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Abstract
Visual Relationship Detection (VRD) is a relatively young research area, where the
goal is to develop prediction models for detecting the relationships between objects
depicted in an image. A relationship is modeled as a subject-predicate-object triplet,
where the predicate (e.g an action, a spatial relation, etc. such as “eat”, “chase”
or “next to”) describes how the subject and the object are interacting in the given
image. VRD can be formulated as a classification problem, but suffers from the
effects of having a combinatorial output space; some of the major issues to overcome
are long-tail class distribution, class overlapping and intra-class variance. Machine
learning models have been found effective for the task and, more specifically, many
works proved that combining visual, spatial and semantic features from the detected
objects is key to achieving good predictions. This work investigates on the use of
distributional embeddings, often used to discover/encode semantic information, in
order to improve the results of an existing neural network-based architecture for
VRD. Some experiments are performed in order to make the model semantic-aware
of the classification output domain, namely, predicate classes. Additionally, different
word embedding models are trained from scratch to better account for multi-word
objects and predicates, and are then fine-tuned on VRD-related text corpora.
We evaluate our methods on two datasets. Ultimately, we show that, for some set of
predicate classes, semantic knowledge of the predicates exported from trained-from-
scratch distributional embeddings can be leveraged to greatly improve prediction,
and it’s especially effective for zero-shot learning.

Keywords: Deep Learning, Natural Language Processing, Computer Vision, Visual
Relationship Detection, Object Detection.
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1
Introduction

1.1 See and speak
Over the past few decades, great advances in Computer Vision (CV) and Natural
Language Processing (NLP) gave rise to new and interesting interesting problems
relating to both fields [2]. The task of automatically generating natural-language
image descriptions is perhaps the most popular of these problems, and it is a great
example of the high potential of models that combine two different kinds of intelli-
gence, namely the ability to see, as in process visual data and identify the content in
some form, and the ability to speak a language and carry out some form of semantic
reasoning. But where, in such multi-intelligent models, is the part that displays a
certain understanding of a picture?
Considering image captioning, for example, it generally involves extracting visual,
non-semantic information from the image (such as the output of a CNN feature
extractor), and using it as the input to a text generation model. Therefore, the first
part of the pipeline only knows how to recognise visual patterns, while the second
one takes care of translating them into meaningful sentences. While drawing some
inspiration from this fashion of combining visual pattern recognition and semantic
reasoning, we choose a slightly different approach for this work: we consider existing
work in a task which mainly relates to computer vision, and explore different ways
of “injecting” semantic knowledge into a model, using a popular technique from the
NLP field.

1.2 Study case
Generally, models that understand the content of an image can be used to tag images
with useful metadata, and are therefore of particular interest for the “findability” of
the image, which is the focus area of the company we are collaborating with for this
thesis project. Imagine we have to index images in a database, such that they are
easily searchable by queries: the user might want to type queries like “pictures of
dogs”, “pictures of gardens” etc. Thus, a first type of metadata that we might want
to tag images with might consist of the depicted objects, for example “horse”, “field”,
“fence”. This requires object detection models, which have been largely improved
in the last decade [39]. The model potentially allows the user to look for images
containing (sets of) objects, e.g “pictures with a dog and a man”.
However, tagging images with objects only may become a bit restrictive: in fact,
what if a user wants to look for pictures with more specific content, like “a dog

1



1. Introduction

Figure 1.1: Example of a scene graph A scene graph is a labeled graph
summarizing the content of an image in terms of objects, object attributes and
pairwise interactions between objects. In the example have four objects (red la-
bels), two of which with an attribute (in blue), and three pairs of objects are in a
relation/interaction (in red). (Source: [19])

chasing a person”? At best, using object detection only, the search system may
preprocess the query, synthetize the desired objects (“dog” and “person”), and base
the search on those. This appoach would only return images containing both dogs
and men, whereas the interaction between them (“chasing”) would be ignored.
At first glance, the difference between an object detector and a detector of objects’
interactions might not seem substantial; but note that, whereas the first one can
only describe the mere presence of things, interactions potentially provide much
more information about the meaning of the overall scene. Therefore, in order to
incorporate a little more semantic information to the scene, one can think of de-
scribing an image by listing both the objects depicted and the existing interactions
between object pairs.

1.3 Visual Relationship Detection (VRD)
The visual content of an image can be summarized in a structured way by means
of a “scene graph” (see an example in Fig. 1.1), namely a graph describing the
depicted scene in terms of objects, their attributes and their pairwise relationships.
In computer vision, the task of predicting an image’s scene graph is often referred
to Scene Graph Generation (SGG). For our purposes, we disregard object attributes
and only focus on the recognition of objects and interactions, a task that goes under
the name of Visual Relationship Detection (VRD) [31].
Understanding object interactions in an image is a crucial step for the understand-
ing of the image, and it’s easy to count many salient tasks that can be achieved or
improved with these kind of models: image captioning, image-based recommenda-
tions, image indexing and retrieval, improved experience for virtual assistants and
accessibility for visually impaired users, etc. Recent years have seen a rising interest
in these fields, especially using machine learning techniques.
Relationships are modeled as triplets involving two objects and a predicate (consist-
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1. Introduction

ing of a verb, a preposition, comparative adjective etc.), and VRD models usually
build upon an object detection step and focus on identifying, for each pair of objects,
the predicates that best describes the relation between them, if any.

1.4 Importance of semantics
Although close to object detection, VRD is heavily hindered by a certain number
of problems, which are discussed in greater detail the next chapter. Recent works
have shown that VRD models exhibit better performance when, along with the
appearance of the detected objects (i.e the visual features), they account for different
kinds of information that one can derive from the detected objects. For example,
an object detection model doesn’t simply localize an object, but also classifies it,
and the predicted object label provides useful information for determining which
relationships the object might be in. For example, if you know that a certain detected
object is a “dog” and a different one is a “person”, then you are more likely to be
give accurate guesses about what the interaction between the two is.
Class labels are an example of useful additional information that can aid the task of
relationship detection, but note that they carry no notion of the objects’ semantics:
in fact, at least in a typical classification setting, a predicted label is no more than
one numeric value instead of another. It stands to reason, however, that predicate
prediction could benefit from knowing how different object categories relate in terms
of their meaning. For example, objects may include “dog”, “person” and “child”,
and a model which knows that a child is more semantically similar to a person than
it is to a dog is more likely to give meaningful predictions.
In order to incorporate semantics, we can revisit NLP, given that it provides a
method for discovering and encoding semantic information: word embeddings. Us-
ing the semantic word embeddings of the detected objects has already been found
effective in improving predicate prediction [20, 23], and in this work, we investigate
further on the use of embeddings for the predicate labels.
Many works, for example, approach the predicate prediction step as a classification
problem, but disregard how different predicates relate with each other, treating each
predicate category as an entity completely independent from the others. However,
this is hardly the case, and the fact that some predicates may be semantically
or visually correlated may be leveraged to improve the quality of the detections.
Indeed, here we experiment with different ways of making VRD models aware of
the semantics of the concerned classes, and we find room for improvement in the
notion that embeddings can be used to also teach models about predicate semantics,
alongside object semantics.
In the following chapter we explain the major challenges in VRD and review the
tools that are commonly used to tackle the problem; in the “Methods” chapter we
present our contributions, together with the implementation tools we used; follows
a chapter with a discussion on the results; finally, the last chapter sums up the
findings and suggests some ideas for further development of this work.

3
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2
Background

This chapter explains visual relationship detection in detail and discusses the exist-
ing approaches to tackle the problem. Most of the work in the field relies on a set
of supervised learning techniques that are introduced in detail the first section.

2.1 Underlying theory
In statistics, classification is the task of predicting which of a set of categories (or
classes) a certain unseen observation belongs to, given a set of observations labeled
with the correct categories. The task is quite relevant for our purposes, in that,
as we’ll see further on, VRD naturally lends itself to be framed as a classification
problem.
Even more relevant to this study is a widespread approach for tackling classification
problems, based on a popular technique used in machine learning: artificial neural
networks. Artificial neural networks (or, more simply, Neural Networks, NNs), are
a well known computational model, at first inspired by a simplistic modeling of
neurons in animal brains. In recent years they gained momentum in a large number
of tasks, not least of which are classification and object detection.
The following sections give an overview of these concepts.

2.1.1 Artificial neural networks
A neural network is a graph-like structure where the nodes, called neurons, represent
basic units of computation, and directed edges define how the information flows from
one neuron to the others. Generally, a neuron has a certain number of incoming
edges, and its job is to apply a simple operation to these, and to pass the output of
the operation to the neighboring neurons through its outgoing edges.

2.1.1.1 Feed-forward NNs

Neurons in a network are generally organized into a stack of n layers, with edges
only running between consecutive layers and in the same direction. This approach
gives a defined order to the computation flow: the output of a neuron layer is input
to the next layer. In this context, each layer represents an independent function,
and the computation workflow can be explained as follows: the input to the net-
work, represented as a vector x, is fed to the first layer (or “input layer”), and the
information is sequentially processed and fed forward by each of the inner layers,
until the last layer ultimately holds the model’s output. This type of network is

5



2. Background

called feed-forward network (see Fig. 2.1), and can be seen as the application of a
sequence of functions:

f(x) = fn(. . . f2(f1(x)) . . .) = (fn ◦ . . . ◦ f2 ◦ f1)(x)

Locally, every layer is defined by a set of parameters that determines how the layer’s
output is computed, given the input. In the simplest case, every neuron (and thus
the layer itself) simply computes an affine transformation of its inputs; in this case,
the output of a layer is defined by a matrix of weights and a vector of biases:

fi(x) = Aix + bi

Note, however, that neural networks in this form are not very “expressive”: in fact,
passing the information through a sequence of layers in such a linear, feed-forward
fashion is equivalent to applying a unique affine transformation:

f(x) = An[. . . A2[A1x + b1] + b2] . . .+ bn = Ãx + b̃

Figure 2.1: Example of a Feed-Forward Neural Network Neurons are orga-
nized into layers, and the values at each layer are simply computed from the values
of the previous one. The first layer represents the input side of the model, and there-
fore has no incoming edges; similarly, the output layer, representing the network’s
output side, has no outgoing edge. (Source: [1])

2.1.1.2 Generalization capability

NNs become powerful with the introduction of non-linear computations; specifically,
when a non-linear function is applied to the output of each layer:

fi(x) = σi(Aix + bi)

For each layer i, σi is called the layer’s activation function. This additional detail
gives NNs their primary theoretical, important feature: an extraordinary general-
ization ability. It is in fact proved that any function of any number of variables and

6



2. Background

output domain size can be approximated with a “big-enough” neural network that
makes use of simple, but non-linear activation functions [13].
Although non-linear, activation functions are not necessarily complex; in fact a gen-
eral requirement is for them to be easily computable. Simple activations (ignoring
the trivial identity function) only perform some form of thresholding; examples are
the step and the sign functions, which output values in {0, 1} and {−1, 0, 1}, ac-
cording to the sign of the neuron’s output. The Rectified Linear Unit (ReLU) is
another simple one; it almost looks linear but it unlocks more expressiveness, and it’s
generally the default choice for inner layers. Sigmoidal functions (e.g logistic, hyper-
bolic tangent) are more sophisticated functions used map the real axis to normalized
ranges (e.g [0, 1]). See some common activation functions in Fig. 2.2.

Figure 2.2: Some popular activation functions Rectified Linear Unit (ReLU),
logistic and hyperbolic tangent.

2.1.1.3 Training

The possibility of generalizing any function, alone, doesn’t straightforwardly make
NNs useful. In fact, while it’s true that for any given task there exists a network with
a correct set of parameters that solves the problem, the existence of an appropriate
neural network brings up a hard problem: computing the correct set of parameters
defining such a network. Unfortunately, a parameter combination lies in a high-
dimensional parameter space (e.g million, billion dimensions), so the problem is not
easily solvable (in fact, it’s NP-hard [3]).
In supervised learning, the method generally used for deriving the appropriate net-
work for a specific job is called training, and comes from the study area of machine
learning. The process requires a dataset of “training samples”, namely set of pairs
(x,y), where x is the input to the model, and y is the desired output; the problem
is then approached as an optimization one: find the combination of parameters that
maximizes the performance of the network on the available training dataset.
The first step is to decide the “shape” of the chosen model; for neural networks: num-
ber of layers, number of neurons per layer, activation functions, etc. The parameters
are then initialized according to some fashion, e.g randomly, and an optimization
procedure (or optimizer) is iteratively applied. The procedure updates the param-
eters in order to minimize an objective function (or loss function), that generally
measures some kind of distance between f(x) and y
Note however that training is nowhere near returning the optimal set of parameters.
In fact, it tackles a problem that is combinatorial by taking greedy steps, so it is
only expected to return local optima. Nonetheless, this tool proved multiple times
to yield extremely good results for many different task: in fact, recent decades

7



2. Background

have seen an explosion in the applications of machine learning, which is essentially
built upon the training procedure. One can also imagine that a globally-optimal
answer might not be desirable, as it could lead to the network not being able to
correctly generalize the “learned notions” (a potential issue known as overfitting on
the available dataset).

2.1.2 Classification with neural networks

As mentioned, training Neural Networks has been found effective for many different
tasks, and classification is a great example. The typical approach when tackling a
multi-class classification problem by neural network training involves the following
design choices:

• The network’s last layer has K neurons, where K is the number of categories;
• The loss function and training process leads the network to output high values

for neurons corresponding to the correct categories.
More specifically, a widespread setup uses a softmax activation function for the last
layer, and a cross-entropy loss function. This coupling is sometimes referred as
“categorical cross-entropy loss” [11], and its goal is to teach the network to output
a likely probability distribution over the K categories.
The softmax function is conceptually equivalent to the application of a sigmoid func-
tion, which squashes the values into the interval [0, 1], followed by a normalization
step that makes sure that the output vector sums up to 1. Mathematically, the
following form is used:

softmax(x)k = exp(xk)∑K
i=1 exp(xi)

The application of this function to the output layer produces a valid probability
distribution over the K categories, while preserving the rank order of the values:
P (k) = softmax(f(x))k

In a single-label classification setup, the desired categorical distribution output by
the network is one where the correct category y has 100% predicted probability, and
the other ones have 0% probability:

Q(k) =

1 if k = y

0 otherwise

Given the output of the network, P , and the desired target, Q, the loss function
is now supposed to penalize P being too different from Q, ultimately leading the
network to output high values for the correct categories. To this end, cross-entropy
is borrowed from information theory, where it is used a measure of distance between

8



2. Background

two probability distributions, and it is here used as a loss function:

CrossEntropyLoss(f(x), y) = −
K∑

k=1
Q(k) · logP (k)

= − log(softmax (f(x)y))

= − log exp [f(x)y]∑K
k=1 exp [f(x)k]

= −f(x)y + log
K∑
k=

exp [f(x)k]

As a side note, for a model that combines softmax with cross-entropy, the minimiza-
tion of the cross-entropy of P and Q is mathematically equivalent to maximizing
the likelihood of the correct labels for the given input.

