
Region-based Memory Management and
Actor Model Concurrency

An initial study of how the combination performs

Master’s thesis in Computer science and engineering

Robert Krook

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2020

Master’s thesis 2020

Region-based Memory Management and
Actor Model Concurrency

An initial study of how the combination performs

Robert Krook

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2020

Region-based Memory Management and Actor Model Concurrency
An initial study of how the combination performs
Robert Krook

© Robert Krook, 2020.

Supervisor: John Hughes, Department
Examiner: Mary Sheeran, Department

Master’s Thesis 2020
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2020

iv

Region-based Memory Management and Actor Model Concurrency
An initial study of how the combination performs
Robert Krook
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Modern computer systems and the requirements we place upon them are vastly
different from those of early systems. With the emergence of Internet of Things
(IoT) devices, the number of devices with hard, real-time deadlines have increased
greatly. The presence of a garbage collector does not resonate well with such sys-
tems, as garbage collectors typically use a stop-the-world approach. The problem
is amplified further in languages such as Erlang, where it is commonplace to spawn
many processes. In Erlang, each process has its own heap which is individually
garbage collected.
A common design of an IoT device is a board with several different sensors and
peripherals. The presence of so many garbage collectors should be enough to deter
us from using Erlang to program IoT devices, but the idea of writing small, isolated
programs to manage each of the sensors is appealing.
Another memory management principle, one which could eliminate the need for
a garbage collector, is called Region-based Memory Management. This thesis has
investigated how well current Region-based Memory Management techniques work
when they are applied to a setting that implements Actor Model concurrency. To in-
vestigate this an Actor Model concurrency-library has been implemented in Standard
ML and compiled with the MLKit compiler - a compiler which uses Region-Based
memory management.
Evaluating the speed and memory performance of the library shows that the com-
bination performs poorly. The Region-inference algorithm employed by the com-
piler struggles with identifying when data can be deallocated and retains most data
throughout the execution of a program. We identify some key problems and propose
how they could be solved.
We conclude that current techniques are not well suited in a setting with Actor
Model concurrency. We cannot, however, say if the combination of Region-based
memory management and the Actor concurrency model works well or not, as further
research is required.

Keywords: Region-based memory management, Standard ML, Actor-Model Con-
currency, Functional programming

v

Acknowledgements
I would like to extend my gratitude towards my supervisor, John Hughes, for his
guidance and the many insightful discussions we have had. I have learned more than
I ever anticipated.
To my family and friends, for all the support and understanding.

Robert Krook, Gothenburg, June 2020

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1

2 Background 3
2.1 Standard ML . 3

2.1.1 Parameter passing in Standard ML 3
2.1.2 Effect-Handling and Concurrency in Standard ML 4
2.1.3 Standard ML’s Module System 5

2.2 Region-based Memory Management 8
2.2.1 Runtime representation . 10

2.3 Actor-model Concurrency . 12
2.4 Continuations . 13

3 Library 15
3.1 Interface . 15
3.2 Implementation . 18

3.2.1 Trampolines . 18
3.2.2 Serialising messages . 20
3.2.3 Mailboxes . 23
3.2.4 Library implementation . 24

4 Results 27
4.1 Benchmarks . 27
4.2 Speed . 27
4.3 Memory . 28

5 Analysis 35
5.1 References . 35
5.2 Global values are put in global regions 36
5.3 Awkward Syntax . 38

5.3.1 No Support for Continuations 38
5.3.2 Statically Typed Mailboxes 39

5.4 Processes Share Memory . 40
5.5 Tail recursion . 41

ix

Contents

6 Proposed Compiler Modifications and Future Work 43
6.1 Internal support for continuations . 43
6.2 Mailbox Region . 44
6.3 Thread Capabilities Implemented by Martin Elsman 46

7 Related Work 49
7.1 MLKit . 49
7.2 Cyclone . 50
7.3 Region based memory management for Java 51
7.4 Cloud Haskell . 52
7.5 Manticore . 52

8 Conclusions 55

A Appendix 1 I
A.1 skynet . I
A.2 Message bombing . II
A.3 Bitonic Mergesort . IV

x

List of Figures

2.1 Regions r1, r2 and r4 are infinite regions. r3 is placed directly on the
stack as it is finite. 11

4.1 Memory performance of running the Skynet test without garbage
collection. 29

4.2 Memory performance of running the Skynet test with garbage collec-
tion. It is evident that a lot of dead values can be reclaimed by the
garbage collector. 29

4.3 Memory performance of running the Bitonic mergesort test without
garbage collection. 30

4.4 Memory performance of running the Bitonic mergesort test with garbage
collection. Also here, a lot of dead values can be reclaimed by the
garbage collector. 30

4.5 Memory performance of running the Message bombing test without
garbage collection. This is the version of the test that first sends 200
messages that are not received. 31

4.6 Memory performance of running the Message bombing test with garbage
collection. This is the version of the test that first sends 200 messages
that are not received. The garbage collector can reclaim a lot of dead
values in this test. Memory usage is more than 18x lower. 31

4.7 Memory performance of the Message bombing test without garbage
collection. In this version only received messages are sent. Slightly
more than 0.5 MB is needed. 32

4.8 Memory performance of the Message bombing test with garbage col-
lection. In this version only received messages are sent. It is interest-
ing to see here that stack usage goes up, while the infinite regions are
downsized alot. Peak memory consumption in this case is ten times
lower. 32

7.1 Since the regions used by MLKit is organised as a stack, region 2
cannot be deallocated before region 3 have been deallocated. If region
3 is allocated in a never ending loop, any region allocated before it
can never be deallocated. 49

xi

List of Figures

xii

List of Tables

4.1 The table above presents the execution times for the different bench-
marks in milliseconds. The entry Message bombing 1 reports the time
measured while executing the version of the test that first sends 200
messages that won’t be received, while the entry Message bombing
2 reports the time measured while executing the version that only
sends messages which will be received. 28

4.2 The table above summarises the memory performance of the library
implementation in Standard ML and that of Erlang. The reported
numbers are number of allocated bytes. It is evident that a lot of
memory can be reclaimed by a garbage collector in the Standard
ML version, for all benchmarks. With the garbage collector enabled
memory usage is less than that of Erlang - but the memory reported
for the Erlang version also includes the Erlang VM. 33

xiii

List of Tables

xiv

1
Introduction

Since the arrival of modern computers, memory has up until recently been a scarce
resource. As a result of this scarcity, programmers were initially forced to do manual
memory management to avoid running out of memory. Manual memory manage-
ment is a very tedious and error-prone activity. Accidentally deallocating just one
value before it is safe to do so can result in an entire program crashing.
In an effort to simplify manual memory management in Lisp, John McCarthy in-
vented the concept of garbage collection[16]. It was first described in a paper dubbed
Recursive Functions of Symbolic Expressions and Their Computation by Machine,
Part I. As the section describing the garbage collector was awarded just half a col-
umn in the seminal paper, it was demonstrably not known at the time just how
important this concept would become.
Today garbage collection is a very popular feature in many programming languages.
Being freed from the burden of manual memory management, however, comes at a
price. In order for the garbage collector to perform a sweep of the memory associated
with a program, that whole program needs to be suspended. Sweeping the memory
may take varying amounts of time to do depending on the state of the memory.
As the world digitalises further, the requirements we place on machines change as
well. Some systems have hard deadlines to meet regarding what must happen when
and having a garbage collector take an arbitrary amount of time away at arbitrary
points in time from the main program is not acceptable.
The situation is amplified further in Erlang[3]. Erlang is a functional language that
has a mature implementation of the actor concurrency model. Every thread that
is spawned has its own heap, resulting in a setting where threads are completely
separate as there is no shared memory. The heap of a thread, however, has to be
carefully managed to avoid running out of memory. In Erlang this is done by having
the threads perform their own individual garbage collection.
Now, instead of a situation where there is a single program which might be halted
by a single garbage collector, there is in Erlang a garbage collector associated to
each thread in the program. Reasoning about the behaviour of a program becomes
much more involved, and reasoning about the behaviour of individual processes is
easier.
A memory management principle which retains the property of not requiring deal-
location annotations from the programmer, while simultaneously not relying on a
garbage collector, is called Region-based memory management. Region-based mem-
ory management was introduced by Mads Tofte and Jean-Pierre Talpin[20][19]. The
idea behind Region-based memory management is that objects are allocated in re-
gions rather than directly on the heap. While individual objects within a region

1

1. Introduction

cannot be deallocated, the region as a whole - and all objects within it - can be
deallocated. The programmer does not have to specify allocation and deallocation
points as this information is inferred by the compiler. The compiler will infer this
information by performing region inference on the source program, annotating it
with region constructs
If the region inference is clever enough, values might not have to remain allocated
long past their lifetimes. In this case, there is not always a need for a garbage
collector, as allocations and deallocations become explicit in the code after region
inference. Regions are eventually deallocated, making the memory they previously
occupied available for use. One downside of this, however, is that objects might
remain alive for longer than required if the deallocation point is far in the future.
This thesis presents the results obtained when investigating how well current Region-
based memory management techniques work when they are applied to coroutines as
they are described by the actor concurrency model. The setting is one where threads
use Region-based memory management to manage their memory instead of relying
on a garbage collector. To assess how such a setting performs using current Region-
based memory management techniques, a library has been implemented with the
functionality specified by the actor concurrency model. The work has been carried
out in Standard ML, as there is a complete implementation of Standard ML that uses
regions to manage memory. This implementation is called the MLKit[18, 20]. The
MLKit is a well-documented compiler which enables profiling of regions at runtime,
to assess the amount of memory being consumed by a program.
In contrast to Erlang, which is dynamically typed, Standard ML is statically typed.
This causes some trouble when sending messages, as we cannot write a send or
receive function that can handle messages of any type. In other statically typed
languages, such as Cloud Haskell[8], an alternative interface using typed channels
is implemented. We, however, have solved this problem by serialising messages,
allowing us to transmit messages of almost any type.

2

2
Background

This chapter will give an explanation of all the concepts involved in this thesis.
To explore the Region-based memory management part of the thesis the MLKit[18]
compiler for Standard ML is used as it has a mature implementation of Region-based
memory management. First, an overview of Standard ML is presented, followed
closely by an explanation of Region-based memory management using examples
written in Standard ML. Lastly, an overview of actor model concurrency is given.

2.1 Standard ML
This section will give an overview of the Standard ML programming language. First,
the way Standard ML passes parameters to functions is explained, followed by some
words about how effects are expressed and evaluated in Standard ML. Lastly, a brief
but thorough overview of the module system is given.

2.1.1 Parameter passing in Standard ML
Standard ML is a general-purpose functional programming language. It is strongly
typed and implements a call-by-value semantics. Call by value semantics specifies
that an expression should be evaluated before it is passed as an argument to a func-
tion, and is the most common parameter passing style found in other programming
languages. In a call by name setting the argument would not be evaluated before
application, and every reference to the argument within the function body would
evaluate the argument again. To give an example, consider a function which will
add its arguments and another that will double its single argument.

fun add a b = a + b
fun double a = a + a

In a language with a call by name semantics, evaluation of the expression double (add 2 2)
could happen like this, depending on the reduction semantics.

> double (add 2 2)
> (add 2 2) + (add 2 2)
> (2 + 2) + (add 2 2)
> 4 + (add 2 2)
> 4 + (2 + 2)
> 4 + 4

3

2. Background

> 8
> 8

The above example illustrates that the argument, add 2 2, is evaluated twice. If the
argument is a computation which consumes a lot of resources - e.g consumes a lot of
memory or takes a long time to normalise - this is not a favourable situation. If the
argument to a function performs a side-effect that side-effect would be performed
each time the value is evaluated. On the other hand, if the argument is not used by
the function body there is almost no overhead with call by name semantics, as the
argument would not be evaluated.
With a call by value semantics, the argument is evaluated just once - before the
function is applied to it - and subsequent references to the argument within the
function body would read the computed value. If the argument is referenced many
times within the function body a lot of work is saved. Contrary to the call by name
semantics, however, if the argument is not used in the function body it would have
been evaluated unnecessarily.

> double (add 2 2)
> double (2 + 2)
> double 4
> 4 + 4
> 8

2.1.2 Effect-Handling and Concurrency in Standard ML
Standard ML is not pure, meaning that a program is free to perform any side-effect.
Consider the innocent looking program below.

fun feed_the_cat () = (
(* fire missiles *);
())

The type of the above function is feed_the_cat : unit -> unit, which does not
indicate that a side-effect will occur if it is applied to (), whereas, in reality, it
would fire the missiles. The analogy of firing the missiles is meant to indicate that
IO effects are irrevocable.
In Haskell[15] the opposite is true; an effectful computation would need to annotate
its type to indicate that it may perform a side-effect.

feed_the_cat () = do
{- fire the missiles -}
return ()

The type of the above Haskell function is feed_the_cat :: () -> IO (), where
it is clear from the result type that the function may perform any IO effect at all.
Any computation that feed_the_cat is a part of needs to annotate its result type
to be that of IO.

4

2. Background

Standard ML is inherently single-threaded. There are no concurrency primitives de-
fined in the formal definition of the language. Any compiler for Standard ML which
offers parallelism or concurrency primitives deviates from the language specification[17].

2.1.3 Standard ML’s Module System
Standard ML has a complex module system. The programmer can reason about
modules in the code and structure code in a hierarchical way. This system is used
by defining signatures and implementing structures.
A signature describes the interface of a module. The signature can name abstract
types of which the representation is unknown by just observing the signature. Values
of such an abstract type can then only be instantiated by calling functions defined
by the signature. Consider the signature below.

signature PROP =
type (’p, ’q) con (* p /\ q *)
type (’p, ’q) dis (* p \/ q *)
type (’p, ’q) implies (* p => q *)

The signature defines three abstract types representing logical and, or and implica-
tion. We proceed by defining the type signatures for the introduction and elimination
rules, indicating how values of such types are created and destroyed.

(* Introduction rules *)
val con_intro : ’p * ’q -> (’p, ’q) con
val dis_intro1 : ’p -> (’p, ’q) dis
val dis_intro2 : ’q -> (’p, ’q) dis
val implies_intro : (’p -> ’q) -> (’p, ’q) implies

(* Elimination rules *)
val con_elim1 : (’p, ’q) con -> ’p
val con_elim2 : (’p, ’q) con -> ’q
val dis_elim : ((’p, ’r) implies, (’q, ’r) implies) con

->
(’p, ’q) dis -> ’r

We can also define some laws we expect to hold for propositional logic, as is done
below. The definition of the signature is terminated with the end keyword.

