
Thesis for the Degree of Doctor of Philosophy

Efficiency and Automation in Threat Analysis of
Software Systems

Katja Tuma

Presentation:
January 11th, 2021, 14:15

Online and room 473, Jupiter Building
Hörselg̊angen 5,

University of Gothenburg, Campus Lindholmen

Discussion leader:
Prof. Maritta Heisel

University of Duisburg-Essen, Germany

The thesis is available at:
Department of Computer Science & Engineering

University of Gothenburg
Gothenburg, Sweden, 2021

Phone: +46 (0)31 77 26 814



Abstract

Context: Security is a growing concern in many organizations. Industries
developing software systems plan for security early-on to minimize expensive
code refactorings after deployment. In the design phase, teams of experts
routinely analyze the system architecture and design to find potential security
threats and flaws. After the system is implemented, the source code is often
inspected to determine its compliance with the intended functionalities.

Objective: The goal of this thesis is to improve on the performance of security
design analysis techniques (in the design and implementation phases) and
support practitioners with automation and tool support.

Method: We conducted empirical studies for building an in-depth under-
standing of existing threat analysis techniques (Systematic Literature Review,
controlled experiments). We also conducted empirical case studies with indus-
trial participants to validate our attempt at improving the performance of one
technique. Further, we validated our proposal for automating the inspection
of security design flaws by organizing workshops with participants (under
controlled conditions) and subsequent performance analysis. Finally, we relied
on a series of experimental evaluations for assessing the quality of the proposed
approach for automating security compliance checks.

Findings: We found that the eSTRIDE approach can help focus the analysis
and produce twice as many high-priority threats in the same time frame. We also
found that reasoning about security in an automated fashion requires extending
the existing notations with more precise security information. In a formal
setting, minimal model extensions for doing so include security contracts for
system nodes handling sensitive information. The formally-based analysis can
to some extent provide completeness guarantees. For a graph-based detection
of flaws, minimal required model extensions include data types and security
solutions. In such a setting, the automated analysis can help in reducing
the number of overlooked security flaws. Finally, we suggested to define a
correspondence mapping between the design model elements and implemented
constructs. We found that such a mapping is a key enabler for automatically
checking the security compliance of the implemented system with the intended
design. The key for achieving this is two-fold. First, a heuristics-based search
is paramount to limit the manual effort that is required to define the mapping.
Second, it is important to analyze implemented data flows and compare them
to the data flows stipulated by the design.

Keywords

Secure Software Design, Threat Analysis (Modeling), Automation, Security
Compliance