2.1.2.1 Multi-label classification

A generalization of the multi-class classification problem multi-label classification,
namely when an observation can belong to more than one category. Arithmetically,
the softmax cross-entropy loss can be generalized for multi-label classification [24],
but this is generally not the preferred way of going. The reason behind this has to do
with the fact that softmax silently assumes that categories are mutually exclusive
(i.e the categorization into a given category excludes the categorization into the
others), whereas in fact, multi-label classification removes this constraint.
To show this limitation, consider an input vector x for which two categories are the
correct ones: y = {i, j} (note how y is now a set of ground-truth labels, instead of
a single ground-truth label); since the normalization step in the softmax forces the
output vector to sum up to 1, the scores for the two labels f(x)i and f(x)j will be
competing with each other in order to reach high values and, in the best scenario,
the output distribution will give a probability of 1

2 to both labels. One can imagine
how, with a possibly higher number of co-occurring labels, this “competition effect”
might not be desirable.
A common alternative approach involves considering the output values as the result
of K independent binary detectors, rather than a unique estimator of a categorical
distribution [35]. Similarly to the single-label setup, the desired behavior is for the
network to output values close to 1 for the correct categories, and close to 0 for the
other categories, so the target output is:

Q(k) =

1 if k ∈ y
0 otherwise

The softmax step is replaced with a logistic function, which simply maps the values
to [0, 1], without normalizing the vector: P (k) = logistic(f(x)k). Each score, then,
represents an independent estimate of the probability that an observation belongs
to the respective category, and training each of the K detectors is considered as

9



2. Background

an independent binary classification problem (“belongs/doesn’t belong to the cate-
gory”). To this end, a (binary) cross-entropy loss can be computed for each of the
the K neurons, and then averaged:

BinaryCELoss(f(x), y) = − 1
K

K∑
k=1

[Q(k) · logP (k) + (1−Q(k)) · log(1− P (k))]

= − 1
K

∑
k∈y

logP (k) +
∑
k /∈y

log(1− P (k))


Note that this approach makes the assumption that different categories are not
correlated with each other, so that in the final layer a detector can predict a score
for the respective label independently of the predicted scores for other labels.

2.1.2.2 Convolutional Neural Networks (CNNs)

In recent years, a specific type of feed-forward neural networks, called Convolutional
Neural Networks (or CNNs) have shown great performance at pattern recognition in
data that has a defined sequence or grid-like topology. These have been used for var-
ious fields of computer vision and natural language processing, such as image/video
classification, multi-media compression, object detection, sentiment analysis, topic
categorization [16, 37].
The core feature of CNNs is represented by the presence of a special type of layer,
called convolutional layer; usually, a CNN is a deep network (namely a network
with many layers) consisting of repeated blocks of convolutional, pooling and linear
layers [8].

Convolutional layer The reader will recall how a layer is essentially an oper-
ation being applied to an input vector, and while affine/linear layers (also called
fully-connected) are widely used, one can also think of deploying different opera-
tions. Specifically, convolutional layers build upon the mathematical operation of
convolution, that allows a layer to “seek” for patterns in an n-dimensional input.
A convolutional layer consists of a set of filters, namely small matrices that are
convolved (i.e “slid”) across the input, returning a response map (or “feature map”).
Each filter is responsible for the detection of a pattern; in the case of image analysis,
for example, filters can detect edges, circles, squares, etc, but the learning process
can lead a filter to detect more complex and domain-specific patterns.
Note that, unlike fully-connected layers, where each neuron computes a value as a
function of the entire previous layer, a neuron in a convolutional layer only processes
a fixed-size subarea of the previous layer (known as its “receptive field”). A beneficial
side-effect of this fact is a drastically lower number of layer parameters to be learnt.

Pooling Convolutional layers are often coupled with pooling operations, intro-
ducing some form of data aggregation (e.g max, min, average). The objective of
pooling is to down-sample an input representation, reducing its dimensionality and
potentially enabling more abstract representations.
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Max pooling is perhaps the most popular choice: when convolutional layers are
interweaved with max pooling layers, the output identifies whether a certain pattern
was found in any region of the previous layer. Max pooling layers act as a zoom
out operation, summarizing data regions and overall makes the network invariant
to minor transformations of the input [17].

2.1.2.3 Object detection with R-CNNs

As mentioned, CNNs have been found useful for computer vision tasks, due to their
ability to extrapolate and synthesize useful information from visual data. Nowadays,
there are a certain number of known deep CNN architectures that can be used
as “feature extractors”, which represent the “heavy artillery” with which difficult
computer vision tasks can be coped with. VGG-nets [33] or ResNet [12] are two well-
known feature extractors, for which pre-trained models are also publicly available.
Two tasks of interest where CNNs have been found extremely effective are image
classification and object detection. The two problems are similar but, while the first
task is plain classification of images, the second task involves both the classification
and localization of objects appearing in the images, where an image might contain
more than one object.
The natural approach to object detection might involve classifying many areas of
the image to check whether or not they contain an object, and eventually categorize
them: Region-based CNNs (R-CNNs) are a class of architectures that do something
along these lines. In these models, a region is substantially a box defined by four
coordinates: [

xmin
i ymin

i xmax
i ymax

i

]
The latest model of the R-CNN family (Faster R-CNN [29]) generates a fixed number
of candidate regions, computes the feature vector for each one, and uses the output
to train single-label classifiers, that ultimately predicts the presence of objects and
their label.
In order to compute the feature vectors of the regions, a unique convolutional feature
map is first computed by feeding the entire image to a CNN feature extractor. Then,
the coordinates of the box are used to access a specific area of the feature map, and
the features are derived by applying a special pooling operation. The operation is
called Region-Of-Interest Pooling (ROI Pooling [9]), and it’s substantially a max-
pooling operation, adapted to non-uniform inputs (since the region proposals have
a variable size).

2.1.3 Word embeddings
Any given task in the field of natural language processing involves dealing with
some sort of text corpus. As machine learning algorithms in general are incapable of
dealing with raw strings, the text must first be converted into some sort of numerical
representation. This is where the concept of word embeddings comes in. Simply
put, a word embedding is a numerical vector representation of a word in a given
corpus. When all the words in a given corpus are represented as vectors, they can
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be used by machine learning algorithms for various tasks in NLP such as sentiment
analysis, question answering, chatbots etc.
There are various ways of computing or learning numerical vector representations
of different words in a given corpus. For instance, given a supervised learning task,
the embeddings for words can be learnt as part of training the whole model. Alter-
natively, there exist specific methods where dense vector representations of words
are pre-trained by accounting for their local and/or global statistics in the corpus.
The word embeddings learnt from these methods can then be plugged into various
NLP applications to incorporate their semantic meanings.
The next two sections explain two popular word vector learning techniques that are
used in this work.

2.1.3.1 Word2vec

Word2vec uses a neural network to predict the output word given an input word,
and then adjusts the weights based on the loss computed between the predicted
output word and the actual output word. To do this, data tuples of (input word,
output word) are generated from the entire corpus, where each word is represented
by a one-hot vector. These tuples are created on the basis of target and context
words. Consider the following sentence:

The boy picked up a stone.
If we consider the word in bold here, we can see that the words it is surrounded by;
that is, the context words; can give us some meaningful information about it. This
is the main concept that Word2vec is based upon: If two words appear in similar
contexts, they probably have a similar meaning. For a given word, the number
of context words for it depends upon the window size we define. If we have a
window size of 1 for each side, then only the immediately preceding word (boy) and
immediately following word (up) to the target word will be considered as context
words. If we have a window size of 2, then it means that the two immediately
preceding words (The, boy) and two immediately following words (up, a) to the
target word will be considered as context words. Therefore, the number of context
words for a given target word will be (2 × window size). Window size is a hyper-
parameter for the Word2vec model, and a larger window size usually guarantees
better performance of the model, at the expense of computation time.
Given a context word, we try to predict the target word; this approach is known
as the Continuous Bag of Words (CBOW) model, and it models frequent words
better. Alternatively, given a target word, we can also predict its context words; this
approach is known as the Skipgram model, and it models rare words better. In this
project, we used the CBOW model with hierarchical softmax, and the subsequent
explanation is for this specific architecture.
As mentioned earlier, (target word, context words) tuples are created from the text
data in the corpus. The input context words are fed through an embedding layer to
get their vector representations, the dimensionality of which is (vocabulary size ×
embedding size), where the embedding size is the dimensionality we choose for our
word vectors. The vectors for all the words in our corpus are initialized randomly,
and are then adjusted as part of the learning process. Once we have the vectors of our
input context words, they are summed up to get a single dense vector representation.
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This is then passed through a softmax layer to predict the most likely target word.
The predicted target word is compared with the actual target word to compute the
loss, which is then backpropogated through the network to update the weights in
the embedding layer. This process is repeated for all (target word, context words)
tuples in our dataset for multiple epochs.
The network for the CBOW architecture looks like this:

Figure 2.3: Continuous Bag of Words (CBOW) architecture. (Source: [25])

The softmax formulation of the model looks like this:

F (wt, vc) = P (wt|vc) = exp(V T
wt
· V ′vc

)∑|V |
i=1 exp(V T

wti
· V ′vc

)

where V denotes the embeddings of the target words, and V ′ denotes the sum of the
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embeddings of the context words. The target word embeddings are different from
the context word embeddings; the former is denoted by w and the latter is denoted
by v.
One key difference to note in the implementation of Word2vec that we used (through
the Python library Gensim) is that in place of a regular softmax function, a hierar-
chical softmax function is used. This is because using regular softmax in a setting
where we have thousands or millions of output classes (since the number of classes is
equal to vocabulary size, a byproduct of the fact that in order to get good word em-
beddings, the training is done on huge text corpora), each training sample or batch
requires updating the weights for all output classes, and this can be extremely slow.
The hierarchical softmax function approximates the softmax function through a
Huffman Tree. The Huffman tree in this implementation is a binary tree where the
leaves of the tree are words. These words are organized such that infrequent words
are present at deeper levels of the tree, and frequent words are found at shallower
levels.
The way it works is this: For a given input context vector, it navigates through the
tree until it arrives at a leaf node that contains the target word. Starting from the
root node, a dot product between the context vector and the vector at the root node
is computed, followed by a sigmoid function which gives some value that is mapped
either to 0 or 1. Here, 0 means go into the left sub-tree, and 1 means go into the
right sub-tree. This process is repeated for each subsequent node until we arrive at
the target word leaf node. In this way, considering all possible words is avoided by
instead considering a subset of words while trying to compute the probability of the
target word.
The basic intuition behind this method is thus: If the model needs to learn a very
similar probability distribution for two very similar words like “couch” and “sofa”,
then it is motivated to learn very similar input vectors for those two words.

2.1.3.2 GloVe

As explained in the previous section, Word2vec captures local statistics by gener-
ating (context words, target word) tuples from the corpus, and then using this data
to train a network. In other words, the semantic information contained within the
embedding of any word depends upon its surrounding words. For example, consider
the following sentence:

He cast his gaze on all his people and his land.
Since Word2vec considers local information only, it cannot identify things such as
whether “his” is a special context of the words “gaze”, “people” and “land”, or
whether it is just a stopword.
This is where GloVe [27] comes in. An acronym for Global Vectors, GloVe is an
alternate technique for generating word embeddings which considers both local and
global statistics of a corpus. For capturing global statistics, GloVe makes use of
a co-occurrence matrix. This is a matrix X of dimensionality V x V , where V is
the vocabulary size of the corpus. A certain cell, say row i and column j in the co-
occurrence matrix denoted by Xij tabulates the number of times word i has occurred
with the word j in the corpus.
As an example, consider the following co-occurrence matrix:
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he cast his gaze on all people and land
he 0 1 0 0 0 0 0 0 0
cast 1 0 1 0 0 0 0 0 0
his 0 1 0 1 0 1 1 1 1
gaze 0 0 1 0 1 0 0 0 0
on 0 0 0 1 0 1 0 0 0
all 0 0 1 0 1 0 0 0 0
people 0 0 1 0 0 0 0 1 0
and 0 0 1 0 0 0 1 0 0
land 0 0 1 0 0 0 0 0 0

Table 2.1: Co-occurrence matrix for “he cast his gaze on all his people and his
land” with window size 1

Let Pik denote the conditional probability of seeing word i and k together. This is
computed by dividing the number of times the words i and k have appeared together
- that is, Xik - by the number of times that the word i has appeared with any word
- that is, Xi.