(* (p => q) /\ (p => r)
* --------------------
* p => q /\ r *)
val composition : ((’p, ’q) implies, (’p, ’r) implies) con

->
(’p, (’q, ’r) con) implies

(* p \/ (q \/ r)
* --------------

5

2. Background

* (p \/ q) \/ r *)
val association1 : (’p, (’q, ’r) dis) dis

->
((’p, ’q) dis, ’r) dis

(* p /\ (q /\ r)
* --------------
* (p /\ q) /\ r *)
val association2 : (’p, (’q, ’r) con) con

->
((’p, ’q) con, ’r) con

end

After clearly defining what is expected of an implementation of the signature, it
can be implemented as a structure. The structure is named and it is defined to
implement the PROP signature. It begins with the keyword struct and ends with
the keyword end.

structure Prop : PROP =
struct

type (’p, ’q) con = ’p * ’q

datatype (’p, ’q) Either = Left of ’p | Right of ’q
type (’p, ’q) dis = (’p, ’q) Either

datatype (’p, ’q) Implies = Implies of (’p -> ’q)
type (’p, ’q) implies = (’p, ’q) Implies

The abstract datatypes are implemented as concrete types within the structure. The
types Either, Implies and ’p * ’q are not visible outside the signature. As such,
e.g their constructors cannot be pattern matched on outside the signature, forcing
clients to rely on the abstraction rather than the implementation.

(* Introduction rules *)
fun con_intro pq = pq
fun dis_intro1 p = Left p
fun dis_intro2 q = Right q
fun implies_intro ptoq = Implies ptoq

(* Elimination rules *)
fun con_elim1 (p,_) = p
fun con_elim2 (_,q) = q
fun dis_elim (Implies ptor, _) (Left p) = ptor p

| dis_elim (_, Implies qtor) (Right q) = qtor q

fun composition (Implies ptoq, Implies ptor) =
Implies (fn p => (ptoq p, ptor p))

6

2. Background

fun association1 (Left p) = Left (Left p)
| association1 (Right (Left q)) = Left (Right q)
| association1 (Right (Right r)) = Right r

fun association2 (p,(q,r)) = ((p,q),r)

The introduction rules, elimination rules and the laws are implemented as normal
Standard ML functions. Not only have we defined a signature and implemented a
structure - we have also done some simple proofs.
A simple example that illustrates the modularity the module system gives us is that
of sorting numbers. We define two signatures.

signature ORD =
sig

type typ
val leq : typ * typ -> bool

end

signature SORTER =
sig

type typ
val sort : typ list -> typ list

end

The first signature exposes a type and a function that compares two elements of that
type, determining which is smaller or greater. The second signature also defines a
type and exposes a function that is intended to sort a list. Using Standard ML
functors, we can define a structure that implements the SORT signature regardless
of how elements are compared.

functor SortFunctor (O : ORD) : SORTER =
struct

type typ = O.typ

fun sort xs = (* ... some sorting function ... *)
end

Within SortFunctor we can access the types, values and functions defined in the
ORD interface. The implementation of sort makes use of O.leq to determine in
which order elements should be sorted. The code below implements two structures
that define different ways to order integers.

structure AscInt : ORD = struct
type typ = int
fun leq (x,y) = x <= y

end

7

2. Background

structure DescInt : ORD = struct
type typ = int
fun leq (x,y) = not (x <= y)

end

The code that sorts elements, defined in the functor, can now be reused to sort
integers both in ascending order and descending order. In fact, SortFunctor can
be used to sort lists of any type as long as it is given an implementation of ORD that
tells it how to order elements of that type.

structure AscendingIntSorter = SortFunctor (AscInt)
structure DescendingIntSorter = SortFunctor (DescInt)

2.2 Region-based Memory Management
The seminal work by Tofte and Talpin[20] describes a system that uses inference
rules to transform source code to a target language they call TExp. The source
language in the seminal paper is the polymorphically typed lambda calculus, but in
this section, examples are presented using Standard ML code. The implementation
in MLKit transforms Standard ML expressions into one of two different forms of
region-annotated expressions. The two forms of annotations are illustrated below.

e => e at p
e => letregion p in e end

The first type transforms a source expression e to e at p, which means that when
e is evaluated the result should be stored in the region bound to the region variable
p. The second expression describes allocation and deallocation of regions. At run
time letregion p in e end will first allocate a new region and bind it to the
region variable p. After this, the expression e is evaluated and is able to use the
freshly allocated region. Once e has been fully evaluated, the region bound to p is
deallocated.
Expressions of the form letregion p in e end are the only construct that will
create and destroy regions. As e after region inference might contain additional
letregion constructs, the region allocation points are lexically scoped. When a
program is evaluated this will create a stack of regions. They are allocated and
deallocated in a stack-like manner.

letregion p2 in
let val xs = "hello" at p2
in letregion p3 in

let val len = size xs at p3
in (len + 5) at p1 end

end
end

end

8

2. Background

Before the above expression is evaluated there is a region p1 already allocated.
When the expression above is evaluated the first thing that will happen is that
another region p2 will be allocated. The inner expression will allocate a string xs in
the freshly allocated region, and then begin evaluating another nested expression.
Again, a new region p3 is allocated and a local value len - the size of the string xs
- is allocated in p3. The result of the expression is the length of the string plus 5,
which is put in the oldest region p1. Next, p3 is deallocated followed closely by the
deallocation of p2. The nice thing about region annotations like this is that as soon
as the result len + 5 has been computed, len is no longer needed. Since it is stored
in the innermost region it will be deallocated along with that region immediately.
Another example to drive the point home is given in the seminal paper[18].

(let x = (2,3)
in (fn y => (#1 x, y))
)(5)

The example applies a function to the constant 5. The function will return a pair
where the first element is the first projection of x, and the second element is the
value the function was applied to. The second component of x is not needed after
the closure of the function has been computed. A region annotated program that
reflects this property is shown below

letregion p4,p5
in letregion p6

in let x = (2 at p2, 3 at p6) at p4
in (fn y => (#1 x, y) at p1) at p5
end

end
5 at p3

end

The innermost region, which will be deallocated first, contains only one value, the
second component of the tuple x. When the closure of the function has been com-
puted the innermost region is deallocated. The tuple as a whole is allocated in region
p4, while the components themselves reside in potentially other regions. This ability
to deallocate parts of a data structure while retaining the relevant parts is very con-
venient. The expression above that creates the function also creates a tuple, but the
parts of that tuple which are not required are safely deallocated before the function
is applied.
Consider the return value of a function. We have covered that the only way to create
and deallocate regions is with the letregion construct. Where does a function allo-
cate its result? Any locally allocated regions using letregion would be deallocated
when the function returns. If the result is put in a global region, all applications of
the function must allocate their result in the same region. This region would have to
remain alive until it can be safely determined that the function will not be applied
again, which can be difficult to do. To mitigate this problem, functions are region
polymorphic and accept regions as parameters at run time.

9

2. Background

fun add [r0] a b = (a + b) at r0

The above function will add two numbers and put the result in the region r0, which
is given as a parameter to the function. What is evident in the code is that the
result is put in the region bound to r0, but which region this is will not be known
until call time.

fun example [r0] () = letregion p0,p1 in
let val x = add [p0] (5 at p0) (5 at p0)

val y = add [p1] (2 at p1) (2 at p1)
in (x + y) at r0 end

end

The code above makes two calls to add, but the region in which add put its result
is different in each call.
An important point to understand is that some functions will produce results in new
regions while some will place their result in the same regions as their arguments. An
excellent example of this is that of list concatenation. The physical representation
of lists in MLKit is that the empty list is a single word, while any other list is a
pointer to a tuple of two words. The first component of this tuple is the head of the
list while the second component points to the rest of the list, which in turn is either
the empty list or another tuple.
All elements of a list must be placed in the same region, and all the tuples - also
called auxiliary pairs - must be placed in the same region. The region containing
the elements and the region containing the auxiliary pairs do not necessarily have
to be the same region. If we consider how the append function is defined, we can
see that the produced list will be placed in the same region as the second operand.

fun nil @ ys = ys
| (x::xs) @ ys = x :: (xs @ ys)

As in the base case the result is ys, which is located in some region already, the new
elements must be placed in the same region. Functions like this one are said to be
Region Endomorphic functions.

2.2.1 Runtime representation
In the MLKit, a distinction is made between finite and infinite regions. A region is
finite if the compiler can statically determine an upper bound on how big the region
needs to be. Consider the trivial example below.

letregion p in (3 : int) at p end

It is clear that the region p will only ever contain one value, an int. The example
below, however, illustrates the opposite.

10

2. Background

fun lengthdouble [r0] (xs : string) =
letregion p in

let xxs = xs@xs at p
in (length xxs) at r0 end

end

The local value xss is a string - the string xs concatenated to itself - in the local
region p. The size of xs, and subsequently xxs, is not known during region inference.
Finite regions are stored in an activation record directly on the stack, whereas infinite
regions are slightly more involved. Infinite regions are represented by a tuple of three
elements, (e,fp,a), on the stack. fp points to the first page in a linked list of region
pages, a is the allocation pointer and e is the end pointer. The allocation pointer
points to the first free word in the region, while the end pointer points to the end of
the last region page. When an object o is placed in a region, if a + size of o > e
is true the region is not big enough to hold the object. In this case, a new region
page is allocated and appended to the list of region pages identified by fp, and the
end pointer is updated to point to the end of the region page. At this point, another
attempt is made to put the object in the region, and if successful, the allocation
pointer is updated to be a = a + size of o. The representation of infinite regions
is illustrated in the figure below1.

Figure 2.1: Regions r1, r2 and r4 are infinite regions. r3 is placed directly on the
stack as it is finite.

Deallocating a region is quite straightforward. If it is a finite region the entire region
is located on the stack, and deallocation occurs by moving the stack pointer. If the

1This picture has been borrowed from A Retrospective on Region-Based Memory Management.
Tofte, M., Birkedal, L., Elsman, M. et al. Higher-Order and Symbolic Computation (2004) 17:
245. https://doi.org/10.1023/B:LISP.0000029446.78563.a4

11

2. Background

region is infinite, the region pages are appended to a global list of free region pages.
When a new region page is requested it is fetched from this list. After this, the
triple (e,fp,a) is deallocated from the stack by moving the stack pointer.
Occasionally regions can be recycled at runtime rather than deallocated. An analysis
performed by the compiler, storage mode analysis, can further annotate each at ...
annotation to be either attop or atbot. attop is interpreted as described above,
while atbot tells the compiler that the value can be stored at the beginning of the
region, effectively resetting the region. A decision such as this one cannot always
be inferred at compile time, hence there exists a third annotation sat, somewhere
at. This annotation says that the decision to store at the top or bottom of a region
should be deferred to runtime. At runtime, the two least significant bits of the name
of a region hold information of the storage mode. A concrete storage mode is given
to all regions at runtime, meaning that a region will never have sat as the storage
mode at runtime. When evaluating a sat p, the storage mode will be fetched from
p and evaluated accordingly.
The decision cannot always be made as the MLKit supports separate compilation.
It cannot be known at compile time what all call sites to a region polymorphic
function look like. In this case, sat is the chosen storage mode.

2.3 Actor-model Concurrency
If a system is developed in a monolithic way, it quickly becomes hard to maintain
and manage the system. It is always good practice to separate areas of concern and
write smaller units that are specialised to do just one task. The smaller pieces are
then composed and glued together to implement the desired behaviour. Maintaining
a system written this way is easier; the component responsible for a bug, if localised,
is small and specialised and would hopefully be quicker to debug.
The actor concurrency model agrees with this idea of creating smaller tasks that
together perform some computation. In this model, a concurrent computation is
described by distributing work among actors and giving them the capability of
communicating with each other, which they do by sending and receiving messages.
When a message is sent there is no need for a handshake with the recipient. If the
mailbox of the recipient exists the message is placed inside it regardless of what the
recipient is doing. The sender will make sure that the message is put in a designated
area of the recipient’s memory, such that when the recipient is ready to receive the
message it is already at hand.
Consider the pseudocode below.

process1():
receive

(add, A, B, Caller) -> send (A+B) Caller
(mul, A, B, Caller) -> send (A*B) Caller

end
process1()

end

12

2. Background

The actor receives a message, produces some result and then sends it to the actor
identified by the Caller variable, followed by looping on itself. Note that the actor
can choose to receive either a request to add two numbers or to multiply two num-
bers. A request to divide two numbers, for instance, would not be received by the
actor. Such a message would be left in the mailbox, as it is not known at runtime
whether the message will be received at a later time or not. It cannot be safely
discarded.
In the case that no other actor sends a message to process1, process1 sleeps until
there is a message to receive, preserving system resources. Below is an actor that
sends a message to process1.

process2():
send (add, 6, 2, process2) process1
receive Answer -> print Answer end

end

In the case that process1 is asleep - waiting for a message - the send done by
process2 delivers the message and then wakes up process1. After this process2
sleeps until process1 delivers the result and wakes it up. When the result has been
received and printed, process2 is finished and will die while process1 will go to
sleep, waiting for the next message.
Actors themselves are independent units of computation, with their own memory
and resources. If one actor crashes, the remaining actors stay alive. As they have
their own memory, they do not need to bother with protecting shared data using
locks and other synchronisation primitives. The only way they may affect each
other is by sending and receiving messages. In the example above, process2 would
affect process1 by sending a message, as it wakes up process1 when it delivers the
message.

2.4 Continuations
Considering an implementation of the scenario described in section 2.3, we quickly
realise that we will need some way to model processes such that they can be stopped
and resumed at will. When we compute a value we intend to do something with the
result, and that is what we call the continuation of a process. Andrew W. Appel has
written a book about how to compile with continuations[1]. The book uses ML as a
tool to teach the reader how to convert source code into continuation-passing style
(CPS). Consider the example below, which is borrowed from the book mentioned
above.

fun prodprimes n =
if n = 1
then 1
else if isprime n

then n * prodprimes (n-1)
else prodprimes (n-1)

13

2. Background

The code above does some evaluations and has a base case where it returns a 1.
In the recursive cases, a check is made on the input, after which e.g recursive calls
to prodprimes are made. Looking closer we see e.g that the result of isprime n
is passed to an if-then-else expression, after which either of the branches is se-
lected. Now, let’s inspect a function which is semantically the same, but which uses
continuation-passing style instead.

fun prodprimes n c =
if n = 1
then c 1
else let fun k b =

if b = true
then let fun j p =

let val a = n * p
in c a end

val m = n - 1
in prodprimes m j

else let fun h q = c q
val i = n - 1

in prodprimes i h end
in isprime n k end

The above code never returns. In a program that is CPS-converted, every function
receives an extra argument, the continuation. Where the function would normally
return a result, it will in a CPS-converted case apply the continuation to the result
instead.
When you would wish to halt the execution of a program in order to let another
program have some processor time, you would simply grab the current continuation
and store it. When it is time to run the process again, the continuation is applied
and evaluation is resumed.

