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Abstract

This thesis concerns distributions on Rn with the property of being positive-definite relative
to a finite subgroup of the orthogonal group O(n). We construct examples of such distributions
as the inverse Abel transform of Dirac combs on the geometries of Euclidean space Rn and the
real- and complex hyperbolic plane H2, H2

C
. In the case of R3 we obtain Guinand’s distribution

as the inverse Abel transform of the Dirac comb on the standard lattice Z3 < R3. The main
theorem of the paper is due to Bopp, Gelfand-Vilenkin and Krein, stating that a distribution
on Rn is positive-definite relative to a finite subgroup W < O(n) if and only if it is the Fourier
transform of a positive W-invariant Radon measure on{

z ∈Cn : z ∈W .z
}
⊂Cn .

We present Bopp’s proof of this theorem using a version of the Plancherel-Godement theorem
for complex commutative ∗-algebras.

Keywords: Poisson summation, positive-definite distributions, Abel transform, Guinand’s
distribution, relatively positive-definite distributions, Krein’s theorem, Krein measures.
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1 Introduction

In this thesis we study positive-definite distributions and construct some examples of these using
the inverse Abel transform in the context of generalized Poisson summation. Poisson summation
formulae have proven to be an important tool in modern number theory and harmonic analysis,
with one main example being the Selberg trace formula, and they appear for instance as a con-
struction in the mathematical theory of diffraction. The trace formula in particular connects the
unitary representation theory of a group and the geometry of lattices in it. One can parametrize
these representations up to unitary equivalence by so called positive-definite functions. We study
a weaker form of positive-definiteness that we refer to as relative positive-definiteness and provide
a classification of distributions with this property, following the groundbreaking work of Krein,
Gelfand-Vilenkin-Shilov and Bopp.

1.1 Motivation

To highlight the main ideas of this paper and their significance, we give a short overview of some
of the main aspects of the mathematical diffraction developed in [3, 4, 5]. In the next subsections
we give a description of how one obtains diffraction measures using the Abel transform of positive-
definite measures.

1.1.1 Autocorrelation Measures

The motivation for this thesis stems from the theory of diffraction on locally compact homogeneous
metric spaces, developed in [4]. In the general setting, when X = G/K is such a homogeneous
space, one considers for a translation bounded measure µo its hull

Ωo =G.µo ⊂Radon+(X ) .

It is a compact space with a jointly continuous action of G on it, so one can look for G-invariant,
and more specifically, ergodic measures ν ∈ ProbG(Ωo) with respect to the action. In many inter-
esting cases the system (Ωo,G,ν) is actually uniquely ergodic. If ν is an ergodic measure for the
system (Ωo,G) then we can associate to it an autocorrelation measure ην on G by

ην( f ∗ f ∗)=
∫
Ωo

|µ( f )|2 dν(µ) .

This measure is by definition positive-definite, see section 3. A simple/trivial example that con-
nects to Poisson summation is to take µo to be the Dirac comb δZn on the standard lattice Zn <Rn.
The hull can be identified with the flat n-torus Tn = Rn/Zn and the unique ergodic measure ν on
it is the Lebesgue measure. Moreover, the autocorrelation measure of ν is by Poisson summation
identified with δZn . If we consider Rn as the homogeneous space (O(n)nRn)/O(n), then we can
define the Abel transform A on radial/left-O(n)-invariant test functions by

A f (t)=
∫
Rn−1

f (t, y)d y .

It defines a ∗-isomorphism from radial test functions on Rn onto even test functions on R, and it
extends to Schwartz functions. Dualizing this map to distributions, we define the autocorrelation
distribution of ν by

ξν =A −1ην .

It is positive-definite with respect to even functions, and in the case of R3 = (O(3)nR3)/O(3) with
the measure δZ3 we observe in section 4 that it is (the derivative of) Guinand’s distribution

σ3(ϕ)=−2ϕ′(0)+
∞∑

m=1

r3(m)p
m

(ϕ(
p

m)−ϕ(−pm)) .
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This distribution has most notably been studied by Guinand in [11] and Meyer in [14], and it
satisfies

σ̂3 =−iσ3 .

We derive this non-trivial Poisson summation formula using the inverse Abel transform. One
interpretation of this formula is that we push the ordinary Poisson summation formula δ̂Zn = δZn

on Rn down to R when we apply the inverse Abel transform.

1.1.2 Relatively Positive-Definite Distributions

While the autocorrelation distribution ξν in the Euclidean case turns out to be positive-definite,
it is at first glance only positive-definite with respect to even test functions. Generally, if W <
GLn(R) is a subgroup then a distribution ξ on Rn is W-positive-definite if it is positive-definite
with respect to all W-invariant test functions. The central result in this thesis is Krein’s theorem,
which realizes relatively positive-definite distributions in terms of measures.

Theorem 1.1. (Bopp-Gelfand-Vilenkin-Krein) Let W < O(n) be a finite subgroup. A distribtion
ξ on Rn is W-positive-definite if and only if it is the Fourier transform of a positive W-invariant
Radon measure µξ, supported on

XW =
{

z ∈Cn : z ∈W .z
}
⊂Cn .

We refer to the measure µξ as the Krein measure of the distribution ξ. We present Bopp’s proof of
this theorem using a slightly restricted version of the classical Plancherel-Godement theorem for
complex ∗-algebras. There is no guarantee for the measure µξ to be uniquely defined, but if we
extend our test function space to the so called Gelfand-Shilov space Sα(Rn) with parameter α≥ 0,
then uniqueness can be proved and the support of µξ is restricted to

Xα,W =
{

z ∈Cn : z ∈W .z and ‖Im(z)‖ ≤α
}
⊂Cn .

While this result is interesting in itself, it turns out to be very useful in the context of diffraction
on Lie groups.

1.1.3 Diffraction on Symmetric Spaces

Another family of homogeneous metric spaces X = G/K that are of interest to us is when G is a
semisimple connected Lie group with finite center and K is a maximal compact subgroup. Then
the space X is a symmetric space, i.e. a Riemannian manifold with isometric geodesic symme-
tries. As before we can construct an autocorrelation measure ην with respect to some ergodic
measure ν on Ωo. The diffraction measure of ν is defined as the spherical Fourier transform η̂ν
of the autocorrelation measure. One main objective in the theory of diffraction is to compute
these diffraction measures, given an ergodic measure ν. We describe here concisely how one can
compute the diffraction measure using the inverse Abel transform on X .

With the Iwasawa decomposition G = ANK and Lie algebra a of A, Anker showed in [1] that the
spherical Fourier transform S defines a ∗-isomorphism

S : C∞
c (G,K)→PW(a∗C)W ,

where PW(a∗
C

) is the Paley-Wiener space of the complexification of a∗ and W < O(a∗) is a finite
subgroup called the Weyl group of G. In this setting, the Abel transform of radial/bi-K-invariant
functions f on G can be defined by

A f (H)= eρ(H)
∫

N
f (eH n)dmN (n) ,
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and this transform is a ∗-isomorphism from bi-K-invariant test functions on G to W-invariant
test functions on a. The autocorrelation distribution on a is defined as ξν = A −1ην. If we denote
by F : L1(a)→ C0(a∗) the Euclidean Fourier transform

Fϕ(λ)=
∫
a
ϕ(H)e−iλ(H) dma(H) ,

then the spherical Fourier transform decomposes as S = FA , which is thought of as a kind of
Fourier slice theorem on X . Using this we can summarize the situation by the diagram of ∗-
isomorphisms,

C∞
c (G,K) PW(a∗

C
)W

C∞
c (a)W

A

S

F
.

Anker moreover showed that one can extend all maps involved to ∗-isomorphisms

C p(G,K) S (a∗α)W

Sα(a)W
A

S

F
,

where C p(G,K), p ∈ (0,2], is the Harish-Chandra Lp-space, α= 2/p−1 and S (a∗α) is the Schwartz
space of holomorphic functions on the convex closure a∗α ⊂ Cn of a∗+ iαW .ρ. Given that the au-
tocorrelation distribution ξν extends to Sα(a) there is a unique Krein measure µν on Xα,W such
that ξν =Fµν, and so

µν =S −1A Fµν =S −1A ξν =S −1ην = η̂ν .

Indeed one can show that if p is small enough then the autocorrelation measure ην extends to
C p(G,K) and consequently that ξν extends to Sα(a) for α= 2/p−1. This however is an important
matter that we leave for future work.

1.2 Organization of the Paper

In section 2 we recall some of the main results from distribution theory on Euclidean space and
clarify notations and conventions. In section 3 we survey some foundational results and properties
of positive-definite functions and distributions. The Abel transform is introduced in section 4,
where we derive the Guinand distribution as the Abel inverse of a Dirac comb. In section 5 we
introduce relatively positive-definite distributions and the Gelfand-Shilov space to then formulate
and prove theorem 1.1 in section 6. Lastly, we define the Abel transform on the hyperbolic plane
in section 7 as a special case of section 1.3 and determine its inverse on Dirac combs.

1.3 Acknowledgements

First and foremost I would like to sincerely thank my supervisor Michael Björklund for introduc-
ing me to the theory that motivated the creation of this thesis, as well as the many encouraging
and supportive discussions we’ve had throughout the project. Secondly, I owe a thank you to all
of my friends whom have joined me on weekdays and weekends, both for work and other plea-
sures in life. Without you I would not be where I am today. Lastly, I would like to my family for
supporting me throughout my studies.

2 Preliminaries and Notation

In this paper, the central objects of study are topological ∗-algebras and their vector space duals,
as well as continuous operators between them. In particular, we will mostly study functions and
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distributions on Euclidean space with a slightly different flavour to that of ordinary distribution
theory on compactly supported smooth functions.

Let V be a vector space over the complex numbers. Recall that V is a topological vector space
if it is endowed with a topology such that the addition and scalar multiplication are continuous
operations. We denote by V∗ the dual vector space of V , consisting of continuous linear functionals
on V . The vector space V∗ can be given a topology, and we specialize to the following family of
spaces:

Definition 2.1. A Hausdorff topological vector space V is a Frechét space if the topology on V is
induced by countably many seminorms (‖·‖k)k∈N and V is complete with respect to them.

It is worth noting that this definition is equivalent to V being a locally convex complete metric
space with respect to a translation invariant metric, but we will think of a Frechét space in the
sense of our definition. The continuous dual V∗ can in this case be identified with functionals
α : V →C satisfying

|α(x)| ≤ Ck ‖x‖k , Ck ≥ 0 ,

for some k ∈N. Note that every Banach space clearly is a Frechét space and in this case the dual
space can be made into a Banach space using the operator norm

‖α‖ = sup
‖x‖≤1

|α(x)| .

If X is a locally compact separable metric space, the main examples being Euclidean and hyper-
bolic space, we can associate to it the vector space C(X ) of continuous complex-valued functions
on X . We will in this paper make use of the following algebraic subspaces of C(X ) :

• The space Cb(X ) of bounded continuous functions, endowed with the topology induced by
the norm ∥∥ϕ∥∥∞ = sup

x∈X
|ϕ(x)| .

• The space C0(X )⊂ Cb(X ) of continuous functions vanishing at infinity.

• The space Cc(X ) of compactly supported continuous functions on X , endowed with the col-
imit topology over all compact subsets K ⊂ X . This topology corresponds to uniform conver-
gence on compacta and is generated by the seminorms∥∥ϕ∥∥

K = sup
x∈K

|ϕ(x)| .

If X in addition has a smooth structure, we can consider the vector space C∞(X ) of smooth
complex-valued functions on X . For multiindices q ∈Nn and vectors z ∈Cn we write

|q| = |q1|+ ...+|qn| , q!= q1! ... qn! , zq = zq1
1 ... zqn

n

and we have an action of linear differential operators on C∞(X ) by

∂qϕ= ∂q1
1 ...∂qn

n ϕ .

In C∞(X ), we have the algebraic subspace C∞
c (X ) of compactly supported smooth functions with

the topology induced by the seminorms∥∥ϕ∥∥
K ,p =max

|q|≤p
sup
x∈K

|∂qϕ(x)|

for all p ∈N and multiindices q ∈Nn, n = dim X . In the special case of X =Rn we also consider the
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Schwartz space S (Rn) of smooth functions that are bounded by the seminorms∥∥ϕ∥∥
p =max

|q|≤p
sup
x∈Rn

(1+‖x‖2)p|∂qϕ(x)| .

All of the spaces above are Frechét spaces with topologies induced by the mentioned seminorms.
Functionals in the duals of these spaces can be realized as the following:

• If K is compact, C(K)∗ is the space of finite Borel measures on K ,

• C0(X )∗ is the space of regular countably additive finite Borel measures on X ,

• Cc(X )∗ is the space of Radon measures on X ,

• C∞
c (X )∗ is the space of distributions on X , and

• S (Rn)∗ is the space of tempered distributions on Rn.

The last two identifications are simply definitions, but the first three are consequences of the Riesz
representation theorem, stating that every functional µ equivalently is a measure on X , acting on
continuous functions ϕ by

µ(ϕ)=
∫

X
ϕdµ .

The space X for us will throughout the paper be a so called homogeneous space.

Definition 2.2. A metric space X is homogeneous if its isometry group G = Isom(X ) acts transi-
tively on X.

By the orbit-stabilizer theorem we can identify X with G/K with K <G being the stabilizer of an
arbitrary point of X . We can thus identify complex-valued functions on X with left-K-invariant
functions on G and the Haar measure mG on G descends to a measure mX on X . For such an
X , all vector spaces mentioned above have the additional structure of topological ∗-algebras with
continuous operations and involutions

(ϕψ∗)(K g)=ϕ(K g)ψ(K g)

on Cb(X ),C0(X ) and

(ϕ∗ψ∗)(K g)=
∫

X
ϕ(Kh−1 g)ψ(Kh)dmX (Kh)

on Cc(X ),C∞
c (X ) and S (Rn). Lastly, we denote the Fourier transform F : L1(Rn)→ C0(Rn) by

ϕ̂(x)=
∫
Rn
ϕ(y)e−i〈x,y〉 d y .

When restricted to the space C∞
c (Rn) then the Paley-Wiener theorem yields a ∗-isomorphism

F : C∞
c (Rn)−→PW(Cn) ,

where PW(Cn) is the space of holomorphic functions h on Cn bounded by the seminorms

‖h‖p,r = sup
z∈Cn

(1+‖z‖)pe−r‖Im(z)‖|h(z)| , p ∈N0 , r > 0.

The Fourier transform moreover extends to an isomorphism of the Schwartz space S (Rn).

Regarding notation, the Haar measure on a locally compact group G will be denoted by mG and
as a special case, the Lebesgue on Rn with respect to a variable x will simply be written dx.
Moreover, if G is a group acting on a vector space V we write VG for the G-invariant vectors of
V . In particular, using the notation from the discussion above, C(X ) = C(G)K and similarly for
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subspaces of C(X ).

3 Positive-definite Distributions

Let G be a locally compact second countable group, for example the isometry group of Euclidean
space or the real/complex hyperbolic plane. One of the main objects of study in this thesis will be
the notion of positive-definite functions and distributions on G, as well as generalizations of such.
In this section we introduce positive-definite functions and demonstrate their significance. First,
we define positive-definiteness in an algebraic sense.

Definition 3.1. A function f : G →C is positive-definite if for all z1, ..., zn ∈C and g1, ..., gn ∈G,

n∑
i=1

n∑
j=1

f (g−1
i g j)zi z j ≥ 0.

One important property of positive-definite functions on G is that they determine the unitary
representation theory of G. To see how, let (π,V ) be a unitary representation of G with cyclic
vector v ∈V . Then the associated matrix coefficient

fπ(g)= 〈v,π(g)v〉

is continuous and positive-definite as

n∑
i=1

n∑
j=1

fπ(g−1
i g j)zi z j =

n∑
i=1

n∑
j=1

〈ziπ(g i)v, z jπ(g j)v〉 =
∥∥∥∥∥ n∑

i=1
ziπ(g)v

∥∥∥∥∥
2

≥ 0.