Probability and Ratio k = solid k = gas k = water k = fashion
P (k|ice) 1.9 x 10−4 6.6 x 10−5 3.0 x 10−3 1.7 x 10−5

P (k|steam) 2.2 x 10−5 7.8 x 10−4 2.2 x 10−3 1.8 x 10−5

P (k|ice)/P (k|steam) 8.9 8.5 x 10−2 1.36 0.96

Table 2.2: Co-occurrence probabilities for target words ice and steam with selected
context words (Source: [27])

Keeping this table in mind, we can see that considering the two words steam and
ice, if the third word k (also known as the probe word) is very much related to ice
but not so much to steam, then Pik/Pjk will be very high. The converse is also true;
if the word k is not much related to ice but is very much related to steam, then
Pik/Pjk will have a very low value. If k is unrelated to both ice and steam, then
Pik/Pjk will be quite close to 1. Compared to the raw probabilities, the ratio of
probabilities is better able to distinguish between relevant and irrelevant words, and
also to differentiate between two relevant words. Due to this, the authors of GloVe
[27] use ratios of co-occurrence probabilities. Since this ratio depends upon three
words i, j and k, it can be formulated as follows:

F (wi, wj, vk) = Pik

Pjk

where w and v are two separate embedding layers. According to [27], these two
layers often perform equivalently; however, having two layers helps the model avoid
over-fitting. As for the function F , it is not defined yet, but the possibilities can
be narrowed down by enforcing some conditions. For instance, this function should
encode the information present in the Pik/Pjk ratio, in the word vector space. This
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can be done with vector differences, as vector spaces are inherently linear structures.
This results in

F (wi − wj, vk) = Pik

Pjk

Since the arguments of the function F are vectors (having dimensionality D x 1)
and the right hand side of the equation consists of scalar values, the input of F is
finally adjusted by considering the dot product of the arguments:

F ((wi − wj)T · vk) = Pik

Pjk

(2.1)

Next, the authors assume that if F has the homomorphism property between the
additive and multiplicative groups, the equation then becomes:

F ((wi − wj)T · vk) = F (wT
i · vk)

F (wT
j · vk)

This homomorphism ensures that the subtraction F (A−B) can also be represented
as a division F (A)/F (B) and guarantee the same result. This is then solved by
(2.1), as follows:

F (wT
i · vk) = Pik = Xik

Xi

If it is assumed that F = exp, then the homomorphism property is satisfied.

exp (wT
i · vk) = Pik = Xik

Xi

Applying the logarithm, this gives us:

wT
i · vk = log(Xik)− log(Xi)

Next, the authors note that the term log(Xi) is independent of the term k, and
therefore can be absorbed into a bias bi for wi. Furthermore, by adding in a bias bk

for wk, the equation becomes:

wT
i · vk + bi + bk = log(Xik)

One problem that the authors of Pennington et al. [27] had to contend with at this
point was the scenario where Xik = 0, since log(0) is undefined. To get around this,
the authors proposed a new weighted least squares regression model that addresses
these problems. This gives the cost function of the model, expressed as:

J =
V∑

i,k=1
f
(
Xik

) (
wT

i · vk + bi + bk − log(Xik)
)2

The squared errors between the log counts and the predicted scores are then mini-
mized.
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2.2 Overview of VRD

2.2.1 The problems with VRD
The interest in VRD has been increasing in recent years, but the rise has generally
been hindered by major challenges that make this problem much harder than plain
object detection. The main problem is given by the fact that the relationships space
is much larger than that of objects alone: as previously mentioned, relationships
are modeled as a triplet involving two objects and a predicate, so given N object
categories and M predicate categories the search space is O(N2M).
The combinatorial nature of relationships is a source of many problems. Firstly, un-
like for object detection, it’s unthinkable to use a standard classification framework,
where the network’s output is as big in size as the number of available categories.
An early work [30] certified how, for a small set of 13 relationship triplets and a
balanced dataset, this solution would be effective; However, this approach does not
scale well when relationships are generalized to be a combination of two objects and
a predicate, since that would require a combinatorial number of output neurons:
N2M .
Secondly, a combinatorial number of categories is particularly troublesome for ma-
chine learning techniques, since data availability is crucial to the learning. In fact,
even assuming that a model can comprehend a large number of triplet categories,
no dataset is big enough to exhaustively cover (as in, give enough training samples
for) every possible category.
The need for an appropriate dataset leads to a third problem that has to do with the
nature of interactions: dataset imbalance. In general, even considering small subsets
of objects and predicates, it is expected that, for example, many object pairs are not
going to relate with each other in any (visually) reasonable way. Object categories
are in fact often semantically associated, and even semantically associated with
certain predicates more than others.
As a result, most of the object-predicate-object combinations are not going to be
covered at all, while the covered ones are going to present a “natural” long-tail
frequency distribution; namely, exponentially many samples are going to be given
for a small subset of triplets, and a lower number of samples is going to be given for
most of triplets (e.g see Fig. 3.3).

2.2.2 VRD as a classification task
Different papers describe different architectures for overcoming the problems in
VRD; however, the general trend involves using a pipeline with: 1) a region-based
object detection stage where objects are detected, localized and classified; and 2) a
predicate prediction model that predicts, for every object pair, the predicate(s) that
appropriately describes the relation between pairs of objects.
Let n be the number of detections obtained by the first step, n(n−1) is the number
of potential pairs of objects that could be interacting. Note that the number of
meaningful pairs is often much more sparse; this is why some architectures introduce
an intermediate pair proposal module, estimating the relatedness of object pairs and
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selecting the meaningful ones for the next stage.
A reasonable critique to using object detection as a first step is made in Sadeghi
and Farhadi [30], where the authors argue that the line between the concepts of
“object” and “object composite” (i.e two objects interacting in a visual relation) is
arbitrary; arguably, most of what are generally considered to be objects (e.g person,
dog, table) are in fact composed of simpler objects (e.g hand, torso, eye, dog leg,
table leg) and generally, it may be the case that an object composite is detected with
more accuracy by a designated detector, rather than using lower-level detectors for
the object’s “sub-modules”.
However, at least three counter arguments defend the use of object detectors: 1)
as previously mentioned, training one detector for every single composite is not
scalable; 2) generally, pre-trained models detect objects that are the meaningful
ones (i.e the ones that one would probably want to see in a scene graph) while
disregarding the lower-level objects they are composed of (e.g no use in detecting an
eyelash in a full-body photo of a person); and 3) the objects detected by pre-trained
detectors arguably show much less variability than relationships among the objects
[19]. As a result, relying onto ready-made object detectors may reflect a convenient
trade-off between minimizing the intra-variance in the appearance of objects while
maximizing their relevance.

2.2.3 Evaluation
Accuracy, precision and recall are the most commonly used metrics for evaluating
classification models, and they all essentially measure the percentage of correctly
predicted labels. For example, recall is defined as:

R = # of ground-truth triplets correctly predicted
# of ground-truth triplets

The current state-of-the-art models for VRD/SGG, however, are not sufficiently
performing for these metrics to give appreciable estimates of a model’s quality; in
fact, due to the combinatorial effects mentioned above, predicting a scene graph in
its customary graph form is hard, limitative, and these metrics are currently found
to be too pessimistic. Instead, for these tasks “softened” predictions are made and
more tolerant metrics are used.
A commonly used framework introduced by Johnson et al. [14] involves, for a given
image, sorting all the predicted subject-predicate-object triplets by confidence (e.g
by the probability/score predicted in predicate prediction) and calculating the recall
considering only the top-k predictions:

Rk = # of ground-truth triplets predicted in the top-k confident predictions
# of ground-truth triplets

This metric is denoted as R@k (read “recall at k”), and two established values of
interest are R@50 and R@100.
It is also common in literature to evaluate different abilities of VRD models: two
interesting abilities are predicate prediction (PREDCLS) and relationship detection
(RELCLS) [20, 23, 36, 38]. In predicate prediction, the core classification problem is
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isolated by feeding the ground-truth objects (bounding boxes and labels) as object
detections; that is, the model has perfect knowledge of the depicted objects, so it
only learns to classify their interactions.
This ability alone, however, might not be enough for some real-world scenarios where
the objects are not known. In such cases, a model needs to detect the objects first
with a dedicated sub-module, which may return inaccurate detections. It is then of
interest to measured a model’s ability in detecting relationships with no knowledge
of the objects, that is, considering the image the sole input to the model. Note that
it is possible for a predicate detection model to perform well at predicate detection
while, at the same time, to not be able to “endure” imperfect objects detections.
Refer to Fig. 2.4 for a visualization of the evaluation pipeline.

Figure 2.4: Evaluation pipeline Predicate prediction and relationship detec-
tion are respectively evaluated by using the ground truth objects and the object
detections derived with a pre-trained model. Naturally, due to the error brought
by the object detection step, relationship detection is much harder than predicate
prediction.

As a final remark on evaluation, many works evaluate their models’ ability in de-
tecting unseen relationship triplets (“zero-shot learning”); note that this ability is
particularly relevant, due to the extreme skew of the relationship space.

2.2.4 Literature overview
As mentioned, VRD is split into two sub-problems: object detection and predi-
cate prediction. The object detection stage is usually achieved through off-the-shelf
region-based Convolutional Neural Networks (CNN) (e.g Faster R-CNN [29]). The
model outputs a list of detected objects, each with a bounding box, a predicted label
(or predicted categorical distribution) and a prediction confidence.
For predicate prediction, different works use different inputs to the model. The
primary type of inputs (feature “modalities”) that are usually used are the ones
derivable from the image. The visual features of two interacting objects are usually
derived either by using the computed values from the R-CNN’s inner layers, or with
a dedicated feature extractor.
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However, the visual features alone might not be enough to predict the correct pred-
icate: relationship detection, in fact, does not simply involve some visual pattern
recognition, but also requires different kinds of reasoning (such as spatial or seman-
tic). An early work showed how image captioning can be improved with the aid of
distributional semantics [7]: the authors introduced a “meaning space of relation-
ships”, therefore deriving a model which not only considers the visual appearance of
the objects, but also accounts for a semantically-grounded likelihood of relationships.
Similarly, many more recent works shows how multi-modality is key to predicate
detection: different authors factor in additional features, such as semantic informa-
tion of the objects, and information regarding their spatial arrangement.

2.2.4.1 First use of semantic embeddings

A milestone in VRD is Stanford’s paper “Visual Relationship Detection with Lan-
guage Priors” Lu et al. [23]. After the object detection step (achieved with the
original and obsolete R-CNN model [10]), the authors train two different functions
in scoring each predicate: one accounting for the visual appeareance, and one ac-
counting for the object’s semantics.
The second module involves a function that is learnt by exporting the semantics
from word embedding spaces. The model in used is a popular pre-trained Word2vec
trained on the Google News dataset [25]). A distance function between relationships
is learned, and a ranking loss function used to lead the learning process. Note that
the function then scores predicates based on the objects it occurs with in the dataset,
but due to the semantics, it can be used to compute a likelihood for any possible
relationship; this allows zero-shot learning and alleviates the problems derived from
the inevitable imbalance of datasets.
Through ablation studies, the authors highlight how the semantics module was
crucial for achieving state-of-the-art results, as it allows to derive a semantic space
for relationships.

2.2.4.2 Multi-modals extensions

Many works succeeded in improving the baseline set by the Stanford paper by fac-
toring in spatial features from the objects’ bounding boxes, or by experimenting
with different ways of representing the visual and semantic information.
For instance, Liang et al. [20] experiments with two different ways of incorporating
spatial information. The first idea is to represent the relative distance and orienta-
tion between the two objects using an 8-dimensional feature vector that captures the
relative location of the subject and object boxes, their relative distance, and sizes.
The second idea is to create a two-layer binary matrix spatial mask, where the
bounding boxes are represented with respect to the image frame; this is then down-
sampled to a smaller-size square matrix, and compressed into a lower dimensional
vector using a (learned) CNN. The authors ultimately show that accounting for the
spatial arrangement with any of the two methods improves the model’s accuracy in
identifying the predicates.
They also try different designs for semantic and visual features. For the semantic
features, a pre-trained Word2vec model is used to obtain the semantic embeddings
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of the two objects, which are then concatenated into a single vector. For the vi-
sual features, features from the union bounding box (with some margin) alone are
considered, and experiments show that the model benefits from the additional con-
sideration of features from the individual bounding boxes of the two objects. For
feature extraction, a pre-trained VGG16 extractor [32] is used and ROI Pooling [9] is
applied to the relevant boxes. The visual, semantic and spatial features for objects
are concatenated and fused through two linear layers which finally output non-
normalized scores over the predicates. The predicate prediction network is trained
end-to-end.
Zhu and Jiang [38] ignores the semantic information and only considers visual and
spatial features, in a very similar manner. Instead of using a feature extractor, the
visual features are learnt from inner layers of the object detection’s model (conv5_3 ),
and the multi-modal fusion is done through a fully-connected layer, initialized as
another, different layer from the Faster R-CNN. By means of separate linear layers,
feature-level prediction scores for object, predicate, and subject are computed, and a
unique fully-connected layer is trained to capture the interaction of pairwise labels.
“VRD with Language prior and Softmax” Jung and Park [15] shows how Stanford’s
paper can be improved with the use of a categorical cross-entropy loss; the language
module is framed a similar way, but learnt with cross-entropy loss rather than a cus-
tom loss function. The authors compare different ways of combining the information
from different modules. The two main models (V isual and Linguistic) can be trained
either separately or together, and can either be augmented using the spatial module
or not; when they are trained together, the overall loss function is computed over
the element-wise multiplication of the two feature vectors (softmax(V × L)). The
spatial feature vector is designed considering, among other things, the Intersection
over Union (IoU) of the two objects’ boxes, and the sizes of the two boxes (relative
to the image size). The authors train the predicate prediction model with different
loss functions, using different combinations of visual, spatial and linguistic module.
In Dai et al. [5], Johnson et al. [14], Liao et al. [21] a pair proposal module is intro-
duced as an intermediate step between object detection and predicate identification.
The idea is that a thresholding method can be applied before predicate prediction,
in order to preemptively discard wrong object pairs; as a positive side-effect, this
saves some computational cost.
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The main focus of this work is in improving predicate detection, with particular
focus to teaching the model about the semantics of predicates, as well as improving
the models’ semantic knowledge about objects. In order to do this, a baseline model
based on a pre-existing work is built, and some experiments are performed on it.
The experiments follow two main viewpoints: 1) predicate detection can be improved
by making the model aware of the semantics of the prediction classes, namely the
predicates; 2) word embeddings, the technique in use providing semantic knowledge,
can deliver more precise information if pre-emptively specialized for the task at hand.
In the following sections, we present the baseline architecture, and the ideas for
implementing the two main viewpoints.

