
Emulating the Internet of Things
with QEMU

Master’s thesis in the Computer Science Programme

Gyokan O. Osman

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2019

Master’s thesis 2019

Emulating the Internet of Things
with QEMU

GYOKAN O. OSMAN

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2019

Emulating the Internet of Things with QEMU
GYOKAN O. OSMAN

© GYOKAN O. OSMAN, 2019.

Supervisor: Olaf Landsiedel, Department of Computer Science and Engineering
Examiner: Magnus Almgren, Department of Computer Science and Engineering

Master’s Thesis 2019
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Sketch of Nordic Semiconductor nRF51-DK. © Gyokan O. Osman, 2019

Typeset in LATEX
Gothenburg, Sweden 2019

iv

Emulating the Internet of Things with QEMU
GYOKAN O. OSMAN
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
This thesis project implements and evaluates the virtual nRF51 platform in QEMU. The
purpose of the project is to be able to run nRF51 binaries in QEMU and find out whether
it is feasible to perform a full system emulation for IoT devices. The nRF51 platform is
a wireless system on chip design with ARM® Cortex™ M0 from Nordic Semiconductor.
QEMU already supports the ARM architecture.
Embedded application development comes with its own limitations. Debugging is much

harder and usually requires additional hardware. In most cases, it is necessary to have
a network of devices when working with IoT. Platform emulation is one of the most
convenient ways to overcome the limitations mentioned above.
There are not many open–source IoT emulation projects with complete hardware sup-

port. Usually, hardware emulation is provided in the software layer, or the embedded
program is compiled and run on the desktop platform. This thesis project provides true
peripheral emulation direct binary execution. Therefore one of the most challenging as-
pects was to understand, implement, and evaluate the hardware behavior under variable
conditions.
It was only required to provide hardware emulation for nRF51 peripherals. The com-

munication between peripherals is provided using UNIX sockets and UDP for a simpler
implementation. Therefore all the evaluation is aimed at testing the performance and the
functionality by comparing results against the physical hardware.
The evaluation was done under two main categories, namely the performance and the

functionality. Open–source projects such as the mbed library, Zephyr and the nRF51
SDK are used during evaluation. Emulated nRF51 programs run much faster than the
hardware on an average desktop computer. As for the functionality, most applications
show the expected behavior when they don’t depend on the actual hardware timings. In
some cases, faster execution of the instructions or insufficient timer accuracy can change
the program behavior. Evaluation results show that QEMU can run nRF51 programs
as stable as the hardware except for the execution timings, and system timers. The
results also show that it is possible to run real–time operating systems in an emulated
environment.
Most desktop platforms have timers with higher resolutions but context switches and

delays caused by the other host tasks can introduce time drifts in the guest. There is
no correlation between the guest CPU cycle timings and the host system timers. From
that perspective, it requires more work to truly emulate CPU features with correct timings
such as caching, fetching and reading operations. QEMU might need changes or a different
emulation mode for this purpose.
It is possible to replace UDP communication with a more reliable, high–performance

interface. Power consumption is of crucial importance in IoT environments. Power statis-
tics can be implemented based on the peripheral state and the number of CPU cycles with
some effort.
Keywords: nRF51, Nordic Semiconductor, QEMU, emulation, simulation, Blue-
tooth, GPIO, virtualization.

v

Acknowledgements
Many thanks to the Department of Computer Science at the University of Gothen-
burg and the academic staff. It has been a privilege to study here and this helped
me to gain a new perspective on the life besides the scientific knowledge.
I am also grateful to my supervisor, Olaf Landsiedel, not only for his support in

my thesis but also keeping the morale high at all times.
Lastly I would like to thank to my examiner Magnus Almgren for his constructive

feedback.

Gyokan O. Osman, Gothenburg, September 2019

vii

Contents

List of Figures xiii

1 Introduction 1
1.1 Problem Statement . 2
1.2 Purpose . 2
1.3 Thesis Outline . 3

2 Background 5
2.1 Internet of Things . 5
2.2 QEMU . 6
2.3 The nRF51 Platform . 7
2.4 Terminology and QEMU Internals . 7

2.4.1 Terminology . 7
2.4.2 QEMU Internals . 8

2.5 Discussion . 8
2.5.1 Development Process . 8
2.5.2 Strengths and Weaknesses of a Virtual Environment 9

3 Related Work 11
3.1 QEMU . 11

3.1.1 Existing Implementations . 11
3.1.2 Discussion . 12

3.2 TriCore Simulator . 12
3.2.1 Details . 12
3.2.2 Discussion . 12

3.3 Avrora . 13
3.3.1 Details . 13
3.3.2 Discussion . 13

3.4 Cooja . 13
3.4.1 Details . 13
3.4.2 Discussion . 14

3.5 TINA . 14
3.5.1 Details . 14
3.5.2 Discussion . 14

3.6 ACRN . 14
3.6.1 Details . 14

ix

Contents

3.6.2 Discussion . 15
3.7 OMNeT++ . 15

3.7.1 Details . 15
3.7.2 Discussion . 15

4 Design 17
4.1 Goal . 17
4.2 Approach . 17
4.3 Design Details . 18

4.3.1 General Purpose Input/Output (GPIO) 18
4.3.2 GPIO Tasks and Events (GPIOTE) 18
4.3.3 Universal Asynchronous RX/TX (UART) 19
4.3.4 AES Electronic Codebook Mode (ECB) 19
4.3.5 2.4 GHz Radio (RADIO) . 20
4.3.6 Analog to Digital Converter (ADC) 21
4.3.7 Clock Management (CLOCK) 21
4.3.8 Random Number Generator (RNG) 21
4.3.9 Real Time Counter (RTC) . 21

4.4 Guest-to-Guest Communication . 22
4.4.1 Router Script Configuration 23

4.5 Discussion . 23

5 Implementation 27
5.1 Overview . 27
5.2 QEMU Peripheral Interface . 28
5.3 Discussion . 29

6 Evaluation 31
6.1 Evaluation Method . 31

6.1.1 Metrics . 31
6.1.2 Performance Tests . 32
6.1.3 Functional Tests . 32
6.1.4 Hardware Setup . 33
6.1.5 Experiments . 33

6.2 Results . 36
6.2.1 Exp1: GPIO and RTC Test with LEDs 36
6.2.2 Exp2: UART Test . 37
6.2.3 Exp3: AES Performance . 38
6.2.4 Exp4: Raw Execution Time 39
6.2.5 Exp5: Simple GPIO using mbed Library 40
6.2.6 Exp6: Blinky LED Example from Zephyr 40
6.2.7 Exp7: CPP Synchronization Example from Zephyr 41
6.2.8 Exp8: Entropy Example from Zephyr 41
6.2.9 Exp9: Fibonacci Benchmark Test & Analysis 42
6.2.10 Exp10: RADIO Test . 43
6.2.11 Exp11: RADIO Test with Zephyr Bluetooth Stack 44

6.3 QEMU Resource Usage . 46

x

Contents

6.4 Hardware and Virtual Environment Comparison 46
6.5 Discussion . 47

7 Conclusion and Future Work 49
7.1 Conclusion . 49
7.2 Future Work . 49
7.3 Ethics and Sustainability . 50

Bibliography 51

A Test Code I

xi

Contents

xii

List of Figures

4.1 RADIO States . 20
4.2 Generic UDP packet . 23
4.3 Send Device Identifier packet . 23
4.4 RADIO packet with type 0x1 . 24
4.5 GPIO packet with type 0x2 . 24

5.1 nRF51 Code, SRAM and Peripheral Area 28
5.2 R/W Callbacks in QEMU . 29

6.1 AES Throughput . 38
6.2 Number of AES Rounds in 5 seconds 38
6.3 Number of Empty Loops in 1 Second 39

xiii

List of Figures

xiv

1
Introduction

The importance of virtualization has been on the rise in the last decade. There are
many specific reasons why people choose it over real hardware. Mainly this technique
is used to gain physical space, cut costs, or reduce the time when deploying in the
industry [1].
Many companies and people around the world use virtualization for different pur-

poses. These purposes can be specific to the field. Cloud computing, testing, en-
vironment isolation, network simulation, and penetration testing are some solid ex-
amples. Virtualization makes it possible to share a single physical system by many
other users in an isolated environment. Dozens of users can share mainframe com-
puters at the same time without knowing the actual infrastructure. Most popular
companies like Google and Amazon depend on this technology with some of their
services. Some other companies provide a type of service known as VPS or “vir-
tual private server” using virtualization. VPS services allow people to publish their
websites, set up private Git servers, and create a testing environment with minimal
costs. The testing environment can be on the cloud or a personal computer. With
the help of some tools, a new virtual environment can be deployed in seconds to
evaluate a specific part of a software package.
There are more extreme cases where virtualization brings a great advantage when

it is costly to have access to the target environment. For example, it is hard to
perform a full test for a program that runs on an embedded system on personal
computers without the help of this technology.
In the automotive industry, most systems run on PowerPC and the ARM platform.

Developers that work with entertainment and information systems for cars make
use of virtual machines. They usually run the Android OS on a virtual ARM
microprocessor using their computers and perform all the testing and development
activities there. There are also tools that can run PowerPC binaries that allow
developers to run unit tests without needing a car or a specific unit from the vehicle.
Well known virtual machine host applications include Microsoft Hyper–V, Oracle

VM VirtualBox, VMware and QEMU (Quick Emulator). In this project, we focus on
QEMU for its ability to emulate applications written for different architectures [2].
It is an open–source project and is backed up by an active community.
The evaluation was done for performance and functionality using open–source

real–time OS and libraries also an open–source Bluetooth stack. It involves running
a variety of test applications with specific purposes under different conditions.

1

1. Introduction

1.1 Problem Statement
Embedded software development differs from desktop software development in many
ways. The key differences are:

• Debugging tools
• Runtime environment
• Hardware
• Toolchains
Each of the differences listed above introduces a limitation of its own. Notably,

testing and debugging steps can be quite challenging. Setting up the environment
for development can be time-consuming as well. Some applications may require
multiple hardware units or special equipment. Emulating a development platform
can remove all these limitations. In addition to that, modern emulator and virtual
machine applications can save and restore machine states. This functionality can
help to debug bugs that are hard to reproduce.
The nRF51 platform is quite popular among the students and the embedded

developers. It comes with a Bluetooth module, and it usually requires multiple
development boards or a device network when testing embedded applications that
make use of Bluetooth technology. In most cases, companies can afford it but
running a network of devices can be costly for students and hobbyists. Live software
debugging in an active network is out of the question most of the time.

1.2 Purpose
The purpose of this project is evaluating an extension for QEMU to simulate systems
and peripherals that exist in an embedded environment. For example, development
boards are usually used in the prototyping phase. They often come with onboard
wireless interfaces such as Bluetooth, Wi–Fi, or other low–frequency transceivers.
More advanced boards can also have built–in CAN or Ethernet interfaces. This
project aims to remove the need of having physical devices and provide a fully work-
ing virtualized development and debugging environment for students and embedded
developers. Debugging often requires additional hardware and it may not be acces-
sible by everyone. Wireless applications are usually tested within a device network,
in that case it may be difficult to obtain the necessary hardware whereas emulated
devices are only limited by the host resources.
QEMU is the base for this project and it already provides virtualization for well–

known architectures including the ARM platform [3] but it does not provide emu-
lation specifically for IoT purposes.
For example, Raspbian, a Debian port for RaspberryPi, can be run under QEMU

but it will not provide simulation for peripherals. There are already extensions that
can provide basic functionality for GPIO, real–time clock or ADC. The most signif-
icant difference between existing implementations and this project is that the main
focus here is to fully virtualize a specific development board, including advanced
peripherals such as wireless communication interfaces and sensors.
Since QEMU is an open–source project, this extension will contribute to the open–

2

1. Introduction

source community, universities, and IT companies that focus on embedded systems.
This project can also help the hardware design. It is not in the scope of this project,

but it will be possible to integrate specific peripherals into another architecture or
CPU model.
Expected benefits of this project are as follows:
• Reduce costs: One may want to run a network of devices in order to test and

debug. Students can learn and develop without buying real hardware.
• Provide determinism: Since sensors, wireless networks, and similar peripherals

do not show a fully deterministic behavior, reproducing a bug every time might
be challenging and time–consuming.

• Make debugging easier: QEMU already provides access to registers and mem-
ory. That functionality can be used for IoT devices as well.

1.3 Thesis Outline
The thesis consists of 7 chapters, including the introduction. Chapter 2 gives brief
information about the emulated target platform and the QEMU project, including
some technical details. Chapter 3 presents and compares the related work. Chapter
4 describes the design goals and the approach for this project. In addition to that,
the design details are given for each peripheral emulated. Chapter 5 presents the
implementation details and the concept behind it. Chapter 6 presents the test setup
and evaluation results. Chapter 7 summarizes the project and discusses future work.

3

1. Introduction

4

2
Background

This chapter is divided into 5 sections each of them explaining the concepts related
to the project.

2.1 Internet of Things
The Internet of Things (IoT) is the concept of connecting electronic devices using
a communication mechanism to allow interaction and data transfer in between.
It is also referred to as the network of smart devices. Almost every electronic
device and gadget we see around today is part of the Internet of Things. There are
countless examples of such devices. Some of them are smart televisions, Bluetooth
speakers, radio–controlled light bulbs, shirts that report workout data, refrigerators,
washing machines, and cellphones [4]. Such devices are usually built around a
microcontroller, and communication is provided through a wired or low powered
wireless interface.
The IoT devices have a variety of uses. With the advantage of cost and small

scale architecture, IoT devices gained popularity increasingly. A decade ago, small
devices that accomplish a single task were usually designed and sold by companies
for commercial purposes. In today’s world, most home users have access to open
source hardware and software. They can build their own IoT devices. One such
an example is the IoT based carbon dioxide monitoring system [5] which also uses
cloud technologies for real–time monitoring and data analysis. The research makes
use of a well–known IoT product ESP8266 Wi–Fi module [6].
There are other well–known open source hardware designs such as RaspberryPi,

Arduino, and Beagleboard. These projects contributed to the IoT in many ways,
but mostly they provided low–cost hardware to the people, and that helped people
to build their own smart devices. As a result of this, the number of IoT devices is
increasing every day, faster than ever before. These development boards mentioned
above are widely used in IoT projects. They are usually classified into two groups:

• Small single–board computers: In addition to the CPU, these devices usually
have a GPU module, monitor output and a large RAM ranging from a few
hundred megabytes to several gigabytes. Such examples are Beagleboard and
RaspberryPi.

• Single–board microcontrollers: These devices are usually suitable for applica-
tions requiring low power consumption. They are built around a smaller and
slower microcontroller compared to the first group. Some configurations might
include Bluetooth or Wi-Fi interface.

