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ABSTRACT 
 

Neuroblastoma (NB) is the most common extracranial pediatric solid malignancy caused 

by the failed differentiation of precursor cells of the developing sympathetic nervous 

system. NB accounts for about 15% of childhood cancer-related deaths. Treatment failure 

and relapse are common in NB patients despite intensive chemotherapy and 

immunotherapy interventions, suggesting the need for new and effective treatment 

options.  Common genetic aberrations associated with NB include MYCN amplification, 

chromosome 11q deletion, 1p deletion, 17q gain, 2p gain, and recurrent mutations in 

Anaplastic Lymphoma Kinase (ALK). While treatment of some categories of ALK-positive 

pediatric cancer patients such as non-Hodgkin lymphoma and inflammatory 

myofibroblastic tumour (IMT) with the first-generation ALK tyrosine kinase inhibitor (TKI), 

crizotinib, produced promising results, the outcome for ALK-positive NB patients was less 

encouraging, hence the need for more potent ALK TKIs for treatment of NB patients. This 

thesis aimed to further our understanding of ALK signalling and its role in NB 

differentiation and explore novel ALK TKIs in a neuroblastoma setting. 

 

In the first study, we investigated the therapeutic efficacy of the second-generation ALK 

TKI, brigatinib, in an NB preclinical setting. Brigatinib was reported to be effective against 

ALK fusion-positive non-small cell lung tumours. We found that brigatinib potently 

inhibited both the activity of ALK full-length and growth of ALK-addicted NB cells in-vitro, 

in xenograft and Drosophila models. Compared to crizotinib, brigatinib inhibited the 

activities of different ALK-mutant alleles more effectively and potently inhibited crizotinib 

resistant ALK mutants in vitro. 

 

In the second study, we characterized a novel ALK-I1171T mutant allele which we 

identified in a tumour from a 16 month old NB patient. We showed that ALK-I1171T is a 

gain-of-function mutation, which is resistant to crizotinib, but can be effectively inhibited 



by second- and third-generation ALK TKIs such as brigatinib, ceritinib and lorlatinib. 

Based on these results and the severe toxic side effect of the initially administered 

chemotherapy, ceritinib monotherapy was chosen for this child. After 7.5 months of 

ceritinib treatment, the primary tumour shrunk in size and was removed surgically. The 

patient showed complete metastatic remission and remains in remission at 58 months 

post-treatment. 

 

In the third and last study, we investigated Disk large homologue 2 (DLG2), a gene 

reported to be uniquely upregulated in transient intermediary cells during Schwann cell 

precursor (SCP) differentiation to adrenal chromaffin cells. We found that DLG2, a gene 

located on the frequently deleted chromosome 11q in NB, is an NB tumour suppressor 

gene whose expression is lost in NB cell lines. Restoration of DLG2 expression inhibited 

NB cell growth and promoted NB cell differentiation. High expression of DLG2 in NB 

tumours is associated with good prognosis. Mechanistically we showed that oncogenic 

ALK maintains an undifferentiated NB cell phenotype by repressing DLG2 expression via 

the ERK1/2-SP1 signalling cascade. 

 

In summary, these findings highlight the role of ALK in differentiation and therapeutic 

potential of targeting ALK in ALK-positive NB tumours. 

 

Keywords: Neuroblastoma, ALK, 11q, DLG2, SP1, differentiation, crizotinib, ceritinib, 

brigatinib. 
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SAMMANFATTNING PÅ SVENSKA 
 
Neuroblastom (NB) är en maligniteten hos barn och den troliga orsaken till sjukdomen är 

misslyckad differentiering av tidiga celler i det sympatiska nervsystemet. NB svarar för 

cirka 15% av alla barncancerrelaterade dödsfall. Återfall är vanligt förekommande hos 

NB-patienter, trots förbättrade behandlingsregimer med kemoterapi och immunoterapi, 

vilket indikerar ett tydligt behov av nya och mer effektiva behandlingsalternativ. 

