THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Efficiency and Automation in Threat Analysis of
Software Systems

KATJA TUuMA

Division of Software Engineering
Department of Computer Science & Engineering
University of Gothenburg
Gothenburg, Sweden, 2021

Efficiency and Automation in Threat Analysis of Software Systems

KAria TumMaA

Copyright ©2021 Katja Tuma
except where otherwise stated.
All rights reserved.

ISBN 978-91-8009-154-1 (PRINT)
ISBN 978-91-8009-155-8 (PDF)
ISSN 1652-876X

Technical Report No 191D

Department of Computer Science & Engineering
Division of Software Engineering

University of Gothenburg

Gothenburg, Sweden

This thesis has been prepared using IXTEX.
Printed by Chalmers Reproservice,
Gothenburg, Sweden 2021.

ii

“It seems to me, Golan, that the advance of civilization is nothing
but an exercise in the limiting of privacy.”

- Janov Pelorat in Foundation’s Edge, a novel by Isaac Asimov

iv

Abstract

Context: Security is a growing concern in many organizations. Industries
developing software systems plan for security early-on to minimize expensive
code refactorings after deployment. In the design phase, teams of experts
routinely analyze the system architecture and design to find potential security
threats and flaws. After the system is implemented, the source code is often
inspected to determine its compliance with the intended functionalities.

Objective: The goal of this thesis is to improve on the performance of security
design analysis techniques (in the design and implementation phases) and
support practitioners with automation and tool support.

Method: We conducted empirical studies for building an in-depth under-
standing of existing threat analysis techniques (Systematic Literature Review,
controlled experiments). We also conducted empirical case studies with indus-
trial participants to validate our attempt at improving the performance of one
technique. Further, we validated our proposal for automating the inspection
of security design flaws by organizing workshops with participants (under
controlled conditions) and subsequent performance analysis. Finally, we relied
on a series of experimental evaluations for assessing the quality of the proposed
approach for automating security compliance checks.

Findings: We found that the eSTRIDE approach can help focus the analysis
and produce twice as many high-priority threats in the same time frame. We also
found that reasoning about security in an automated fashion requires extending
the existing notations with more precise security information. In a formal
setting, minimal model extensions for doing so include security contracts for
system nodes handling sensitive information. The formally-based analysis can
to some extent provide completeness guarantees. For a graph-based detection
of flaws, minimal required model extensions include data types and security
solutions. In such a setting, the automated analysis can help in reducing
the number of overlooked security flaws. Finally, we suggested to define a
correspondence mapping between the design model elements and implemented
constructs. We found that such a mapping is a key enabler for automatically
checking the security compliance of the implemented system with the intended
design. The key for achieving this is two-fold. First, a heuristics-based search
is paramount to limit the manual effort that is required to define the mapping.
Second, it is important to analyze implemented data flows and compare them
to the data flows stipulated by the design.

Keywords

Secure Software Design, Threat Analysis (Modeling), Automation, Security
Compliance

Acknowledgment

In the words of Isaac Newton, if I have seen further it is by standing on the
shoulders of Giants. Riccardo Scandariato, I owe you my gratitude for your
wise guidance, encouragement, and priceless advice. You introduced me to the
exciting world of research and on your shoulders I learned countless valuable
lessons. For your kind and devoted mentorship, I remain deeply indebted to you.

I am extremely grateful to my co-supervisors Musard Balliu, Giil Calikli
and my examiner Robert Feldt for faithfully following my research and helping
me strengthen my work. I would also like to thank Jan Jiirjens and the entire
RGSE group for welcoming me at the University of Koblenz-Landau. I am very
grateful to my co-authors Sven Peldzsuz, Laurens Sion, Daniel Striiber, and
Koen Yskout for the memorable debates and pleasant collaborations. Thomas
Herpel, Christian Sandberg, Urban Thorsson, and Mathias Widman, thank
you for many interesting discussions and your valuable perspective. This thesis
would not have been possible without all your help and support.

For the past four years I have been incredibly lucky for having the most
fantastic colleagues around me. I would like to especially thank my colleagues
Thorsten Berger, Richard Berntsson Svensson, Ivica Crnkovic, Regina Hebig,
Rodi Jolak, Eric Knauss, Grischa Leibel, Birgit Penzenstadler, Jan-Philipp
Steghofer, and the whole SE group for embracing me as their own and creating
an amazing atmosphere. A special thanks goes to my colleague and pedagogics
mentor Christian Berger, who has shown me how fun and fulfilling teaching
can be. Richard Torkar, from day one you have made sure that I don’t forget
my mother tongue! Za tvojo podporo ti bom vedno hvalezna. Thank you
Linda Erlenhov, Francisco Gomes de Oliveira, Jennifer Horkoff, Philipp Leitner,
Antonio Matrini, Ildiko Pilan, and Joel Scheuner for all the awesome board-
game nights! I also want to thank my PhD brothers Mazen Mohamad and
Tomasz Kosinski for always being on my team. A huge thanks to my office
mates Rebekka Wohlrab, Sergio Garcia and Piergiuseppe Mallozzi for bringing
color into the cloudy days.

I want to thank my friends Aura, Carlo, Lydia, Evgenii, Tugce, and Giacomo
for all the potlucks, summer BBQs, movie nights, and hard-core climbing
sessions. I will hold Gothenburg in my dearest memories because of you!

I am eternally grateful to my parents Tanja and Tadej for teaching me right
from wrong, supporting my career and loving me no matter what. My dear
brother Samo, thank you for putting up with your little sister all those years.
Hvala da ste mi dali tako mocne korenine. Rada vas imam, moji Tumcki!

Finally, T could never have made it without the most important person
behind the scene: my husband, best friend, career advisor, and No. 1 paper
reviewer, Marco. Words can not express how grateful I am to have you in my
life. With you belaying me, I will fearlessly climb the next rock. Ti amo!

vii

viii

This research was partially supported by the Swedish VINNOVA FFI
projects “HoliSec: Holistic Approach to Improve Data Security” and “CyReV:
Cyber Resilience for Vehicles - Cybersecurity for Automotive Systems in a
Changing Environment” and the Horizon 2020 project “AssureMOSS: Assurance
and certification in secure Multi-party Open Software and Services”.

List of Publications

Appended publications

This thesis is based on the following publications:

[A] K. Tuma, G. Calikli, and R. Scandariato.
“Threat Analysis of Software Systems: A Systematic Literature Review”
Journal of Systems and Software (JSS), 2018.

[B] K. Tuma and R. Scandariato.
“Two Architectural Threat Analysis Techniques Compared”

Proceedings of the European Conference on Software Architecture (ECSA),
2018.

[C] K. Tuma, R. Scandariato, M. Widman, and C. Sandberg.
“Towards security threats that matter”
Proceedings of the International Workshop on the Security of Industrial
Control Systems and Cyber-Physical Systems (CyberICPS), 2017.

[D] K.Tuma, C. Sandberg, U. Thorsson, M. Widman, T. Herpel, and R.
Scandariato.
“Finding Security Threats That Matter: Two Industrial Case Studies”
In submission to the Journal of Systems and Software (JSS), 2020.

[E] K. Tuma, M. Balliu, and R. Scandariato.
“Flaws in Flows: Unveiling Design Flaws via Information Flow Analysis”

Proceedings of the International Conference on Software Architecture
(ICSA), 2019.

[F] K. Tuma, D. Hosseini, K. Malamas, and R. Scandariato.
“Inspection Guidelines to Identify Security Design Flaws”
Proceedings of the International Workshop on Designing and Measuring

CyberSecurity in Software Architecture (DeMeSSA), 2019.

[G] K. Tuma, L. Sion, R. Scandariato, and K. Yskout.
“Automating the Early Detection of Security Design Flaws”
Proceedings of the International Conference on Model Driven Engineering

Languages and Systems (MODELS), 2020.

ix

[H] S. Peldszus, K. Tuma, D. Striiber, J. Jiirjens, and R. Scandariato.
“Security Compliance Checks between Models and Code based on Auto-
mated Mappings”

Proceedings of the International Conference on Model Driven Engineering
Languages and Systems (MODELS), 2019.

[I] K.Tuma, S. Peldszus, R. Scandariato, Daniel Striiber and J. Jiirjens.
“Checking Security Compliance between Models and Code”

In submission to the Journal on Software and Systems Modeling (SoSyM),
2020.

Other publications

The following publications were published during my PhD studies, but are not
appended due to overlapping or unrelated content to the thesis.
(a) S. Jasser, K. Tuma, R. Scandariato, M. Riebisch.

“Back to the Drawing Board”

Proceedings of the International Conference on Information Systems Secu-
rity and Privacy (ICISSP), 2018.

(b) L. Sion, K. Tuma, R. Scandariato, K. Yskout, and W. Joosen.
“Towards Automated Security Design Flaw Detection”
Proceedings of the International Conference on Automated Software Engi-

neering Workshop (ASEW), 2019.

Research Contribution

I contributed with planning and conducting the systematic literature review
(Paper A). In this work I was responsible for selecting the studies, creating the
assessment criteria, data extraction and result analysis.

In the empirical study reported in Paper B, I helped conducting the ex-
periments (on-site) in the second year. I also built the base line analysis
(ground truth), assessed the reports with respect to the ground truth for both
experiments, and drove the result analysis.

For Paper C, I developed the approach during the workshops with our
industrial partners and evaluated it with an illustration.

In Paper D, I contributed with an improved analysis procedure (eSTRIDE),
prepared the study material, helped to design the case studies, conducted the
workshops (on-site), and analyzed the results.

The formalism behind the label extension in Paper E was contributed by
my co-author, Musard Balliu. For this work, I implemented the domain-specific
language using the Eclipse Plug-in Framework and conducted the evaluation.

In Paper F, I supervised the creation of the catalog of design flaws and I
re-evaluated the catalog.

In paper G, I was responsible for designing the empirical study, preparing the
study material, and collaboratively implemented the automated detection tool.
In addition, I conducted the study with the participants (and one expert) on-site
one University campus. Finally, I was driving the tool performance analysis.

In Paper H, I helped to shape the heuristic rules and the mapping, con-
tributed to the implementation of the approach (but was not the main driving
force), contributed to the design, and execution of the evaluation (including
result analysis).

In Paper I, I contributed to the design of the security compliance checks,
the implementation of the checks, the design and execution of two experiments,
and the result analysis of one of the experiments.

In all the appended papers (except Paper H), I was the driving force and
wrote major parts of the publications.

xii

[Abstract]

Contents

|Acknowledgement|

G r Publications

P IC bution

[L__Introduction|

1.1 Positioning of Contributions with Respect to the Related Work|

TI1

Threat Analysis of Design Models|

[1.1.2 Automated Security Analysis of Design Models|

ecurity Compliance Between Model and Code|

1.1.3

T21

3

Paper Summaries|.

1.3.1

SLR on Threat Analysis (Paper A)[.

1.3.2

STRIDE-per-el vs STRIDE-per-inter (Paper B)|.

1.3.3

Towards Security Threats That Matter (Paper C)|

1.3.4

STRIDE-per-el vs eSTRIDE (Paper D)|

1.3.5

Flaws in Flows (Paper E)

1.3.6

Detection of Security Des

gn Flaws (Papers F & G)|

1.3.7

Structural Compliance (Paper H)|.

1.3.8

Security Compliance (Paper I)|

xiii

vii

Xiv CONTENTS

Chapter 1

Introduction

Security threats to software systems are becoming a growing concern in many
organizations, particularly due to the changes in legislation for handling private
user data (GDPR). Previous studies (summarized in [1]) have shown that infor-
mation security breach announcements result in a financial loss for the breached
organization. Notably, last year the British Airways was fined £183 million [2]
(1.5% of total yearly revenue) due to a data breach affecting 500,000 customers.

Despite best efforts, cyber-attacks are often successful due to poor security
practices. In August 2019, researchers discovered a vulnerability 3] in the
database of a biometric security platform (Biostar 2). In particular, they found
an unprotected database in the platform, where data was stored in plain text.
If exposed, this vulnerability could have allowed the attacker not only to expose
biometric information of over one million people, but also to gain access to
administrator accounts of the platform, possibly leading to serious criminal
activity (such as creating a new account to freely enter high-security facilities).

Software developers can be hindered in building secure solutions by fast-
pace development practices, code reuse, and the use of third-party software.
Commonly, vulnerabilities are introduced with the incorrect use of third-party
APIs. For instance, a recent report [4] revealed that about 24,000 Android
apps used insecurely configured Firebase databases, which allowed researchers
to gain read and write access to sensitive database records.

To avoid expensive data breaches, security should be considered early-on in
the software development life cycle [5]. Practitioners that value security in their
products adopt well established best practices, e.g., by applying secure design
principles [6] and patterns [7]. Architectural design models are often analyzed to
assure the desired properties of the system. Models can be analyzed from differ-
ent architectural perspectives (e.g., topological view, data view, access control
and permissions, functional view, etc.) and on several levels of abstraction.

