditions allowed for deposition of the clay. The formation of the sulphides can also have 

taken place in a distal tidal delta plain. In a study of the late- and post-glacial geological evolution of the 

southern Kattegatt’s connection to the Great Belt, the writers found indications of a tidal 

environment (Bendixen, Jensen, Boldreel, Clausen, Bennike, Seidenkrantz, Nyberg, & Hübscher, 2017).  

Considering the paleogeographic history seen in figure 4 (Dahlqvist et al., 2019), and that a large portion 

of the Ätran valley once was situtated below the limit for Tapes transgression, it is not unlikely that sulfides 

formed further up the river valley as well (Fig. 45, appendix 8).The floodplain sediments on the banks close 

by the site H19031 resembles the environment next to large rivers in north of Sweden that Sohlenius et al. 

(2015) describes, where these sediments are thought to superimpose potential AS soil and hinder oxidation 

and thus, formation of active AS soil. It is likely that the flooded sediments of Ätran are overlying potential 

AS soil.   

 

The observed AS soil in Falkenberg were found in areas that rose from the sea around 4,5 ka cal y.B.P. (4.0 
14C y.B.P.) and  at elevations of 8 – 12,5 m.a.s.l. (Fig. 3, from Påsse, 1988 unpublished,).The formational 

environment of the AS soil on the Swedish west coast differs from that on the northern coastlines of Sweden 

(Sohlenius et al., 2004). The formation of AS soil on the west coast, at least in Halland, has taken place in 

shallow, protected lagoons and protected bays, and resembles the formational environments in Mälardalen 

and Skåne (Sohlenius, et al., 2004; Åbjörnsson et al., 2018). Differences between the formational 

environment on the east coast (Västerbotten, Norrbotten, Mälardalen, and Skåne) and the west coast is that 

the latter have had a more marine character because the Kattegat sea have never been isolated from the 

ocean, and therefore most likely higher saline concentrations in the water at the time for 

formation.Observations of AS soil in Falkenberg was mainly done in fine-grained material,  the dominating 

soil type being gyttja clay. However, at site H19032 the sub-sample H19032:3 of silty sand had a pH value 

of 2,75 after oxidation (Fig. 13), and at site H19030 a pH of 3,97 was measured in sand with a thin clay 

layer, however this sample is situated in between sandy clay (Fig. 12). Due to the hampering of drilling in 

sandy soil, a smaller portion of this soil type was sampled, hence the results of this study could be biased 

and are not enough to conclude in what soil type the AS soil most often occur in the area. However, what 

can be concluded is that it exists in both fine-grained sediments as well as coarser-grained sediments like 

sand.  

  

The findings of AS soil in Falkenberg did not correspond to the G marked on the map sheet Ae nr 86 

(appendix 1). However, since these markings are mainly done in sand, the drilling was hampered so that 

the underlying clay gyttja and peat layers were not reached. With this said, the stratigraphy at site H19001 

do correspond to the stratigraphy described above and Påsse (1988 unpublished) states that these deposits 

likely have a wider extent than marked on the map. Site H19001 was sampled nearby one of these markings 

and hence it is possible that the sites with these markings also located at an elevation below 13 m.a.s.l. 

contains AS soil. Some of these sites were situated above 13 m.a.s.l. and it is possible that AS soil can exist 

at these sites as well.  
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6.1.3. Identification of AS soil with ERT methods on the west coast of Sweden  

From the ERT data some conclusions can be drawn first after a presumption of the AS soil layer at site 

H19001 have been made. The oxidized samples H19001:1, and H19001:2 are situated on 0,9 m and 1,5 m 

depth, the soil type between 0,8 m and 1,5 m depth are gyttja clay. Hence the assumption is that the AS soil 

layer extends from 0,8 m to 1,5 m depth. If this is true, the AS soil layer was possible to differentiate from 

the surrounding sediments at the site. An interpolated thickness of the AS soil layer can be made to 1,5 m 

(Fig 20, 21, & 22). It can be concluded that ERT can be used as a tool for identification of AS soil sites on 

the Swedish west coast. However, the ERT profiles in Viskadalen are a bit more difficult to interpret. 

