
Reliable and User Friendly Low
Bandwidth Web Surfing
Performance and Reliability Improvements of a Proxy Server
and Web Browser Prototype

Bachelor of Science Thesis in Computer Science and Engineering

Gustav Pettersson, Loke Simone Damaschke,
Tarik Ala Hadi, Kristoffer Blid Sköldheden

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019

Bachelor of Science Thesis DATX02-19-14

Reliable and User Friendly Low Bandwidth Web
Surfing

Performance and Reliability Improvements of a Proxy Server and
Web Browser Prototype

Gustav Pettersson
Loke Simone Damaschke

Tarik Ala Hadi
Kristoffer Blid Sköldheden

Department of Computer Science and Engineering
Chalmers University of Technology

Gothenburg, Sweden June 2019

Reliable and User Friendly Low Bandwidth Web Surfing
Performance and Reliability Improvements of a Proxy Server and Web Browser Pro-
totype
Gustav Pettersson, guspette@student.chalmers.se
Loke Simone Damaschke, simoned@student.chalmers.se
Tarik Ala Hadi, tarika@student.chalmers.se
Kristoffer Blid Sköldheden, guskrissk@student.gu.se

© Gustav Pettersson, Loke Simone Damaschke, Tarik Ala Hadi,
Kristoffer Blid Sköldheden, 2019.

Supervisor: Dag Wedelin
Examiner: Carl-Johan Seger

Bachelor of Science Thesis DATX02-19-14
Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: The illustration pictures the connection between the computer and the In-
ternet, using a satellite connection and a proxy server. (T. Andersson, L. Blomkvist,
A. Hast, F. Karlsson, J. Lindström, and T. Sundell, Very Low Bandwidth (Marine)
Web Surfing A Fault-Tolerant Content Streaming Web Browsing Solution, 2018)

Gothenburg, Sweden 2019

iv

Reliable and User Friendly Low Bandwidth Web Surfing
Performance and Reliability Improvements of a Proxy Server and Web Browser
Prototype

Gustav Pettersson, Loke Simone Damaschke,
Tarik Ala Hadi, Kristoffer Blid Sköldheden

Department of Computer Science and Engineering
Chalmers University of Technology

Abstract

In remote locations, internet access can be enabled using satellite connections, such
as the Iridium Satellite Network. The Iridium GO! device provides a bandwidth of
2.4 kbit/s. On such a low bandwidth it would take hours to download most modern
websites.

In 2018, a prototype which enables general web browsing on a low bandwidth was
developed at Charmers. The prototype acts as a proof of concept for the use of a
performance enhancing proxy server to extract data in order to reduce content size
and achieve viable loading times.

The 2019 prototype replaces components of the 2018 iteration, providing a faster
and more reliable service. In particular, no excess data is being sent and the delay
caused by compression and data extraction is notably shorter, resulting in a 66%
reduction on average to the time between sending a request and the moment the
first content arrives to the client.

Keywords: satellite Internet, low bandwidth web browsing, Iridium Satellite Net-
work, performance enhancing proxy, content extraction.

v

Reliable and User Friendly Low Bandwidth Web Surfing
Performance and Reliability Improvements of a Proxy Server and Web Browser
Prototype

Gustav Pettersson, Loke Simone Damaschke,
Tarik Ala Hadi, Kristoffer Blid Sköldheden

Department of Computer Science and Engineering
Chalmers University of Technology

Sammandrag

På avlägsna platser så kan tillgång till internet ges av satellitanslutningar, som
till exempel Iridium Satelite Network. Produkten Iridium GO! ger tillgång till en
uppkoppling på 2.4 kbit/s. På en sådan långsam uppkoppling skulle de ta fleratal
timmar att hämta de flesta moderna hemsidor.

2018 utvecklades en prototyp på Chalmers, som ett realistiskt alternativ för att
surfa på denna långsamma uppkopplingen. Prototypen agerar som ett konceptbevis
som med hjälp utav en proxy-server extraherar nödvändig data för att reducera dess
storlek, för att sedan skicka vidare denne till användaren, som resulterar i rimliga
laddningstider.

2019 års prototyp har bytt ut komponenter från 2018 års variant för att förbättra
hastigheterna och göra tjänsten mer pålitlig. Bland annat så skickas ingen onödig
data, och fördröjningen som orsakas av komprimering och extrahering har reducer-
ats. Detta resulterar i ca 66 % reduktion i tid från när förfrågan görs av användaren,
till att första datan anländer hos klienten.

Nyckelord: satellit-internet, låg bandbredd, webbsurfande, Iridium Satel-
lite Network, presationsförbättrande proxy, extrahering av innehåll.

vii

Acknowledgements

We would like to thank Dag Wedelin for his guidance as supervisor for this project.
He was of tremendous help in directing the focus of the project and offered unique
insight with his experience using the 2018 prototype in the field. He also provided
his personal Iridium GO! device for testing.

We would also like to thank everyone who offered feedback and input throughout
the project, both for the prototype and the thesis.

ix

Contents

Glossary xii

1 Introduction 1
1.1 Purpose and Scope . 2

2 The 2018 Prototype 5
2.1 An Overview of the System . 5
2.2 The Iridium Satellite Network . 7
2.3 Data Extraction and Rendering . 8
2.4 Server-Client Communication . 10
2.5 Compression Scheme . 10
2.6 UI and GUI Design . 11

2.6.1 Search Functionality via Google 12
2.6.2 Browsing History and Navigation 13
2.6.3 Keeping visited Pages in Cache and the Cache Toggle 13

3 Development of a 2019 Prototype 15
3.1 Initial Testing and Fact-finding . 15
3.2 Requirements Specification . 16
3.3 Simplification of the Code Base . 18
3.4 Making Iterative Performance Improvements 18
3.5 UI and its Role in Evolution Qualities 19
3.6 Documentation Efforts for the Future 20

4 The 2019 Prototype 23
4.1 UI Analysis and System Design Considerations 23
4.2 Disabling of the Custom Encryption 24
4.3 Performance Improvements . 25

4.3.1 Circumventing the Document Object Model 25
4.3.2 Implementing Faster Compression 26
4.3.3 Quick Access Browsing History and Cached Pages 29

4.4 Handling Communication Errors . 30

5 How Well the 2019 Prototype Meets the Requirements 33
5.1 Time To First Content . 34

xi

Contents

5.2 Loading Time . 35
5.3 Suggestions for Future Work . 36
5.4 Ethics . 38

6 Conclusion 41

Bibliography 43

A User Tests I
A.1 2018 Prototype with Expert User . I
A.2 2018 Prototype with Non-Expert User VI

B Performance Test Results XI
B.1 Time to First Content . XI
B.2 Loading Time . XII

xii

Glossary

DOM Short for "Document Object Model". A DOM represents the structure of a
HTML or XML document as a tree.

HTML Short for "HyperText Markup Language". A markup language used to
structure web pages.

Network protocol A network protocol specifies how communication between soft-
ware is conducted via a network, defining accepted values.

Packet A sequence of bits which is sent as one unit between devices within a
network.

Packet Header The part of a packet which contains control information for ad-
dressing.

Payload The part of a packet which contains the transmitted information.

PEP Short for "Performance Enhancing Proxy Server", a server which acts as inter-
mediary between two end systems in a network and performs operations to enhance
system performance.

TCP Short for "Transmission Control Protocol", a communications protocol running
on top of IP which provides in-order delivery.

UDP Short for "User Datagram Protocol", a communications protocol running on
top of IP which is loss-tolerant.

xiii

Contents

xiv

1
Introduction

While high-speed internet access is prevalent in densely populated areas, the same
does not hold true for locations away from cities and towns. Regular internet con-
nections are rooted in place or dependent on range from a cellular tower [1]. When
sailing or hiking to remote locations, internet access can be enabled through satellite
communication.

There are different satellite connection services available. Enterprise grade satellite
connections offer high bandwidths, but are costly. Using a TracPhone, a 10/3 Mb/s
connection can cost 0.5 $ per Mb [2]. More affordable variants are marketed to
individual hobbyists, such as the Iridium GO! device, which provides a bandwidth
of 2.4 kbit/s [3] at up to 0.89 $ per minute of connection [4]. However, a modern
web page, such as the English Wikipedia page about Sweden, would take about an
hour to download using the 2.4 kbit/s connection.

While there are satellite connections with sufficient bandwidth for web browsing, it
is a question of price. This begs the question if general web browsing can be enabled
on an affordable low bandwidth connection. The goal of this project is to develop a
robust and reliable low bandwidth web browsing solution which can be utilised by
a user without specialised knowledge.

There are several custom applications for specific satellite web browsing needs, but
they either limit the user to specific sites or information, such as weather reports
or Facebook and Twitter use [5], or do not reduce the content size enough to work
reliably with a bandwidth as low as that of the Iridium Satellite Network. For
example, the general satellite web browsing solution XWeb only reduces web page
content by a factor of 3-5 [6].

In order to stream web content on a low bandwidth connection, an aggressive reduc-
tion in content needs to be ensured, while preserving all the vital textual informa-

1

1. Introduction

tion. Furthermore, saving data can reduce costs for the user. On a regular internet
connection, users often have unlimited or very generous data plans, but this is not
always the case on a satellite connection.

Filtering the vital textual content from the non-essential is a complex problem. In
the infancy of the internet, websites consisted mainly of text and links, but modern
websites contain a lot more information, such as complex layouts, images, and video
content. Each type of media and each design element may have several different
HTML tags which identify it, and each such variant has to be taken into account
when filtering the content.

1.1 Purpose and Scope

The purpose of this project is to enable general web browsing in remote locations in
a cost-effective and timely manner. While the project focuses on creating a robust
and reliable general web browsing solution using the Iridium GO! device, the work
may have broader implications for data extraction and transfer to remote locations
via other networks and technologies.

In 2018, a Bachelor of Science thesis was published at Chalmers on the topic of low
bandwidth web browsing. The thesis describes a prototype which employs a proxy
server to filter web content before streaming the filtered data to a client via the
Iridium Satellite Network [3]. The prototype also includes a set of custom, minimal
protocols which further reduce the amount of information sent via satellite. This
solution appears to be unique and other research on enabling general web browsing
using the 2.4 kbit/s Iridium Satellite Network connection was not found.