The goal of this thesis is to improve on the performance of security design
analysis techniques (in the design and implementation phases) and support
practitioners with automation and tool support. The novelty of the thesis
contributions is judged with respect to the related work in Section [[.1} An
in-depth study of existing threat analysis techniques (Paper A) has spurred
three focused research directions which are presented in Section [1.2)

A recent report [8] shows that only about a third of 130 surveyed organiza-
tions analyze software architecture for what concerns security. The manual

2 CHAPTER 1. INTRODUCTION

effort that is today required to perform architectural threat analysis may be
a limiting factor for a more wide-spread adoption. Indeed, evidence suggests
that performing threat analysis manually (e.g., using STRIDE [9]) results in a
large number of discovered threats and can be repetitive [10] (also observed in
Paper B). After their discovery, the threats are prioritized based on risk values
and low-priority threats are often discarded. This way of working is suboptimal,
as effort is wasted on discussing low-priority threats. Further, eliciting threats
by considering each architectural element in isolation may be a source of repeti-
tiveness. We provide a solution for performing threat analysis with an enlarged
analysis scope (per asset scenario) and focusing on critical parts of the software
architecture. Concretely, we developed a model-based technique, which fits
particularly well in model-intensive industries, e.g., automotive. We propose a
notation extended with risk information (eDFD) accompanied by an improved
analysis procedure (eSTRIDE) for an efficient discovery of high-priority threats
(Paper C). The approach relies on making reductions to the problem and
solution space before and during the analysis. We empirically investigate the
effect of enlarging the analysis scope on technique performance in the academic
(Paper B) and industrial setting (Paper D). Section [1.3| provides summaries of
the appended publications.

Manual design analysis and inspection techniques [9,/11] are characterized
by a low recall (around 50% in Papers B and F), which means that many
security flaws can go unnoticed. A possible cause for this effect is that in many
existing techniques there is no correctness or completeness guarantees for what
concerns the analysis outcomes (as recorded in Paper A). To assure analysis
completeness, more automation of design-level security techniques is necessary.
To that end, we propose two solutions. First, we introduce a formally-based
detection of confidentiality flaws (Paper E). In information flow security, the
implementation is statically analyzed for a particular set of inputs to determine
potential leaks of sensitive information. Initially the inputs are assigned so-
called security labels. Typically, a high label refers to a private input and a low
label refers to a public input. Similarly, we propose an approach for information
flow analysis at design level. The approach is based on a light-weight formal
specification language (SecDFD) which we leveraged to propose a technique
for an automated analysis of confidentiality flaws with label propagation and
a security policy checker. Second, we propose a graph-based detection of five
security design flaws concerning various security properties (authentication,
confidentiality, integrity, and accountability). The five security design flaws
were selected from a catalog of security design flaws and their manual inspection
rules (presented in Paper F). To model the key security concepts commonly
referred to by the inspection rules, we suggest to use a design notation extended
with data types and security solutions (Paper G). Further, we developed graph
query patterns to automatically detect the presence of the five flaws in concrete
design models. We empirically compare the performance of the query patterns
over a curated data set of design models. In Section we discuss the collective
results and answer the main research questions.

Finally, after the implementation phase, architectural design models are
rarely revisited. In fact, Hebig et al. [12] have studied 3295 open source projects
and found that only 26% ever updated their UML files at least once. Thus, there
is a disconnect between design models (possibly containing important security

1.1. POSITIONING OF CONTRIBUTIONS WITH RESPECT TO THE RELATED WORK 3

information) and their implementation. To address this issue, we introduce a
user-in-the-loop approach to establish a mapping between the intended design
and the implemented code (Paper H). We also extend the said approach to
include automated security compliance checks (Paper I). Concretely, we defined
a mapping between the DFD model (using the SecDFD presented in Paper E)
and the program model [13] which is extracted from the implementation. To
limit the required manual effort, we developed a heuristic-based search for
possible mappings, which is based on name matching and structural similarities
between the two abstractions. Paper I extends this work with two types of static
checks, which were used to verify whether implemented programs complied with
prescribed security properties in the SecDFD. In addition, using our approach we
show that the security information in the intended design can be used to reduce
the number of false positives reported by a state-of-the-art data flow analyzer.
We present our final remarks and chart a vision for future work in Section [I.5]

1.1 Positioning of Contributions with Respect
to the Related Work

This section includes a short background and a positioning of the main thesis
contributions with respect to the related literature.

1.1.1 Threat Analysis of Design Models

The first main thesis contribution focuses on improving model-based threat
analysis. Threat analysis includes activities which help to identify, analyze and
prioritize potential security threats to a software system and the information it
handles. A threat analysis technique consists of a systematic analysis of the
attacker’s profile, vis-a-vis the assets of value to the organization. The main
purpose for performing threat analysis is to identify and mitigate potential risks
by means of eliciting or refining security requirements. Existing threat analysis
techniques are commonly categorized as software-, risk-, and attack-centric.

Software-centric. Software-centric techniques focus the analysis around the
software (e.g., architecture design). Their first objective is to establish a good
understanding of how the system works before the threats are analyzed. For
instance, STRIDE is well-known software-centric technique which is extensively
used in practice (e.g., in the automotive industry [14], at Microsoft [9] and some
agile organizations [15]). In addition, it has been applied to analyze systems
from a variety of domains (such as IoT [16,17], CI Pipelines [18], MySQL
DBs [19], Smart Grids [20], E-health [21], Networks and Protocols [22/24])
across different research communities. STRIDE is well documented and easy to
learn, which is witnessed by its popularity. It is using the Data Flow Diagram
(DFD) model to represent the architecture of the software under analysis.
The analysts manually visit the elements in the diagram and brainstorm for
potential security threats. At the end, the list of identified threats is prioritized
(based on risk values) to plan for most urgent mitigations. But, with larger
DFD models, the number of threats the analysts have to consider explodes,
resulting in a high manual effort [10].

Risk-centric. Risk-centric techniques (e.g., CORAS [25], OCTAVE [26-28],

4 CHAPTER 1. INTRODUCTION

PASTA [29]) focus on assets and their value to the organization. Their main
objective is to estimate the financial loss for the organization in case of threat
occurrence. For instance, CORAS [25] is a methodology comprised of a modeling
language and a multi-step procedure of analysis. It provides guidelines and
tools (namely, asset, threat, risk, and treatment diagrams) to analyze risk.
Risks are analyzed twice in the procedure of CORAS [25]. First after the
creation of asset diagrams (step 3), the analysts conduct a high-level risk
analysis, where the most important assets (and their threats) are identified.
Second, the risks are analyzed using threat diagrams, after which the risk can
be accumulated (using risk diagrams). However, an empirical comparison of five
risk-centric techniques [30] highlights its slow learning curve and long execution
time. Risk-centric techniques (specifically, OCTAVE [27] and PASTA [29], as
mentioned in [31]) are more appropriate for finding organizational risks, rather
than technological risks. Accordingly, risk-centric techniques require a deeper
understanding of the business goals and legal matters [32], which is scarce
in organizations. For instance, in some Agile companies 33|, the developers
that perform threat analysis collect feedback from business experts for what
concerns asset and risk related information.

Attack-centric. Finally, attack-centric techniques (Attack trees [34], Misuse
Cases (MUC) [35], Problem and Abuse Frames [36H38], to name a few) focus on
the hostility of the environment and analyze attacker’s motives and behavior.
For instance, Attack trees [39] are formally grounded models of all possible
attacker actions. The root node (i.e., final goal of the attacker) is refined with a
combination of logical gates (e.g., and/or gates) down to leaf nodes. They have
been extensively used and adapted in the past [40] to analyze different properties
in various domains, including, for instance in the automotive industry (e.g.,
the EVITA method [14]). Attack trees are often used to support brainstorming
threats (e.g., in STRIDE [9], PASTA [29], and LINDDUN |[11]). However,
creating new attack trees is challenging as it requires both advanced cyber
security background and technical knowledge about the domain. Besides the
approaches that are based on Problem Frames (e.g., the approach presented
in [36]), the outcomes of many attack-centric techniques are not tied to the
architectural elements of the system under analysis.

To understand how to reduce the high manual effort, we compare two
STRIDE variants in Paper B. Further, to focus the analysis on high-priority
threats without sacrificing the quality of outcomes and learnability, we introduce
a new (risk-centric) STRIDE variant in Paper C and evaluate it in Paper D.

1.1.2 Automated Security Analysis of Design Models

Many approaches propose to automate the analysis of design models to minimize
the resources needed for performing threat analysis in organizations. Often
such approaches are able to semi-automate the analysis. That is, they automate
parts of the analysis technique, while some parts still require manual effort.
Depending on the sophistication of the analysis automation, we continue
to describe knowledge-based automation of threat categories, graph-based
automation, and formal approaches.

Knowledge-based. The Microsoft Threat Modeling tool (MTM) [41] is a tool
developed to support the STRIDE methodology. MTM provides the ability

1.1. POSITIONING OF CONTRIBUTIONS WITH RESPECT TO THE RELATED WORK 5

to graphically represent the DFDs. The tool enables the generation of threat
categories for individual DFD elements with the use of the STRIDE threat-to-
element mapping table. Other works approach threat analysis automation in a
similar way. For instance, Sion et al. [42] present an approach which aims to
automate the selection of threat mitigations (i.e., matching threat categories
(e.g., spoofing) to security solutions). Yet, both approaches automatically
generate threat categories (based on the aforementioned mapping table), thus
actual attack scenarios still need to be discovered manually.

Graph-based. Design models (e.g., software architecture) can be sometimes
represented as graph-like structures. A common method for automating the
analysis of design models is by discovering patterns in such graphs. Depending
on the analysis focus, the graph patterns can be used to detect threats, vulner-
abilities, or security solutions. Seifermann et al. [43] presented an approach for
automatically analyzing the security of data-driven architectures. They propose
an architectural description language enriched with a data model. The architec-
ture is first transformed to an operation model, which is in turn transformed to
a logic program. Finally, logical queries are used to spot security flaws. How-
ever, the analysis is demonstrated for unauthorized authentication, while other
security design flaws (e.g., insufficient auditing) are not addressed. In addition,
the analysis is not conducted alongside the planned security mechanisms. Al-
morsy et al. [44] proposed an approach for automating the security analysis by
capturing vulnerabilities and security metrics. They developed an approach for
modeling a system and specifying signatures of vulnerabilities and security met-
rics with the Object Constraint Language (OCL). Yet, the suggested approach
does not provide a way to model data transformations, which affect security
properties. In addition, it is not clear whether the approach works for high-level
design models (such as the DFDs), as it takes as input a variety of system
description models (e.g., UML feature, component, class, and deployment dia-
grams). Berger et al. [45] develop graph query rules to check for vulnerabilities
in extended DFD models and evaluate them with case studies. The query rules
are based on the descriptions of existing vulnerability repositories (e.g., CWE,
CAPEC). Though the authors provide a way to extend the DFD with asset
sensitivity, their approach does not allow modeling of security mechanisms.

Formal. When more effort for modeling (and analysis of) system design
is justified, formal approaches can be adopted. Such approaches typically
require the modelers to have a strong background in formal methods and
topics alike. The automation of analysis reasoning in a formal setting comes
sometimes for free due to the underpinned semantics. Yet, the efficiency and
scalability of such approaches is often a challenge. Concretely, a survey on
graphical security models [46] reported that there is a lack of efficient generation
algorithms for tree-based models. Early work of Sheyner et al. [47] automate
the generation of attack graphs, based on the well understood formalism of
attack trees. Later-on Ou et al. |48] worked towards increasing the scalability
of attack graph generation. On the other hand, Xu et al. [49] approached
automating threat analysis with aspect-oriented petri nets. The authors model
the intended functions and security threats with Petri nets, whereas they model
threat mitigations with Petri net-based aspects. Given the presented semantics,
the authors are able to construct a search tree and verify whether certain
threat paths are possible in the model. Gerking and Schubert [50] propose

6 CHAPTER 1. INTRODUCTION

an approach for refining and verifying information-flow policies (i.e., non-
interference) for cyber-physical architectures. Their compositional verification
technique relies of a set of well-formedness rules for architecture refinement and
assembly of component diagrams, preserving non-interference. Compared to
DFDs, component diagrams are more detailed design models. With regards to
semantics of DFDs, the early work of Leavens et al. [51] and Larsen et al. [52]
extended the notation with specifications for expressing functional correctness
properties. But little work has focused on the security semantics of DFDs.