Bergström (InPress) discuss that the identification may be possible, but the drilling with the Edelmann 

auger only reached the top of a highly conductive layer. One sub-sample that was collected at the top of 

this highly conductive layer did show the existence of potential AS soil (Bergström, InPress). Hence, 

identification of AS soil with ERT seems possible both in Falkenberg and in Viskadalen. It is possible that 

the formational environment of the AS soil on the west coast can influence the possibility to identify them 

with ERT methods. If the formational environment allowed for deposition of more marine clay it may make 

the differentiation of AS soil more difficult.   

 

 

6.2. Discussion about the metal-, sulfur and laboratory analyses 
Since an active AS soil is leached on metals, they generally show lower concentrations relative to the 

underlying reduced soil layers (Sohlenius & Öborn, 2004). The mobilization can also cause a leakage of 

metals downwards into an underlying reduced horizon, where the metals may become stabilized and again 

binds to the soil particles and hence an enrichment can be seen in underlying horizons (Sohlenius & Öborn, 

2004). The results of the metal analysis revealed that site H19030 follows this pattern, where a depletion is 

seen in the active AS soil layer when compared to the underlying reduced layer (Appendix 4). The adjacent 

site H19001 shows similar pattern as H19030, with an enrichment for most of the metals in the underlying 

potential AS soil layer. Site H19032 shows a somewhat enriched concentration of 5 metals (Be, Co, Mn, 

Ni, S, & Sr) in the underlying soil layer, while 12 of the metals instead are elevated in the overlying AS 

soil layer. Further, site H19032 shows overall lower metal concentrations in the soil underlying the AS soil 

layer, as compared to site H19030. One possibility is that the higher amount of sand in the soil at site 

H19032 has affected the leaching process to a higher enrichment in the aquatic environment instead. 

According to Lindgren (InPress) the aquatic environment adjacent to H19032 did not show high metal 

concentrations as compared to other watercourses in the area at the time for the measurement. Considering 

that the concentrations in the aquatic environment fluctuates relatively quickly it is possible that an 

enrichment once existed. The water samples collected by Lindgren (InPress) were taken at the same time 

and hence, it is possible that the development of the AS soil at the sites differs. H19032 is located at the 

edge of Ramsjön while H19030 and H19001 are located in the center, consequently H19032 could have 

been oxidized earlier. The drainage of Ramsjön that was done in two steps with a 60-years gap could help 

explain the differences in development of the AS soil (Rosenberg, 2005, July). Further, the Fe/S-ratio at 

site H19032 is somewhat larger than at site H19030 (table 11). Sohlenius et al. (2017) states that the sulphur 

is leached out from the layers situated above the groundwater table, and hence a higher Fe/S-ratio could be 

a sign for a more developed AS soil. As the Fe/S-ratio affects the acidic effect of the soil (Pousette, 2010), 

and hence affects the pH, it is likely that it also will influence the leakage of metals. At site H19030 the 

highest enrichment of metals was found in the clay layer. Another possible explanation can therefore be 

that the higher amount of clay at site H19030 is the reason for the higher metal concentrations. This, since 

high clay concentration in a soil relates to a higher adsorption of metals and cations that is caused by the 

high cation exchange capacity of clay (Cronan, 2017).  
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According to Pousette (2010) the sulphur content in a soil relates to how large the acidic effect will be, 

where a sulphur content below 600 mg/kg DS will not have a significant effect the on the pH-value. The 

results found in this study supports this, as all samples with a concentration below 600 mg/kg DS did not 

show a large acidic effect after oxidation. And samples with a concentration exceeding 600 mg/kg DS had 

pH values < 4 (table 7, and figs. 10, 11, 12, 13, & 15). Another trend of the soil samples showing pH-values 

< 4 is that the Fe/S-ratio are < 9 and generally < 3 (table 7, and figs. 10, 11, 12, 13, & 15). Pousette (2010) 

states that a Fe/S-ratio < 3 relates to a larger acidic effect of the soil. The acidic effect is also affected by 

the soils organic content and carbonate concentrations. The LOI-percentage was analyzed at 3 of the 4 

active AS soil sites and none of these showed a large organic content, why this cannot be considered to 

have influenced the soils acidifying effect (table 6).  