5

2. Background

The nRF51 platform falls into the single board microcontroller category. It is
energy efficient and has a Bluetooth interface, which makes it very suitable for
wireless applications. The nRF51 platform is introduced verbosely in a separate
section.

2.2 QEMU
Most hypervisor applications are limited by the platform they run on because of the
performance considerations. In general, a virtual machine runs on the host CPU, but
it is completely isolated from the host operating system. QEMU [2] can simulate the
CPU architectures that are different from the host CPU. Simulation is accomplished
by translating the guest CPU instructions into the host CPU instructions, and the
translation is provided by the "Tiny Code Generator" or TCG.
Only emulating the guest instructions alone does not provide a full emulation

for the nRF51 platform. During runtime, guest applications configure the required
peripherals using peripheral registers on the embedded device, and each register
is mapped to a specific memory location. QEMU can intercept memory read and
write requests and pass them to the callbacks. These callbacks are designed and
implemented as part of this project in order to simulate the system peripherals.
Based on the request from the application, an IRQ can be generated, or some device
registers can be modified to provide feedback to the application.
There are many official and unofficial virtual machine implementations for QEMU,

but the lack of documentation is still an obstacle for new developers. The official
QEMU getting started guide for developers states the following: "QEMU does not
have a high–level design description document - only the source code tells the full
story" [7]. The best way to understand how a virtual machine works, is by brows-
ing through the source code and studying patches submitted by other developers.
Some information regarding virtual machine development can be found around the
internet as a starting point. There are mailing lists and blogs written by the QEMU
developers.
In the IoT world, QEMU is widely used for security research and testing. Usually,

that requires some additional implementation and extensions. The Linux based
operating systems such as OpenWRT have good support in QEMU, and it can be
used for malware analysis for IoT devices [8]. Some other tools are also based on
QEMU. For example, NEMU [9] is a test framework used for anomaly detection on
emulated devices. There other use cases for QEMU as well. In addition to device
and peripheral emulation, QEMU can be used for fault injection [10] in order to
analyze embedded software.
As already mentioned, QEMU is the base for this project and it already provides

virtualization for well–known architectures including the ARM platform [3] but it
does not provide emulation specifically for IoT purposes.
For example, Raspbian, a Debian port for RaspberryPi, can be run under QEMU

but it will not provide simulation for peripherals. There are already extensions that
can provide basic functionality for GPIO, real–time clock or ADC. The most signif-
icant difference between existing implementations and this project is that the main
focus here is to fully virtualize a specific development board, including advanced

6

2. Background

peripherals such as wireless communication interfaces and sensors. In addition to
that, it must be indistinguishable from the real environment when executing the
application. By accomplishing that, this project will bring existing virtualization
techniques one level higher for IoT devices. The target SoC1 platform for this project
is the nRF51822 development board by Nordic Semiconductor [11]. It comes with
many peripherals that are vital for most embedded applications. These peripherals
include 2.4 GHz Bluetooth–capable radio, real–time counter, AES crypto accelera-
tor, SPI, I2C, and UART.
This project can also help the hardware design. It is not in the scope of this project,

but it will be possible to integrate specific peripherals into another architecture or
CPU model. In that way, one can configure a custom virtual board for a specific
purpose, duplicate peripherals, remove unwanted ones then do a specific performance
and functionality test without having a physical prototype. The machine extension
was designed with portability in mind. For example, it is possible to increase the
number of most peripherals and configure the RAM size. QEMU has already been
previously used for virtual prototyping of embedded systems [12].

2.3 The nRF51 Platform
The nRF51 board is an embedded platform; for that reason, it does not require all
the advanced features that a desktop platform may demand. For example, it does
not have video and sound output, and it does not have a USB peripheral or PCI
peripheral. The software controls the platform through device registers. Based on
the preliminary study, it requires the following vital features:

• Memory–mapped I/O: Provides access to the device registers.
• Interrupt Requests: Most peripherals generate interrupts for various purposes.
• Cortex-M0 compatible CPU: The nRF51 platform runs on Cortex-M0. It is

not directly supported, but Cortex-M3 can be used for its compatibility.
• Accurate Periodic Timers: This will be used for RTC and TIMER modules.
It is expected for QEMU to be able to run the programs developed for the nRF51

platform and show the exact behavior of the physical board without any modifica-
tions to the source code.

2.4 Terminology and QEMU Internals

2.4.1 Terminology
The following terminology is used:

• Peripheral: A unit that is designed to perform a specific task; it can be on
board or embedded in the CPU. The word ‘device’ is used interchangeably.

• Guest: The emulated virtual machine. Depending on the context, it can mean
the sequence of instructions being executed.

• Register: A device register. CPU registers are referred to as ‘CPU register’.
Each device register is 4 bytes wide.

1System-On-Chip

7

2. Background

Peripheral names are written with all capital letters in the nRF51 reference man-
ual. This convention is followed in this report as well.

2.4.2 QEMU Internals
QEMU currently supports many types of machines working on well–known architec-
tures such as ARM, x86, MIPS, and PPC. The nRF51 platform runs on the ARM
Cortex-M0 processor. QEMU does not have support for Cortex-M0, but it has sup-
port for Cortex-M3, which is backwards compatible, which means that the binary
code that is generated for Cortex-M0 can also be run on Cortex-M3. This project
defines Cortex-M3 as its platform.
In order to support a new machine type, it needs to be introduced in QEMU, by

merely adding a new source file and defining the machine type in that particular
source file. Then QEMU initializes the machine and calls the machine initialization
function. A similar approach is followed when implementing a new peripheral or
device. The difference is that the machine initializer must call the initialization
functions. The nRF51 board controls its peripherals through memory–mapped I/O.
These particular memory regions that peripherals use are assigned during the ma-
chine initialization phase and are created on a virtual bus called ‘sysbus.’ Each
virtual peripheral reports its virtual I/O space size during the device initialization
phase. There are also I/O read and write functions that are given as a parameter
to QEMU and are encapsulated in a structure called ‘MemoryRegionOps.’
After the device initialization phase finishes, the guest operating system starts

executing. The virtual machine can run a simple loop without task scheduling or a
simple operating system, but first, it needs to perform setup for specific peripherals
to generate events. The only way to perform setup is writing configuration to the
device registers that reside in memory–mapped I/O space. When the guest tries to
modify or read RAM regions, this is handled by QEMU itself but memory–mapped
I/O is handled by ’read’ and ’write’ callback functions that are passed as a pointer
during initialization. nRF51 configures devices by writing to registers, and likewise,
when the guest wants to fetch requested information, it reads the registers. There
are few special cases where registers are not used for information retrieval. The
RADIO module and ECB modules can be given as examples. Since they operate
on large arrays that are bigger than 4 bytes, they make use of DMA. The nRF51
platform has a mechanism called EasyDMA, but this is on the hardware level, and
it is out of scope.

2.5 Discussion

2.5.1 Development Process
QEMU has been around for more than a decade. It has hundreds of active con-
tributors, and most of them work for prominent companies such as Red Hat, IBM,
and Intel. Despite having a substantial amount of support, the project does not
have documentation for developers, and it requires a great effort to understand the
internals before doing any implementation work. On the other hand, the nRF51

8

2. Background

platform has a data sheet that explains how peripherals work and interact with the
CPU. This case is very typical for embedded systems as developers need to know
low–level details and understand the way the system works.
A considerable number of IT companies do not focus on development documents

which force new developers to learn the product by reading the source code. One
advantage of QEMU is that it is possible to study how other platforms are imple-
mented and follow the same steps in order to add support for a new platform. While
it is more challenging to jump into a big project, the QEMU community makes it
easier to start. There many useful sources on the web written by QEMU developers
that explain certain concepts of the project.

2.5.2 Strengths and Weaknesses of a Virtual Environment
There are differences between physical and virtual environments; the most important
ones are as follows:

• Running an ARM application on a different platform introduces some per-
formance penalty. The same instructions cannot be executed directly on the
host CPU. The host will provide driver logic for the peripherals; almost no
additional performance loss is expected.

• Emulated devices tend to work perfectly. For example, a peripheral may re-
quire some time to initialize internally, and there might be some delays in
specific cases when interacting with the device, the same device may require
some delay when writing/reading pins. Those things are very hard to catch
and simulate because the host platform will always try to deliver the best per-
formance and therefore will try to finish execution for each operation as soon
as possible.

• If there is a bug in the peripheral firmware, that will not be possible to catch
with QEMU. Assume that a peripheral is using I2C communication, but there
is an implementation bug in the peripheral firmware. That can lead to false
assumptions when debugging and can increase the amount of time spent on
troubleshooting.

• If a programmer does something that violates the procedures to follow when
using the device, that may show a different behaviour on the physical hardware
and in the simulation environment. For example, the nRF51 reference manual,
for the RADIO device, states that illegal transitions between device states will
show undefined behaviour.

• QEMU provides a remote debugging facility. It is possible to debug the guest
operating system using GDB without the need for any hardware.

• Machine state can be saved and restored.
• Certain properties of the guest machine can be configured, such as RAM and

the flash memory size. The nRF51 platform has several options with different
RAM and flash sizes.

• External devices can be simulated by using external scripts or programs with-
out modifying the QEMU source code.

There is always a tradeoff between using a virtual and a physical device. De-
vice emulation can reduce testing and development time but can also hide possible

9

2. Background

problems. Final testing should always be done on the hardware, and it should be
assumed that every software and hardware design comes with bugs. For example,
virtual devices can accomplish tasks according to the hardware specifications, but
the actual hardware might require additional precautions in the embedded software.
Such issues are usually described in an erratum for the offending hardware.

10

3
Related Work

This chapter compares and discusses existing open–source and commercial tools
targeting the IoT.
Many available implementations do not focus on IoT but can simulate basic pe-

ripherals with minimal support. One of the goals of this thesis project is providing a
complete I/O support for all peripherals on the virtual nRF51 board. For example,
this project makes it possible to send and receive radio or Bluetooth packets between
devices, synchronize GPIO states and transfer data over UART and I2C interfaces.
Since this operation is performed over network sockets, one can run external pro-
grams or scripts to interact with the virtual device. Network sockets make it possible
to emulate devices on different computers with inter–device communication.
Existing closed and open–source projects and the related work are summarized in

Table 3.1, and further described below.

Table 3.1: RelatedWork, categorized in its level of maturity and way of distribution
(research paper, open source projects [O-S], closed source projects [C-S])

Name Paper O-S C-S
Raspberry Pi (QEMU) *
STM32 (QEMU) *
TriCore Simulator *
Avrora * *
Cooja * *
TINA *
ACRN * *
OMNeT++ * *

3.1 QEMU

3.1.1 Existing Implementations
QEMU has support for more than 30 machine types on the ARM platform [13].
Currently, nRF51 is not included. In general, these virtual machines are not designed
with IoT in mind. For example, Raspberry Pi can be run as a virtual machine, it
has display output, it supports network devices, but there is no GPIO interaction
with other virtual devices. It must be noted that there are patches available on the
web for providing GPIO interaction with the outer world. There is also an unofficial

11

3. Related Work

STM32 microcontroller implementation for QEMU [14], and it allows interaction
through QEMU console.

3.1.2 Discussion

QEMU, in general, is used for virtualizing traditional desktop computers but it has
powerful features for small scale platforms as well. Its Tiny Code Generator can
speed up the simulation process by avoiding unnecessary steps while translating
instructions for different processors. For the same reason, QEMU is a suitable tool
for microprocessor and peripheral simulation but contributors have not implemented
currently supported virtual machines for IoT specific purposes. For example, the
nRF51 extension supports external Bluetooth, GPIO, and ADC data over a UDP
interface.

3.2 TriCore Simulator

3.2.1 Details

TriCore Simulator or TSIM is a simulation tool for the TriCore platform. TriCore
microcontrollers are manufactured by Infineon Technologies, and TSIM is also de-
veloped by the same company. TSIM is used for code profiling as well as unit tests
and simple debugging. It usually comes as an extension or as a separate tool with
some compiler suites and hardware debuggers such as Tasking TriCore Toolset [15],
HighTec TriCore Tool Chain [16], iSYSTEM winIDEA [17] debugger and Lauter-
bach Trace32 [18] debugger. TSIM can simulate CPU cycles and load/store times
with very accurate timing close to the hardware.

3.2.2 Discussion

TSIM is a commercial, closed source tool. It provides an API to act as a virtual
debugger and an API to implement peripherals. From that perspective, it is quite
similar to QEMU. The only difference is that peripheral emulation code is part of
QEMU, but for TSIM, peripheral emulation is implemented as a dynamic library.
TSIM only provides the functionality that is required to run a basic application on
a virtual TriCore CPU. Every company designs its own hardware models; there-
fore, these microcontrollers can be found in many different PCB configurations with
completely different peripherals. The nRF51 extension targets a single development
board with a unique configuration. Another difference is that TSIM tries to emulate
instruction times, whereas QEMU tries to run as fast as possible. It still may be
possible to calculate instruction times, but it involves many parameters for every
architecture and QEMU targets several guest architectures.

12

3. Related Work

3.3 Avrora

3.3.1 Details

Avrora [19] is an open–source framework that provides a set of tools for AVR mi-
croprocessor simulation. One of the greatest features of this framework is that it
can run AVR programs with cycle–accurate execution times. It has profiling tools
to analyze the program behavior during simulation. It can graphically represent the
program flow, and it can provide power statistics for the program being run in the
simulation. Avrora allows debugging using a builtin GDB server.

3.3.2 Discussion

In many ways, Avrora is similar to QEMU. It provides a debugger interface as
well. Besides that, it provides cycle–accurate execution timings and power statistics.
These two features are missing in this project because the nRF51 extension is based
on QEMU. The advantage of using QEMU is that it has been widely accepted by
the community and it provides an easy interface to emulate multiple architectures
as a foreign architecture on the host system. QEMU covers small and large scale
devices and it focuses on the performance while Avrora focuses on cycle–accurate
microcontroller emulation and the AVR platform.

3.4 Cooja

3.4.1 Details

Cooja is a network simulation tool for Contiki OS [20]. It can emulate TI MSP430
and Atmel AVR microcontrollers. Cooja is not only limited to wireless networks
but can also simulate full hardware for the supported architectures. Each emulated
device is called a node in Cooja. It uses different techniques to simulate nodes. Any
compiled binary file can be executed in Cooja if the hardware of a node is emulated.
This method has the ability to run non-Contiki nodes [21], but it can only be used
for the supported microcontrollers. Another method is compiling Contiki OS for the
host operating system. In that way, any application can be emulated regardless of
the target architecture, since the code will be running on the host. In addition to
these methods mentioned, Cooja also has Java bindings. Contiki OS is compiled for
the host platform as a shared library, and it is loaded through Java Native Interface.
If the application logic is implemented as a Java class, Cooja can also emulate the
node on the host regardless of the target architecture.
Device emulation is one of the main features, but in addition to that Cooja is also

used for power profiling [22]. It makes it easier to emulate, and at the same time
accurately analyze the power consumption in wireless networks.