Since identifying feasible security threat scenarios depends on the knowledge
of emerging security attacks within a domain, we do not attempt to automate
generation of threat scenarios. Rather, we focus on strengthening the security
by automating the detection of security design flaws. To that end, we study
how to automate the security design flaw detection on high-level architectural
diagrams (i.e., DFDs) in Papers E, F and G. Our aim is to improve the
automation of model-based security analysis where the related work falls short.
First, we introduce a lightweight security specification of DFDs (Paper E),
extended with a simple label model for analyzing confidentiality flaws with
some completeness guarantees. Second, we study how to automatically detect
five security design flaws (for what concerns several security concerns) by means
of graph query patterns, which are executed over DFD models, enriched with
data types and security solutions (Papers F and G).

1.1.3 Security Compliance Between Model and Code

Once a design model has been analyzed and its security flaws have been fixed,
the results are of limited value if the implementation does not comply with the
security properties described in the model. The disconnect between the planned
and implemented security has been studied extensively in the domain of Model-
Driven Engineering (MDE) [53,/54], where the intended security properties are
propagated to code by means of forward engineering. On the other hand, many
approaches (summarized in [55]) suggest to solve the problem of disconnect
by means of reverse engineering, where often code annotations or intermediate
models are used to reconstruct the software architecture. Finally, traceability
management approaches study the relations between software artifacts to enable
change-impact analyses and support software maintenance. Though traceability
recovery approaches may also lean on reverse engineering techniques, we discuss
this research area separately. Concretely, we consider approaches that study
the refinement traceability (where the level of abstraction of the traced artifacts
lowers progressively), rather than variability within a family of models (e.g., in
software product lines engineering [56]) and their variations.

Forward engineering security. UML models have been heavily studied in the
context of security compliance by means of forward engineering. UMLsec |57] is
a security extension of the Unified Modeling Language. It enables developers to
express security relevant information in system specification diagrams. It has
been widely studied in the industrial context [58H60] and provides mature tool
support [61]. Fourneret et al. [62] combine the security analysis using UMLsec
with the generation of security tests. The authors specify and verify security
properties on UML state machines, which in turn are used to generate tests for
the implemented system. Further, Ramadan et al. [63] use model transforma-

1.1. POSITIONING OF CONTRIBUTIONS WITH RESPECT TO THE RELATED WORK 7

tions to generate security-annotated UML class models from security-annotated
BPMN models. Muntean et al. [64] extend UML statecharts with security
properties (e.g., source of a confidential record), generate the code (in C), and
then detect data flow violations statically in the implementation. The results
of the compliance checks are presented to the user with sequence diagrams.
But, the gap between statecharts (or class diagrams) and implementation
is much smaller compared to the gap between high-level design models and
implementation. Consider that the DFD notation does not allow modeling
conditional or sequenced data flows. The IFlow [65] approach presents a UML
extension with information flow properties, which is used to generate program
skeletons. The generated skeletons are then transformed to a formal model to
be proven with a theorem prover. The skeletons have to be manually completed
into a final implementation, over which standard information flow properties
can be checked using existing analyzers. The downside of relying on code
generation, though, is that such approaches can not be used to analyze software
implementations which have diverged from the original model, or code that
was not generated from a model.

Reverse engineering security. Scoria [66] is a semi-automated approach for
extracting and analyzing the Owner Object Graph annotated with security
properties (i.e., SecGraph) to find security flaws in the architecture. First, the
SecGraph is extracted from an annotated implementation. Second, software
architects can refine the SecGraph with additional annotations. Finally, soft-
ware architects can design queries to analyze the Sec-Graph. Similar to using
source code annotations, ArchJava [67] is a language extension for Java, which
integrates architectural concepts (i.e., components, connectors, and ports) into
the programming language itself. Extending the expressiveness of the program-
ming language with architectural concepts supports compliance analysis. For
instance, in [68] the authors extend ArchJava with security annotations and
develop architectural constraints to analyze security compliance. Though code
annotations (and language extensions) can increase program comprehension
and reduce maintenance costs, they also need to be well understood (together
with the source code) to be used correctly [69]. Fully comprehending security
code annotations is not trivial and may require additional developer train-
ing. Jasser |70] recently proposed an approach for analyzing system behavior
and detecting its discordance with a set of security rules, expressed with Lin-
ear Time Logic (LTL). The system behavior is extracted dynamically using
aspect-oriented programming. Before the security rules can be executed, the
source-level elements are mapped to the architectural elements. However, this
mapping is performed manually. To date, the sole attempt at establishing com-
pliance between DFDs and their implementation was introduced by Abi-Antoun
et al. |[71] more than a decade ago. The authors automatically extract a DFD
(i.e., the source DFD) from the implementation. Next, the user specifies a map-
ping (using Reflexion models [72]) between a manually created high-level DFD
and the source DFD, which is then used to uncover inconsistencies. However,
the Reflexion models are created manually. In addition, the security analysis is
performed on the level of the DFD, as opposed to the implementation.

Traceability. Most traceability link recovery techniques seek to establish
a connection between requirements and code [73]. To this end, the proposed
approaches use information retrieval techniques in combination with heuristic-

8 CHAPTER 1. INTRODUCTION

e N
High (STRIDE vs I I\ eSTRIDE vs

< ig . .

5 | Manual STRIDE fPSaTFé'rDCE) STRIDE

S | Effort (Paper B) P (Paper D)

o g

= W

s

= . . Automation of

[0 Low Flaws in Flows Inspection Rules .

rx_ Recall (Paper E) (Paper F) Inspection Rules

= (Paper G)

7.:' & /AN AN

s)

S . . .

% Disconnect Structural compliance to Security compliance to

2 | to Code DFD SecDFD

0 L (Paper H) (Paper I)
AL W

Figure 1.1: Research Tracks

based analysis of source code representations (e.g., the abstract syntax tree). For
instance, Velasco and Aponte [74] recently introduced an approach for creating
fine-grained traceability links between program statements (incl. conditionals,
assignments, loops, etc.) and critical requirements to ease compliance checking
(dictated by regulatory bodies, i.e., HIPAA [75]). First, the requirements and
source code files undergo a text processing phase (incl. tokenization, tagging,
stop word removal and the like). Next, the authors leverage an information
retrieval (IR) technique called Latent Semantic Indexing to identify the most
relevant source files for each requirement. Finally, to obtain a ranked list of
relevant program slices, predefined criteria (respecting a particular requirement)
is used to perform program slicing. Feature location approaches [76] leverage
IR techniques in a similar way to determine locations in the source code where
a particular functionality is realized. However, most traceability link recovery
and feature location techniques rely on analyzing textual similarity. They fail
to take into account structural properties of the early software design artifacts
(e.g., DFDs), which are essential to capture cross-cutting concerns (such as
security) in the source code.

To fill these gaps, we study how to automate the discovery of structural
compliance (using both textual similarity and structural heuristic rules) of the
implementation to DFDs in Paper H. Our approach does not rely on code
annotations and can be applied to existing (Java) projects without any code
generation. In addition, we intentionally keep the user in the loop to benefit
from domain knowledge and enable a meaningful analysis. In Paper I, we
extend the approach with automated security compliance checks of data flow
properties by leveraging static code analysis techniques.

1.2 Research Focus

This thesis contributes to solving three problems that were identified in Paper A
by means of a systematic literature review (SLR). Accordingly, Figure [1.1]shows
the contributions organized into three research tracks. The thesis findings

1.2. RESEARCH FOCUS 9

generally progress from left-to-right in this figure. But, some findings of the first
research track have steered the work later-on and some research was conducted
concurrently. For instance, the SLR was conducted concurrently with Papers
B and C. The rest of the appended publications build on top of the previous.

1.2.1 High manual effort

The first research track was oriented towards an industrial collaboration with
the automotive industry. With respect to the current state of practice, lack
of security expertise is a crucial matter and increasing the efficiency of threat
analysis could free valuable resources. For this reason, we studied how to reduce
the time spent on analyzing threats without sacrificing the quality of outcomes.
Namely, we wondered whether it is acceptable (given the time constraints) to
start from an analysis of assets and their risk-related importance and only
analyze important threats. Clearly, there is a trade-off between systematicity
and focus on important threats. In Paper C, we explore this trade-off and
provide a risk-first solution, named eSTRIDE.

In parallel to this study, we worked on building a deeper understanding
on how the analysis procedure affects the performance of security analysis.
Specifically, we were interested to understand how the procedure of visiting the
architecture facilitates designers in identifying threats. To this aim, we looked
into the scope of analysis, i.e., the number of elements analyzed at once by
the human expert. On the one hand, there exist such techniques that suggest
practitioners to find threats to architectural components in isolation (e.g.,
STRIDE-per-element). Further down the line, some techniques suggest finding
threats to a set of components (e.g., STRIDE-per-interaction). Finally, we
propose an end-to-end analysis techniques that suggest finding threats to a chain
of components (i.e., eSTRIDE). We hypothesized that manual threat analysis
performs better when the scope of analysis increases and leads to a more efficient
discovery of the most important threats. We conduct an empirical comparison
of two existing techniques to test this hypothesis (Paper B). The findings
of this study provided inspiration for the definition of an improved manual
analysis procedure (eSTRIDE). In Paper D, we continue on this path and
conduct two case studies in two organizations, based in two different countries.
First, we empirically compare the performance and execution of eSTRIDE to
STRIDE-per-element. Second, we question the effect of security expertise on the
quality of outcomes. To this end, we empirically compare the performance (and
execution) of the less security savvy teams to the teams with security expertise.

The goal of this track is to introduce an efficient manual approach for
finding important security threats by enlarging the analysis scope. Collectively,
the research conducted in this track (Papers B, C, and D) aims to answer the
following research question.

RQ1. What are the effects of broadening the analysis scope on the quality of

analysis outcomes?

To answer this research question, we faced three challenges.

RQ1.1. What changes are required in the design model to facilitate a threat
analysis focusing on important threats? (Paper C)

RQ1.2. What changes are required for a model-based threat analysis procedure
to focus on important threats? (Paper C)

10 CHAPTER 1. INTRODUCTION

RQ1.3. What is the difference (in terms of performance and execution) between
a risk-first and risk-last threat analysis technique? (Paper D)

RQ1.1. Enlarging the analysis scope introduces a challenge for the human
expert as a higher cognitive load may harm the quality of analysis outcomes.
At the same time, identifying locations in the architecture where important
security threats may exist (before actually identifying the said threats), requires
the model to be extended with security risk information. Thus, striking the
right abstraction (and level of detail) of the model is a crucial step in developing
a technique focused on finding important security threats.

RQ1.2. The model extensions provide more security-relevant information to
the human expert. However, the extensions alone do not help the analyst during
the discovery of security threats. Hence, the analysis procedure needs to be
modified. First, the procedure of striving towards systematicity and considering
risk at the end did not seem appropriate anymore. Rather, focusing the analysis
towards high-priority threats requires leveraging the risk information during
the analysis. Second, the strategy of visiting the diagram per element (or
interaction) does not take advantage of the model extensions. Accordingly,
the second challenge was to reduce the manual effort as much as possible by
introducing short-cuts during the analysis.

RQ1.3. Finally, extending the analysis scope and introducing short-cuts
during the analysis must not harm the overall technique performance or the
quality of the analysis outcomes. The introduced threat analysis technique
(eSTRIDE) considers risk information at the very beginning of the analysis.
Therefore, it is a risk-first technique. In comparison, the STRIDE-per-element
suggests to prioritize threats based on risk at the end, and is thus a risk-last
approach. The final challenge in this track was to gather empirical evidence
about sacrificing systematicity for the discovery of important threats.

1.2.2 Low recall

The findings of the first research track have influenced our research agenda
in the second research track. The empirical evidence gathered is witness to
the limits of tweaking the efficiency of manual threat analysis. For instance,
analysis paralysis (i.e., discussing one threat in too much detail) slows the
analysis down. Further, sub-optimal team dynamics as well as terminology
disagreements may have a negative impact on the quality of outcomes. In
addition, many real security threats are overlooked, may it be due to time
pressure, lack of information, or simply human error. To overcome such
challenges automation of the analysis is an important step.

Architectural security threats exist due to the presence of security design
flaws. Therefore, the goal of this research track is to study how security design
flaws are inspected, and how they can be detected automatically. The results
that emerged in this research track (Papers E, F, and G) collectively aim to
answer the second research question.

RQ2. To what extent can security design flaws be automatically detected in

DFD-like models?

Concretely, we faced two challenges in our efforts to answer this question.

RQ2.1. What model extensions support an automated security design flaw
detection? (Papers E, F)

1.2. RESEARCH FOCUS 11

RQ2.2. What performance can be achieved by an automated technique for
security design flaw detection? (Paper G)

RQ2.1. The informal notation of the DFD makes automation difficult.
Therefore, we first study the level of formalism that is required in the DFD
to automate the detection of confidentiality-related design flaws in Paper E.
Formal reasoning about confidentiality (and integrity) is well understood in the
area of language-based information flow security [77]. We lean on the theory
of information flow analysis, an area of research whose origins date back to
the late 70s [78]. To avoid overloading the analysts, we intentionally extend
the DFD with light-weight security semantics. Achieving this, together with a
formally-based security analysis of the DFD was challenging.