3.1 Baseline and implementation details
The baseline architecture is built upon the foundations of Liang et al. [20] (presented
in Section 2.2.4.2). The model (see Fig. 3.1) accepts the image and the object
detections, and performs predicate prediction for all possible pairs. The predicate
prediction module consists of a network that, given an object pair (s, o) (“subject”
and “object” of eventual relationships): 1) computes three different kind of features
(visual, spatial and semantic features) and concatenates them, 2) fuses them through
a fully-connected layer (“fusion layer”) into a 256-dimensional fused feature vector,
and 3) finally passes the fused features to a fully-connected layer (“classification
layer”) that predicts probabilities. ReLU activations are used for every layer, except
for the last one.

fpred_scores(I, (s, o)) = ffc_classification ◦ ffc_fusion
([

Vs,o Ss,o Ls,o

])

Figure 3.1: Baseline architecture chosen for experimentation. (Image from the
original paper [20])
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The training framework is similar to the multi-label classification one described in
Section 2.1.2.1, with the unique exception that the objective function in use is not a
softmax+cross-entropy one, but a margin loss based on Euclidean distance. Rather
than penalizing large gap between an output distribution and a target one, this loss
penalizes short margin between the output scores for the correct labels and those
for incorrect labels. Since it’s based on geometric distances, rather than having a
rationale in information theory, it also causes the output values of the network to
not represent valid probabilities, but generic scores instead.
The model uses a ranking approach described as follows. An image I is fed to a pre-
trained Faster R-CNN model, which derives n object detections. In this context, the
detection of an object i, yields a bounding box bi, a label li, a prediction confidence
ci. Then, for each n(n − 1) candidate pairs (note how it is assumed that objects
do not interact with themselves), the features are computed and scores for the
M predicates are predicted. Overall, this process yields a score for each of the
n(n − 1) ·M candidate triples; the scores are finally ranked, and the R@k metrics
for the image are computed, as described in Section 2.2.3.
The network is trained with the ‘Adam’ optimizer [18], using a learning rate of
10−5, and an L2 regularization term [4] of 0.0001. The metrics show that the model
achieves most of its potential by epoch 4, namely after processing the entire training
set for 4 times.

3.1.1 Visual features

Given a pair of objects (s, o), the visual features consist of the concatenation of
features extracted from both the individual bounding boxes of subject and object,
and from the union bounding box (namely the bounding box of the boxes of subject
and object) with a few pixels of margin: Vs,o =

[
V u

s,o V so
s,o

]
. The process for

computing them goes as follows.
First, the visual features of the image are extracted, using a sequence of 5 fixed-
weights convolutional layers from the backbone of the pre-trained R-CNN model.
Then, ROI Pooling is applied to the image’s feature map using the boxes of the
objects, and the union boxes for each object pair. The results are fed through two
learned fully-connected layers, initialized with weights from VGG16, and a randomly
initialized fully-connected layer.
The features from the union box finally have this expression:

V u
s,o = ffc8 ◦ ffc7 ◦ ffc6 ◦ ROIPool(fVGG-conv(I), union(bs, bo))

The features from the individual objects have a similar formulation, but before being
used they are again concatenated passed through another fully-connected layer:

Vi = ffc8 ◦ ffc7 ◦ ffc6 ◦ ROIPool(fVGG-conv(I), bi)
V so

s,o = ffc_so ◦
[
Vs Vo

]
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3.1.2 Spatial features
Let the bounding box of an object i be a vector:

bi =
[
xmin

i ymin
i xmax

i ymax
i

]
The width and height of the box can be computed as:wi = xmax

i − xmin
i

hi = ymax
i − ymin

i

Given the two objects’ boxes bs and bo, the spatial features are derived from an
8-dimensional vector capturing their relative location, distance, and sizes, fed into
a fully-connected layer. Specifically, the feature vector is composed of 4 terms de-
scribing the relative position of the boxes, and 4 terms describing their relative
size:

Si = ffc_spatial◦
[

xmin
s −xmin

o

wo

ymin
s −ymin

o

ho

xmin
o −xmin

s

ws

ymin
o −ymin

s

hs
log

[
ws

wo

hs

ho

wo

ws

ho

hs

] ]

3.1.3 Semantic features
The semantic features Ls,o from the object pair are computed considering the word
embeddings of the labels of subject and object. Specifically, given an embedding
model E, the two embedding vectors E(ls) and E(lo) are concatenated and fed into
a fully-connected layer. Initially, a pre-trained Word2vec model of dimensionality
300 [25] is used. As explained later in this chapter, experiments are carried out
exploring alternative choices to concatenation and a pre-trained model.

3.1.4 Implementation details
The architecture is implemented in Python 3.6, and makes extensive use of the
PyTorch library (version 1.4), which is one of the most popular ones for machine
learning. Some of the other libraries in use are Spacy, gensim and torchvision.
The implementation is publicly available at: https://github.com/FireSterLine/
interactionwise-vrd/.
The training processes involve a great computational load, but it can be faced
through thread-level parallalization, and through vectorization with the help of
GPUs. In order to train the networks, a Nvidia GeForce RTX 2080 (provided
by Findwise AB) was used, and this allows a training time of 10 to 60 minutes per
model (mainly depending on the dataset in use).

3.2 Datasets
Two popular datasets are used: the “Visual Relationship Dataset” (VRD) and Visual
Genome. The first one, introduced by Lu et al. [23], counts 5K images with 38K
annotated relationships and 7K different relationship triplets, considering a set of
100 object categories and a set of 70 predicate categories.
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Note how the number of triplets covered by the dataset is just around 1% of the
number of potential relationships, namely 1002 · 70 = 700K and, unsurprisingly,
the dataset displays long tails when considering the frequency distribution of both
objects, predicates, and triplets (see Figs. 3.3 and 3.2a). These features refer back
to the combinatorial effects discussed in Sec. 2.2.

(a) Visual Relationship Dataset (VRD)

(b) Visual Genome, 150 50 cleaned cut (VG150,50)

Figure 3.2: Classwise distributions of the samples by objects (left) and
predicates (right) for the two datasets in use The annotated triplets seems to
show great imbalances across both object and predicate categories. Note how the
VG cut shows less skew than VRD.

Although this dataset is a widespread reference, in more recent years the much
bigger Visual Genome dataset [19] gained success, as it did in several other areas
of computer vision. Rather than being tailored for a single task, VG was designed
to be a “general-purpose representation of the visual world”. It contains more than
100K images with exhaustive descriptions of the scenes by means of scene graphs,
region captions, and other structures.
A note should be made about these datasets. The annotations are manually made
by humans, and they supposedly cover relevant objects and relationships; however,
the definition of “relevant” in this context relies on common sense, and often the
annotated graphs can not extensively cover the whole content of an image. This
incompleteness of the annotations is also due by the fact that predicate classes
of these datasets belong to different types (consider the following predicates from
VRD: “next to”, “taller than”, “play with”, “walk past”), and even if multi-predicate
relationships are contemplated in both VG and VRD, in reality they are not as
frequent as one would expect them to be.

3.2.1 Clean cut of Visual Genome
Visual Genome is widely regarded as much more noisy and less straightforward to
operate with; suffice it to say that the object and predicate annotations are not in a
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categorical form, but rather strings typed by crowd workers, sometimes containing
spelling mistakes. However, it potentially allows for detection on a larger scale, and
it still is a useful source of visual data.

A popular choice is in fact to derive cleaned versions of the dataset. For our purposes,
we chose to clean the objects and predicates by performing routine text processing
tasks; this involves converting to lowercase, removing hyphens and full stops, and
removing leading and trailing whitespaces. Additionally, we lemmatized the objects
(by treating them as nouns) and predicates (by treating them as verbs) as well.

Additionally, for multi-word objects, there are some cases in the Visual Genome
dataset where attributes and objects are joined together. This results in objects like
“black shoe” or “yellow shed”. To get around this, we created a list of the 19 most
common attributes, and then for each multi-word object, we simply check if its first
word belongs to this list of common attributes. If so, it is removed, thereby helping
us retain just the object itself.

Finally, we create a “split” of the VG dataset by first creating a list of the 150 most
common objects, and 50 most common predicates. To generate data according to
this split, we then consider only those relationships where the subject and object
are found in the 150 most common objects list, and the predicate is found in the 50
most common predicates list. The outcome is a dataset which is slightly less skewed
than the VRD dataset (see Fig. 3.2).

Refer to Table 3.1 for a size comparison between the two datasets.

VRD VG150,50 VG
# images 5, 000 103, 077 ∼108, 000
# unique objects 100 150 ∼75, 000
# unique predicates 70 50 ∼13, 000
# annotated rels. 37, 993 862, 490 ∼1, 800, 000
# unique rels. 7, 701 48, 663 ∼40, 000

Table 3.1: Overview of the size of the datasets, namely Visual Relationship
Dataset (VRD), Visual Genome (VG) and our cleaned version of Visual Genome.
(Data for VG from Krishna et al. [19])
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Figure 3.3: Distribution of annotated relationship triplets in the VRD
dataset The triplet distribution is extremely skewed; as explained in 2.2, this is
caused by the skeweness of the distributions of objects and predicates (see Fig. 3.2a),
aggravated by combinatorial effects. Note that this figure only shows the frequenncy
for the 7701 unique triplets that the dataset covers, whereas the actual triplet space
is much bigger: 100 × 100 × 70 = 700K. The dataset is thus representing a very
small portion of the possible triplets.

3.2.2 Predicate subsets

Given that the set of predicates is quite diverse (in that predicates can be of very
different types), for this study, two subsets of the available predicates are considered:
spatial predicates (e.g “next to”, “on”, etc.) and activity predicates (e.g “play with”,
“eat”, “wear”, etc.). More specifically, for each of the two datasets in use, namely
VRD and VG150,50, the results are measured for:

1. The original dataset, with all the predicate categories it provides;
2. A derived version of the dataset considering only a subset of spatial predicates;
3. A derived version of the dataset considering only a subset of activity predicates;

Ultimately, the derived dataset cuts are denoted as VRD/all, VRD/spatial,
VRD/activities, VG/all, VG/spatial, and VG/activities. Table 3.2 shows the number
of predicate categories in the datasets; note that VRD and VG also contain other
predicates that are not spatial nor denoting activities (e.g “have”, “taller than”,
etc.).

all spatial activities
VRD 70 21 27
VG 50 19 9

Table 3.2: Number of predicate categories for the datasets in use: VRD/all,
VRD/spatial, VRD/activities, VG/all, VG/spatial, VG/activities
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3.3 Class semantic awareness
As explained in Section 2.1.2, classification neural networks are trained to output
a vector f(x) representing categorical scores, with high values in correspondence of
the correct classes. This approach treats each category as an completely and equally
different entity from the others. It is often the case, however, that prediction classes
are actually entities with meaning, and that their meaning induces some interrelation
between them.
For example, the VRD dataset contains the predicates “above” and “under”, and
clearly these two are related to each other in a very specific way. A first trivial
observation is that one of the two excludes the other, hence a model should never
output high values for both of them. A second more specific observation is that
they actually denote two opposite concepts; from a certain perspective, one might
perceive them as two opposite “poles” of a range describing the “verticalness” of the
spatial arrangement of the two objects.
In a similar way, certain predicates nearly mean the same thing, despite being con-
sidered as two completely different categories, e.g “below” and “under”, “near” and
“next to”: this feature goes under the name of class overlapping, and leads to a series
of subtle problems [15]. For pairs of similar predicates such as the above-mentioned
ones, it is expected that available samples for one of the predicates can also be safely
classified with the other predicate. Additionally, the individual training samples for
the two predicates could be used to teach the model something about both classes.
In general, the fact that a certain predicate i holds between an object pair may tell
something about the score of a different predicate j holding as well for the same
pair, and this influence has to do with how the two predicates relate to each other
semantically and visually. In this work, we only focus on the semantic relations, and
choose text-based distributional embeddings as a method for estimating them.
There are some reasons supporting this choice, but also some counterarguments to
it. The known “distributional hypothesis” states that the semantic similarity of
two words is correlated with their occurrence in similar contexts, and this makes
distributional embeddings a good technique for discovering semantic knowledge.
However, this also means that the semantic similarity of two predicates, in these
terms, is essentially estimating how much two predicates are of the same kind, and
this probably not desired. As an example, despite the fact that “above” and “under”
represent two opposite concepts, they do belong to the same semantic area of “spatial
prepositions”, and in fact they are often used in similar contexts (as in, surrounded
by similar words); therefore a distributional embedding model would consider these
two as words with similar meaning.
In the following sections, we propose three ways of using text-based embeddings to
make the model aware of the semantics of the classes, right after giving a visual
insight from a geometric perspective.

3.3.1 Geometric perspective
As describred in 2.1.2, standard classification neural network learns intermediate
representations of the data, until the very last layer, which finally produces cate-
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Figure 3.4: Geometric visualization of a categorical score vector The
example shows a vector s of three categorical scores, i.e one for each predicate
category. The axes are orthogonal, thus each score is an independent variable: one
can increase the score for “under” without affecting the scores for “above” or “below”.

gorical scores as a vector f(x). From a geometric viewpoint, one can picture f(x)
as lying in a K-dimensional space, where each of the axis uk represents one of the
categories: in this space, the expected behavior is for f(x) to be “stretched” along
the axes corresponding to the correct prediction classes (see Fig. 3.4).
Note how this orthogonal space sees its axes as linearly independent vectors: in
fact, taking one step along one axis (i.e getting closer to representing a specific
predicate) causes no change in the values of the coordinates on other axes. This
is certainly desired, as it allows for more expressive power for the output vector;
however, this viewpoint reveals the naive assumption that predicates are all equally
different entities, and suggests that the interrelation of the classes might be factored
in by remodeling the axis according to the semantics of what they represent.
For example, considering again the two predicates “below” and “under”, a more ap-
propriate representation for the two would see them as two similar vectors: ubelow '
uunder. This would positively correlate the scores for the two predicates, ultimately
preventing undesired situations where a high score is predicted for one and a low
score for the other.
In a similar way, it might be desirable for the axes representing synonymous pred-
icates to point to opposite directions at least in a subspace or along a certain di-
rection: this would cause the two corresponding scores to be negatively correlated,
preventing that a high score is predicted for both. Fig. 3.5 gives an intuitive visu-
alization of these considerations for the set of these three predicates.
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Figure 3.5: Intuitive visualization of a semantic-aware space for a cate-
gorical score vector With some predicates being semantically/visually similar or
dissimilar to others, it might be desirable for a score vector to correlate the scores of
some predicates according to their similarity. In the example, increasing the score
for “under” will cause a decrement of the score for “above”, and an increment of the
score of “below”. This might be a more appropriate structured represention.