14

3
Library

This chapter will begin by describing the interface of the implemented library, fol-
lowed by an explanation of the implementation. Finally some examples of programs
written using the library are presented.

3.1 Interface
The library is influenced by Erlang, exposing much of the same core functionality.
The complete interface is described as a Standard ML signature.

signature ActorConc =
sig

type pid
type (’a, ’b) either
type trampoline

Three abstract types are defined by the signature. A type of process identifiers, a
normal sum type and lastly the type trampoline. The last type will be explained
in more detail in section 3.2.1. Suffice it to say at this point that this is the type of
actors, hereafter referred to as processes.

val spawn : (unit -> trampoline) -> pid
val embed : (unit -> unit) -> trampoline

The function spawn applied to a function creates a new process and instructs it to
execute that function. After creating the new process, spawn returns the freshly
minted process identifier.
Only by invoking functions defined by the concurrency interface can a value of type
trampoline be created. These functions run some computation which has the ability
to perform side effects. The function embed takes such a computation and embeds
it as a process that can be spawned. When this process is allowed to execute, it will
run atomically; there will be no context switches interrupting it. This is a design
choice that had to be made for this implementation of actor model concurrency.
In Erlang, for example, the situation is the opposite. Our library cannot grab the
continuation of a process, which limits our ability to suspend it. If the programmer
is not careful when using embed, there is a risk that the atomic computation will
starve the system if it never terminates or takes a substantial amount of time to
finish.

15

3. Library

val register : string -> pid -> unit
val unregister : string -> unit
val whereis : string -> pid option

As in Erlang, a process can be associated with a name. This enables a process which
does not hold the pid of another process to still send messages to that process, given
that the name of the process is known. Apart from it also being possible to unregister
a process, the process identifier of a named process can be retrieved.

exception NameAlreadyRegistered
exception NameNotRegistered

Associated with registering processes, two exceptions are defined. The exception
NameAlreadyRegistered is raised if a call to register is made where the first ar-
gument is already associated with a pid. NameNotRegistered is raised if a message
is sent to a name that is not associated with a process identifier. In this case, it is
impossible to know who the recipient is.

val recv : (string -> ’b) list * (’b -> trampoline)
->
trampoline

val recv_many : int -> (string -> ’b) list * (’b list -> trampoline)
->
trampoline

A process can receive messages by using either recv or recv_many. The function
recv accepts a single argument which is a tuple. The first component is a list of
functions that can deserialise a message and produce some result ’b. The second
component is the continuation, which is applied to the received and deserialised
message. A convenience function recv_many is exposed, which simplifies receiving
many messages before continuing. If the first argument to recv_many is a positive
integer, that integer specifies how many messages should be received. Without
this convenience function, receiving many messages will have to be nested recv’s,
which produces a lot of parantheses and context switches. recv_many n only does
a context switch if less than n messages are received. recv_many n does not call its
continuation until n messages are received and deserialised.

val when : (string -> ’a) -> (’a -> bool) -> (string -> ’b)
->
(string -> ’b)

As in Erlang, messages can be selectively received. As will be explained in section
3.2.2, there is more than one way to achieve this behavior. The function when
accepts a deserialiser, a predicate on deserialised values and the branch that should
be guarded by the predicate. The result of calling when is a new branch that only
receives messages that fulfil the predicate. Messages that don’t fulfill the predicate
raise the exception UnpackException, which is caught and handled internally by the
library. A process will not recognise that a message failed to fulfill the predicate, it
will continue to wait for a message.

16

3. Library

val conv : (’a -> ’b) -> ’a pu -> (string -> ’b)

To receive messages of any type, messages are serialised. To receive such messages,
the branches guarded by a receive are applied to strings. Assuming the message
is not serialised, the branch can be of type ’a -> ’b. Knowing how to deserialise
values of type ’a - which is proved by applying conv to a value of type ’a pu - the
branch for deserialised values can be converted to instead be a branch for seralised
values. Serialising values, deserialising values and ’a pu are explained in more detail
in section 3.2.2.

val picklepid : pid -> string
val upicklepid : string -> pid

Two functions are exposed to serialise and deserialise process identifiers. After seri-
alising a process identifier it can be sent in a message to another process.

val pid : pid -> (pid, string) either
val name : string -> (pid, string) either

To send a message the recipient must be identified. However, the process identifier
of a process is not always known. The only way to deliver a message to a process
whose process identifier is unknown is if the process has been registered with a name.
As there are two ways to identify processes, the two functions pid and name will
indicate if the process is identified by a process identifier or by a name.

val send : (string * (pid, string) either) *
(unit -> trampoline)
->
trampoline

val send_many : (string * (pid, string) either) list *
(unit -> trampoline)
->
trampoline

To send a message to a recipient, send is applied to a tuple where the first component
of that tuple is the serialised message and the recipient. The second component of
the tuple is the continuation of the process sending the message.

val self : unit -> pid

The function self returns the process identifier of the process that is currently
running. It is useful e.g when the process identifier of a parent process should be
transmitted to child processes.

val endP : trampoline

Calling endP results in the process evaluating it dying.

17

3. Library

val run : unit -> unit
exception NoRunnableThreads

end

A function run continuously chooses a processe to run, runs it until a context
switch occurs, and then continues with running another process. The exception
NoRunnableThreads is raised if there are processes left that have not died, but none
of which are runnable. This completes our description of the library API.

3.2 Implementation

3.2.1 Trampolines
Trampolines offer a way of executing a program in a discrete number of steps. Ini-
tially their use was targeted towards compilers that wanted to do multithreaded com-
putations but did not want to implement continuation-passing style conversion[10].
In this project we have used trampolines towards the same purpose, to achieve some
level of multithreading. The discussion that follows tries to educate the reader about
trampolines by illustrating how trampolines can improve situations in a language
that does not do tail-call optimisation.
To give some intuition for what trampolines are, we consider the factorial function.

fun fac 0 = 1
| fac n = n * fac (n-1)

Inspecting the call stack when applying fac to 5, it would look something like below..
Note that the word ret represents a stack frame that the result needs to be returned
from.

fac 5 = ret 5 *
ret (4 *

ret (3 *
ret (2 *

ret (1 * 1)
)

)
)

The code builds up a call stack where there is work left to do after each call returns,
namely multiplying the result of fac (n-1) by n. Let’s rewrite the code in such a
way that the result is passed into the calling function, making it tail recursive.

fun factr 0 a = a
| factr n a = factr (n-1) (a * n)

In the base case the accumulated result is returned, and in the recursive case there
is no work left once the recursive call to factr returns. Inspecting the callstack
when running this code would show us something that looks like this.

18

3. Library

factr 5 = ret
ret (

ret (
ret (

ret (120)
)

)
)

There is no work left to do in every stack frame. However, the result still has to be
passed up through all stack frames, which is ineffective. Some compilers will optimise
this behaviour away by doing tail-call optimisation. What this optimisation does is
that it recognises when a recursive call is a tail-call. In such a case the compiler
generates assembly code that jumps to the function rather than calls the function.
Jumps don’t require a stack frame, but function calls do as a stack frame is required
to hold e.g the parameters, the return address and frame pointer.
Trampolines are a way of controlling how the stack grows. Evaluating a trampoline
will result in either a value or another trampoline. Consider the Standard ML
representation.

datatype (’a, ’b) Either = Left of ’a | Right of ’b
datatype ’a Trampoline = T of (unit -> (’a, ’a Trampoline) Either)

fun eval (T t) = case t () of
(Left v) => v

| (Right f) => eval f

Evaluating a trampoline is done by applying () and observing if the result was a
value or another trampoline. In the case where the result is another trampoline,
eval is recursively applied to the new trampoline. Rewriting factr to make use of
trampolines would look like this.

fun facT 0 a = T (fn () => Left a)
| facT n a = T (fn () => Right (facT (n-1) (a * n)))

The base case returns a trampoline that returns the accumulator, Left a. The
recursive case, however, returns another trampoline.

eval (facT 5 1)
> 120

When eval (facT 5 1) is evaluated there will be one stackframe for eval and one
for the call to facT. Where before the call stack looked like this.

factr 5
factr 4

factr 3
factr 2

factr 1
factr 0

19

3. Library

It would now look like this.

eval
facT 5
facT 4
facT 3
facT 2
facT 1
facT 0

There is one stack frame for eval and one for facT. Since facT does not make
the recursive call, however, but rather return it to eval, the stack depth for calls to
facT never exceeds one. In this particular case, however, a stack frame is still needed
as eval is still implemented using recursion. In a realistic example eval would be
implemented as a loop, which doesn’t use any stack space.

3.2.2 Serialising messages
Unlike in Erlang, where messages of any type can be sent to anyone, in Standard
ML we need to take more care when crafting our messages. Every Standard ML
expression will have a type inferred for it at compile-time, which raises the question
of what type the mailbox should have. It might be tempting to just make it poly-
morphic in its contents, but that is not a suitable solution. At compile time the type
checker would try to unify the polymorphic type and instantiate it with a concrete
type. The mailbox would indeed be able to contain integers, booleans or any other
type of value. This type would however have to be decided at compile-time, after
which the mailbox can only hold values of that specific type. What we desire is a
mailbox that can contain messages of different types at the same time.
In the implementation of the library we have achieved this by serialising and deseri-
alising messages, converting them to strings. The type of the contents of a mailbox
thus simply becomes string. The MLKit comes with a serialiser, one which does
not do any checks regarding types. A message can be deserialised to any type, re-
gardless of which type the original value had. While deserialising a string to a b if
it was originally an a does not always succeed, sometimes it does and you would
get an unexpected b. As an example; if an integer is serialised, the resulting string
should only be able to be deserialised back into an integer, not e.g a boolean.
We modified the code to not blindly try to deserialise a value, but rather to inspect
if the attempted deserialisation is safe. Upon serialisation the serialised value is
prefixed with a string representation of its original type. When an attempt is made
to deserialise that string it is first checked that the type it is deserialised to matches
that of the prefix found on the string.
The core functionality of the serialiser is expressed by the following definitions.

exception UnpackError
type ’a pu
val pickle : ’a pu -> ’a -> string
val unpickle : ’a pu -> string -> ’a

20

3. Library

val trep : ’a pu -> string

The type ’a pu can be thought of as a description of how to serialise and deserialise
values of type ’a. Given a p : ’a pu, pickle p is a serialiser for values of type ’a,
and unpickle p is a deserialiser for values of type ’a. trep returns the string the
’a pu prefixes serialised messages with. Let’s consider an example.

val intpu = (* int pu *)
val serialise = pickle intpu
val deserialise = unpickle intpu
val msg = serialise 5
val val = deserialise msg

val eq = (val = 5)
val _ = print ((Bool.toString eq) ^ "\n")
> "true"

Given a intpu : int pu, we can construct a serialiser and deserialiser for values of
type int by applying pickle and unpickle to it, as shown above. eq will evaluate
to true if the deserialised value is the same as the initial value, and the call to print
verifies this.
As mentioned above, values of type ’a pu can be thought of as a description of how
to serialise and deserialise values of type ’a. If a value is serialised using a specific
’a pu, the serialised value can only be deserialised using the same ’a pu. If this is
not the case the exception UnpackError is raised.
There can be many different ’a pu for a ’a, and an interesting side effect of this is
that the same value could potentially by serialised by many different ’a pu’s. Even
if there are two perfectly valid but slightly different ’a pu’s, a message serialised
using one of them cannot be deserialised using the other. This lets programmers be
very fine grained about how values are serialised and deserialised. It could be argued
that not being able to deserialise a value despite having a perfectly capable a pu is
a bug, but in this project we have used this quirk to our advantage and consider it
a feature. Instead of using the function when to selectively receive values, different
a pu’s could be used to achieve a similar effect.
The module comes equipped with serialisers for the base types of Standard ML,
and functions to facilitate the creation of serialisers for more involved types such
as tuples and lists. Creating a serialiser for pairs of integers and booleans is for
example quite simple.

val ints : int pu = (* int pu *)
val bools : bool pu = (* bool pu *)
val tuples : (int * bool) pu = pairGen(ints, bools)

Creating a pu for a custom datatype is a little more involved, but still straightfor-
ward. Let’s consider the sum type.

datatype (’a, ’b) Either = Left of ’a | Right of ’b

21

3. Library

To create a value of type (’a, ’b) Either either the constructor Left is applied to
a value of type ’a, or the constructor Right is applied to a value of type ’b. To create
a (’a, ’b) Either pu we can apply the function val dataGen : string * (’a->int) * (’a pu -> ’a pu) list -> ’a pu.
The first argument is a function that maps the different constructors of the datatype
to unique integers in ascending order, starting from zero. In this case there are two
constructors, Left and Right. They are mapped to 0 and 1, respectively.

fun index (Left _) = 0
| index (Right _) = 1

The second argument for dataGen is a list of functions. The functions will create
a (’a, ’b) Either pu each, one for each constructor of the datatype. The idea is
that the indexing function, when applied to a value, will return the index in the list
where the right (’a, ’b) Either pu can be found.
To construct an (’a, ’b) Either pu we use the function below.

val con1 : (’a->’b) -> (’b->’a) -> ’a pu
->
’b pu

If we have a serialiser for ’a’s, and a way of converting ’a’s to and from ’b’s, we
can create a serialiser for ’b’s.