The light-weight extension proposed in Paper E does not support reasoning
about other security properties (e.g., authentication). To this aim, we compile
a catalog of security design flaws and their inspection rules (introduced in
Paper F). We selected five security design flaws from the catalog to study their
automated detection. Our next challenge was the design of a sufficient model
extension to capture the concepts required to reason about the presence of
flaws in the models.

RQ2.2. The second challenge is to understand what levels of performance
can be achieved by automating the detection of security design flaws. To this
aim, we first translate the inspection rules of five security design flaws into graph
query patterns, which we use for the automated detection. We conduct an em-
pirical study comparing the outcomes of the automated technique to a manual
inspection (ground truth) performed by human experts. The main challenge we
faced was obtaining a data set of publicly available DFD models. In addition,
to enable an empirical comparison, we had to conduct an assessment of the col-
lected data set of DFD models with human experts under controlled conditions.

1.2.3 Disconnect between models and code

After performing a manual (or automated) security analysis of design models,
there is yet a question that begs for an answer: How do the outcomes of
such analyses relate to the implemented program? Much effort is spent on
planning the intended security on the level of the design. But, without an
explicit relation to the implementation, this effort is not leveraged to its full
potential. In addition, model-level analyses do not provide a realistic picture of
the implemented security, which diminishes the usefulness of models later-on
the in the development life-cycle. The value of the model-level analysis could
be increased, if such an explicit relation existed.

The goal of this research track is to study the relation between design
and implementation, particularly for what concerns the security compliance.
Collectively, the research conducted in this track (Papers H and I) aims to
answer the third research question.

RQ3. What security code analysis techniques can be leveraged to discover the

security compliance of the implemented system to SecDFD models?

We faced three problems in our effort to automate security compliance checks.

RQ3.1. What relation between the DFD model and an intermediate code
representation supports automated security compliance checks? (Paper H)

RQ3.2. What security code analysis techniques can be leveraged to discover

12 CHAPTER 1. INTRODUCTION

security compliance to the node contracts specified in the SecDFD?
(Paper I)

RQ3.3. What information from the SecDFD complements existing static code
analysis tools? (Paper I)

RQ3.1. First, to enable automated compliance checks, we establish an
explicit mapping of high-level elements (e.g., a DFD process) to implemented
constructs (e.g., implementation of a method). To this aim, we define rules for
mapping element types between two representations. The first representation is
the high-level design model (i.e., the SecDFD introduced in Paper E). The sec-
ond representation is an automatically extracted model of the implementation
(i.e., the program model [13]). Finding the appropriate corresponding element
types between these two abstractions was our first challenge. In addition,
understanding what heuristic rules can help in the discovery of corresponding
elements was not trivial.

RQ3.2. The second challenge we faced was understanding what code analy-
sis techniques can be leveraged to detect security compliance, given the explicit
mapping between the design model (i.e., SecDFD) and its implementation.
The SecDFD allows specifying contracts for the node elements, which precisely
define how the confidentiality of an incoming asset(s) changes on the outgoing
asset(s). For instance, the encrypt contract bound to one incoming asset and one
outgoing asset produces a public (not confidential) output. We were interested
to leverage the previously proposed mapping (Paper H) and static code analysis
techniques to verify whether the node contracts are implemented as intended.

RQ3.3. Existing data flow analyzers require the user to correctly identify
sources and sinks of confidential information. Though some sources and sinks
can be extracted from library APIs (e.g., like in [79]), finding project-specific
sources and correct sinks still remains a challenge. Besides developing the checks
for each node contract in isolation, we were interested to statically analyze
security of the entire program. Concretely, we wondered if the outcomes of an
analysis on the model-level (e.g., allowing some data to flow into a sink) can be
used to complement existing static code analysis tools. We hypothesize that
our mapping between the intended design and its implementation may be used
to point to locations in the code where secret information is first created, and
locations where it is allowed flow. The challenge was to extract this information
from the SecDFD in a way that can be useful to existing code analysis tools.

1.3 Paper Summaries

This section includes a summary of the appended papers. We describe our
research goals, adopted methods, and main contributions. The reader may
refer to the individual papers for a detailed discussion of the related work.

1.3.1 SLR on Threat Analysis (Paper A)

The number of existing threat analysis techniques makes it difficult for prac-
titioners to make informed decisions about selecting the appropriate method
for adoption in their organizations. Further, the existing literature on system-
atizing the knowledge about threat analysis is limited and does not provide a
complete list of existing techniques. The primary goal of Paper A is to catalog

1.3. PAPER SUMMARIES 13

and characterize the existing threat analysis techniques. The second goal is to
provide guidelines for practitioners in selecting techniques for adoption, and to
identify knowledge gaps for future research directions. In this study we compare
26 identified methodologies for what concerns their applicability, characteristics
of the required input for analysis, characteristics of analysis procedure, charac-
teristics of analysis outcomes, ease of adoption, and their validation. The study
was conducted by strictly following the guidelines by Kitchenham et al. [80] and
included an elaborate strategy, including backwards snowballing [81] for search-
ing the literature and extracting the data. In addition, we discuss the obstacles
for adopting the identified techniques to current trends in software engineering
(i.e., Development and Operations, Agile development) and their generalization
across domains. Finally, the study provides recommendations to practitioners
for technique adoption depending on the amount of planned resource investment.

Contributions. The main findings of the SLR are: (i) Existing threat
analysis techniques lack in quality assurance of outcomes, (ii) the use of
validation by illustration is predominant, (iii) the tools presented in the primary
studies lack maturity and are not always available, (iv) there is a lack of
correctness and completeness guarantees for analysis outcomes. The SLR was
performed as part of an in-depth study of the state-of-the-art, hence it does
not contribute to any of the research questions listed in Section [T.2}

1.3.2 STRIDE-per-el vs STRIDE-per-inter (Paper B)

Among other things, threat analysis techniques may differ in the scope of
analysis. We were interested to study the effects of a different analysis scope
on the technique performance. To this aim, Paper B rigorously compares two
existing techniques with different scopes, namely STRIDE-per-element and
STRIDE-per-interaction [9]. In particular, this study measures the respective
techniques’ performance in terms of their productivity, precision, and recall.
The study was conducted in the context of in-vitro experiments with master
students. We adopted a standard design for a comparative study [82] of one
independent variable with two values, namely, ELEMENT and INTERACTION.
The participants were split into two treatment groups, the ELEMENT and
INTERACTION treatment group. They were further assigned to teams. The
teams were instructed to (i) create a DFD and (ii) perform a threat analysis
of a familiar system using the respective technique in a fixed time frame and
report the analysis results. We collected the measure of effort (in minutes)
spent by each team on both sub-tasks (DFD creation and threat analysis). The
final reports were compared to a ground truth analysis to collect the measure
of true positives (T'P), false positives (F'P) and false negatives (F'N). On that
basis, we collected evidence about statistically significant differences (SSD)
between (i) the average productivity (number of TP per hour) of treatments,
(ii) the average precision (T'P/(T'P 4+ F'P)) of treatments, and (iii) the average
recall (T'P/(TP + FN)) of treatments. Beyond that, the study controlled for
any possible discrepancies between the populations of the treatment groups
(i.e., with an obligatory entry and exit questionnaire) and gathered subjective
feedback on the usability of the techniques.

Contributions. Paper B contributes towards answering RQ1. The main
contribution of this paper is the gathered empirical evidence about the per-

14 CHAPTER 1. INTRODUCTION

formance of two threat analysis techniques (with a different analysis scope) in
the academic setting. We observed slightly better results for the STRIDE-per-
element technique (SSD between the average recall of treatments, ELEMENT :
62% INTERACTION : 49%). We also observed a slightly better average pro-
ductivity (no SSD, ELEMENT : 4.35 T'P/hour INTERACTION : 3.27 T'P/hour).
One possible explanation for the difference in treatment performance is that
STRIDE-per-interaction is more difficult to perform for novice analysts [9]
(such as our participants). STRIDE-per-interaction requires the consideration
of pair-wise interactions of elements, thus increasing the cognitive load for the
analyst [83]. Accordingly, we observed that on average the INTERACTION teams
produced larger DFDs, indicating that interactions lead to participants con-
structing a more complex problem space. The increased cognitive load and lack
of domain expertise might have affected the performance of the INTERACTION
teams. This study concludes that there is no significant difference (in terms of
performance) between the two treatments with a slightly different analysis scope.

1.3.3 Towards Security Threats That Matter (Paper C)

This paper is motivated by the need to increase efficiency of threat analysis
techniques in the automotive industry. To this aim, we enlarge the analysis
scope and improve the analysis procedure to focus on important assets. The
proposal was inspired by STRIDE and comes as a result of numerous workshop
sessions with our industrial partners that further highlighted the needs and
shortcomings of existing approaches. As a collection of lessons learned, the
first author synthesized the approach and validated it with an illustration.
Contributions. This paper contributes to answering RQ1. The main con-
tribution of this paper is a novel risk-first threat analysis technique (eSTRIDE)
with an enlarged analysis scope. We propose to prioritize threats before they are
analyzed based on assets and their priorities. This requires practitioners to en-
rich the architectural model (i.e., build an extended DFD or eDFD) with assets,
their sources, targets, security concerns and priorities, domain assumptions,
communication channels, and existing security solutions. The DFD extensions
are made to end-to-end user scenarios around highly prioritized assets. During
the analysis procedure, such scenarios become the scope of the analysis. Finally,
the approach proposes initial guidelines for handling threat explosion by reduc-
ing the problem domain before and introducing short-cuts during the analysis.
The initial illustration suggests a reduced number of low-priority threats but
does not provide sufficient evidence for the potential benefits of the approach.

1.3.4 STRIDE-per-el vs eSTRIDE (Paper D)

This paper is motivated by the lack of empirical evidence about sacrificing
systematicity in the procedure of threat analysis for the discovery of high-
priority threats. To this end, we conducted two comparative case studies with
two different automotive organizations (ORG A and ORG B). The purpose of
this study is to gather empirical evidence about the similarities and differences
between a risk-last (STRIDE) and a risk-first (eSTRIDE, introduced in Paper C)
threat analysis technique in the industrial setting. The case studies were
conducted with (in total) 15 industrial practitioners. The participants of the

1.3. PAPER SUMMARIES 15

first organization (ORG A) were industrial experts, who have been trained in
security or self-identify as security experts. On the other hand, the participants
of the second organization (ORG B) had a deeper knowledge of the system under
analysis but self-identify as security novices. This enabled further observations
about the effect of security expertise on the overall team performance. Within
each organization, we observed and compared two teams analyzing the same
system using one of the prescribed techniques (STRIDE and ESTRIDE assigned
treatment). The participants were tasked to a) build a DFD (or an eDFD) of
the system under analysis and b) analyze the diagram using the procedural
guidelines of the prescribed technique. On the first day the teams were given
a training session including hands-on exercises of the prescribed technique.
On the second and third day the teams worked on their tasks. We measured
differences in the quality of analysis outcomes by assessing handed-in reports
of the identified threats. Differences in technique execution were measured
by analyzing recordings (only allowed in ORG A), time-keeping of participant
activities, and structured note-taking.

Contributions. Paper D contributes to answering RQ1. The main contri-
bution of this paper is the gathered empirical evidence about the performance
of two threat analysis techniques (with a different analysis scope) in the indus-
trial setting. We recorded similar levels of productivity between the compared
techniques. Possibly, the ESTRIDE teams spent more time to extend the di-
agram, while the STRIDE teams spent more time to prioritize the threats at
the end (this activity is skipped in ESTRIDE). Though no evidence suggests
an early discovery of high-priority threats, the ESTRIDE teams found twice
as many high-priority threats (compared to the STRIDE teams). Only a part
of the discovered threats were common threats, therefore we observed that
ESTRIDE tends to result in a more complete account of high-priority threats.
As expected, on the first day all the teams focused on building the diagram,
while on the second day they were analyzing the diagram. In ORG A, we also
observed that domain assumptions played an important role in the analysis
(e.g., they used assumptions to justify a threat existence). Finally, we studied
the effect of security expertise on the technique outcomes and execution. First,
compared to ORG A (more security expertise), both teams in ORG B made
mistakes. However, the achieved precision of the less security expert teams
is still quite high (80% and 70%). In addition, the teams in ORG B were
more productive (about 6 correct threats per hour vs about 3). Clearly, higher
productivity does not imply identification of more high-priority threats. In fact,
our results show that more experienced analysts identify a bigger percentage
of high-priority threats (regardless of the technique used). Regarding the
differences in technique execution, we mention that the less experienced teams
(OrG B) seldom discussed threat feasibility.