Figure 3.6: Visualization of predicate semantic space The vectors actually
lie in a high-dimensional space, but here they are projected into three-dimensions
with dimensionality reduction techniques. [Created with TensorFlow Embedding
Projector [34]]

3.3.2 Semantic similarity layer (SemSim)
A good embedding model for predicates consists of a set of K vectors, one for each
predicate, arranged in a space according to their semantics (e.g see Fig 3.6). Pred-
icates of similar semantics, for example, are pointing to the same spatial direction,
whereas predicates belonging to different semantic areas are going to be farther
apart.
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The first of these two features is particularly interesting for our purposes (see pre-
vious section), and sparks the idea of predicting an inner vector representation as
a predicate embedding, which can be achieved through a layer where an embedding
vector p is predicted, and the K scores are reassigned according to the similarity to
this vector.
The fusion and classification layers are therefore reshaped to flow the information
through this new semantic space. Specifically, the fusion layer is replaced with a
linear layer with no activation, predicting an embedding vector p.

p = ffc_fusion
([

Vs,o Ss,o Ls,o

])
Note that this vector now represents a whole “point of meaning” in the predicates’
space, which carries more semantically-relevant information than categorical scores.
From this vector, the classification layer then derives categorical scores by measuring
the similarity between p and each of the K predicate class embeddings Ek:

ffc_classification(p) =
[
sim(p,E1) sim(p,E2) · · · sim(p,Ek)

]

In order to compute embedding similarity, a commonly used measure is the cosine
of the angle between the two vectors. This metric, referred as “cosine similarity”,
is essentially a [−1, 1] value measuring how strongly two vectors are pointing in the
same direction:

sim(x,y) = x · y
||x|| × ||y||

The proposed idea is called “semantic similarity layer”, or SemSim layer.

3.3.3 Semantic rescoring layer
With the previous method, the similarities of the predicate classes are not directly
derived from the available embeddings, but rather show up implicitly when rescoring
the predicates by how similar they are to the predicted predicate vector p. In fact,
when p is cosine-close to the embedding Ey for the correct predicate, the correct
predicate together with all of the predicates with similar semantics are going to be
ranked higher.
A more straightforward way of obtaining semantic information from word embed-
dings is to directly measure the similarities between the predicate class embeddings.
From the set of K embeddings, a “predicate-to-predicate similarity matrix” M can
be derived, for example using cosine similarity (see example in Fig. 3.7), and it can
be used for reassigning the scores.
Similarly to the previous method, the fusion of the features consists of a linear layer
with no activation, but it generates a vector of categorical scores s:

s = ffc_fusion
([

Vs,o Ss,o Ls,o

])
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Figure 3.7: Predicate similarities (VRD) according to pre-trained
world2vec model Predicate similarities are given by cosine distance between the
predicate embedding vectors. To facilitate the interpretation, the rows of matrix are
sorted by sum, which causes some hotspots to come close to each other.
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The similarity matrix K ×K is then applied to these scores:

ffc_classification(s) = M · sT =



sim(E1,E1) sim(E1,E2) · · · sim(E1,Ek)
... ...
... . . . ...
... ...

sim(Ek,E1) sim(Ek,E2) · · · sim(Ek,Ek)


·



s1

s2

...

...

sk


The rationale behind this is that the scores obtained are somehow “enhanced” by
the semantic dependencies that the predicates have with each other. Each score is in
fact recomputed as a linear combination of all scores with the the cosine similarities
of the predicate class embeddings:

s′k =
K∑

i=1
sim(Ek,Ei) · si

Note that this approach is potentially unfair: a high score can be assigned to a predi-
cate just because it is generally more similar to the others, and thus generally higher
weights are used in the sum. Therefore, the rows of the matrix are L2-normalized
beforehand, which makes the linear combination become a simple weighted average:
this prevents a given score from blowing up just because the respective predicate
has high similarity to all the other predicates.

3.3.4 Soft embedding rescoring layer
The idea of reassigning scores according to semantic-agnostic scores, together with
the idea of using the original embedding space are now mixed into a hybrid method.
Similarly to the previous method, the fusion layer produces a semantic-agnostic
score vector. A “soft embedding” predicate vector is then computed as the linear
combination of the K class embeddings and the semantic-agnostic scores.

p =
K∑

k=1
Eksk (3.1)

Note that the predicate embeddings Ei can be thought of as a set of vectors defining
a space of “predicate meaning”, and this operation is equivalent to using them as a
basis; the predicate vector p is therefore built by considering contributes from each
predicate embedding, according to the weights s. Finally, the classification layer
recomputes each score as the cosine similarity of the soft embedding with the class
embeddings.

ffc_classification(p) =
[
sim(p,E1) sim(p,E2) · · · sim(p,Ek)

]
This method is essentially equivalent to a SemSim layer, with the exception that
the predicate embedding is not “freely” predicted by the fusion layer, but rather
computed as a linear combination of the class embeddings.
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3.4 Specialized embeddings

Given the extensive use of embeddings, it is critical for our methods to have a good
embedding representation of objects and predicates. In order to get good vector
representations of words, it is generally required for the embeddings to be trained on
a huge text corpus. In VRD and in fact in many NLP applications, a popular choice
when using word embeddings is to opt for one of the publicly available embedding
models, that have been pre-trained on huge general-purpose text corpora, such as
the Google News dataset or the Wikipedia dataset. While this is certainly a valid
approach, we identify two main problems:

• Approximate representations of multi-word phrases A key limitation of
of word embedding models is that they deal with text at a word level. There-
fore, multi-word phrases such as “trash can” or “traffic light” do not have a
dedicated embedding representation. The individual constituents of a multi-
word phrase have embedding representations however; so we have embeddings
for “trash” and “can”, but not “trash can”. Therefore the combined meaning
of “trash can” as an entity somewhat different from “trash” and “can” is lost.
To make up for this, some existing works in VRD compute the mean of the
embeddings of all words involved in a multi-word object or predicate, to get an
average representation of the entity using its constituents. For example, the
embedding of “trash can” would be computed by averaging the embeddings
of the words “trash” and “can”. While this is quite a widely used approach to
get embeddings for multi-word phrases, it is not generally recommended, as
averaging word vectors could result in a completely different vector altogether,
perhaps then drawing similarity to something it is not similar to at all. More-
over, this approach does not take word order into account, and two completely
different multi-word phrases could end up with similar averaged embeddings.

• General purpose vs. domain-specific embeddings Many experiments
in the field of Natural Language Processing have shown that using domain-
specific word embeddings instead of general-purpose word embeddings can
often greatly improve results. A primary example of this is the biomedical field;
using embeddings which have been trained over biomedical text, containing
multiple mentions of various types of diseases and medications, would be a
lot more effective in a task revolving around this field as opposed to using
embeddings trained over a more generic dataset, such as Wikipedia or Google
News. The same concept can be applied to the case of visual relationship
detection too. If a word embedding model is trained over a dataset that is
more specific to objects and their interactions, the resulting embeddings might
be better modeled than the embeddings obtained from models pre-trained on
general text corpora.

Effective embedding representations are important for this work as the resulting
predicate vectors should be similar or different in the prediction space as per their
semantic meaning. For example, embeddings of spatial directions such as “above”
and “up” should ideally be closer to each and farther away from something unrelated,
such as an activity predicate like “skate”. The following sections highlight how the
aforementioned issues were tackled.

35



3. Methods

3.4.1 Multi-word expressions
The Visual Relationship Dataset and the Visual Genome dataset both contain sev-
eral multi-word objects and predicates. In order to get more precise embeddings for
them, we train a word embedding model from scratch on a slightly altered version of
the Wikipedia dataset. This alteration was done such that all instances of the multi-
word objects and predicates from the the VRD and VG datasets that occur in these
Wikipedia articles are joined together into single tokens; so for example, “next to”
becomes “next_to”, and “traffic light” becomes “traffic_light”. This way, they are
treated as individual words, and their semantic vectors are computed accordingly,
instead of having to average any embeddings.

3.4.2 Embedding models
In this work, two different techniques for training word embedding models are ex-
perimented with: namely, Word2vec [25] and GloVe [27]. Both models are trained
on the altered version of the Wikipedia dataset (to account for multi-word objects
and predicates, as discussed in the previous section) for 5 epochs.
In Word2vec, there are two different algorithms for training the embedding model:
Continuous Bag of Words (CBOW) and Skipgram. Additionally, there are two
options available for training the model; either by using hierarchical softmax, or
negative sampling. In this work, the Word2vec model was trained using CBOW
and hierarchical softmax with a window size of 5. This was done using the popular
Python library Gensim [28].
Word2vec only incorporates local statistics from the corpus for training the word
embeddings. In order to account for global statistics, a GloVe word embedding
model was also trained on the same corpus, with a window size of 5. This was done
using an open-source Python implementation of GloVe.

3.4.3 Domain-specific word embeddings
Visual relationship detection revolves around objects and how they interact with one
another. As such, it cannot really be considered an individual domain (e.g medicine
or finance), so it is hard to find a text corpus which focuses solely or heavily on
relationships between different objects. Therefore, we looked to utilize existing data
in the realm of image captioning or VRD. One such dataset is the image captions
from the MS-COCO [22] dataset. MS-COCO is a multi-purpose dataset, and one of
the tasks that it has designed for is multi-sentence image captioning. Every image
in this dataset is annotated with five captions, each describing the scene a little
differently. This dataset was generated by extracting the text of all image captions
from the MS-COCO dataset, and applying the same joining of multi-word objects
and predicates from VRD and VG into single tokens as done previously with the
Wikipedia dataset. This resulted in a total of 203,450 text pre-processed captions.
The models that were chosen to be fine-tuned on the MS-COCO image captions
were the Word2vec and GloVe models that were previously trained on the altered
version of the Wikipedia dataset. For Word2vec, the training is simply resumed
on the MS-COCO dataset for fine-tuning. It was a little unclear how many epochs
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the fine-tuning should be done for, since the captions dataset is much smaller than
the Wikipedia dataset. For a clearer idea, three different Word2vec models were
fine-tuned on the MS-COCO captions: one for 20 epochs, one for 50 epochs, and
one for 100 epochs.
The fine-tuning of the GloVe model was a little more complicated, as the Python
library we made use of (called glove_python) does not seem to have support for
fine-tuning the embeddings. We found an existing work called Mittens [26], which
is an extension of GloVe for learning domain specific representations. Their open-
source implementation in Python was then made use of for fine-tuning the GloVe
embeddings on the MS-COCO captions. As before with Word2vec, three different
GloVe models were fine-tuned: one for 20 epochs, one for 50 epochs, and one for
100 epochs.
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4
Results

This chapter illustrates the results achieved by factoring in predicate semantics and
the specialized embeddings. The main focus is on the core problem of predicate
prediction (PREDCLS).

Roadmap
The results shown are mostly given in terms of percentage values of R@50 and
R@20, and zero-shot detection is evaluated with the same metrics over a subset of
test triplets that are are not seen in the training (refer to Sec. 2.2.3). Results are
made robust by repeating each run from 3 to 5 times, and only considering the
average performance. In support of the stability of the results, and unless otherwise
specified, the reader may consider a standard deviation < 1.5 for the recall values
shown.
Given the baseline model described in the previous chapter, different experiments
are performed by considering semantic features only (denoted as sem in the result
tables) and the full combination of spatial, semantic and visual features (all). For
comparison purposes, results are also given for an untrained model (one that outputs
random predicate scores), and for models that use no features at all, that is, blind
models that maximize the objective function by simply learning to output high
scores for the most frequently occurring predicates.
Result tables show for the baseline model, and for modified versions of it implement-
ing the ideas proposed in Sec. 3.3:

• SemSim: predict a representation of the predicate as a semantic vector in an
embedding space;

• Rescore: apply a normalized predicate-to-predicate similarity matrix to the
network’s output, consisting of semantic-agnostic scores;

• SoftEmb: hybrid approach that rescores the predicates according to the av-
erage of the class embeddings, weighted on semantic-agnostic scores.

In Section 4.1, where the effect of methods for predicate semantics are studied, the
embedding model in use is the pre-trained Word2vec on Google News [25] (gnews),
whereas Section 4.2 shows a comparison of the result using different embeddings.
First, the pre-trained model is compared with a Word2vec and a GloVe model,
trained to account for multi-word expressions, as described in Section. 3.4.2. Follows
a comparison showing the effects of fine-tuning the two models on the MS-COCO
image captions for 20, 50, and 100 epochs, with methods described in Sec. 3.4.3.

39



4. Results

Figure 4.1: VRD/all, predicate similarities according to gnews Note how
multi-word predicates are represented by a set of embedding vectors all close to each
other (bottom-left corner).

4.1 Predicate semantics methods
This first section of results discusses the three predicate semantics methods, using
the general-purpose embedding model pre-trained on Google News. We first show
the results for the subset of all predicates, then for the two subsets of spatial and
activity predicates.