Neuroblastom är en heterogen sjukdom med flera och olika genetiska avvikelser vilket 

inkluderar MYCN-amplifiering, deletion av kromosom 11q och/eller 1p. Upp reglerat 

uttryck av delar av kromosom 17q och/eller 2p. Få sjukdomsframkallande mutationer av 

individuella gener har observerats hos NB om man undantar mutationer i anaplastiskt 

lymfomkinas (ALK). Behandling av ALK-positiva Non-Hodgkins eller Inflammatorisk 

Myofibroblastisk tumörer (IMT) med första generationens ALK-tyrosinkinashämmare, 

crizotinib, gav mycket goda resultat, däremot var behandlingen av ALK-positiva NB-

patienter mindre uppmuntrande.  Härmed finns det ett behov av förbättrade och mer 

effektiva ALK hämmare för behandling av NB-patienter. Målet med denna avhandling var 

främst att öka vår förståelse av ALK-medierad signalering och dess roll i NB-

differentiering, samt att utforska nya ALK hämmare för framtiden. 

 

I den första studien i denna avhandling undersökte vi den terapeutiska effekten av en 

andra generationens ALK hämmare, brigatinib, i preklinisk neuroblastom miljö. Det var 

redan rapporterat att brigatinib är en effektiv hämmare mot ALK-fusionspositiva icke-små-

cellet lungtumörer. I vår studie visar vi att brigatinib blockerar den enzymatiska aktiviteten 

hos både vildtyps ALK och onkogent ALK. Brigatinib stoppar tillväxten av ALK-positiva 

NB-cell linjer, mus-xenografter och i ett Drosophila-model system. Jämfört med första 

generationens hämmare har brigatinib en mer potent aktivitet och hämmar även 

potentiellt crizotinib-resistenta ALK-mutanter in vitro. 

 

I den andra studien karakteriserade vi en ALK-I1171T mutantallel som identifierades i en 

tumör hos en 16 månader gammal NB-patient. Vi visade att ALK-I1171T mutationen är 

en konstitutiv aktiv ALK mutation som är resistent mot crizotinib. ALK-I1171T kan effektivt 

hämmas av andra och tredje generationens ALK TKI såsom brigatinib, ceritinib och 

lorlatinib. Baserat på resultaten och den allvarliga toxiska bieffekten av den initialt 

administrerade kemoterapin valdes ceritinib monoterapi för detta barn. Efter 7,5 

månaders ceritinib-behandling, minskade primär tumör i storlek, avlägsnades kirurgiskt, 

och patienten visade fullständig metastaserad remission och är i kontinuerlig remission 

även efter 34 månader efter behandlingen. 

 

 



I den tredje och sista studien undersökte genen Disk large homolog 2 (DLG2), en gen 

som rapporterades vara uppreglerad i övergående fas när celler differentieras från 

Schwann Cell Precursors (SCP) till binjurekromaffinceller. DLG2 genen är lokaliserad på 

den ofta deleterade kromosomen 11q och vars uttryck ofta gått förlorat i NB-cellinjer. 

Överuttryck av DLG2-genen hämmar NB-celltillväxt och främjade NB-celldifferentiering. 

Högt uttryck av DLG2 i NB-tumörer är associerad med god prognos. Mekaniskt visade vi 

att onkogen ALK upprätthåller odifferentierad NB-cellfenotyp genom att blockera DLG2-

uttryck via ERK1/2-SP1-signalkaskaden. 

 

Sammanfattningsvis visar mina resultat att ALK har en tydlig roll i 

differentieringsprocessen och att det finns en terapeutisk potential att behandla ALK-

positiva NB-tumörer. 