13

3. Related Work

3.4.2 Discussion
Cooja is a robust emulation tool. It has some advantages and disadvantages when
compared to QEMU and the nRF51 extension. There is no tool to visualize the
nodes and the data traveling between the emulated nodes for the nRF51 extension.
Cooja provides a visual representation of the nodes in the simulation network, it can
analyze and show IP packets, and it has a visual representation of the event timeline.
On the other hand, QEMU specializes in different areas. For example, QEMU has
support for GDB. It is possible to use all the standard features of GDB. GDB allows
developers to see variables, registers, and memory contents during runtime with the
help of breakpoints. GDB makes it possible to perform low-level debugging while
running the native binary in a simulation. QEMU can also run the native binary
without any interpretation or translation when the host and guest systems have the
same architecture while still providing a full hardware emulation.

3.5 TINA

3.5.1 Details
TINA is a commercial, microcontroller circuit simulation tool [23]. It supports a wide
range of microcontroller architecture types such as PIC, AVR, XMC, and ARM. TINA
was initially released in 1990, since then it is under active development. There is
a free version called TINA-TI which is only limited to integrated circuits produced
by Texas Instruments. TINA is not only a microcontroller emulation tool. It has
a PCB designer where one can draw circuits and place emulated buzzers, switches,
displays, semiconductors, and other similar integrated circuit elements. It can also
emulate and analyze RF networks.

3.5.2 Discussion
Compared to the other tools mentioned in this chapter, TINA has very advanced
features. The difference between other tools and TINA is that TINA provides a
generic emulation for each type of microcontroller and the user designs the inte-
grated circuit while the other tools focus on emulating a specific type of development
board or operating system and some others only provide emulation without external
input/output.

3.6 ACRN

3.6.1 Details
ACRN is an open–source bare–metal embedded hypervisor for IoT development [24].
It aims to provide real–time features for IoT products. ACRN does not have support
for many platforms. Currently, the only supported platform is x86. It directly runs
on the host machine’s hardware without needing a traditional operating system.
ACRN also allows hardware sharing between the guest machines.

14

3. Related Work

3.6.2 Discussion
This project has advanced virtualization features, and a different approach compared
to the most open–source projects. One of the most significant features is that ACRN
can fulfill real–time requirements for IoT applications. It can run a well–known IoT
operating system, namely Zephyr OS. ACRN can prioritize and isolate safety–critical
tasks and has a very small footprint. With all these features combined, ACRN seems
to be a promising tool for embedded developers, but that results in a limited set of
supported hardware.

3.7 OMNeT++

3.7.1 Details
OMNeT++ [25] [26] [27] is an open–source C++ library that provides network
simulation features mainly. It is also possible to simulate different subsystems using
additional extensions such as a file system or the lower Bluetooth communication
layers. This tool has been used in many research projects, possibly more than
a couple of hundred. Other than network and node simulation, it has advanced
features, such as 3D visualization of the nodes using Google Earth. It can be used for
testing and algorithm development. The library is distributed under the Academic
Public License.

3.7.2 Discussion
In many aspects, OMNeT++ is quite similar to Cooja but it is not focused on
running native binaries. It provides developers and researchers a rich set of func-
tionalities. As a positive result of that users can directly start working on their
design and save time. The tool has no use if the intention is to work on a specific
type of hardware or run the binary files directly. While it can be used to achieve
similar tasks, the methodology is completely different from this project.

15

3. Related Work

16

4
Design

4.1 Goal
Emulating a system requires having almost identical features in the guest system.
The purpose of emulating the nRF51 board is with providing developers and students
a system that can be used for learning, testing, development, and debugging.
This project aims to provide an ability to run the binaries compiled for the nRF51

platform under QEMU. One of the main focuses is to be able to run a network
of virtual devices so that they can communicate through pins, radio, UART, and
similar I/O interfaces.

4.2 Approach
QEMU and this project are implemented in the C language. There are no additional
dependencies and libraries. The only exception is that guest-to-guest communication
is provided over UDP communication, and it requires an external application to
route packets between guests. Currently, the server application is provided and is
written in Python.
The physical hardware itself provides a typical configuration of peripherals that

can be found in an embedded system. In addition to that, it has a radio module with
Bluetooth capabilities. The platform focuses on ultra-low power wireless solutions.
The nRF51 platform has a concept of tasks and events. A task can be considered

as an action that is being performed by a peripheral. For example, ECB (Electronic
Codebook Module) is used for AES encryption. The CPU module can trigger the
encryption task by writing to the device registers. The CPU performs no action
in that case except the encryption request. An event, in general, indicates that an
operation is finished. The event flag can be accessed through the device registers to
see if it is set. If the event flag is set, it means that the event has occurred, if not,
the companion task has not been triggered, or it is still in progress. Each peripheral
has registers to enable or disable interrupt requests. If the interrupt flag is set, a
particular event will be generated for specific events. Currently, each device has a
single interrupt allocated. In other words, multiple events map to a single interrupt.
The CPU must check for each flag in the corresponding register to see which events
have occurred after an interrupt. It is possible to disable or enable interrupts for
specific events, but that will not avoid the event flag from being set in the device
registers. Therefore, the CPU can check the event by polling without having the
interrupt overhead. This method might be useful in some instances, for example, if

17

4. Design

too many interrupts are generated for a specific event.
Each interrupt is allocated during the device initialization phase in QEMU, and

each device has its own I/O space for registers. Each register read and write request
is routed to given callback functions by QEMU. In that case, read callback must
return a value to pass to the guest CPU and write callback must save it or take
action depending on the type of register.
One of the critical things that was considered during the development of the

virtual machine was that every module should be duplicable. This is to say, no
module should depend on constant factors, and no module should have common
dependencies with others. This goal has been accomplished for most peripherals,
but there are exceptions such as GPIO and GPIOTE module. These two modules
depend on each other as if they operate like a single device on the hardware. Other
peripherals such as real–time counter, random number generator, UART module
can have multiple instances. That provides a possibility to support future hardware
configurations. The nRF52 platform can also be supported with small changes, but
this project focuses on the nRF51 platform.

4.3 Design Details
This section describes the design and evaluation steps for each peripheral. The
evaluation for each peripheral was performed using the provided SDK to avoid any
ambiguity, and the resulting behavior is compared against a physical device.

4.3.1 General Purpose Input/Output (GPIO)
The GPIO module has simple configuration options. Its direction (in or out) can
be set through registers. The output value is set in the same way, and the input
value can be read through a register. GPIO is very easy to use for simple tasks,
but its control can be taken over by another peripheral. There are some hardware–
specific configuration options. For that reason, some features are not emulated. For
example, it is not possible to configure pull up and pull down for pins. GPIO module
does not have interrupts, but the GPIOTE module provides this functionality.
It is designed to be able to communicate with other guest machines. This mech-

anism is provided over UDP communication. Each state change is reported to the
router script using a predefined packet structure. The router modifies the pin num-
ber in the packet and sends it to another guest. Router script has a configuration
file that defines the GPIO connection between guests using a simple syntax. Con-
figuration parameters require device identifiers for two machines and a pin number
for each device, providing a virtual connection between guests. A state change is
routed to the target guest, and it reads the contents of the package, extracts GPIO
pin number and state then sets corresponding registers.

4.3.2 GPIO Tasks and Events (GPIOTE)
GPIOTE stands for GPIO tasks and events. As the name suggests, this module
is primarily used for interrupts. When GPIOTE is configured to use a GPIO pin,

18

4. Design

it takes ownership of that particular pin, and the same pin cannot be used by the
GPIO module anymore. It has been designed in the same way in the project. There
is an owner parameter for each pin in the GPIO module. Write requests that come
from the GPIO module are ignored, and the input state that was received from
another guest is routed to the GPIOTE module.
The GPIOTE module is able to generate interrupt requests. If a GPIO state

change packet is received, this directly generates interrupt and event in the guest
machine. It differs from the GPIO module when writing the output value. CPU
must trigger the ’out’ task in the GPIOTE module in order to set pin output value. It
is also possible to connect some peripherals with the GPIOTE module; for example,
RTC can be connected with GPIOTE to toggle LED output without involving the
CPU.

4.3.3 Universal Asynchronous RX/TX (UART)
The UART module is designed to use UNIX sockets as the communication method.
UNIX sockets can be changed to use the router script for simplicity. Currently
all UART I/O is routed to a UNIX socket. QEMU creates a socket file at ’/tm-
p/nrf51_DEVID.sock’ where ’DEVID’ is replaced with a hexadecimal device identi-
fier.
The nRF51 SDK provides built-in printf and scanf functions that use the UART

interface. It has not been individually tested, but UART has been used as the
machine console in the provided test programs. So it makes it possible to see the
output from the virtual machine. In order to do that, the following command can
be used: ’socat - UNIX:/tmp/nrf51_DEVID.sock’. The same program, socat, can
also be used to connect two guest UART interfaces by giving two UNIX socket
parameters and replacing ’-’ which stands for stdin/stdout.
UART is not a high-speed communication interface. In order to simulate low–

speed communication rates, the current design has a periodic timer that handles byte
transfer for this module. This method introduces a delay between each transmitted
byte.

4.3.4 AES Electronic Codebook Mode (ECB)
The nRF51 platform also supports AES encryption, and the ECB module provides
encryption in electronic codebook mode. This module has a simple mechanism. The
CPU writes a pointer in one of the device registers (ECBDATAPTR) and triggers the
STARTECB task. QEMU then performs the encryption and generates an interrupt.
It must be noted that on the nRF51 platform, this module only supports encryption
and does not support decryption.
There is also a task called STOPECB that is used to terminate an ongoing en-

cryption process. This is not reasonable to simulate in QEMU because of its nature.
When the STARTECB task is triggered, the host immediately performs the encryp-
tion. This operation takes place in I/O write callback function, and it is quite fast
to encrypt just a single AES block. From the guest CPU perspective, this operation
is completed even before the next instruction is executed. So there is no chance to

19

4. Design

Disabled

RX/TX
Disable

RX/TX
Ramp-Up

RX/TX
Idle

RX/TX

Only RX-to-RX and TX-to-TX transitions are possible.

Figure 4.1: RADIO States. Inspired by the state diagram presented in the nRF51
Manual [11], p. 85.

cancel the operation.
The evaluation has been performed using AES test vectors, and these vectors

are also embedded in the test program. The guest software compares the encrypted
output with the hardcoded ciphertext to verify that the AES module works correctly.
The ECB module uses EasyDMA. In QEMU, this is performed by reading the

plaintext from the guest memory by using ’address_space_read’ API, and the ci-
phertext is written into the target memory region by using ’address_space_write’
API. Plaintext, ciphertext, and key are contained in a single array, and ECBDAT-
APTR must point to the first byte of this array.

4.3.5 2.4 GHz Radio (RADIO)
RADIO module is the most complex peripheral on this platform. It has different
operating modes. It can also interact with other peripherals. For example, it can
use AES CCM mode encryption with the CCM module.
This module is capable of transmitting a maximum of 254 bytes in a single packet

at three different speeds: 250 Kbit, 1Mbit, and 2Mbit. The reference manual also
mentions technical details about the on-air packet layout and how they are trans-
ferred, but this is out of scope. The data is transferred over UDP and delivered to
all guest machines that have the matching mode configured in their device registers.
Currently, the UDP protocol can only do filtering based on the radio mode. Ad-

dress filtering is not defined in the protocol. CRC calculation always indicates
success. It is not required at this stage, but it might be required for specific reasons
other than only providing information.
RADIO has device states in which CPU can start transmission and other states

in which CPU can use this peripheral to receive data. Figure 4.1 shows the valid
RADIO state transitions. nRF51 reference manual [11] also presents the tasks and
events between state transitions under the RADIO section.
The RADIO module in QEMU is designed to run a state machine according to

the device state diagram. The state machine is run by a timer when any device
task is active. This module also uses EasyDMA. Packet pointer is given to the
PACKETPTR register by the guest CPU. Data is read from this location when
transmitting, and new data is written to the pointed location.

20

4. Design

4.3.6 Analog to Digital Converter (ADC)
The ADC module is a very simple analog to digital converter peripheral. Currently,
it has been designed to add a small randomized noise on a hardcoded number, and it
has not been connected to the other guests. Some configuration values can be used
for voltage prescaling and pin selection. These are currently ignored. The reasons
are explained in the communication section.
The test program uses SDK to read the analog input, and the value is printed on

the UART console.

4.3.7 Clock Management (CLOCK)
The CLOCK module has been designed to provide register access. It only allows
reading from and writing to the device registers. Also, it can generate an interrupt
on a calibration request. This module is used for power management, GPIO input
sensing speed, and similar purposes. It is mainly related to the hardware and has
not much use for emulation.

4.3.8 Random Number Generator (RNG)
The random number generator module uses internal noise to generate random num-
bers. Therefore it provides true non-deterministic output. In QEMU, this is not
designed in that way as it is not going to be used for the real environment. The
algorithm used for the random generator is xorshift. The initial seed value is a prime
number that is XORed with some bytes that are read from ’/dev/urandom’. This
method has been used to avoid outputting the same number in QEMU when the
machine is started for the first time.
The test program requests an array of random numbers using SDK API and prints

some numbers on the UART console that were provided by the RNG module.
On real hardware, the time required to generate a single random number is non-

deterministic as well. In QEMU, this behaviour is different. Random numbers are
generated immediately.

4.3.9 Real Time Counter (RTC)
The nRF51 platform provides three individual real–time counter instances. As men-
tioned earlier, most devices are designed in a way that they can be instantiated mul-
tiple times. The current implementation creates these virtual devices with different
memory I/O regions according to base addresses given in the reference manual. I/O
read and write callbacks are the same, and the implementation is unique.
RTC provides compare and tick events. Compare event is generated when the

real–time counter value matches one of the values that are provided in 4 different
compare registers.
Some test programs use the RTC module for delay functionality. This is achieved

by using an interrupt handler in the test program that counts the ticks and provides
a global system time, and when the delay function is called, it blocks the execution
until the limit is reached. Since the interrupt handler is not affected by that, it still

21

4. Design

keeps counting. There is also a second RTC module used in the test program with a
configured prescaler value to have a lower frequency of interrupts. That also toggles
one of the pins which can be seen in the router script. Neither of these were affected
by the delay function blocking the main loop of the program.