While not constituting a viable product, the 2018 prototype is a proof of concept
which forms the basis for continued development to enable general low bandwidth
web browsing. During this project, the content extraction of the 2018 prototype
was refined and the implementation of the server and client applications altered to
improve robustness and usability.

The most important issues to tackle in order to create a reliable service were bug
fixes, error handling, and speed improvements. Speed improvements necessitate
optimisation, involving problem analysis, development efforts, and testing to confirm
whether the new solution really constitutes an improvement. This optimisation
process was the main focus of the project.

2

1. Introduction

Multimedia processing was left for later stages of development which may occur after
the conclusion of the current project. Any changes to hardware or improvements to
the Iridium Satellite Network itself were also outside the scope of the project.

The user interface is undeniably important in any application which is aimed at an
end user. Due to time constraints, the user interface was not extensively tested or
fleshed out during the project, but it has been taken into account when considering
the overall design of the system in order to ease future development which may occur
after the conclusion of the current project.

One part of the user interface is the graphical representation, the GUI. Development
of a more suitable GUI is not within the scope since the 2018 design suffices for the
needs of the project. The GUI provided by the 2018 prototype was used to test
the application and only altered insofar it benefited the code base of the underlying
system.

3

1. Introduction

4

2
The 2018 Prototype

In order to understand the changes and improvements made during this project,
it is vital to first gain an understanding of the 2018 prototype which has been
developed and described in a previous Bachelor thesis. This 2018 prototype will be
introduced in this Chapter; how it operates, why, and what aspects need improving.
The theory presented is partially extracted from the 2018 thesis and partially the
result of further investigation and testing of the 2018 prototype. Underlying theory
and implementation specifics which are not relevant to the current project are not
presented here. For further information on the 2018 prototype, please refer to the
2018 thesis [3].

2.1 An Overview of the System

The system consists of three main parts, which can be seen in Figure 2.1. The
first part is a custom client application which the end user utilises. The client is
graphically represented as a simplified web browser. The second part is a set of
custom protocols used on the low bandwidth connection between the client and
proxy server. The third part of the system is a proxy server which also has a high
bandwidth connection via which it can access the Internet.

A proxy server is a server acting as intermediary between a client and a server. One
category of proxy servers is performance enhancing proxy servers (PEP). A PEP can
help improve Internet protocol performance when standard protocols are unreliable
or slow due to the nature of the underlying technology used for at least a part of
the network [7][8]. The PEP used in the 2018 prototype operates on several layers,
changing the content being transmitted, as well as how it is transmitted.

5

2. The 2018 Prototype

Figure 2.1: Performance enhancing proxy server (edited with permission) [3]. The
figure shows how the different parts of the system are related to another. The
client and proxy server are connected via a low bandwidth connection where only
little information is sent. The proxy server is connected to the internet via a high
bandwidth connection where a lot of information is sent. On the proxy server, a
process converts HTML documents into plain text.

When the client requests a web page, the request is sent to the proxy server via
the low bandwidth connection. The server uses its high bandwidth Internet con-
nection to download the requested page. The server then extracts the vital textual
information before sending the extracted content to the client via the low band-
width connection, using custom low-overhead protocols. This system design greatly
reduces the amount of information sent via the low bandwidth connection, thus
enhancing performance and enabling general text based web browsing in a timely
fashion. This filtering of information also saves data, which potentially reduces the
cost of transmission.

The custom protocols used on the low bandwidth connection are not only minimal
but also enable out-of-order packet delivery and bit error handling, which reduces
the need to resend packets if errors occur. Resending is undesirable since it increases
the amount of information that needs to be sent on the low bandwidth connection.

In general, when transmitting data over a network, bit-errors can occur. The data
that arrives to the client can thus differ from the data sent from the server, in the
worst case making it useless or even harmful to the client. While data sent via the
Iridium GO! device does not appear to have any significant bit-error issue, the 2018
prototype is designed to potentially work with other, more bit-error prone services
[3]. This risk of data corruption during transmission is thus actively addressed in
the 2018 prototype and remains an integral part to the system design.

Handling bit-errors necessitates that every part of the communication takes the pos-

6

2. The 2018 Prototype

sibility of an error into account, including encryption, compression, and verification
of data. How these issues are addressed in the 2018 prototype is detailed in the
relevant sections below.

2.2 The Iridium Satellite Network

There are different technologies which can enable internet access in remote locations.
Among communications satellite solutions there are two categories of note. The first
is GEO (geosynchronous) satellites. GEO satellites orbit the earth in time with the
earth’s rotation, which enables them to always cover the same area on the surface of
the earth. Due to their altitude, GEO communications satellites suffer high latency
[9].

The second category is LEO, (low earth orbit) satellites. LEO satellites are, as the
name suggests, in low orbit, meaning they are close to the surface and delays are
short, making them suitable for communications solutions. LEO satellites are how-
ever not geosynchronous and one satellite cannot cover the same area on the surface
of the earth for very long. The Iridium Satellite Network handles this complication
by employing at least 66 active satellites which orbit the earth in formation, as
shown in Figure 2.2. Using this formation, the Iridium Satellite Network enables
worldwide telecommunications.

Figure 2.2: Iridium Satellite Network coverage (one image of a gif, not altered)
[10]. Each red circle represents the coverage of one satellite. Together, 66 circles
cover the entire map.

7

2. The 2018 Prototype

The original purpose of the Iridium Satellite Network was enabling voice and plain
text transmission, such as fax or traditional text files [11]. The connection thus has a
bandwidth of only 2.4 kbit/s [3]. The Network forms the low bandwidth connection
for the prototype, meaning the communication between server and client is sent via
the Iridium Satellite Network. An Iridium GO! device is used to connect to the
satellite network.

The next generation of Iridium satellites is already in orbit [12]. The Iridium NEXT
satellites promise higher bandwidth and inter satellite communications [13].

During this project, a test was performed to confirm the bandwidth in use. A data
stream was sent with UDP (User Datagram Protocol), using the program iPerf3[14],
via the Iridium GO! device. The transmission time was measured and the test
confirmed that the average speed of the service is indeed 2.4 kbit/s.

2.3 Data Extraction and Rendering

When retrieving a web page, the proxy server notifies the content server from which
it is requesting the page that it is a mobile phone in order to get the potentially
smaller mobile version of the page if such a page exists. It has been found, however,
that the difference between requesting a mobile page versus a regular page is very
small once the content extraction is done [3], meaning the act of notifying the content
server and acting as a mobile phone does not have any significant impact on the final
content size. Acting as a mobile phone may cause a difference in content, though,
since some web pages offer drastically differing information and services to mobile
user. Nevertheless, changing this is not a priority and the mobile version is in use.

After retrieving the web page, the server performs three operations; filtering, link
extraction, and rendering as seen in Figure 2.3. Once the plain text is ready, the
content is sent to the client.

Figure 2.3: Extraction flow chart [3]. The figure shows the process of extracting
text from a web page running on the server. The input is a HTML document and
the output is a plain text document.

8

2. The 2018 Prototype

The first step of content extraction is filtering. The HTML elements present in
the document are matched to known HTML elements and entirely removed if they
are used for styling, scripts, forms, or multimedia, leaving only the textual content
(encoded with UTF-8) intact. This greatly reduces the size of the web page.

Any links on the web page are replaced with an ID. The full URL of the link is kept
by the server while the client only receives an ID, as well as the starting and ending
position of the clickable text. While HTML uses <a> and to identify the
start and end of a link, the replacement link ID uses the hexadecimal numbers Oxfe
and Oxff. Oxfe and Oxff were chosen because they are not used in UTF-8 and thus
do not create any conflict [3].

Since the ID is much smaller than a URL, this process reduces the amount of data
sent to the client further. The link ID can be used by the client to request the web
page related to it, and the ID will be matched to it’s respective link by the server
upon such a request. Since web pages can contain thousands of links, this process
can take considerable time and the list of links the server needs to keep can grow
rapidly. The server can be utilised by several clients simultaneously, amplifying this
issue.

Once the textual information has been extracted and links have been replaced,
the text-based web browser ELinks is used to render the content, which creates a
minimal but easily readable plain text output [15]. When rendering is completed,
the content can be sent to the client.

9

2. The 2018 Prototype

2.4 Server-Client Communication

The two standard protocols used for web browsing on a regular internet connection
are User Datagram Protocol (UDP) and Transmission Control Protocol (TCP) [1].
TCP performs poorly with satellites due to the long delays inherent in the tech-
nology, resulting in slow throughput of data [9]. In contrast to TCP, UDP allows
for out-of-order delivery. Furthermore, automatic resending of corrupt packets can
be and is for the prototype disabled using UDP. Finally, UDP has a comparatively
small header (8 bytes versus TCP’s 20 bytes). Since speed of delivery and data
reduction is more important than reliant delivery of packets on slow connections,
the custom protocols run on top of UDP [3].

For a detailed account of the custom protocols, please refer to the 2018 thesis [3].

The prototype also has a simple encryption. As is, the encryption does not protect
against active attacks, where a bad actor changes the data during transmission.
Since it is undesirable to resend packets which contain bit errors on a low band-
width connection, simple message authentication can not be implemented. Message
authentication would mark packets which contain bit errors as invalid instead of
accepting them.

2.5 Compression Scheme

The compression algorithm chosen for the prototype is Byte-Pair Encoding (BPE).
BPE replaces commonly occurring pairs of bytes with unused byte codes in an
iterative process [16]. The text sent to the client is encoded with UTF-8. 102 of 104
UTF-8 codes are not in use and are utilised by the compression algorithm [3].

Usually, BPE would require transmission of a dictionary defining the unused bytes
and their corresponding byte-pairs. Sending a dictionary on the low bandwidth
connection is infeasible both because it means sending more data and because the
custom protocols allow for bit errors as described in Chapter 2.4. If a bit error
occurs during the transmission of the dictionary, the dictionary may be corrupted.
The dictionary is instead precompiled for a representative website. The precompiled
dictionary is used by the server to compress and by the client to decompress.

The main advantages of BPE are that each packet can be decompressed as soon as it
arrives and that it is only partially vulnerable to bit errors. If a bit error occurs, the

10

2. The 2018 Prototype

byte pairs compressed into the corrupted byte are affected, but not the rest of the
text. In this way BPE ensures that bit errors do not escalate during decompression.