The question now is when a positive-definite function is the matrix coefficient of a unitary repre-
sentation of G. It turns out that it holds for continuous integrable positive-definite functions, and
hence they parametrize the unitary dual Ĝ of G.

Theorem 3.2. Let f ∈ L1(G). Then the following are equivalent:
(i) f has a positive-definite representative.
(ii)

∫
G(ϕ∗ϕ∗) f dmG ≥ 0 for all ϕ ∈ C∞

c (G).
(iii) There is, up to isomorphism, a unitary representation (π f ,H f ) of G with a cyclic vector v ∈H f
such that f (g)= 〈v,π f (g)v〉 a.e..

Proof. See [7, ch. 3.3] ■

Corollary 3.3. Let f ∈ L1(G) and assume it has a positive-definite representative. Then f has a
continuous representative and it satisfies

| f (g)| ≤ f (1) and f (g−1)= f (g)

for all g ∈G.

Proof. Take the representative f (g)= 〈v,π f (g)v〉 as in theorem 3.2. Then by the Cauchy-Schwarz
inequality,

| f (g)| = |〈v,π f (g)v〉| ≤ ‖v‖2 = f (1)

and by the skew symmetry of the inner product,

f (g−1)= 〈v,π f (g−1)v〉 = 〈v,π f (g)∗v〉 = 〈π f (g)v,v〉 = 〈v,π f (g)v〉 = f (g) .

■
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The connection with the unitary representations of G tells us that the positive-definite functions
determine the Fourier theory on G for L2(G), and when G is abelian this parametrization can be
rephrased in terms of finite positive Borel measures on the unitary dual Ĝ.

Theorem 3.4. (Bochner) Let G be an abelian group. A function f ∈ C(G) is positive-definite if and
only if it is the Fourier transform of a unique positive finite Borel measure µ f on Ĝ, i.e.

f (g)=
∫

Ĝ
χ(g)dµ f (χ) .

One of the objectives of this paper is to demonstrate how one obtains positive-definite functions,
measures and distributions in different settings. In light of theorem 3.2 we define positive-
definiteness for distributions on Rn as follows:

Definition 3.5. A distribution ξ on Rn is said to be positive-definite if for all ϕ ∈ C∞
c (Rn) ,

ξ(ϕ∗ϕ∗)≥ 0.

When considering Rn as an abelian group, we know that Bochner’s theorem holds for positive-
definite functions. Schwartz extended this theorem to positive-definite distributions on Rn.

Theorem 3.6. (Bochner-Schwartz) A distribution ξ ∈ C∞
c (Rn)∗ is positive-definite if and only if it

is the Fourier transform of a positive tempered Radon measure µξ on Rn, i.e. for every ϕ ∈ C∞
c (Rn),

ξ(ϕ)=
∫
Rn
ϕ̂(t)dµξ(t) .

We return to generalizations of this theorem in section 5.

We know that positive-definite functions determine an essential part of the representation theory
of groups, so a natural question is what role the positive-definite measures and distributions play.
While we do not directly answer this question in this paper, some answers can be motivated by
the study of spherical diffraction and we refer to [3, 4, 5] for more information on this.

4 The Abel Transform on Euclidean Space

We have introduced positive-definite distributions and we would like to find a family of examples
of such. The Bochner-Schwartz theorem classifies positive-definite distributions in terms of the
Fourier transform of certain measures, and this motivates the study of other transforms of mea-
sures. We will focus on the Abel transform of radial functions on Rn, n ≥ 2, which can be derived
using the Radon transform. It is moreover of particular interest, since it decomposes the Fourier
transform in a so called slice theorem.

4.1 The Radon and Abel Transform

The classical Radon transform on Rn is a transformation that takes a function and produces it’s
average on a given affine hyperplane. An affine hyperplane H in Rn is an affine subspace of
codimension 1, so there is a pair (x, t), x ∈Rn\{0}, t ∈R such that

H = Hx,t =
{

y ∈Rn : 〈x, y〉 = t
}

and we denote the set of affine hyperplanes in Rn by Haff. Note that the pairs (x, t), (λx,λt) for all
λ ∈R\{0} yield the same hyperplane, so without loss of generality, x ∈ Sn−1 and we have a bijection

Haff = (Sn−1 ×R) /± .

8



From this equality one can endow Haff with a topology using the quotient map Sn−1 ×R−→Haff .
The Radon transform is the map R : Cc(Rn)−→ Cc(Sn−1 ×R)even defined by

R f (x, t)=
∫

Hx,t

f dσx,t =
∫

Hx,0

f (tx+ y)dσx,0(y) ,

where σx,t is the canonical hypersurface measure on Hx,t. If f ∈ Cc(Rn) is radial then we may
without loss of generality take x = e1 and y in the orthogonal space of e1, so that

R f (x, t)=
∫
Rn−1

f (t,y)d y .

In terms of the Euclidean geometry Rn = (O(n)nRn)/O(n) we define the Abel transform as the
Radon transform restricted to radial functions.

Definition 4.1. The Abel transform is the map A : Cc(Rn)O(n) −→ Cc(R)even given by

A f (t)=
∫
Rn−1

f (t, y)dy .

If F ∈ Cc(Rn)even such that f (x)= F(‖x‖) then

A f (t)=
∫
Rn−1

F
(√

t2 +‖y‖2
)
d y . (4.1)

Making the substitutions s = ‖y‖2 and r =
p

t2 + s2 we get

A f (t)= vol(Sn−2)
∫ ∞

0
F

(√
t2 + s2

)
sn−2 ds = vol(Sn−2)

∫ ∞

|t|
F(r) (r2 − t2)

n−3
2 r dr .

and we will therefore write the Abel transform in terms of F as

A F(t)= vol(Sn−2)
∫ ∞

|t|
F(r) (r2 − t2)

n−3
2 r dr .

To emphasize the dependency n, we write An for the Abel transform on Rn. For example, if we
take n = 2 then we obtain the classical Abel transform

A2F(t)= 2
∫ ∞

|t|
F(r) rp
r2 − t2

dr .

We will later on construct distributions using the inverse Abel transform, and this is of interest
because it behaves nicely on the space of radial test functions. In fact, when restricted to com-
pactly supported smooth functions then it defines a ∗-isomorphism of algebras. To see this, we
make use of a property of the Radon transform.

Theorem 4.2. (Fourier Slice Theorem) Let f ∈ Cc(Rn) and denote by F1 : L2(R) −→ L2(R) the 1-
dimensional Fourier transform. Then for every ξ ∈ Sn−1, λ≥ 0

f̂ (λξ)=
∫
R

R f (ξ, t)e−iλt dt ,

or more compactly stated, the diagram

Cc(Rn) C0(Rn)

Cc(Sn−1 ×R)even
R

F

F1
.

commutes.
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Proof. The Fourier transform of f is

f̂ (λξ)=
∫
Rn

f (x)e−i〈λξ,x〉 dx

and if we write x = tξ+ y where t ∈ R and y is in the orthogonal space Hξ,0 of ξ, then 〈λξ, x〉 =
λ(t‖ξ‖2 +〈y,ξ〉)=λt and

f̂ (λξ)=
∫
R

∫
Hξ,0

f (tξ+ y)e−itλ dσξ,0(y)dt =
∫
R

R f (ξ, t)e−iλt dt .

■

The Abel transform was defined as the Radon transform restricted to radial functions, and since
the Fourier transform is an automorphism of Schwartz space we obtain a commutative diagram

S (Rn)O(n) S (R)even

S (R)even
A

F

F1

.

Note that the Fourier transforms are isomorphisms, so the same holds for the Abel transform.

Corollary 4.3. The Abel transform is a ∗-isomorphism A : S (Rn)O(n) →S (R)even.

Now that we have an isomorphism, it is of our interest to determine what the inverse might
be. To find it, we return to the Radon transform. We define the dual Radon transform R∗ :
Cc(Sn−1 ×R)even → Cc(Rn) by

R∗ϕ(x)=
∫

H3x
ϕ=

∫
Sn−1

ϕ(y,〈x, y〉)d y .

When ϕ ∈ Cc(R)even ⊂ Cc(Sn−1×R)even then we can make use of polar coordinates to write the dual
Radon transform of ϕ as an integral over R,

R∗ϕ(x)=
∫

Sn−1
ϕ(〈x, y〉)d y

=
∫

Sn−1
ϕ(‖x‖ y1)d y

= vol(Sn−2)
∫ π

0
ϕ(‖x‖cos(θ))sinn−2(θ)dθ

= vol(Sn−2)
∫ 1

−1
ϕ(‖x‖ t)(1− t2)

n−3
2 dt .

Next, denote the Hilbert transform on R by

Hϕ(t)=
∫
R

ϕ(s)
t− s

ds

in the Cauchy principal value sense. The following result can be found in [12, thm. 3.8.].

Lemma 4.4. Let ϕ ∈ C∞
c (Sn−1×R)even. The Radon transform restricts to a ∗-isomorphism C∞

c (Rn)→
C∞

c (Sn−1 ×R)even and its inverse is given by

R−1ϕ=
{

cnR∗Hϕ(n−1) , if n is even
cnR∗ϕ(n−1) , if n is odd

, cn = Γ(1
2 )

(2
p
π)n−1Γ( n

2 )
.

It moreover extends to a ∗-isomorphism of the corresponding Schwartz spaces.
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Let us compute the inverse of A for ϕ ∈ C∞
c (R) when n is odd. Write n = 2d+1, d ≥ 1. Then we

have (1− t2)(n−3)/2 =∑d−1
k=0

(d−1
k

)
(−1)k t2k, so

∫ 1

−1
ϕ(n−1)(‖x‖ t)(1− t2)

n−3
2 dt =

d−1∑
k=0

(
d−1

k

)
(−1)k

∫ 1

−1
ϕ(2d)(‖x‖ t)t2kdt .

Using induction, one can show that∫ 1

−1
ϕ(l)(‖x‖ t)tmdt =

m−1∑
j=0

(−1) j m!
(m− j)!

ϕ(l−( j+1))(‖x‖)− (−1) jϕ(l−( j+1))(−‖x‖)
‖x‖ j+1

whenever l > m, from which it follows that

A −1
2d+1ϕ(x)= c2d+1vol(S2d−1)

d−1∑
k=0

2k−1∑
j=0

(−1)k+ j

(
d−1

k

)
(2k)!

(2k− j)!
1

‖x‖ j+1
d2d−( j+1)(ϕ+ ϕ̌)

dt2d−( j+1) (‖x‖).

This means in particular that A −1 is a local operator in odd dimensions. To compute the inverse in
even dimensions, we need to know more about the Hilbert transform. It can easily be checked that
it is skew-symmetric on L2(R), i.e. 〈Hϕ,ψ〉 = −〈ϕ,Hψ〉, so to express A −1 in terms of elementary
operators, we need to compute the Hilbert transform of t 7→ (1− t2)(n−3)/2χ[−1,1](t). Write n = 2d,
d ≥ 1, and

(1− t2)
n−3

2 =
d−1∑
k=0

(
d−1

k

)
(−1)k t2k

p
1− t2

.

The following facts can be found in [2, p. 243-247]: If f : R→ R lies in the domain of the Hilbert
transform then

H(t 7→ t f (t))= tH f (t)+ 1
π

∫
R

f (s)ds

and moreover,

H
(
t 7→ χ[−1,1](t)p

1− t2

)
= 1p

t2 −1
(χ(−∞,−1](t)−χ[1,+∞)(t)) .

Thus it follows by iteration that

H
(
t 7→ t2k

p
1− t2

χ[−1,1](t)
)
= t2k

p
t2 −1

(χ(−∞,−1](t)−χ[1,+∞)(t))+Ck

where

Ck =
2k−1∑
j=0

1
π

∫ 1

−1

s j
p

1− s2
ds = 1+

√
2
π

k−1∑
`=1

(2`−1)!
22`−1`!(`−1)!

<+∞ .

Finally, we have that

H(t 7→ (1− t2)(n−3)/2χ[−1,1](t))= (−1)d−1(t2 −1)(n−3)/2(χ(−∞,−1](t)−χ[1,+∞)(t))

and the Abel inverse is

A −1
2d ϕ(x)= (−1)d c2dvol(S2d−2)

∫
R\[−1,1]

ϕ(2d−1)(‖x‖ t)(t2 −1)
n−3

2 sgn(t)dt .

As the Hilbert transform is a non-local operator, the same will hold for the Abel inverse in even
dimensions. We will next apply the inverse Abel transform to measures on Rn and observe that
they yield interesting distributions on R, even in the simplest cases.

4.2 Guinand’s Distribution

We saw in the previous subsection that the Abel transform defined a ∗-isomorphism A : S (Rn)O(n) →
S (R)even, and so it dualizes to an isomorphism A : S (R)∗ →S (Rn)∗ when restricted to even dis-
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tributions. It is defined on distributions by the dual construction, i.e.

A ξ( f )= ξ(A f )

for ξ ∈S (R)∗, f ∈S (Rn). The inverse A −1 : S (Rn)∗ →S (R)∗ is defined in the same manner. Now,
let us give an example using the inverse Abel transform. Consider the standard lattice Zn < Rn

and the associated Dirac comb δZn . For any f ∈S (Rn), it is given by

δZn ( f )= ∑
k∈Zn

f (k) .

Understanding the Fourier transform of this measure is a foundational result of Fourier analysis.
In this subsection, we reparametrize the Fourier transform as f̂ (x)= ∫

Rn f (y)e−2πi〈x,y〉 d y for clarity
of the results.

Theorem 4.5. (Poisson Summation Formula) Let f ∈S (Rn). Then∑
k∈Zn

f (k)= ∑
l∈Zn

f̂ (l) .

In terms of the Dirac comb, this formula can equivalently be written as δ̂Zn = δZn . Moreover, if
f ∈S (Rn) is radial with corresponding function F ∈S (R)even, then

∑
k∈Zn

f (k)=
∞∑

m=0
rn(m)F(

p
m) ,

where rn(m) = |{k ∈ Zn : ‖k‖2 = m}| counts the number of lattice points on the sphere of squared
radius m. If we let ϕ ∈ S (R)even and f = A −1ϕ ∈ S (Rn)O(n), then the Fourier slice theorem says
that f̂ (x)= ϕ̂(‖x‖) and by the Poisson summation formula

∑
k∈Zn

A −1ϕ(k)= ∑
k∈Zn

f (k)= ∑
l∈Zn

f̂ (l)= ∑
l∈Zn

ϕ̂(‖l‖)=
∞∑

m=0
rn(m)ϕ̂(

p
m) .

In the language of distributions, the statement is that the measure

µn(ϕ)=
∞∑

m=0
rn(m)(ϕ(

p
m)+ϕ(−pm)) (4.2)

is the Fourier transform of the distribution ξn =A −1δZn on R. With the formulas for the inverse
Abel transform from section 3.1 we can write out the formula ξn = µ̂n in terms of test functions.
This is of particular interest when n is odd, since the locality of A −1 then preserves discrete
support of distributions. In the simplest case, when n = 3, we have that c3 = (2π)−1 = vol(S1)−1

and A −1ϕ(x) = (ϕ′(‖x‖)−ϕ′(−‖x‖))/‖x‖. As x → 0 then A −1ϕ(0) = −2ϕ′′(0) and so ξ3 = µ̂3 can be
written as

−2ϕ′′(0)+
∞∑

m=1

r3(m)p
m

(ϕ′(
p

m)−ϕ′(−pm))=
∞∑

m=0
r3(m)(ϕ̂(

p
m)+ ϕ̂(−pm)) .