1.3.5 Flaws in Flows (Paper E)

Paper E is motivated by the low recall of existing techniques using informal
design notations, such as STRIDE [10]. On the one hand, literature describes
formalizations of DFDs [84] which often result in a complicated language
hindering their usability. On the other hand, several studies propose threat
analysis automation (e.g., by means of pattern matching [44,/45]) with no

16 CHAPTER 1. INTRODUCTION

correctness or completeness guarantees of analysis outcomes. Inspired by
language-based information flow security [85,[86], we propose a formal approach
to analyze security information flow policies at the level of the design model.

Contributions. This paper contributes towards answering RQ2. The
main contributions are two-fold: (i) a light-weight extension of the modeling
capabilities of DFDs, and (ii) a tool-supported, formally-based flow analysis
technique. The extension of the DFD notation requires the designer to provide
the intended security policy for system assets. In addition, the designer is
required to specify an abstract input-output security contract for the computa-
tional nodes (i.e., DFD processes). The designer also specifies a global security
policy for all system assets, based on which the design flaws are identified. The
additional information mentioned above is leveraged in the analysis procedure.
The second contribution of this work is a formally-based flow analysis technique
that propagates security labels across the design model. The approach was
implemented and packaged as a publicly available plug-in for Eclipse. We
validated the approach using 4 open source applications.

1.3.6 Detection of Security Design Flaws (Papers F & G)

Beyond low-level vulnerability databases (e.g., CVE [87], CWE [88], CAPEC [89)])
there is little systematized knowledge on security design flaws and how to find
them by inspecting architectural models. In Paper F, we present a catalog of
security design flaws and evaluate their manual inspection with master and
doctoral students. The catalog contains a list of 19 design flaws related to is-
sues with authentication, access control, authorization, availability of resources,
integrity and confidentiality of data. Each catalog entry consists of (i) the name
of the design flaw, (ii) a description, and (iii) a series of closed questions that
serve as rules for manual inspection. Existing literature already contributes
towards automating various security design analyses |43}44}/57,6590-92], yet
there is a lack of automated reasoning for detecting security design flaws along-
side existing system defenses and security assumptions about assets. Therefore,
we select five security design flaws from the catalog (introduced in Paper F)
and attempt to automate their detection. To that end, Paper G presents
model query patterns which are executed over DFD models enriched with data
types and security solutions. The query patterns were developed by translating
the manual inspection rules from the catalog to model element types and
their relations. Further, we conducted an empirical study (under controlled
conditions) with 13 academic researchers on-site two University campuses to
obtain a data set of 26 enriched DFD models. The data set was submitted to
two expert assessors for a manual application of the inspection rules of the five
flaws. We leverage this data set of models (incl. instances of the five flaws) to
evaluate the performance of the automated detection technique.
Contributions. This work contributes towards answering RQ2. The

main contributions of these papers are three-fold: (i) a data set of 26 security
enriched models and their flaws, (ii) an automated detection technique of
five security design flaws, and (iii) an empirical evaluation of the automated
detection using the data set. On average, a model in our data set contains
about 17 data flow elements, 5 processes, 3 data stores, 2 external entities, and
8 security solutions. The experts found (on average) about 16 flaw instances

1.3. PAPER SUMMARIES 17

on a single model. In our data set, the model size seems to correlate with
the average number of identified flaws. The model extensions are leveraged
in the automated detection, which was implemented as an Eclipse plug-in.
First, the data types are used to identify locations in the model where a flaw
could be present. At those location, the automated detection checks for the
presence of appropriate security solutions. We compared the expert reports of
the identified flaws to the flaws detected by the query patterns. Though the
precision of the automated technique is too low to replace expert analyses, it
could be used to present a list of issues for the analyst to sieve through.

1.3.7 Structural Compliance (Paper H)

This paper is motivated by the difficulty of establishing and maintaining a
software implementation compliant to the intended design. The disconnect
between design-level models and their implementation may potentially result
in architectural erosion [93]. To address this issue, we present a user-in-the-
loop approach for establishing an explicit mapping between DFD models
and implemented constructs (concretely, in Java). Our goal is to enable an
automated discovery of compliance with minimal user interaction. The proposed
approach relies on a set of four correspondence rules between the DFD element
types (introduced in Paper E) and the program model element types [13]. These
rules are used in a heuristic search for mapping suggestions. The approach
includes a user interface and is packaged as a publicly available Eclipse Plug-in.
Finally, we experimentally evaluate the precision and recall of the suggested
mappings on five open source projects.

Contributions. This paper contributes towards answering RQ3. The
main contributions of this paper are two-fold: (i) an automated technique
for suggesting mappings between DFDs and program models, and (ii) an
implementation of the approach as a publicly available Eclipse plug-in, evaluated
on five open source Java projects. First, the approach takes as input a completed
DFD model. Second, the user needs to extract a program model from the
implementation (which is done automatically) [13]. Finally, she can map the
DFD to the desired Java project (in the Eclipse workspace). The user can
accept, reject, or tolerate the suggested mappings, and execute a new search
iteration until she deems the DFD is mapped. She can also manually map source
code elements (provided they respect the correspondence rules). Information
and error markers are used to provide feedback to the user about the state of
compliance. We measured the correctness (in terms of precision and recall) of
the suggested mappings and the user impact on the correctness of mappings
for each iteration.

1.3.8 Security Compliance (Paper I)

This paper is motivated by the need for automating the verification of imple-
mented programs with respect to the intended security properties in the design.
In addition, static analysis tools may report violations which are afterwards
labeled by human experts as false alarms [94]. All reported violations have
to be manually sieved through, and, more importantly, the actual violations
must be distinguished from the false alarms, which is hard for developers with

18 CHAPTER 1. INTRODUCTION

less security expertise [95]. Our goal is to leverage the previously proposed
technique (introduced in Paper H) to statically analyze the implemented secu-
rity properties against the mapped design model. To this end, we propose to
extend the approach in Paper H with automated security compliance checks.

Contributions. Paper I contributes towards answering RQ3. This work
extends the approach in Paper H with two key contributions: (i) two types
of static checks to verify security properties (i.e., SecDFD contracts) in the
implementation, and (ii) an automated extraction of project-specific sources
and sinks of confidential information from the design, which are used to reduce
the number of false alarms raised by a state-of-the-art data flow analyzer. In
Paper I, we assume an existing SecDFD and its correct mapping (following the
steps in Paper H). To verify security properties of the design, we introduce
two types of static checks: rule-based checks for the encrypt and decrypt
(SecDFD) contracts, and local data flow checks for the forward and join
contracts. The second contribution is the extraction of project-specific sources
and sinks of confidential information from the design and their localization in
the code. For each SecDFD asset, we execute an existing data flow analyzer [96]
initialized with the extracted sources and sinks. We experimentally evaluate
both contributions with two open source Java projects.

1.4 Discussion

This section summarizes the answers to the main research questions of this thesis.
First, we discuss the main findings of the study of the state-of-the-art (Paper A).
Our assessments in Paper A show that existing threat analysis techniques
are mainly applicable on the level of requirements, architecture and design.
This is not very surprising considering that one of the main purposes for
performing threat analysis is to elicit security requirements. Further, most
of the studied techniques use architectural design models and requirements
(usually in textual form) as inputs to the analysis procedure, which is in line
with the first finding. Interestingly, the precision of most threat analysis
procedures is based on templates and examples, such as textual descriptions of
example threats. About half of the studied techniques consider risk to prioritize
the analysis outcomes. The analysis outcomes of the studied techniques in turn
are mostly threats. Yet, half of the techniques also produce security mitigations
or requirements. Finally, we find that not many of the studied techniques have

a way to assure the quality of analysis outcomes.

Paper A also investigated the ease of adoption for the studied techniques.
About half of the studied techniques do not provide any tool support. The
target audience for most of the studied techniques are security experts and
security trained engineers. We contemplate which characteristics are important
for adopting the techniques in practice and provide the following guidelines for
technique selection:

(a) If the organization plans to make small investments into adopting a threat
analysis technique and security is not prioritized by management, we recom-
mend selecting a technique that can be used without further modifications.
Important criteria: Tool availability and maturity, sufficient documentation,
low target audience and a light-weight analysis procedure.

1.4. DISCUSSION 19

Hypothesis Reality

§ :;: Paper B Paper D

£ £

e} e}

C C

© ©

Q [0 /

o o

[C

© (1]

£ £

‘'l 41 "N NN
Element Interaction Scenario El/Scen Element Interaction Scenario El/Scen
(novice) (novice) (novice) (expert) (novice) (novice) (novice) (expert)

Technique and security expertise Technique and security expertise

mm Productivity == Precision —Percentage of high-priority threats

Figure 1.2: Tlustration of our hypothesis about technique performance in
relation to the cognitive load required for brainstorming threats and security
expertise (left) and the reality for three specific techniques (right)

(b) If the organization plans to make small investments into adopting a threat
analysis technique and security is prioritized by management, we recom-
mend selecting a technique that is systematic. Important criteria: System-
atic analysis procedure, expert-based and preferably semi-automated.

(c) If the organization plans to make large investments into adopting a threat
analysis technique, we recommend developing an “in-house” adaption of a
promising technique. Important criteria: Systematic analysis procedure,
potential for improvement (e.g., technology improvement).

RQ1. What are the effects of broadening the analysis scope on the
quality of analysis outcomes?

Among other, Papers B and D investigate the effects of enlarging the analysis
scope on technique performance. Figure illustrates our hypothesis and
observed reality about the linear dependency between technique performance
and the analysis scope. In addition, it shows our expectations (left) and
observations (right) about performance differences between less experienced
groups in security and groups with security experts.

Empirical evidence shows that the productivity, precision, and number of
high-priority threats found are not significantly different for the per-element
and per-interaction variants of STRIDE. Thus, in the context of the controlled
experiments reported in Paper B, the analysis scope does not have a significant
effect on the overall technique performance. Further, in the context of the case
studies reported in Paper D, we find that enlarging the analysis scope to a chain
of elements (like in eSTRIDE) does not affect the overall technique performance
either, therefore similar levels of outcomes quality can be assumed. However,
the eSTRIDE technique leads to finding twice as many high-priority threats
(compared to STRIDE-per-element). Contrary to our intuition, the productivity
of expert analysts is lower (about 3 TP per hour) compared to novice teams
(about 6 TP per hour). However, our results show that more experienced
analysts identify a bigger percentage of high-priority threats (regardless of the
technique used). In addition, the precision of the expert groups is still higher,

20 CHAPTER 1. INTRODUCTION

compared to novice groups.

RQ1.1. What changes are required in the design model to facilitate
a threat analysis focusing on important threats?

Reasoning about risk early-on requires a good understanding of the assets and
their whereabouts in the system. During the asset analysis, the assets first need
to be identified in the model (incl. asset source, target(s)). The importance
of assets can only be deduced by discussing their security objectives (i.e.,
confidentiality, integrity, availability, accountability) and the priorities of those
(high, medium, low). The annotated assets are required in the model to indicate
where the model should be further extended. By focusing on highly prioritized
assets, the analysis is performed on parts of the architecture. This is how the
problem space is reduced before the analysis begins. Domain assumptions,
communication channels, and existing security solutions are notation extensions
that are used to make reductions during the analysis.

RQ1.2. What changes are required for a model-based threat analysis
procedure to focus on important threats?

In Paper C, we provide guidelines for handling threat explosion before (see
RQ1.1) and during the analysis. To reduce the effort during threat analysis, we
propose a slight departure from the analysis procedure suggested by STRIDE.
First, eSTRIDE analysis is performed using eDFDs. Second, threats are only
elicited for scenarios containing high-priority assets. Third, the scope of the
analysis is an end-to-end scenario of an asset with important security objectives.
This means that a chain of elements is considered during threat elicitation,
rather than single elements (or their interactions). Further, only threats that
directly threaten a highly prioritized security objective are considered. For
instance, tampering threats compromise the integrity objective. Finally, only
threats that are possible despite annotated domain assumptions and existing
security solutions are considered.

RQ1.3. What is the difference (in terms of performance and execu-
tion) between a risk-first and risk-last threat analysis technique?

In Paper D, we observe similar productivity levels across the two treatments
(STRIDE vs ESTRIDE). One possible explanation is that, instead of spending
time on prioritizing threats at the end (in STRIDE), the analysts of the ESTRIDE
teams had to spend time on extending the diagram. This is reflected in the
productivity of ESTRIDE teams. However, in reality these sessions can span
over weeks, therefore the additional security information in the model could
help to reboot the discussions after more time has passed (though this was
not measured in Paper D). We also observe that many high-priority threats
are found around trust boundaries. Trust boundaries illustrate locations in
the diagram where entities with different privileges interact [9]. It would be
interesting to observe the timeliness of discovering high-priority threats if these
boundaries are analyzed first. In addition, we find that discussing feasibility of
threats is time-consuming, but is required for a precise analysis. Indeed, the
less experienced teams seldom discussed threat feasibility in detail, were more

1.4. DISCUSSION 21

productive, but performed a less precise analysis. Regardless of the security

expertise, our teams were able to quickly learn and effectively apply both

techniques. Therefore, we postulate that security expertise may be traded for

a higher paced and less precise analysis under resource-constrained conditions.
The main findings regarding RQ1 are summarized in what follows.