On average, the compression algorithm of the 2018 prototype achieves a 72% com-
pression [3]. The use of a precompiled dictionary reduces the effectiveness of the
BPE compression, but sending a dictionary via the low bandwidth connection is, as
mentioned, not feasible. In order to improve the performance, two separate dictio-
naries are precompiled, one for Swedish and one for English. The text is compressed
using both dictionaries, and the smaller version of the text is subsequently sent
[3]. While improving the compression rate, this double compression approximately
doubles the run-time of the compression.

2.6 UI and GUI Design

The user interface (UI) is the overall design of the user-system interaction. One part
of it is the graphical user interface (GUI). While they are closely related, UI and GUI
are not the same thing. While the GUI includes colours, shapes, placement on the
screen, and other graphical details, the UI also includes what input is required from
the user and what responses the system provides on a more general level. While
GUI design is not within the scope of the project, the UI strongly influences system
design and is thus taken into account. The UI and GUI of the 2018 prototype are
briefly described below.

Figure 2.4 shows the client application after the web page example.com has been
retrieved.

At the bottom of the screen, the status bar displays the connection status of the
client application to the server, connected or disconnected, as well as the current
loading status. The feature in the middle is blank when the application is started.
When loading a web page, the feature contains images which provide the user with
information about the currently active process. When a web page has been retrieved,
the feature displays the filtered content of said web page. At the top of the screen,
are three navigation buttons and an address field. Above them is the menu, which
only provides links to Electron help pages, a full screen toggle, and an option to
close or open the application.

11

2. The 2018 Prototype

Figure 2.4: Client application running on Windows and showing example.com.
The menu and navigation bar are at the top along with the address field. The
feature is in the middle and the status bar, which also displays a cache toggle when
a cached page is available, is at the bottom.

2.6.1 Search Functionality via Google

When making a request, the user can either provide the full address to a specific
website or can provide a search term. Whenever an input has a blank space or
is missing a dot, it is interpreted as a search request rather than as a website ad-
dress. Any search request is converted into an address request by concatenation to
"https://www.google.com/search?q=". For example, the input "car" will result in
the request "https://www.google.com/search?q=car".

It is today common to find search functionality in the address field of a web browser.
When entering a search term, the browser picks a default search engine and performs
the search directly. In the 2018 prototype GUI, the same principle holds true.
Both website and search requests are entered into the address field. This solution,
however, does limit the user to simple searches, unless the user knows how to form
an advanced search query directly via the address by adding quotation marks or
logic operators.

12

2. The 2018 Prototype

2.6.2 Browsing History and Navigation

When a user requests a website, the URL is saved to an external history file. When
there is a website saved in the browsing history before the one currently being dis-
played, navigation to the previously visited page is possible. When there is a website
saved in the browsing history after the one currently being displayed, navigation to
the following visited page is possible. Upon navigating within the browsing history,
the respective URL is retrieved from the history file.

The two leftmost navigation buttons are used to perform this navigation of the
browsing history, backwards and forwards. The third navigation button cancels a
request, stopping the process of retrieving a website from the server. When a website
is retrieved, the cancel button instead acts as a reload button, which requests the
same page anew. This follows the same pattern as most modern web browsers,
making it intuitive for the user. Due to habituation, it may even appear strange if
this were not the case [17].

2.6.3 Keeping visited Pages in Cache and the Cache Toggle

One way to reduce the amount of information sent via the low bandwidth connection
is to not send any content at all. If a web page is cached in the client, it can be
displayed anew without retrieving the page from the server.

In the 2018 prototype, a simple cache is implemented which saves each visited web-
site to an external file. When a user returns to a previously visited page by nav-
igating the browsing history, the page is loaded from the cache file. However, a
request is also sent to the server in order provide the user with an updated version
of the page as soon as possible. This automatic request means data is being sent
over the low-bandwidth connection in a way that is non-essential and not strictly
self-evident.

The 2018 GUI provides a toggle which enables the user to switch between the cached
page and the page which is being downloaded in parallel. The user can switch back
and forth between these freely and is informed which version of the page is currently
displayed by the visuals of the toggle button at the bottom of the screen. When
the cached page is being displayed, there is also a message in a banner at the top
of the feature, informing the user about the cached state and how to switch to the
updated version. This toggle is not a standard GUI component of a web browser
and thus runs the risk of being unintuitive for the user [17].

13

2. The 2018 Prototype

14

3
Development of a 2019 Prototype

As described, the 2018 prototype is a proof of concept for the use of a PEP to extract
data from websites in order to enable general web browsing on a low-bandwidth,
such as a satellite internet connection. Specifically, the Iridium GO! device is used
for the development of this system. The 2018 prototype is not a viable product
that can be given to an end user, especially not a non-expert end user. Continued
development is needed in order to create a viable product. During this project a
new 2019 prototype was developed based on the previous 2018 prototype. How this
development was performed is described here.

The continued development effort consisted of six main processes or aspects; initial
testing, requirements specification, simplification, performance improvements, UI
considerations, and documentation. Some of these aspects are processes performed
in a specific order, while others are ongoing efforts or considerations that influence
the development. Each aspect is discussed in detail below.

3.1 Initial Testing and Fact-finding

In order to establish a baseline from which work can begin, the project included a
lengthy initial testing and fact-finding process. Literature relevant to the project,
including the 2018 thesis and many of its sources, were studied. The code base was
received from the original authors and both investigated by reading the code and
by running tests to determine how well the 2018 prototype performs.

In quantitative tests, two metrics were studied; time to first content and loading
time. While absolute time matters for the experience of the user, different machines
with differing hardware will perform at vastly different speeds and improvements in
these metrics thus have to be studied as relative values on the same machine. When

15

3. Development of a 2019 Prototype

test data was collected, evaluated, and presented in this thesis, comparisons were
made accordingly, for each test using values produced running different versions of
the code on the same machine.

Time to first content is the time form the moment the request is sent until the first
content arrives to the client. Time to first content was the most critical measurement
guiding the development of the software since it is the primary point of frustration
when using a low-bandwidth web browser. Waiting an hour, as in the Wikipedia
example given previously, to see if the web page is loaded or not is not a user friendly
experience.

Furthermore, users can be assumed to be accustomed to responsive systems and
web browsers which are able to display websites almost instantly. When it takes a
long time to load content, the user is likely to experience the service as inferior in
quality, and even as unreliable. When interacting with a web page, a delay of over
10 seconds is experienced as a long time by many users, especially those who spend
a lot of time browsing the internet [18]. This delay and user experience data was
generalised, given that no research could be found on the specific circumstances of
the current project. The relevant study concerns web pages and while the project
was about a system for the loading of web pages. While imperfect, due to differing
demographics and circumstances, this generalisation appears fairly reasonable.

While users of the system will be aware that they are on a satellite connection
with a low bandwidth, and can thus be expected to have more patience than on a
standard connection, frustration can accumulate, meaning users are likely to become
less tolerant to delays as they spend more time using a slow web page [18]. Again,
it was assumed that the same holds true for the prototype. Delays should thus be
as short as possible to avoid frustration buildup.

Similarly, loading time is of importance. Loading time is the average time it takes
to load web content. The loading time was measured from the time of first content
until the entire website is loaded, and then divided by the size of the website. Bigger
websites will always take longer to load, but if the loading time is small, the user
will see new content continuously, making the system appear responsive.

3.2 Requirements Specification

The goal of the project was, as stated, to develop a robust and reliable product
which an end user can utilise to browse the web over a low bandwidth connection.
Robustness was achieved by addressing bugs within the system and handling errors

16

3. Development of a 2019 Prototype

which may occur. The user’s experience of reliability depends greatly on time to
first content as well as loading time, as explained above.

The goal of the development effort was to create a minimum viable product (MVP),
a product which can be used by a non-expert user as is. The MVP needs to fulfil
certain requirements. The requirements were separated into functional and non-
functional. Functional requirements describe the functionality that the system must
provide to the user. Non-functional requirements describe the quality constraints.
The non-functional requirements were further separated into execution and evolu-
tion qualities. Execution qualities are apparent to the user, such as usability and
responsiveness, while evolution qualities concern the underlying architecture, how
well it scales, and can be tested and adapted in the future.

Functional requirements:

• Upon receiving a website address as input, the system must return the textual
information of the appropriate website.

• Upon receiving a search term as input, the system must return the textual
results of the appropriate search, using any search engine.

Execution qualities:

• Responsiveness: The time to first content shall not exceed 10 seconds, and
should be as short as possible.

• Learnability: The web browser should conform to the layout that users are
accustomed to and expect from a standard web browser.

Evolution qualities:

• Extensibility: The system design shall have clearly separated and individually
replaceable components. The code base should be easy to read and alter.

• Scalability: The system design should not constrain the amount of users or
websites.

While more, and more detailed requirements could be defined, these six were deemed
detailed and extensive enough for the scope of the current project. The functional

17

3. Development of a 2019 Prototype

requirements are mostly met by the 2018 prototype, with the exception of some
error handling and bugs.

The time to first content of the 2018 prototype is already below 10 seconds when
requesting small to medium web pages, but for large web pages it can take over 16
seconds. Time to first content could certainly be improved. In order to improve on
time to first content, the bottleneck had to be identified and the responsible part of
the process subsequently optimised. The bottleneck was identified by implementing
timers for the various processes running in the system and comparing their run-time.

At least one potential learnability issue is the use of a non-standard cache toggle.
The 2018 prototype thus only partially meets the execution qualities. Learnability
was addressed together with the evolution requirements, but responsiveness was
singled out because of its importance. Responsiveness alone was treated as the
measurement for system performance.

3.3 Simplification of the Code Base

Redundant code, which is not in use and not part of tests, as well as code which was
deemed unnecessarily complex was simplified or extracted and removed from the
prototype. Simplification improves extensibility since it leaves less code to debug
and it becomes easier to read and alter what is left. The cache toggle discussed
in Chapter 2.6.3 was also removed, improving both extensibility by simplifying the
code, and learnability by adhering to standard web browser design.

3.4 Making Iterative Performance Improvements

As previously mentioned, performance was here defined as responsiveness and mea-
sured as time to first content and loading time. In an iterative process, the perfor-
mance bottleneck was identified through testing and then the development efforts
were concentrated on improving that specific aspect of the system. When the im-
provement was great enough fort the bottleneck to shift to another part of the
system, development efforts shifted accordingly.

The initial bottleneck had been previously identified as the content extraction, due
to the jsdom package utilised in this operation [3]. In order to solve this issue,
the package had to be replaced. This issue was tackled first (see Chapter 4.3.1).