fun eitherPickler pa pb =
let

fun index (Left _) = 0
| index (Right _) = 1

fun leftP pu = con1 Left (fn Left i => i) pa
fun rightP pu = con1 Right (fn Right i => i) pb

in dataGen("Either" ^ (trep pu) ^ (trep pb), index, [leftP, rightP])
end

Applying dataGen to get a (’a, ’b) Either pu is now possible. The first argu-
ment is a string that represents the type being serialised. It is important that this
string is uniquely associated with this type, as this is what will hinder the value
from being deserialised using another (’a, ’b) Either pu. If the string was just
"Either", a (int, bool) pu could be used where a (bool, int) pu is expected.
To solve this we append the string representations of the two recursive pu’s to
"Either". Then, also given a ’a pu and a ’b pu, the result from eitherPickler
is a (’a, ’b) Either pu.
This way of creating ’a pu’s allows the programmer to be very specific when writing
serialisers. A ’a pu does not have to be defined for all possible values of type ’a.
Consider the alternative (’a, ’b) Either pu below.

fun leftPickler pa =
let

fun index _ = 0
fun fun_L pu = con1 Left (fn Left i => i | _ => raise UnpackError) pa

22

3. Library

in dataGen("EitherLeft", index, [fun_L])
end

The (’a, ’b) Either pu above only describes how to serialise and deserialise val-
ues created with the Left constructor. If an attempt is made to serialise a value
constructed with the Right constructor, the exception UnpackError is raised. If
a value Left val is serialised with eitherPickler, it cannot be deserialised with
leftPickler, as the prefix of the serialised message does not match the one specified
in the creation of leftPickler. Consider the example below.

val intpu = (* int pu *)
val boolpu = (* bool pu *)
val msg = pickle (eitherPickler intpu boolpu) (Left 5)

The value has now been successfully serialised, and could be transmitted using the
library. However, if the recipient does not have access to an identical serialiser
despite having a serialiser for the same type of values, the deserialisation will fail.

val res : (int, bool) Either = unpickle (leftPickler intpu) msg
> uncaught exception UnpackError

3.2.3 Mailboxes
The requirements we impose upon a mailbox are few and simple, but nonetheless
important. Apart from being able to receive messages, we require that messages be
received in the order in which they arrive in the mailbox. If we remove a message
from the mailbox, it should be possible to put it back in the same spot. For our
purposes this functionality is required when for example a message has been retrieved
and deserialised, but it was blocked by a selective receive. In this case we wish to
put the message back in the mailbox.
The type of (mutable) mailboxes is a reference to a tuple. The first component of
this tuple is a queue of messages, while the second component is a list of messages.
To clarify why there are two data structures holding messages we consider how
messages are sent and received.
When a message is sent to the mailbox, it is placed at the back of the queue. When
a message is received, it is taken from the front of the queue. After a message has
been received the library is going to try to deserialise it. In the case that this fails,
the message should be left in the mailbox and the next one should be retrieved
instead.
When a message is put back in the mailbox after being received, it is put at the
front of the list of messages. If it was put back in the queue instead, the queue
would need to be traversed to find the next message. Doing things like this makes
sure that the next message to receive is always at the front of the queue.
After a message has been successfully deserialised, a call to the function resetsave
will create a new queue of messages. The front of this queue will be the reversed
list of already checked messages and the back will be the old queue. The next time
a message is received it is truly the oldest message.

23

3. Library

3.2.4 Library implementation
The implementation of the library is realised by defining a structure that implements
the signature described in section 3.1.
Actors are implemented in this library by using continuations. Actors, hereafter
referred to as processes, keep the remainder of their computation represented as a
trampoline. The two remaining components associated with a process are a unique
identifier and a mailbox. These three components together make up the process
control block of a process, and a process identifier is a reference to one of these
triples.

type PCB = (int * string mailbox * unit Trampoline)
type pid = PCB ref

To serialise a reference it must be possible to serialise the referenced value. The
referenced value of a process identifier contains a function, which we have no way of
serialising. As a consequence of this we cannot directly serialise process identifiers.
Despite this picklepid and upicklepid allows a user to serialise and deserialise
a process identifier. To make this possible we maintain a global map that maps
the id of a process to the process identifier of that process. What happens when
picklepid is called is that only the id is serialised, and when a call to upicklepid
is made the id is deserialised and used to fetch the process identifier from this map.
Apart from this map, the library maintains five other global values that can be
manipulated by calling the functions exposed by the library.

val ready_queue : (pid set) ref
val waiting_queue : (pid set) ref
val registry : (string, pid) map
val current : pid option ref
val last_id : int ref

The first two are queues containing process identifiers. They maintain the state that
defines which processes are ready to run and which are waiting for new messages.
The registry map is used to associate a name with a process identifier. To keep
track of which process is currently running, the process identifier of that process is
stored in the mutable variable current. last_id is used to generate fresh identifiers
for spawned processes.

fun spawn (f : unit -> trampoline) : pid =
let

val id = next_id ()
val mailbox = new ()
val pid = ref (id,mailbox,embedUTT f)

in
(init_pid pid;
insert_ready pid;
pid) (* return process identifier *)

end

24

3. Library

When a process is spawned a fresh id is generated, an empty mailbox created and
the process body f is embedded as a trampoline. The process identifier is put in
the ready queue after which it is returned to the caller.

fun run () : unit =
case pop_ready () of

SOME pid => (set_current pid;
case let val (_,_,Trampoline cont) = !pid

in cont () end of
Left () => run ()

| Right f’ => (update_cont pid f’;
run ()))

| NONE => case size (!waiting_queue) of
0 => ()

| _ => raise NoRunnableThreads

To begin executing the concurrent computation the function run must be applied to
unit. This function will try to fetch the next process to run from the ready queue,
and if there is one, run its continuation. If the result is another computation, the
process identifier is updated to point to this new continuation before a recursive call
to run is made. As run is a tail-recursive function, without tail-call optimisation
every recursive call is going to create a new stack frame. This would severely impact
memory performance.

fun recv_many n handler_and_cont : trampoline =
let

(* receive and attempt to deserialise a
* message until either one succeeds or
* there are no more messages *)

fun fetch_message handlers = ...

(* reset save pointer in mailbox *)
fun resetsave () = ...

fun recv’ 0 (handlers, cont) res = (resetsave (); cont (rev res))
| recv’ n (handlers, cont) res =

case fetch_message handlers of
SOME handled => (recv’ (n-1) (handlers, cont) (handled::res))

| NONE => (insert_waiting (get_current ());
Trampoline (fn () =>
Right (recv’ n (handlers, cont) res)))

in recv’ n handler_and_cont [] end

To receive messages two important auxiliary functions are used.
fetch_message will return the first message from the mailbox that could be dese-
rialised using one of the supplied deserialisers. If no message could be deserialised
NONE will be returned. Otherwise the result is SOME message.

25

3. Library

resetsave is going to fetch the mailbox of the currently running process and reset
its save pointer. This function is called as soon as the function has received all n
messages.
If n messages could be received the continuation is applied to a reversed list of
received messages. Otherwise the process is placed in the waiting queue and the work
that remains, receiving the rest of the messages, is made to be the new trampoline
of the process.

fun when deserialise predicate branch =
fn str => if predicate (deserialise str)

then branch str
else raise UnpackException

when is implemented by returning a function that accepts a string. If the predicate
holds on the result of deserialising the string, the branch is applied to the string. If
on the other hand the predicate does not hold, an exception is raised.

fun send_many ([], cont) = (insert_ready (get_current ()); embedUTT cont)
| send_many (((msg, recipient)::xs), cont) =
if

(* is the process alive? *)
let val pid = deref recipient
in member ((!ready_queue), pid)

orelse
member ((!waiting_queue), pid)

end
then (let val pid = deref recipient in

let val (_,mailbox,_) = !pid in
(deliver (mailbox, msg);
insert_ready pid)

end
end;
send_many (xs, cont))

else send_many (xs, cont)

Sending a message is done with either send or send_many. send is implemented
by invoking send_many with a singleton list of messages. Before the message is
transmitted it is checked that the recipient is still alive. If that is the case, the
message is sent to the mailbox of the recipient and the recipient is placed in the
ready queue. Otherwise the recipient is dead. In this case the message is dropped
and send_many moves on to the next message.

26

4
Results

This chapter will begin by describing the different benchmarks used to evaluate the
performance of the library, followed by the actual performance measured. The tests
were run on a Lenovo Thinkpad 13 with an Intel Core i3-6100U processor (3MB
cache, 2.30 GHz).

4.1 Benchmarks
The benchmark programs have been implemented both using the library described
in this report and Erlang.1Erlang was chosen as the baseline as it has a mature
implementation of the actor concurrency model. The benchmarks will be run and
both speed and memory usage will be measured.
The Bitonic Sorting Algorithm is a sorting algorithm that does exactly n ∗ log2(n)
comparisons, where n is the size of the collection being sorted. The algorithm
assumes that the length of the input is a power of 2.
Skynet is a program that aims to measure the cost of spawning actors. Initially,
one actor is spawned, which will spawn three children, who in turn will spawn
three children each of their own, and so on. When the level of recursion reaches
a predefined depth the children at the bottom, the leaves will send a one to their
parents, who will receive three messages, sum the results and send that to their
own parent. In the end, the actor that was spawned first is going to receive three
messages, the sum of which is equal to the number of leaves.
The purpose of the Message Bombing benchmark is to evaluate the overhead of
carrying around unreceived messages. This benchmark consists of two programs,
one in which a process will be sent 200 messages it will not receive, followed by
being sent 200 messages it does receive. The second program will not send the
initial 200 messages, but rather just the 200 that will be received. Measuring the
difference in time and memory usage between the two should give some estimate of
the cost of having the messages take up space in the mailbox.

4.2 Speed
When measuring speed the Standard ML benchmarks were compiled by invoking
the mlkit executable with the −no_gc flag. When measuring speed the memory
profiling is completely disabled.

1The code for some of the benchmarks can be found in the Appendix.

27

4. Results

The time of the Standard ML benchmarks were measured using the Unix command
time. The Erlang benchmarks were measured using the tc/3 function from the timer
module. The reported execution times are the avarages of running each benchmark
one hundred times.

Benchmark Standard ML Erlang
Skynet 177.3 ms 2.7 ms

Bitonic mergesort 353.6 ms 1.6 ms
Message bombing 1 7.5 ms 0.5 ms
Message bombing 2 4.1 ms 0.17 ms

Table 4.1: The table above presents the execution times for the different bench-
marks in milliseconds. The entry Message bombing 1 reports the time measured
while executing the version of the test that first sends 200 messages that won’t
be received, while the entry Message bombing 2 reports the time measured while
executing the version that only sends messages which will be received.

4.3 Memory

The MLKit compiler comes prepared with a profiler to measure memory usage. The
profiler can be instructed to stop and profile every region at specified intervals. The
measurements can be rendered as a graph, allowing for visual inspection to detect
memory leaks. Below are the profiles for the benchmark programs.

The MLKit has the option of enabling a garbage collector to garbage collect the
regions individually. Memory was measured with the garbage collector disabled and
then again with it enabled. Seeing the results of enabling the garbage collector gives
some indication of how well the library frees up unused memory.

28

4. Results

skynet - Region profiling Fri Feb 28 09:26:17 2020

OTHER

r162107fin

r184556inf

r186433fin

r186434fin

r185392fin

r181802fin

r181918fin

rDesc

r181868fin

r181876fin

r162055fin

r184211fin

r4inf

r7inf

r6inf

stack

r8inf

r1inf

r5inf

seconds0.0 0.1 0.1 0.2 0.2 0.3 0.3 0.4

by
te

s

0M

4M

9M

14M

19M

24M

29M

34M

39M

43M

48M

Maximum allocated bytes in regions (62190600) and on stack (81548)

Figure 4.1: Memory performance of running the Skynet test without garbage
collection.

skynet-gc-enabled - Region profiling Fri Feb 28 09:29:01 2020

OTHER

r217311fin

r223184fin

r192168fin

r220698fin

r223185fin

r221519fin

r217380fin

r217388fin

rDesc

r217427fin

r192116fin

r6inf

r4inf

r220338fin

r7inf

r8inf

stack

r1inf

r5inf

seconds0.0 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5

by
te

s

0K

50K

100K

150K

200K

250K

300K

350K

400K

Maximum allocated bytes in regions (344772) and on stack (115184)

Figure 4.2: Memory performance of running the Skynet test with garbage col-
lection. It is evident that a lot of dead values can be reclaimed by the garbage
collector.

29

4. Results

bitonic-msort - Region profiling Fri Feb 28 09:31:23 2020

OTHER

r150767fin

r184677fin

r187528inf

r187535inf

r187536inf

r184420fin

r184334fin

r181876fin

r181868fin

rDesc

r175033fin

r184211fin

r4inf

r7inf

stack

r8inf

r6inf

r1inf

r5inf

seconds0.0 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 0.6 0.6 0.7

by
te

s

0M

4M

9M

14M

19M

24M

29M

34M

39M

43M

48M

53M

Maximum allocated bytes in regions (66279960) and on stack (223672)

Figure 4.3: Memory performance of running the Bitonic mergesort test without
garbage collection.

bitonic-msort-gc-enabled - Region profiling Fri Feb 28 09:32:58 2020

OTHER

r170364fin

r220698fin

r167932fin

r220461fin

r220804fin

r209062fin

r217427fin

r217380fin

r217388fin

rDesc

r4inf

r209010fin

r8inf

r220338fin

r7inf

r6inf

r5inf

stack

r1inf

seconds0.0 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 0.6 0.6 0.7

by
te

s

0K

200K

400K

600K

800K

Maximum allocated bytes in regions (757776) and on stack (260616)

Figure 4.4: Memory performance of running the Bitonic mergesort test with
garbage collection. Also here, a lot of dead values can be reclaimed by the garbage
collector.

30

4. Results

message-bombing-1 - Region profiling Fri Feb 28 09:34:54 2020

r184677fin

r184211fin

r184739fin

r184571fin

r184556inf

r4inf

r7inf

rDesc

r8inf

stack

r6inf

r1inf

r5inf

seconds0.0 0.0 0.0

by
te

s

0K

200K

400K

600K

800K

1000K

1200K

1400K

Maximum allocated bytes in regions (1606516) and on stack (17524)

Figure 4.5: Memory performance of running the Message bombing test without
garbage collection. This is the version of the test that first sends 200 messages that
are not received.

message-bombing-1-gc-enabled - Region profiling Fri Feb 28 09:36:56 2020

r220553inf

r220587fin

r213867fin

r214486fin

r220804fin

r220683inf

r4inf

r220338fin

r8inf

r7inf

r214505inf

r220866fin

r220698fin

rDesc

r6inf

stack

r1inf

r5inf

seconds0.0 0.0 0.0

by
te

s

0K

20K

40K

60K

80K

Maximum allocated bytes in regions (86828) and on stack (21920)

Figure 4.6: Memory performance of running the Message bombing test with
garbage collection. This is the version of the test that first sends 200 messages
that are not received. The garbage collector can reclaim a lot of dead values in this
test. Memory usage is more than 18x lower.