4.1.1 All predicates
Table 4.1a shows the results on the Visual Relationship Dataset for the baseline
model and the three methods in use (SoftEmb, SemSim and Rescore), using three
variations of features (blind, sem, all). We observe that across all feature variations,
the performances of the methods that we introduce go down, for both zero-shot
and non-zero-shot learning. While Rescore still manages to produce scores that are
somewhat close to the baseline scores, the approaches which suffer the most are
SoftEmb and SemSim. These two generate worse results for all feature variants,
and almost seem equivalent, as they yield recall scores that are always close to each
other. Results on Visual Genome, shown in Table 4.1b, show a similar trend, with
the only difference that using semantic features only leads to slightly better results,
as compared to using all feature kinds.
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Model type R@50 R@50 ZS R@20 R@20 ZS Avg.
untrained 7.64 11.58 2.78 5.08 6.77
blind (baseline) 61.12 41.97 35.99 15.77 38.71
blind+SoftEmb 39.57 30.80 18.40 15.80 26.14
blind+SemSim 39.48 30.48 18.36 15.85 26.05
blind+Rescore 52.85 33.42 29.95 16.20 33.10
sem (baseline) 89.93 66.41 73.65 37.87 66.96
sem+SoftEmb 69.27 36.47 57.51 22.27 46.38
sem+SemSim 70.11 37.75 58.06 21.19 46.78
sem+Rescore 85.97 62.08 68.98 34.84 62.97
all (baseline) 91.84 75.51 76.46 48.59 73.10
all+SoftEmb 71.64 47.45 61.13 33.22 53.36
all+SemSim 72.34 46.22 60.84 30.51 52.48
all+Rescore 89.52 71.60 72.39 43.43 69.23

(a) PREDCLS, VRD/all

Model type R@50 R@50 ZS R@20 R@20 ZS Avg.
untrained 4.76 12.15 1.41 5.51 5.96
blind (baseline) 63.16 28.75 41.66 16.34 37.47
blind+SoftEmb 37.21 19.70 26.26 11.82 23.75
blind+SemSim 38.93 20.53 26.08 12.01 24.39
blind+Rescore 62.89 28.22 41.80 16.73 37.41
sem (baseline) 89.64 45.94 73.82 22.44 57.96
sem+SoftEmb 76.84 25.54 55.85 12.81 42.76
sem+SemSim 76.65 24.69 55.65 12.61 42.40
sem+Rescore 88.51 41.58 72.72 21.09 55.98
all (baseline) 88.53 43.86 72.70 20.99 56.52

(b) PREDCLS, VG/all

Table 4.1
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It is to be noted that that the peculiarity of SoftEmb and SemSim is that they in-
volve a hidden representation being in the form of a predicate embedding. This does
not seem to work well, and could be due to the fact that, as previously mentioned,
predicates can be of very different types, and applying a unique predicate seman-
tics method might not be desirable. For example, the semantic difference between
“above” and “below” perhaps carries a different type of information compared to the
difference between two activity predicates, and should therefore be used differently,
while the network uses all embedding vectors in the same way.
Figure 4.1 shows a colored heatmap of the cosine similarity of the embeddings,
and reveals an imbalance that the word embedding space in use encloses. The
predicates in the heatmap are sorted by sum of the cosine similarities with the other
predicates, which causes some hotspots to get closer. The bottom-left corner in the
image ultimately shows how there exists a cluster of predicates quite close to each
other (similarity ≥ 0.5), while other predicates have lower cosine similarities.
This is due to the fact that embeddings for multi-word predicates are computed as
the mean of the vectors of the words they contain, therefore end up being cosine-
similar to them; the problem will be addressed in Sec. 4.2. In the meantime, we
suspect that this imbalance, together the presence of a heterogeneous set of pred-
icates, could prevent the model to make a good use of predicate semantics. In
the next sections will isolate predicates belonging to two different domains, namely
spatiality and activity.

4.1.2 Spatial predicates

Model type R@50 R@50 ZS R@20 R@20 ZS Avg.
untrained 32.27 33.60 12.14 13.52 22.88
sem (baseline) 92.18 72.89 75.77 42.70 70.88
sem+SoftEmb 84.45 59.36 70.29 40.64 63.68
sem+SemSim 85.20 58.79 70.84 39.62 63.61
sem+Rescore 90.02 71.33 73.83 45.23 70.10
all (baseline) 94.68 83.91 79.74 55.04 78.34
all+SoftEmb 86.24 67.65 73.09 48.88 68.97
all+SemSim 87.90 69.20 73.93 49.80 70.21
all+Rescore 93.64 82.52 78.50 57.00 77.91

Table 4.2: PREDCLS, VRD/spatial

Table 4.2 shows the results of models using semantic features only and all feature
kinds, on a subset of VRD which only considers spatial predicates. Since the number
of predicates is lower than before (21 predicate categories instead of 70), the task is
slightly easier, thus the scores are generally higher. Other than this, patterns similar
to the previous case can be seen: the baseline model still outperforms all other
models; Rescore is still the method that doesn’t heavily impact the performances,
while SoftEmb and SemSim still perform the worst, and their scores are still very
similar.
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Figure 4.2: VRD/spatial, predicate similarities according to gnews

By inspecting the cosine similarities of the embedding model in use (Fig. 4.2), we
once again notice the presence of clusters, but a closer look reveals that the structure
of the similarity matrix doesn’t match the desired structure explained in 3.3.1. As
an example, the semantic similarity between opposite predicates is not at all close to
−1, which means their embeddings are far from being opposite vectors: below/above
have a similarity ∼ 0.8, behind/in front of have a similarity ∼ 0.4.

In fact, high values for these predicate pairs are justified by one key observation:
antonyms often belong to the same semantic area, so we can expect them to be cosine
similar, much like synonymous words. This suggests that semantic embeddings
might not be the correct estimator of the desired structure, at least not in the case
of spatial predicates.

As a final note, it appears to be the case that the semantic embeddings for spatial
predicates are quite close to each other (see how Fig. 4.2 is brighter than Fig. 4.1),
and this is simply due to the fact that spatial predicates all serve the same purpose
of describing a spatial relation. However, this general similarity of the embeddings
might get in the way of learning their differences, as it makes it harder for the model
to discern between them.

Table 4.3 shows the results on the set of spatial predicates in Visual Genome, and
the situation seems to be different: each of our methods seem to be improving the
baseline. We can’t quite explain this behavior.
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Model type R@50 R@50 ZS R@20 R@20 ZS Avg.
sem (baseline) 89.31 58.15 69.61 24.59 60.41
sem+SoftEmb 91.31 46.57 82.98 30.07 62.73
sem+SemSim 91.46 46.16 83.21 31.30 63.03
sem+Rescore 95.32 66.80 86.25 41.29 72.41

Table 4.3: PREDCLS, VG/spatial

4.1.3 Activity predicates
Table 4.4 shows results of different models using a variation of features (all, sem)
on a subset of VRD only considering 27 activity predicates. Activity predicates in
VRD are the ones with less data samples, suffice it to say that the zero-shot set of
test triplets only counts 75 triplets (namely an average of 75/27 ' 3 samples per
predicate class). This leads to zero-shot recall values to be less stable.
For activity predicates, it seems like the baseline model here is able to learn non-
zero-shot prediction quite accurately (R@20 > 90%), but cannot abstract the learnt
dependencies enough to be able to predict unseen triplets: in fact, the R@20 ZS
is just 4 recall perc. points better than random guess, independently of whether
visual and spatial features are used (see highlighted scores in the table). Zero-shot
prediction is also worse compared with models for all predicates (Table 4.1a) and
spatial predicates only (Table 4.2). In addition, compared with the previous cases,
the use of semantic features alone seems to lead to the best results, and this is
probably due to activities being less “visual”, and more about what kinds of objects
are involved.

Model type R@50 R@50 ZS R@20 R@20 ZS Avg.
untrained 13.86 46.22 9.18 32.44 25.43
all (baseline) 95.89 62.67 91.07 37.78 71.85
all+SoftEmb 98.11 84.89 96.35 71.56 87.72
all+SemSim 98.49 84.44 97.21 73.33 88.37
all+Rescore 98.74 85.33 96.78 70.67 87.88
sem (baseline) 96.38 64.53 92.05 37.87 72.71
sem+SoftEmb 98.70 86.67 97.33 73.33 89.01
sem+SemSim 98.36 81.33 97.43 74.67 87.95
sem+Rescore 98.25 83.33 97.12 74.00 88.18

Table 4.4: PREDCLS, VRD/activities Note that, due to a low number (75) of
zero-shot test triplets, zero-shot prediction recalls are less stable: consider a standard
deviation of 4.5. Regardless, the highlighted values show that the baseline model
is not accurate at zero-shot prediction, while all three predicate semantics methods
greatly improve this ability.
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Figure 4.3: VRD/activities, predicate similarities according to gnews

Model type R@50 R@50 ZS R@20 R@20 ZS Avg.
all (baseline) 75.25 18.42 68.15 12.11 43.48
sem (baseline) 87.31 31.05 83.69 23.68 56.44
sem+SoftEmb 98.39 80.53 97.65 80.00 89.14
sem+SemSim 98.42 77.89 97.71 77.89 87.98
sem+Rescore 99.15 82.63 98.33 80.00 90.03

Table 4.5: PREDCLS, VG/activities Again, when considering only activity
predicates, predicate semantics models massively improve zero-shot prediction, as
well as non-zero-shot. Note how, differently from previous cases, models using se-
mantic features only perform better than models using of all feature kinds.

What is of more interest, however, is that all the three methods equally and substan-
tially improve the baseline model; this happens for all recall scores, and especially
with zero-shot recall scores, where there is much room for improvement. In fact,
the results are surprisingly good, as zero-shot scores are normally the hardest to
accommodate.
Upon examining the predicate similarity heatmap (Fig. 4.3), we first notice how
activity predicates are much less similar to one another as compared to the spatial
predicates, and thus more easily differentiable from one another. The similarities
are more modest, and this points out that “activities” consists of a broader semantic
area compared to the spatial one.
In order to check how the improvements are distributed for each of the predicate
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classes, we report the difference in the number of correctly identified triplets: Ta-
ble. 4.6, for each of the 27 activity predicates, shows the improvements achieved
when using SemSim on a model using semantic features. Considering the number
of zero-shot triplets for recall @ 20, we witness an average of 24.80 more triplets
correctly predicted, which makes up about a third of the zero-shot test triplets (re-
member the number of zero-shot triplets is 75); this is what causes R@20 ZS to go
from 37.78 to 72.27 in the previous table.
The improvement seems to be uniformly distributed across frequent and infrequent
predicates, but there are some extreme values: specifically, predicates that are pos-
itively affected are “hold”, “carry”, “look (at)”, “watch”, “lying (on)”, “rest (on)”.
Note that these 6 happen to be three synonymous predicate pairs, and this suggests
that the model was able to pick up some predicate correlations; arguably, the cosine
similarity for these pairs may not be substantially high to support the hypothe-
sis: 0.41 for carry/hold, 0.33 for watch/look, 0.11 for lying/rest. Predicates which
prediction is instead improved are “ride”, “touch” and “play (with)”.

46



4. Results

Counts Improvement
# Predicate Test ZS #@50 #@50 ZS #@20 #@20 ZS AVG
- Total 1460 75 +27.20 +12.80 +74.63 +24.80 +33.76
1 wear 1056 4 +0.21 +0.20 +2.43 +1.00 +0.96
2 hold 127 11 +5.99 +3.20 +9.80 +6.80 +6.45
3 sit 46 3 +0.60 +0.60 +0.60 -0.80 +0.25
4 ride 34 2 -1.80 -0.80 -0.60 -2.00 -1.30
5 carry 36 7 +3.40 +1.80 +8.80 +4.20 +4.55
6 look 25 5 +7.00 +3.00 +3.20 +3.20 +6.60
7 use 30 1 +2.80 +0.80 +3.80 +0.80 +2.05
8 cover 19 7 +1.20 +1.20 +2.80 +2.80 +2.00
9 touch 15 8 -4.80 -3.60 -2.40 -2.40 -3.30
10 watch 11 4 +6.00 +2.00 +9.80 +3.60 +5.35
11 talk 7 0 +0.00 - +5.00 - -
12 fly 3 1 +2.00 +0.00 +2.00 +0.00 +1.00
13 pull 6 0 +0.00 - +2.00 - -
14 park 4 4 +1.40 +1.40 +1.40 +1.40 +1.40
15 drive 11 2 +1.40 +0.00 +7.00 +1.00 +2.35
16 walk 1 1 +0.00 +0.00 +1.00 +1.00 +0.50
17 lean 4 3 +1.20 +1.00 +1.20 +0.20 +0.90
18 eat 2 0 +0.00 - +0.00 - -
19 face 2 1 +0.20 +0.20 +1.00 +0.00 +0.35
20 lying 6 3 +2.20 +1.60 +3.20 +2.20 +2.30
21 hit 0 0 - - - - -
22 play 7 3 -3.60 -2.20 +0.60 -0.60 -1.45
23 rest 3 2 +3.00 +2.00 +2.60 +2.00 +2.40
24 follow 3 3 +0.40 +0.40 +0.40 +0.40 +0.40
25 feed 0 0 - - - - -
26 kick 0 0 - - - - -
27 skate 2 0 -1.60 - -1.00 - -

Table 4.6: PREDCLS, VRD/activities, sem: per-predicate improvements
when using SemSim Note that the results here are shown in terms of difference
in the number of triplets predicted, instead of recall values. This is because some
predicates have a low number of test samples, and the recall value cannot be used
to compare the scores of different predicates.
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4.2 Specialized embeddings

4.2.1 Embeddings tailored on our vocabulary
This section compares the use of embeddings obtained from the pre-trained em-
bedding model (denoted as gnews) with the embeddings obtained from the trained-
from-scratch Word2vec and GloVe models (denoted as w2v and glove, respectively).