18

3. Development of a 2019 Prototype

After significant performance improvements were achieved, the bottleneck shifted
to the compression process. The algorithm either had to be optimised in regards
to run-time, or the experienced delay had to be decreased by other means, such
as interleaving the sending of data with the compression process. Since no other
algorithm which would meet the needs of the system, as well as perform faster than
the current one, was found, the second method of optimisation was used. Improving
on the delay caused by compression was addressed accordingly (see Chapter 4.3.2).

3.5 UI and its Role in Evolution Qualities

Keeping the user, and the UI in mind from the start generally eases development
since it acts as guide as work progresses. The UI influences scalability, extensibility,
and learnability. One prime example of UI’s influence on extensibility is the possibil-
ity of implementing tabs in the future, something that would aid learnability since
it conforms to the design of most modern web browsers. In order to ease future
development of such a feature, the underlying design needs to enable duplication
or easy adaption of the web browser feature, as well as the storage and access to
browsing history and cached pages.

In order to gain awareness of the factors and elements which can influence the
software design, a few user tests were conducted. Some heuristic inspection can
be made by the development team, based on commonly accepted design principles,
but this runs the risk of biased analysis [19], especially since the development team
is not specialised in UI design. The target audience for the system is a variety of
people from different backgrounds, meaning the UI design needs to accommodate a
broad range of users. Most notably, there will be non-expert users which may not
be comfortable performing complex operations. The development team cannot hope
to approximate the behaviours and needs of these users.

Since, as mentioned, UI design is not a focus of the project but rather an element
of exploration in favour of the system design, the scope of user testing was severely
limited. Only two full-length tests were conducted, one with an expert user and
one with a non-expert user. The expert user is someone very comfortable with
computers who can utilise advanced functionality in regular web browsers. The
non-expert user is someone less comfortable with computers who can be expected
to only utilise basic functionality in standard web browsers.

Both tests were conducted on the 2018 prototype as part of fact-finding. The tests
were conducted as direct observations with a passive observer from the research
group, followed by flexible interviews in which leading questions were avoided [19].

19

3. Development of a 2019 Prototype

During the tests, minimal prompts were given in order to obtain less biased tests.
The users were asked to search the web for something of their own choosing and to
talk out loud about what they were thinking and experiencing.

The test participants were not part of the development team and did not have
any background knowledge about the application or the implementation details.
The application was presented as a browser for text based browsing via satellite.
The tests were conducted using a regular internet connection since they focused on
the users’ interaction with the application and any complications from the satellite
connection could be disregarded. The main difference ought to be that loading
times are longer using the Iridium GO! device. The loading time is an important
factor which was tackled separately. The test results were anonymised to protect
the privacy of the participants.

The resulting data was a list log of the users’ interactions with the system, including
notes on the observer’s understanding of the situation, followed by a short text
describing the main points of the post-session interview. This type of logs are
simple and lack a lot of detail, but are quick to write and thus fit the limited scope.
The data was analysed to explore UI issues and mitigate the effect of biases held by
the research team.

3.6 Documentation Efforts for the Future

A complicating factor for the development of a 2019 prototype was the distinct lack
of technical documentation. The 2018 thesis contains much useful information about
the design choices and the reasoning behind these. The custom protocols are also
described in great detail. However, the specific implementation of the client and the
server is not thoroughly documented. This lack of documentation complicated the
reading of code, fact-finding, and initial testing, which led to a lengthy preparation
phase.

During the project, a conscious effort was made to document the code in three
levels of granularity. Line by line documentation was added in parts of the code
though a more extensive use of comments. Component level documentation was
added through readme files written in Markdown which offer guidance to developers
exploring the 2018 code. These readme files contain short explanations of the content
available in the different source files and related folders. An overview of the entire
system and code base, a technical documentation, was also written and added to
the top level of the file hierarchy. The documentation contains information on the
file structure, how it relates to the components of the system, as well as relevant

20

3. Development of a 2019 Prototype

implementation details and known issues.

This layered documentation should ease future development of the system by facili-
tating understanding of the existing prototype and easing entry for a future research
group. Having this documentation can help cut down on preparation time as well
as avoid duplication of work.

21

3. Development of a 2019 Prototype

22

4
The 2019 Prototype

By applying the described development processes and considerations to the 2018
prototype, a new 2019 prototype was developed which more closely conforms to the
requirements specification given in Chapter 3.2. The 2019 prototype detailed here
is faster, more robust, and offers more aid to future developers seeking to refine the
web browsing solution.

4.1 UI Analysis and System Design Considera-
tions

As detailed in Chapter 3.5, two full-length user tests were conducted on the 2018
prototype and the results were analysed to aid in designing the 2019 prototype. The
main findings and any actions taken based on the tests are presented here. Complete
test logs can be found in Appendix A.

Disregarding problems which occurred due to know bugs, there are five main issues
in the 2018 UI. Firstly, the conducted user tests confirmed that the cached pages
toggle is unintuitive to some users. The toggle was removed during development
of the 2019 prototype both because of its unintuitive nature and for data saving
purposes (see Chapter 4.3.3).

Secondly, when inputting an erroneous website address, the 2018 application dis-
plays a message stating the request is being sent when in actuality the server has
already received the request and gotten an error. The expert user waited for several
minutes before reloading, which caused the same issue to repeat. The user never
understood what was happening during the test. This indicates that input errors
are not properly communicated to the user. Changes were made so that the most

23

4. The 2019 Prototype

common errors are communicated to the client in the 2019 prototype (see Chapter
4.4).

Thirdly, the users expected search fields on pages like Google and Wikipedia. These
sites are not designed for browsing solely via links, but expect an input. Since forms
and inputs are not part of the prototype functionality, navigation on these pages
becomes significantly more difficult. It took a moment for the expert user to realise
there was no search field, and to figure out how to access a specific Wikipedia page
despite this hindrance, by using the Google search functionality from the address
bar of the browser.

Similarly, the vertical menu displayed at the top of the page led to confusion. The
non-expert user did not instantly recognise the navigation menu of a website as
such. Users have a mental model of a navigation menu and may thus expect it to he
horizontally aligned along the top, rendering the vertical display counter-intuitive
[17]. While the possibility was briefly explored, neither search fields nor a horizontal
menu were implemented in the 2019 prototype due to time and scope constraints.

Finally, the expert user was surprised to learn data is being sent in the background
by the 2018 prototype when a cached page is displayed on screen. In most web
browsers this lack of transparency would not be an issue, but since data can be
costly on a satellite connection, the user needs more control. The Internet Society
also recommends that an end user should be aware of the use of a PEP when one is
employed [7]. However, a real user could be expected to know this after making the
choice to install and use the software. The automatic sending of data was disabled
during the development of the 2019 prototype (see Chapter 4.3.3).

4.2 Disabling of the Custom Encryption

For simplification purposes, the 2018 custom encryption was disabled since it is not
very effective and does not add any significant functionality to the product at this
stage of development. Any bugs which may appear during development were thus
not relevant to find or solve and the code could be disregarded. During testing, the
encryption of the 2018 prototype was disabled as well because it appeared to cause
malformed packet errors.

There is also an encryption available on the Iridium Satellite Network itself. The
Iridium SIM follows the Global System for Mobile Communications specifications,
providing A3 and A5 which are used for authentication of the SIM card and gen-
eration of a cipher key respectively [20]. However, since the server is not directly

24

4. The 2019 Prototype

connected to an Iridium ground station, this encryption is not valid end-to-end.

4.3 Performance Improvements

In the 2018 prototype, there is a significant delay between requesting a website and
delivery of the first content which can be displayed to the user. The requested
website has to be downloaded by the server, then processed in whole, going through
each stage, data extraction, link extraction, rendering, and compression, before any
data can be sent to the client. Especially large pages experience significant delays.
The efforts made to improve performance, as previously defined in terms of time to
first content and loading time, are detailed here.

4.3.1 Circumventing the Document Object Model

A previously known bottleneck of the 2018 prototype is the jsdom package used for
content extraction [3]. Especially large pages cause long delays, and long pages with
a lot of links are the greatest issue. This has been addressed by replacing jsdom
with the parse5 package.

The jsdom package creates a document object model (DOM), which represents the
HTML file [21]. The DOM can then be searched and manipulated, but it also
contains a lot of automatically created meta data. The parse5 package creates a tree
of Node objects and contains a lot less information [22]. Some of the functionality
which jsdom provides had to be implemented for use with parse5. jsdom provides a
search function for HTML tags in the DOM-tree as well as functions for removing
tags. These functions had to be implemented anew on the general tree structure
provided by parse5. Traversing the parse5 tree takes less time than utilising jsdom,
as evident in the following tests.

In Table 4.1, the execution time for the data extraction when requesting four differ-
ent web pages is listed for the implementations using jsdom and parse5 respectively.
As detailed in Chapter 3.1, both versions of the code were run on the same machine.
The extraction is significantly faster when using parse5 for large websites such as
Wikipedia and Aftonbladet. The number of links on each web page has the greatest
impact on the run-time and is thus given in the table.

25

4. The 2019 Prototype

URL jsdom (ms) parse5 (ms) num. of links
en.wikipedia.org/wiki/Sweden 14426 682 2416
www.aftonbladet.se 2315 290 148
www.iridium.com 830 775 127
example.com 238 232 1

Table 4.1: Execution time for data extraction in implementations utilising jsdom
and parse5. Both tests were performed using a regular internet connection.

4.3.2 Implementing Faster Compression

As mentioned in Chapter 3.4, the time to first content bottleneck shifted to the
compression once the jsdom package had been replaced with the parse5 package as
described above. One way to improve time to first content is to send content sooner.
In order to achieve this in the 2019 prototype, compression is executed on smaller
sections of content, and said content is then sent before compression of the entire
web page is complete. This method increases the total time it takes to compress a
web page due to the overhead of calling the function multiple times. However, the
first content arrives sooner, and as long as the compression of the remaining content
does not delay the sending of packets, the increase in total compression time should
not be an issue. Since packets can only be sent as slowly as the low bandwidth
can transport them, interleaving compression and sending results in a concurrent
process.