Guinand introduced in [11] the distribution

σ3(ϕ)=−2ϕ′(0)+
∞∑

m=1

r3(m)p
m

(ϕ(
p

m)−ϕ(−pm))

and it is clear that ξ3 =−σ′
3. If we define ψ(t)= ϕ̂(t)/(it), then ψ(0)=−2ϕ̂′(0)/i and

σ3(ϕ)=µ3(ψ)=−2
i
ϕ̂′(0)+

∞∑
m=1

r3(m)
( ϕ̂(

p
m)

i
p

m
− ϕ̂(−pm)

i
p

m

)
= 1

i
σ3(ϕ̂)=−iσ3(ϕ̂) ,
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so we have a non-trivial summation formula that is compactly written as

σ̂3 =−iσ3 .

For the more general formula ξn = µ̂n for n = 2d+1 odd, we can write it out as

c2d+1vol(S2d−1)
∞∑

m=0
r2d+1(m)

d−1∑
k=0

2k−1∑
j=0

(−1)k+ j

(
d−1

k

)
(2k)!

(2k− j)!
1

m( j+1)/2
d2d−( j+1)(ϕ+ ϕ̌)

dt2d−( j+1) (
p

m)

=
∞∑

m=0
r2d+1(m)(ϕ̂(

p
m)+ ϕ̂(−pm)) .

In the case where n = 2d is even, we have

(−1)d c2dvol(S2d−2)
∞∑

m=0
r2d(m)

∫
R\[−1,1]

ϕ(2d−1)(
p

mt)(t2−1)
n−3

2 sgn(t)dt =
∞∑

m=0
r2d(m)(ϕ̂(

p
m)+ϕ̂(−pm)) ,

but note that since A −1 is non-local the distribution ξ2d defined by the left hand side does not
necessarily have discrete support. We can moreover estimate the number of lattice points in a
ball of radius m by 2nmn, so

|µn(ϕ)| ≤ 2n
∞∑

m=0
mn(|ϕ(

p
m)|− |ϕ(−pm)|)≤ 2n+1 ∥∥ϕ∥∥

p

∞∑
m=0

mn

(1+m)p <+∞

whenever p > n+ 1. Thus µn is a tempered measure and ξn is a positive-definite distribution
by the Bochner-Schwartz theorem. Note that we only knew that ξn was positive-definite with
respect to even test functions. The rest of this paper will be dedicated to distributions that are
positive-definite with respect to a strict subspace of test functions.

5 Relatively Positive-Definite Distributions

5.1 Krein’s Theorem

We saw that the Abel transform on Rn defines a linear ∗-isomorphism

A : S (Rn)O(n) −→S (R)even

and so radial positive-definite measures η on Rn induces distributions ξ=A −1η that are positive-
definite with respect to even functions on R. In the case of the Dirac comb η = δZn this turned
out to be a positive-definite distribution, but the notion of purely evenly positive-definite function-
s/distributions exists. Consider the basic example f (x)= cosh(tx) on R, t ∈R. It satisfies∫

R
(ϕ∗ϕ∗)(x) f (x)dx = àϕ∗ϕ∗(it)= ϕ̂(it)ϕ̂(−it)= |ϕ̂(it)|2 ≥ 0

for all even ϕ ∈ C∞
c (R), so f is evenly positive-definite. However, f (x) ≥ f (0) = 1 for all x ∈ R, so

f cannot possibly be positive-definite by corollary 3.3. This notion of relative positive-definiteness
can on Euclidean space be generalized as the following:

Definition 5.1. Let W < GLn(R). A distribution ξ on Rn is positive-definite relative to W, or in
short W-positive-definite, if for any W-invariant ϕ ∈ C∞

c (Rn),

ξ(ϕ∗ϕ∗)≥ 0.

This definition captures a wide range of distributions, including the positive-definite distributions
when W = {0}. First, let us consider the simplest non-trivial example, when n = 1 and W = O(1).
The first classification of relatively positive-definite functions was due to M.G. Krein.
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Theorem 5.2. (Krein) A continuous function f on R is evenly positive-definite if and only if there
is a positive finite Borel measure µ+ on R and a positive Radon measure µ− on R such that

f (x)=
∫
R

cos(tx)dµ+(t)+
∫
R

cosh(tx)dµ−(t) .

Note that the pair of measures (µ+,µ−) can be interpreted as a measure µ f supported on the cross
R∪ iR⊂C, so that

f (x)=
∫
R∪iR

cos(zx)dµ f (z) ,

i.e. f is the complex Fourier transform of µ f . We will call the measure µ f = (µ−,µ+) and its
generalizations the Krein measure of f . A simple example of a Krein measure would be that of
f (x)= cosh(tx) from earlier, in which case we can take µ f = δit. A non-trivial example of this is for
example f (x) = ex2

. It is not a positive-definite function as it does not attain its maximum at 0.
However it is evenly positive-definite by Krein’s theorem, for if we take µ+(t)= 0, µ−(t)= e−t2

mR(t)
and µ the corresponding measure on R∪ iR then∫

C
cos(zx)dµ(z)=

∫
R

etx dµ−(t)= e−t2
∣∣∣
t=ix

= f (x) .

Also note that ϕ defines a non-tempered distribution, so we have given an example of a evenly
positive-definite function on Rn that is not positive-definite. Gelfand and Vilenkin extended the
theorem of Krein to higher dimensions and distributions on such spaces. Consider the reflection
group O(1)n < O(n) acting on Rn. We say that a distribution is evenly positive-definite if it is
O(1)n-positive-definite.

Theorem 5.3. (Gelfand-Vilenkin-Krein) A distribution ξ on Rn is evenly positive-definite if and
only if it is the Fourier transform of a positive Radon measure µξ supported on (R∪ iR)n ⊂Cn. That
is,

ξ(ϕ)=
∫

(R∪iR)n
ϕ̂(z)dµξ(z)

for all ϕ ∈ C∞
c (Rn).

Note that there has been no mention of the uniqueness of the measure µξ for a given distribution
ξ. We next give an example of non-uniqueness, which also can be found in [10, ch. 6.4.].

5.2 An Example of Non-uniqueness

An even measure on C defines a functional on PW(C)even, so we will construct two different mea-
sures µ and ν on Ω+ =R+∪ iR+ ⊂C such that∫

C
h dµ=

∫
C

h dν

for every even h ∈PW(C). To do this, we construct a non-trivial function f on the first quadrant of
C satisfying ∫ ∞

0
h(x) f (x)dx = i

∫ ∞

0
h(i y) f (i y)d y

for every h. Then if we write f = u+ iv for real valued functions u,v on C we get that the equality
above is equivalent to∫ ∞

0
h(x)u(x)dx+

∫ ∞

0
h(i y)v(i y)dx = i

(
−

∫ ∞

0
h(x)v(x)dx+

∫ ∞

0
h(i y)u(i y)d y

)
.
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If h is real-valued or purely imaginary-valued, then both sides of this equation must be zero, and
by linearity we must have that both sides are zero for any h ∈PW(C)even. Thus∫ ∞

0
h(x)u(x)dx+

∫ ∞

0
h(i y)v(i y)dx = 0

and if we decompose u,v into non-negative functions u = u+ − u−,v = v+ − v− then this can be
written as∫ ∞

0
h(x)u+(x)dx+

∫ ∞

0
h(i y)v−(i y)d y=

∫ ∞

0
h(x)u−(x)dx+

∫ ∞

0
h(i y)v+(i y)d y .

If we define measures

dµ(x+ i y)= u+(x)dx+v−(i y)d y and dν(x+ i y)= u−(x)dx+v+(i y)d y

on Ω+ then µ 6= ν as u+ 6= u− and v+ 6= v−, and it is clear that∫
C

h(z)dµ(z)=
∫
C

h(z)dν(z)

for all h ∈PW(C)even. Now for the construction of f .

We construct a holomorphic function f on the interior of the positive quadrant of C, which

1. extends to a continuous function on Ω+\{0}, and

2. satisfies
lim

R→+∞

∫
γ+R

ety| f (x+ i y)|dm+
R(x, y)= 0

for all t > 0, where m+
R for each R > 0 is the arcwise measure on γ+R , induced from the

Euclidean metric on Cn.

Here γ+R denotes the quarter circle of radius R, oriented counterclockwise. More generally, for
0 < r < R we denote by γ−R the same curve with clockwise orientation and γ±R,r the boundary of
the quarter annulus with outer and inner radii R and r, oriented counterclockwise/clockwise. By
Cauchy’s theorem,

0=
∫
γ+R,r

h(z) f (z)dz =
∫ R

r
h(x) f (x)dx+

∫
γ+R

h(z) f (z)dz−
∫ R

r
h(i y) f (i y) idy+

∫
γ−r

h(z) f (z)dz .

Since h ∈PW(C), there are constants C, t ≥ 0 dependent on h such that |h(z)| ≤ Cet|Im(z)|, and so∣∣∣∫
γ+R

h(z) f (z)dz
∣∣∣≤ C

∫
γ+R

ety| f (x+ i y)|dm+
R(x, y)−→ 0

as R →+∞. Also, as f extends to a continuous and in particular bounded function near 0 then∣∣∣∫
γ−r

h(z) f (z)dz
∣∣∣≤ sup

0<|z|≤1
|h(z) f (z)|`(γ−r )−→ 0

as r → 0, where `(γ) denotes the length of a curve γ⊂C. This means that∫ ∞

0
h(x) f (x)dx = i

∫ ∞

0
h(i y) f (i y)dy .

Now, let a ∈ (1,2), b = aπ/4 and consider the function

fa,b(z)= e−zae−ib = e−|z|
aei(aarg(z)−b)

.
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This function is by the choice of a holomorphic on the interior of the first quadrant and it extends
to a continuous function on the first quadrant. We have the bound

|e−zae−ib | ≤ e−|z|
a cos(a(arg(z)−π/4))

for all z in the first quadrant, and since 0< arg(z)<π/2, ca = infz cos(a(arg(z)−π/4))= cos(aπ/4)> 0
for our choice of a. Thus∫

γ+R
ety| fa,b(x+ i y)|dm+

R(x, y)≤ etR−caRa
`(γ−R)= eR(t−caRa−1)πR

2
−→ 0

as R →+∞. Taking f = fa,b we have provided an example as required.

To obtain uniqueness of the Krein measure, we will need asymptotic bounds on the distributions
in question. We get such bounds by allowing for a broader family of test functions, and we will
extend them to a space studied by Gelfand and Shilov in [9].

5.3 The Gelfand-Shilov Space Sα(Rn)

To obtain uniqueness of Krein measures we need to put some restrictions on the asymptotics of
the distribution ξ. Gelfand and Shilov introduced the Frechét space Sα(Rn), α ≥ 0, of smooth
functions on Rn bounded by the seminorms∥∥ϕ∥∥

α,p =max
|q|≤p

sup
x∈Rn

Mp(x)|∂qϕ(x)| , Mp(x)= (1+‖x‖2)peα‖x‖ .

The topology on this space is induced by convergence in these seminorms and note that S0(Rn)=
S (Rn) is the ordinary Schwartz space on Rn. Moreover, it is easy to see that there is a canonical
injection Sα(Rn)→Sβ(Rn) whenever α≥β and so all such function spaces embed into the space of
Schwartz functions. It is also clear that Sα(Rn) contains all compactly supported smooth functions
on Rn.

Lemma 5.4. The canonical map
C∞

c (Rn)−→Sα(Rn)

is a continuous injection, whose image is a dense subspace of Sα(Rn).

Proof. If ϕ ∈ C∞
c (Rn) then for any compact K ⊂Rn containing the support of ϕ,∥∥ϕ∥∥

α,p =max
|q|≤p

sup
x∈Rn

Mp(x)|∂qϕ(x)| ≤ sup
x∈K

Mp(x)
∑

|q|≤p
sup
x∈K

|∂qϕ(x)| < +∞ ,

so ϕ ∈ Sα(Rn). Continuity of the map also follows from this bound and if ϕ = 0 in Sα(Rn) then∥∥ϕ∥∥∞ ≤ ∥∥ϕ∥∥
α,0 = 0, meaning that ϕ= 0 in C∞

c (Rn) and proving injectivity. It remains to show that
we can approximate ϕ ∈Sα(Rn) by compactly supported smooth functions.

Let χ ∈ C∞
c (Rn) be a bump function taking the value 1 on the unit ball in Rn, and consider for each

m ∈N the function χm(x) = χ(x/m). If ϕ ∈Sα(Rn) then χmϕ ∈ C∞
c (Rn) and we claim that χmϕ→ϕ

in Sα(Rn). To see this, note that for every multiindex q,

∂qχmϕ= ∑
r≤q

m|r|−|q|
(
|q|
|r|

)
∂q−rχm∂

rϕ= ∑
r<q

m|r|−|q|
(
|q|
|r|

)
∂q−rχm∂

rϕ+χm∂
qϕ ,
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so ∥∥χmϕ−ϕ∥∥
α,p =max

|q|≤p
sup
x∈Rn

Mp(x)|∂q(χmϕ−ϕ)(x)|

=max
|q|≤p

sup
x∈Rn

Mp(x)
∣∣∣ ∑

r≤q
m|r|−|q|

(
|q|
|r|

)
∂q−rχm(x)∂rϕ(x)−∂qϕ(x)

∣∣∣
≤max

|q|≤p
sup
x∈Rn

Mp(x)|χm(x)∂qϕ(x)−∂qϕ(x)|

+max
|q|≤p

∑
r<q

m|r|−|q|
(
|q|
|r|

)
sup
x∈Rn

Mp(x)|∂q−rχm(x)∂rϕ(x)|

≤max
|q|≤p

sup
x∈Rn

Mp(x)|(1−χm(x))||∂qϕ(x)|

+ max
|r|≤|q|≤p

|q|!#{r < q}
m

∥∥∂q−rχm
∥∥∞ sup

x∈Rn
Mp(x)|∂rϕ(x)|

=: max
|q|≤p

Aq(m)+ max
|r|≤|q|≤p

Bq,r(m) .

It suffices to show Aq(m),Bq,r(m) → 0 as m →+∞. Note that 1−χ(x/m) ≤ 1−χB(0,m)(x) ≤ 1
m (1+

‖x‖2), so Mp(x)(1−χm(x))≤ m−1Mp+1(x) and

Aq(m)≤ 1
m

sup
x∈Rn

Mp+1(x)|∂qϕ(x)| ≤
∥∥ϕ∥∥

α,p+1

m
−→ 0

as m →+∞. Moreover, |∂q−rχm(x)| = m−(|q|−|r|)|∂q−rχ(x/m)| ≤ m−(|q|−|r|) ∥∥∂q−rχ
∥∥∞, so

Bq,r(m)≤ |q|!#{r < q}
m1+|q|−|r|

∥∥∂q−rχ
∥∥∞∥∥ϕ∥∥

α,p −→ 0

as m →+∞. ■

The space Sα(Rn) turns out to have a natural structure of a ∗-algebra when endowed with the
operation of convolution

(ϕ∗ψ)(x)=
∫
Rn
ϕ(x− y)ψ(y)d y

and the involution
ϕ∗(x)=ϕ(−x) .

By making the substitution x 7→ −x we see that
∥∥ϕ∗∥∥

α,p = ∥∥ϕ∥∥
α,p as Mp is even in x. This means

that the involution is continuous and we would like to say the same about the convolution.

Proposition 5.5. Let ϕ,ψ ∈Sα(Rn). Then the inequality∥∥ϕ∗ψ∥∥
α,p ≤ 2p ∥∥ϕ∥∥

α,p

∥∥ψ∥∥
α,p

holds. In particular, the convolution on Sα(Rn) is a continuous operation.