6.4. Discussion about sample sites falling close to the limit of an AS soil site 
Sites H19017 and H19019 both had pH values < 4,5 after a 9 week oxidation period, and site H19017 had 

a field pH of 4,66 (appendix 2).) During field work observations of rust precipitates and black sulphide 

spots were done at both sites (appendix 5). Collection of sub-samples for oxidation should have been done 

with a denser span, especially at site H19017. The pH-curve at site H19019 do not follow the trend as 

described in section 2.5, the rust precipitates and sulphide spots are not alone enough to suspect an AS soil, 

AS soil that are not an AS soil still can have black spots (SGU, 2019), and rust precipitates occur, to some 

extent, in dry-crust clays everywhere (personal communication 2020-06-02, Mark Johnson, professor at the 

Department for Earth Sciences). The pH curve for site H19017 shows the trend described in section 2.5, 

and the site is situated at 13,35 m.a.s.l. (above Tapes limit) and surrounded by lowmoor peat that are situated 

below the Tapes limit (appendix 7 & 8). The elevation of site H19019 are above that of Tapes transgression 

and may be an explanation why no AS soil was encountered. The acidifying effect might not have been 

large enough for a drop in pH at site H19017 to be considered an AS soil site, which may be related to the 

buffering capacity of the soil at the sites. However, no high organic content was found in any of the samples 

where LOI was conducted and at site H19017 the organic content were calculated to be 0,1 %, and hence 

the organic concentration cannot have acted as a buffering agent at the site.  

 
At the sites H19003, and H19004 only sand was encountered and hence the drilling could not be executed 

deeper. Both sites had pH values close to the limit 4,5 after a 9 weeks oxidation time, site H19004 being 

closest (appendix 2). The pH-curve do not have the typical look as described in section 2.5 (appendix 

7. Further site H19004 is situated below the Tapes transgression, but at a more exposed area as 

compared to the AS soil sites (appendix 8). At site H19022, and H19023 rust precipitates was observed 

in the stratigraphy, and both sites are situated below the limit for Tapes Transgression. The drilling was 

hampered by sand at site H19023 and by a big block at site H19022 why no samples could be collected 

deeper in the horizon. Lindgren (InPress) collected water samples in Ramsjö kanal next to the sites H19022 

and H19023 and could see an increased metal concentration along with slightly decreased pH-values. 

Although the effect seen here is not as evident as in the watercourses next to H19001, H19016, H19030, 

and H19032. An explanation is that the sites H19022 and H19023 had a more exposed environment during 

the Tapes transgression and hence the conditions for formation of iron sulphides were not meet (appendix 

8). Furthermore, the pH-curves of these sites do not follow the typical trend of a pH-curve at an AS soil site 

(appendix 7). The elevated metal concentrations and slightly decreased pH-value in the watercourses could 

be an influence seen from the active AS soil sites upstream.  
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7. Conclusions 
• Both active and potential AS soil exists in Falkenberg. This is the first proven active AS soil outside 

the Baltic basin on the Swedish west coast. 

 

• The formational environment of the active AS soil observed at the sites H19001, H19016, H19030, 

and H19032 consisted of a shallow, protected lagoon with a marine aquatic environment.. The 

formational environment at site H19031, where the potential AS soil was observed, most likely 

consisted of an inland distal delta basin in a protected, shallow bay, where the calm water allowed 

for deposition of the clay and formation of the iron sulphides. 

 

• The formation took place during the Tapes transgression, around 9,5 – 7,6 ka cal y.B.P. The same 

transgression that also opened the Great belt and Öresund and initiated the Littorina stage in the 

Baltic basin. 

 

• The formational environment of the AS soil on the west coast of Sweden differs from that in the 

north of Sweden. On the west coast, the formation of iron sulphides took place in shallow lagoons, 

and in deltaic environments in a protected bay.  

 

 

• AS soils on the Swedish west coast occur in fine-grained soils, the most common being gyttja clay, 

but also occur in silty sand. 