To implement these changes, the custom protocols introduced in Chapter 2.4 had to
be adapted. The 2018 protocols designed to send one web page at a time, without
interruptions. The data is first compressed and then sent, which means information
about the total amount of data transmitted is available when the first packet is sent.
With interleaving processes, the length of the compressed page is unknown when the
first packet is sent. Therefore, a new end of transmission message was implemented.
Furthermore, each data packet needs to be identifiable as part of the current request
in order to ensure no pages become tangled upon receiving if a request is cancelled
or otherwise interrupted before the end of transmission message is received.

Unfortunately, the request ID adds to the size of the packet header, but without it
the changes could not be implemented. The presence of a request ID in each packet
may also ease implementation of tabs, since packets belonging to different sites can
be sorted from another.

The Control Channel Protocol (CCH) is a custom protocol required to request web
pages, re-transmit content, enable encryption and abort transmissions. When re-

26

4. The 2019 Prototype

a: Original Data Transport Protocol for-
mat from 2018 [3].

bit 0 1 2 3 4 5 6 7
0
8 sequence number

16 seq. num. checksum
24
...
n-24

payload

n-16
n-8 CRC16

b: Altered Data Transport Protocol for-
mat from 2019.

bit 0 1 2 3 4 5 6 7
0
8 sequence number

16 seq. num. checksum
24
32 request ID

40
...
n-24

payload

n-16
n-8 CRC16

Table 4.2: The original and altered version of the Data Transport Protocol. The
table shows what kind of information is encoded in each bit. For example, the first
row shows that bit 0 to bit 19 contain the sequence number, which identifies the
order of the packets.

questing a web page, it is either requested via URL or via link ID, as detailed in
Chapters 2.6.1 and 2.3. Upon making a URL request, a RequestURL response is
returned. Upon making a link ID request, a RequestLink response is returned. The
original and altered version of these responses as shown side by side in Tables 4.3
and 4.4.

The original 2018 RequestURL response gives the content length of the requested
web page as well as the first and last sequence numbers of related data packets in
order to identify the first and last packet belonging to the web page. The compres-
sion parameter defines which dictionary to use for decompression (see Chapter 2.5).
Similarly, the original RequestLink response gives this information, as well as the
URL corresponding to the requested link ID, so it may be displayed to the user.

The 2019 protocols provide the request ID instead of the last sequence number.
Having both request ID and last sequence number would bloat the header of the
packets. As is, the 2019 header is 8 bits smaller because the request ID is shorter
than a sequence number.

The absence of a last sequence number means the last data package can no longer be
identified using these RequestURL and RequestLink response messages. In the 2019
prototype, the end is instead marked by a new End of Transmission packet in the
control channel, as seen in Table 4.5. The End of Transmission message contains the
request ID and the last sequence number. With this message, the last data package
can be identified for the specified request ID.

27

4. The 2019 Prototype

a: Original RequestURL response from
2018 [3].

bit 0 1 2 3 4 5 6 7
0 3
8
16
24
32

content length

40
48
56

first seq. num.

64
72
80

last seq. num.

88 compression parameter

b: Altered RequestURL response in
2019.

bit 0 1 2 3 4 5 6 7
0 3
8
16
24
32

content length

40
48 request ID

56
64
72

first seq. num.

80 compression parameter

Table 4.3: The original and altered version of the RequestURL response. The
table shows what kind of information is encoded in each bit. For example, the first
row shows that bit 0 to bit 7 contain the number 3, which identifies the message as
a RequestURL response.

a: Original RequestLink response from
2018 [3].

bit 0 1 2 3 4 5 6 7
0 5
8
16
24
32

content lenght

40
48
56

first seq. num.

64
72
80

last seq. num.

88 Compression parameter
96
... URL

b: Altered RequestLink response in
2019.

bit 0 1 2 3 4 5 6 7
0 5
8
16
24
32

content length

40
48 request ID

56
64
72

first seq. num.

80 Compression parameter
88
... URL

Table 4.4: The original and altered version of the RequestLink response. The table
shows what kind of information is encoded in each bit. For example, the first row
shows that bit 0 to bit 7 contain the number 5, which identifies the message as a
RequestLink response.

28

4. The 2019 Prototype

bit 0 1 2 3 4 5 6 7
0 8
8
16 request ID

24
32
40

last seq. num.

Table 4.5: End of Transmission message which gives the last sequence number
for a specific request ID, identifying the last data packet of the relevant request.
This message type is new for the 2019 prototype. The table shows what kind of
information is encoded in each bit. For example, the first row shows that bit 0 to
bit 7 contain the number 8, which identifies the package as an End of Transmission
message.

While the 2018 prototype compresses the entirety of the text with both dictionaries
before deciding which version to send, the 2019 prototype only compresses the first
2048 bytes with both dictionaries. After the initial double compression, it is assumed
that the dictionary which produced the most efficient compression will continue to
be most efficient, and is used to compress the rest of the packages. In essence, the
language of the web page is guessed based on which compression was most efficient.

An alternative to this method would be to check the HTML document of the website
and search for a language tag. Since not all web pages have these, a secondary
method to pick the dictionary would be required either way. Implementing such a
solution would also require a parser to seek out this information before extraction,
not to mention compression. Since such a solution complicates the code and does
not reliably solve the problem of picking a dictionary, it was not implemented.

4.3.3 Quick Access Browsing History and Cached Pages

As detailed in Chapters 2.6.2 and 2.6.3, browsing history functionality as well as
caching of visited websites is available in the 2018 prototype, and saved in separate
files. Furthermore, a request is sent in parallel to displaying a cached page in
order to provide the user with an updated version as soon as possible. In the 2019
prototype, cost management is prioritised and this non-essential background process
was removed to save data. If the user wishes to reload the page, they can do so via
the reload button in the navigation bar. The GUI was altered accordingly, removing
the cache indicator from the status bar.

In the 2019 prototype, both history and cache implementations have been replaced
with internal data structures. Since adding to the browsing history and cache is

29

4. The 2019 Prototype

expected to happen often, it is quicker to save it in an internal data structure rather
than utilising a file handler. If saving of this data between sessions is desirable, it
could be saved to a file once at the end of the session. Most importantly, the new
implementation is simpler, better isolated from the rest of the code, and easy to
duplicate, aiding extensibility and scalability.

No working ready to use implemented of a doubly linked list could be found and
successfully added to the prototype during development. The data structure utilised
in saving the browsing history in the 2019 prototype is an array and a number which
acts as iterator. Using these two variables, the same functionality as a doubly linked
list is achieved without much custom implementation. The solution makes access
to the previous and next site a O(1) operation. Saving a new web page to history
(the most common use case) is an O(n) operation, but in most cases it will be O(1)
since the new page is added after the one the iterator is pointing to at the time
of insertion, meaning it is a simple append unless the iterator is not at the last
position. On occasion the operation will cause a copy operation of the history array
with complexity O(n).

The cache implementation was planned as a hash map which allows for quick access
to web pages based on their ID. Using a map enables the browser to retrieve a cached
version of a web page independent of where in the history it appears, or if it appears
in the history at all. Tabs can share the same cache. If so desired, the cache could
be saved to a file once at the end of a session and used again during succeeding
sessions. A time stamp should inform the user of the age of the cached page and
the user can always request an updated version by clicking reload. The cached
version of the page should then be replaced by the more recent version, and the
time stamp updated accordingly. Similarly to the history implementation, this cache
implementation would be simpler, better isolated, and easy to duplicate, aiding both
extensibility and scalability. Due to time constraints, this cache implementation was
not completed.

4.4 Handling Communication Errors

In the 2018 prototype, errors that occur on the server are not communicated to
the client. This lack of communication causes issues where the client waits for an
answer to its request despite the server no longer working on said request. In some
cases, the server can crash and the client is not notified. In the 2019 prototype
these errors are caught and handled by sending a data package containing an error
message instead of web content, which is then displayed to the user.

30

4. The 2019 Prototype

Sending error messages for the user to read is a great improvement since it lets
the user know what is happening server side and makes the system more robust.
However, it would aid extensibility if error messages were easily identifiable by the
client application. The same result could be achieved by extending the custom
protocols to include an error message type which contains error codes the client
application can process as it wishes. This would help isolate the client and server
from another which eases altering or replacing components. The message can still
be directly displayed to the user if the client application designer wishes it. This
solution was not implemented due to time constraints.

31

4. The 2019 Prototype

32

5
How Well the 2019 Prototype

Meets the Requirements

The functional requirements met by the 2018 prototype are also met by the 2019
prototype. Improvements regarding functional requirements are limited to bug fixes
and error handling as described in Chapter 4.4. Evolution qualities and learnability
were considered in the design of the 2019 prototype as detailed in Chapter 4, but
were not measured. The quantitative tests were limited to two performance markers,
time to first content and loading time.

As described in Chapter 3.1, the 2018 and 2019 prototypes were run on the same
machine to enable comparison of their performance. Two types of tests were con-
ducted, field tests with the Iridium GO! device, and performance tests without the
device. The connection using the Iridium GO! device is very sensitive to access to
open sky, such as on the sea. Due to this limitation, maintaining a stable connection
in the city is complicated and only a few field tests could be conducted. Complete
field test results are presented here along with examples from the performance tests.
Extensive performance test data can be found in Appendix B.

Field tests with the Iridium GO! device were run using a separate client and server
to get a close approximation of conditions in the field. The server was run from a
digital server hosted by DigitalOcean in London. The Iridium GO! device and client
were used from Gothenburg, Sweden. No tests in remote locations were conducted.
In theory, this should not make much difference since the Iridium Satellite Network
is globally available, but this could not be confirmed. Performance tests were run
using the same set-up, but using a regular internet connection instead of the Iridium
Satellite Network between server and client.

33

5. How Well the 2019 Prototype Meets the Requirements

5.1 Time To First Content

Time to first content was measured from the time of request until the first packet
arrives to the client. As stated in the requirements specification, time to first content
shall not exceed 10 seconds and should be as short as possible.

URL 2018 (ms) 2019 (ms)
bbc.com 1892 605
dn.se 2149 842
sv.wikipedia.org/wiki/Sjökort 1294 662
en.wikipedia.org/wiki/Sweden 16080 958

Sample mean time to first content 2205.28 756.92

Table 5.1: Examples of time to first content in the 2018 and 2019 prototype without
Iridium GO!. The mean of the complete sample is presented in the last row. The
complete table can be found int Appendix B

In Table 5.1, a few examples from the performance test without Iridium GO! are
presented. The time to first content is well below 10 seconds for small web pages
using the 2018 prototype and for almost all pages using the 2019 prototype. The
time to first content is notably shorter in the 2019 prototype, with a reduction of
1448.36 ms on average compared to the 2018 prototype.