31

4. Results

message-bombing-2 - Region profiling Fri Feb 28 09:38:36 2020

OTHER

r184341fin

r179469fin

r184460fin

r140576fin

r184420fin

r184677fin

r184334fin

r184211fin

r184739fin

r184556inf

r184571fin

r4inf

r7inf

rDesc

r8inf

stack

r6inf

r1inf

r5inf

seconds0.0 0.0

by
te

s

0K

50K

100K

150K

200K

250K

300K

350K

400K

450K

500K

550K

Maximum allocated bytes in regions (618944) and on stack (12844)

Figure 4.7: Memory performance of the Message bombing test without garbage
collection. In this version only received messages are sent. Slightly more than 0.5
MB is needed.

message-bombing-2-gc-enabled - Region profiling Fri Feb 28 09:40:12 2020

r220553inf

r220587fin

r220804fin

r220683inf

r4inf

r220338fin

r8inf

r7inf

r220866fin

r220698fin

rDesc

r6inf

stack

r1inf

r5inf

seconds0.0 0.0

by
te

s

0K

20K

40K

60K

Maximum allocated bytes in regions (61064) and on stack (17652)

Figure 4.8: Memory performance of the Message bombing test with garbage col-
lection. In this version only received messages are sent. It is interesting to see here
that stack usage goes up, while the infinite regions are downsized alot. Peak memory
consumption in this case is ten times lower.

32

4. Results

Benchmark Standard ML Erlang
Skynet no gc 62272148 n/a
Skynet gc 459956 2701946
Bitonic mergesort no gc 66503632 n/a
Bitonic mergesort gc 1018392 1291234
Message bombing 1 no gc 1624040 n/a
Message bombing 1 gc 108748 416075
Message bombing 2 no gc 631788 n/a
Message bombing 2 gc 78716 424078

Table 4.2: The table above summarises the memory performance of the library
implementation in Standard ML and that of Erlang. The reported numbers are
number of allocated bytes. It is evident that a lot of memory can be reclaimed
by a garbage collector in the Standard ML version, for all benchmarks. With the
garbage collector enabled memory usage is less than that of Erlang - but the memory
reported for the Erlang version also includes the Erlang VM.

33

4. Results

34

5
Analysis

The results indicate that while execution speed is very slow, memory usage is ex-
tremely high. A lot of data is placed in early regions and thus survives for a very
long time. This chapter will try to shed some light on why this is the case.

5.1 References
The first problem we identified is the use of references. To understand why references
pose a problem for the work in this thesis, we need to consider the region annotated
type schemes for the operations that can be done on references. Functions in a type
scheme are annotated with their effects. An effect is a finite set of atomic effects,
which are either of the form get p or put p. get p specifies that a value is read
from the region p, and the dual put p specifies that a value is written to the region
p.

An important point is that the reference itself and the value it references does not
have to reside in the same region. A reference is a word in a region that contains
the address of a value in another region.
When a reference is created, the function ref is applied to a value of type α in
region p1, and the result is a reference in a region p2. Note that in the type scheme,
the type of the result from ref clearly indicates that the reference, located in region
p2, references a value in another region.
The type scheme for the de-referencing operator is not that involved; instead, con-
sider the assignment operator. The reference being updated references a value of
type α in region p1, and the new value is also a value of type α in region p1. What
this means is that every value that is written to a reference has to reside in the same
region.
If the values are unboxed this is not an issue, as the address stored by the reference
will be the actual value. If the value is boxed, however, this could lead to severe
space leaks. The region p1 cannot be deallocated as long as a reference pointing to
values inside it is alive.
The library implemented in this thesis makes use of references for a couple of things.
The global values maintained by the library, such as the process registry, have to be

35

5. Analysis

mutable. As mutable data structures are implemented using references, this means
that every version of the data structure has to reside in the same region. Considering
the process registry, the registry has to be alive for the complete duration of the
program, as it is difficult to identify the point after which it is no longer needed.
The result of this is that a lot of data is going to remain alive until the program in
its entirety has finished. In fact, every time a mutable data structure is updated the
old copy will remain allocated until the program terminates.

5.2 Global values are put in global regions
As we explained above, the way that regions are allocated using letregion will
at runtime build a stack of regions. Regions that are allocated early in a program
might be alive for a very long time. Even functions have to be put in a region, and
this region cannot be deallocated until the program as a whole has finished.
The library presented in this thesis uses continuations to implement coroutines.
When writing a program the continuations are just ordinary functions. They are
passed to the library and possibly wrapped in a trampoline constructor. All tram-
polines, after passing through the region inference algorithm, are translated to
Trampoline attop r2 In every place where the creation of a trampoline is
accompanied by the creation of an anonymous function, which is almost always the
case, the trampoline is translated to Trampoline attop r2 (fn attop r1
Pretty much every time that a context switch happens, and a new trampoline is
created, there is data placed at the top of the regions r1 and r2. As r1 and r2 will
be the two oldest regions during execution, that data will be the most long-lived in
the program. This is very unfortunate as every time a context switch happens and a
trampoline is executed, that trampoline will return a new trampoline if the process
has work left to do. The trampoline that was just executed is no longer needed once
it has returned a new trampoline, and could, in theory, be deallocated, but this fact
is not recognised by the region inference algorithm.
As we saw in the previous section, references can be dangerous when it comes to
space leaks. Mutable values are implemented using references, to ensure that any
variable that references a value will see changes to that value made by someone
holding another reference to that value. Two of the global values kept by the library
are the ready queue and the waiting queue. These are references to queues, and thus
all values ever written to the reference - all versions of the queue - must be stored in
the same region. Inspecting the creation point of e.g the ready queue, after region
inference has transformed it, gives the following expression.

val ready_queue =
ref attop r7

(nil attop r2,
fn attop r1 v154 =>

let val v155 = #0 v154; val v156 = #1 v154
in v155 = attop r2 v156
end

) attop r5;

36

5. Analysis

The queue becomes a reference in region r7, which points to a tuple - the internal
representation of the queue, in this case, is a tuple consisting of a list and a predicate
on the contents - in region r5. Here we can draw the conclusion that every time
the reference is updated with a new queue, the new tuple will be put in region r5,
adding to the buildup of data inside it. To further understand why this behaviour
would cause such a huge buildup of dead values, we can inspect the methods that
produce new queues - after region annotation.

fun insert attop r1 [r714:1, r706:0, r703:0,
r702:INF, r705:INF, r700:0]

(v320, v618) =
let val v321 = #0 v320
in (case v321 of

nil => let val v322 = #1 v320
in (:: attop r2 (v618, nil attop r2) attop r705,

v322) attop r714
end

| _ => let val v334 = #1 v320
in letregion r718:1

in (case letregion r716:1
in find[atbot r718,attop r705,atbot r716,attop r700]

<fn atbot r716 x =>
v334 (v618, x) attop r702, v321>

end
of SOME => (v321, v334) attop r714

| _ => (letregion r729:1
in @[atbot r729,attop r705,

attop r705,attop r700]
(v321,
:: attop r2 (v618, nil attop r2) attop r705)

atbot r729
end,

v334) attop r714
)

end
end

)
end ;

The red sections indicate where the result of a call to insert is created, and in which
regions it is put. The result will again be a tuple, of which the first component is a
new list. We see that the :: constructor, which contains two words pointing to the
head and the tail of a list, is placed in region r2 using the attop storage mode. The
list itself is put in the region denoted by the region parameter r705. The entire tuple
produced by the function is placed in the region denoted by the region parameter
r714, again using attop to indicate the storage mode.
So there is clearly some data being put at the top of r2, but which regions are
r705 and r714 bound to? They are the first and fifth region parameter in insert.

37

5. Analysis

Inspecting the call site we find the following region annotated call to look like this.

val v808 = insert[attop r5,attop r5,attop r1,
attop r5,attop r5,attop r7]

<!ready_queue, pid>

It turns out that r705 and r714 are actually both bound to the region r5, again
using attop. So in the end, during a context switch, just updating the ready and
waiting queues are going to contribute to the build-up of data in region r2 and r5.
If the queues are long, this build-up could be quite substantial.
Similar problems arise for mailboxes as well, where a lot of the underlying data
structures are placed in regions r2, r5 and r7. Furthermore, mailboxes are mutable
data structures, and thus make use of references. Every version of a mailbox remains
alive at least as long as the process is alive. If the region inference algorithm cannot
determine when a process dies, as is the case for the library described in this thesis,
the data and associated references must remain alive for the entire duration of the
program.
As there is a global value current which is a reference to the currently running
process, all process identifiers have to be placed in the same region. This value
naturally has to remain alive for the complete duration of a program, forcing process
identifiers to stay alive.

5.3 Awkward Syntax
There are a couple of aspects of the library described here that makes writing client
code awkward. Some of the quirks are because Standard ML is a statically typed
language, while some are because Standard ML has no support for monads. Addi-
tionally, a lack of support for continuations is also a problem.

5.3.1 No Support for Continuations
As there is no support available to handle continuations exposed to the programmer,
continuations have to be made explicit in the code. This creates a lot of parentheses
and intermediary values. The logic of a process would preferably be written as an
ordinary Standard ML function, but without being able to grab the continuation of
a process this is not possible. Receiving two messages would ideally look something
like this.

val intp : int pu = (* ... *)

fun process () =
let val a = recv [unpickle intp]

val b = recv [unpickle intp]
in send (a+b, name "recipient") end

After receving the message a it is evident that the way to continue is with receiv-
ing the message b. As recv cannot grab the current continuation, however, the
functionality must be implemented as follows.

38

5. Analysis

fun process () =
recv ([unpickle intp], fn a =>
recv ([unpickle intp], fn b =>
send ((a+b, name "recipient"), fn () =>
endP)))

Here the continuations are expressed as two functions, one that receives a as an
argument and one that receives b. At a context switch these must be allocated
and wrapped up in a trampoline, which causes memory buildup. With support
for continuations this problem could be solved by having e.g recv grab the current
continuation if there was no message to receive, while this work now is left for the
programmer.
In conclusion, support for continuations would eliminate the syntactic problem, but
not the problem of memory buildup. The library has no way of interrupting a thread,
grabbing its continuation and then letting another thread run. If this was the case
the library could schedule threads, minimising the number of context switches while
still remaining fair. As this is not the case, the context switches would still have
to be done at points where a thread interacts with the library - e.g via sending
messages.

5.3.2 Statically Typed Mailboxes
In a dynamically typed language such as Erlang, sending and receiving messages
requires much less boilerplate code. Messages of arbitrary type can be sent with-
out having to explicitly serialise them. In Erlang, a message is sent by evaluating
Expr1 ! Expr2, where Expr2 is the message being sent and Expr1 identifies the
receiver. When a process has been registered under a name, messages can be sent to
that process simply by writing that name - without quotes. The name has to be an
atom, which is a named constant. Consider the example written in Erlang below.

process() ->
Xs = [1,2,3,4,5,6,7,8,9,10],
calculator ! {add, 5, 5},
calculator ! {sum, xs}.

Both applications of ! send a message to the same recipient, but the messages are
of different types. In the first application, the message is a tuple of size 3, where the
first component is an atom and the other two are integers. In the second application,
however, the message is a tuple of size 2, where the second component is a list of
integers. While these are both valid expressions in Erlang, there is no way to assign
a static type to the ! operator.
In Standard ML we must give a type to an operator of this kind, as Standard ML
is a statically typed language. The solution implemented in the library described in
this thesis is to serialise messages, turning them all into values of type string. The
price to pay for this solution is that messages must be serialised and deserialised
explicitly. Ideally, this would be done under the hood by the compiler. Imagining
that the atoms in the Erlang example would be turned into Standard ML strings,
the above example could be implemented like this.

39

5. Analysis

val trippu : (string * int * int) pu = (* ... *)
val pairpu : (string * int list) pu = (* ... *)

fun process () =
let val xs = [1,2,3,4,5,6,7,8,9,10]
in

send ((pickle trippu ("add", 5, 5), name "calculator"), fn () =>
send ((pickle pairpu ("sum",xs), name "calculator"), fn () =>
endP))

end

The code for creating the pu’s is omitted, but it adds a few lines to the example as
well. Similarly when messages are received, before anything sensible can be done to
received messages, they must be deserialised. Rather than listing the receive clauses
one after the other as in Erlang, in this implementation, the receive clauses must
be explicitly converted to receive strings rather than the message type. While the
overhead is manageable it is nonetheless overhead which we would preferably do
without.
A smaller but still important detail is that in this implementation we match on
messages by type rather than by value as in Erlang. In Erlang you can evaluate
receive {"two", "strings"} -> ok end, which only receives a message if it is a
tuple of size 2 where the components are the strings two and strings. In Standard
ML, unless guarded by using when to selectively receive only the specific tuple in
question, the branch will have to be prepared to handle tuples containing any two
strings.

5.4 Processes Share Memory
At the heart of the project lies the actor concurrency model. As stated in section
2.3, a major benefit of this model is that the units of computation, the actors, do
not share any memory.
The library described in this thesis does not accurately follow this description. The
region inference algorithm treats the source code as a single program and annotates
it as such. The fact that we are separating a program into several distinct logical
units is not recognised by the algorithm. As a consequence of this, there is still a
single stack of regions.
The fact that the regions are not separated across multiple stacks creates problems.
One major problem is that a lot of data becomes very long-lived. Assuming some
early regions belong to a process which is already dead, these regions cannot be
deallocated until any region allocated after them has been deallocated. This is very
redundant and could be a critical flaw in a memory-constrained system.
Even if the processes in the system described here cannot interact with each others
memory, the single stack goes against the principle of keeping separate memory
for each process. If the case was the opposite, that they properly received their
own stack of regions, careful treatment of references is required. References can be
serialised and sent in messages. If the reference references a value in a processes

40

5. Analysis

memory, another process with that reference can affect the memory of that process,
which again goes against the actor concurrency model.