4.4 Guest-to-Guest Communication
The communication with other guests is provided using a global UDP connection
in QEMU. It is possible to use TCP. For now, UDP has been used for its simplicity
and connectionless approach. UDP has some well-known disadvantages. If one side
sends too many packets, some of them will be dropped. Since guest communication
is on the same host machine, this does not cause any issues, but if two remote guests
try to communicate, some data can be lost easily. In order to avoid any side effects,
delay function has been called between some actions in the test program, specifically
for GPIO operations.
QEMU listens on a UDP port when it starts and sends the device identifier to

the router script then it waits for incoming packets so that the script is aware of
QEMU as a client. After a packet is received, it checks the target peripheral state to
see whether the packet is acceptable. For example, when a RADIO packet arrives,
QEMU checks if the RADIO is in the RX state. If not, the packet will be dropped.
After validating that the RADIO is in the RX state, the packet can be accepted.
The packet pointer that was given in the RADIO configuration register is already
saved before switching to the RX state. QEMU then writes the payload content
into the memory location specified in the packet pointer, sets the nRF51 events,
and finally generates an interrupt.
Currently, only RADIO and GPIO modules use this method for communication.

Each GPIO pin requires a definition in the configuration file for a virtual connection
between guests. The RADIO module does not require any configuration. One packet
that was sent from a guest will be broadcast to all other guests like it was coming
from the air. However, it is QEMU’s job to drop it if the RADIO configuration does
not match the received packet. If the configuration allows, then the guest can get
all the packets that were broadcast.
UDP communication has a simple protocol. A typical UDP packet is presented in

Figure 4.2.
Figure 4.3 shows the ’Send ID’ packet with type 0x0. This message type is used

to send a device identifier to the router script. So the router script is aware which
device resides on which address. For now, it is only useful for GPIO, but that will
be used for other peripherals as well. RADIO packets do not need to match any
particular device for the reasons mentioned earlier.
Figure 4.4 shows the RADIO packet with type 0x1, and Figure 4.5 shows GPIO

packet with type 0x2.
The router script reads the pin number and finds the corresponding pin number

on the target machine. Then it replaces the source pin number with the target pin
number and sends it to the target guest. When the packet is received on the target
machine, the corresponding pin state is changed.
The UART implementation uses a different communication method. All data

22

4. Design

0 7 8 15

type reserved
length

 UDP
Header

variable length data
hhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhh

Protocol
Data

Figure 4.2: Generic UDP packet. Where type specifies the type of content that
comes after the header and length is the total length of the content excluding the
UDP header.

0 7 8 15

type = 0x0 reserved
length

 UDP
Header

device identifier
}
Data

Figure 4.3: Send Device Identifier packet. This message type is used to
identify each QEMU instance.

transferred is performed over UNIX sockets. This method was chosen because the
UART interface is usually used as the system console. Therefore, it was not included
in the UDP protocol. There are applications that can interact with UNIX sockets
pretty easily. For example socat is a well–known software that can use a UNIX
socket for user input, and display the incoming data.

4.4.1 Router Script Configuration
The router script has a simple configuration format to create pin pairs between
the guest machines. The format is presented in Listing 4.1 where guest_id is the
hexadecimal device identifier and pin is the pin number on that machine. Each pin
pair must be defined in the configuration file (nrf51.cfg) in a single line.

Listing 4.1: Configuration File Entry Example
(guest_id1 , pin1) (guest_id2 , pin1)

4.5 Discussion
UDP was chosen for its simplicity. There is no need to keep track of all TCP streams,
and UDP allows sending packets without having a connection which means that the

23

4. Design

0 7 8 15

type = 0x1 reserved
length

 UDP
Header

radio packet type mode
raw radio data

hhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhh

Protocol
Data

Figure 4.4: RADIO packet with type 0x1. Where type specifies the radio
packet type. This was previously used for a different purpose, and for now, it is only
defined as a data type with a value of 0x1. The mode field is the sender’s Bluetooth
mode. This value is sent as it was read from the mode configuration register.

0 1 2 3 4 5 6 7 8 15

type = 0x2 reserved
length

 UDP
Header

pin number rsvd st
at

e }
Data

Figure 4.5: GPIO packet with type 0x2. Where the state field is the pin state
indicating whether it is LOW or HIGH. The pin field is the pin number between 0
and 31. Reserved field (bits 5,6) is always zero.

router script does not have to check connection state and it does not have to wait
for a connection to be established.
There are some drawbacks in the current design. It relies on UDP communication,

and some packets might be dropped during communication. It is unlikely to miss
packets when running all the devices on a local machine but chances are higher if
the local machine is overloaded or the virtual devices are on different computers.
Another disadvantage is that timing will not be so accurate in the case of GPIO

communication. A physical device will be able to react in a much shorter time on
a GPIO event. In general, GPIO is not used for high–frequency output. Instead,
clock sources or timers are used for this kind of operations, but it must be noted that
the nRF51 platform allows GPIO ports to be indirectly connected to the TIMER
module. A pin can be configured as GPIO, but the TIMER module can toggle its
output without involving the CPU. There is a mechanism that allows one peripheral
to write into another peripheral device register. In that case, it is not guaranteed
that the UDP packet will reach its destination at the same interval.
In case of a missing UDP packet, GPIO state will be desynchronized. That might

seem like a defect in the program running on the virtual device. On the next UDP

24

4. Design

packet, GPIO state will be in sync again.

25

4. Design

26

5
Implementation

5.1 Overview
This chapter explains how the implementation was done in QEMU. Also, it describes
the communication methods used between the emulated devices.
It is a generic technique to use device registers to control peripherals and transfer

data through direct memory access. The nRF51 platform contains a CPU and some
integrated peripherals. They interact with each other in the same conventional
way. QEMU allows developers to emulate these actions by providing the necessary
function callbacks.
The memory on the nRF51 platform is divided into few areas. They can be named

as ’Code’, ’SRAM’ and the ’Peripheral’ area. The code section is directly loaded from
a binary file that is produced by the compilers. It contains the program contents
that will be executed during device operation. Also, any data that is saved into non-
volatile memory is saved in the same file because that binary file is the exact mirror
of the static data stored in the code area. SRAM is the program memory being used
during operation which is only a byte array in QEMU. The peripheral area is treated
in a special manner and it is the most interesting part of this project. It is safe to
assume that the peripheral area is some sort of a message passing interface. For
that reason, each ’read’ and ’write’ operation must be processed by the emulator.
These input and output operations are mapped into the device memory.
The code area starts at 0x00000000, SRAM starts at 0x20000000 and the periph-

eral area starts at 0x40000000 as seen in Figure 5.1. It does not necessarily mean
that every R/W access to the peripheral area is valid. Attempting to access an in-
valid register will generate an exception on the hardware. QEMU allows developers
to register R/W callbacks for each peripheral and specify the valid address range.
If the device is not implemented, it will automatically generate an exception on the
virtual CPU as it was invalid. The read and write callbacks receive the necessary
parameters, such as the register offset and the write value. The value returned by
the read function is immediately available in the virtual CPU. The value written
into the register directly comes from the virtual CPU.
Depending on the peripheral, a write operation might start a job or change the

active configuration. For example, interrupts are disabled and enabled through a
set of registers for each peripheral. The value read from the interrupt registers gives
us information about the interrupt configuration.
In addition to that, the guest system may start and abort jobs through write–only

device registers. This is a way of sending a signal to the relevant peripheral.

27

5. Implementation

Code

SRAM

Peripheral

...

0x0000 0000

0x2000 0000

0x4000 0000

0x6000 0000

Figure 5.1: nRF51 Code, SRAM and Peripheral Area

5.2 QEMU Peripheral Interface
In QEMU, each peripheral device is implemented in the same way for this project.
On the nRF51 platform, peripherals are controlled through device registers, and
they are accessed through memory–mapped I/O. RNG module can be given as a sim-
ple example. Its address space starts at 0x4000D000, and there are nine documented
device registers. The START register resides at offset 0x0, and it triggers the ran-
dom number generation operation when the user code modifies it. Then the CPU
continuously reads the VALRDY register at memory address 0x4000D100 when using
poll mode. If the register indicates that the value is ready, CPU can fetch a newly
generated number from the VALUE register at memory address 0x4000D508. A sim-
ple flowchart describing the relation between the program and QEMU is presented
in Figure 5.2.
QEMU requires the following function callbacks in the source code for all periph-

eral devices:
• read: Called for each memory mapped I/O read operation.
• write: Called for each memory mapped I/O write operation.
• instance_init: Called once for each device instance initialization.
• class_init: Called only once when QEMU has started.
These callback functions are the only way to interact with the virtual nRF51

device. Whenever a guest requests to read or write a register, the corresponding
callback is fired by QEMU, and after that, the implemented code is responsible for
keeping and modifying the machine state. The ’read’ and ’write’ callbacks receive
relevant parameters such as device context, register offset, and the value to write.
The ’read’ function returns the requested value. Some device registers are read–only,
some are partially read–only, and some are write–only. The device implementation
handles all the logic according to the nRF51 datasheet. Actual register values are
kept in a separate structure, and this structure is part of the device context, named

28

5. Implementation

QEMU nRF51
Extension

nRF51 Program

Read Register
>= 0x4000 0000

Call
Peripheral Read

Function

Return
Register Value

Valid Register
Address?

Yes

Exception

No

Write Register
>= 0x4000 0000

Call
Peripheral Write

Function

Save or
Perform Task

YesValid Register
Address?

No

Virtual
CPU

Figure 5.2: R/W Callbacks in QEMU

REG. This allows the same callbacks to be used for every instance of the same device
class.
In addition to these callbacks, there is a global UDP socket that receives GPIO

states and RADIO packet data from a router script that serves as a gateway between
virtual devices. Based on the received data, the machine state can be modified
by changing peripheral device registers. When the pin input is changed through
the UDP interface, QEMU will generate the corresponding interrupt if interrupts
are already enabled by the guest. If interrupts are not enabled, the UDP handler
function will only change the device state by updating relevant device registers in
the REG structure. The guest will only be able to determine any GPIO state change
by reading the device registers. In that case, the ’read’ callback will return the
requested value from the REG structure. Likewise, any change to the GPIO state
generates an outgoing UDP packet to the router script.
The RADIO module uses DMA to avoid CPU interaction for relatively large data

transfers. Upon the reception of a RADIO packet, an interrupt might be generated
based on the peripheral configuration, but the received data is not kept in the device
registers. Instead, it is directly written to the configured memory space. UDP
interface extracts the raw packet data, puts it in the configured memory location,
and updates the device registers. The nRF51 extension generates an outgoing UDP
packet as well when the guest triggers a transmission operation.
This implementation is publicly available on GitHub [28].

5.3 Discussion
QEMU has all the required facilities to emulate the nRF51 platform. However, in
some instances, there are behavioral differences between a physical device and an

29

5. Implementation

emulated device. The ECB module performs AES encryption using a cryptographic
accelerator. On the physical system, it is possible to interrupt this operation because
it takes multiple CPU cycles to finalize encryption. In this implementation, as soon
as the write callback is fired with relevant parameters, encryption is performed in
the same call. Therefore, QEMU does not get the chance to return to the event loop
and execute the next guest CPU cycle. From the guest’s perspective, this operation
takes only a single CPU cycle in a virtual environment, so there is no possibility to
interrupt ongoing ECB encryption. This has been chosen to be implemented in that
way as AES encryption is performed on the host CPU. Modern desktop platforms
have a particular AES instruction set and assuming that this implementation will
mostly be used on desktop computers, it is the preferred way to block the read
callback for encryption operation rather than immediately returning to the event
loop in this project.
As already mentioned, UDP communication is not the best method for state

synchronization. It can be changed to TCP with little more effort but requires a
more advanced router script or application. There are other reliable techniques, as
well. For example, the OpenMPI project [29] provides a message passing interface
that can be utilized over the network or by shared memory.
There has been a great challenge when implementing TIMER and RTC peripher-

als. On the hardware, an interrupt will immediately stop the program flow and be
handled by the corresponding service routine. In QEMU, it works in the same way
but with slight differences. The translation blocks that are generated by TCG may
include multiple instructions for better performance. Therefore preemption is not
possible between some cycles. In addition to that, any interrupt generated by the
TIMER or the RTC module will not be as accurate as the hardware. The periodic
events occur at the correct time interval but when the CPU handles the interrupt,
the deviation in the TIMER or RTC counter, depending on the resolution, might be
zero or less than few ticks. This causes problems within the programs that require
high accuracy. For example, some programs check the RTC counter before and af-
ter setting a future RTC event to avoid multitasking problems. Any interruption
in the middle of the setup process can delay program execution but the RTC will
be running, and there is a possibility of setting the event for the time in the past.
For the reasons mentioned above, some deviation will be seen. In addition to that,
some overhead in the emulator itself will introduce more differences in the timing
functions. Since this problem does not always occur, it was not easy to understand
the root cause. It has been one of the greatest challenges in this project.

30

6
Evaluation

This chapter presents the evaluation results and explains why and how the experi-
ments were performed.

6.1 Evaluation Method
In order to understand if the implementation is sufficient enough to replace hardware
for testing and development, it needs to be evaluated under two different categories,
namely functionality, and performance. Functional tests are performed to observe
the internal and external behavior of the virtual system and compare them with the
hardware. Performance tests consist of running different types of programs.

6.1.1 Metrics
The implementation is evaluated for performance and functionality. Performance is
measured in terms of resource consumption, such as CPU and memory usage. In
addition to that, executions are measured using time units both on the hardware
and in the virtual system. It is very likely to get different results on different host
systems. In the virtual system, executions are measured using the host system timer.
QEMU provides a simple API to get the host system time which is not affected by
the emulation. On the hardware, the executions are measured using the TIMER
peripheral which runs independently from the CPU.
Functionality is not something that can be measured using only the numbers.

The best way to make a judgement on the functionality and yield a set of results
with high confidence is to perform experiments using different operating systems,
libraries and a variety of programs with different purposes. The judgement is made
based on the output from the physical hardware. Emulated device output should
always match the physical device. There is an exception to this rule. For example,
timing based behavior can differ and it is accepted.
Most of the time, hosts will have different hardware configuration, e.g., CPU and

the chipset, because of the availability of a wide range of choices on the desktop and
headless environments. The host system used for emulation to perform experiments
in this project runs Intel® Core™ i5-5350U CPU at 1.80GHz. It can be considered
as an average CPU for personal computers. Other components are not specified in
this report, such as the RAM size or the chipset model.
The implementation itself does not allocate any dynamic memory; therefore, it is

not possible to perform any experiment that can use a higher or lower amount of

31

6. Evaluation

memory. A different chipset or CPU will affect the performance results. In most
cases, results will differ. Some systems may have faster or slower bus transfer rates
between RAM and the CPU. The CPU cache is also a significant factor.
The experiments performed in this report are enough to make a judgement if the

implementation is sufficient enough to use it as an emulation tool on an average host
system because the implementation does not have any other purpose than emulating
nRF51 in QEMU for application development and testing.
The compiler used in these experiments is GCC version 7.2.1 20170904 from

the GNU ARM toolchain. It is likely to get slightly different results from different
compiler versions and toolchains in terms of code size and performance.
In a virtual environment, there is no requirement for a special testbed setup.