URL 2018 (ms) 2019 (ms)
en.wikipedia.org/wiki/Law_of_the _sea 4658 11591
en.wikipedia.org/wiki/United_Nations _Conven-
tion_on_the_Law _of_the_Sea

3091 5407

smhi.se 25981 8969
koket.se 8337 5108
www.livescore.com 2996 6485

Sample mean time to first content 9012.6 7512

Table 5.2: Time to first content in the 2018 and 2019 prototype, using Iridium
GO!.

When using the Iridium GO! device, delays are less predictable, as demonstrated
in Table 5.2. It appears from the sample that the average time to first content
has decreased by 1500,6 ms on average for the 2019 prototype compared to the
2018 prototype. This comes close to the decrease without the Iridium GO! device.
However, due to the small sample size, it cannot be stated with any certainty that

34

5. How Well the 2019 Prototype Meets the Requirements

this is indeed the mean of the time to first content when using Iridium GO!. Despite
this uncertainty, the results strengthen the previous claim of an approximately 1.45
seconds improvement.

5.2 Loading Time

Loading time is defined as follows.

complete load − time to first content

page size

Time to first content is the same as previously defined. Complete load is the time
from request until the last package arrives at the client.

URL size (byte) 2018
(ms/byte)

2019
(ms/byte)

bbc.com 12111 2.557839 2.608951
dn.se 22650 2.495011 2.557528
sv.wikipedia.org/wiki/Sjökort 13513 2.365130 2.341523
en.wikipedia.org/wiki/Sweden 215428 2.502168 2.526157

Sample mean loading time - 1.725189 1.800451

Table 5.3: Examples of loading times in the 2018 and 2019 prototype without
Iridium GO!. The mean of the complete sample is presented in the last row. The
complete table can be found int Appendix B

In Table 5.3, a few examples from the performance test without Iridium GO! are
presented. The average loading time of the 2019 prototype is slightly longer than
that of the 2018 prototype. As detailed in Chapter 4.3.2, the run-time of the com-
pression is longer than before because it runs in smaller chunks and is interleaved
with the sending of data. The improvement to time to first content is much more
significant, however, making the 0.075 ms/byte increase in average loading time an
acceptable performance trade-off.

When using Iridium GO!, the delays are as previously stated less predictable. This
affects the loading time, as presented in Table 5.4. The average loading time appears
to have increased for the 2019 prototype compared to the 2018 prototype. The result
strengthens the claim that there is an increase in loading time, but the magnitude

35

5. How Well the 2019 Prototype Meets the Requirements

URL size (byte) 2018
(ms/byte)

2019
(ms/byte)

en.wikipedia.org/wiki/Law_of
_the_sea

4449 2.452910 2.939987

en.wikipedia.org/wiki/United
_Nations_Convention_on_the
_Law_of_the_Sea

25432 3.136796 4.092207

smhi.se 28116 3.147247 4.35567
koket.se 15290/14452* 14.4743** 3.345520
www.livescore.com 8994 2.906160 3.980543

Sample mean loading time - 2.910778 3.742785

Table 5.4: Loading Time in the 2018 and 2019 prototype, using Iridium GO!.
* = Page size varied between tests. Displayed as: version 2018/2019.
** = Packages were lost and had to be reloaded.

of the change is unclear. Again, no definitive conclusion can be drawn due to the
small sample size. When not using Iridium GO!, the loading time increases with
0.075 ms/byte on average, but whether the increase when using Iridium GO! is
approximately the same or significantly higher (as it appears in the sample) cannot
be determined with any certainty. In either case, even assuming that the increase is
in fact 0.832 ms/byte on average, the decrease in time to first content is still more
significant.

5.3 Suggestions for Future Work

While the 2019 prototype meets the specified requirements better than the 2018
prototype, there is room for improvement. The new technical documentation avail-
able for the prototype should ease future development efforts. The main suggestions
for areas of improvement are also presented here.

Firstly, if one server is supposed to run for a multitude of clients, scalability needs
to be addressed. As detailed in 2.3, the number of links the server needs to keep can
quickly escalate. One solution would be to request links by both ID and the URL
from which the link was clicked. The server can then safely discard old link ID and
URL matches and find them anew by checking the URL from which the link request
was made, recreating the link ID and URL match, when necessary. The exception
would be highly dynamic pages such as news sites where the links change over time.

36

5. How Well the 2019 Prototype Meets the Requirements

Saving data is of high priority. Less information could be sent if only the content
currently visible on screen is sent to the client rather than entire web pages. If
the user does not choose the scroll down, no more than a few lines past what is
currently visible on screen are needed to provide the same user experience. This
solution requires a fast enough system that the loading times which occur once the
user chooses to scroll down do not frustrate the user. Where the critical line for this
delay is would require further study.

Another way to save data is to implement a digital assistant, such as Google As-
sistant, which can answer questions the user wishes to research in a minimal for-
mat. Providing the currently available Google Assistant was not feasible during the
project since the functionality is severely reduced when only text based content is
returned. Many of the most common uses for the assistant, such as setting timers
or requesting images, become unavailable. When not using such a pre-filtered ver-
sion of the assistant, it often returns information in the form of pictures or heavily
stylised boxes which the PEP filters out, leaving only an empty page to send to the
client.

An alternative solution would be to implement a simple on-server search which only
returns the blocks of text containing given search terms within a specified web page.

Safe browsing is also important. As detailed in Chapters 2.4 and 4.2, the encryption
of the 2018 prototype is not very effective and the encryption provided by the Iridium
SIM does not cover the connection end-to-end. Any web browsing service ought to
consider the necessity of reliable end-to-end encryption. Especially if data is to be
sent from the client to the server in the future to enable functionality like logging in
to forums or filling in forms, the encryption needs to be investigated further. In this
event, the known security flaw of the 2018 encryption, which leaves it vulnerable
to active attacks, needs to be taken into account. It may also be prudent to warn
the user against logging in to sensitive pages and refrain from online banking if this
issue is not resolved.

Finally, there are several issues with the current UI, as detailed in Chapter 4.1. The
main issues are missing functionality and unusual presentation of information. In
addition, many common hotkeys (such as Alt+Left Arrow for history navigation)
do not work in the current prototype, which may cause irritation due to habituation
[17]. The 2019 prototype also provides new implementations for features from the
2018 prototype which should ease implementation of tabs, a standard web browser
UI feature.

It may also be prudent to conduct a more in-depth set of user tests, including the
Iridium GO! device, to gain a better understanding of how users interact with the
entire system. A greater volume of, as well as more precise user stories could also

37

5. How Well the 2019 Prototype Meets the Requirements

be a useful tool for future development and enable detection of design flaws or help
identify inefficient task flows. Identifying primary users and their characteristics may
inform future design choices as well. Neither should accessibility design be neglected,
and may well cause a curb-cut effect. It is not inconceivable that adjustable text and
button sizes can be beneficial to users sitting on a rocky boat or operating outdoors
in cold weather.

5.4 Ethics

In the development of the web browser, a couple of ethical aspects have to be taken
into consideration. A handful of ethical aspects were already pointed out in the
2018 report, such as integrity, privacy, and financial effects of the system.

During a connection, the 2018 prototype only keeps track of the client’s IP-address,
the current page, and the links on that page [3]. In order to enable other functional-
ity, it might be required to store more extensive information on the proxy server in
the future. It is important to ensure such data is kept secure and to prevent privacy
breaches. The system needs to respect the confidentiality of the user’s communica-
tion. It is important that the user feels safe using the service, and understands to
which degree the service is, or is not safe.

During data extraction, it is vital to respect the integrity of the data. Whilst the
amount of data sent between server and client needs to be severely limited, data
filtration influences what information becomes available to the user. In the 2018
prototype, all textual information is preserved, but in order to restrict the data
further a filter could be put into place to even for this information. Alternatively, if
images or videos are to become available, these may be filtered in a similar manner.
This kind of content filtration may even affect the user’s understanding of the con-
tent on a page. In summary, any filtration of information will influence how that
information is received, and this is not to be taken lightly. Users need be made
aware that an automatic filtration is in place when they view the content.

There are other secondary effects to data filtration as used in the prototype. For
example, monetization of web pages may be affected by filtration. In the 2018 thesis,
this was summarised as follows.

The service removes a lot of content before transmission to the client,
including most advertisements, thus acting as an "ad-blocker". Many web
pages rely on revenue from advertisements, and users of the prototype
will not contribute to their income. However, the target audience of this

38

5. How Well the 2019 Prototype Meets the Requirements

service is small and probably visits the same pages when not in remote
locations. Because of this, the negative economic impact is probably
negligible [3].

Finally, when developing a web service, the larger picture of a connected world may
be taken into account. There are many arguments for and against, but what is
certain is that interconnectivity is a fact of the modern world and that increasing
accessibility in remote areas may enable further democratisation of the available
content. Internet access can be democratised not only by improving hardware, but
also by using the globally available bandwidths more efficiently. Unfortunately, using
satellite internet is pricey and this effect is thus greatly diminished.

During the execution of the project itself, there were few ethical aspects to take
into consideration. Of note is that the user test data has been anonymized in
order to respect the participants’ privacy. The participants’ names and personal
data were not recorded. The participants were instead referred to as ’user’ and
categorised as ’expert’ or ’non-expert’, depending on their familiarity and comfort
with computers. Since the tests were very limited in scope and did not include any
user characterisation efforts, the loss of personal data does not affect the test results
in any significant way.

39

5. How Well the 2019 Prototype Meets the Requirements

40

6
Conclusion

The purpose of the project was stated as enabling general web browsing in remote
locations in a cost-effective and timely manner, based on the 2018 prototype. Where
the 2018 prototype provides a proof of concept for using a PEP to extract data in
order to better utilise a low bandwidth connection, the 2019 prototype provides a
functional service which can most likely be utilised by a non-expert user.

As stated in the 2018 thesis, content extraction and content streaming are most
important [3], saving data and time. In order to achieve timely delivery, the time
until first content and loading time are critical, as discussed in Chapter 3.1. Espe-
cially time to first content is vital and has been improved with about 1.45 seconds
on average by replacing the jsdom package used for content extraction with the
parse5 package, and interleaving the compression process with the sending of data
as detailed in Chapters 4.3.1 and 4.3.2.