 

• The results from the geophysical measurements that was carried out in this study and the study 

done in Viskadalen suggests that these methods can be used in differentiating AS soil from 

surrounding sediments on the Swedish west coast. However, the formational environment or the 

type of surrounding sediments may make the data more or less difficult to interpret. 
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8. Future studies  
The problems related to AS soil range over several societal interests as mentioned in section 2.3. However, 

Åberg (2017) states that the biggest influence of an active AS soil is seen in the aquatic environment 

(streams, lakes, and bays) in hydro- and hydrogeological connection to these soils. Hence, actions regarding 

these environmental issues should be a priority. In the study area of Falkenberg evidence of metal leakage 

to the adjacent watercourses has been seen by Lindgren (InPress). Considering these findings together with 

the discovery done in this study, further mapping of AS soil should be done in the area. The links that have 

been seen between metals leached from AS soil to adjacent watercourses and to crops gown on these soils 

and AD and PD are a reason to map the area, especially when considering that the Active AS soil sites were 

discovered on cultivated fields. The geotechnical and constructional problems these soils mean is a further 

reason why it is important. The difficulties active AS soil creates to reach the environmental goals decided 

by the Swedish Parliament together with the requirements that came along with the Weser judgement also 

make this discovery highly relevant for the municipality of Falkenberg. The Weser judgement is a 

preliminary judgement from the European Court of Justice that concerns work performed in the river Weser. 

The judgement has influenced the Swedish authorities’ application of environmental quality standards for 

water. The European court of justice deemed that an activity causing a deterioration of the ecological- or 

chemical status of the water, or that in any way will hinder the attainment of the environmental objectives 

of water, must not be allowed (Havs- och Vattenmyndigheten [HaV], 2016). The ecological status of 

Ramsjökanal is rated as ‘moderate’ and the chemical status is rated as ‘not good’ (Viss, n.d.). Further 

oxidation of the already established active AS soil sites or sites with potential AS soil could risk a 

deterioration of the ecological status of Ramsjökanal and Ätran valley as well as other watercourses in the 

municipality. To avoid this, it is important to localize areas with AS soil. During a visit to the site H19001 

an excavation was being made west of the area, and groundwater was being pumped out of the pit. The soil 

horizon in the pit had the typical rust precipitates of an AS soil and the same stratigraphy that was observed 

at site H19001 (appendix 9, & fig. 10). This is an indication for a more extensive area with active AS soil 

than could be established with soil sampling in this study, and why further investigations are needed. 

Suggestions are that more samples should be taken in the silty marsh peat of sites H19001, H19016, 

H19030, and H19032, and in the lowmoor peat east of this (Fig. 23). The area surrounding Ätran that once 

consisted of a shallow protected bay, the area east of the deltaic deposits, should also be prioritized in an 

initial state of a mapping project, and other areas with similar features (Fig. 23). Further drilling in areas 

where the markings G at the map sheet (appendix 1) should be carried out at sites where the drilling was 

hampered by sand, so that the peat and gyttja clay layers can be analyzed.  This should also be carried out 

at sites situated above 13 m.a.s.l. since the stratigraphy of site H19001 do correspond to the stratigraphy 

described by Påsse (1988).  
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Figure 23. The map shows areas that have similar features, soil type, elevation, and formational 

environment, as the active and potential AS soil sites (marked with black icons). The areas are marked 

with soil type and the areas encircled with red are areas with a high risk of AS soil. Data source: GSD 

Höjddata, grid 2+, retrieved from Lantmäteriet©; and Jordarter_25_100_jk2, retrieved from SGU©.  
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9. Sources of error 
Because the organic content of the soil was less than 20% the chosen method of analysis has large sources 

of error. This is due to that the grain-size analysis could not be conducted, hence the percentage of clay and 

the factor for correction could not be calculated. A better method for the analysis should instead have been 

with a carbon analyzer (Larsson, 2008). 

The species of the shells observed in the stratigraphy of site H19001 used in the discussion about the 

formational environment were not identified and can therefore be of another species than the ones Påsse 

(1988 unpublished) observed. 

Instrumental errors, procedural, and human errors have most likely influenced the results randomly to some 

extent. The pH-measurement device had to be stabilized before the pH-value was noted. Because the 

measurements were conducted by several different people at different times this may not have been done 

with consistency, although this may not affect the measurements to such an extent that it may matter for 

the classification of the sites. Furthermore, the pH-measurement device normally has an error range of +-

0,2 units (personal communication, C. Öhrling). Further, the sub-samples were not homogenized and there 

can be differences ranging over small areas in a heterogeneous soil. The drilling also has some uncertainties 

regarding the procedure of deciding the depth for the sample. The auger does not have a fixed marking of 

the depth, and hence this was manually marked by the person conducting the drilling. Although a consistent 

procedure was used for this, the depth may vary to some extent from site to site as caused by human and 

procedural error. 
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Figure 24. Map sheet Ae nr 86, with the areas mentioned in the discussion marked out by lines. 
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H19002