QEMU only requires the kernel file which is the compiler output for the relevant
program. The test programs are run using the nRF51-DK development board on
the physical hardware. There is no requirement for the physical environment either
other than connecting the board to the computer using a USB cable.

6.1.2 Performance Tests
The performance tests are required to compare the CPU execution time and the
AES encryption time. The instructions executed are not native; they are emulated
through TCG1; therefore, an evaluation is required to see how fast the host can run
the guest applications. The expected behavior for the host is to run applications
a lot faster than the physical device. There are mainly two reasons, TCG and the
nature of microcontrollers.
TCG is a way of running non-native instructions. It is very similar to a compiler

as the name suggests. In simple words, TCG compiles a set of guest instructions
into host instructions, and it performs optimization during compilation. In QEMU,
guest functions are translated into QEMU Translated Block (TB) and branches are
translated into basic blocks.
Low power microcontrollers do not have much processing capacity when compared

to desktop processors. They are designed to accomplish specific tasks in a limited
environment.
These reasons mentioned above suggest that QEMU is likely to give good results

for performance tests. It is worth mentioning; this does not mean that the host
system will consume the same amount of power while running the emulation. It is
evident that the average host system will consume more energy. For this project,
energy consumption is not a matter of interest.
As already mentioned, measurements are done using the TIMER peripheral on

the hardware and the host system timer in QEMU.

6.1.3 Functional Tests
The functional tests are executed to see the behavior of the emulated system. Tests
are focused on the peripherals rather than the CPU. The reason is that the imple-
mentation only includes peripherals for the nRF51 development board. QEMU has

1Tiny Code Generator

32

6. Evaluation

had support for the Cortex-M3 core for a while, and it has been tested and used
by many. Specific modules are tested in order to see if they differ from the physical
device.
The most important thing with functional tests is to see that one can use it

as a virtual replacement for the hardware. It is very crucial to have a matching
behavior for the peripherals; it is the only way to run nRF51 applications without
any modifications.

6.1.4 Hardware Setup
The tests do not require a specific hardware setup. The only required components
are the nRF51 development board and a serial or USB cable. The UART interface
is used to get some human–readable information from the hardware regarding the
tests. The development board model used for experiments is nRF51 pca10028. It
has USB to TTL converter onboard. It is possible to get UART output through USB
with the help of the converter. The same output that QEMU gives us is also received
from the physical device through the USB cable without a serial interface. Usually,
GPIO tests for similar hardware would require jumper wires. In this project, some
functional tests are performed using onboard LEDs which are attached to the GPIO
outputs. Some performance tests are executed using an Arduino Uno development
board which was attached to nRF51 through GPIO pins.

6.1.5 Experiments
Experiments are performed both on the physical hardware and in QEMU. It is crucial
to run the same resulting binary file on both platforms after compiling the test code.
This is required to compare the behavior and performance. Each experiment has its
own test application that is appropriately designed for the task, and some of them
are run under an operating system called Zephyr [30].
Zephyr is an open–source operating system for resource–limited environments. It

can run on multiple platforms. While it is designed for microcontrollers, Zephyr
also supports compute-intensive architectures such as x86 which is usually classified
as a desktop platform. It features a small footprint kernel and comes with various
protocol stacks.
For this project, Zephyr OS is one of the most suitable tools for evaluation. It has

support for almost all the peripherals on the nRF51 platform.
The importance of running certain tests under an operating system is that it can

show the correctness of the implementation using multiple peripherals simultane-
ously, because a typical operating system uses interrupts, system timers, and other
various peripherals after startup in order to provide some services for the user code
such as task scheduling, driver management, and other kernel–level jobs.
Zephyr makes it easier to develop an application and run it on multiple platforms.

For example, an application targeting the Arduino board may very well run on the
nRF51 platform with minimal modifications, and most of the time, changing the
target during the configuration phase is enough.
Zephyr OS comes with a Bluetooth stack implementation that supports many

33

6. Evaluation

Bluetooth services and device types. It allows us to create a program that acts as a
heart rate sensor with less than 100 lines of code.
The eleven experiments are summarized in Table 6.1, and further described below.

Table 6.1: List of Experiments Performed

Name Test Type Based On Comment
Exp1 GPIO and RTC Func nRF51 SDK Change GPIO with RTC
Exp2 UART Func nRF51 SDK Echo program for UART
Exp3 AES Perf nRF51 SDK Encrypt a block in loop
Exp4 Raw Execution Perf nRF51 SDK UDP protocol impact
Exp5 Simple GPIO Func mbed Library mbed Library demo
Exp6 Blinky Led Func Zephyr Project GPIO test in Zephyr OS
Exp7 CPP Sync Func Zephyr Project Multitasking test
Exp8 Entropy Test Perf Zephyr Project RNG test in Zephyr OS
Exp9 Fibonacci Perf Zephyr Project Benchmark and analysis
Exp10 RADIO Test Func nRF51 SDK Test RADIO using SDK
Exp11 Bluetooth Test Func Zephyr Project Test RADIO in Zephyr OS

Exp1: The GPIO is the most used unit on a typical embedded system. It is
easy to observe the behavior visually on the hardware using the nRF51 onboard
LEDs. The first functional experiment is to see whether the virtual system behaves
as expected when using RTC and GPIO together. This test manipulates the pin
output regularly with the help of the RTC module. On the physical hardware, it
turns LEDs on and off. In QEMU, UDP packets are sent to the router script which
listens on a specific port, and if there are any available clients, it sends incoming
packets to the other QEMU instances. In this experiment, the router script prints
out the information for the relevant GPIO pin state when a new UDP packet is
received. It should show a matching pin state information for each GPIO pin. For
example, if LED 1 is connected to pin 21 on the physical device and LED 1 is turned
on at t where t is a relative point of time, the script output must show that GPIO
pin 21 at t is HIGH. This experiment is performed in order to understand if two
different units can operate without affecting each other. At the same time, this
experiment tests the functionality of GPIO and RTC peripherals.
Exp2: The next experiment in the list tests whether the UART peripheral works.

This experiment might be considered as one of the most straightforward experiments,
but still, it is an effective and easy way to see how the system interacts with the
user through the UART interface. The implementation provides communication
through UNIX domain sockets. On startup, the implementation creates a UNIX
socket at ’/tmp/nrf51_x.sock’ where x is the virtual device instance ID encoded in
hexadecimal numbers. Then, this socket is used for outputting and inputting data
to and from the user. The data itself can be text or binary. For this experiment, the
test application reads any type of data from the UART and prints out the data in
hexadecimal format. The application works as an echo server with a slight difference
that it echoes encoded data. Since the test application outputs data in hexadecimal
format, it can accept binary input then we can verify what the system receives. For

34

6. Evaluation

example, one can see line breaks in the output as well. This method provides a way
to run the test without any particular input tool.
So far, only functional tests have been discussed, but the performance is another

point that needs to be experimented with.
Exp3: The nRF51 platform has an AES accelerator that performs the encryp-

tion on a separate unit rather than using the CPU. The implementation acts as a
crypto accelerator and uses the host CPU for encryption. The experiment involves
encrypting a block of data many times. Since encryption is a fast operation, it is
easier to measure the throughput for the AES unit rather than comparing single
block encryption time. It will be accomplished by counting the number of rounds
for a specific amount of time.
Exp4: The next performance experiment is the raw execution test. Under this

experiment, only the CPU execution time is measured with little interaction to
peripherals. The purpose of this test is comparing the processing power for both
the physical and the virtual system. The test involves running a loop that is filled
with assembly instruction NOP. For example, running the loop for 20 million rounds
would give us a rough idea for raw performance. There are so many factors that
affect the execution time. Instead of running an empty loop, it might be replaced
with a function that has so many branches or no branches at all. Depending on the
optimizations done by the TCG, we could get different results for different types
of programs. We can make a judgement if QEMU can perform worse or better
by performing this experiment. It is a known fact that QEMU gives exceptional
results for microcontrollers, and this is explained with numbers in the following
sections. The implementation provides a way of communicating through the UDP
connection with other virtual devices. Therefore it is expected to have a delay on
the UDP channel. GPIO channel can be accepted to have no delay if we exclude
the speed-of-light delay on the wire. The reasons mentioned above require us to
perform an experiment that triggers UDP communication. It must be noted that
the GPIO peripheral itself can have a tiny amount of delay that can only be measured
with an oscilloscope. The purpose of this test is to measure the impacts of UDP
communication on the execution time. The test involves changing GPIO state for a
specific pin very rapidly and it is being measured by an external development board,
namely Arduino Uno.
Exp5: Demonstrates the use of the mbed Library in a virtual machine by manip-

ulating the GPIO states. The mbed Library supports other peripherals as well but
they are not tested in this project.
Experiments from Exp6 to Exp8 are performed using Zephyr OS to observe

the behavior of a generic real–time OS. These tests involve using GPIO and RNG
peripherals and the multitasking feature from Zephyr OS.
Exp9: This experiment is performed for extensive performance analysis in QEMU

by describing the program assembly output.
Exp10: The nRF51 SDK provides a basic driver for radio communication and

this experiment uses a simple approach to transfer small data.
Exp11: This experiment uses the Bluetooth stack from Zephyr OS. It is the most

advanced experiment in this report because it depends on many peripherals such as
TIMER, RTC, PPI and RADIO. The main purpose of the experiment is to test the

35

6. Evaluation

RADIO peripheral using the Bluetooth protocol between two virtual devices.
For this thesis project, Zephyr is mostly used for functional verification. All the

experiments are performed under Zephyr v1.14.0 using nrf51_pca10028 as the
build target.

6.2 Results

6.2.1 Exp1: GPIO and RTC Test with LEDs
This experiment uses RTC interrupts to count the number of ticks that are triggered
by the RTC module. Then the number of ticks is used as the global time during
the execution. For this experiment, the only requirement is to provide some delay
mechanism. During the startup phase, the system configures the RTC module, and
the LEDs then enters an infinite loop which toggles LED1 on the hardware. The
LEDs are numbered from 1 to 4 on the physical board, but in the source code,
they start from LED0. See Listing A.2 for the application contents. The RTC is
configured with the prescaler value of 327, which approximately corresponds to 100
Hz. In this experiment, the toggle delay is 100 ticks. Since the RTC works at 100
Hz, the toggle delay corresponds to 1 second. This experiment is run both on the
physical hardware and in QEMU. The LED states for the hardware can be seen in
Table 6.2 after the application has started. LED2 stays ON during the lifetime of
the application and LED1 toggles every second.

Table 6.2: LED states on the hardware for tsec = 0, 1, . . . 5.

tsec 0 1 2 3 4 5
LED1 ON OFF ON OFF ON OFF
LED2 ON ON ON ON ON ON

QEMU gives us the same results with more details, but it does not specify any
LED number; instead, we can only observe the pin numbers and their states because
QEMU sends out UDP packets after a state change. Listing 6.1 shows the output
from the UDP router script, and Table 6.3 shows the state for each pin according
to Listing 6.1.

Listing 6.1: Script Output
(0 xface) pin: 21 state: 1 /* t = 0, startup phase */
(0 xface) pin: 22 state: 0 /* t = 0, startup phase */
(0 xface) pin: 21 state: 0 /* t = 0, startup phase */
(0 xface) pin: 21 state: 1 /* t = 1 */
(0 xface) pin: 21 state: 0 /* t = 2 */
(0 xface) pin: 21 state: 1 /* t = 3 */
(0 xface) pin: 21 state: 0 /* t = 4 */
(0 xface) pin: 21 state: 1 /* t = 5 */

36

6. Evaluation

Table 6.3: Pin states in QEMU for tsec = 0, 1, . . . 5.

tsec 0 1 2 3 4 5
Pin21 LOW HIGH LOW HIGH LOW HIGH
Pin22 LOW LOW LOW LOW LOW LOW

On the development board used in this experiment, pin21 is attached to LED1
and pin22 is attached to LED2. The results from this experiment show us that we
observe the same behavior in QEMU as the physical hardware.

6.2.2 Exp2: UART Test
In this experiment, the nRF51 board receives a simple string that can be typed on
the serial console; then it prints out the hexadecimal representation of the input data.
In that way, we verify that the UART interface works and it can both receive and
send any data. See Listing A.3 for the example code used to verify the functionality
of the serial console. We expect to see the same results from the hardware and the
QEMU instance. For this experiment, the UNIX tool socat is used to interact with
the virtual console that is connected to a UNIX socket. QEMU creates a UNIX
socket when the UART interface is initialized from the application; then the same
socket is used for data exchange. Listing 6.2 shows the command that was used to
start socat and its output. The input string is ’nrf51 test input’ which is 16
bytes in length, and its hexadecimal representation is ’6e 72 66 35 31 20 74 65
73 74 20 69 6e 70 75 74’.

Listing 6.2: QEMU socat input/output
$ socat - UNIX:/tmp/nrf51_face.sock
system start
nrf51 test input /* typed by the user */
6e 72 66 35
31 20 74 65
73 74 20 69
6e 70 75 74

The same application binary that was executed in QEMU is downloaded on the
hardware; then minicom is used to connect to the hardware through the serial in-
terface. minicom is an interactive terminal emulation tool for UNIX. See Listing 6.3
for its output.

Listing 6.3: nRF51 minicom output
Welcome to minicom 2.7.1

OPTIONS:
Compiled on Aug 20 2018, 10:22:42.
Port /dev/cu.usbmodem0006815648711 , 22:51:36

37

6. Evaluation

Figure 6.1: AES Throughput Figure 6.2: Number of AES Rounds in
5 seconds

Press Meta -Z for help on special keys

system start
6e 72 66 35
31 20 74 65
73 74 20 69
6e 70 75 74

The output shows the same hexadecimal data as we received from the QEMU
instance. In this example, user input is not shown. Unlike socat, minicom does
not print the user input by default. This experiment shows us that the UART
implementation matches the physical hardware behavior.

6.2.3 Exp3: AES Performance

The AES performance experiment involves encrypting a fixed data block continu-
ously for 5 seconds. The experiment is performed in two different ways. The en-
crypted data is verified against the expected ciphertext that resides on the program
memory. The same experiment is also performed without any verification. Compar-
ing the resulting encrypted data with the expected data introduces a performance
penalty. Experiment results can be seen in Figure 6.1 and Figure 6.2.