5.5 Tail recursion
Iteration in functional languages is implemented using recursion. If the recursion
depth is large, the price of allocating all those frame pointers can be quite large as
well, as discussed in section 3.2.1. What is not discussed in that section is what to do
about the arguments of the recursive functions. Assuming that a tail call is made
with new arguments, what should be done about the arguments to the previous
call? They will never be accessed by the function again, and could, in theory, be
deallocated.
The storage mode analysis performed by the compiler and briefly mentioned in
section 2.2.1 tries to recognise when this is the case. If possible it will put the new
arguments in the same region using atbot to indicate that the region should be
reset first. This would avoid the otherwise inevitable usage of region space that is
proportional to the number of recursive calls.
Unfortunately, there is little room for tail call optimisation in this implementation.
While the run function has a very distinct iterative pattern to what it does, it does
not receive or produce any values. It performs side effects on global values.
Removing the side effects and making everything pure could perhaps make memory
usage better - at the price of even more awkward syntax. Every call that would cause
a side effect would need to provide its continuation. E.g spawning new functions
would need not only the work of the spawned process but also the remaining work
for the current process. A possible way to realise this solution could be to have
the result of running a process be a function that will modify some environment
appropriately, where that environment contains what is currently implemented as
global values. The pseudocode below illustrates this point. This version of send
returns a function that modifies an environment. The run function runs a process
and applies the result of running that process to the environment.

fun send (msg,recip) cont =
fn env => (* fetch recipient from env and send msg

* update continuation of current process with cont *)

fun run env =
let val modify =

let val process = (* fetch process from env *) in
(* run process *) end
in run (modify env) end

This solution has not been explored.

41

5. Analysis

42

6
Proposed Compiler Modifications

and Future Work

In this chapter, we suggest modifications to the compiler that will hopefully address
some of the issues pointed out in chapter 5. An outline of another implementation
based on recent work on the MLKit is also presented.

6.1 Internal support for continuations
If the MLKit exposed a way to grab and execute continuations all the details of
grabbing and applying continuations could be done in the library implementation,
freeing the developer from the hassle that comes with it. A common interface to
such functionality is via the two functions callcc and throw.

signature CONT =
sig

type ’a cont
val callcc : (’a cont -> ’a) -> ’a
val throw : ’a cont -> ’a -> ’b
...

end

callcc stands for call with current continuation. The argument to callcc is a
function that accepts the current continuation as its argument. If the function body
evaluates some expression and produces a value, that value is returned and applied
to the current continuation. If the continuation is invoked, however, it is as if the
call to callcc returned the value the continuation was applied to.

val _ = print (callcc (
fn continuation => "I am some string!" ^ "\n"))

>I am some string

In the above example, the continuation object within the call to callcc contains
the continuation, which is a function that will print the result of the call to callcc.
The continuation is not invoked inside the call to callcc, so the result of the entire
call is the concatenated string "I am some string!\n"

43

6. Proposed Compiler Modifications and Future Work

val _ = print (callcc (
fn continuation => "I am some string!" ^ (throw k "invoke" ^ "\n")))

>invoke

This example, however, invokes the continuation inside the call to callcc. It is
applied to the string "invoke", which is printed by the continuation.
Other Standard ML compilers already offer this functionality of callcc and throw,
such as SMLofNJ[2]1. Those compilers don’t use Region-based memory man-
agement, however, which does not motivate using such a compiler for this thesis.
Modifying MLKit to enable the use of callcc and throw could turn out to be a
not so trivial affair. Consideration needs to be given to how these functions should
fit in with the region aspect of things. When a continuation is invoked, regions will
probably have to be popped off the stack to bring it to the state it was in at the time
when callcc was called. The call to callcc might have, before the continuation
was invoked, placed objects in regions that were alive before the call was made.
Restoring the state of the memory will be tricky as these individual objects that
should not be alive cannot be individually deallocated.

fun example (xs : ’a list) (ys : ’a list) =
callcc (fn continuation =>
let val xxs = xs@ys in throw continuation [] end)

Assume the two arguments to example reside in different regions. The call to callcc
will produce a new list xss by using @ to concatenate the lists. As @ repeatedly
prepends the elements of xs to ys, the resulting list xss has to be placed in the
same region as ys. This is because @ is region endomorphic. After this list has been
created the continuation is invoked with the empty list, forcing example to return
[].
When invoking a continuation the stack should look like it did at the time when
the continuation was created. In the example above, while the stack might be
identical, the meaning of the region descriptors on the stack might not. The heap
allocated region pages are modified to contain different values, which in this example
is observed by ys’s region containing more values.
There are a few different ways to implement continuations. The case that is of
interest here is when the runtime makes use of the system stack - which is the case
in MLKit. Essentially the stack needs to be copied to the heap when the continuation
is created, and then restored when the continuation is invoked. How this should be
done when a lot of the stack entries are pointers to the heap could be non trivial.
Questions such as this one needs to be addressed before such a modification could
be done to the compiler.

6.2 Mailbox Region
Messages in the library described in this thesis are not deallocated once received.
This is very wasteful as we know that as soon as a message has been retrieved from

1https://www.smlnj.org/doc/SMLofNJ/pages/cont.html

44

6. Proposed Compiler Modifications and Future Work

the mailbox we will never attempt to retrieve it again. The entire region cannot be
deallocated, however, as the mailbox itself and other messages within it might still
be live.
The region inference algorithm already distinguishes different types of regions. Apart
from regions being either finite or infinite, they are further classified with a region
type. The possible region types are real,string,top,word and bot. They indicate what
type of values can reside within the region. E.g string and real indicate regions which
hold only strings or reals, while top is the type of regions that can contain any value.
It should be possible to add yet another type - a region type for the mailbox.
The proposed region would be an infinite one, making use of region pages. Where
infinite regions were previously defined to be triples, this new region type would be
a quadruple (e,fp,rp,a), adding a read pointer. The read pointer points to the
first word which has not been read yet.
Mailboxes use a first in first out (FIFO) order of reads and writes. Some processes
write in a specific order, and the recipient process reads in the same order. When
an object is read from the region, that object begins at the read pointer. After
reading an object the read pointer should be updated to be rp + sizeof object.
If rp > fp + sizeof reagion-page then the next message begins in the second
region page, and the first page will never be read from again. At this point, it
should be safe to deallocate fp. To maintain the size of the mailbox a fresh region
page should be appended to the end of the list of region pages. In reality fp can
probably be reset and appended to the end of the list of region pages, and the end
pointer updated to point to the end of the new page instead.
One issue with a mailbox such as this one is that we can move away from the FIFO
behaviour of the mailbox via selective receive. Instead of always retreiving a message
from the first region page, we could choose not to receive the oldest one and receive
another one instead. Simply deallocating the first page when the read pointer points
to the second page is not possible, as there might be unreceived messages left. More
careful thought needs to be given to the design of a mailbox region.
Disregarding the last point; While this idea would work well at deallocating messages
that are no longer needed, it imposes some restrictions on the mailboxes. They now
have a fixed size defined by the number of region pages pointed to by the region
descriptor. We argue, however, that this problem would eventually have to be
addressed anyway; what to do about the size of mailboxes.
If they are completely unbounded in size they could potentially consume all available
resources until the system runs out of memory. Traditionally when this happens
a garbage collector would initiate and try to reclaim memory and possibly, as in
Erlang, request a larger memory area. Doing nothing does not sound like an ideal
setting as part of the motivation for using regions is that allocations and deallocations
are explicit in the annotated code, having some guarantees that all memory will
eventually be reclaimed.
When the mailbox is full a choice has to be made of what to do. One alternative is to
drop messages, either the new messages or the oldest messages. Another alternative
is to let the programmer write some garbage collector-like behaviour for the mailbox.
Yet another alternative, perhaps the simplest one, is to let the mailbox fetch more
region pages as they are needed. The mailbox would then become an ordinary

45

6. Proposed Compiler Modifications and Future Work

infinite region, with the exception that region pages can be deallocated from the
front. Perhaps this alone provides good enough performance.

6.3 Thread Capabilities Implemented by Martin
Elsman

Near the end of this project Martin Elsman - one of the main implementors of MLKit
- pushed additional features to the code repository for MLKit2. These new features
include the ability to spawn threads and join on threads. The function that spawns
a thread will only return after the spawned thread has terminated, at which point
the regions asssociated with the spawned thread can be safely deallocated.[7] As the
modifications were mainly applied to the runtime system, it is not necessary to dive
deep into the compiler to add additional functionality.
The modifications were implemented using posix threads (pthreads). When a func-
tion is spawned to run in parallel with another, a pthread is created to do the work.
The parent process in Standard ML receives a handle it can use to join on the
thread, receiving the value produced by the spawned function.
As these features became available late in the project, there was no time left to add
proper message passing capabilities to compare the performance of modifying the
runtime system to the library described in this thesis. Despite this, a very small
proof of concept was implemented to get a feel for what the syntax would look
like. A complete implementation where the runtime system is modified rather than
implementing the library in pure Standard ML most likely mitigates a few of the
problems described in section 5.
The most immediate improvement is that the need for explicit continuations in
client code is not as great. When sending and receiving messages the programmer
is relieved from the burden of writing explicit continuations. In contrast, spawning
a new process currently requires an explicit continuation for the parent process.
Further investigation is required concerning the possibility of removing this necessity.
As more of the functionality is implemented in the runtime system, it is not up
to the region inference algorithm to handle as much data associated with the im-
plementation. Context switches are handled by the pthreads library, meaning that
there is no need to create trampolines.
Retrieving a message is conditioned on the fact that a message is in the mailbox.
If this is not the case a thread can wait until the condition becomes true. When
another thread delivers a message it will signal that the condition is now true, and
any thread that is waiting for a message is woken up. Consider the pseudocode
below.

Condition cond;

recv():
if message exists

2The changes can be found on the branch "spawn" in the GitHub repository:
https://github.com/melsman/mlkit/tree/spawn

46

6. Proposed Compiler Modifications and Future Work

then return message
else wait(cond)

send(Thread t, Msg msg)
deliver msg to t
signal(cond)

The two threads are here using the same condition variable to synchronise. In a
real implementation, every mailbox would be associated with a unique condition
variable. If there were only one such variable all threads would wake up every time
the condition is signalled to be true.
The small proof of concept that has been implemented enables a user to spawn func-
tions, send strings and receive strings. The mailbox has size only for one message,
and a message can only be sent if it is empty. In the current implementation, when
a thread is created, a struct of type ThreadInfo is allocated and initialised. The
modification applied to this struct to implement very simple message passing is as
described below.

typedef struct {
...
pthread_mutex_t condition_mutex;
pthread_cond_t condition;
...
char message[MSG_SIZE];

} ThreadInfo;

The mailbox is represented as a char array, capable of holding a single message in
string format. The function below is implemented when sending a message.

void send(ThreadInfo* ti, int msg) {
pthread_mutex_lock(&(ti->condition_mutex));

if(ti->message[0])
pthread_cond_wait(&(ti->condition), &(ti->condition_mutex));

convertStringToC((StringDesc*)msg, ti->message, MSG_SIZE, 0);
pthread_cond_signal(&(ti->condition));

pthread_mutex_unlock(&(ti->condition_mutex));
}

First, a check is performed to see if the first byte in the mailbox is anything other
than zero. If it is zero this would indicate that the mailbox is empty, and we could
proceed with delivering the message. In the other case, it is not empty, and we
will have to wait on the condition associated with the receiving thread before we
can continue with delivering the message. Lastly, in the case that the recipient is
waiting for a message, the condition is signalled.
Receiving a message is not too different.

47

6. Proposed Compiler Modifications and Future Work

int recv(Region stringRho, int exn) {
ThreadInfo* ti = (ThreadInfo*)pthread_getspecific(threadinfo_key);
pthread_mutex_lock(&(ti->condition_mutex));

if(!(ti->message[0]))
pthread_cond_wait(&(ti->condition), &(ti->condition_mutex));

int res = (int) convertStringToML(stringRho, ti->message);
ti->message[0] = 0;
pthread_cond_signal(&(ti->condition));

pthread_mutex_unlock(&(ti->condition_mutex));
return res;

}

The ThreadInfo struct associated with the currently running thread is fetched,
followed by a check to see if there is a message to receive or not. If there is none, the
thread will wait until someone - a thread sending a message - signals the condition.
When there is a message to receive, it is written to the region bound to the variable
stringRho. After this, a zero byte is written to the first position in the mailbox to
indicate that it is empty.
A simple example of using this library is given below.

val _ = spawn
(fn () => let

val m1 = recv ()
val m2 = recv ()
val m3 = recv ()

in print (m1 ^ "\n" ^ m2 ^ "\n" ^ m3 ^ "\n") end)

(fn t => (send ("First message",t);
send ("Second message",t);
send ("Last message",t)))

>First message
>Second message
>Last message

In this case the messages are ordinary strings, but they might as well be serialised
data. Sending and receiving looks cleaner as there is no need to pass in the contin-
uation. Messages are received in the proper order as well, which might not be too
surprising as the mailbox in this case only had room for one message.

48

7
Related Work

The following section describes related work in areas concerning the thesis. Related
work can be categorised as either being related to concurrent functional program-
ming or region based memory management.

7.1 MLKit
The MLKit[18] is the fruit of pioneering work in the area of region based memory
management. It is a compiler for standard Meta Language (Standard ML) that
employs the use of regions, and is the first attempt at implementing regions for a
complete general purpose language. It applies a rigorous region inference analysis
on the source code and then annotates the code with primitives whose semantics
describe allocation and deallocation of regions of memory. If the analysis can de-
termine the size of an object statically, the object is placed on the stack. If an
objects size cannot be determined statically, however, the choice is made to put it
in a region instead. Furthermore the compiler is accompanied by a soundness proof
that guarantees that no dangling references are dereferenced.
The code generated by the algorithm will at runtime organise the memory as a
stack of regions. This comes with some limitations, an important one being that
for programs where memory is live throughout the lifetime of a program, memory
usage is poor. What is meant by live is illustrated in Figure 7.1. To exemplify this
we consider a program with a never ending loop, such as server software. The scope

Figure 7.1: Since the regions used by MLKit is organised as a stack, region
2 cannot be deallocated before region 3 have been deallocated. If region 3
is allocated in a never ending loop, any region allocated before it can never
be deallocated.

of the loop will constitute the topmost region on the stack of regions, and thus any

49

7. Related Work

memory allocated before entering the loop will never be deallocated.
Using the MLKit compiler is simultaneously challengening and convenient. It is
convenient as the source code requires no annotations about where and how to use
regions, it is all inferred by the region inference algorithm. Any developer able to
write ML code can use the compiler with no additional investment. It is challenging
in the sense that some knowledge of how the region inference algorithm works is
required in order to write programs that utilise regions fully. These programs are
referred to as region optimised programs. To teach developers how to create region
optimised programs, a manual describing the process has been published[18].
In 2002 Niels Hallenberg, for his masters thesis, extended the MLKit runtime with
the option to use a garbage collector[12]. The implementation is a variant of Ch-
eneys copying garbage collector that is applied to each region locally. The choice
of algorithm used by the garbage collector has an interesting effect on the region
analysis. The analysis must be weakened to disallow dangling pointers of any sort.
With just region analysis the algorithm would allow dangling pointers if it could be
statically determined that these pointers would never be dereferenced. This weak-
ening must happen as the garbage collector will follow all pointers when copying
memory, and would therefore dereference dangling pointers.
Combining region inference with the garbage collector significantly reduces the num-
ber of times the collector is activated, but memory usage is still increased in the
general case. Programs that are not optimised for regions run better under the
combination, while the opposite holds for region optimised programs.