Depth Field pH pH, oxidation 9 weeks Sample Soil type

0,3 6,38 Cl

0,4 6,37 Cl

0,5 6,16 Cl

0,6 6,37 Cl

0,7 6,42 Cl

0,8 6,48 Cl

0,9 6,56 Cl

1 6,45 Cl

1,1 6,74 Cl

1,2 6,65 Cl

1,3 6,76 6,34 H19002:1 Cl

1,4 6,72 Cl

Ground water at site: -

Table 12. The results from field work and the oxidized pH for site H19002. 

H19003

Depth Field pH pH, oxidation 9 weeks Sample Soil type

0,15 4,87 Sa

0,2 5,76 Sa

0,3 5,77 Sa

0,4 6,06 Sa

0,5 5,7 Sa

0,6 5,84 Sa

0,7 5,78 4,74 H19003:1 Sa

0,8 5,85 Sa

0,9 6,01 Sa

1 5,82 Sa

1,1 6,14 Sa

1,2 5,94 Sa

1,3 5,71 Sa

1,4 5,92 Sa

1,5 5,95 Sa

1,6 5,94 4,91 H19003:2 Sa

Ground water at site: 0,4 m below ground surface

Table 13. The results from field work and the oxidized pH of site H19003. 
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H19004

Depth Field pH pH, oxidation 9 weeks Sample Depth soil type

0,2 4,83 0,2 Sa

0,3 5,18 0,3 Sa

0,4 5,27 0,4 Sa

0,5 5,33 0,5 Sa

0,6 5,12 0,6 Sa

0,7 5,78 0,7 Sa

0,8 5,69 0,8 Sa

0,9 5,46 0,9 Sa

1 5,76 1 Sa

1,1 5,86 1,1 Sa

1,2 5,87 1,2 Sa

1,3 5,87 1,3 Sa

1,4 6,38 4,92 H19004:1 1,4 Sa

1,5 6,17 1,5 Sa

1,6 6,03 1,6 Sa

1,7 5,84 1,7 Sa

1,8 5,51 4,55 H19004:2 1,8 Sa

Ground water at site: 1,3 m below ground surface

Table 14. The results from field work and the oxidized pH of site H19004. 

Table 15. The results from field work and the oxidized pH of site H19017. 

H19017

Depth Field pH pH, oxidation 9 weeks pH 25/2 Sample Soil type

0,2 5,05 Topsoil

0,3 4,94 Topsoil

0,4 4,66 4,26 4,29 H19017:1 Cl

0,5 4,86 siSa

0,6 4,73 saCl

0,7 4,99 siSa

0,8 4,96 saCl

0,9 5,56 lesaSi

1 6,52 saSi

1,1 6,64 siSa

1,2 6,62 siSa

1,3 6,32 siSa

1,4 7,01 5,1 H19017:2 siSa

1,5 6,99 siSa

1,6 7,03 siSa

Ground water at site: 0,4 m below ground surface
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Table 16. The results from field work and the oxidized pH of site H19018. 

H19018

Depth Field pH pH, oxidation 9 weeks Sample Soil type

0,2 5,25 Topsoil

0,3 5,7 siCl

0,4 6,06 siCl

0,5 6,08 siCl

0,6 6,07 siCl

0,7 7,05 siCl

0,8 6,94 7,65 H19018:1 sasiCl

0,9 7,09 siCl

1 7,1 siCl

1,1 7,13 siCl

1,2 7,17 siCl

1,3 7 sasiCl

1,4 6,93 sasiCl

1,5 7,4 sasiCl

1,6 7,12 sasiCl

1,7 7,27 clsiSa

1,8 7,5 sasiCl

1,9 7,42 siCl

2 8,17 siCl

2,1 8,05 siCl

2,2 8,29 siCl

2,3 7,97 sasigyCl

2,4 8,23 7,69 H19018:2 sasigyCl

2,5 8,11 sasiCl

2,6 7,87 sasiCl

Ground water at site: 0,9 m
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Table 17. The results from field work and the oxidized pH of site H19019. 