A small increase in loading time occurred due to these changes, but the performance
trade-off is arguably worth it. Even if data arrives slower after the first content, the
user knows the system is working and can see data arriving continuously, which
amounts to a reliable and user friendly experience. Unless the page is very large,
the complete page is also available to the user sooner. While the 2019 prototype
is still notably slower than a regular web browser, it is significantly faster than the
2018 prototype.

With new error handling, the 2019 prototype is also more robust than the previous
iteration. Not all types of media can be accessed, and not all functionality on
requested websites is intact, but sites are loaded relatively quickly and the filtration
of data is likely to save costs on a limited data plan. Further data, and thus costs,
have been saved in the 2019 prototype by avoiding non-essential requests and reloads,
as described in Chapter 4.3.3.

41

6. Conclusion

While time and cost are the most important factors, improvements in neither can be
reliably achieved without a solid code base to work with. Evolution qualities have
thus been addressed actively in the development of the 2019 prototype. Component
isolation, simplicity, and scalability have been improved as detailed in Chapters 3.3
and 4.3.3. These efforts, along with new documentation, should ease future devel-
opment. For such endeavours, the main suggestions for future work are described
in Chapter 5.3.

In summary, the 2019 prototype, while not providing all the functionality of a regular
web browser at this time, enables a reliable web browsing experience for a low
bandwidth satellite connection. It is both relatively fast and saves data, which may
reduce costs for the user.

The prototype was developed using the Iridium GO! device, but could be used
on any internet connection, even GEO satellite networks, cellular networks, or via
shortwave internet. Since it is designed with bit-error handling in mind, the solution
ought to be viable for technologies which may be more prone to such errors. The
work can thus be applied more generally for data extraction and transfer to remote
locations.

42

Bibliography

[1] J. F. Kurose and K. W. Ross, Computer networking : a top-down approach,
7th ed. Pearson Education, 2017.

[2] Tracphone v7-hts. Accessed: 10 May 2019. [On-
line]. Available: https://www.kvh.com/Leisure/Marine-Systems/
Mobile-Communications/mini-VSAT-Broadband/TracPhone-V7HTS.aspx

[3] T. Andersson, L. Blomkvist, A. Hast, F. Karlsson, J. Lindström, and T. Sundell,
Very Low Bandwidth (Marine) Web Surfing A Fault-Tolerant Content Stream-
ing Web Browsing Solution. Chalmers Tekniska Högskola, 2018.

[4] Iridium go airtime. Accessed: 14 May 2019. [Online]. Available: https:
//www.satphonestore.com/airtime/iridium-go-airtime-rates.html

[5] I. Communications, “Quick start guide: ios iridium mail & web app and
iridium go!” [Online]. Available: http://www.groundcontrol.com/iridium/
Iridium_Go_Mail_And_Web_iOS_Users_Guide.pdf

[6] Xweb. Accessed: 12 May 2019. [Online]. Available: http:
//www.globalmarinenet.com/product/xweb/

[7] J. Griner, J. Border, M. Kojo, Z. D. Shelby, and G. Montenegro, “Performance
Enhancing Proxies Intended to Mitigate Link-Related Degradations,” Jun.
2001. [Online]. Available: https://rfc-editor.org/rfc/rfc3135.txt

[8] C. Caini, R. Firrincieli, and D. Lacamera, “Pepsal: a performance enhancing
proxy designed for tcp satellite connections,” in 2006 IEEE 63rd Vehicular
Technology Conference, vol. 6, 2006, pp. 2607–2611.

43

https://www.kvh.com/Leisure/Marine-Systems/Mobile-Communications/mini-VSAT-Broadband/TracPhone-V7HTS.aspx
https://www.kvh.com/Leisure/Marine-Systems/Mobile-Communications/mini-VSAT-Broadband/TracPhone-V7HTS.aspx
https://www.satphonestore.com/airtime/iridium-go-airtime-rates.html
https://www.satphonestore.com/airtime/iridium-go-airtime-rates.html
http://www.groundcontrol.com/iridium/Iridium_Go_Mail_And_Web_iOS_Users_Guide.pdf
http://www.groundcontrol.com/iridium/Iridium_Go_Mail_And_Web_iOS_Users_Guide.pdf
http://www.globalmarinenet.com/product/xweb/
http://www.globalmarinenet.com/product/xweb/
https://rfc-editor.org/rfc/rfc3135.txt

Bibliography

[9] S. Subramanian, S. Sivakumar, W. J. Phillips, and W. Robertson,
“Investigating tcp performance issues in satellite networks,” in 3rd Annual
Communication Networks and Services Research Conference (CNSR’05),
2005, pp. 327–332. [Online]. Available: https://ieeexplore.ieee.org/document/
1429988/

[10] GrandDeluxe. (2011) Accessed : 5 April 2019. [Online]. Available:
https://commons.wikimedia.org/wiki/File:Iridium_Coverage_Animation.gif

[11] K. Maine, C. Devieux, and P. Swan, “Overview of iridium satellite network,”
in Proceedings of WESCON’95, 1995, p. 483.

[12] Follow the 8 launch missions. Accessed: 28 April 2019. [Online]. Available:
https://www.iridiumnext.com/

[13] What’s next? Accessed: 30 April 2019. [Online]. Available: https://web.
archive.org/web/20080406131233/http://www.iridium.com/about/next.php

[14] iperf - the ultimate speed test tool for tcp, udp and sctp. Accessed: 2 May
2019. [Online]. Available: https://iperf.fr/

[15] Elinks - full-featured text www browser. Accessed: 10 April 2019. [Online].
Available: http://elinks.or.cz/

[16] D. Salomon and G. Motta, Handbook of Data Compression, 5th ed. New York:
Springer, 2010.

[17] J. Tidwell, Designing Interfaces. O’Reilly Media, Inc., 2010.

[18] A. Bouch, A. Kuchinsky, and N. Bhatti, “Quality is in the eye of the
beholder: Meeting users’ requirements for internet quality of service,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. New York, NY, USA: ACM, 2000, pp. 297–304. [Online]. Available:
http://doi.acm.org.proxy.lib.chalmers.se/10.1145/332040.332447

[19] D. Stone, C. Jarret, M. Woodroffe, and S. Minocha, User Interface Design and
Evaluation. Elsevier, Inc., 2005.

[20] D. Veeneman. Iridium. Accessed: 19 March 2019. [Online]. Available:

44

https://ieeexplore.ieee.org/document/1429988/
https://ieeexplore.ieee.org/document/1429988/
https://commons.wikimedia.org/wiki/File:Iridium_Coverage_Animation.gif
https://www.iridiumnext.com/
https://web.archive.org/web/20080406131233/http://www.iridium.com/about/next.php
https://web.archive.org/web/20080406131233/http://www.iridium.com/about/next.php
https://iperf.fr/
http://elinks.or.cz/
http://doi.acm.org.proxy.lib.chalmers.se/10.1145/332040.332447

Bibliography

http://www.decodesystems.com/iridium.html

[21] A javascript implementation of the whatwg dom and html standards,
for use with node.js. Accessed : 27 May 2019. [Online]. Available:
https://github.com/jsdom/jsdom

[22] Html parsing/serialization toolset for node.js. whatwg html living standard
(aka html5)-compliant. Accessed : 27 May 2019. [Online]. Available:
https://github.com/inikulin/parse5

45

http://www.decodesystems.com/iridium.html
https://github.com/jsdom/jsdom
https://github.com/inikulin/parse5

Bibliography

46

A
User Tests

This appendix contains logs from the user tests conducted during the project. A
detailed description of how these were conducted can be found in chapter 3.5.

A.1 2018 Prototype with Expert User

The test was conducted on a Windows 10 machine running both client and server
and using a regular internet connection. The application was presented to the user
as a text based web browser for satellite internet. The user has general computer
expertise but has never seen the application before.

User action System response
User enters "google" into address field

Application returns google search on
the term "google"

User scrolls up and down the page.
User asks where the search field is.
User searches for search field for sev-
eral seconds
User enters "youtube" into address
field

Application returns google search on
the tern "youtube"

User scrolls down and clicks link to
navigate to youtube.com

Application returns the text "iFrame"
Continued on next page

I

A. User Tests

Continued from previous page
User action System response
User seems confused. User clicks ad-
dress field and presses enter

Application returns the text "iFrame"
User concludes the application is not
working correctly
User enters "wikipedia" into address
field

Application returns google search on
the term "wikipedia"

User scrolls up and down to find the
correct link and then clicks to navigate
to wikipedia.org

Application returns wikipedia.org
User scrolls up and down and com-
ments on the missing search field.
User enters "wikipedia car" into search
field

Application returns google search on
the term "wikipedia car"

User scrolls down and clicks to navi-
gate to sv.m.wikipedia.org/wiki/Car

Application returns
sv.m.wikipedia.org/wiki/Car

User scrolls up and down and appears
confused. User realises it is a swedish
page about a bug.
User clicks back arrow

Application returns google search on
the term "wikipedia car"

User clicks forward arrow
Application returns a cached version
of sv.m.wikipedia.org/wiki/Car

Continued on next page

II

A. User Tests

Continued from previous page
User action System response
The user reads the message at the top
of the screen and appears confused.
The user reads the message two more
times before finding the arrows in the
bottom right corner and clicking it.

Application returns
sv.m.wikipedia.org/wiki/Car

User clicks back arrow
Application returns google search on
the term "wikipedia car"

User scrolls up and down
User clicks forward arrow

Application returns a cached version
of sv.m.wikipedia.org/wiki/Car

User clicks the cache pages toggle
Application returns
sv.m.wikipedia.org/wiki/Car

User clicks address field and replaces
’sv’ with ’en’

Application returns
en.m.wikipedia.org/wiki/Car

User scrolls up and down and clicks a
link.

Application returns
en.m.wikipedia.org/wiki/Motor
_vehicle

User realises they are on a mobile ver-
sion of the website. User clicks address
field and removed ’m.’

Application returns
en.wikipedia.org/wiki/Motor-vehicle

User scrolls up and down, spotting no
difference.
User clicks back arrow

Continued on next page

III

A. User Tests

Continued from previous page
User action System response

Application returns
en.m.wikipedia.org/wiki/Motor
_vehicle

User clicks back arrow
Application returns
en.m.wikipedia.org/wiki/Car

User realises they are on a mobile ver-
sion of the website. User clicks address
field and removes ’m.’