 

Nyckelord: Neuroblastom, ALK, 11q, DLG2, SP1, differentiering, crizotinib, ceritinib, 

brigatinib. 
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1 INTRODUCTION 

1.1 Cancer  

 

Cancer is a genetic disease which involves uncontrolled cell proliferation. It is 

characterized by genomic instability which manifests through mutations, gene 

amplifications, deletions or gene translocations, leading to aberrant protein expression 

and function. Genomic instability gives rise to multiple changes, including inactivation of 

tumour suppressors and activation of proto-oncogenes (Weinberg, 1989; Yokota and 

Sugimura, 1993). These result in the disruption of the delicate control and the finely tuned 

balance of cell growth, differentiation and apoptosis, culminating in unrestrained cell 

clonal expansion into malignant tumours. The conversion of normal cells into malignant 

cells involves multiple steps including tumour initiation, promotion and progression 

(Hanahan and Weinberg, 2011; Pitot et al., 1981). Though cancer has long been 

considered a genetic disease, there should be caution against such absolute dogma, as 

the ultimate driver of cancer pathogenesis is aberrant cell signalling, involving abnormal 

enzymatic activities, in key processes, such as cell cycle, growth, differentiation, survival 

(Yaffe, 2019). It is projected that cancer could soon rank as the highest cause of death in 

almost all countries (Bray et al., 2018). 

1.1.1 Oncogenes and tumour suppressors  

Oncogenes 

 

Normal cell behaviour involves well-regulated cell proliferation, differentiation, 

programmed cell death, also known as apoptosis, and senescence. Proto-oncogenes 

mainly stimulate cell division, growth and cell survival. They become oncogenes through 

the acquisition of gain-of-function point mutations (e.g. in BRAF, RAS, EGFR, ALK), gene 

amplification (e.g. MYC, MYCN, DHFR, EGFR, RAS), genomic translocation (e.g. BCR-

ABL, EML4-ALK, NPM-ALK, ) or epigenetic modifications causing hyperactivation of 

protein expression and signalling, with concomitant effect of unrestrained cell division, 

growth and cell survival, the characteristic features of cancer (Croce, 2008; Lee and 

Muller, 2010; McCormick, 2015; Yaffe, 2019).  

 

Mutations in the RAS family genes (K-RAS, H-RAS and N-RAS) are common, and found 

in 16% of all human cancers, with significant overrepresentation in specific cancers (Prior 

et al., 2012). For instance, K-RAS mutations are found in 95% of all pancreatic cancers 

and 50% of colon cancers and also represents the most mutated (85%) of all RAS gene, 

with N-RAS at 12% and H-RAS at 3% (Conti, 1992; Cox and Der, 2010; Miller and Miller, 

2011). RAS proteins constitute the founding members of the RAS-related small GTPase  
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Figure 1. Schematic illustration of RAS signalling. Upon stimulation, eg. from a receptor tyrosine kinase 

(RTK), guanine nucleotide exchange factors (GEFs) mediate the exchange of GTP for the RAS-bound GDP 

in a process where GDP-bound inactive RAS is switched to GTP-bound active RAS. Activated RAS then 

signals to downstream targets. GTPase-activating proteins (GAPs) catalyze the hydrolysis of RAS-bound 

GTP, leading to the formation of inactive GDP-bound RAS. 

  

superfamily which act as molecular switches that, when activated through the binding of 

GTP, elicit a plethora of signalling events that contribute to key cellular processes, 

including cell proliferation, differentiation, cell division and cell survival (Cox and Der, 

2010) (Figure 1). The evolutionary significance of this pathway is highlighted by the 

increasing number of pathological conditions that have been associated with defects in 

some of its components (Fernández-Medarde and Santos, 2011). Upstream growth factor 

receptors like receptor tyrosine kinases (RTKs) can activate RAS/MAPK and PI3K/AKT 

pathways in normal cells. Therefore, even in the absence of specific mutation in members 

of the RAS/MAPK axis, constitutive or oncogenic activation of upstream signalling 

proteins, including  RTKs such as ALK and EGFR can potently drive RAS/MAPK 

signalling (Hallberg and Palmer, 2013; Lemmon and Schlessinger, 2010). These 

implicate the RAS/MAPK pathway and its components as common oncogenes in cancer 

and highlights the therapeutic potentials of targeting members of this pathway. 
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Tumour suppressors 

 

Tumour suppressor genes (TSGs) act to check unrelenting cell growth and promote DNA 

repair and activation of cell cycle checkpoint (Benedict et al., 1983; Friend et al., 1986; 

Harris et al., 1969; Lee and Muller, 2010). TSGs may be growth-constraining factors that 

act to counterbalance growth-promoting proto-oncogenes and oncogenes, thereby 

making the reduction or loss of tumour suppressor function as essential as oncogene 

activation in tumourigenesis. Mutations in TSGs are mostly loss-of-function mutations. 