Proof. The parallellogram law

‖x+ y‖2 +‖x− y‖2 = 2(‖x‖2 +‖y‖2)

implies that

1+‖x+ y‖2 ≤ 1+2(‖x‖2 +‖y‖2)≤ 2(1+‖x‖2 +‖y‖2)≤ 2(1+‖x‖2)(1+‖y‖2) ,

which with the triangle inequality yield the estimate

Mp(x+ y)= (1+‖x+ y‖2)peα‖x+y‖ ≤ 2p(1+‖x‖2)p(1+‖y‖2)peα(‖x‖+‖y‖) = 2pMp(x)Mp(y)
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From this we get that for all multiindices q such that |q| ≤ p

Mp(x)|∂q(ϕ∗ψ∗)(x)| ≤ Mp(x) sup
y∈Rn

|∂qϕ(x− y)||ψ(y)|

≤ 2p sup
y∈Rn

Mp(x− y)|∂qϕ(x− y)|Mp(y)|ψ(y)|

≤ 2p max
|r|≤p

sup
y∈Rn

Mp(x− y)|∂rϕ(x− y)|max
|s|≤p

sup
y∈Rn

Mp(y)|∂sψ(y)|

= 2p ∥∥ϕ∥∥
α,p

∥∥ψ∥∥
α,p .

■

We are interested in studying distributions as continuous functionals on Sα(Rn), and it will be
useful to convert such distributions into smooth functions by convolution with a test function. If
ξ ∈Sα(Rn)∗ and ϕ ∈Sα(Rn) then we define their convolution to be the function

(ξ∗ϕ)(x)= ξ(τxϕ) ,

where τxϕ(y)=ϕ(x− y).

Lemma 5.6. Let ξ ∈Sα(Rn)∗ and ϕ ∈Sα(Rn). Then
(i) ξ∗ϕ ∈ C(Rn),
(ii) ξ∗ϕ ∈Sα(Rn)∗, and
(iii) ξ(ϕ∗ψ)= ∫

Rn ψ(x)(ξ∗ ϕ̌)(x)dx .

Proof. (i) Note that for every integer p ≥ 0 there is a constant Cξ,p such that

|(ξ∗ϕ)(x)| ≤ Cξ,p
∥∥τxϕ

∥∥
α,p

= Cξ,p max
|q|≤p

sup
y∈Rn

Mp(y)|∂qϕ(x− y)|

≤ Cξ,p2pMp(x) sup
y∈Rn

Mp(y− x)|∂qϕ(x− y)|

= Cξ,p2pMp(x)
∥∥ϕ∥∥

α,p .

(5.1)

This means in particular that

|(ξ∗ϕ)(x+h)− (ξ∗ϕ)(x)| = |ξ(τx(τhϕ−ϕ))| ≤ Cξ,0eα‖x‖∥∥τhϕ−ϕ∥∥
α,0 .

The multivariate mean value theorem tells us that

|ϕ(x+h)−ϕ(x)| ≤ ‖h‖∥∥∇ϕ(x+θh)
∥∥≤ ‖h‖ max

1≤i≤n
|∂iϕ(x+θh)|

where θh ∈ B(0,‖h‖), so by the triangle inequality,∥∥τhϕ−ϕ∥∥
α,0 = sup

y∈Rn
|ϕ(y+h)−ϕ(y)|eα‖y‖

≤ sup
y∈Rn

‖h‖ max
1≤i≤n

|∂iϕ(y+θh)|eα‖y+θh‖eα‖θh‖

≤ ‖h‖∥∥ϕ∥∥
α,1 eα‖θh‖ −→ 0

as h → 0.

18



(ii) As ξ∗ϕ is continuous, it is locally integrable and by (i) we have that∣∣∣∫
Rn
ψ(x)(ξ∗ϕ)(x)dx

∣∣∣≤ Cξ,p2p ∥∥ϕ∥∥
α,p

∫
Rn
ψ(x)Mp(x)dx

≤ Cξ,p2p ∥∥ϕ∥∥
α,p

∥∥ψ∥∥
α,p+k

∫
Rn

Mp(x)
Mp+k

dx .

The integral ∫
Rn

Mp(x)
Mp+k

dx =
∫
Rn

dx
(1+‖x‖2)k

= vol(Sn−1)
∫ ∞

0

rn−1 dr
(1+ r2)k

converges if and only if 2k ≥ n, and if we pick such a k then we are done.

(iii) Restricting ξ to a distribution on test functions in C∞
c (Rn), standard distribution theory tells

us that ξ(ϕ∗ψ) = 〈ξ∗ ϕ̌,ψ〉 for all ϕ,ψ ∈ C∞
c (Rn). Moreover, since C∞

c (Rn) canonically injects
onto a dense subspace of Sα(Rn) by lemma 5.4 then we can for each ψ ∈ Sα(Rn) pick a sequence
ψm ∈ C∞

c (Rn) such that ψm → ψ in Sα(Rn). Since ξ and ξ∗ϕ define continuous functionals on
Sα(Rn) then

ξ(ϕ∗ψm)−→ ξ(ϕ∗ψ) and 〈ξ∗ ϕ̌,ψm〉 −→ 〈ξ∗ ϕ̌,ψ〉
as m →+∞ for all ϕ ∈ C∞

c (Rn). By uniqueness of the limit, ξ(ϕ∗ψ) = 〈ξ∗ ϕ̌,ψ〉 for all ϕ ∈ C∞
c (Rn)

and ψ ∈ Sα(Rn). Similarly, if we take ϕ ∈ Sα(Rn) and a sequence ϕm ∈ C∞
c (Rn) such that ϕm → ϕ

in Sα(Rn), then ξ(ϕm ∗ψ) → ξ(ϕ∗ψ) for all ψ ∈ Sα(Rn), so it remains to show that 〈ξ∗ ϕ̌m,ψ〉 →
〈ξ∗ ϕ̌,ψ〉. The estimate made in (ii) tells us that for 2k ≥ n,∣∣∣∫

Rn
ψ(x)(ξ∗ (ϕ̌m − ϕ̌))(x)dx

∣∣∣≤ C
∥∥ϕm −ϕ∥∥

α,p −→ 0,

where

C = Cξ,p2p ∥∥ψ∥∥
α,p+k vol(Sn−1)

∫ ∞

0

rn−1 dr
(1+ r2)k .

Finally we have that

ξ(ϕ∗ψ)= 〈ξ∗ ϕ̌,ψ〉 =
∫
Rn
ψ(x)(ξ∗ ϕ̌)(x)dx

for all ϕ,ψ ∈Sα(Rn).

■

Corollary 5.7. If ξ ∈Sα(Rn)∗ and ϕ ∈Sα(Rn) then ξ∗ϕ ∈ C∞(Rn) and

∂q(ξ∗ϕ)= ξ∗∂qϕ= ∂qξ∗ϕ

for all multiindices q.

Proof. Let ϕ,ψ ∈Sα(Rn). By properties (ii) and (iii) of lemma 5.6 we have that

〈∂q(ξ∗ϕ),ψ〉 = (−1)|q|〈ξ∗ϕ,∂qψ〉 = (−1)|q|〈ξ, ϕ̌∗∂qψ〉 = (−1)|q|〈ξ,∂qϕ̌∗ψ〉 .

First note that
(−1)|q|〈ξ,∂qϕ̌∗ψ〉 = 〈ξ, (∂qϕ)̌∗ψ〉 = 〈ξ∗∂qϕ,ψ〉 ,

and secondly,

(−1)|q|〈ξ,∂qϕ̌∗ψ〉 = (−1)|q|〈ξ,∂q(ϕ̌∗ψ)〉 = 〈∂qξ, ϕ̌∗ψ〉 = 〈∂qξ∗ϕ,ψ〉 .

As Sα(Rn) separates points in Rn then ∂q(ξ∗ϕ)= ξ∗∂qϕ= ∂qξ∗ϕ as functions. ■
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In converse to the above lemma, we would like to know when a function defines a continuous
functional on Sα(Rn). Using the seminorms ‖·‖α,p, we can find a criterion for just that.

Lemma 5.8. Let f ∈ L1
loc(R

n). Then f ∈Sα(Rn)∗ if and only if∫
Rn

| f (x)|
(1+‖x‖2)peα‖x‖ dx <+∞ .

for every p ∈N0.

Proof. If
∫
Rn | f (x)|Mp(x)−1 dx <+∞ for some p ∈N then for every ϕ in the dense subspace C∞

c (Rn)⊂
Sα(Rn) we have ∣∣∣∫

Rn
ϕ(x) f (x)dx

∣∣∣≤ ∫
Rn

|ϕ(x)|| f (x)|dx ≤ ∥∥ϕ∥∥
α,p

∫
Rn

| f (x)|
Mp(x)

dx <+∞ .

This means precisely that f ∈Sα(Rn)∗.

Conversely, suppose f ∈ Sα(Rn)∗. Then by continuity of the functional associated to f there is
for every p ∈ N0 a constant Cp ≥ 0 such that |〈 f ,ϕ〉| ≤ Cp

∥∥ϕ∥∥
α,p for every ϕ ∈ C∞

c (Rn). Now let
χ ∈ C∞

c (Rn) be a bump function that is 1 on the unit ball and consider the functions

ϕm(x)= χm(x)
Mp(x)

,

where χm(x)= χ(x/m). As |∂qχm(x)| ≤ m−|q|∥∥∂qχ
∥∥∞ for all multiindices q then

∥∥ϕm
∥∥
α,p ≤max|q|≤p

∥∥∂qχ
∥∥∞

and so ϕm(x)−→ Mp(x)−1 uniformly in the seminorm ‖·‖α,p. Thus∫
Rn

| f (x)|
Mp(x)

dx ≤ Cp max
|q|≤p

∥∥∂qχ
∥∥∞ <+∞ .

■

We now know a bit about the structure of Sα(Rn) in terms of its operations and functionals on
the space. To state and prove a Krein theorem for this space we will need to know something
about the Fourier transform of functions in Sα(Rn). More specifically, we will need to know the
asymptotic behaviour of such functions. Define the closed tube

Tα =
{

z ∈Cn : ‖Im(z)‖ ≤α
}

and consider the multiplicative ∗-algebra S (Tα) of holomorphic functions h on the interior of Tα

whose derivatives all extend continuously to Tα, and is bounded by the seminorms

‖h‖α,p =max
|q|≤p

sup
z∈Tα

Np(z)|∂qh(z)| , Np(z)= (1+‖z‖2)p .

Other notations for this space are S α(Rn) in [9] and Zα(Cn) in [10]. The purpose of this space is
that it characterizes the Fourier transform of functions in Sα(Rn).

Lemma 5.9. The Fourier transform F : C∞
c (Rn) → PW(Cn) extends to a ∗-isomorphism Sα(Rn) →

S (Tα).

Proof. If ϕ ∈Sα(Rn) then ϕ(x)e−i〈x,z〉 is holomorphic in z ∈Cn for all x ∈Rn. Moreover,

|ϕ(x)e−i〈x,z〉| ≤ |ϕ(x)|e‖Im(z)‖‖x‖ ≤ |ϕ(x)|eα‖x‖
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and since the RHS is integrable then for all triangles ∆⊂C,∫
∆
ϕ̂(z)dz j =

∫
R
ϕ(x)

∫
∆

e−i〈x,z〉 dz jdx = 0

for all j. By Morera’s theorem, ϕ̂ is holomorphic in all z j, hence in z. Moreover, for large k ∈N,

sup
z∈Tα

|ϕ̂(z)| ≤
∫
Rn

|ϕ(x)|e〈Im(z),x〉 dx ≤
∫
Rn

|ϕ(x)|eα‖x‖ dx ≤ ∥∥ϕ∥∥
α,k

∫
Rn

dx
(1+‖x‖2)k

.

Using that linear differential operators with constant coefficients transform to multiplication op-
erators by a polynomial, then

∥∥ϕ̂∥∥α,p ≤ ∥∥(1+∆)pϕ
∥∥
α,k

∫
Rn

dx
(1+‖x‖2)k

≤ ∥∥ϕ∥∥
α,2p+k

∫
Rn

dx
(1+‖x‖2)k

<+∞ ,

where ∆ this time denotes the Laplace operator. This means that we have a ∗-homomorphism
F : Sα(Rn) → S (Tα), and to show that it is an isomorphism it suffices to show that the inverse
F−1 is well-defined and continuous. First observe that integration around the boundary of a
rectangle in Cn is zero by Cauchy’s theorem, so in particular for h ∈S (Tα) and θ ∈ [0,α],

0=
∫ R

−R
h(x)dx j +

∫ θ

0
h(Re j + i y)d yj −

∫ R

−R
h(x+ iθe j)dx j −

∫ θ

0
h(−Re j + i y)d yj

for all basis vectors e j ∈ Rn and x, y ∈ Rn. The restriction of h to Rn is a Schwartz function, so
ϕ=F−1h is a well-defined Schwartz function and if we let R →+∞ then∫

R
h(y)eix j yj dyj =

∫
Rn

h(y+ iθe j)eix j(yj+iθ) d yj

= e−x jθ

∫
R

h(y+ iθe j)eix j yj d yj .

This means that for every θ ∈ B(0,α),

ϕ(x)= 1
(2π)n

∫
Rn

h(y)e−i〈x,y〉 d y

= 1
(2π)n

∫
R

...
∫
R

h(y)e−ix1,y1 d y1 ...e−ixn,yn d yn

= 1
(2π)n

∫
R

...
∫
R

h(y+ iθ)e−ix1(y1+iθ1) d y1 ...e−ixn(yn+iθn) d yn

= e〈x,θ〉

(2π)n

∫
Rn

h(y+ iθ)e−i〈x,y〉 d y

and for any k ≥ n,

|e−〈x,θ〉ϕ(x)| ≤ 1
(2π)n

∫
Rn

|h(y+ iθ)|d y

≤ 1
(2π)n ‖h‖α,k

∫
Rn

dx
Nk(x+ iθ)

≤ 1
(2π)n ‖h‖α,k

∫
Rn

dx
Nk(x)

<+∞ .

Taking ‖θ‖ = α such that 〈x,θ〉 = α‖x‖ and supremum over x ∈ Rn we obtain
∥∥ϕ∥∥

α,0 ≤ Ck ‖h‖α,k,
where

Ck =
1

(2π)n

∫
Rn

dx
Nk(x)

<+∞ .

Applying derivatives of order less than or equal to p ∈ N we get that
∥∥ϕ∥∥

α,p ≤ Ck+p ‖h‖α,k+p, so
ϕ ∈Sα(Rn) and the inverse Fourier transform F−1 : S (Tα)→Sα(Rn) is continuous.
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Corollary 5.10. Let ϕ ∈Sα(Rn). Then there is a constant Cα,ϕ such that for all z ∈ Tα,

|ϕ̂(z)| ≤ Cα,ϕ

1+‖Re(z)‖2 .

The uniqueness of the Krein measure from the Gelfand-Shilov space will follow from the fact that
the functions ϕ̂ vanish at infinity on Tα.

Theorem 5.11. (Gelfand-Vilenkin-Krein, uniqueness of measure) If ξ ∈Sα(Rn)∗ is evenly positive-
definite then the Krein measure µξ is uniquely defined and is supported on

(R∪ iR)n ∩Tα =
{

z ∈Cn : z j ∈Rn or z j ∈ iB(0,α)
}

The classification of evenly positive-definite distributions was in 1979 extended by N. Bopp in [6,
p. 15-50] to finite subgroups W <O(n). To state the theorem, define the set

ΩW =
{

z ∈Cn : z = w.z for some w ∈W
}

.

Note that if we take W = O(1)n, then ΩW = (R∪ iR)n and W-positive-definiteness corresponds to
being evenly positive-definite.

Theorem 5.12. (Bopp-Gelfand-Vilenkin-Krein) Let W < O(n) be finite. Then a distribution ξ ∈
Sα(Rn)∗ is W-positive-definite if and only if it is the Fourier transform of a unique positive W-
invariant Radon measure µξ on ΩW ∩Tα.

We will dedicate the next section to a proof of this theorem. A special case of the theorem is when
α= 0 and ξ is a tempered distribution. Then ΩW ∩T0 =Rn.