7.2 Cyclone
Cyclone[11, 13, 14] is an attempt at creating a type-safe version of C. Many tech-
niques are involved, of which one is region based memory management. To illus-
trate how regions are used to guarantee type-safe programs, consider the example
below1which will produce a warning if it is compiled with gcc -Wall.

char *itoa(int i) {
char buf[20];
sprintf(buf,"%d",i);
return buf;

}

gcc is going to warn the programmer that the address of a local variable is being
returned. By just modifying the example slightly, however, the warning will not be
produced but the bug is still present.

char *itoa(int i) {
char buf[20];
char* z;
1Example is taken from Jim, T., Morrisett, J.G., Grossman, D., Hicks, M.W., Cheney, J. and

Wang, Y., 2002, June. Cyclone: A Safe Dialect of C. In USENIX Annual Technical Conference,
General Track (pp. 275-288).

50

7. Related Work

sprintf(buf,"%d",i);
z = buf;
return z;

}

Where gcc would consider this a legal program without warnings, Cyclone uses
region analysis to determine that this is not a type-safe program. It does this by
considering every block to be a region, and infers that both buf and z exist in the
same region and will be deallocated when the method returns.
The region analysis employed by Cyclone places every object in a region. The
usual pointer type τ* is replaced with τ*p, where p is the region the referenced
object resides in. Arrays of unknown size gets the more specialised type τ?p. With
this extra information carried by the type of pointers, a subtyping relationship is
established between pointer types. As regions form a Last-in First-out stack in
Cyclone as well, a region τ*p1 is a subtype of a region τ*p2 if p1 outlives p2
Similarly as in the MLKit, Cyclone initially encountered the same restrictions im-
posed by the LIFO stack of regions. Unique pointers were implemented to address
this, which are pointers to which only one reference is allowed to exist. They are
allocated with malloc and deallocated with free, and since only one reference is al-
lowed to exist, the call to free is always safe. To give the programmer some flexibility
when using these pointers, Cyclone supports borrowed pointers, which are copies of
unique pointers that cannot escape or be deallocated.

7.3 Region based memory management for Java
The idea of implementing regions for a language such as Java has enticed a lot of
people. By design, the language makes heavy use of references and the heap, which
is made possible by the use of a garbage collector.
The programming paradigm employed by Java is that of Object Orientation. Com-
mon features of object oriented languages are objects, classes, inheritance, subtyping
and method overloading, to name a few. Naturally the prospect of writing a com-
piler for a complete specification of Java is a daunting task. With this in mind,
attempts have been made at evaluating how the region idiom performs on subsets
of the Java specification.
For their thesis, Christiansen and Velschow[6] defined a subset of Java, named Reg-
Java. Apart from the core specification being a subset of Java, it was extended to
include annotations describing the allocation, deallocation and updating of regions.
Based on the formalisation of a static and dymamic semantics, a soundness proof
is presented. They report their system to perform roughly the same as garbage
collected systems, both concerning memory usage and execution speed. They go
on to emphasise that their work is meant to lay the foundation for future work. A
stronger inference analysis is required, some proofs need a little more care and there
are parts of the Java specification not yet implemented in their system.
A formalisation for the complete specification of Java was presented by Cherem and
Rugina[5]. Apart from applying regions to the entire Java language, a difference to
the work by Christiansen and Velschow[6] is that regions are not lexically scoped.

51

7. Related Work

Yet another distinguishing feature is that the system allows dangling pointers so
long as they are not dereferenced. This means that regions can be deallocated when
they are no longer needed and not just when they are no longer referenced.
The region inference algorithm employed builds a points-to graph between regions.
Following this, the algorithm determines which regions are live at each point in
the program by keeping track of live variables and consulting the points-to graph.
Lastly, the source code is annotated with region allocation and deallocation points.
These are compiled to new bytecode instructions which the Kaffe VM[21] has been
extended to properly handle.
The authors refer to their results as encouraging. The specific memory behaviour
observed depended heavily on the application in question. Again, where memory
was not live throughout execution, very good results were reported. For some bench-
marks significant memory savings were reported, and for those where no gains were
reported it seemed like the garbage collector also struggled to save memory.

7.4 Cloud Haskell
Cloud Haskell[8] is a project that successfully brought the concurrency style of Er-
lang to Haskell. The primitives are exposed to the programmer as a Domain Specific
Language (DSL). An important difference is that Cloud Haskell matches messages
by message type and not by message value as Erlang does.
When a message is received by a Cloud Haskell process, a function handle is ap-
plied to it. As with every function, if the function does not exhaustively match all
potential values, an exception will be thrown if it is applied to a value it has no
clause for. An example situation is where a value of type Maybe Int is expected, but
the function receiving the message only has a clause for Just i. If a value Nothing
arrives, the type matches and the function will be applied, followed by an exception
being thrown. In Erlang, the value Nothing would not match the expected value
Just i, and the message would be left in the mailbox.
In addition to being able to send any message that is serialisable, Cloud Haskell offers
the use of typed channels. To use typed channels, a send port and a receive port
are created. These ports only allow transmitting messages of a specific type. The
send port can be serialised and transmitted to other processes, but the receive port
cannot. This is a deliberate design choice that is based on the intended execution
environment. The intended use of channels is to communicate over a network. It is
not clear what should happen to messages that are sent when a receive port is in
transit, and so this is disallowed.

7.5 Manticore
Manticore[9] is a high-level functional programming language with a syntax that is
heavily inspired by Standard ML. The concurrency model employed by Manticore
uses both coarse-grain parallelism and fine-grain parallelism.
Coarse-grain parallelism is offered by the ability to spawn threads. Instead of having
a shared memory area for all threads, threads send and receive messages over syn-

52

7. Related Work

chronous channels. The synchronous channels are typed and allow only transmitting
data of a particular type. An important note to emphasise here is that the channels
are synchronous; a thread will block until communication is over. Not only will a
receiving thread block until another thread is sending a message, a sending thread
will block until there is a thread receiving the message.
Fine-grain parallelism is implicit in the computations performed by a program. In-
spired by NESL[4], Manticore offers the use of array comprehensions and parallel
tuple expressions. In cases where such expressions are nested, the compiler will
flatten the expression and perform the individual computations in parallel. The
computations are done in parallel since such data objects are data-parallel. Data-
parallelism is when a piece of data says something about how computations on it
can be parallelised. A very intuitive example being that of mapping a function over
an array. Each sub-computation for any cell can be done in parallel with computing
the sub-computations for the other cells.
Despite the arrays employed by Manticore being data parallel, parallel arrays still
have sequential semantics. This means that the compiler has to verify that the sub-
computations in a data parallel computation do not send or receive any messages.
If a sub-computation sends or receives a message, that computation might have
a side effect that changes the result of another computation, which acccording to
the semantics should finish first. Additionally, if an exception is raised by a sub-
computation, the actual reporting of the exception must be delayed until all prior
sub-computations have finished.
At runtime the system heap is divided into several local chunks and a global heap
area. Apart from being able to use the global heap, each thread has a local chunk
of memory it can use. When a threads local chunk grows too small, the thread can
garbage collect that chunk alone without blocking the global heap. All threads will
only synchronise when the global heap needs to be extended with more memory.

53

7. Related Work

54

8
Conclusions

While the main contributions of this thesis are analytical, we have also contributed
concretely with a library implementation of the actor concurrency model. At the
same time, we have brought the untyped message-passing model of Erlang to the
very typed setting of Standard ML. The style in which concurrent processes are
written becomes very verbose as a consequence. Having to convert messages of any
type to all be of the same type adds boilerplate code to the client code.
The library has been instrumental in analysing how current techniques of Region-
based memory management work in an actor model setting. The results indicate
that the region inference algorithm is not well suited to handle coroutines. This is
not surprising as the algorithm is defined to consider the source code as a single
program.
As the allocation points of regions are lexically scoped and form a stack of regions at
runtime, the memory of different threads is not separate. Without having multiple
stacks of regions memory performance will not be optimal, as the deallocation of
regions will be dependent on which is the topmost region. The different threads
should only be affected by other threads via messages; if a thread could deallocate
its topmost region it should be able to do so regardless of what the other threads
are doing.
Not being able to deallocate data that will never be referenced again, as the region
the data resides in is still live, turns out to be a major problem in this thesis. The act
of receiving messages is a well-defined thing, where the mailbox hands over a message
and definitely will never need to reference it again afterwards. Similarly, during a
context switch, a new continuation is created, making the previous continuation
obsolete. Despite knowing this the old continuation is never deallocated and will
contribute to the build-up of memory. A proper implementation would make sure
to disregard the rule that forbids the deallocation of individual objects. When a
message is received the memory it occupied in the mailbox should be freed, and
when a new continuation is created it should replace an old one.
While the results indicate that current techniques are not well suited for this type
of concurrency, they do not confirm that Region-based memory management as a
management principle is unsuitable. There are quite a few avenues left to explore
before it can be determined if that is the case or not. What is most interesting
to investigate next is to explore the capabilities of the experimental work that has
been pushed to the code repository by Martin Elsman. An implementation that
modifies the runtime system would mitigate some of the problems present in the
library implementation described in this thesis - most notably the issues concerning
explicit continuations and the use of global variables. The global variables that

55

8. Conclusions

could be eliminated are e.g the ready queue, waiting queue and the current process,
as this information would then be managed by the pthreads library.
What is not optimal in such an implementation is that then a program would have
a lot of important information about threads and mailboxes that resides outside of
regions. Ideally, thread handles and their mailboxes would be region allocated as
well, ensuring that all memory is accounted for.

56

Bibliography

[1] Andrew W Appel. Compiling with continuations. Cambridge University Press,
2007.

[2] Andrew W Appel and David B MacQueen. Standard ml of new jersey. In
International Symposium on Programming Language Implementation and Logic
Programming, pages 1–13. Springer, 1991.

[3] Joe Armstrong. erlang. Communications of the ACM, 53(9):68–75, 2010.

[4] Guy E. Blelloch. NESL: A nested data-parallel language (version
2.6). Technical Report CMU-CS-93-129, School of Computer Sci-
ence, Carnegie Mellon University, apr 1993. Accessed June 2020,
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/scandal/public/papers/CMU-
CS-93-129.html.

[5] Sigmund Cherem and Radu Rugina. Region analysis and transformation for
java programs. In Proceedings of the 4th international symposium on Memory
management, pages 85–96. ACM, 2004.

[6] Morten V Christiansen and Per Velschow. Region-based memory management
in java. Master’s thesis, DIKU, University of Copenhagen, 1998.

[7] Martin Elsman. Private communication.

[8] Jeff Epstein, Andrew P. Black, and Simon Peyton-Jones. Towards haskell in
the cloud. SIGPLAN Not., 46(12):118–129, September 2011.

[9] Matthew Fluet, Mike Rainey, John Reppy, Adam Shaw, and Yingqi Xiao. Man-
ticore: A heterogeneous parallel language. In Proceedings of the 2007 workshop
on Declarative aspects of multicore programming, pages 37–44. ACM, 2007.

[10] Steven E Ganz, Daniel P Friedman, and Mitchell Wand. Trampolined style.
In Proceedings of the fourth ACM SIGPLAN international conference on Func-
tional programming, pages 18–27, 1999.

[11] Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang, and
James Cheney. Region-based memory management in cyclone. In ACM Sigplan
Notices, volume 37, pages 282–293. ACM, 2002.

[12] Niels Hallenberg, Martin Elsman, and Mads Tofte. Combining region inference
and garbage collection. SIGPLAN Not., 37(5):141–152, May 2002.

57

Bibliography

[13] Michael Hicks, Greg Morrisett, Dan Grossman, and Trevor Jim. Experience
with safe manual memory-management in cyclone. In Proceedings of the 4th
international symposium on Memory management, pages 73–84. ACM, 2004.

[14] Trevor Jim, J Gregory Morrisett, Dan Grossman, Michael W Hicks, James
Cheney, and Yanling Wang. Cyclone: A safe dialect of c. In USENIX Annual
Technical Conference, General Track, pages 275–288, 2002.

[15] Simon Peyton Jones (editor). Haskell 98 language and libraries: the revised
report. Cambridge University Press, 2003.

[16] John McCarthy. Recursive functions of symbolic expressions and their compu-
tation by machine, part 1. Commun. ACM, 3(4):184–195, April 1960.

[17] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The defini-
tion of standard ML: revised. MIT press, 1997.

[18] Mads Tofte, Lars Birkedal, Martin Elsman, Niels Hallenberg, Tommy Højfeld
Olesen, Peter Sestoft, and Peter Bertelsen. Programming with Re-
gions in the ML Kit. DIKU Rapport, 97:12, 1997. Accessed June
2020, https://di.ku.dk/forskning/Publikationer/tekniske_rapporter/1997/97-
12.pdf.

[19] Mads Tofte and Jean-Pierre Talpin. Implementation of the typed call-by-value
λ-calculus using a stack of regions. In Proceedings of the 21st ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 188–201,
1994.

[20] Mads Tofte and Jean-Pierre Talpin. Region-based memory management. In-
formation and Computation, 132(2):109 – 176, 1997.

[21] Tim Wilkinson. Kaffe - a free java virtual machine. http://www.kaffe.org, 1996.
Accessed: August 26, 2019.

58

A
Appendix 1

The entire code base can be found at the GitHub repository: https://github.com/Rewbert/master-
project. Below follow the code for the benchmark programs.