They are thought to be recessive at the cellular level, necessitating the inactivation of 

both alleles during tumourigenesis (Knudson, 1971; Payne and Kemp, 2005). This view 

was based on Knudson’s ‘two-hit’ model of tumourigenesis, in which one mutation (the 

first ‘hit’) is usually familial, but could also be sporadic. In contrast, the second hit occurs 

sporadically and significantly accelerates tumour formation, as famously exemplified in 

the retinoblastoma gene (RB) of hereditary and nonhereditary forms of retinoblastoma 

(Friend et al., 1986; Knudson, 1971) and p53 of Li-Fraumeni syndrome (Finlay et al., 

1989; Malkin et al., 1990). Knudson’s ‘second-hit’ is frequently in the form of allelic 

deletion; however, promoter methylation with subsequent loss of gene expression could 

also occur (Friend et al., 1986).  

 

A different mode of TSG inactivation is through the phenomenon of dominant-negative 

mutation. Contrary to the Knudson's two-hit hypothesis, the remaining wild-type allele 

does not require inactivation since the dominant-negative mutant protein plays the role of 

inactivating the wild-type protein by binding to the latter to form a non-functional protein 

complex (Kern et al., 1992; Unger et al., 1992). This category of TSG inhibition is well 

illustrated in some p53 mutants. Certain p53 mutant proteins form heterotetramer 

complex with wild-type p53 resulting in the inactivation of the latter (Kern et al., 1992; 

Unger et al., 1992). These indicate that a dominant-negative mutation in one p53 allele is 

enough to inactive the function of p53 in a cell. Certain mutations in Wilms' tumour gene 

(WT1) are also considered to act in a dominant-negative way (Haber et al., 1992; Reddy 

et al., 1995).  

 

Some TSGs however, have haploinsufficient phenotypes. In this scenario, a mutation in, 

or deletion of, one allele of a tumour suppressor gene results in the manifestation of 

extreme sensitivity to reduced gene dosage. In other words, a single functional copy of 

this gene is inadequate to maintain normal function in cell growth and development. 

Earlier haploinsufficient TSGs that were identified include the cyclin-dependent kinase 

inhibitor p27kip1, p53 and TGF-β (Fero et al., 1998; Tang et al., 1998; Venkatachalam et 

al., 1998). Over 40 TSGs have since been shown to exhibit evidence of haploinsufficiency 

between the period of 1998 and 2005 (Payne and Kemp, 2005).   
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Another way of inhibiting TSG function is through the transcriptional repression of the 

TSG expression by oncogene mediated signalling, which might involve a direct 

binding/action of transcription repressors or via epigenetic silencing (Kazanets et al., 

2016; Mirmohammadsadegh et al., 2006; Sasahara et al., 1999; Yan et al., 2006). 

Oncogenic RAS signalling, through SP1, was found to inhibit the expression of RECK, a 

tumour suppressor which inhibits tumour invasion and metastasis (Sasahara et al., 1999). 

Furthermore, oncogenic NPM-ALK signalling in ALK-positive T cell lymphoma cells 

facilitates epigenetic silencing of the context-dependent TSG, STAT5A (Zhang et al., 

2007). Therefore, identifying instances and unravelling the mechanisms of oncogene 

mediated suppression of TSGs may help develop therapeutic strategies to restore their 

(TSGs) expression in tumour cells. This approach was explored in Paper III of this thesis. 

 

Genetic lesions, frequently in the form of mutation, cause gain-of-function activation of 

oncogenes and loss-of-function in TSGs. However, considering the low spontaneous 

mutation rate, i.e. about one mutation in every 107 cell divisions, for any given gene in 

cells, and the requirement of multiple mutations in tumourigenesis, one could expect that 

a considerable length of time may be needed to achieve specific mutation permutations 

vital to transform normal cells to malignant tumours (Kumar and Subramanian, 2002). 