Results show us that the QEMU instance surpasses the physical hardware per-
formance multiple times. In Figure 6.2, we can see that the nRF51 board can do
46k rounds in 5 seconds while QEMU can do 478k rounds. Figure 6.1 shows almost
6000 KB/s AES throughput, while this is a positive trait for QEMU, it might be
misleading for users that the actual hardware can exhibit the same performance.

38

6. Evaluation

Figure 6.3: Number of Empty Loops in 1 Second

Table 6.4: Performance Gain in QEMU

Test w/ verification w/o verification
Throughput 13.5× 10.3×
Rounds 13.5× 10.3×

Table 6.4 shows how many times QEMU can run faster than the hardware for this
performance test. It is no surprise that both throughput and AES round tests show
the same performance gain. The tests without verification give us better results.
The reason is that the nRF51 board uses a crypto accelerator for AES operations,
which is faster than the microprocessor. Under QEMU this operation is performed
by the host CPU. Both platforms use the CPU for the verification job. In this
case, the verification process gives us reduced performance results for the nRF51
platform. If more CPU instructions are executed during AES tests, it is likely to
get better results under QEMU.

6.2.4 Exp4: Raw Execution Time
This experiment is performed in two categories in order to understand the impacts
of running pure application code with and without any peripheral interaction. See
the source code in Listing A.4. So far, in the previous experiments, we have seen
that QEMU outperformed physical hardware in terms of execution time. In this
experiment, an empty loop is executed with pure ARM instructions. Later the
same application code in the Listing A.4 is run, but this time, only LED toggle
function is added to understand the performance impact better.
In Figure 6.3, we can see that QEMU can run 128M loops in one second while

the physical hardware is only able to run 1.5M loops in a second. The most inter-
esting point is that the nRF51 board has a reduced performance with 761K loops,
almost 50% speed difference while the QEMU instance only run 65K loops with the
same application code. There are two main reasons for this performance loss. The
peripheral implementation sends out UDP packets, and it prints out GPIO state
information on the QEMU console. These two actions require interaction with the
host operating system, and they have to wait until completion. Performance can
be improved by using another inter–process communication method such as shared

39

6. Evaluation

memory. Removing the print outs from the QEMU console will also reduce the time
spent for operating system calls on the host. From this experiment, we can conclude
that QEMU can execute native guest code a lot faster than the hardware, but the
synchronization method used in the implementation introduced a great performance
impact in the emulation. Also, printing any debug information has many adverse
effects for fast operations.

Table 6.5: Performance Gain & Loss in QEMU

Test QEMU nRF51 Gain
Loops 127714962 1453066 87.9×
Loops w/ GPIO 65029 761097 −11.7×

Based on the previous test results, Table 6.5 shows the performance gain and
loss in terms of magnitude. This experiment is the raw execution test of pure CPU
instructions with and without GPIO peripheral interaction. While pure instructions
can run approximately 88 times faster than the real hardware, having some GPIO
communication causes the emulation to run approximately 12 times slower than the
real hardware because of the reasons mentioned above.

6.2.5 Exp5: Simple GPIO using mbed Library
In this experiment, the mbed platform is used for testing to show that the imple-
mentation can work with this library. Upon startup, the mbed library initializes
the required peripherals. This process is invisible to the user. It is only needed to
include the relevant header files. Listing A.8 shows the source code used in this ex-
periment. It is a simple loop for manipulating GPIO output using wait function at
a regular interval. The library initializes the RTC, so that wait function is available
to the user.

Listing 6.4: Script Output
(0xbeef) pin: 21 state: 1
(0xbeef) pin: 21 state: 0
(0xbeef) pin: 21 state: 1
(0xbeef) pin: 21 state: 0
...

In Listing 6.4, it shows that the output state for pin21 is changed in every loop.
In this case, pin21 corresponds to LED1 on the hardware. If this program is run on
the nRF51 board, LED1 blinks.

6.2.6 Exp6: Blinky LED Example from Zephyr
This sample project can be found under samples/basic/blinky in Zephyr tree. It
simply toggles LED1 on the development board at an interval of 1 second using the
k_sleep function with RTC peripheral. It does not output anything on the console,
but it is possible to see the state change for the LED pin in the router script output
as seen in Listing 6.5.

40

6. Evaluation

Listing 6.5: Script Output
(0xbeef) pin: 21 state: 1
(0xbeef) pin: 21 state: 0
(0xbeef) pin: 21 state: 1
(0xbeef) pin: 21 state: 0
...

In this case pin 21 corresponds to LED1 on the physical board.

6.2.7 Exp7: CPP Synchronization Example from Zephyr

This synchronization example is written in C++, and it demonstrates the synchro-
nization between two threads. According to the description, this sample also demon-
strates the basic sanity of the kernel.
The example can be found under samples/cpp_synchronization folder in Zephyr

tree.
The application has a main and a secondary thread. Each of them outputs a text

containing ’Hello World!’ in an infinite loop. It uses semaphores to avoid mixed
output, and printk function is called in a critical section. Listing 6.6 shows the
output from the application running in QEMU.

Listing 6.6: QEMU UART output from socat
$ socat - UNIX:/tmp/nrf51_beef.sock
***** Booting Zephyr OS 1.14.0 *****
Create semaphore 0x20000084
Create semaphore 0x20000070
main: Hello World!
coop_thread_entry: Hello World!
main: Hello World!
coop_thread_entry: Hello World!
main: Hello World!
coop_thread_entry: Hello World!
main: Hello World!
...

6.2.8 Exp8: Entropy Example from Zephyr

This example demonstrates the use of entropy functions. The use of these functions
is the same on other supported boards. When it is compiled for the nRF51 platform,
the driver implementation uses the RNG peripheral. The program outputs nine
random numbers on the screen every second. This example can be found under
samples/drivers/entropy folder in Zephyr Tree. Listing 6.7 shows the output
from the virtual board.

41

6. Evaluation

Listing 6.7: QEMU UART output from socat
$ socat - UNIX:/tmp/nrf51_beef.sock
***** Booting Zephyr OS 1.14.0 *****
Entropy Example! arm
entropy device is 0x20000edc , name is ENTROPY_0
0xf5 0xa8 0x2e 0x11 0x78 0x85 0xb3 0xc2 0x66
0xf9 0x26 0x4a 0x06 0x95 0xfd 0xc4 0x25 0x11
...

6.2.9 Exp9: Fibonacci Benchmark Test & Analysis

This test runs the Fibonacci calculation function in order to calculate the Fibonacci
number at the 47th position in the sequence for 50000 times. This test is performed
under the Zephyr OS for its simplicity so that the operating system does the required
peripheral configuration. Listing A.5 shows the source code used in the experiment.
Listing A.6 and Listing A.7 show the assembly output for the ’main’ and ’fib’
function.
The purpose of this experiment is to calculate the amount of average time spent

per instruction. Note that each instruction has a different execution time. There
are many reasons for that difference such as CPU cache, SRAM access, size of the
registers used in the instruction. Listing 6.8 and Listing 6.9 show the output from
QEMU and the nRF51 hardware.

Listing 6.8: QEMU UART output from socat
$ socat - UNIX:/tmp/nrf51_beef.sock
***** Booting Zephyr OS 1.14.0 *****
start
fib (47) = 2971215073
ns spent :1007080

Listing 6.9: nRF51 UART output from minicom
***** Booting Zephyr OS 1.14.0 *****
start
fib (47) = 2971215073
ns spent :2653381347

In Listing A.6, there are 21 instructions. Since that function contains a loop, the
total executed number of instructions is 596 in a single call. The Fibonacci function
is called 50000 times from the ’main’ function, and there are six instructions overhead
for the loop and the call to fib function. So for this experiment, approximately
(596 + 6) ∗ 50000 = 30100000 instructions are executed between the start and stop
time.

42

6. Evaluation

Table 6.6: Average time spent per instruction.

Platform QEMU nRF51
Total Time (ns) 1007080 2653381347
Avg./instr. (ns) 0.334 88.152

The measurements will be the same with insignificant differences in time on the
hardware. In QEMU, it is possible to see variable results, depending on the other
processes working under the host operating system. According to these results,
QEMU runs the code 2634 times faster than the hardware.

6.2.10 Exp10: RADIO Test

This experiment sends a packet from one node to another one in the network. The
test can be found in the nRF51 SDK under examples/peripheral/radio folder.
There are two applications, a transmitter, and a receiver, that should be run for
this test. The transmitter program waits for a button to be pressed. This action is
simulated by sending artificial GPIO events. After the transmitter receives a GPIO
event, it sends the packet using the RADIO peripheral. The receiver application
waits for the packet arrival event. When the two programs are run at the same
time with an emulated GPIO input, the data that is being sent can be observed in
the router script output. Listing 6.10 shows the output from the transmitter, and
Listing 6.11 shows the output from the receiver.

Listing 6.10: QEMU transmitter UART output from minicom
Press Any Button
The packet was sent
The contents of the package was 1

Listing 6.11: QEMU receiver UART output from minicom
Wait for first packet
Packet was received
The contents of the package is 1

In Listing 6.12 we can see the entire contents of the packet that was sent over UDP
socket. It contains the UDP packet header, RADIO packet header, and the actual
content. The last byte represents the relevant data sent over the RADIO interface in
this experiment. The RADIO and Bluetooth packets may contain some protocol–
specific headers. It is possible to configure the length of header fields when the
Bluetooth protocol is not used. Therefore, applications using the RADIO interface
can have less data overhead.

43

6. Evaluation

Listing 6.12: Router Script Output
new client seen: (’127.0.0.1 ’, 55743)
Client ID: 0xface
new client seen: (’127.0.0.1 ’, 58463)
Client ID: 0xbeef
mode: 0
sending to: (’127.0.0.1 ’, 55743)

(’127.0.0.1 ’, 58463):
01 00 00 03 01 00 01 |

6.2.11 Exp11: RADIO Test with Zephyr Bluetooth Stack
Zephyr OS provides an open–source Bluetooth stack and allows developers to create
Bluetooth enabled applications. Few sample applications come with Zephyr OS
showing how to use the Bluetooth stack.
For this experiment, the most suitable application is the heart rate sensor example

program. The samples can be found under samples/bluetooth/central_hr and
samples/bluetooth/peripheral_hr in the Zephyr project folder.
The peripheral_hr application acts as a heart rate monitor device and sends

random measurements over Bluetooth protocol. The other application, central_hr
acts like a central device which can be a computer or a mobile phone in this case.
It connects to the heart rate monitor device and reports measurings. In this experi-
ment, virtual devices are able to detect each other and try to establish a connection.
However, they fail to establish a connection and report/read measurements. Further
analysis showed that the TIMER and the RTC implementations are not accurate
enough to schedule interrupt events. The ’ticker’ module in Zephyr OS checks the
RTC counter and the last compare value that was set for a future compare event.
If the difference is more than 3 ticks it tries to reconfigure the RTC device to avoid
setting an event for a past time. In the case of an incorrect RTC configuration, the
expected compare event will occur when the RTC timer overflows and reaches the
expected counter value. It means that the event will occur in several hours while it
is expected in 50 milliseconds. There are a few reasons for this issue. The imple-
mentation uses QEMU timers. They are not able to interrupt the execution of the
guest system like the hardware modules. They are highly accurate but because of
the nature of QEMU and translation blocks, it is not always possible to interrupt the
virtual CPU execution at the exact moment. Translation blocks may contain more
than one guest instructions and execution is only interrupted when the block execu-
tion is complete. In addition to that, there is an emulation overhead. QEMU runs
an event loop, does some checks, runs other peripherals and other QEMU timers
if requested. This deviation is not always observed. The reasons mentioned above
can be observed in a non-deterministic manner. For example, other applications
running in the host system may also affect this behavior.
While running two programs, we can observe their output and the data trans-

mitted between them. Listing 6.13 shows the output from the heart rate monitor

44

6. Evaluation

device. It tries to establish a connection but fails with reason 62. According to
Bluetooth Specification v4.0 [31] error code 0x3E means ’CONNECTION FAILED
TO BE ESTABLISHED’.

Listing 6.13: peripheral_hr sample output
***** Booting Zephyr OS 1.14.0 *****
Bluetooth initialized
Advertising successfully started
[00:00:00.097 ,961] <inf > bt_hci_core : HW Platform : Nordic Semiconductor (0 x0002)
[00:00:00.098 ,022] <inf > bt_hci_core : HW Variant : nRF51x (0 x0001)
[00:00:00.098 ,175] <inf > bt_hci_core : Firmware : Standard Bluetooth controller (0 x00) Version 1.14 Build 0
[00:00:00.099 ,273] <inf > bt_hci_core : Identity : eb :96:87: a4:a8:ac (random)
[00:00:00.099 ,334] <inf > bt_hci_core : HCI: version 5.0 (0 x09) revision 0x0000 , manufacturer 0 x05f1
[00:00:00.099 ,365] <inf > bt_hci_core : LMP: version 5.0 (0 x09) subver 0 xffff
Connected
Disconnected (reason 62)

Listing 6.14 shows the output from the central_hr device. It shows information
about the discovered device but again, it fails with the same reason.

Listing 6.14: central_hr sample output
***** Booting Zephyr OS 1.14.0 *****
Bluetooth initialized
Scanning successfully started
[00:00:00.071 ,716] <inf > bt_hci_core : HW Platform : Nordic Semiconductor (0 x0002)
[00:00:00.071 ,807] <inf > bt_hci_core : HW Variant : nRF51x (0 x0001)
[00:00:00.071 ,929] <inf > bt_hci_core : Firmware : Standard Bluetooth controller (0 x00) Version 1.14 Build 0
[00:00:00.073 ,852] <inf > bt_hci_core : Identity : eb :96:87: a4:a8 :16 (random)
[00:00:00.073 ,913] <inf > bt_hci_core : HCI: version 5.0 (0 x09) revision 0x0000 , manufacturer 0 x05f1
[00:00:00.073 ,944] <inf > bt_hci_core : LMP: version 5.0 (0 x09) subver 0 xffff
[DEVICE]: eb :96:87: a4:a8:ac (random), AD evt type 0, AD data len 11, RSSI -67
[AD]: 1 data_len 1
[AD]: 3 data_len 6
Connected : eb :96:87: a4:a8:ac (random)
Discover complete
Disconnected : eb :96:87: a4:a8:ac (random) (reason 62)
[DEVICE]: eb :96:87: a4:a8:ac (random), AD evt type 0, AD data len 11, RSSI -67
[AD]: 1 data_len 1
[AD]: 3 data_len 6
Connected : eb :96:87: a4:a8:ac (random)
Discover complete
Disconnected : eb :96:87: a4:a8:ac (random) (reason 62)

The router script output also shows the entire packet conversation between the
devices. Figure 6.15 shows a single Bluetooth packet that contains the heart rate
monitor device name, including the UDP packet header. When this sample program
is run on the hardware, other Bluetooth enabled devices can list this device as
’Zephyr Heartrate Sensor’.