Corollary 5.13. A distribution ξ ∈ S (Rn)∗ is W-positive-definite if and only if it is the Fourier
transform of a unique positive W-invariant Radon measure µξ on Rn.

6 A Proof of Krein’s Theorem for Finite Subgroups of O(n)

In this part of the thesis we will present Bopp’s proof theorem 5.12 of Bopp-Gelfand-Vilenkin-
Krein for the ∗-algebra Sα(Rn)W . The main idea of the proof is to

1. identify the spectrum of characters

Xα,W =SpecSα(Rn)W =
{
ω ∈ (Sα(Rn)W )∗ :ω(ϕ∗ψ∗)=ω(ϕ)ω(ψ)

}
with the quotient space W\(ΩW ∩Tα), and

2. using the Plancherel-Godement theorem, found in appendix B, construct a positive Radon
measure νξ from ξ on Xα,W .

We can then lift νξ to a positive W-invariant Radon measure µξ on ΩW ∩Tα.

6.1 Identifying the Spectrum

To every z ∈Cn we can associate a unique character χz(x) = e−i〈x,z〉. It is locally integrable and so
there is a well-defined map

χ :Cn −→ C∞
c (Rn)∗

z 7−→ χz .
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The objective in identifying the spectrum here will be, using the above map, to construct a home-
omorphism W\(ΩW ∩ Tα) −→ Xα,W . The forementioned characters extend to distributions in
Sα(Rn)∗ if they satisfy the condition in lemma 5.8. For z ∈ Cn and x ∈ Rn, |χz(x)| = e〈Im(z),x〉 ≤
e‖Im(z)‖‖x‖ with equality when x and Im(z) are parallell, so χz defines a distribution on Sα(Rn) if
and only if ∫

Rn

e(‖Im(z)‖−α)‖x‖

(1+‖x‖2)p
dx <+∞ ,

i.e. z ∈ Tα. This means that we have a map

χ : Tα −→Sα(Rn)∗

z 7−→ χz .

A W-positive-definite distribution ξ ∈ Sα(Rn)∗ defines a positive-definite distribution on the test
function space Sα(Rn)W and we will view ξ as such a distribution from now on. To put the char-
acters χz, z ∈ Tα into this context we average them over the action of W , yielding Bessel functions

qz(x)= 1
|W |

∑
w∈W

χz(w.x) .

From this we obtain a new map

q : W\Tα −→ (Sα(Rn)W )∗

z 7−→ qz .

This map will be our candidate for the sought after homeomorphism W\(ΩW∩Tα)−→ Xα,W . First,
let us show the necessity of the domain.

Lemma 6.1. Let z ∈ Tα. Then the function qz determines a character in Xα,W if and only if z ∈ΩW .

If z ∈ΩW then qz(ϕ∗ψ∗) = ϕ̂(z)ψ̂(z) = ϕ̂(z)ψ̂(z) = qz(ϕ)qz(ψ) for all ϕ,ψ ∈ Sα(Rn)W , so it remains
to show the ”only if”-part of the statement. To do this we turn to invariant theory.

Theorem 6.2. Every algebra homomorphism C[X1, ..., Xn]W −→C is an evaluation at some unique
z ∈Cn, up to the action of W.

Remark. It is here that the finiteness of W comes into play, since the above theorem does not
hold in general for subgroups W < O(n). We refer to appendix A for a proof of theorem 6.2 and
discussion on this.

Proof. (Proof of lemma 6.1.) If qz is a character in Xα,W then it is in particular a positive-definite
continuous function on Rn, so q∗

z (x) = qz(−x) = qz(x) by corollary 3.3. But at the same time,
q∗

z (x)= qz(x), so
P(iz)= P(∂)qz(0)= P(iz)

for all P ∈ C[X1, ..., Xn]W . Thus by theorem 6.2 we must have that z = w.z for some w ∈ W , i.e.
z ∈ΩW . ■

Now we have a well-defined map

q : W\(ΩW ∩Tα)−→ Xα,W

W .z 7−→ qz

and it remains to prove that this is a homeomorphism. By the same reasoning as in the proof of
lemma 6.1 qz = qz′ implies that z′ ∈W .z, so q is injective. Let us prove the surjectivity. To do this
we first construct an algebra homomorphism C[X1, ..., Xn]W →C.
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Lemma 6.3. Let ω ∈ Xα,W and ϕ ∈Sα(Rn) such that ω(ϕ) 6= 0. Then the map λω :C[X1, ..., Xn]W →C

defined by

λω(P)= ω(P(∂)ϕ)
ω(ϕ)

is a well-defined algebra homomorphism.

Proof. If ϕ,ψ ∈Sα(Rn)W then

ω(P(∂)ϕ)ω(ψ)=ω(P(∂)(ϕ∗ψ))=ω(ϕ)ω(P(∂)ψ) ,

so if ϕ,ψ both are functions such that ω(ϕ),ω(ψ) 6= 0 then

ω(P(∂)ϕ)
ω(ϕ)

= ω(P(∂)ψ)
ω(ψ)

.

Thus λω is well-defined. It moreover follows from the equation above that if ω(P(∂)ϕ) = 0 then
ω(P(∂)ψ)= 0 for all ψ such that ω(ψ) 6= 0. The kernel of a non-zero functional on a vector space is
a proper vector subspace, so it’s complement{

ϕ ∈Sα(Rn)W :ω(ϕ) 6= 0
}

is dense in Sα(Rn)W . It therefore follows that ω(P(∂)ψ) = 0 for any ψ ∈ Sα(Rn)W whenever
ω(P(∂)ϕ)= 0. Now, if P,Q ∈C[X1, ..., Xn]W and ϕ ∈Sα(Rn)W such that ω(ϕ) 6= 0, then

λω(PQ)= ω(P(∂)Q(∂)ϕ)
ω(Q(∂)ϕ)

ω(Q(∂)ϕ)
ω(ϕ)

=λω(P)λω(Q)

whenever ω(Q(∂)ϕ) 6= 0. Otherwise, if ω(Q(∂)ϕ) = 0, then ω(Q(∂)ψ) = 0 for all ψ ∈ Sα(Rn)W . In
particular we have that ω(Q(∂)P(∂)ϕ)= 0 and so

λω(PQ)= ω(Q(∂)P(∂)ϕ)
ω(ϕ)

= 0=λω(P)
ω(Q(∂)ϕ)
ω(ϕ)

=λω(P)λω(Q) .

■

The definition of λω(P) may equivalently be written as P(∂)ω = λω(P)ω, so that ω becomes an
eigendistribution of P(∂). By theorem 6.2 we know that there is a z ∈Cn such that λω is evaluation
at z and for any z ∈Cn we have that qz is an eigendistribution of P(∂) with eigenvalue P(iz), so to
prove surjectivity of the map q : W\(ΩW ∩Tα)−→ Xα,W we need to prove the following lemma:

Lemma 6.4. If ω ∈ Xα,W is an eigendistribution of P(∂) with eigenvalue P(iz) for some z ∈Cn and
every P ∈C[X1, .., Xn]W , then z ∈ΩW ∩Tα and ω= qz in Xα,W .

Proof. Let ϕ ∈Sα(Rn)W and consider the smooth function ω∗ ϕ̌ on Rn. Then we have

(ω∗ ϕ̌)(w.x)=ω(ϕ(·−w.x))

=ω(ϕ(w.(·− x)))

=ω(ϕ(·− x))

= (ω∗ ϕ̌)(x)

for all w ∈W , so ω∗ ϕ̌ ∈ C∞(Rn)W . If P ∈C[X1, ..., Xn]W then by corollary 5.7

P(∂)(ω∗ ϕ̌)= P(∂)ω∗ ϕ̌= P(iz)(ω∗ ϕ̌) ,
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and for every multiindex q ∈ Nn
0 we write Pq for the W-invariant polynomial associated to the

differential operator

(∂q)W f (x)= 1
|W |

∑
w∈W

∂q f (w.x) .

It satisfies |Pq(z)| ≤ Cq ‖z‖q for some Cq ≥ 0 and for any x ∈Rn we have

∂q(ω∗ ϕ̌)= (∂q)W (ω∗ ϕ̌)= Pq(iz)(ω∗ ϕ̌) .

We want to show that ω defines an analytic function on Rn, and then the uniqueness will follow.
Fix x ∈Rn. The the remainder terms of the Maclaurin polynomials of ω∗ ϕ̌ are of the form

Rq(x)= ∂q(ω∗ ϕ̌)(θx)
q!

xq = (ω∗ ϕ̌)(θx)
Pq(iz)

q!
xq ,

for some θx ∈ B(0,‖x‖). As in the proof of lemma 5.6, equation 5.1, |(ω∗ ϕ̌)(x)| ≤ Cωeα‖x‖∥∥ϕ∥∥
α,0 for

some Cω ≥ 0, so

|Rq(x)| ≤ Cωeα‖x‖∥∥ϕ∥∥
α,0 Cq

(‖z‖‖x‖)|q|

q!
.

Applying the root or ratio test for these errors, one sees that the Maclaurin series of ω∗ϕ̌ converges
to the function on the open ball B(0,‖x‖). As x ∈Rn was arbitrary, we get that ω∗ϕ̌ is real analytic
on Rn and we write

(ω∗ ϕ̌)(x)=ω(ϕ)
∑

q∈Nn
0

Pq(iz)
q!

xq ,

using that (ω∗ϕ̌)(0)=ω(ϕ). Taking a radial approximate identity ρε in place of ϕ then ω(ψ)ω(ρε)=
ω(ψ∗ρε)−→ω(ψ) for any ψ, so limε→0ω(ρε)= 1 as ω is non-trivial. Thus if we define the function

fω(x)= lim
ε→0

(ω∗ ρ̌ε)(x)= ∑
q∈Nn

0

Pq(iz)
q!

xq ,

then fω is real-analytic and ω acts on Sα(Rn)W by integration against fω. Note that we only
used that P(∂)ω= P(iz)ω for all P ∈C[X1, ..., Xn]W , so everything above holds in particular for the
distribution qz ∈ Xα,W . Thus fqz = fω and as ω ∈ Xα,W and qz =ω as distributions in Xα,W . That
qz ∈ Xα,W is by lemma 5.10 and lemma 6.1 equivalent to z ∈ΩW ∩Tα. ■

It remains to show that the maps q and q−1 are continuous.

Theorem 6.5. The map

q : W\(ΩW ∩Tα)−→ Xα,W

W .z 7−→ qz

is a homeomorphism.

Proof. To see this, consider the one-point compactification of both spaces and the induced map

q̃ : W\(ΩW ∩Tα)∪ {∞}−→ Xα,W ∪ {0}

by sending the added point at infinity to the zero character. Then as Xα,W is Hausdorff it suffices
to show that q̃ is continuous and since W\(ΩW ∩Tα) is metrizable, take for example the metric
d(W .z,W .z′) = infw∈W

∥∥w.z− z′
∥∥, then it suffices to show that for every sequence zn in ΩW ∩Tα

with limit z in (ΩW ∩Tα)∪ {∞} we have qzn → qz in Xα,W . Note that qz(ϕ)= ϕ̂(z), so by continuity
of the Fourier transform it is clear that this holds for z 6= ∞. If z =∞ then zn →∞ in Tα and by
corollary 5.10,

|ϕ̂(zn)| ≤ Cα,ϕ

1+‖Re(zn)‖2 −→
n

0
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for every ϕ ∈Sα(Rn)W , so qzn → 0.

■

6.2 Constructing a Measure

Let ξ ∈ Sα(Rn)∗ be a W-positive-definite distribution. Then ξ by definition defines a continuous
∗-positive functional on the ∗-algebra Sα(Rn)W of W-invariant functions in Sα(Rn). The following
result due to R. Godement provides a context for when a ∗-positive functional can be expressed in
terms of a positive Radon measure on spectra.

Theorem 6.6. (Plancherel-Godement) Let A be a topological commutative ∗-algebra with an ap-
proximate identity, and let α ∈ A∗ be a ∗-positive functional satisfying

α(xyy∗x∗)≤ kyα(xx∗) , ky ≥ 0,

for every x, y ∈ A. Moreover, let pA be the dense ideal in A generated by all elements of the form
yy∗, y ∈ A. Then there is a unique positive Radon measure να on a locally compact subspace
Ωα ⊂Spec A such that for every x ∈ pA we have

α(x)=
∫
Ωα

χ(x)dνα(χ) .

Let us prove that the functional ξ ∈ (Sα(Rn)W )∗ satisfies the inequality stated in the Plancherel-
Godement theorem. To do it, we will first need to know something about bounds of continuous
W-positive-definite functions.

Lemma 6.7. Let f ∈ C(Rn) be W-positive-definite such that f (0) ≥ 0. If there are constants C ≥ 0
and a ≥ 0 such that

| f (x)| ≤ Cea‖x‖

then
| f (x)| ≤ f (0)ea‖x‖ .

Proof. Define the constant C f = supx∈Rn | f (x)|e−a‖x‖, which by assumption is less or equal to C and
hence finite. Clearly, | f (x)| ≤ C f ea‖x‖ so it suffices to show that C f ≤ f (0). A W-positive-definite
function f defines a positive hermitian form h f as described above, so by the Cauchy-Schwarz
inequality, ∣∣∣∫

Rn
(ϕ∗ψ∗)(x) f (x)dx

∣∣∣2 ≤ ∫
Rn

(ϕ∗ϕ∗)(x) f (x)dx
∫
Rn

(ψ∗ψ∗)(x) f (x)dx .

Taking ρε ∈ C∞
c (Rn)W to be an approximate identity in place of ψ we get that∣∣∣∫

Rn
ϕ(x) f (x)dx

∣∣∣2 ≤ f (0)
∫
Rn

(ϕ∗ϕ∗)(x) f (x)dx .

Now take x0 ∈Rn and define

ρε,x0(x)= 1
|W |

∑
w∈W

ρε(x−w.x0) ,

which tends to a Dirac comb on W .x0 as ε→ 0. In particular, as f is W-invariant then∫
Rn
ρε,x0(x) f (x)dx −→ f (x0) .

The support of ρε,x0 is contained in the ball centered at 0 of radius 2(‖x0‖+ε) as

supp(ρε,x0 ∗ρ∗ε,x0
)⊂ supp(ρε,x0)+supp(ρ∗ε,x0

)⊂ B2ε(W .x0)+B2ε(0)⊂ B2(‖x0‖+ε)(0) ,
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and by the assumption of the lemma we must have that∫
Rn

(ρε,x0 ∗ρ∗ε,x0
)(x) f (x)dx ≤ C f e2a(‖x0‖+ε) .

By the Cauchy-Schwarz inequality,∣∣∣∫
Rn
ρε,x0(x) f (x)dx

∣∣∣2 ≤ f (0)
∫
Rn

(ρε,x0 ∗ρ∗ε,x0
)(x) f (x)dx ≤ f (0)C f e2a(‖x0‖+ε)

and so as ε→ 0 then | f (x0)|2 ≤ f (0)C f e2a‖x0‖. Moreover, | f (x0)| ≤ C f ea‖x0‖ and this bound is mini-
mal by the definition of supremum, so

C f ≤
√

f (0)C f .

If C f is nonzero then dividing by
√

C f and squaring both sides yields C f ≤ f (0). ■

Lemma 6.8. For any ϕ,ψ ∈Sα(Rn)W we have that

ξ(ϕ∗ψ∗ψ∗∗ϕ∗)≤ ξ(ψ∗ψ∗)
(∫
Rn

eα‖x‖|ϕ(x)|dx
)2

.

Proof. Let ψ ∈ Sα(Rn)W . From lemma 5.6 and corollary 5.7 we can consider the smooth function
ξψ = ξ∗ψ∗ ψ̌ on Rn. It defines a continuous functional on Sα(Rn) and it is moreover W-positive-
definite as ∫

Rn
(ξ∗ψ∗ ψ̌)(x)(ϕ∗ϕ∗)(x)dx = ξ(ψ∗ψ∗∗ϕ∗ϕ∗)= ξ((ϕ∗ψ)∗ (ϕ∗ψ)∗)≥ 0.