A.1 skynet
The Standard ML version.

structure A : ActorConc = A
structure P : PICKLE = Repickle

fun process 0 pid () = A.send ((P.pickle P.int 1, A.pid pid), fn () => A.endP)
| process r pid () =
let

val self = A.self ()
in (A.spawn (process (r-1) self);

A.spawn (process (r-1) self);
A.spawn (process (r-1) self);

A.recv_many 3 ([P.unpickle P.int], fn res =>
A.send ((let val sum = foldl (op +) 0 res in

P.pickle P.int sum end, A.pid pid), fn () =>
A.endP)))

end

fun printer () : A.trampoline = (
A.recv ([P.unpickle P.int], fn i => (
print ((Int.toString i) ^ "\n");
A.endP)))

fun main () : unit =
let

val pid = A.spawn printer
val _ = A.spawn (process 6 pid)

in (
A.run ())

end

I

A. Appendix 1

val _ = main ()

The Erlang version.

-module(skynet).
-compile(export_all).

process(0, Pid) -> Pid ! 1 ;
process(R, Pid) ->
Self = self(),

% spawn three children
lists:foreach(fun(_) -> spawn(fun() -> process((R-1), Self) end) end, [1,2,3]),

% construct three receives and then evaluate them
Recvs = lists:map(fun(_) -> receive M -> M end end, [1,2,3]),
Msgs = [M || M <- Recvs],

% transmit sum to parent
Pid ! lists:sum(Msgs) .

printer() -> receive M -> io:format("~w~n", [M]) end.

main() ->
Pid = spawn(fun() -> printer() end),
spawn(fun() -> process(6, Pid) end),
ok.

A.2 Message bombing
The Standard ML version.

structure A : ActorConc = A
structure P : PICKLE = Repickle

datatype Msg = Msg of int * int
val msgPickler : Msg P.pu =
let

fun index _ = 0
fun fun_M pu = P.con1 Msg (fn Msg p => p)

(P.pairGen(P.int,P.int) : (int * int) P.pu)
in P.dataGen("Msg", index, [fun_M]) end

datatype Badmsg = Badmsg of int * int
val badmsgPickler : Badmsg P.pu =

II

A. Appendix 1

let
fun index _ = 0
fun fun_M pu = P.con1 Badmsg (fn Badmsg p => p)

(P.pairGen(P.int,P.int) : (int * int) P.pu)
in P.dataGen("Badmsg", index, [fun_M]) end

fun replicate 0 a = []
| replicate n a = a :: replicate (n-1) a

(* ********** Boilerplate code above this point ***********)

fun processA 0 a pid () =
A.send (let val msg = P.pickle P.int a

in (msg, pid) end, fn () =>
A.endP)

| processA n a pid () =
A.recv ([A.conv (fn i => i) msgPickler], fn (Msg (num,den)) =>
processA (n-1) (a + Int.div (num, den)) pid ())

(* This process sends messages that are not received *)
fun processB n pid () =

let val msgs = let val value = Badmsg (6,3) in
let val serialise = P.pickle badmsgPickler in

let val msg = serialise value in
replicate n (msg, pid)

end
end

end
in A.send_many (msgs, fn () => A.endP) end

fun processC n pid () =
let val msgs = let val value = Msg (6,3) in

let val serialise = P.pickle msgPickler in
let val msg = serialise value in

replicate n (msg, pid)
end

end
end

in A.send_many (msgs, fn () => A.endP) end

fun run () = let
val pid = A.pid (A.self ())
val a = A.pid (A.spawn (processA 200 0 pid))

in (
A.spawn (processB 200 a); (* Comment out this line to only

* send messages that are received. *)

III

A. Appendix 1

A.spawn (processC 200 a);
A.recv ([A.conv (fn i => i) P.int], fn r =>
(print ((Int.toString r) ^ "\n");
A.endP))) end

val _ = (A.spawn run; A.run ())

The Erlang version.

-module(messagebombing).
-compile(export_all).

processA(0, A, Pid) -> Pid ! A;
processA(N, A, Pid) ->

receive
{msg, Num, Den} -> processA((N-1), A + (Num / Den), Pid)

end.

processB(0, _) -> ok;
processB(N, Pid) ->

Pid ! {badmsg, 6, 3},
processB((N-1),Pid).

processC(0, _) -> ok;
processC(N, Pid) ->

Pid ! {msg, 6, 3},
processC((N-1), Pid).

main() ->
Pid = self(),
A = spawn(fun() -> processA(200, 0, Pid) end),
spawn(fun() -> processB(200, A) end), % comment out this line to

% only send messages that will be received
spawn(fun() -> processC(200, A) end),
receive

Res -> Res
end.

A.3 Bitonic Mergesort
The Standard ML version.

structure A : ActorConc = A
structure P : PICKLE = Repickle

IV

A. Appendix 1

(************** List Utilities ***************)
fun split n xs = (List.take (xs, n), List.drop (xs, n))
fun zip xs [] = []

| zip [] xs = []
| zip (x::xs) (y::ys) = (x, y) :: zip xs ys

(************** Either type ******************)
datatype (’a, ’b) Either = Left of ’a | Right of ’b

fun leftPickler pa =
let

fun index _ = 0
fun fun_L pu = P.con1 Left (fn Left i => i | _ => raise P.UnpackError) pa

in P.dataGen("EitherLeft", index, [fun_L])
end

fun rightPickler pb =
let

fun index _ = 0
fun fun_R pu = P.con1 Right (fn Right i => i | _ => raise P.UnpackError) pb

in P.dataGen("EitherRight", index, [fun_R])
end

fun bothPickler pa pb =
let

fun index (Left _) = 0
| index (Right _) = 1

fun leftP pu = P.con1 Left (fn Left i => i | _ => raise P.UnpackError) pa
fun rightP pu = P.con1 Right (fn Right i => i | _ => raise P.UnpackError) pb

in P.dataGen("Either", index, [leftP, rightP])
end

fun myappend [] [] = []
| myappend [] (y::ys) = y :: myappend [] ys
| myappend (x::xs) [] = x :: myappend xs []
| myappend (x::xs) ys = x :: myappend xs ys

(************** Sequential Bitonic Mergesort ****************)
fun bitonic_merge_sequential [] = []

| bitonic_merge_sequential [x] = [x]
| bitonic_merge_sequential xs =
let

val (left, right) = split (Int.div (length xs, 2)) xs
val zipped = zip left right
val mins = map Int.min zipped
val maxs = map Int.max zipped

V

A. Appendix 1

in myappend (bitonic_merge_sequential mins) (bitonic_merge_sequential maxs)
end

fun bitonic_mergesort_sequential [] = []
| bitonic_mergesort_sequential [x] = [x]
| bitonic_mergesort_sequential xs =
let

val l = length xs
val (left, right) = split (Int.div (l,2)) xs
val leftsorted = bitonic_mergesort_sequential left
val rightsorted = List.rev (bitonic_mergesort_sequential right)

in bitonic_merge_sequential (myappend leftsorted rightsorted) end

(************** Concurrent Bitonic Mergesort ****************)
fun bitonic_merge xs cutoff pid () =
let

val l = length xs
val pickler = P.listGen P.int

in if l <= cutoff

then let val msg = P.pickle pickler (bitonic_merge_sequential xs)
in A.send ((msg, pid), fn () => A.endP) end

else let val (left, right) = split (Int.div (l,2)) xs
val zipped = zip left right
val mins = map Int.min zipped
val maxs = map Int.max zipped
val parent = A.pid (A.self ())

fun merge_maxs () =
let val parent’ = A.pid (A.self ())
in (

A.spawn (bitonic_merge maxs cutoff parent’);
A.recv ([A.conv (fn i => i) pickler], fn r =>

let val msg = P.pickle (leftPickler pickler) (Left r)
in A.send ((msg, parent), fn () => A.endP) end))

end

fun merge_mins () =
let val parent’ = A.pid (A.self ())
in (

A.spawn (bitonic_merge mins cutoff parent’);
A.recv ([A.conv (fn i => i) pickler], fn r =>

let val msg = P.pickle (rightPickler pickler) (Right r)

VI

A. Appendix 1

in A.send ((msg, parent), fn () => A.endP) end))
end

in (A.spawn merge_maxs;
A.spawn merge_mins;
A.recv ([A.conv (fn (Left i) => i | _ => raise P.UnpackError)

(leftPickler pickler)], fn maxsmerged =>
A.recv ([A.conv (fn (Right i) => i | _ => raise P.UnpackError)

(rightPickler pickler)], fn minsmerged =>

let val res = myappend minsmerged maxsmerged
in A.send ((P.pickle pickler res, pid), fn () =>A.endP)
end)))

end
end

fun bitonic_mergesort xs cutoff pid () =
let

val l = length xs
val pickler = P.listGen P.int

in if l <= cutoff

then let val msg = P.pickle pickler (bitonic_mergesort_sequential xs)
in A.send ((msg, pid), fn () => A.endP) end

else let val (left, right) = split (Int.div (l,2)) xs
val parent = A.pid (A.self ())

fun sort_right () =
let

val parent’ = A.pid (A.self ())
in (A.spawn (bitonic_mergesort right cutoff parent’);

A.recv ([A.conv (fn i => i) pickler], fn r =>

let val msg = P.pickle (rightPickler pickler) (Right r)
in A.send ((msg, parent), fn () => A.endP) end))

end

fun sort_left () =
let

val parent’ = A.pid (A.self ())
in (A.spawn (bitonic_mergesort left cutoff parent’);

A.recv ([A.conv (fn i => i) pickler], fn r =>

let val msg = P.pickle (leftPickler pickler) (Left r)

VII

A. Appendix 1

in A.send ((msg, parent), fn () => A.endP) end))
end

in (A.spawn sort_right;
A.spawn sort_left;
A.recv ([A.conv (fn (Right i) => i | _ => raise P.UnpackError)

(rightPickler pickler)], fn (rightsorted) =>
A.recv ([A.conv (fn (Left i) => i | _ => raise P.UnpackError)

(leftPickler pickler)], fn (leftsorted) =>

let val res = myappend leftsorted (List.rev rightsorted)
in (A.spawn (bitonic_merge res cutoff pid); A.endP)
end)))

end
end

fun receiver () =
A.recv ([A.conv (fn i => i) (P.listGen P.int)], fn res =>
A.endP)

fun descList 0 = [0]
| descList n = n :: descList (n-1)

fun main () : unit =
let

val pid = A.spawn receiver
val _ = A.spawn (bitonic_mergesort (descList 127) 2 (A.pid pid))

in
A.run ()

end

val _ = main ()

The Erlang version. The Erlang version of this benchmark was inspired by this
GitHub repository. https://github.com/vanHavel/Parallel-Functional-Programming-
Benchmarks

-module(bitonicmsort).
-compile(export_all).

descList(0) -> [0];
descList(N) -> [N | descList(N-1)].

% Important: XS length must be a power of 2!
bitonic_merge(Xs, Cutoff) ->

L = length(Xs),

VIII

A. Appendix 1

if
L =< Cutoff ->

bitonic_merge_sequential(Xs);
true ->

{Left, Right} = lists:split(L div 2, Xs),
Mins = [min(A,B) || {A,B} <- lists:zip(Left, Right)],
Maxs = [max(A,B) || {A,B} <- lists:zip(Left, Right)],
Parent = self(),
R = make_ref(),
spawn_link(fun() ->

Result = bitonic_merge(Maxs, Cutoff),
Parent ! {R, Result}

end),
MinsMerged = bitonic_merge(Mins, Cutoff),
MaxsMerged = receive

{R, Result} -> Result
end,
lists:append (MinsMerged, MaxsMerged)

end.

bitonic_merge_sequential([]) -> [];
bitonic_merge_sequential([X]) -> [X];
bitonic_merge_sequential(Xs) ->

{Left, Right} = lists:split(length(Xs) div 2, Xs),
Mins = [min(A,B) || {A,B} <- lists:zip(Left, Right)],
Maxs = [max(A,B) || {A,B} <- lists:zip(Left, Right)],
MinsMerged = bitonic_merge_sequential(Mins),
MaxsMerged = bitonic_merge_sequential(Maxs),
lists:append (MinsMerged, MaxsMerged).

% Important: XS length must be a power of 2!
% more precisely, the length must be of the form Cutoff * 2^n for some n
bitonic_mergesort(Xs, Cutoff) ->

L = length(Xs),
if

L =< Cutoff ->
bitonic_mergesort_sequential(Xs);

true ->
{Left, Right} = lists:split(L div 2, Xs),
Parent = self(),
R = make_ref(),
spawn_link(fun() ->

Result = lists:reverse (bitonic_mergesort(Right, Cutoff)),
Parent ! {R, Result}

end),
LeftSorted = bitonic_mergesort(Left, Cutoff),

IX

A. Appendix 1

RightSorted = receive
{R, Result} -> Result

end,
bitonic_merge (lists:append(LeftSorted, RightSorted), Cutoff)
%receive _ -> ok end

end.

main() -> bitonic_mergesort(descList(127), 2).

bitonic_mergesort_sequential([]) -> [];
bitonic_mergesort_sequential([X]) -> [X];
bitonic_mergesort_sequential(Xs) ->

L = length(Xs),
{Left, Right} = lists:split(L div 2, Xs),
LeftSorted = bitonic_mergesort_sequential(Left),
RightSorted = lists:reverse(bitonic_mergesort_sequential(Right)),
bitonic_merge_sequential (lists:append(LeftSorted, RightSorted)).

X

	List of Figures
	List of Tables
	Introduction
	Background
	Standard ML
	Parameter passing in Standard ML
	Effect-Handling and Concurrency in Standard ML
	Standard ML's Module System

	Region-based Memory Management
	Runtime representation

	Actor-model Concurrency
	Continuations

	Library
	Interface
	Implementation
	Trampolines
	Serialising messages
	Mailboxes
	Library implementation

	Results
	Benchmarks
	Speed
	Memory

	Analysis
	References
	Global values are put in global regions
	Awkward Syntax
	No Support for Continuations
	Statically Typed Mailboxes

	Processes Share Memory
	Tail recursion

	Proposed Compiler Modifications and Future Work
	Internal support for continuations
	Mailbox Region
	Thread Capabilities Implemented by Martin Elsman

	Related Work
	MLKit
	Cyclone
	Region based memory management for Java
	Cloud Haskell
	Manticore

	Conclusions
	Appendix 1
	skynet
	Message bombing
	Bitonic Mergesort