Listing 6.15: Router script output for the heart rate monitor sample program
...
(’127.0.0.1 ’ , 59802):
01 00 00 27 01 03 44 1f | . . . ’ . . D .
ac a8 a4 87 96 eb 18 09 |
5a 65 70 68 79 72 20 48 | Z e p h y r H
65 61 72 74 72 61 74 65 | e a r t r a t e
20 53 65 6e 73 6f 72 00 | S e n s o r .
00 00 00 | . . .
mode: 3
sending to: (’127.0.0.1 ’ , 60138)
...

45

6. Evaluation

6.3 QEMU Resource Usage

As expected, QEMU performs better on an average desktop computer since the
platform being emulated is a low–power embedded device.
The host uses 100% of a single CPU core on the host platform if the embedded

program does not have any methods to pause execution on the microprocessor when
not needed. This approach causes unnecessary power consumption on any embedded
platform. In general, each embedded program is designed to run a main loop.
Even if the main loop is empty, the instructions are still executed. In an emulated
environment, the behavior will not change. An empty loop will still be executed,
but faster this time. The reason is that QEMU will always try to utilize the CPU
at the highest rate, even if it exceeds the actual target hardware speed. If the guest
CPU is suspended, QEMU will not execute any guest instructions.
The test programs in this chapter use the WFI instruction to wait for an interrupt in

the delay function. WFI stands for wait for interrupt, and it suspends the execution
by stopping the clock until an interrupt is raised. It is a tradition to use similar
techniques to save power on an embedded device. If an embedded program keeps
running when not needed, it will exhaust the host CPU as well, and this is not
an implementation–specific behavior. QEMU simply keeps running the emulation.
Observing 100% CPU usage on the host is an indication of inefficient program design
in terms of power consumption unless it is intentional.
When the WFI instruction is used in guest applications, the CPU usage is usually

less than 1% on the host. Periodic timer implementation in QEMU can cause higher
CPU consumption up to 10% when the RTC or the TIMER module is used at high
frequency in some cases.
Memory consumed by QEMU is reported as 8 MB by the operating system (macOS

10.13). The virtual machine implementation does not allocate any dynamic memory.
More test programs are publicly available on GitHub [32].

6.4 Hardware and Virtual Environment Compar-
ison

Real hardware and virtual hardware can behave differently. Many factors are affect-
ing this. Some examples:

• The host can perform faster operations and can act faster upon a request. For
example, ECB encryption is relatively faster and does not allow the operation
to be stopped in QEMU because an ECB operation is completed in a single
cycle from the guest machine’s perspective.

• The host is not affected by the environment and does not truly emulate the
physical world. For example, electrical issues cannot be simulated; a cold or
hot environment cannot be simulated.

• Some differences can be observed when faults occur on the real hardware as
this implementation does not simulate any hardware errors.

46

6. Evaluation

6.5 Discussion
The fundamental purpose of this project has been to emulate the nRF51 platform
in QEMU, and understand the issues with IoT emulation. In most cases, perfor-
mance can be sacrificed to find and solve the defects in the application code. The
experimental results suggest that the implementation provides a fast and convenient
way to emulate nRF51 applications. Some cases can negatively affect the emula-
tion, such as GPIO synchronization where the application suffers from a substantial
performance penalty, but it is possible to reduce these issues with slightly different
techniques.
The work conducted so far shows that it is feasible to use a virtual environment for

development and debugging. According to the experimental results, implemented
functionalities fulfill the expected outcome. The guest machine can use all the
implemented functionalities through the SDK API.
The RTC and the TIMER modules require higher accuracy. QEMU itself has a

timer implementation which depends on the host operating system. For that reason,
nRF51 emulation fails to meet the real–time requirements, and some programs may
break. QEMU is faster than the nRF51 platform but any context switch on the host
operating system can introduce delays. Since the host timer does not stop during this
kind of event, it affects the guest’s execution as well. QEMU has different threads for
various tasks such as the main event loop, timer handlers, file descriptor handlers,
and guest read/write operations. In some places, it is required to use mutexes to
avoid corrupting data structures and saving invalid values. Therefore one thread
can block another one. These events may cause very small delays for the timer
implementation. Several different solutions were tried, such as moving the TIMER
and the RADIO implementation into dedicated threads, reducing background tasks
on the host, using different host timer sources. There are other ideas that require
testing:

• Running QEMU under a real–time operating system.
• Pinning the QEMU process into a single CPU core and disabling the execution

of other programs on the same core.
• Implementing a custom timer in QEMU that runs in sync with the guest

processor.
Although results support the expected outcome, some bugs have been discovered

during testing. That means, more time needs to be invested in testing. As this
project contributes to the open–source community, it will be available to everyone,
and there is a high chance that people will contribute by using it for learning,
development, or any other purpose. The increased amount of users would also help
with finding bugs.
QEMU heavily depends on the community. It does not have any documentation,

but it has mailing lists and many developers. All patches are submitted to mailing
lists, so this is also a possibility to submit this project to the main QEMU repository.

47

6. Evaluation

48

7
Conclusion and Future Work

7.1 Conclusion
All the work done so far shows that QEMU can support IoT projects in many aspects
and improve productivity for embedded system developers. It is a widespread prac-
tice to evaluate computer software using virtual systems. Embedded systems have
more limitations compared to desktop software; therefore, it is more challenging to
work with IoT. The emulation of an embedded device extends our possibilities for
debugging and testing. Developers and engineers become free from physical chal-
lenges. In turn, they can invest more time in development. Virtual systems give us
an ability to automate all the steps required in a software development cycle.
This project focused on the nRF51 platform to show that it is possible and fea-

sible to use emulation for IoT by providing implementation and running binaries
in QEMU targeting nRF51 boards. For this project, it is safe to say that there
are no concerns about the performance penalty by looking at the execution time
comparison of physical and virtual systems.
QEMU provides a remote GDB interface that allows users to observe and manip-

ulate the execution directly on the virtual CPU. It gives access to the memory and
CPU registers as well and removes the need for having a microprocessor debugger.
QEMU is a project with a long history and has substantial support in the field. It

does not focus on IoT entirely, but it supports dozens of embedded devices. People
still do not use it much for IoT projects. That might be a result of the lack of
complete support for target devices, but this project intends to change this view.

7.2 Future Work
In this project, most efforts were spent on the implementation and necessary eval-
uation of functionalities. There is a considerable need for evaluation with advanced
IoT projects. Such projects can help us pinpoint the possible behavioural differences
between a real and a virtual system. Since an embedded system is mostly used for
controlling and communicating with other systems, real–world projects that include
a network of devices would help to understand what parts to improve.
At this point, there are a few things that require a better solution:
• Virtual Inter–Device Communication: This part relies on UDP communica-

tion. It is likely to lose some synchronization info during execution. TCP
would avoid this problem, but it is still susceptible to performance degrada-
tion in case of frequent state changes. Another problem is that this method

49

7. Conclusion and Future Work

cannot provide an accurate simulation of I/O in terms of timing. It is possible
to use inter–process communication and run all instances of QEMU in sync
so that all virtual devices execute one CPU cycle at a time. This method
would limit the possibility of using separate hosts for multiple virtual devices,
but that is not necessary for the nRF51 platform because an average desktop
computer already provides enough processing power to run multiple virtual
machines in parallel.

• Power Statistics: Power consumption is quite critical for small–scale devices.
Therefore, it would be possible to provide statistics by simulating processor
and peripheral sleep states as well.

• Physical Interaction: QEMU and other similar host applications can take con-
trol of peripherals on the host and assign them to the guest system. For
example, it is possible to interact with an external UART interface on the
host, but it would be a significant improvement to do the same for an exter-
nal Bluetooth interface and transmit physical radio packets from the virtual
system.

• Full Peripheral Emulation: Some peripherals or functionalities were excluded
from the project. For example, it is possible to read ADC value, but on the
hardware, it depends on the physical voltage input and the voltage configura-
tion. It is possible to simulate that as well.

7.3 Ethics and Sustainability
The number of IoT devices has been exponentially increasing in the last decade.
That said, each day lots of devices are manufactured and sold around the world.
This project will allow people to test their programs and try the development board
out without buying it, thus reducing the number of chips produced. The nRF51
chip alone is relatively small but a development board contains many other side
products.
During the process of a single microchip production, a considerable amount of

different chemicals and fuel is used in many steps such as photoresist, washing,
and etching. Therefore, emulators and similar applications may help us reduce the
impacts we have on the environment.
Regarding the ethical perspective, equality of opportunity is required in every area

of our lives. Whether it is for education or hobby, not every individual has access
to the required tools such as development kits and debuggers in order to learn IoT
systems. An open–source project like this will be available to anyone for learning
and performing experiments without any physical equipment.
This project, may or may not have negative effects on the business of Nordic

Semiconductor. Since the company also manufactures the nRF51 development kit,
this emulator may reduce the number of boards sold in the long run. Assuming that
the development kits are only a small fraction of the company profit, some trade-off
should be made for the reasons mentioned above.
On the other hand, this project can reach more people and let them learn about

Nordic Semiconductor chips, resulting in more product designs that use the nRF51
platform.

50

Bibliography

[1] I. Pogarcic, D. Krnjak, and D. Ozanic, “Business Benefits from the Virtualiza-
tion of an ICT Infrastructure,” International Journal of Engineering Business
Management, vol. 4, p. 42, 2012.

[2] Fabrice Bellard, “QEMU, a Fast and Portable Dynamic Translator.”
https://www.usenix.net/legacy/events/usenix05/tech/freenix/full_
papers/bellard/bellard.pdf, 2005.

[3] “QEMU ARM Platform Documentation.” https://wiki.qemu.org/
Documentation/Platforms/ARM, 2019.

[4] “Towards a Definition of the Internet of Things (IoT).” https://iot.ieee.
org/definition.html, 2015.

[5] F. X. Ming, R. A. A. Habeeb, F. H. B. Md Nasaruddin, and A. B. Gani, “Real-
Time Carbon Dioxide Monitoring Based on IoT & Cloud Technologies,” in
Proceedings of the 2019 8th International Conference on Software and Computer
Applications, ICSCA ’19, (New York, NY, USA), pp. 517–521, ACM, 2019. URL
http://doi.acm.org/10.1145/3316615.3316622.

[6] “ESP8266 Overview.” https://www.espressif.com/en/products/hardware/
esp8266ex/overview, 2019.

[7] “Getting Started Developers.” https://wiki.qemu.org/index.php/
Documentation/GettingStartedDevelopers#Getting_to_know_the_code,
2019.

[8] Y. M. P. Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama, and C. Rossow,
“IoTPOT: Analysing the Rise of IoT Compromises,” in Proceedings of the
9th USENIX Conference on Offensive Technologies, WOOT’15, (Berkeley,
CA, USA), pp. 9–9, USENIX Association, 2015. URL http://dl.acm.org/
citation.cfm?id=2831211.2831220.

[9] S. Brady, A. Hava, P. Perry, J. Murphy, D. Magoni, and A. O. Portillo-
Dominguez, “Towards an emulated IoT test environment for anomaly detection
using NEMU,” in 2017 Global Internet of Things Summit (GIoTS), pp. 1–6,
June 2017. URL https://ieeexplore.ieee.org/document/8016222.

[10] D. Ferraretto and G. Pravadelli, “Simulation-based Fault Injection with QEMU
for Speeding-up Dependability Analysis of Embedded Software,” J. Electron.
Test., vol. 32, pp. 43–57, Feb. 2016. URL http://dx.doi.org/10.1007/
s10836-015-5555-z.

[11] “nRF51 Series Reference Manual.” https://infocenter.nordicsemi.com/
pdf/nRF51_RM_v3.0.pdf, 2019.

[12] A. Charif, G. Busnot, R. Mameesh, T. Sassolas, and N. Ventroux, “Fast Virtual
Prototyping for Embedded Computing Systems Design and Exploration,” in

51

https://www.usenix.net/legacy/events/usenix05/tech/freenix/full_papers/bellard/bellard.pdf
https://www.usenix.net/legacy/events/usenix05/tech/freenix/full_papers/bellard/bellard.pdf
https://wiki.qemu.org/Documentation/Platforms/ARM
https://wiki.qemu.org/Documentation/Platforms/ARM
https://iot.ieee.org/definition.html
https://iot.ieee.org/definition.html
http://doi.acm.org/10.1145/3316615.3316622
https://www.espressif.com/en/products/hardware/esp8266ex/overview
https://www.espressif.com/en/products/hardware/esp8266ex/overview
https://wiki.qemu.org/index.php/Documentation/GettingStartedDevelopers#Getting_to_know_the_code
https://wiki.qemu.org/index.php/Documentation/GettingStartedDevelopers#Getting_to_know_the_code
http://dl.acm.org/citation.cfm?id=2831211.2831220
http://dl.acm.org/citation.cfm?id=2831211.2831220
https://ieeexplore.ieee.org/document/8016222
http://dx.doi.org/10.1007/s10836-015-5555-z
http://dx.doi.org/10.1007/s10836-015-5555-z
https://infocenter.nordicsemi.com/pdf/nRF51_RM_v3.0.pdf
https://infocenter.nordicsemi.com/pdf/nRF51_RM_v3.0.pdf

Bibliography

Proceedings of the Rapid Simulation and Performance Evaluation: Methods
and Tools, RAPIDO ’19, (New York, NY, USA), pp. 3:1–3:8, ACM, 2019. URL
http://doi.acm.org/10.1145/3300189.3300192.

[13] “QEMU ARM Platforms.” https://wiki.qemu.org/Documentation/
Platforms/ARM, 2019.

[14] “QEMU with an STM32 Microcontroller Implementation.” https://github.
com/beckus/qemu_stm32, 2019.

[15] “Tricore VX Software Development Tools.” https://www.tasking.com/
products/tricore-vx-software-development-tools, 2019.

[16] “Hightec.” https://hightec-rt.com/, 2019.
[17] “iSYSTEM winIDEA.” https://www.isystem.com/products/software/

winidea.html, 2019.
[18] “Trace32.” https://www.lauterbach.com/frames.html?download_trace32.

html, 2019.
[19] B. L. Titzer, D. K. Lee, and J. Palsberg, “Avrora: Scalable Sensor Network

Simulation with Precise Timing,” in Proceedings of the 4th International Sym-
posium on Information Processing in Sensor Networks, IPSN ’05, (Piscataway,
NJ, USA), IEEE Press, 2005.