4.2.1.1 All predicates

Model type R@50 R@50 ZS R@20 R@20 ZS Avg.
gnews (baseline) 91.84 75.51 76.46 48.59 73.10
gnews+SoftEmb 71.64 47.45 61.13 33.22 53.36
gnews+SemSim 72.34 46.22 60.84 30.51 52.48
gnews+Rescore 89.52 71.60 72.39 43.43 69.23
w2v (baseline) 91.99 75.58 76.56 47.60 72.94
w2v+SoftEmb 80.73 61.55 67.21 41.87 62.84
w2v+SemSim 81.23 62.66 67.33 39.99 62.80
w2v+Rescore 89.38 71.26 72.56 43.76 69.24
glove (baseline) 91.59 76.39 76.12 49.49 73.40
glove+SoftEmb 77.68 57.49 64.90 38.58 59.66
glove+SemSim 78.55 58.04 64.62 35.12 59.08
glove+Rescore 88.67 70.74 71.61 42.69 68.43

Table 4.7: PREDCLS, VRD/all, all features Comparison of different general-
purpose embeddings

Table 4.7 shows the recall scores achieved on VRD using the pre-trained gnews em-
bedding model, the w2v model and the glove model. Embeddings that are trained
from scratch do not seem to affect the baseline and Rescore models; on the other
hand, they improve SemSim and SoftEmb, narrowing the performance gap between
these two models and the other two. Note that the baseline model only uses em-
beddings for the semantic features of the object pair, and disregards the embedding
vectors for predicates; on the other hand, SemSim and SoftEmb also involve a hid-
den representation of the predicate in the form of a high-dimensional embedding
vector, so it probably stands to reason that these two rely more strongly on effective
embedding representations.
It is also observed that, for all models, w2v embeddings give better scores than
glove embeddings; a little surprising, perhaps, as one would have expected GloVe’s
incorporation of global statistics to match Word2vec’s performance, if not improve
upon it. By inspection, we verify that, for SoftEmb and SemSim, the w2v model
improves the prediction of some multi-word predicates, such as “next to”, “in the
front of”, “on the left of”, “on the right of”, etc. but also synonymous predicates of
these, such as “near”, “beside” and “on”.
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Figure 4.4: VRD/all, predicate similarities according to gnews
(Word2vec embeddings pre-trained on Google News)

Ultimately, however, we still observe that the baseline model is the preferred choice
when considering a heterogeneous set of predicates; it seems like none of the methods
in use can deal effectively with every predicate.
Figures 4.4, 4.5 and 4.6 show the predicate-to-predicate similarities for VRD/all ac-
cording to the three embedding models. As mentioned previously, the w2v and glove
models that have been trained on our vocabulary deal with multi-word predicates
differently; they are joined by underscore to transform them into individual tokens.
This helps the models treat them as individual tokens and learn unique embeddings
for them. This is in contrast to the gnews model, where the embeddings for multi-
word predicates are computed by simply averaging the embeddings of all individual
words in the phrase.
Upon an initial glance, it seems that similar patterns can be observed for gnews
and w2v, with w2v enforcing the similarity scores for many predicate pairs. So for
example, in w2v predicate pairs that should be similar get a similarity score that
is the same as or higher than the ones in gnews. But perhaps more noticeably, the
w2v embeddings also decrease the similarity scores for many predicate pairs. As
such, the w2v embeddings seem to a more easily discernible representation of the
predicates than the gnews ones. The glove embeddings seem to go on a different
tangent altogether however, and contain high similarity scores for many predicate
pairs.
It should be noted however, that this is just a preliminary observation; the predicate
pair similarities are analyzed in greater detail for the spatial and activity predicates,
followed by some discussion points.

49



4. Results

Figure 4.5: VRD/all, predicate similarities according to w2v
(Word2vec embeddings tailored on our vocabulary)

Figure 4.6: VRD/all, predicate similarities according to glove
(GloVe embeddings tailored on our vocabulary)
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4.2.1.2 Spatial predicates

Model type R@50 R@50 ZS R@20 R@20 ZS Avg.
gnews (baseline) 92.18 72.89 75.77 42.70 70.88
gnews+SoftEmb 84.45 59.36 70.29 40.64 63.68
gnews+SemSim 85.20 58.79 70.84 39.62 63.61
gnews+Rescore 90.02 71.33 73.83 45.23 70.10
w2v (baseline) 91.92 71.33 75.64 41.78 70.17
w2v+SoftEmb 83.78 59.43 71.35 39.79 63.59
w2v+SemSim 84.67 60.62 72.17 39.93 64.35
w2v+Rescore 90.63 72.55 74.43 46.45 71.02
glove (baseline) 91.80 72.38 75.40 43.04 70.66
glove+SoftEmb 82.83 57.13 68.87 36.98 61.45
glove+SemSim 83.66 59.53 69.37 37.32 62.47
glove+Rescore 89.81 72.11 73.30 45.37 70.15

Table 4.8: PREDCLS, VRD/spatial, semantic features Comparison of dif-
ferent general-purpose embeddings

With spatial predicates (see Table 4.8) the w2v and glove models do not seem to
affect the models for the most part. The noteworthy changes include how in R@50
zero-shot using w2v embeddings help the Rescore model beat the baseline (by a very
small margin), and glove embeddings help the Rescore model perform almost equally
well as the baseline (very small difference). Additionally, the SoftEmb and SemSim
models perform equivalently for gnews and w2v embeddings, but their performance
noticeably decreases when using glove.
If the average recall scores are considered, however, it is noticed that very similar
patterns are observed throughout irrespective of the embeddings in use: the baseline
and Rescore models perform very similar to each other, just as the SoftEmb and
SemSim models do.
There are several observations to be made in the predicate similarity heatmaps in
Figures 4.7a, 4.7c and 4.7e. Firstly, when comparing the gnews embeddings with
w2v and glove embeddings, it is easy to note the difference of similarities between
multi-word predicates and others. If we consider the first four multi-word predicates
at the bottom left of the figure; namely, “on the top of”, “on the right of”, “in the
front of”, and “on the left of”; one would expect their embeddings to be very similar
to one another since these terms occur in very similar contexts frequently. While
that’s true for the multi-word predicates starting with “on”, “in the front of” is quite
dissimilar from them. Moreover, these multi-word predicates do not seem to have a
high similarity with any other spatial predicate.
The w2v and glove embeddings deal with multi-word predicates differently as com-
pared to gnews, as they consider them as single entities with their own unique
embeddings. In Figures 4.7c and 4.7e, it can be seen that the multi-word predicates
starting with “on” and “in” are similar not just to one another, but also other spatial
predicates that occur in similar contexts such as “inside”, “beneath”, “next to” and
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“beside”. This reinforces our belief in the fact that treating multi-word predicates as
individual tokens with their own embeddings is a better representation of them as
opposed to simply averaging the embeddings of all individual words involved in the
multi-word predicate. Since the w2v and glove embedding models adopt the former
approach, we see high similarity scores between multi-word predicates, as well as
other predicates that should in fact have high similarity scores, such as (adjacent to,
next to), (beside, next to), and (outside of, across). There seems to be quite a high
level of agreement between the w2v and glove embeddings heatmaps, apart from the
obvious fact that the glove embeddings have much higher similarity scores between
predicates than the w2v embeddings. However, there are differences between these
two embeddings too; for instance, (under, contain) seems to have somewhat of a
high similarity score in glove but practically no similarity in w2v.
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(a) gnews, VRD/spatial (b) gnews, VRD/activities

(c) w2v, VRD/spatial (d) w2v, VRD/activities

(e) glove, VRD/spatial (f) glove, VRD/activities

Figure 4.7: Predicate similarities according to semantic word embeddings
Here we compare three models: a pre-trained Word2vec (gnews), a trained-from-
scratch Word2vec (w2v) and trained-from-scratch GloVe (glove) model
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4.2.1.3 Activity predicates

Table 4.9 shows the results on activity predicates. Several observations can be made
here. Firstly, independently of the embeddings in use, SemSim always outperforms
SoftEmb by a few recall points, and given that, with activity predicates, the two
models have high recall scores, this might reveal how the first one is actually a
better version of the other. Indeed, the only difference between the two is how the
predicate embedding vector p is computed: whether through a linear combinations
with initial scores, or predicted from the (linear) fusion layer. However, note that
there is no loss function driving the network to learn appropriate semantic-agnostic
scores sk, so computing p as a linear combination of sk and the class embeddings as
in Eq. 3.1 can become a redundant, unnecessary step.
Ignoring SoftEmb for a moment, the other two methods seem to benefit from the
use of w2v and glove embeddings. This is mostly the case for zero-shot prediction,
which is, again, a less stable measure, given the low number of zero-shot test triplets.
However, w2v embeddings greatly improve the scores for the baseline and Rescore
models for both R@50 ZS and R@20 ZS, and, similarly, the use of glove embeddings
results in quite a jump for SemSim, resulting in the highest recall scores achieved
on VRD activities so far. Refer to Table A.1 in Appendix A for the results on
VG/activities, showing very similar patterns.

Model type R@50 R@50 ZS R@20 R@20 ZS Avg.
gnews (baseline) 95.89 62.67 91.07 37.78 71.85
gnews+SoftEmb 98.11 84.89 96.35 71.56 87.72
gnews+SemSim 98.49 84.44 97.21 73.33 88.37
gnews+Rescore 98.74 85.33 96.78 70.67 87.88
w2v (baseline) 96.20 64.67 91.68 41.33 73.47
w2v+SoftEmb 98.25 85.33 96.10 67.33 86.75
w2v+SemSim 98.70 85.33 97.02 73.33 88.60
w2v+Rescore 99.08 88.67 97.64 76.00 90.34
glove (baseline) 95.51 64.00 90.07 34.67 71.06
glove+SoftEmb 98.77 88.67 96.92 70.00 88.59
glove+SemSim 99.01 90.00 97.88 79.33 91.55
glove+Rescore 98.63 86.67 97.09 72.67 88.76

Table 4.9: PREDCLS, VRD/activities, all features Note that, due to a low
number (75) of zero-shot test triplets, zero-shot prediction recalls are less stable:
consider a standard deviation of 4.5.

Analyzing the cosine similarities (heatmaps in Figs. 4.7b, 4.7d, and 4.7f) makes for
some very interesting insights. The embeddings from w2v seem to support a lot of
the hypotheses made by the gnews embeddings, and seems to make them clearer.
So for example, “park” does not seem to have a particularly high similarity with
any predicate other than “drive”, “ride” and “walk”. The w2v embeddings seem
to bolster this hypothesis. Similarly, predicate pairs with high similarity such as
(carry, hold), (drive, ride), and (feed, eat) in gnews see a higher similarity in w2v
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embeddings. The w2v embeddings also seem to more disassociate some predicate
pairs that should not be similar but have somewhat of a high similarity score in
gnews, such as (watch, park).
The heatmap for glove embeddings tells an altogether different story. Here, high
similarity scores for a lot of the activity predicate pairs are observed. Some are sen-
sible, such as (rest, lying) and (feed, eat), but some are perhaps not so sensible, such
as (fly, eat). Perhaps a higher max similarity score would help see the differences
in pred-pred similarities better. These embeddings do not seem to adversely im-
pact the performance of the models as compared to the gnews or w2v embeddings,
however.

4.2.2 Fine-tuned embeddings
This section compares the use of embeddings obtained from the trained-from-scratch
Word2vec and GloVe models (w2v and glove) with the embeddings obtained from
the fine-tuned versions of these models. The fine-tuned models have been trained
on the COCO image captions for 20, 50, and 100 epochs (e.g w2v+coco-20 refers to
the w2v model, fine-tuned for 20 epochs).
Note that, since there are many models involved in the following experiments, bar
plots have been made use of to highlight the most interesting results and draw
comparisons. The respective tables can be found in Appendix A.

4.2.2.1 All predicates

Figure 4.8: PREDCLS, VRD/all, all features The plot shows R@20 Zero-
Shot and the average of the recall values of interest (R@50, R@50 ZS, R@20, R@20
ZS). See Table A.2 in Appendix A for a more detailed overview of the recall values

Figure 4.8 show the results of fine-tuning on VRD/all in terms of R@20 zero-shot
and the average of recall scores. The first thing to observe right away is that fine-
tuning w2v and glove embeddings have little to no effect on the baseline model.
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Again, note that the baseline model makes use only of object embeddings, and not
predicate embeddings. The fine-tuned embeddings show a small improvement for
Rescore for R@20 zero-shot. If the average recall score is considered, however, the
performance of the fine-tuned embeddings for Rescore is equivalent to that of their
trained-from-scratch counterparts, for both w2v and glove.
The plots tell quite a different story for the SoftEmb and SemSim, however: both
methods show considerable improvement when fine-tuned embeddings are used, for
both R@20 zero-shot and average recall score. There are two interesting things of
note here:

• The fine-tuned w2v embeddings give much higher scores for the SemSim and
SoftEmb models as compared to the fine-tuned glove embeddings for all epochs,
for both R@20 zero-shot and average recall score. A similar pattern was ob-
served earlier as well, when the w2v model noticeably outperformed the glove
model.

• The performance of the fine-tuned w2v embeddings is fairly consistent across
the different epochs, with coco-20 usually getting the best score. However
in the case of fine-tuned glove embeddings, it seems that only the coco-50
embeddings manage to outperform the trained-from-scratch glove model; the
other fine-tuned embeddings perform mostly equivalent to or worse than the
trained-from-scratch ones. We hypothesize that coco-50 seems to be a good
fit between underfit and overfit embeddings generated by coco-20 and coco-50
respectively; however, this is just a speculation on our part.

4.2.3 Spatial predicates

Figure 4.9: PREDCLS, VRD/spat, all features The plot shows R@20 Zero-
Shot and the average of the recall values of interest (R@50, R@50 ZS, R@20, R@20
ZS). See Table A.3 in Appendix A for a more detailed overview of the recall values.
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The fine-tuned embeddings have different impacts for w2v and glove. For w2v, the
scores for SemSim and SoftEmb go up when using fine-tuned embeddings, whereas
the baseline and Rescore models do not seem to be affected majorly. Once more,
this is reasonable as the approaches showing improvement are those which predict
the predicate as a vector. R@20 zero-shot shows the most improvement with the
coco embeddings, with all fine-tuned models beating their corresponding baseline.
Rescore actually achieved that with just trained-from-scratch w2v too, but the coco
embeddings help the SimSim and SoftEmb models achieve that too. Finally, if the
average recall scores are considered, the use of fine-tuned embeddings results in all
models performing equivalently.
Fine-tuned glove embeddings tell a very different story, however; they do not seem
to help any of the models in particular. There is not much difference between
trained-from-scratch glove embeddings vs. glove+coco embeddings, for any number
of epochs. If R@20 is considered, glove+coco-50 seems to show some promise for
SemSim and SoftEmb. But for the most part, the fine-tuning glove embeddings does
not seem to hold much promise for spatial predicates, for any model.