Fix x ∈Rn. Then there is a constant Cξ ≥ 0 such that

|ξψ(x)| = |ξ(τx(ψ∗ψ∗))| ≤ Cξ

∥∥ψ∗ψ∗∥∥
α,0 eα‖x‖ ≤ Cξ

∥∥ψ∥∥2
α,0 eα‖x‖

by equation 5.1 and proposition 5.5. By lemma 6.7, |ξψ(x)| ≤ ξψ(0)eα‖x‖ = ξ(ψ∗ψ∗)eα‖x‖ and by
lemma 5.6 we have

ξ(ϕ∗ψ∗ψ∗∗ϕ∗)=
∫
Rn
ξψ(x)(ϕ∗ϕ∗)(x)dx

≤ ξ(ψ∗ψ∗)
∫
Rn

eα‖x‖|(ϕ∗ϕ∗)(x)|dx .

To finish the proof, note that∫
Rn

eα‖x‖|ϕ∗ϕ∗(x)|dx ≤
∫
Rn

∫
Rn

eα‖x‖|ϕ(x+ y)||ϕ(y)|d ydx

=
∫
Rn

∫
Rn

eα‖x−y‖|ϕ(x)||ϕ(y)|dydx

≤
∫
Rn

∫
Rn

eα‖x‖|ϕ(x)|eα‖y‖|ϕ(y)|d ydx

=
(∫
Rn

eα‖x‖|ϕ(x)|dx
)2

.

■

We have now shown that ξ satisfies the criteria of the Plancherel-Godement theorem by taking

kϕ =
(∫
Rn eα‖x‖|ϕ(x)|dx

)2
. The ideal pα,W ⊂ Sα(Rn)W generated by functions ϕ∗ϕ∗, ϕ ∈ Sα(Rn)W
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contains every

ϕ∗ψ∗ =
3∑

i=0
ik(ϕ+ ikψ)∗ (ϕ+ ikψ)∗

and by the presence of an approximate identity ρε ∈Sα(Rn)W we see that ϕ∗ρ∗ε →ϕ in Sα(Rn)W ,
so pα,W is dense in Sα(Rn)W . This argument holds for a general algebra A as in the theorem.
We now have a positive Radon measure νξ supported on the locally compact space Xα,W and the
integral representation

ξ(ϕ)=
∫

Xα,W

ω(ϕ)dνξ(ω)

for all ϕ ∈ pα,W . The homeomorphism q : W\(ΩW ∩Tα) → Xα,W can be used to push the measure
νξ forward to a positive Radon measure (q−1)∗νξ on W\(ΩW ∩Tα), and it lifts to a W-invariant
positive Radon measure µξ on ΩW ∩Tα ⊂Cn. We now have that

ξ(ϕ)=
∫

Xα,W

ω(ϕ)dνξ(ω)=
∫

W\(ΩW∩Tα)
qz(ϕ)d(q−1)∗νξ(W .z)=

∫
ΩW∩Tα

ϕ̂(z)dµξ(z)

for every ϕ ∈ pα,W . We can moreover preserve this equality for all elements of the ideal pα ⊂
Sα(Rn), generated by all ϕ∗ϕ∗, ϕ ∈Sα(Rn) by acting on W-invariant parts. To extend this integral
representation to all of Sα(Rn), we need to prove that the measure µξ defines a functional on all
of S (Tα).

Lemma 6.9. Let ξ ∈Sα(Rn)∗ be W-positive-definite. Then the measure µξ is tempered in the sense
that there is a p ∈N such that ∫

ΩW∩Tα

dµξ(z)
(1+‖z‖2)p

<+∞ .

Proof. We first observe that the continuity of ξ the Fourier transform implies that there is a k ∈N
and a constant Ck > 0 such that for every ϕ ∈Sα(Rn) with Fourier transform h ∈S (Tα),∫

ΩW∩Tα

|h|2 dµξ = ξ(ϕ∗ϕ∗)≤ Ck
∥∥|h|2∥∥α,k

.

We will construct a bounded sequence hm ∈S (Tα) such that

|hm(z)|2 −→ 1
(cα+P(z))p

uniformly on compacta for some p ∈N, where cα >max(1,α2) and P(X )= X2
1+...+X2

n ∈C[X1, ..., Xn]W

on Cn. Note that P(x+ i y)= P(x− i y)= ‖x‖2−‖y‖2 ≥−α2 for all x+ i y ∈ΩW , so cα+P(z)> 0 for all
z ∈ΩW . Thus, for such a p ∈N,

0≤
∫
ΩW∩Tα

dµξ(z)
(cα+‖z‖2)p

≤
∫
ΩW∩Tα

dµξ(z)
(cα+P(z))p = lim

m

∫
ΩW∩Tα

|hm|2dµξ <+∞ .

This means that, up to a constant, µξ is tempered.

For the construction, take a function h ∈S (Tα) such that h(0)= 1 and let

hm(z)= h(z/m)
(cα+P(z))k .

It is clear that hm(z)→ (cα+P(z))−2k uniformly on compacta. Using the product rule one has

∂qhm(z)= ∑
r≤q

(−2)|r|
(p+|r|−1)!

(p−1)!
zr

(cα+P(z))2k+|r| m
|r|−|q|∂q−rh(z/m) ,
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and so for every multiindex q with |q| ≤ 2k,

(1+‖z‖2)2k|∂qhm(z)| ≤ max
0≤r≤|q|

sup
z′∈Tα

|∂qh(z′)| ∑
r≤q

(−2)|r|
(p+|r|−1)!

(p−1)!
(1+‖z‖2)2kzr

(cα+P(z))2k+|r| .

Note that
(1+‖z‖2)2kzr

(cα+P(z))2k+|r| −→
{

1 if r = 0
0 if 0< r ≤ q

as z →∞ in ΩW ∩Tα, so (1+‖z‖2)2k|∂qhm(z)| stays bounded on ΩW ∩Tα. Thus there is a constant
Mk,q ≥ 0 such that (1+‖z‖2)k|∂qhm(z)| ≤ Mk,q, and taking Mk =max|q|≤k Mk,q we get that∫

ΩW∩Tα

dµξ(z)
(cα+P(z))2k = lim

m

∫
ΩW∩Tα

|hm|2dµξ ≤ CkMk <+∞ .

■

We can now show that the integral representation of ξ in terms of µξ extends to all of Sα(Rn). If
h ∈S (Tα) and we take a p ∈N as in lemma 6.9 then

|µξ(h)| ≤
∫
ΩW∩Tα

|h(z)|dµξ(z)≤ ‖h‖α,p
∫
ΩW∩Tα

dµξ(z)
(1+‖z‖2)p

<+∞ ,

meaning that µξ ∈S (Tα)∗. Letting ρε ∈Sα(Rn) be an approximate identity as before, then ϕ∗ρ∗ε →
ϕ in Sα(Rn) and ϕ̂ρ̂ε = �ϕ∗ρ∗ε → ϕ̂ in S (Tα) by continuity of the Fourier transform. Finally we
have

ξ(ϕ)= lim
ε
ξ(ϕ∗ρ∗ε )= lim

ε

∫
ΩW∩Tα

ϕ̂(z)ρ̂ε(z)dµξ(z)=
∫
ΩW∩Tα

ϕ̂(z)dµξ(z)

for all ϕ ∈Sα(Rn), proving theorem 5.12.

While we have proven theorem 5.12, we have also obtained more information on the special case
of α= 0.

Corollary 6.10. Let W <O(n) be finite. A tempered distribution ξ ∈S (Rn) is W-positive-definite if
and only if it is W-invariant and positive-definite.

Proof. By corollary 5.13 and lemma 6.9, the measure µξ on Rn is tempered. Therefore, the W-
invariant distribution ξ= µ̂ξ is positive-definite by the Bochner-Schwartz theorem. ■

For example, recall that the Krein measure µn of the (evenly) positive-definite distribution ξn =
A −1δZn is an even tempered measure. Corollary 6.10 tells us that this is no coincidence.

7 The Abel Transform on Symmetric Spaces

To conclude this paper, we construct evenly positive-definite distributions on R using the inverse
Abel transform, this time with the underlying geometry being that of the real and complex hyper-
bolic plane. To define the Abel transform, we will need some background on Lie groups. We take
inspiration from S. Pusti’s article [15] and some basic information on semisimple Lie groups can
be found in [13].

Let G be a non-compact semisimple Lie group with finite center and K < G a maximal compact
subgroup. Our main examples of this will be G =SL2(R), SL2(C) and K =SO(2), SU(2). On such a
group G there is the notion of an Iwasawa decomposition, i.e. a diffeomorphism of multiplication

A×N ×K −→G
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where A is a maximal torus called the Cartan subgroup and N is a maximal unipotent subgroup.
On A we have an action of the Weyl group W = NG(A)/ZG(A) acting by conjugation, where NG(A)
is the normalizer of A in G and ZG(A) is the centralizer of A in G. One can show that W is finite
and that W also acts on elements of the Lie algebra a∼= A by reflections when endowed with the
Killing form as the inner product, so W < O(a). On G, there is also a Cartan decomposition, a
diffeomorphism of multiplication

K × A+×K −→G ,

where A+ is a fundamental domain of W\A in A. In particular, we have a diffeomorphism

K\G/K ∼=W\A .

To define the Abel transform on X =G/K we need to pick a suitable measure on G. It is a locally
compact group that we are dealing with, so there is a Haar measure on G, i.e. a positive G-
invariant Radon measure. Let ∆AN be the modular function of AN < G and define ρ =√

∆AN
∣∣
A.

One can then show that, when extended canonically to a homomorphism on all of G, ρ2 is the
modular function on G and

mG = ρ2mA ⊗mN ⊗mK .

Regarding functions, if F is a sheaf of functions on G, for example Cc or C∞
c , then we define for

each open U ⊂G the subset F(U ,K)⊂ F(U) of bi-K-invariant elements. A function on X is said to
be radial if it is right-K-invariant, or equivalently, a bi-K-invariant function on G. We now have
all the machinery to define the Abel transform on X =G/K .

Definition 7.1. Let f ∈ Cc(G,K). The Abel transform on G is the map A : Cc(G,K)→ Cc(A) given
by

A f (a)= ρ(a)
∫

N
f (an)dmN (n) .

Remark. The natural question regarding this definition is what connection this has to the Eu-
clidean case. To see this, consider the isometry group G = O(n)nRn and the compact subgroup
K =O(n) so that Rn =G/K . We can decompose G as ANK for A =R, N = A⊥ =Rn−1 in Rn and the
Abel transform can for a radial function f ∈ Cc(G,K) be written as

A f (a)=
∫

N
f (a+n)dmN (n) .

The group G is in this case unimodular, so we do not have to worry about scaling using the modu-
lar function. What we really are using in the case of a Lie group G is the Iwasawa decomposition,
so more generally we can define the Abel transform on any Gelfand pair (G,K) admitting a de-
composition G = ANK with A being abelian.

Lemma 7.2. The Abel transform A : Cc(G,K)→ Cc(A) is a ∗-homomorphism.

Proof. Let f ,h ∈ Cc(G,K) and denote the Haar measures on A, N,K and G by da,dn,dk and dg
respectively. Then, using that f ,h are bi-K-invariant we have

A ( f ∗h)(a)= ρ(a)
∫

N
( f ∗h)(an)dn

= ρ(a)
∫

N

∫
G

f (g−1an)h(g)dgdn

= ρ(a)
∫

N

∫
K

∫
A

∫
N

f (m−1b−1k−1an)h(kbm)dmdbdkdn

= ρ(a)
∫

N

∫
A

∫
N

f (m−1b−1an)h(bm)dmdndb

= ρ(a)
∫

A

∫
N

∫
N

f (b−1am−1n)h(bm)dndmdb
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=
∫

A

∫
N
ρ(b)

(
ρ(b−1a)

∫
N

f (b−1am−1n)dn
)
h(bm)dmdb

=
∫

A
A f (b−1a)

(
ρ(b)

∫
N

h(bm)dm
)
db

=
∫

A
A f (b−1a)A h(b)db = (A f ∗A h)(a) .

Moreover,

A f ∗(a)= ρ(a)
∫

N
f (n−1a−1)dn

= ρ(a)ρ(a−1)2
∫

N
f (a−1n−1)dn

= ρ(a−1)
∫

N
f (a−1n)dn

=A f (a−1)= (A f )∗(a) .

■

One can, as shown in [13], that the action of the Weyl group W leaves A f fixed, so the Abel
transform is a map A : Cc(G,K) → Cc(A)W . Next we consider the geometry of the hyperbolic
plane, and W-invariance of A will be shown through calculations.

7.1 The Hyperbolic Plane

Let us compute the inverse Abel transform for an example of a pair (G,K). Two of the simplest
non-compact semisimple Lie groups are G = SL2(R) and G = SL2(C), and for each of them we
pick the maximal compact subgroup K = SO(2) and K = SU(2) respectively. The corresponding
homogeneous spaces

H2 =SL2(R)/SO(2) and H2
C =SL2(C)/SU(2)

are called the real and complex hyperbolic plane. One can model the geometry of these spaces as
2- and 3-dimensional hyperbolic space. Let us do it for the real hyperbolic plane. Consider the
upper half plane of complex numbers z ∈ C with Im(z) > 0 and endow it with the metric topology
of

d(z,w)= arccosh
(
1+ |z−w|2

2Im(z)Im(w)

)
.

Let G =SL2(R) act on this space by Möbius transformations, that is,(
a b
c d

)
.z = az+b

cz+d
, ad−bc = 1.

It can be shown that this action is smooth, transitive and that d(g.z, g.w) = d(z,w) for all g ∈ G
and z,w in the upper half plane. Note that if

g.z =
(
a b
c d

)
.z = z then (b+ c)+ i(a−d)= 0,

which holds if and only if g ∈ SO(2), so the upper half plane in this metric topology is actually
diffeomorphic to the real hyperbolic plane as we have defined it. Similarly, one can show that
the complex upper half plane {(z, t) ∈ C×R : t > 0} is diffeomorphic to the complex hyperbolic
plane. These spaces are examples of so called Riemannian symmetric spaces. However, to compute
the inverse Abel transform on these spaces, we will only need the structure of the groups G =
SL2(R),SL2(C) as Lie groups.

Let us write out the objects discussed in the beginning of section 7. In the real case, the Iwasawa

31



decomposition of G is given by

K =
{
kθ =

(
cos(2πθ) sin(2πθ)
−sin(2πθ) cos(2πθ)

)
: θ ∈ [0,1)

}∼= S1

A =
{
at =

(
e

t
2 0

0 e−
t
2

)
: t ∈R

}∼=R

N =
{
ns =

(
1 s
0 1

)
: s ∈R

}∼=R ,

and the Weyl group of G is W = O(1) on A, sending at 7→ a±t. From this one can show that there
are homeomorphisms

W\A ιA−→ [1,∞) ι←− K\G/K

sending a matrix g in either quotient space to 1
2 tr(g∗g). Note that 1

2 tr(a∗
t at) = cosh(t). These

maps dualize to ∗-algebra isomorphisms

Cc(A)W
ι∗A←− Cc[1,∞) ι∗−→ Cc(G,K)

and we introduce the transform AR : Cc[1,∞)−→ Cc[1,∞) by

ARF(x)=
∫
R

F(x+ s2

2
)ds .

To determine the Abel transform, we need to determine the character ρ. On readily checks that
atns = netsat, so for any integrable function f on G,∫

R
f (atns)ds = e−t

∫
R

f (nsat)ds .