[20] “Contiki OS.” http://www.contiki-os.org/, 2019.
[21] K. Roussel, Y.-Q. Song, and O. Zendra, “Using Cooja for WSN Simulations:

Some New Uses and Limits,” in Proceedings of the 2016 International Confer-
ence on Embedded Wireless Systems and Networks, EWSN ’16, (USA), pp. 319–
324, Junction Publishing, 2016. URL http://dl.acm.org/citation.cfm?id=
2893711.2893790.

[22] J. Eriksson, F. Österlind, N. Finne, A. Dunkels, N. Tsiftes, and T. Voigt,
“Accurate Network-Scale Power Profiling for Sensor Network Simulators,” in
Proceedings of the 6th European Conference on Wireless Sensor Networks,
EWSN ’09, (Berlin, Heidelberg), pp. 312–326, Springer-Verlag, 2009. URL
http://dx.doi.org/10.1007/978-3-642-00224-3_20.

[23] “TINA.” https://www.tina.com/, 2019.
[24] H. Li, X. Xu, J. Ren, and Y. Dong, “ACRN: A Big Little Hypervisor for IoT De-

velopment,” in Proceedings of the 15th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments, VEE 2019, (New York, NY,
USA), pp. 31–44, ACM, 2019. URL http://doi.acm.org/10.1145/3313808.
3313816.

[25] A. Varga, “The OMNET++ discrete event simulation system,” Proc.
ESM’2001, vol. 9, 01 2001.

[26] A. Varga and R. Hornig, “An Overview of the OMNeT++ Simulation Envi-
ronment,” in Proceedings of the 1st International Conference on Simulation
Tools and Techniques for Communications, Networks and Systems & Work-
shops, Simutools ’08, (ICST, Brussels, Belgium, Belgium), pp. 60:1–60:10, ICST
(Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering), 2008.

[27] “OMNeT++.” https://omnetpp.org/.
[28] “nRF51 Extension for QEMU.” https://github.com/gvarol/qemu, 2019.
[29] “OpenMPI Project.” https://www.open-mpi.org, 2019.

52

http://doi.acm.org/10.1145/3300189.3300192
https://wiki.qemu.org/Documentation/Platforms/ARM
https://wiki.qemu.org/Documentation/Platforms/ARM
https://github.com/beckus/qemu_stm32
https://github.com/beckus/qemu_stm32
https://www.tasking.com/products/tricore-vx-software-development-tools
https://www.tasking.com/products/tricore-vx-software-development-tools
https://hightec-rt.com/
https://www.isystem.com/products/software/winidea.html
https://www.isystem.com/products/software/winidea.html
https://www.lauterbach.com/frames.html?download_trace32.html
https://www.lauterbach.com/frames.html?download_trace32.html
http://www.contiki-os.org/
http://dl.acm.org/citation.cfm?id=2893711.2893790
http://dl.acm.org/citation.cfm?id=2893711.2893790
http://dx.doi.org/10.1007/978-3-642-00224-3_20
https://www.tina.com/
http://doi.acm.org/10.1145/3313808.3313816
http://doi.acm.org/10.1145/3313808.3313816
https://omnetpp.org/
https://github.com/gvarol/qemu
https://www.open-mpi.org

Bibliography

[30] “Zephyr Project.” https://zephyrproject.org/, 2019.
[31] “Bluetooth Core Specification V4.0, Volume 2, p. 355.” https://www.

bluetooth.com/specifications/archived-specifications.
[32] “nRF51 Tests.” https://github.com/gvarol/nrf51test, 2019.

53

https://zephyrproject.org/
https://www.bluetooth.com/specifications/archived-specifications
https://www.bluetooth.com/specifications/archived-specifications
https://github.com/gvarol/nrf51test

Bibliography

54

A
Test Code

Listing A.1: LED Blinker
/* Modified version of ’Blinky ’ example from NRF51 SDK */
void delay(uint32_t cnt)
{

for (volatile uint32_t i = 0; i < cnt; i++)
{

__asm("nop");
__asm("nop");
__asm("nop");
__asm("nop");
__asm("nop");
__asm("nop");

}
}

int main(void)
{

/* Configure board. */
bsp_board_leds_init ();

/* Toggle LEDs. */
while (true)
{

for (int i = 0; i < LEDS_NUMBER; i++)
{

bsp_board_led_invert(i);
delay (20000000);

}
}

}

I

A. Test Code

Listing A.2: GPIO Test with RTC Module
int main(void)
{

uint32_t err_code;
const app_uart_comm_params_t comm_params =

{
RX_PIN_NUMBER ,
TX_PIN_NUMBER ,
RTS_PIN_NUMBER ,
CTS_PIN_NUMBER ,
APP_UART_FLOW_CONTROL_ENABLED ,
false ,
UART_BAUDRATE_BAUDRATE_Baud115200

};
APP_UART_FIFO_INIT (& comm_params ,

UART_RX_BUF_SIZE ,
UART_TX_BUF_SIZE ,
uart_error_handle ,
APP_IRQ_PRIORITY_LOWEST ,
err_code);

APP_ERROR_CHECK(err_code);

printf("system␣start\r\n");
leds_config ();
lfclk_config ();
rtc1_config (); // RTC1 is used for the delay function .
gpio_init ();

// LED_1 will be ON (polarity setting)
nrf_gpio_pin_clear(BSP_LED_1);

for (;;)
{

printf("pin␣toggle\r\n");
nrf_gpio_pin_toggle(BSP_LED_0);
delay_tick(blink_delay); // blink_delay is 100 ticks

}
}

II

A. Test Code

Listing A.3: UART Hex Echo
int main(void)
{

uint32_t err_code;
const char hex[] = "0123456789 abcdef";

const app_uart_comm_params_t comm_params =
{

RX_PIN_NUMBER ,
TX_PIN_NUMBER ,
RTS_PIN_NUMBER ,
CTS_PIN_NUMBER ,
APP_UART_FLOW_CONTROL_ENABLED ,
false ,
UART_BAUDRATE_BAUDRATE_Baud115200

};

APP_UART_FIFO_INIT (& comm_params ,
UART_RX_BUF_SIZE ,
UART_TX_BUF_SIZE ,
uart_error_handle ,
APP_IRQ_PRIORITY_LOWEST ,
err_code);

APP_ERROR_CHECK(err_code);

printf("system␣start\r\n");
bsp_board_leds_init ();
lfclk_config ();
gpio_init ();

for (;;)
{

static uint8_t pos;
const int c = fgetc(stdin);
const char l = hex[c >> 4];
const char r = hex[c & 0xF];
printf("%c%c␣", l, r);
pos ++;
if ((pos & 0x03) == 0x00)
{

printf("\r\n");
}
nrf_gpio_pin_toggle(BSP_LED_0);

}
}

III

A. Test Code

Listing A.4: Raw Execution
int main(void)
{

uint32_t err_code;

const app_uart_comm_params_t comm_params =
{

RX_PIN_NUMBER ,
TX_PIN_NUMBER ,
RTS_PIN_NUMBER ,
CTS_PIN_NUMBER ,
APP_UART_FLOW_CONTROL_ENABLED ,
false ,
UART_BAUDRATE_BAUDRATE_Baud115200

};

APP_UART_FIFO_INIT (& comm_params ,
UART_RX_BUF_SIZE ,
UART_TX_BUF_SIZE ,
uart_error_handle ,
APP_IRQ_PRIORITY_LOWEST ,
err_code);

APP_ERROR_CHECK(err_code);

printf("system␣start\r\n");
leds_config ();
lfclk_config ();
rtc1_config (); // this rtc is used for delay function .

for (;;)
{

static volatile uint32_t rounds;
rounds ++;
/* performance impact in QEMU */
nrf_gpio_pin_toggle(BSP_LED_0);
if (uptime > 100)
{

printf("Number␣of␣rounds␣in␣"
"empty␣loop:␣%lu\r\n", rounds);

break;
}

}

for (;;) {__WFI ();}
}

IV

A. Test Code

Listing A.5: Fibonacci Experiment
include <stdio.h>
include <zephyr.h>
include <arch/cpu.h>
include <misc/printk.h>

u64_t __attribute__ ((noinline)) fib(volatile int n)
{

u64_t prev = 1;
u64_t cur = 1;
u64_t next = 1;

for (int i = 3; i <= n; ++i)
{

next = cur + prev;
prev = cur;
cur = next;

}
return next;

}
void main(void)
{

u32_t start_time;
u32_t stop_time;
u32_t cycles_spent;
u32_t nanoseconds_spent;
volatile u64_t ret;

printk("start\r\n");
printk("fib (47)␣=␣%u\r\n", (u32_t)fib (47));
/* capture initial time stamp */
start_time = k_cycle_get_32 ();

for (int i = 0; i < 50000; i++)
{

/* do calculation 1000 times */
ret = fib (47);

}

/* capture final time stamp */
stop_time = k_cycle_get_32 ();
cycles_spent = stop_time - start_time;
nanoseconds_spent = SYS_CLOCK_HW_CYCLES_TO_NS(cycles_spent);

printk("ns␣spent:%u\r\n", nanoseconds_spent);

for (;;);
}

V

A. Test Code

Listing A.6: Fibonacci Function Assembly Output
00001 f28 <fib >:
1f28: b573 push {r0, r1, r4, r5, r6, lr}
1f2a: 2100 movs r1, #0
1f2c: 9001 str r0, [sp, #4]
1f2e: 2001 movs r0, #1
1f30: 2603 movs r6, #3
1f32: 0002 movs r2, r0
1f34: 000b movs r3, r1
1f36: 9c01 ldr r4, [sp, #4]
1f38: 42b4 cmp r4, r6
1f3a: da00 bge.n 1f3e <fib+0x16 >
1f3c: bd7c pop {r2, r3, r4, r5, r6, pc}
1f3e: 1812 adds r2, r2, r0
1f40: 414b adcs r3, r1
1f42: 0014 movs r4, r2
1f44: 001d movs r5, r3
1f46: 0002 movs r2, r0
1f48: 000b movs r3, r1
1f4a: 3601 adds r6, #1
1f4c: 0020 movs r0, r4
1f4e: 0029 movs r1, r5
1f50: e7f1 b.n 1f36 <fib+0xe>

VI

A. Test Code

Listing A.7: Fibonacci Experiment main Function Assembly Output

000004 c4 <main >:
4c4: b537 push {r0, r1, r2, r4, r5, lr}
4c6: 4812 ldr r0, [pc, #72]; (510 <main+0x4c >)
4c8: f001 ff11 bl 22ee <printk >
4cc: 202f movs r0, #47 ; 0x2f
4ce: f001 fd2b bl 1f28 <fib >
4d2: 0001 movs r1, r0
4d4: 480f ldr r0, [pc, #60]; (514 <main+0x50 >)
4d6: f001 ff0a bl 22ee <printk >
4da: f000 fb75 bl bc8 <z_timer_cycle_get_32 >
4de: 0005 movs r5, r0
4e0: 4c0d ldr r4, [pc, #52]; (518 <main+0x54 >)
4e2: 202f movs r0, #47 ; 0x2f
4e4: f001 fd20 bl 1f28 <fib >
4e8: 3c01 subs r4, #1
4ea: 9000 str r0, [sp, #0]
4ec: 9101 str r1, [sp, #4]
4ee: 2c00 cmp r4, #0
4f0: d1f7 bne.n 4e2 <main+0x1e >
4f2: f000 fb69 bl bc8 <z_timer_cycle_get_32 >
4f6: 2300 movs r3, #0
4f8: 1b40 subs r0, r0, r5
4fa: 4a08 ldr r2, [pc, #32]; (51c <main+0x58 >)
4fc: 0021 movs r1, r4
4fe: f7ff fe99 bl 234 <__aeabi_lmul >
502: 044b lsls r3 , r1 , #17
504: 0bc1 lsrs r1 , r0 , #15
506: 4319 orrs r1 , r3
508: 4805 ldr r0 , [pc , #20]; (520 <main+0x5c >)
50a: f001 fef0 bl 22ee <printk >
50e: e7fe b.n 50e <main+0x4a >
510: 00002860 .word 0x00002860
514: 00002868 .word 0x00002868
518: 0000 c350 .word 0x0000c350
51c: 3b9aca00 .word 0x3b9aca00
520: 00002877 .word 0x00002877

VII

A. Test Code

Listing A.8: GPIO Test with RTC Module
#include "mbed.h"

DigitalOut led(LED1);

int main ()
{

bool state = true;
while (1) {

led = state;
state = !state;
wait (0.2);

}
}

VIII

	List of Figures
	Introduction
	Problem Statement
	Purpose
	Thesis Outline

	Background
	Internet of Things
	QEMU
	The nRF51 Platform
	Terminology and QEMU Internals
	Terminology
	QEMU Internals

	Discussion
	Development Process
	Strengths and Weaknesses of a Virtual Environment

	Related Work
	QEMU
	Existing Implementations
	Discussion

	TriCore Simulator
	Details
	Discussion

	Avrora
	Details
	Discussion

	Cooja
	Details
	Discussion

	TINA
	Details
	Discussion

	ACRN
	Details
	Discussion

	OMNeT++
	Details
	Discussion

	Design
	Goal
	Approach
	Design Details
	General Purpose Input/Output (GPIO)
	GPIO Tasks and Events (GPIOTE)
	Universal Asynchronous RX/TX (UART)
	AES Electronic Codebook Mode (ECB)
	2.4 GHz Radio (RADIO)
	Analog to Digital Converter (ADC)
	Clock Management (CLOCK)
	Random Number Generator (RNG)
	Real Time Counter (RTC)

	Guest-to-Guest Communication
	Router Script Configuration

	Discussion

	Implementation
	Overview
	QEMU Peripheral Interface
	Discussion

	Evaluation
	Evaluation Method
	Metrics
	Performance Tests
	Functional Tests
	Hardware Setup
	Experiments

	Results
	Exp1: GPIO and RTC Test with LEDs
	Exp2: UART Test
	Exp3: AES Performance
	Exp4: Raw Execution Time
	Exp5: Simple GPIO using mbed Library
	Exp6: Blinky LED Example from Zephyr
	Exp7: CPP Synchronization Example from Zephyr
	Exp8: Entropy Example from Zephyr
	Exp9: Fibonacci Benchmark Test & Analysis
	Exp10: RADIO Test
	Exp11: RADIO Test with Zephyr Bluetooth Stack

	QEMU Resource Usage
	Hardware and Virtual Environment Comparison
	Discussion

	Conclusion and Future Work
	Conclusion
	Future Work
	Ethics and Sustainability

	Bibliography
	Test Code