RQ1. Summary of main findings

& The domain and security knowledge of the team has an impact on
the quality of outcomes and needs to be present in the architectural
model before the analysis begins. (Paper C)

& The complexity of the architectural model needs to be managed by
making model abstractions wherever possible while enrichments
are made only around assets with highest priorities. (Paper C)

& During the analysis, only threats to scenarios with high-priority
assets should be elicited. In addition, only threats (that exist
despite domain assumptions and security solutions) to high-priority
objectives of assets should be considered. (Paper C)

& Similar performance (in terms of productivity and precision) is
measured for the risk-first and risk-last threat analysis technique.
(Paper D)

IZ° Compared to a risk-last technique, the risk-first technique tends
to discover twice as many high-priority threats. (Paper D)

& In the industrial setting, security expertise may be traded for a
faster-paced and less precise threat analysis. (Paper D)

RQ2. To what extent can security design flaws be automatically
detected in DFD-like models?

We propose two extensions of the regular DFD notation to automate the
detection of the security design flaws. The first is a semantically enriched
specification language (SecDFD) coupled with a formally-grounded model

Precision and recall of the query patterns

Flaw 18: Insufficient auditing

Flaw 2: Authentication bypass

Flaw 15: Insecure data exposure

Flaw 6: Insuff. crypto key management

Flaw 13: Insecure data storage

Average

o

20 40 60 80 100
Recall = Precision

Figure 1.3: Precision and recall of the automated detection of five security
design flaws (Paper G)

22 CHAPTER 1. INTRODUCTION

analysis (Paper E). Preliminary evaluation on four open source applications
suggests that automating the detection of data leaks between confidential
sources and public sinks can be automated without false positives. In the second
proposal, we extend the notation with data types and leverage an existing
extension to model security solutions [42]. Figureshows the average precision
and recall of the developed query patterns. Our key take-away is that it is very
hard to attain good performance when automating the inspection rules of the
catalog, though the higher recall (compared to precision) is still encouraging.

RQ2.1. What model extensions support an automated security de-
sign flaw detection?

In order to reason about confidentiality design flaws, we introduce the Security
Data Flow Diagram (in short, SecDFD) specification language. First, the
regular DFD notation is extended with confidentiality labels of assets, their
sources and sinks. In addition, the notation is extended with attacker zones.
Attacker zones are sets of elements where the attacker may be able to observe
assets. The above extensions enable the definition of a global security policy,
i.e., the model is considered secure if and only if there is no sensitive asset
flowing into observable model locations. Second, the security properties of
assets are subject to change in the diagram. To capture this, one must consider
how each process affects the confidentiality of a traveling asset. To this aim, the
regular DFD notation is enriched with a formal label model with propagation
functions (or security contracts). The label model defines the semantics of
four different security contracts (i.e., forward, join, encrypt, and decrypt),
depending on the process (or node) type. Given a SecDFD model, we are able
to propagate the confidentiality labels by visiting each node (in a depth-first
manner) and spot locations where data may leak.

In Papers F and G, we study the detection of security design flaws concern-
ing various security properties. Compared to Paper E, our aim is to develop the
detection of several flaw types with less formal guarantees. The inspection rules
of five security design flaws (from the catalog introduced in Paper F) instruct
the analyst to identify sensitive information in the model, and to evaluate
the existence of security mechanisms. Therefore, the regular DFD notation
is extended with a data model, which enables representing different types of
sensitive data (such as key material, session token, encrypted data, etc.). In ad-
dition, our data model allows specifying data transformations (e.g., encryption
of a sensitive asset). To analyze security flaws in the context of existing system
defenses, we leverage an existing DFD modeling extension by Sion et al. [42].
The benefit of this extension is that the meta-model allows specifying cus-
tomized solutions and types of threats (e.g., spoofing) they mitigate. Instances
of data types and security solutions are bound to concrete DFD model elements.
These extensions enable finding weak spots with respect to existing defenses
and assets of value by querying the graph-like model for problematic patterns.

RQ2.2. What performance can be achieved by an automated tech-
nique for security design flaw detection?

Paper G empirically compares the outcomes of the developed technique for
automated flaw detection to a manual inspection (performed by human ex-

1.4. DISCUSSION 23

perts). The overall average precision of the automated technique is about
50% and the average recall is about 75% (see Figure [L.3). In the context of
our performance evaluation, the precision of our automated detection is not
good enough to replace manual expert analyses. Among other reasons, falsely
detected flaws have two origins: (i) over-approximated asset sensitivity levels,
and (ii) ambiguously modeled solutions. The expert assessors disregarded
incorrectly modeled sensitive assets (i.e., if the experts considered the asset not
sensitive, they did not report a flaw despite the incorrect model). Further, in
case of minor mistakes or ambiguities the experts took modeler intention into
account and did not report a flaw. In comparison, the automated detection
technique assumes that the model is correct, therefore in such situations the
flaws are still detected by the tool. The higher value of recall (compared to the
precision) is still encouraging, as the automated technique could generate a list
of issues for the expert to sieve through. The second take home message is that
some rules seem to be more promising than others for automation. For example,
the query patterns for design flaws 13 and 15 (design flaws only affecting the
confidentiality of assets) perform somewhat better.
Below we summarize the main findings for what concerns RQ2.

RQ2. Summary of main findings

& The design notation needs to be extended with node types to
specify the operations that the process elements perform over the
assets. (Paper E)

& The global security policy (i.e., the security condition in Paper E)
and the attacker model need to be defined to reason about analysis
completeness. (Paper E)

& The semantics of the node types need to be defined for a formally-
based analysis (e.g., security contracts of node types). (Paper E)

& Graph-based queries seem promising for automating the detection
of security design flaw inspection rules. (Papers F & G)

i It is hard to attain good performance (precision and recall) when
automating the rules for manually inspecting security design flaws.
(Paper G)

& Some security design flaws are more amenable to automation, and
the overall higher recall (compared to precision) of the automated
detection is still encouraging. (Paper G)

RQ3. What security code analysis techniques can be leveraged
to discover the security compliance of the implemented system to
SecDFD models?

Figure shows the steps (from the user perspective) of the proposed ap-
proach for analyzing the security compliance between the intended design
and its implementation. First, to automate structural compliance checks, we
propose (Paper H) to establish a mapping between the high-level model and
the implementation. The user is intentionally kept in the loop to make the
compliance analysis meaningful. Our evaluation shows that the precision and
recall of the automated mappings suggestion progresses with every iteration,

24

CHAPTER 1.

INTRODUCTION

Paper H
[Automated Mapping of User Verification of Manual Mapping of J
Elements Mappings Elements
f I
Paper | l l
{ sei/[;ti[f)if;?;;ad J [Data Flow Analysis J

Figure 1.4: The steps of the iterative approach for analyzing structural compli-
ance (Paper H) and the security compliance analysis steps (Paper 1)

demonstrating that (i) our heuristics are able to provide useful suggestions for
mappings, and (ii) the search for mappings takes user input (e.g., rejecting a
mapping or manually adding a mapping) into account. Given the technique
proposed in Paper H, static code analysis can be used to develop security
compliance checks. In particular, we present rule-based checks and local data
flow checks to verify whether the SecDFD security contracts are implemented
as intended. In addition, we show that the security information in the intended
(and mapped) design can be leveraged to improve code-level analysis tools by
reducing the number of reported false positives.

RQ3.1. What relation between the DFD model and an interme-
diate code representation supports automated security compliance
checks?

In Paper H, we present an iterative, user-in-the-loop approach for analyzing the
compliance between the intended design and implementation. The approach is
based on establishing mappings between a design-level model and the program
model (extracted from the implemented system in Java [13]). A set of four rules
is used to pin-down the corresponding elements between the two abstractions.
For instance, assets can be mapped to Java types (e.g., a class or a primitive
type). The rationale for this rule is that assets hold data, which (in the imple-
mentation) is typically transmitted using parameters and return values. The
only property of assets which rarely changes in the implementation is their type.

Our approach consists of three steps: the automated suggestion of mappings,
user mappings verification, and manual mappings creation (see Figure [1.4). To
find and present meaningful mappings to the user, our algorithm heuristically
assigns scores to all possible mappings. We implemented simple name matching
heuristics (using the Levenshtein distance) and structural heuristics. The
Levenshtein distance [97] is a measure of the minimal number of characters
which have to be removed, added or flipped to change one word into another.
For instance, the Levenshtein distance is used to score similarity between DFD
process names and method names. In one of the structural heuristics, we
score concrete method signatures by comparing incoming parameter types
and return types to incoming and outgoing DFD assets (of a process to be
mapped). In the second step, the user verifies suggested mappings via the
tool interface by accepting, rejecting, or tolerating them. Finally, the user
is able to manually add mappings. After the user has finished defining the

1.4. DISCUSSION 25

mappings, static checks can be used to determine structural compliance. All
accepted or manually added (but not rejected) mappings are allowed and are
thus convergences. Elements present in the code, but not specified in the DFD
represent a divergence. It is possible to display flows from process-mapped
members to other members which have not been mapped to this process. If the
target of such a flow has not been mapped to any process, there seems to be a
divergence. A divergence also arises if there is a flow between two processes in
the code that has not been specified on the DFD. Finally, if a DFD element
has not been mapped to any program model element, the user can discover an
absence of the specified functionality in the code.

Though the precision of the first round of suggested mappings is on average
about 50%, the last automated suggestion phase reaches an acceptable precision
of almost 90%. Similarly, the recall progresses with every iteration, which
suggests that the search for mappings takes user input (i.e., rejecting or manually
adding a mapping) into account.

RQ3.2. What security code analysis techniques can be leveraged to
discover security compliance to the node contracts specified in the
SecDFD?

In Paper I, we build on top of our work on structural compliance and study the
security compliance between the intended security and implemented security.
First, we introduce rule-based checks to verify that the implementation complies
with the indented cryptographic process contracts (i.e., the SecDFD encrypt
and decrypt contracts). In essence, for each SecDFD process with such a
contract, the check will inspect the mapped source code, and verify whether
there exists a call to at least one method with a method signature predefined
to be used for cryptographic operations. We also develop checks to verify that
the implementation complies with the intended data processing contracts (i.e.,
the SecDFD forward and join contracts). On the level of the program model,
implemented data flows can be traced trough incoming parameter and return
flows. For each SecDFD process with such a contract, we extract the relevant
implemented flows from the program model and compare them to the expected
flows (according to the SecDFD) to find a potential match. In addition, we
leverage the security information from the design model to initialize and execute
a state-of-the-art data flow analyzer for Java programs (i.e., FlowDroid [96]).

We consider the security compliance to converge when a planned security
contract (of the SecDFD process) is implemented at the correct location and
no leaks have been detected by the data flow analyzer. Instead, divergence is
identified if (i) there exists an implemented data flow which does not comply
with the security contracts (of the SecDFD process), or (ii) a leak has been
detected by the data flow analyzer. Finally, absence is identified when a
SecDFD contract is not implemented.

From our evaluation we conclude that the two developed types of security
compliance checks are relatively precise (average precision is 79.6% and 100%)
but may still overlook some implemented information flows (average recall is
65.5% and 94.5%) due to the large gap between the design and implementation.

26 CHAPTER 1. INTRODUCTION

RQ3.3. What information from the SecDFD complements existing
static code analysis tools?

We study how security information present in the design models can be used
to complement code-level analysis. First, we use our mappings to extract the
locations of confidential sources in the code. For instance, if the asset source is
an external entity and it is mapped to method definitions, their signatures are
collected as sources. We maintain the list of source method signatures for each
confidential asset (as they may differ across assets). Second, we use a baseline
list of sinks , which we modify before executing the analyzer. Similar to
source extraction, for each confidential asset we are able to identify sinks where
the asset is allowed to flow (by design). The allowed sinks are then removed from
the baseline list of sinks . Finally, mapped method signatures of elements
contained in attacker zones (in the SecDFD) are added to the list of sinks.

The key takeaway from our evaluation is that using this approach we were
able to extract project-specific sources and allowed sinks of confidential data,
and reduce the number of false alarms (up to 62 %) raised by the state-of-the-art
data flow analyzer.

The main findings regarding RQ3 are summarized below.