There is a higher cancer incidence in ageing populations (Smetana et al., 2016), 

confirming that cancer in general is an age-related disease. There are nevertheless 

childhood cancer types in humans, which require special consideration. 

1.1.2 Adult cancers and childhood cancers 

As mentioned above, cancer is often regarded as an age-related disease, most frequently 

diagnosed in adults. The incidence of most cancers increases with age, with a rapid rise 

starting in midlife (White et al., 2014). Despite its paucity, pediatric cancer is the second 

most common cause of death in children below the age of 14 years (CDC, 2020; Saletta 

et al., 2014). Adult cancers tend to arise from a multistep process which progresses over 

several years or decades with simultaneous accumulation of several mutations (Scotting 

et al., 2005). On the contrary, pediatric cancers develop over a much shorter time, with 

some even occurring in-situ (Beckwith and Perrin, 1963; Scotting et al., 2005), suggesting 

that much fewer events may drive their initiation and progression.  

 

Adult cancers generally tend to have higher mutation burden compared to pediatric 

cancers (Gröbner et al., 2018; Kandoth et al., 2013). In a study which looked at the 

mutational landscape and significance across different cancer types, Kandoth and 

colleagues coined the phrase “significantly mutated genes” (SMGs) to describe genes 

under positive selection either in individual or multiple cancer types that tend to exhibit 

higher mutation frequencies (Kandoth et al., 2013). These SMGs play roles in a vast 

range of cellular processes. The authors showed that 47% of pediatric tumours contain 
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at least one SMG mutation, with the majority (57%) harbouring only one (Gröbner et al., 

2018). On the contrary, 93% of adult tumours exhibit a minimum of one mutation in an 

adult-related SMG mutation, and 76% of these harbour multiple SMG mutations (Gröbner 

et al., 2018; Kandoth et al., 2013). The frequent mutual exclusivity of most SMGs in 

different childhood cancer types highlights the specificity of single putative driver genes 

in pediatric cancers, in contrast to more recurrent co-mutation in adult cancer types 

(Gröbner et al., 2018; Kandoth et al., 2013). Evidence from this and many other reports 

strongly point to a comparatively higher mutational burden, frequently in the form of point 

mutations, in adult cancers. This fact could stem from the chronic exposure of adults to 

mutagenic processes such as smoking and ultraviolet radiation during their lifetime 

(Carpenter and Bushkin-Bedient, 2013). This difference in mutational burden impacts the 

patient tumour’s response to targeted therapy, resistance and relapse. 

 

About 90% of human cancers arise from epithelial tissues and are hence referred to as 

carcinomas, which include, for instance, tumours of the gastrointestinal tract, 

genitourinary tract, skin, breast, prostate and lung (Frank, 2007). These epithelial tissues 

self-renew continuously throughout life and constitute the source of most adult cancers 

(Frank, 2007; Tomasetti et al., 2013). The renewing cells, called stem cells, of these 

epithelial tissues, have a higher risk for accumulating mutations (Frank, 2007). Cancer 

incidence in these renewing tissues has been found to rise sharply with age (Frank, 2007; 

Tomasetti et al., 2013). By contrast, pediatric cancers often originate from rapidly dividing 

progenitor cells of developing organs and tissues, where cell division is comparatively 

little later in life (Rahal et al., 2018; Tomasetti et al., 2013). In general, pediatric cancers 

tend to favour a developmental model of cancer initiation. Here, block of terminal 

differentiation of precursor cells may underline the mechanism of origin of the disease. 

The precursor cells are immature cells of the developing organ from which these tumours 

arise. For instance, genes that are overexpressed in Wilms’ tumour (pediatric kidney 

tumour) are mostly similar to those expressed at an early stage of kidney development, 

such as PAX2, EYA1, and HBF2. In contrast, those downregulated in the tumour are 

similar to genes expressed at the late stages of kidney development, such as WT1 

(Wilms’ tumour 1) (Dekel, 2003; Hastie, 2017). Furthermore, gene expression analysis 

has shown that different clinical stages of neuroblastoma (NB) reflect differentiation arrest 

at different stages of the sympathoadrenal (NB cellular source) developmental trajectory 

(Hoehner et al., 1996; Nakagawara and Ohira, 2004). These spurred the motivation to 

explore the therapeutic use of differentiation agents to induce terminal differentiation of 

pediatric tumours like NB and embryonal rhabdomyosarcoma (Svalina and Keller, 2014). 