H19019

Depth Field pH pH, oxidation 9 weeks pH 25/2 Sample Soil type

0,2 6,1 Topsoil

0,3 5,99 Topsoil

0,4 6,2 siSa

0,5 6,2 siclSa

0,6 6,34 siclSa

0,7 6,01 siclSa

0,8 6,04 siSa

0,9 6,12 siSa

1 5,38 siclSa

1,1 5,24 siSa

1,2 5,06 4,37 4,24 H19019:1 siSa

1,4 5,33 sasiCl

1,5 6,24 sasiCl

1,6 5,54 sasiCl

1,7 5,57 sasiCl

1,8 5,5 4,48 4,1 H19019:2 siCl

1,9 5,22 Peat

2 5,42 Peat

2,1 6,11 Peat

2,2 5,64 siCl

2,3 5,75 siCl

2,5 6,18 siclSa

2,6 6,89 siclSa

2,7 6,22 siSa

2,9 6,58 Cl

Ground water at site: 1,1 m below ground surface
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Table 18. The results from field work and the oxidized pH of site H19020. 

H19020

Depth Field pH pH, oxidation 9 weeks Sample Soil type

0,2 4,9 Topsoil

0,3 5,18 Topsoil

0,4 5,5 saCl

0,5 5,42 5,73 H19020:1 saCl

0,6 5,81 saCl

0,7 5,86 Cl

0,8 6,06 Cl

0,9 6,34 Cl

1 6,51 Cl

1,1 6,83 Cl

1,2 7,13 Cl

1,3 7,07 Cl

1,4 8,29 Cl

1,5 7,79 7,76 H19020:2 Cl

1,6 7,83 Cl

1,7 8,39 Cl

1,8 8,14 Cl

1,9 7,82 Cl

2 8,1 7,47 H19020:3 Cl

Ground water at site: 1,2 m below ground surface
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H19021

Depth Field pH pH, oxidation 9 weeks Sample Soil type

0,2 4,89 Topsoil

0,3 6,01 Cl

0,4 6,37 6,37 H19021:1 Cl

0,5 6,53 Cl

0,6 6,58 Cl

0,7 6,7 Cl

0,8 6,71 Cl

0,9 6,93 Cl

1 7,19 7,68 H19021:2 Cl

1,1 7,42 Cl

1,2 7,11 Cl

1,3 7,21 Cl

1,4 7,19 Cl

1,5 7,24 Cl

1,6 7,28 Cl

1,7 7,17 Cl

1,8 7,16 7,69 H19021:3 Cl

Ground water at site: -

Table 19. The results from field work and the oxidized pH of site H19020. 

Table 20. The results from field work and the oxidized pH of site H19022. 

H19022

Depth Field pH pH, oxidation 9 weeks Sample Soil type

0,2 4,78 Topsoil

0,3 5,77 Topsoil

0,4 5,39 Topsoil

0,5 5,07 Humus

0,6 4,93 5 H19022:1 saCl

0,7 5,6 5,43 H19022:2 Peat

0,8 5,3 5,48 H19022:4 clsiSa

0,9 6,47 siSa

1 6,1 siSa

1,1 6,14 siSa

1,2 5,81 siSa

1,3 5,45 5,58 H19022:3 siSa

Ground water at site: 1,0 m below ground surface
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Table 21.  The results from field work and the oxidized pH of site H19023. 

H19023

Depth Field pH pH, oxidation 8 weeks pH, oxidation 9 weeks Sample Soil type

0,2 5,2 Topsoil

0,3 6,02 Topsoil

0,4 6,16 6,25 6,07 H19023:1 siSa

0,5 6,52 siSa

0,6 6,36 siSa

0,7 6,4 siSa

0,8 6,19 siSa

0,9 6,08 Sa

1 5,91 Sa

1,1 5,89 Sa

1,2 6,22 5,94 5,35 H19023:2 siSa

1,3 5,75 siSa

1,4 5,76 siSa

1,5 5,73 siSa

Ground water at site: 1,0 m below ground surface
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Figure 25. Orthophoto over site H19031, marked with a green triangle, from year the 1960.   
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Figure 26. Orthophoto over the area H19031, marked with a green triangle) from the year 1975 before the 

restoration.  
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Appendix 4 
 

Table 21. The results from the metal and Sulphur analyses done at ALS Global in Umeå, Västerbotten. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  Sample site H19031 H19031 