RQ3. Summary of main findings

& A semi-automated, user-in-the-loop approach is promising for
establishing the mappings between a design model and its imple-
mentation. (Paper H)

& The performance of the heuristic search for mappings is less opti-
mal with no user input (i.e., in the first iteration), however both
precision and recall increase in the following iterations, reach-
ing fairly good levels (e.g., on average the precision of the final
automated phase is 87.2% and recall is 92%). (Paper H)

& Given an existing mapping, static analysis techniques can be used
to develop security compliance checks with a fairly good precision
(e.g., average precision for the two type of developed checks is
79.6% and 100%). (Paper I)

& Our approach is able to extract additional project-specific sources
and allowed sinks of confidential information in the code. (Paper I)

& The security information in the intended (and mapped) design
can be leveraged to help code-level analysis tools by reducing the
number of reported false positives. (Paper I)

1.5 Conclusion and Future Work

This thesis addresses three research problems, which were identified by conduct-
ing a systematic analysis of the state-of-the-art in threat analysis of software
systems. To address the issue of high manual effort, we propose a notation
extended with security-relevant information (eDFD) and an improved analysis
procedure (eSTRIDE). Second, we study how to raise the recall of model-based
security analysis techniques. To this aim, we introduce two approaches for

1.5. CONCLUSION AND FUTURE WORK 27

automatically detecting security design flaws: the SecDFD and a graph-based
automated detection. Finally, we suggest an approach for automating the
security compliance checks of the implemented programs with respect to the
intended design (represented with SecDFDs). We envision two future directions.

Ezxtensions to privacy threat modeling. Fueled by changes in the legislation
(GDPR), privacy threat modeling has been receiving more attention in academia
and industry. But the gap between actual system behavior and the high-level
notions of the GDPR is immense. To overcome this issue, design-level analyses
could be adopted. Recent work by Antignac et al. [98] introduces a set
of privacy preserving transformations to statically identify and mitigate so
called “privacy hotspots” in DFDs. For instance, personal data flowing into
a third-party component (external entity) represents information disclosure,
and thus a potential breach of privacy. The privacy transformations modify
such interactions by inserting a pattern of new DFD elements to ensure that
the necessary steps will be taken at the time of implementation. But, GDPR
requires a more fine-grained tracking of data processing operations. We are
curious to study how our formally-based approach for detecting confidentiality
flaws (Paper E) can be extended with a privacy analysis. In particular, we are
eager to understand what data processing operations can be expressed for DFD
processes, and how these operations affect privacy properties of data classes.

Applications to the Internet of things (IoT) domain. In the domain of IoT,
security and privacy properties are hard to enforce due to hardware constraints
in the devices, and their access to private data. We are working on applying the
formally-based analysis of confidentiality (and integrity) flaws (Paper E) in the
context of IoT applications. In particular, we are interested to leverage static
code analysis techniques to verify implemented security properties. Analyzing
the source code statically (for every possible input) can be resource demanding,.
Therefore, we are looking into the possibility to leverage the compositionality
property of the SecDFD specification language. First, we intend to extract
DFD-like graphs from existing IoT applications. Intuitively, static code analysis
could be performed over the implementation of local application nodes to extract
the implemented data flows. Next, the global security policy could be verified
by leveraging our label propagation model. To validate our approach, we are
studying a flow-based programming platform (i.e., NodeRED [99]) and the
accompanying repository of IoT applications.

28

CHAPTER 1.

INTRODUCTION

Bibliography

[1] C.Y. Jeong, S.-Y. T. Lee, and J.-H. Lim, “Information security breaches

and it security investments: Impacts on competitors,” Information &
Management, vol. 56, no. 5, pp. 681-695, 2019.

“UK’s ICO fines British Airways a record £183M over GDPR breach that
leaked data from 500,000 users,” https://techcrunch.com/2019/07/08 /uks-
ico-fines-british-airways-a-record-183m-over-gdpr-breach-that-leaked-
data-from-500000-users/, accessed: 2020-11-18.

“Report: Data Breach in Biometric Security Platform Affecting Millions of
Users,” https://www.vpnmentor.com/blog/report-biostar2-leak/, accessed:
2020-11-18.

“Report: Estimated 24,000 Android apps expose user data through
Firebase blunders,” https://www.comparitech.com/blog/information-
security /firebase-misconfiguration-report/, accessed: 2020-11-18.

G. McGraw, Software security: building security in. Addison-Wesley
Professional, 2006, vol. 1.

N. Daswani, C. Kern, and A. Kesavan, “Secure design principles,” Foun-
dations of Security: What FEvery Programmer Needs to Know, pp. 61-76,
2007.

C. Dougherty, K. Sayre, R. C. Seacord, D. Svoboda, and K. Togashi,
“Secure Design Patterns,” Carnegie-Mellon University Pittsburgh, Software
Engineering Institute, Tech. Rep., 2009.

S. Migues, J. Steven, and M. Ware, “Building security in maturity model
11 (BSIMM11),” https://www.bsimm.com, accessed: 2020-10-29.

A. Shostack, Threat Modeling: Designing for Security. John Wiley &
Somns, 2014.

R. Scandariato, K. Wuyts, and W. Joosen, “A descriptive study of mi-
crosoft’s threat modeling technique,” Requirements Engineering, vol. 20,
no. 2, pp. 163-180, 2015.

M. Deng, K. Wuyts, R. Scandariato, B. Preneel, and W. Joosen, “A privacy
threat analysis framework: supporting the elicitation and fulfillment of
privacy requirements,” Requirements FEngineering, vol. 16, no. 1, pp. 3-32,
2011.

R. Hebig, T. H. Quang, M. R. Chaudron, G. Robles, and M. A. Fernandez,
“The Quest for Open Source Projects that Use UML: Mining GitHub,” in
Proceedings of the International Conference on Model Driven Engineering
Languages and Systems (MODELS). ACM, 2016, pp. 173-183.

S. Peldszus et al., “GRaViTY Program Model,” 2020. [Online]. Available:
http://gravity-tool.org

29

https://www.bsimm.com
http://gravity-tool.org

30

BIBLIOGRAPHY

[14]

[15]

[16]

[17]

[18]

[29]

G. Macher, E. Armengaud, E. Brenner, and C. Kreiner, “A review of threat
analysis and risk assessment methods in the automotive context,” in Pro-
ceedings of the International Conference on Computer Safety, Reliability,
and Security. Springer, 2016, pp. 130-141.

K. Bernsmed and M. G. Jaatun, “Threat modelling and agile software
development: Identified practice in four norwegian organisations,” in Pro-
ceedings of the International Conference on Cyber Security and Protection
of Digital Services (Cyber Security). IEEE, 2019, pp. 1-8.

M. N. Anwar, M. Nazir, and A. M. Ansari, “Modeling security threats for
smart cities: A stride-based approach,” in Smart Cities—Opportunities
and Challenges. Springer, 2020, pp. 387-396.

J. Lee, S. Kang, and S. Kim, “Study on the smart speaker security
evaluations and countermeasures,” in Advanced Multimedia and Ubiquitous
Engineering. Springer, 2019, pp. 50-70.

C. Paule, T. F. Diillmann, and A. Van Hoorn, “Vulnerabilities in continuous
delivery pipelines? a case study,” in Proceedings of the International
Conference on Software Architecture Companion (ICSA-C). 1EEE, 2019,
pp. 102-108.

J. Sanfilippo, T. Abegaz, B. Payne, and A. Salimi, “Stride-based threat
modeling for mysql databases,” in Proceedings of the Future Technologies
Conference. Springer, 2019, pp. 368-378.

R. Khan, K. McLaughlin, D. Laverty, and S. Sezer, “Stride-based threat
modeling for cyber-physical systems,” in Proceedings of the PES Innovative
Smart Grid Technologies Conference Europe (ISGT-FEurope). 1IEEE, 2017,
pp. 1-6.

M. Abomhara, M. Gerdes, and G. M. Kgien, “A stride-based threat model
for telehealth systems,” NISK Journal, pp. 82-96, 2015.

M. V. Dumitru, D. Dumitrescu, and C. Raiciu, “Can we exploit buggy p4
programs?” in Proceedings of the Symposium on SDN Research, 2020, pp.
62-68.

M. A. Naagas and T. D. Palaoag, “A threat-driven approach to modeling a
campus network security,” in Proceedings of the International Conference
on Communications and Broadband Networking, 2018, pp. 6-12.

D. Magin, R. Khondoker, and K. Bayarou, “Security analysis of openradio
and softran with stride framework,” in Proceedings of the International
Conference on Computer Communications and Applications (ICCCN),
vol. 38, 2015.

M. S. Lund, B. Solhaug, and K. Stelen, Model-driven risk analysis: the
CORAS approach. Springer Science & Business Media, 2010.

C. Alberts, A. Dorofee, J. Stevens, and C. Woody, “Introduction to the
octave approach,” Pittsburgh, PA, Carnegie Mellon University, Tech. Rep.,
2003.

——, “Octave-s implementation guide, version 1.0,” Carnegie-Mellon Univ
Pittsburgh PA Software Engineering Inst, Tech. Rep., 2005.

R. A. Caralli, J. F. Stevens, L. R. Young, and W. R. Wilson, “Introducing
octave allegro: Improving the information security risk assessment process,”
Carnegie-Mellon Univ Pittsburgh PA Software Engineering Inst, Tech.
Rep., 2007.

T. UcedaVelez and M. M. Morana, Risk Centric Threat Modeling: Process

BIBLIOGRAPHY 31

[30]

[31]

[43]

[44]

[45]

for Attack Simulation and Threat Analysis. John Wiley & Sons, 2015.
K. Buyens, B. De Win, and W. Joosen, “Empirical and statistical analysis
of risk analysis-driven techniques for threat management,” in Proceedings
of the International Conference on Awvailability, Reliability and Security
(ARES). 1EEE, 2007, pp. 1034-1041.

J. Selin, “Evaluation of threat modeling methodologies,” Master’s thesis,
JAMK University of Applied Sciences, https://www.theseus.fi/bitstream/
handle/10024 /220967 /Selin_Juuso.pdf 7isAllowed=y&sequence=2, 5 2019.
D. Verdon and G. McGraw, “Risk analysis in software design,” IEEE
Security & Privacy Magazine, vol. 2, no. 4, pp. 79-84, 2004.

D. S. Cruzes, M. G. Jaatun, K. Bernsmed, and I. A. Tgndel, “Challenges
and experiences with applying microsoft threat modeling in agile develop-
ment projects,” in Proceedings of the Australasian Software Engineering
Conference (ASWEC). 1EEE, 2018, pp. 111-120.

S. Mauw and M. Oostdijk, “Foundations of attack trees,” in Proceedings
of the International Conference on Information Security and Cryptology,
vol. 3935. Springer, 2005, pp. 186-198.

G. Sindre and A. L. Opdahl, “Eliciting security requirements with misuse
cases,” Requirements Engineering, vol. 10, no. 1, pp. 3444, 2005.

K. Beckers, D. Hatebur, and M. Heisel, “A problem-based threat analysis
in compliance with common criteria,” in Proceedings of the International
Conference on Availability, Reliability and Security (ARES). 1EEE, 2013,
pp. 111-120.

D. Hatebur and M. Heisel, “Problem frames and architectures for security
problems,” in Proceedings of the International Conference on Computer
Safety, Reliability, and Security (SAFECOMP). Springer, 2005, pp.
390-404.

L. Lin, B. Nuseibeh, D. Ince, and M. Jackson, “Using abuse frames to
bound the scope of security problems,” in Proceedings of the International
Conference on Requirements Engineering (RE). TEEE, 2004, pp. 354-355.
B. Schneier, “Attack trees,” Dr Dobb’s Journal, v.24, n.12, 1999.

H. S. Lallie, K. Debattista, and J. Bal, “A review of attack graph and
attack tree visual syntax in cyber security,” Computer Science Review,
vol. 35, p. 100219, 2020.

“Sustainable Application Security microsofts new threat model-
ing tool,” https://blog.secodis.com/2016/07/06 /microsofts-new-threat-
modeling-tool/, accessed: 2017-05-15.

L. Sion, D. Van Landuyt, K. Yskout, and W. Joosen, “Sparta: Security &
privacy architecture through risk-driven threat assessment,” in Proceedings
of the International Conference on Software Architecture (ICSA). TEEE,
2018.

S. Seifermann, R. Heinrich, and R. Reussner, “Data-driven software archi-
tecture for analyzing confidentiality,” in Proceedings of the International
Conference on Software Architecture (ICSA). ITEEE, 2019, pp. 1-10.

M. Almorsy, J. Grundy, and A. S. Ibrahim, “Automated software archi-
tecture security risk analysis using formalized signatures,” in Proceedings
of the International Conference on Software Engineering (ICSE). IEEE
Press, 2013, pp. 662-671.

B. J. Berger, K. Sohr, and R. Koschke, “Automatically extracting threats

https://www.theseus.fi/bitstream/handle/10024/220967/Selin_Juuso.pdf?isAllowed=y&sequence=2
https://www.theseus.fi/bitstream/handle/10024/220967/Selin_Juuso.pdf?isAllowed=y&sequence=2

32

BIBLIOGRAPHY

from extended data flow diagrams,” in Proceedings of the International

Symposium on Engineering Secure Software and Systems. Springer, 2016,
pp. 56-71.