Application returns
en.wikipedia.org/wiki/Car

User scrolls up and down, spotting no
difference.
User clicks help/learn more

Standard browser on the machine
starts and loads electronjs.org

User is surprised and returns to appli-
cation. User clicks help/documenta-
tion

Standard browser on the
machine starts and loads
the documentation page
github.com/electron/electron/tree/
master/docs#readme

User sighs and returns to application.
User clicks view/toggle full screen

Application is displayed in full screen
User clicks view/toggle full screen

Application is displayed in window
User clicks file/open. User clicks two
more times. User clicks file/close

Application stops.
User appears confused. User starts ap-
plication again.

Continued on next page

IV

A. User Tests

Continued from previous page
User action System response
User is prompted to go to exam-
ple.com User enters "example.com"
into address field

Application returns example.com
User is prompted to go to example.se
User enters "example.se" into address
field

Application shows message "sending
request"

User waits for over two minutes. User
clicks address field and presses enter.

Application shows message "sending
request"

User waits for nearly 30 seconds. User
clicks address field and presses enter.
User concludes the application is not
working.

During a flexible interview following the test, it was revealed that example.se is not a
viable page. The user was surprised and would have expected an error message. The
user was asked what happened when a cached page was shown. The user concluded
it was a cached page and was surprised to learn information was being sent in the
background. The user suggested search fields on google.com and wikipeida.org would
be desirable.

V

A. User Tests

A.2 2018 Prototype with Non-Expert User

The test was conducted on a Windows 10 machine running both client and server
and using a regular internet connection. The application was presented to the user
as a text based web browser for satellite internet. The user has never seen the
application before.

User action System response
User enters "google" into address field

Returns google search on the term
"google"

Clicks “Images” link
Loads the ’Images’ page on the search
term "Google"

Clicks on URL “Google”
Returns user to google start-page

Clicks on the link “Log in”
Prompts user that the page is loading.
Prompts briefly that the user is dis-
connected. Arrives at the google login
page.

Tries to figure out where to login.
Gives up after a while. Enters
“www.gp.se” into address field.

Returns the address
“http://www.gp.se”

Tries to click the cut of part of a link
Thinks the new page is loading be-
cause it says “Loading” in the bottom
left corner when if fact the user missed
the button, and it is the current page
that is still loading. User tries to fig-
ure out if it opened in a new page or
tab. Waits but nothing happens. In-
stead clicks “Sport -> Football”

Returns address
“http://gp.se/sport/football”

Continued on next page

VI

A. User Tests

Continued from previous page
User action System response
User first thinks they are on the same
page since the first content is the
same. (Information about cookies and
menus.) Scrolls down and finds the
content. Scrolls up again and once
again tries the cut of link, but clicks
correctly this time.

Returns address
“http://gp.se/nyheter/göteborg”

Scroll down, finds the article and clicks
on one

Loads an article
Understand now that the user have
to Scroll down to get to the con-
tent. Reads the article. Enter
”www.smhi.se” into the address field

Loads the page
Reads about cookies in confusion
Realise checking the weather might
not work since it usually consists
of images. Finds the link ”10-
dygnsprognos” and clicks on it.

Return the page
Scrolls around to find out about
the weather but can’t find anything.
Finds the link ”10-dygnsprognos”
again and clicks on it. In frustration,
the user states that there is a lot of
content but nothing about the actual
weather. Enters “www.eniro.se” into
the address field.

Returns page
Clicks the link “Vem Ringde?” Returns page.
Looks around for a search field to en-
ter a phone-number, but cannot find
anything.
Clicks the link “Privatpersonner”

Continued on next page

VII

A. User Tests

Continued from previous page
User action System response

Returns the page
Keeps looking for a search field but
can’t find anything.
Clicks the link again “Vem Ringde?”

Returns page.
Keeps Looking for a search field.
Gives up after a while.
Enters “svt.se” into adress field, test-
ing if “www” is required or not.

Returns “svt.se”
Click the link “TV-Tablå”

Returns the page
Thinks it’s not working util the user
Scrolls down and finds the desired con-
tent Clicks “Start” link

Returns the page
Attempts to click on the link
Trädgårdstider, but misses the but-
ton. Thinks the page is loading, when
if fact the current page is still loading.
In slight confusion, clicks the link
”Trädgårdstider avsnitt 5”

Returns the page.
User states that this is pretty much
what the infancy of the internet was
like, slow, and this type of content.
Enters “korstörne” into address field

Returns google search of “korstörne”
Waits for the page to finish loading.
Scrolls down and states that it is pos-
sible to go to the google articles.
Clicks link “”korstörne blommor”

Returns google search of “korstörne
blommor”.

Continued on next page

VIII

A. User Tests

Continued from previous page
User action System response
Realise that user won’t find any pic-
tures.
Enters “Chilli frö groning” into ad-
dress field.

Returns google search of ”Chilli frö
groning”.

Scrolls down and clicks the first link.
Returns www.olda-chilli.se

After the testing was done the user was asked the broad question on what the
experience was like. The user responded that it was unclear how to preform a
search query on pages like ’Eniro’. The user also found it very confusing that you
had to scroll down quite far to find the actual content.

IX

A. User Tests

X

B
Performance Test Results

This appendix contains the performance test data without Iridium GO! referenced
in chapter 5.

B.1 Time to First Content

Table B.1: ttfc = Time To First Content

URL 2018
ttfc
(ms)

2019
ttfc
(ms)

bbc.com 1892 605
dn.se 2149 842
svd.se 5128 2298
www.hlr.nu/sa-har-gor-du-vuxen-hlr 2321 1186
www.hlr.nu/forsta-hjalpen 2624 1115
vandringsguiden.se/planera-vandringen/kompass-och-
kartlasning

3193 2310

sv.wikipedia.org/wiki/Sjökort 1294 662
www.jordbruksverket.se/amnesomraden/landsbygdfiske
/branscherochforetagande/fritidsfiskeochfisketuris-
m/fritidsfiske.4.e01569712f24e2ca0980009630.html

1557 720

www.havochvatten.se/hav/fiske–fritid/sport–och-
fritidsfiske/fiskeregler/fiskeregler-for-fritidsfiske.html

1892 729

www.britannica.com/topic/fishing-recreation 2361 1109
Continued on next page

XI

B. Performance Test Results

Continued from previous page
URL 2018

ttfc
(ms)

2019
ttfc
(ms)

en.wikipedia.org/wiki/Iridium_satellite_constellation 1961 597
www.un.org/en/sections/issues-depth/oceans-and-law-
sea/index.html

2578 1109

en.wikipedia.org/wiki/Law_of_the_sea 1335 1012
en.wikipedia.org/wiki/United_Nations_Convention_on
_the_Law_of_the_Sea

1673 619

smhi.se 2765 1061
koket.se 2605 1527
www.livescore.com 1724 464
en.wikipedia.org/wiki/Sweden 16080 958

Sample mean time to first content 2205.28 756.92

B.2 Loading Time

Loading time is defined as follows.

completeload − timetofirstcontent

pagesize

Table B.2: lt = Loading Time. If page size varies between tests, it is given anew
for 2019

URL size
(byte)

2018 lt
(ms/
byte)

size
(byte)

2019 lt
(ms/
byte)

bbc.com 12111 2.557839 2.608951
dn.se 22650 2.495011 2.557528
svd.se 17680 2.535351 17973 2.581483
www.hlr.nu/sa-har-gor-du-vuxen-hlr 4847 2.224675 2.392614
www.hlr.nu/forsta-hjalpen 6286 2.224944 2.349666

Continued on next page

XII

B. Performance Test Results

Continued from previous page
URL size

(byte)
2018 lt
(ms/
byte)

size
(byte)

2019 lt
(ms/
byte)

vandringsguiden.se/planera-
vandringen/kompass-och-kartlasning

5500 1.963636 2.302364

sv.wikipedia.org/wiki/Sjökort 13513 2.365130 2.341523
www.jordbruksverket.se/amnesomraden
/landsbygdfiske/branscherochfore-
tagande/fritidsfiskeochfiske-
turism/fritidsfiske.4.e01569712f24e
2a0980009630.html

9533 2.250498 2.435750

www.havochvatten.se/hav/fiske–
fritid/sport–och-
fritidsfiske/fiskeregler/fiskeregler-for-
fritidsfiske.html

12689 2.446923 2.573646

www.britannica.com/topic/fishing-
recreation

22415 2.333125 2.400535

en.wikipedia.org/wiki/Iridium_satellite
_constellation

39093 2.401479 39789 2.491091

www.un.org/en/sections/issues-
depth/oceans-and-law-sea/index.html

12042 2.395532 2.452084

en.wikipedia.org/wiki/Law_of_the_sea 4449 2.182513 2.371994
en.wikipedia.org/wiki/United_Nations
_Convention_on_the_Law
_of_the_Sea

25432 2.266790 2.32341

smhi.se 28116 2.466958 28256 2.500708
koket.se 14452 2.659148 15190 2.636932
www.livescore.com 8994 2.858016 2.930620
en.wikipedia.org/wiki/Sweden 215428 2.502168 2.526157

Sample mean loading time - 1.725189 - 1.800451

XIII

	Glossary
	Introduction
	Purpose and Scope

	The 2018 Prototype
	An Overview of the System
	The Iridium Satellite Network
	Data Extraction and Rendering
	Server-Client Communication
	Compression Scheme
	UI and GUI Design
	Search Functionality via Google
	Browsing History and Navigation
	Keeping visited Pages in Cache and the Cache Toggle

	Development of a 2019 Prototype
	Initial Testing and Fact-finding
	Requirements Specification
	Simplification of the Code Base
	Making Iterative Performance Improvements
	UI and its Role in Evolution Qualities
	Documentation Efforts for the Future

	The 2019 Prototype
	UI Analysis and System Design Considerations
	Disabling of the Custom Encryption
	Performance Improvements
	Circumventing the Document Object Model
	Implementing Faster Compression
	Quick Access Browsing History and Cached Pages

	Handling Communication Errors

	How Well the 2019 Prototype Meets the Requirements
	Time To First Content
	Loading Time
	Suggestions for Future Work
	Ethics

	Conclusion
	Bibliography
	User Tests
	2018 Prototype with Expert User
	2018 Prototype with Non-Expert User

	Performance Test Results
	Time to First Content
	Loading Time