Thus we take ρ(at)= et/2. As ι(atns)= 1
2 tr(n∗

s a2tns)= cosh(t)+ 1
2 s2et, then for f = ι∗F we have that

A f (at)= et/2
∫
R

F(cosh(t)+ 1
2

s2et)ds =
∫
R

F(cosh(t)+ u2

2
)du = ι∗AARF(t) .

In summary we have a commuting diagram

Cc(G,K) Cc(A)W

Cc[1,∞) Cc[1,∞) .

A

AR

ι∗ ι∗A

In the complex case, when the underlying field of G is C, then

K =
{
kα,β =

(
α β

−β α

)
: |α|2 +|β|2 = 1,α,β ∈C

}∼= S3

A =
{
at =

(
e

t
2 0

0 e−
t
2

)
: t ∈R

}∼=R

N =
{
nz =

(
1 z
0 1

)
: z ∈C

}∼=C ,

and W = O(1). Since the maximal torus A is the same as before, the maps ι, ιA and their duals
remain the same. This time, consider the Volterra-type operator AC : Cc[1,∞) −→ Cc[1,∞) given
by

ACF(x)= 2π
∫ ∞

0
F(x+ s)ds .
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Regarding the modular function on AN, we again have atnz = net zat and by the same reasoning
as in the real case we take ρ(at) = et, accounting for the two real dimensions of C. We have
ι(atnz)= 1

2 tr(n∗
z a2tnz)= cosh(t)+ 1

2 |z|2et and so for f = ι∗F,

A f (at)= et
∫
C

F(cosh(t)+ 1
2
|z|2et)dz

= 2π
∫ ∞

0
F(cosh(t)+ r2

2
) rdr

= 2π
∫ ∞

0
F(cosh(t)+ r)dr = ι∗AACF(t) .

Again we have a commuting square

Cc(G,K) Cc(A)W

Cc[1,∞) Cc[1,∞) .

A

AC

ι∗ ι∗A

Lemma 7.3. The maps AR,AC : C∞
c [1,∞)→ C∞

c [1,∞) are linear isomorphisms with inverses given
by

A −1
R F(x)=− 1

2π

∫
R

F ′(x+ u2

2
)du ,

A −1
C F(x)=− 1

2π
F ′(x) .

Here we view C∞
c [1,∞) as compactly supported smooth even functions on the multiplicative group

R+ = (0,∞).

Proof. We need to show that A A −1 = 1 and that A −1 is bounded in the Frechét topology on
C∞

c [1,∞). For AC this follows from the fundamental theorem of calculus. For AR however, we
have

ARA −1
R F(x)=− 1

2π

∫
R

∫
R

F ′(x+ s2

2
+ u2

2
)duds

=−
∫ ∞

0
F ′(x+ r2

2
)r dr

=−
∫ ∞

0
F ′(x+v)dv = F(x) .

For boundedness of A −1
R

, we refer to lemma 5.5 in [BHPII], where it is proven that

∥∥∥A −1
R F (m)

∥∥∥∞ ≤ 2
p

2
π

max
(∥∥∥F (m)

∥∥∥∞ ,
∥∥∥F (m+1)

∥∥∥∞ )
.

■

If ϕ= ι∗AF ∈ C∞
c (A)W ∼= C∞

c (R)even, then

F ′(x)= d
dx

((ι∗A)−1ϕ)(x)= ϕ′(±arcosh(x))p
x2 −1

where ϕ′ is the derivative of ϕ as a function on R. Recall that we have a diffeomorphism ι−1 ◦ ιA :
W\A → K\G/K , so for every double coset K gK ∈ K\G/K there is an x = 1

2 tr(g∗g) ≥ 1 such that
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K gK = Kaarcosh(x)K . Thus for such an x,

A −1ϕ(g)=−1
π

∫ ∞

0

ϕ′(±arcosh(x+ r2/2))√
(x+ r2/2)2 −1

dr

in the real case and

A −1ϕ(g)=−ϕ
′(±arcosh(x))

2π
p

x2 −1
in the complex case. Together with lemma 6.2 and the ∗-isomorphisms ι∗, ι∗A, we have that the
Abel transforms, concretely interpreted as

A : C∞
c (H2)SO(2) −→ C∞

c (R)even and A : C∞
c (H2

C)SU(2) −→ C∞
c (R)even ,

are ∗-isomorphisms. Note that as AR is non-local and AC is local then the corresponding Abel
transforms on H2 and H2

C
will be non-local and local respectively. By lemma 6.3 it makes sense to

talk about the dual map A −1 : C∞
c (G,K)∗ → (C∞

c (A)W )∗ on distributions. Due to the exponential
growth of balls in the hyperbolic plane, a distribution ξ= A −1η, η ∈ C∞

c (G,K)∗ is not necessarily
a tempered distribution on A = R. Moreover, the inverse Abel transform on the real hyperbolic
plane H2 is not local, so it does not preserve pure point distributions in general. The inverse Abel
transform on the complex hyperbolic plane H2

C
however, does, due to locality. This preserves the

idea of locality in odd dimensions as in the Euclidean case. Let’s compute some examples:

Take the lattice Γ = SL2(Z) < G = SL2(R) and consider the distribution ξΓ = A −1δΓ. Define for
each m ∈N,

rΓ(m)=
∣∣∣{γ ∈Γ : m = 1

2
tr(γ∗γ)

}∣∣∣= ∣∣∣{(a,b, c,d) ∈Z4 :

{
a2 +b2 + c2 +d2 = 2m
ad−bc = 1

}∣∣∣.
Then the distribution ξΓ takes the form

ξΓ(ϕ)=−1
π

∞∑
m=1

rΓ(m)
∫ ∞

0

ϕ′(arcosh(m+ r2/2))√
(m+ r2/2)2 −1

dr .

Similarly, we can consider Γ=SL2(Z[i])<G =SL2(C) and the distribution ξΓ =A −1δΓ. To write it
down we need to determine A −1ϕ for t = 0, which by l’Hopital’s rule is

lim
x→1

ϕ′(arcosh(x))p
x2 −1

= lim
x→1

ϕ′′(arcosh(x))
x

=ϕ′′(0) .

Define the coefficients

rΓ(m)=
∣∣∣{γ ∈Γ : m = 1

2
tr(γ∗γ)

}∣∣∣= ∣∣∣{(a,b, c,d) ∈Z[i]4 :

{
|a|2 +|b|2 +|c|2 +|d|2 = 2m
ad−bc = 1

}∣∣∣ .

One notes that rΓ(1)= 8 using different combinations of 1,−1, i,−i, so finally we have

ξΓ(ϕ)=−4
π
ϕ′′(0)− 1

2π

∞∑
m=2

rΓ(m)p
m2 −1

ϕ′(arcosh(m)) ,

which can be seen as a hyperbolic analouge of Guinand’s distribution. By the Gelfand-Vilenkin-
Krein theorem there is a Krein measure µΓ on R∪ iR ⊂ C such that ξΓ = µ̂Γ. What this measure
actually is can be answered through the theory of spherical diffraction, which was one of the
motivating areas for this paper. One can show that the support and densities of µξ are determined
by the irreducible K-spherical representations of G, and the representations parametrized by the
real and imaginary axes will correspond to the principal and complementary series ones. The
measure µΓ is not purely supported on R⊂C and so ξΓ is not a tempered distribution by corollary
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A Some Algebraic Geometry

This section regards the proof of theorem 6.2, which draws ideas from basic algebraic geometry.
For an introduction on the subject, see [8].

Let k be a field, for example R or C. Given a polynomial F ∈ k[X1, ..., Xn], we denote by V (F) it’s
zero set and more generally V (F1, ...,Fm) for the common zero set of polynomials F1, ...,Fm. If we
denote by J the ideal generated by F1, ...,Fm in k[X1, ..., Xn] then V (J)=V (F1, ...,Fm), so every so
called algebraic set in kn is of the form V (J) for some ideal J ⊂ k[X1, ..., Xn]. Every such ideal is
moreover finitely generated by the following theorem:

Theorem A.1. (Hilbert Basis Theorem) If R is a Noetherian ring, then R[X1, ..., Xn] is Noetherian.
In particular, every ideal in k[X1, ..., Xn] is finitely generated.

A minimal algebraic set is called a variety. Conversely to the ideals, for each subset V ⊂ kn we de-
fine I(V )⊂ k[X1, ..., Xn] to be the ideal generated by all polynomials whose zero set contains V . By
the Hilbert basis theorem, I(V ) is generated by a finite set of polynomials. A fundamental result
regarding algebraic sets in kn and ideals in k[X1, ..., Xn] is the so called Hilbert’s Nullstellensatz.
In order to state it we define the radical of an ideal J ⊂ k[X1, ..., Xn] to be the ideal

Rad(J)=
{
F ∈ k[X1, ..., Xn] : Fm ∈ J for some m ≥ 0

}
.

Theorem A.2. (Hilbert’s Nullstellensatz) Let k be an algebraically closed field and let J ⊂ k[X1, ..., Xn]
be an ideal. Then I(V (J))=Rad(J).

For a proof, see [8]. The following corollary strengthens the relation between algebraic sets in kn

and ideals in k[X1, ..., Xn].

Corollary A.3. (Weak Nullstellensatz) Let k be an algebraically closed field. If J ⊂ k[X1, ..., Xn] is
a proper ideal, then V (J) 6=∅.

Proof. Suppose that V (J)=∅. Then the ideal I(V (J)) contains a polynomial with empty zero set
and since k is algebraically closed, it must be a nonzero constant polynomial. Thus 1 ∈ I(V (J)) =
Rad(J), meaning that 1= 1m ∈ J for some m ≥ 0. But then J = k[X1, ..., Xn]. ■

We are now ready to prove Theorem 6.2, and we divide it into a lemma and two theorems.

Lemma A.4. (Hilbert’s 14th Problem) Let W <O(n) be a closed subgroup. Then the ring C[X1, ..., Xn]W

is finitely generated.

Proof. Let J ⊂ C[X1, ..., Xn] be the ideal generated by all homogeneous W-invariant polynomials
of positive degree. Then by the Hilbert basis theorem, J is finitely generated. Each generator is
contained in an ideal generated by homogeoneous W-invariant polynomials of positive degree, so
without loss of generality, J is generated by finitely many such polynomials F1, ...,Fr.

Now suppose that h ∈C[X1, ..., Xn]W is homogenenous of degree d. We prove that h ∈C[F1, ...,Fm]
using induction on d. The case d = 0 is trivial. If d > 0 then there are homogenous polynomials
a1, ...,am ∈C[X1, ..., Xn] such that deg(ai)= d−deg(Fi) and

h =
m∑

i=1
aiFi .

Now, as W is compact then there is a Haar probability measure µW on W , and we consider the
averaging operation

FW =
∫

W
w.F dµW (w) ,
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where w.F(X )= F(w.X ). Since h and each Fi is W-invariant then

h = hW =
m∑

i=1
aW

i Fi

and it is clear that aW
i remains homogeneous of degree d−deg(Fi) < d. Since aW

i is W-invariant
then aW

i ∈ C[F1, ...,Fm] by the induction assumption and finally we have h ∈ C[F1, ...,Fm]. For a
general h ∈ C[X1, ..., Xn]W of degree d we can write h = h0 + ...+hd, where hi is a homogeneous
polynomial of degree i. Then hi ∈C[F1, ...,Fm] for all i and so h ∈C[F1, ...,Fm]. ■

Theorem A.5. Let W <O(n) be closed. Then every algebra homomorphism C[X1, ..., Xn]W −→C is
an evaluation at some z ∈Cn.

Proof. Suppose that λ : C[X1, ..., Xn]W −→ C is an algebra homomorphism. By lemma A.4 we can
find finitely many generators F1, ...,Fm of C[X1, ..., Xn]W and so λ is uniquely determined by the
vector β= (λ(F1), ...,λ(Fm)) ∈Cm. Consider the ideal

Iβ = (F1 −β1, ...,Fm −βm)

with the corresponding variety Vβ =V (Iβ). The polynomials Fi −βi are clearly W-invariant, so Iβ
must be a proper ideal in C[X1, ..., Xn]. By the Hilbert Nullstellensatz Vβ 6=∅ and for any z ∈ Vβ,
λ(Fi)= Fi(z) for all i, which means that λ is evaluation at z ∈Vβ.

■

Theorem A.6. Let W < O(n) be finite. Then every evaluation map C[X1, ..., Xn]W −→ C is unique,
up to the action of W.

Proof. To prove uniquness, it suffices to show that there is a W-invariant polynomial F ∈C[X1, ..., Xn]
that separates W-orbits. As W acts on Cn by linear maps and the W-orbits are finite, they define
complex varieties. Therefore, if z, z′ ∈ Cn lie in different W-orbits then there are polynomials
F1, ...,Fk and F ′

1, ...,F ′
l in C[X1, ..., Xn] such that

W .z =V (F1, ...,Fk) , W .z′ =V (F ′
1, ...,F ′

l)

and since orbits are disjoint then Fi,F ′
j have no common zeroes for all i, j. This means that

V (F1, ...,F ′
l) = W .z∩W .z′ =∅ and so by the Hilbert Nullstellensatz 1 ∈ (F1, ...,F ′

l), which means
that there are a1, ...,ak,a′

1, ...,a′
l in C[X1, ..., Xn] such that

1=∑
i

aiFi +
∑

j
a′

jF
′
j .

Let h1 =∑
i aiFi and h2 =∑

j a′
jF

′
j so that 1= h1+h2. If we make this W-invariant then hW

1 +hW
2 = 1

and by definition we have hW
1 |W .z = 0 = hW

2 |W .z′ . Thus if we take F = hW
1 then F|W .z = 0 and

F|W .z′ = (1−h2)|W .z′ = 1.
■

Next we highlight an example of a non-finite W for which evaluation maps C[X1, ..., Xn]W −→ C

are not unique up to the action of W .

Given a variety V ⊂ kn we define the Zariski topology on V to be the topology generated by the
algebraic subsets of V as the closed sets. If k =R then we define the complexification of a variety
V ⊂Rn to be the set of z ∈Cn such that F(z)= 0 for all F ∈ I(V ). Moreover, to a variety V we define
it’s ring of polynomials by

O (V )= k[X1, ..., Xn]/I(V ) .
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The ring of polynomials on the complexification of a real variety turns out to be closely related to
the initial ring of polynomials.

Lemma A.7. Let V be a real variety and VC its complexification. If f ∈O (VC) and f = 0 on V then
f = 0 on VC. In other words, V is Zariski-dense in VC.

Proof. It suffices to show that O (VC)∼=C⊗RO (V ), and since C[X1, ..., Xn]∼=C⊗RR[X1, ..., Xn] it then
suffices to show I(VC) ∼= C⊗R I(V ). Clearly the RHS is contained in the LHS, and since I(VC) is
radical then it remains to show that C⊗R I(V ) is a radical ideal in C[X1, ..., Xn].

Suppose p, q ∈R[X1, ..., Xn] and that (p+ iq)m ∈C⊗R I(V ) for some m ≥ 0. Then

(p2 + q2)m = (p− iq)m(p+ iq)m ∈C⊗R I(V ) ,

and since I(V ) is a radical ideal then p2 + q2 ∈ I(V ). Thus p2 + q2 = 0 on V and so p = q = 0 on V ,
meaning that p, q ∈ I(V ) and finally that p+ iq ∈C⊗R I(V ). ■

Consider W = O(3), acting transitively on the 5-sphere S5 in C3 = C⊗R R3 and take the points
z = (1,0,0), z′ = (i,0,0). Then W .z and W .z′ are two disjoint copies of the 2-sphere S2 inside S5,
yet they cannot be separated by a complex polynomial on C3 by lemma A.5. Thus theorem A.4
does not hold for the evaluation map F 7→ F(z)= F(z′).