J. B. Hong, D. S. Kim, C.-J. Chung, and D. Huang, “A survey on the us-
ability and practical applications of graphical security models,” Computer
Science Review, vol. 26, pp. 1-16, 2017.

O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing, “Automated
generation and analysis of attack graphs,” in Proceedings of the Symposium
on Security and Privacy. IEEE, 2002, pp. 273-284.

X. Ou, W. F. Boyer, and M. A. McQueen, “A scalable approach to attack
graph generation,” in Proceedings of the Conference on Computer and
Communications Security. ACM, 2006, pp. 336-345.

D. Xu and K. E. Nygard, “Threat-driven modeling and verification of
secure software using aspect-oriented petri nets,” IEEFE Transactions on
Software Engineering, vol. 32, no. 4, pp. 265-278, 2006.

C. Gerking and D. Schubert, “Component-based refinement and verifica-
tion of information-flow security policies for cyber-physical microservice
architectures,” in Proceedings of the International Conference on Software
Architecture (ICSA). IEEE, 2019, pp. 61-70.

G. T. Leavens, T. Wahls, and A. L. Baker, “Formal semantics for sa style
data flow diagram specification languages,” in Proceedings of the 1999
ACM Symposium on Applied Computing, ser. SAC ’99, 1999, pp. 526-532.
P. G. Larsen, N. Plat, and H. Toetenel, “A formal semantics of data flow
diagrams,” Form. Asp. Comput., vol. 6, no. 6, pp. 586-606, Dec. 1994.
A. van den Berghe, R. Scandariato, K. Yskout, and W. Joosen, “Design
notations for secure software: a systematic literature review,” Software €
Systems Modeling, pp. 1-23, 2015.

P. H. Nguyen, M. Kramer, J. Klein, and Y. Le Traon, “An extensive
systematic review on the model-driven development of secure systems,”
Information and Software Technology, vol. 68, pp. 62-81, 2015.

C. Raibulet, F. A. Fontana, and M. Zanoni, “Model-driven reverse engi-
neering approaches: A systematic literature review,” IEEE Access, vol. 5,
pp. 14516-14542, 2017.

N. Anquetil, U. Kulesza, R. Mitschke, A. Moreira, J.-C. Royer, A. Rumm-
ler, and A. Sousa, “A model-driven traceability framework for software
product lines,” Software € Systems Modeling, vol. 9, no. 4, pp. 427-451,
2010.

J. Jurjens, “Umlsec: Extending uml for secure systems development,”
in Proceedings of the International Conference on The Unified Modeling
Language. Springer, 2002, pp. 412-425.

——, “Model-based security testing using umlsec: A case study,” Electronic
Notes in Theoretical Computer Science, vol. 220, no. 1, pp. 93-104, 2008.
B. Best, J. Jurjens, and B. Nuseibeh, “Model-based security engineering of
distributed information systems using umlsec,” in Proceedings of the Inter-
national Conference on Software Engineering (ICSE). TEEE Computer
Society, 2007, pp. 581-590.

J. Jirjens, “Using umlsec and goal trees for secure systems development,”
in Proceedings of the Symposium on Applied Computing. ACM, 2002, pp.
1026-1030.

BIBLIOGRAPHY 33

[61]

[62]

[63]

J. Jirjens and P. Shabalin, “Tools for secure systems development with
uml,” International Journal on Software Tools for Technology Transfer,
vol. 9, no. 5-6, pp. 527-544, 2007.

E. Fourneret, M. Ochoa, F. Bouquet, J. Botella, J. Jurjens, and P. Yousefi,
“Model-Based Security Verification and Testing for Smart-cards,” in Pro-
ceedings of the International Conference on Availability, Reliability and
Security (ARES). TEEE, 2011, pp. 272-279.

Q. Ramadan, M. Salnitri, D. Striiber, J. Jiirjens, and P. Giorgini, “From
Secure Business Process Modeling to Design-Level Security Verification,” in
Proceedings of the International Conference on Model Driven Engineering
Languages and Systems (MODELS). ACM/IEEE, 2017, pp. 123-133.
P. Muntean, A. Rabbi, A. Ibing, and C. Eckert, “Automated Detection of
Information Flow Vulnerabilities in UML State Charts and C Code,” in
Proceedings of the International Conference on Software Quality, Reliability
and Security-Companion (QRS-C). IEEE, 2015, pp. 128-137.

K. Katkalov, K. Stenzel, M. Borek, and W. Reif, “Model-driven develop-
ment of information flow-secure systems with iflow,” in Proceedings of the
International Conference on Social Computing. IEEE, 2013, pp. 51-56.
R. Vanciu and M. Abi-Antoun, “Finding Architectural Flaws using Con-
straints,” in Proceedings of the International Conference on Automated
Software Engineering (ASE). IEEE, 2013, pp. 334-344.

J. Aldrich, C. Chambers, and D. Notkin, “Archjava: connecting soft-
ware architecture to implementation,” in Proceedings of the International
Conference on Software Engineering (ICSE). TEEE, 2002, pp. 187-197.
P. Olson and M. Randevik, “Secarchunit: Extending archunit to support
validation of security architectural constraints,” Master’s thesis, Chalmers
University of Technology, https://masterthesis.cms.chalmers.se/content/s
ecarchunit-extending-archunit-support-validation-security-architectural-
constraints, 4 2020.

Z. Yu, C. Bai, L. Seinturier, and M. Monperrus, “Characterizing the usage,
evolution and impact of java annotations in practice,” IEEE Transactions
on Software Engineering, 2019.

S. Jasser, “Enforcing Architectural Security Decisions,” in Proceedings of
the International Conference on Software Architecture (ICSA). IEEE,
2020, pp. 35-45.

M. Abi-Antoun, D. Wang, and P. Torr, “Checking threat modeling data
flow diagrams for implementation conformance and security,” in Proceed-
ings of the IEEE/ACM International Conference on Automated Software
Engineering (ASE). ACM, 2007, pp. 393-396.

G. C. Murphy, D. Notkin, and K. Sullivan, “Software reflexion models:
Bridging the gap between source and high-level models,” in Proceedings
of the Symposium on Foundations of Software Engineering. ACM, 1995,
pp. 18-28.

S. Charalampidou, A. Ampatzoglou, E. Karountzos, and P. Avgeriou,
“Empirical studies on software traceability: A mapping study,” Journal of
Software: Evolution and Process, p. €2294, 2020.

A. Velasco and J. Aponte, “Automated fine grained traceability links
recovery between high level requirements and source code implementations,”
ParadigmPlus, vol. 1, no. 2, pp. 1841, 2020.

https://masterthesis.cms.chalmers.se/content/secarchunit-extending-archunit-support-validation-security-architectural-constraints
https://masterthesis.cms.chalmers.se/content/secarchunit-extending-archunit-support-validation-security-architectural-constraints
https://masterthesis.cms.chalmers.se/content/secarchunit-extending-archunit-support-validation-security-architectural-constraints

34

BIBLIOGRAPHY

[75]

[76]

[79]

[80]

[81]

A. Act, “Health insurance portability and accountability act of 1996,”
Public law, vol. 104, p. 191, 1996.

B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature Location in
Source Code: A Taxonomy and Survey,” Journal of Software: FEvolution
and Process, vol. 25, no. 1, pp. 53-95, 2013.

A. Sabelfeld and A. C. Myers, “Language-based information-flow security,”
IEEE Journal on Selected Areas in Communications, vol. 21, no. 1, pp.
5-19, 2003.

D. E. Denning and P. J. Denning, “Certification of programs for secure
information flow,” Communications of the ACM, vol. 20, no. 7, pp. 504—513,
1977.

S. Arzt, S. Rasthofer, and E. Bodden, “SuSi: A Tool for the Fully Auto-
mated Classification and Categorization of Android Sources and Sinks,”
University of Darmstadt, Tech. Rep. TUDCS-2013-0114, 2013.

B. Kitchenham, S. Charters, D. Budgen, P. Brereton, M. Turner,
S. Linkman, M. Jgrgensen, E. Mendes, and G. Visaggio, “Guidelines
for performing systematic literature reviews in software engineering,” in
Technical report, Ver. 2.8 EBSE Technical Report. EBSE. sn, 2007.

C. Wohlin, “Guidelines for snowballing in systematic literature studies and
a replication in software engineering,” in Proceedings of the International
Conference on Fvaluation and Assessment in Software Engineering. ACM,
2014, p. 38.

S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, “Selecting em-
pirical methods for software engineering research,” in Guide to Advanced
Empirical Software Engineering. Springer, 2008, pp. 285-311.

D. H. Jonassen, “Toward a design theory of problem solving,” Educational
technology research and development, vol. 48, no. 4, pp. 63-85, 2000.

A. A. A. Jilani, A. Nadeem, T. hoon Kim, and E. suk Cho, “Formal
representations of the data flow diagram: A survey,” in Proceedings of the
Advanced Software Engineering and Its Applications (ASEA), 2008.

D. M. Volpano and G. Smith, “A type-based approach to program security,”
in Proceedings of the International Joint Conference Theory and Practice
of Software Development, 1997, pp. 607-621.

A. Sabelfeld and D. Sands, “Declassification: Dimensions and principles.”
JCS, 2009.

“CVE - Common Vulnerabilities and Exposures,” Available from MITRE,
2020. [Online]. Available: |https://cve.mitre.org

“CWE - Common Weakness Enumeration,” Available from MITRE, 2020.
[Online]. Available: https://cwe.mitre.org

S. Barnum, “Common attack pattern enumeration and classification (capec)
schema description,” Clgital Inc, http://capec. mitre. org/documents/doc-
umentation/CAPEC_Schema_Descr iption_v1, vol. 3, 2008.

B. J. Berger, K. Sohr, and R. Koschke, “Extracting and analyzing the
implemented security architecture of business applications,” in Proceedings
of the European Conference on Software Maintenance and Reengineering
(CSMR). 1EEE, 2013, pp. 285—294.

B. Hoisl, S. Sobernig, and M. Strembeck, “Modeling and enforcing secure
object flows in process-driven soas: an integrated model-driven approach,”
Software € Systems Modeling, vol. 13, no. 2, pp. 513-548, 2014.

https://cve.mitre.org
https://cwe.mitre.org

BIBLIOGRAPHY 35

[92]

[93]

[94]

[95]

[96]

M. Frydman, G. Ruiz, E. Heymann, E. César, and B. P. Miller, “Automat-
ing risk analysis of software design models,” The Scientific World Journal,
vol. 2014, pp. 248259, 2014.

L. De Silva and D. Balasubramaniam, “Controlling software architecture
erosion: A survey,” Journal of Systems and Software, vol. 85, no. 1, pp.
132-151, 2012.

K. Goseva-Popstojanova and A. Perhinschi, “On the Capability of Static
Code Analysis to Detect Security Vulnerabilities,” Information and Soft-
ware Technology (IST), vol. 68, pp. 18-33, 2015.

D. Baca, K. Petersen, B. Carlsson, and L. Lundberg, “Static Code Analysis
to Detect Software Security Vulnerabilities-does Experience Matter?” in
Proceedings of the International Conference on Availability, Reliability and
Security (ARES). TEEE, 2009, pp. 804-810.

S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,
D. Octeau, and P. McDaniel, “Flowdroid: Precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis for android apps,” ACM
Sigplan Notices, vol. 49, no. 6, pp. 259-269, 2014.

V. I. Levenshtein, “Binary Codes Capable of Correcting Deletions, Inser-
tions, and Reversals,” Soviet Physics Doklady, vol. 10, no. 8, pp. 707-710,
1966.

T. Antignac, R. Scandariato, and G. Schneider, “Privacy compliance via
model transformations,” in Proceedings of the European Symposium on
Security and Privacy Workshops (EuroS&PW). TEEE, 2018, pp. 120-126.
“MS Windows NT kernel description,” Node-RED: Low-code programming
for event-driven applications, accessed: 2020-11-19.

36

BIBLIOGRAPHY

	Abstract
	Acknowledgement
	List of Publications
	Personal Contribution
	Introduction
	Positioning of Contributions with Respect to the Related Work
	Threat Analysis of Design Models
	Automated Security Analysis of Design Models
	Security Compliance Between Model and Code

	Research Focus
	High manual effort
	Low recall
	Disconnect between models and code

	Paper Summaries
	SLR on Threat Analysis (Paper A)
	STRIDE-per-el vs STRIDE-per-inter (Paper B)
	Towards Security Threats That Matter (Paper C)
	STRIDE-per-el vs eSTRIDE (Paper D)
	Flaws in Flows (Paper E)
	Detection of Security Design Flaws (Papers F & G)
	Structural Compliance (Paper H)
	Security Compliance (Paper I)

	Discussion
	Conclusion and Future Work

	Bibliography