  Sample depth [m] 1 1,5 

    potential AS soil potential AS soil 

ELEMENT        

As, arsenic mg/kg DS 6.69 8.14 

Ba, barium mg/kg DS 81.7 54.5 

Be, beryllium mg/kg DS 0.990 0.697 

Cd, cadmium mg/kg DS <0.1 <0.1 

Co, cobalt mg/kg DS 7.60 5.56 

Cr, chromium mg/kg DS 31.3 24.2 

Cu, copper mg/kg DS 17.1 13.6 

Fe, iron mg/kg DS 45700 24400 

Hg, mercury mg/kg DS <1 <1 

Mn, manganese mg/kg DS 392 247 

Ni, nickel mg/kg DS 16.6 13.6 

P, phosphorus mg/kg DS 548 625 

Pb, lead mg/kg DS 10.5 10.1 

S, sulfur mg/kg DS 135 684 

Sr, strontium mg/kg DS 22.8 21.0 

V, vanadium mg/kg DS 64.6 58.6 

Zn, zinc mg/kg DS 55.1 48.0 

Dry substance at 

105°C % 72.1 56.5 
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Site Field notes for sites falling close to AS soil

H19017 Rust grains 0,4 - 0,7 m

Organic content 0,4 - 1 m

Black sulphide speckles 0,4 - 1,2 m

Black elements in sand on 0,5 m

Some sand at 0,5 - 0,9 m

H19019 Rust percipitates 0,4 - 0,9 m

Organic material 0,4 - 0,7 m and 1,1 m

Black mineral grains 0,5 m

Peat from 0,95 - 1,05 m 

Organic material (peat, wood) 1 - 1,2 m

Peat layer 1,3 - 1,35 m

Yeast structure and organic material 1,5 - 1,8 m

Black sulphide speckles 1,8 m

Peat content 2 - and 2,5 m? Silty sand to 2,85 m

 Table 22. Field notes from sites that had a pH value close to the limit 

for an AS soil site. 
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Site Field notes non-AS soil

H19002 Sporadic elements of sand

Granular

H19003 Deciduous forest

Marshy

H19004 Sand througout the whole horizon

Seemingly high organic content with good cohesion

Oxidized color until 1 m

Transition zone ~10 - 20 cm, thereafter reduced

H19018 Organic material 0,3 - 2,6 m

Rust percipitates 0,3 - 1,5 m

Lime fragments 0,5 m

Sporadic fine sand on 0,5 - 0,7 and 1,3 m

Organic material (wood) 1,2 - 1,5 m

Clayey peat from 1 - 2,6 m?

H19020 Rust percipitates 0,4 - 1,3 m

Organic material 0,4 m - 2,0 m

Yeast structure 0,7 - 2,0 m

Sporadic sand lenses 0,9 and 1,1 - 1,2 m, 1,4 m, 1,6 - 1,7 m, 1,9 m

Organic material wood 1,4 - 1,6 m and 2 m

Yeast structure, clayey peat?

H19021 Organic material 0,3 - 1,8 m

Yeast structure 0,3 - 1,8 m

Rust percipitates 0,3 - 1,8 m, bigger at 0,9 m

Small sand lenses 0,9 - 1 m and 1,5 m

H19022 Dark color  from 0,2 - 0,5 m. Black at 0,7 m and rust percipitates peat?

Organic material 0,8 - 1,3 m, purple red elements at 0,9 m

Black speckles at 0,6  and 0,8 m, rust percipitates 1,3 m

H19023 Rust percipitates 1,2 - 1,3 m

Table 23. Field notes from sites that were not classified as an AS soil site. 
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Figure 27. Pollen diagram from Lismosse (3i – 3j) from Påsse (1988 

unpublished). 
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Figure 28. pH curves of the sites H19017, H19019, H19022, and H19023. 
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Figure 29. The blue line marks the maximum elevation, 13 m.a.s.l. of Tapes transgression in the study area 

Falkenberg. Data source 
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Appendix 9 
 

 

Figure 30. An excavation done west of the location for site H19001, the same stratigraphy was observed at the excavation as the 

one at site H19001. Rust precipitates can be seen in the sand. 

 