B The Plancherel-Godement Theorem

We shall state and give a proof of an abstract version of the Plancherel-Godement theorem for
positive functionals on complex involutive algebras. Throughout this section, A will denote a
commutative topological ∗-algebra over the complex numbers and α ∈ A∗ a ∗-positive functional
in the sense that

α(xx∗)≥ 0

for all x ∈ A . The main idea of the Plancherel-Godement theorem will be to express α in terms of
a positive Radon measure να on some locally compact space Ωα.

We will be interested in under what conditions we can extend α to the unitalization of A. We
define the unitalization A+ of A to be the complex vector space

A+ = A⊕C ,

endowed with the operation (x1,λ1)(x2,λ2)= (x1x2 +λ2x1 +λ1x2,λ1λ2) and the involution (x,λ)∗ =
(x∗,λ), and we write x +λ in place of (x,λ). It is clear that A+ defines a complex involutive
commutative algebra.

Given an algebra A as described, we can define the Gelfand transform to interpret A in terms of
a commutative C∗-algebra. First we need the notion of a spectrum. Endow A∗ with the coarsest
topology of pointwise convergence and define the spectrum of characters on A by

Spec A =
{
χ ∈ A∗\{0} : χ(ab∗)= χ(a)χ(b) ∀a,b ∈ A

}
,

i.e. the subspace of A∗ consisting of nonzero, complex-valued ∗-homomorphisms. If A is a com-
mutative Banach algebra, then there is an identification of Spec A with the maximal ideal space
of A as a ring by sending χ ∈ Spec A to its kernel. Moreover, for such an A, Spec A is a locally
compact subspace of A∗ by the Banach-Alaoglu theorem and if A is unital then Spec A is closed,
hence compact. The Gelfand transform on A is the ∗-homomorphism

Γ : A −→ C0(Spec A) ,

sending x ∈ A to the evaluation map x̂ : χ 7→ χ(x).
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A notion we will need when studying extensions of α to A+ is that of a positive-definite element of
A.

Definition B.1. Let A and α be as above. An element p ∈ A is positive-definite with respect to α if
the functional

αp(x)=α(px)

extends to a ∗-positive functional on A+.

Example. If x ∈ A then xx∗ ∈ A is positive-definite with respect to α , for if we define

αxx∗(y+λ)=α(xx∗y+λxx∗)

then
αxx∗((y+λ)(y+λ)∗)=α((xy+λx)(xy+λx)∗)≥ 0.

The Plancherel-Godement theorem can now be stated in terms of positive-definite elements in A.

Theorem B.2. (Plancherel-Godement) Let A be an algebra as above with the addition of having
an approximate identity {aU }, and let α ∈ A∗ be a ∗-positive functional satisfying

α(xyy∗x∗)≤ kyα(xx∗) , ky ≥ 0

for every x, y ∈ A . Moreover, denote by pA the dense ideal in A generated by positive-definite
elements. Then there is a unique positive Radon measure να on a locally compact subspace Ωα ⊂
Spec A such that for every x ∈ pA,

α(x)=
∫
Ωα

x̂ dνα .

To prove the theorem we prove a Bochner theorem for functionals on commutative Banach alge-
bras A that extend to A+ and then obtain the measure να on Spec A by means of positive-definite
elements. First we need to find a suitable criterion for when ∗-positive functionals on A extend to
∗-positive functionals on the unitalization of A.

In general, a ∗-positive functional α ∈ A∗ defines a positive hermitian form hα on A by hα(x, y)=
α(xy∗). It satisfies the Cauchy-Schwarz inequality, which reads as

|α(xy∗)|2 ≤α(xx∗)α(yy∗) .

If A is unital then for k =α(1) we have

(1) α(x∗)=α(x) , and

(2) |α(x)|2 ≤ kα(xx∗).

It turns out that this is a sufficient criterion for α to be extendable to A+.

Lemma B.3. A ∗-positive functional α : A →C extends to a ∗-positive functional on A+ if and only
if the conditions (1) and (2) hold.

Proof. The ”only if” statement has been proven, so assume that (1) and (2) holds. Then if we for
λ ∈C define α(λ)=λk we get that α(x)≥−kα(xx∗) and

α((x+λ)(x+λ)∗)=α(xx∗)+2Re(λα(x))+|λ|2k

≥α(xx∗)−2|λ|
√

kα(xx∗)+|λ|2k

= (
√
α(xx∗)−|λ|

p
k)2 ≥ 0.

■
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With this criterion we can state the Bochner theorem for C∗-algebras.

Theorem B.4. (Bochner) Let A be a commutative C∗-algebra. Then a ∗-positive functional α ∈ A∗

extends to a ∗-positive functional on A+ if and only if there is a unique finite positive Borel measure
µα on Spec A such that

α(x)=
∫

Spec A
x̂ dµα .

Proof. If µα is finite positive Borel measure such that α(x)= ∫
Spec A x̂ dµα then

(1) α(xx∗)= ∫ |x̂|2 dµα ≥ 0 ,

(2) α(x∗)= ∫
x̂ dµα = ∫

x̂ dµα =α(x) , and

(3) |α(x)|2 = ∣∣∫ x̂ dµα
∣∣2 ≤ ∥∥µα∥∥∫ |x̂|2 dµα = ∥∥µα∥∥α(xx∗) ,

so α extends to a ∗-positive functional on A+ by lemma B.3.

Conversely, if α ∈ A∗ extends to a ∗-positive functional on A+ then by iterating condition (2) we
get that

|α(x)|2 ≤ kα(xx∗)≤ k1+1/2α((xx∗)2)1/2 ≤ ...≤ k1+...+2−n
α((xx∗)2n

)2−n

≤ k1+...+2−n ‖α‖
∥∥∥(xx∗)2n

∥∥∥2−n

−→
n

k2rA(xx∗) ,

where rA is the spectral radius on A. From the spectral theory of Banach algebras one can show
that rA(x)= supχ |χ(x)| = ‖x̂‖∞, so as χ(xx∗)= |χ(x)|2 then rA(xx∗)= ‖x̂‖2∞. Taking square roots we
get that

|α(x)| ≤ k‖x̂‖∞ ,

meaning that we have a continuous functional µα on Γ(A+) ⊂ C(Spec A+) given by µα(x̂) = α(x).
The subalgebra Γ(A+) is self-adjoint as A is and it separates points by definition, so as Spec A+

is compact then Γ(A+)⊂ C(Spec A+) is dense by the Stone-Weierstrass theorem. By continuity, µα
extends to a positive functional on C(Spec A+) and by the Riesz representation theorem µα defines
a unique finite positive Borel measure on Spec A+. Since α initially was defined on A, we may
take µα restricted to Spec A, and finally we have

α(x)=
∫

Spec A
x̂ dµα .

■

To prove the Plancherel-Godement theorem, we now construct a ∗-representation of A to lift the
functional α ∈ A∗ to a commutative C∗-algebra. On it we can make use of the Bochner theorem
that we just proved.

By the Cauchy-Schwarz inequality,

|α(xyy∗x∗)|2 ≤α(xyy∗yy∗x∗)α(xx∗)

which means that the kernel Iα = {x ∈ A : α(xx∗) = 0} is an ideal in A. If we denote by Hα

the Hilbert completion of the inner product space (A/Iα,hα), then right multiplication by y ∈ A
becomes a linear map π(y) : Hα → Hα and the requiremet that it be bounded is precisely that
there is a constant ky such that

α(xyy∗x∗)≤ kyα(xx∗) .

Therefore we obtain a ∗-representation

π : A → B(Hα)
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and the subalgebra π(A)⊂ B(Hα) is contained in a minimal self-adjoint, commutative C∗-algebra
Bα ⊂ B(Hα), in which π(A) is dense. We wish to lift α to a functional β on Bα, so that it remains
to prove the theorem for commutative C∗-algebras. Define for each x ∈ A,

β(π(x))=α(x) .

For β to define a functional on π(A) we need to prove that α(x) = 0 whenever π(x) = 0. First note
that the kernel of π is

kerπ= {x ∈ A : xy ∈ Iα ∀y ∈ A}= {x ∈ A :α(xyy∗x∗)= 0 ∀y ∈ A}

and as α(xyy∗x∗)≤ kyα(xx∗) for all y ∈ A then

{x ∈ A :α(xyy∗x∗)= 0 ∀y ∈ A}⊃ {x ∈ A :α(xx∗)= 0}= Iα .

Replacing y ∈ A with the approximate identity {aU } we see that if x ∈ kerπ then 0=α(xaU a∗
U x∗)→

α(xx∗), so α(xx∗) = 0. Thus we have shown kerπ = Iα. This means that in order for β to define
a functional π(A) → C, it suffices to show that α(x) = 0 whenever x ∈ Iα. By the Cauchy-Schwarz
inequality,

|α(xy∗)|2 ≤α(xx∗)α(yy∗) ,

so α(xy∗)= 0 for all y ∈ A whenever x ∈ Iα. Taking {aU } in place of y, then α(x)= 0 in the limit.

To prove continuity of the now well-defined functional β : π(A) →C, note that by the first isomor-
phism theorem,

A π(A)

A/Iα

π

qα ∼=
(B.1)

commutes. This means that π is an identification map in the topological sense, so the continuity
of α= β◦π is equivalent to the continuity of β. Now β : π(A) → C is bounded and so it extends to
all of Bα as π(A) is dense.

From this construction it suffices to prove the Plancherel-Godement theorem for the algebra Bα,
so without loss of generality, A is a commutative C∗-algebra.

B.1 Proof of the Plancherel-Godement Theorem for commutative C∗-algebras

Let A be a commutative C∗-algebra. If p ∈ A is positive-definite, then by the Bochner theorem
there is a unique finite positive Borel measure µp on Spec A such that

αp(x)=
∫

Spec A
x̂ dµp .

Moreover, if p, q ∈ A both are positive-definite then µp(x̂q̂)=α(pqx)=µq(x̂ p̂), which by continuity
extends to

µp( f q̂)=µq( f p̂)

for all f ∈ Cb(Spec A). To define a functional that takes f ∈ C0(Spec A), we need the following
lemma:

Lemma B.5. For every compact subset K ⊂ Spec A there is a positive-definite p ∈ A such that p̂ is
strictly nonzero on K.

Proof. For any nonzero χ ∈ Spec A there is a aχ ∈ A such that âχ(χ) 6= 0 and so if we define pχ =
aχa∗

χ then it is positive-definite and p̂χ = |âχ|2 is strictly nonzero in an open neighbourhood Uχ of
χ. From this we get an open cover {Uχ : χ ∈ K} of K and by compactness there are χ1, ...,χn ∈ K
such that K ⊂⋃n

k=1Uχk . Taking p = pχ1 + ...+ pχn finishes the proof. ■
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Now we can for every f ∈ Cc(Spec A) find at least one positive-definite p ∈ A such that p̂ is strictly
nonzero on supp( f ), so define a functional να : Cc(Spec A)→C by

να( f )=µp( f /p̂)

for any such p ∈ A. It is well-defined, for if p, q ∈ A are two such positive-definite elements then
supp(p̂q̂)= supp(p̂)∩supp(q̂)⊃ supp( f ), meaning that f /(p̂q̂) ∈ Cc(Spec A), so

µp

( f
p̂

)
=µp

( f
p̂q̂

q̂
)
=µq

( f
p̂q̂

p̂
)
=µq

( f
q̂

)
.

It is also linear, for if p ∈ A is positive-definite and strictly nonzero on supp( f1)∪ supp( f2) ⊃
supp( f1 + f2), f1, f2 ∈ Cc(Spec A), then the same holds on both supp( f1) and supp( f2), so

µp

(λ1 f1 +λ2 f2

p̂

)
=λ1µp

( f1

p̂

)
+λ2µp

( f2

p̂

)
.

Lastly, it is continuous in the inductive topology on Cc(Spec A). Indeed, if K ⊂ Spec A is compact
and f is supported on a compact subset of K then for a positive-definite p ∈ A as before,

|να( f )| = |µp

( f
p̂

)
| ≤

∥∥µp
∥∥

δp
‖ f ‖∞ .

Here, δp = infa∈A p̂(a) > 0 and since να( f ) is independent of p then this bound implies continuity.
From the proof of lemma A.5 we can take p such that p̂ is positive, so we now have a positive
functional να ∈ Cc(Spec A). By the Riesz representation theorem, να defines a unique positive
Radon measure on Spec A and we write

να( f )=
∫

Spec A
f dνα , f ∈ Cc(Spec A) .

We can extend this functional to the Gelfand transform of elements in the ideal pα in A generated
by the positive-definite elements p ∈ A: If f ∈ Cb(Spec A) then p̂ is strictly nonzero on the support
of f p̂, so ∫

Spec A
f p̂ dνα =

∫
Spec A

f dµp

and in particular, ∫
Spec A

x̂ p̂ dνα =
∫

Spec A
x̂ dµp =α(px)

for all x ∈ A.

B.2 Proof of the Full Plancherel-Godement Theorem

Recall the original setting, where A is a complex involutive algebra and Bα ⊂ B(Hα) is a C∗-
algebra. We saw that a ∗-positive functional α ∈ A∗ lifts to a functional β ∈ B∗

α and by the proof
for C∗-algebras, there is a unique positive Radon measure νβ on SpecBα such that

β(qb)=
∫

SpecBα

b̂q̂ dνβ

for every positive-definite q ∈ Bα and every b ∈ Bα. To finish the proof of the theorem we translate
the measure νβ back to Spec A. First we define the space Ωα and prove that it is locally compact.

The ∗-representation π : A → Bα dualizes to a map on spectra,

π∗ : SpecBα −→Spec A ,

given by precomposing with π. If χ ∈ SpecBα then χ is uniquely defined on the dense subspace
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π(A) ⊂ Bα, so it is uniquely defined by π∗χ = χ ◦π ∈ Spec A, meaning that π∗ is injective. Now
define

Ωα =π∗(SpecBα) .

The space SpecBα is locally compact by the Banach-Alaoglu theorem since Bα is a Banach space
and the spectrum is a subspace of the closed unit ball in B∗

α. For Ωα to be locally compact, it thus
suffices to show that π∗ is a homeomorphism.

Lemma B.6. The map π∗ : SpecBα→Spec A is a homeomorphism onto Ωα ⊂Spec A.

Proof. If χλ→ χ in SpecBα, then the same holds on the subspace π(A)⊂ Bα, which is equivalent to
π∗χλ→π∗χ in Spec A. Thus π∗ is continuous. Conversly, suppose that π∗χλ→π∗χ inΩα ⊂Spec A.
Then χλ→ χ on the dense subspace π(A)⊂ Bα. If b ∈ Bα and aτ is a net in A such that π(aτ)→ b,
then

|χλ(b)−χ(b)| ≤ |χλ(b)−χλ(π(aτ))|+ |χλ(π(aτ))−χ(π(aτ))|+ |χ(π(aτ))−χ(b)| .
Choosing λ and τ such that each term on the RHS is less than ε> 0, then |χλ(b)−χ(b)| < 3ε and
so χλ(b)→ χ(b). Since b ∈ Bα was arbitrary then χλ→ χ in SpecBα and (π∗)−1 is continuous. ■

Taking the positive Radon measure νβ on SpecBα, we can then push it forward to a unique pos-
itive Radon measure να = (π∗)∗νβ on Ωα ⊂ Spec A. If y ∈ pA then ŷ(π∗χ) = π∗χ(y) = χ(π(y)) =�π(y)(χ), so by the definition of the pushforward we have∫

Spec A
ŷ dνα =

∫
SpecBα

�π(y)dνβ .

Finally, if p ∈ A is positive-definite with respect to α then π(p) ∈ Bα is positive-definite with respect
to β by definition, so π restricts to a map π : pA → pBα

. This means in particular that

α(px)=β(π(p)π(x))=
∫

SpecBα

π̂(x)�π(p)dνβ =
∫
Ωα

x̂ p̂ dνα ,

concluding the proof of the Plancherel-Godement theorem.
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