4.2.4 Activity predicates

Figure 4.10: PREDCLS, VRD/activities, all features, Avg. of R@50,
R@50 ZS, R@20, R@20 ZS. See Table A.4 in Appendix A for a more detailed
overview of the recall values

Through these graphs, it is observed that the baseline models show no improvement
for activity predicates by use of the fine-tuned embeddings. This was observed
previously too and therefore expected. What was also observed previously was that
the SoftEmb and SemSim models outperform all other models for VRD/activities.
Moreover, SemSim is still better than SoftEmb.
Furthermore, it is observed that for R@20 zero-shot and average recall scores, the
fine-tuned w2v embeddings improve both SoftEmb and SemSim. However, for the
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same evaluation metrics, the fine-tuned glove embeddings seem to help SoftEmb but
not SemSim.
Finally, the Rescore model shows a very similar pattern for trained-from-scratch vs.
fine-tuned embeddings for both w2v and glove. The w2v model and glove+coco-100
perform almost equally, with w2v+coco-20 slightly outperforming them both.

Final considerations
Ultimately, in this section we find that the two vocabulary-specific embedding mod-
els can improve SemSim and SoftEmb more than the other two methods, and that, as
a general pattern, Word2vec embeddings seem to help the models more than GloVe
embeddings. This can be due to the fact that the glove model is more “generous”, in
the sense that it generally gives higher similarity scores between all predicates, and
this can make it difficult for the network to distinguish between them. As for fine-
tuning the embeddings on the MS-COCO dataset, it seems to help the w2v model,
leading to significantly improved performance for the SemSim and SoftEmb mod-
els in particular, especially for all predicates and spatial predicates. w2v+coco-20
seems to be the most promising of the fine-tuned w2v models, with almost consis-
tently good performance throughout, and the general trend may suggest that w2v
models do not need to be fine-tuned for many epochs over a domain-specific dataset.
Finally, fine-tuning the GloVe embeddings shows some promise too, however there
does not seem to be a consistent pattern suggesting how to exactly benefit from it.
Overall, though, fine-tuning the glove model does not help in getting a significant
performance gain over the w2v models.
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5
Conclusion

The main finding of this thesis work is that a classification model can leverage
some kind of knowledge of the classes involved, and such knowledge can be derived
through the training of text-based distributional embedding models, a process able
to discover semantic similarities between words/expressions. In order to improve the
quality of the embedding representations, wherever some multi-word class labels are
involved, embeddings for these can be computed by considering the labels as atomic
entities (with multi-word expressions on the same level as words); additionally, fine-
tuning general-purpose embedding models on text corpora that more strictly relates
to the domain at hand (“domain fine-tuning”), can potentially further improve the
representations.
In the case of visual relationship detection, the class domain is extremely diverse; in
fact, predicates can be of very different types, denoting different kinds of object-to-
object relationships and as such, semantic embeddings might behave in unexpected
ways. Here we show that, for both of the datasets in use, while the three proposed
methods for class semantics do not seem to work for the entire set of predicate
categories, they can lead to major improvements when a subset of classes having
certain characteristics is considered.
Our experiments show that these improvements are enabled when the classes do
not all belong to the same semantic area (e.g the area of “spatiality”) and, instead,
cover a wider range of “contexts”; this makes the respective embedding vectors more
spread out, and more meaningful to each other.
Ultimately, we find that in the context of VRD, semantic rescoring (described in
Sec. 3.3.3) is the safest of the presented methods for predicate semantics; on one
hand, when the set of predicates is not appropriate for a meaningful representation
with distributional embedding, semantic rescoring seems to yield results that are
similar to the baseline; on the other hand, when the set of predicates is appropriate
(e.g the set of activity predicates), the improvement it enables is comparable with
that brought by the two other methods. Incidentally, the method also simply consists
of a matrix multiplication, so it is the one method with the lowest computational
overhead.

5.1 Limitations and future work
The major limitation of the described methods for class semantics is that they only
work with a set of classes with certain, partially unclear, characteristics. Specifically,
unless a different kind of embedding is used, the methods can only be applied on a set
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of classes that are represented in an appropriate way by distributional embeddings.
If a classification problem has a certain number of categories, but only a few of them
are appropriately represented by distributional embeddings, then this opens up the
question whether it is possible to apply this method in a selective fashion. In our
case, for example, can we leverage the improvement achieved on VRD/activities for
improving the classification of the same predicates on the original dataset (VRD/all)?
Perhaps it is possible to apply the methods to only a subset of classes involved; for
example, since semantic rescoring (Rescore, in the result tables) is a simple matrix
multiplication, an idea could be to tweak the matrix M to only affect the scores for
specific classes.
One important issue we identified with using distributional embeddings is that se-
mantic similarity does not seem to simulate the difference between synonyms and
antonyms too well: consider once again above/below, which are antonymous to each
other, and yet they occur in very similar contexts, and are thus represented by sim-
ilar vectors. Keeping this in mind, Dou et al. [6] is an interesting work in which the
authors attempt to train word embeddings such that they can identify and deal with
antonyms in a way that would be more suited here. We did not get the opportunity
to experiment with this work, but it could be a promising venture to learn em-
bedding representations for predicates using a word embedding training technique
that keeps antonyms in mind, and observe the impact of using such embeddings for
predicate prediction, especially for methods like SemSim and SoftEmb.
Finally, we suggest one last cue for future work, that is, to investigate on similarity
measures for embeddings other than cosine. Another common choice is in fact the
L2 distance (or Mean Squared Error, MSE) and, interestingly, using it together with
a SemSim layer would have an additional mathematical interpretation, that has to
do with a known probabilistic model (Gaussian Mixture Model, GMM).
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A
Appendix I

A.1 Embeddings tailored on our vocabulary for
activity predicates

Model type R@50 R@50 ZS R@20 R@20 ZS Avg.
gnews (baseline) 87.31 31.05 83.69 23.68 56.44
gnews+SoftEmb 98.39 80.53 97.65 80.00 89.14
gnews+SemSim 98.42 77.89 97.71 77.89 87.98
gnews+Rescore 99.15 82.63 98.33 80.00 90.03
w2v (baseline) 81.80 23.51 76.46 16.84 49.65
w2v+SoftEmb 98.93 77.89 98.21 76.14 87.80
w2v+SemSim 98.92 80.00 98.18 78.60 88.92
w2v+Rescore 99.21 82.46 98.45 81.40 90.38
glove (baseline) 86.79 27.72 83.00 22.46 54.99
glove+SoftEmb 98.52 77.54 97.81 76.84 87.68
glove+SemSim 98.15 79.65 97.39 78.60 88.44
glove+Rescore 99.27 84.21 98.24 80.70 90.61

Table A.1: PREDCLS, VG/activities, semantic features
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A. Appendix I

A.2 Fine-tuned embeddings for all predicates

Model type R@50 R@50 ZS R@20 R@20 ZS Avg.
w2v (baseline) 91.99 75.58 76.56 47.60 72.94
w2v+SoftEmb 80.73 61.55 67.21 41.87 62.84
w2v+SemSim 81.23 62.66 67.33 39.99 62.80
w2v+Rescore 89.38 71.26 72.56 43.76 69.24
coco20 (baseline) 91.89 75.45 76.36 47.95 72.91
coco20+SoftEmb 84.68 67.92 71.16 48.03 67.95
coco20+SemSim 85.51 67.58 71.28 45.34 67.43
coco20+Rescore 89.51 70.96 72.50 44.05 69.25
coco50 (baseline) 92.08 76.30 76.51 47.43 73.08
coco50+SoftEmb 83.83 65.83 70.08 45.94 66.42
coco50+SemSim 84.68 66.51 70.50 44.27 66.49
coco50+Rescore 88.98 70.79 72.40 45.00 69.29
coco100 (baseline) 92.07 76.22 76.38 47.13 72.95
coco100+SoftEmb 83.45 65.27 70.29 46.07 66.27
coco100+SemSim 83.56 65.36 70.23 44.53 65.92
coco100+Rescore 89.22 71.04 72.27 42.47 68.75

(a)

Model type R@50 R@50 ZS R@20 R@20 ZS Avg.
glove (baseline) 91.59 76.39 76.12 49.49 73.40
glove+SoftEmb 77.68 57.49 64.90 38.58 59.66
glove+SemSim 78.55 58.04 64.62 35.12 59.08
glove+Rescore 88.67 70.74 71.61 42.69 68.43
coco20 (baseline) 91.75 75.41 76.40 48.16 72.93
coco20+SoftEmb 78.01 58.73 64.79 37.60 59.78
coco20+SemSim 78.73 58.25 64.63 34.94 59.14
coco20+Rescore 88.83 71.94 71.68 43.50 68.99
coco50 (baseline) 91.73 75.36 76.58 48.76 73.11
coco50+SoftEmb 77.91 59.50 66.72 41.02 61.29
coco50+SemSim 79.14 60.05 66.87 38.96 61.26
coco50+Rescore 89.05 71.69 72.01 44.01 69.19
coco100 (baseline) 91.75 75.71 76.10 47.60 72.79
coco100+SoftEmb 76.93 56.59 64.51 37.60 58.91
coco100+SemSim 78.28 57.53 64.72 35.16 58.92
coco100+Rescore 88.99 71.64 71.30 43.16 68.77

(b)

Table A.2: PREDCLS, VRD/all, all features Comparison of fine-tuned em-
beddings for Word2Vec and GloVe
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A.3 Fine-tuned embeddings for spatial predicates

Model type R@50 R@50 ZS R@20 R@20 ZS Avg.
w2v (baseline) 91.92 71.33 75.64 41.78 70.17
w2v+SoftEmb 83.78 59.43 71.35 39.79 63.59
w2v+SemSim 84.67 60.62 72.17 39.93 64.35
w2v+Rescore 90.63 72.55 74.43 46.45 71.02
coco20 (baseline) 91.96 72.11 75.84 43.37 70.82
coco20+SoftEmb 88.82 68.36 75.98 46.48 69.91
coco20+SemSim 89.54 69.24 76.54 46.15 70.37
coco20+Rescore 89.37 70.79 73.43 44.90 69.62
coco50 (baseline) 91.99 72.08 75.92 43.95 70.98
coco50+SoftEmb 89.12 69.27 75.77 46.28 70.11
coco50+SemSim 89.66 69.27 76.23 45.30 70.12
coco50+Rescore 90.12 71.33 74.83 47.19 70.87
coco100 (baseline) 92.12 72.41 76.00 43.14 70.92
coco100+SoftEmb 88.97 69.17 75.68 45.37 69.80
coco100+SemSim 89.31 69.68 76.02 45.44 70.11
coco100+Rescore 90.06 72.28 74.70 46.72 70.94

Model type R@50 R@50 ZS R@20 R@20 ZS Avg.
glove (baseline) 91.80 72.38 75.40 43.04 70.66
glove+SoftEmb 82.83 57.13 68.87 36.98 61.45
glove+SemSim 83.66 59.53 69.37 37.32 62.47
glove+Rescore 89.81 72.11 73.30 45.37 70.15
coco20 (baseline) 91.94 72.72 75.19 41.65 70.37
coco20+SoftEmb 83.25 58.59 68.88 36.71 61.86
coco20+SemSim 84.12 58.72 69.37 36.21 62.11
coco20+Rescore 89.17 70.79 72.34 43.24 68.89
coco50 (baseline) 91.93 72.41 75.42 41.95 70.43
coco50+SoftEmb 82.77 57.74 70.37 38.03 62.23
coco50+SemSim 83.44 59.13 70.88 37.56 62.75
coco50+Rescore 90.02 72.62 73.09 45.23 70.24
coco100 (baseline) 91.70 71.87 75.16 41.85 70.15
coco100+SoftEmb 82.59 56.69 68.75 36.38 61.10
coco100+SemSim 83.56 57.81 69.54 36.75 61.91
coco100+Rescore 89.31 70.72 72.84 43.54 69.10

Table A.3: PREDCLS, VRD/spatial, semantic features Comparison of
fine-tuned embeddings for Word2Vec and GloVe
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A.4 Fine-tuned embeddings for activity predicates

Model type R@50 R@50 ZS R@20 R@20 ZS Avg.
w2v (baseline) 96.20 64.67 91.68 41.33 73.47
w2v+SoftEmb 98.25 85.33 96.10 67.33 86.75
w2v+SemSim 98.70 85.33 97.02 73.33 88.60
w2v+Rescore 99.08 88.67 97.64 76.00 90.34
coco20 (baseline) 96.20 66.00 91.51 38.00 72.93
coco20+SoftEmb 98.60 85.33 96.99 74.67 88.90
coco20+SemSim 99.04 88.00 98.01 79.33 91.10
coco20+Rescore 98.94 89.33 97.64 76.67 90.64
coco50 (baseline) 95.65 64.00 90.48 34.67 71.20
coco50+SoftEmb 98.77 84.67 97.47 72.00 88.22
coco50+SemSim 99.04 88.00 98.08 76.00 90.28
coco50+Rescore 98.56 83.33 96.92 67.33 86.54
coco100 (baseline) 95.86 62.00 91.44 38.67 71.99
coco100+SoftEmb 99.01 86.67 97.36 70.67 88.43
coco100+SemSim 99.08 88.00 98.25 78.00 90.83
coco100+Rescore 98.56 87.33 96.47 72.00 88.59

Model type R@50 R@50 ZS R@20 R@20 ZS Avg.
glove (baseline) 95.51 64.00 90.07 34.67 71.06
glove+SoftEmb 98.77 88.67 96.92 70.00 88.59
glove+SemSim 99.01 90.00 97.88 79.33 91.55
glove+Rescore 98.63 86.67 97.09 72.67 88.76
coco20 (baseline) 95.27 62.67 90.14 34.67 70.69
coco20+SoftEmb 98.90 89.33 97.19 73.33 89.69
coco20+SemSim 99.21 90.00 97.74 78.67 91.40
coco20+Rescore 98.73 86.00 96.99 69.33 87.76
coco50 (baseline) 95.86 63.33 90.82 37.33 71.84
coco50+SoftEmb 98.12 88.67 96.71 77.33 90.21
coco50+SemSim 98.70 88.00 97.57 78.67 90.73
coco50+Rescore 98.12 82.00 96.64 70.00 86.69
coco100 (baseline) 96.10 64.67 91.37 35.33 71.87
coco100+SoftEmb 98.60 85.33 97.33 75.33 89.15
coco100+SemSim 99.11 90.00 97.91 78.00 91.26
coco100+Rescore 98.90 90.00 96.95 76.00 90.46

Table A.4: PREDCLS, VRD/activities, all features Comparison of fine-
tuned embeddings for Word2Vec and GloVe
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