Understanding the molecular mechanisms involved in the suppression of differentiation 

of precursor cells of tumour origin will enable identification of biomarkers and targets for 

therapeutics. 
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1.2 Neuroblastoma 

 

NB is the most common extracranial childhood solid malignancy. This cancer is 

suggested to arise from neural crest (NC)-derived cells, of the developing sympathetic 

nervous system (SNS), where tumours are located in the adrenal gland or sympathetic 

ganglia and account for approximately 15% of childhood cancer-related deaths (Gatta et 

al., 2014; Maris et al., 2007; Matthay et al., 2016; Park et al., 2010). NB patients show 

striking variability in clinical outcome when the disease is classified by age, stage, ploidy, 

histology, and biologic characteristics such as MYCN amplification status and TRKA 

expression (Combaret et al., 1997; Goto et al., 2001; Schmidt et al., 2000; Tanaka et al., 

1995). The International Neuroblastoma Staging System (INSS) has classified NB into 

five main stages based on the above-mentioned parameters (Brodeur et al., 1993). Stage 

1 and 2 generally represent localized, non-metastatic, completely resectable tumours or 

tumours with incomplete excision. Stage 3 represents unresectable tumour with not very 

distant metastatic tumour. Stage 4 tumours are advanced with distant metastatic disease. 

Stage 4S is the last category with localized primary tumour as defined by stage 1 or 2 in 

patients under 12 months with dissemination limited to the liver, skin, and/or bone 

marrow. Generally, stage 4S NB represents a more favourable group with tumours which 

undergo spontaneous regression with little or no therapy (Brodeur, 2018; Matthay, 1998; 

Nickerson et al., 2000). NB is also classified, by the International Neuroblastoma Risk 

Group Staging System (INRGSS), as low, intermediate and high-risk based on INSS 

stage, age, DNA ploidy, histology, grade of tumour differentiation, MYCN amplification 

status and chromosome 11q status (Cohn et al., 2009; Monclair et al., 2009; Sokol et al., 

2020).  

 

Imaging techniques such as computed tomography (CT) or magnetic resonance imaging 

(MRI) are used to diagnose NB tumours. Metaiodobenzylguanine (MIBG) scanning is also 

used to diagnose both primary and metastatic NBs (Vik et al., 2009; Yang et al., 2012). 

Urine catecholamine metabolites such as vanillylmandelic acid (VMA) and homovanillic 

acid (HVA), are used for diagnostic and follow-up purposes (Barontini de et al., 1971; 

Matthay et al., 1999). The biopsy from a tumour is used to diagnose and obtain genetic 

data needed for risk-group assignment and treatment stratification. Today genomic 

profiling of NB tumours is performed using different technologies/methods, including (i) 

whole-genome sequencing by next-generation sequencing (NGS), (ii) targeted 

sequencing by sanger sequencing and NGS, (iii) single nucleotide polymorphism (SNP) 

arrays for detection of  structural copy number variations, (iv) comparative genomic 

hybridization (aCGH) for  detection of whole and structural chromosomal copy number 

variation and (v) Fluorescent in-situ hybridization (FISH) for detection of structural 

alterations (Bignell et al., 2004; Moreno et al., 2020; Savelyeva and Schwab, 2001; Zhao 

et al., 2004) 
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1.2.1 Genetic abnormalities in neuroblastoma aetiology 

 

Though the exact aetiology and initiation (origin) of the NB are not clear and very 

enigmatic, certain genetic factors have consistently been associated with NB 

pathogenesis. These genetic factors can be constitutional or somatic aberrations or both. 

However, while only 1-2% of NBs occur in the familial context, an overwhelming 98% of 

all NB cases occur sporadically (Deyell and Attiyeh, 2011). Genetic abnormalities found 

in NB tumour cells occur in the form of mutations, segmental chromosomal alterations 

(SCAs) and numerical chromosome alterations (NCAs). Common somatic mutations are 

found in genes such as ALK (10%), PTPN11 (2.9%) and ATRX (2.5%), whereas the latter, 

i.e. mutation, is even higher in NB patients older than five years (Cheung et al., 2012; De 

Brouwer et al., 2010; Pugh et al., 2013). SCAs include alterations such as MYCN 

amplification (25%), chromosome 17q gain (65%), 11q (20-45%), deletion, 1p deletions 

and 2p gain (Abel et al., 1999; Carén et al., 2008; Carén et al., 2010; De Brouwer et al., 

2010; Hallberg and Palmer, 2013; Javanmardi et al., 2019; Mlakar et al., 2017; Pugh et 

al., 2013).  

 

1.2.1.1 MYCN amplification 

 

MYCN is a member of the MYC family of TFs with basic helix-loop-helix motifs, which 

complexes with other proteins and binds directly or indirectly to target gene regulatory 

elements, in an E-box-dependent or independent manner, to activate or repress gene 

expression (Corvetta et al., 2013; Wenzel et al., 1991). MYCN controls the expression of 

thousands of genes that regulate cell proliferation or cell cycle progression, maintenance 

of pluripotency of cells and is involved in organogenesis during embryonic development 

(Higashi et al., 2019; Hsu et al., 2016; Sawai et al., 1993; Stanton et al., 1992). During 

embryogenesis, MYCN plays a role in the regulation of NC cell (NCC) fate in the aspects 

of ventral migration of NCCs and neural differentiation (Wakamatsu et al., 1997). Mouse 

embryos deficient in MYCN expression exhibited a tremendous decline in the number of 

mature neurons of the sympathetic ganglia and dorsal root ganglia, thereby highlighting 

the essential role of MYCN in the formation of NC-derived neurons (Stanton et al., 1992). 

Furthermore, MYCN expression is lost or significantly reduced in adult tissues and 

differentiated NC-derived neurons (Higashi et al., 2019; Zimmerman et al., 1986). 

Together, these findings imply a spatio-temporal mechanism of the regulation of MYCN 

expression. 

 

MYCN is located on chromosome 2p24, and its amplification is associated with 20-25% 

of NB, (Brodeur et al., 1984; Carén et al., 2010; Mathew et al., 2001; Muñoz et al., 2006). 

In all NB disease stages, MYCN amplification represents the essential genetic alteration 

which strongly predicts worst prognosis, aggressive phenotype and poorer survival, and 
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is mostly associated with an advanced stage of disease (Brodeur et al., 1984; Campbell 

et al., 2017; Cohn et al., 2009). Deregulated MYCN expression drives NB cell proliferation 

and promotes undifferentiated NB cell phenotypes and poor prognosis (Goto et al., 2001). 

Paradoxically, some NB cells lines, such as SK-N-AS, with a unique genetic setup, exhibit 

very low MYCN expression, and rather unresponsive to differentiation agents such as 

retinoic acid (RA). In contrast, NB cells with moderate to high MYCN expression such as 

SH-SY5Y and SK-N-BE(2) respectively, differentiate in the presence of RA  (Guglielmi et 

al., 2014). Restoring MYCN expression in SK-N-AS induced and further potentiated RA-

mediated neuronal differentiation (Guglielmi et al., 2014). These findings suggest that 

even though high MYCN expression blocks NB differentiation, MYCN nevertheless plays 

in RA-induced differentiation (Guglielmi et al., 2014). Indeed, it has been shown that 

MYCN expression is rapidly downregulated in the presence of RA prior to biochemical 

and morphological differentiation of NB cells (Thiele et al., 1985). 

 

NB tumours have been shown to consist of two unique cell types, namely mesenchymal 

(MES) and adrenergic (ADRN) cell types (van Groningen et al., 2017). ADRN NB cells 

are described as CD133- cells that express genes such as PHOX2A, PHOX2B and DBH 

that drive adrenergic lineage differentiation (van Groningen et al., 2017). In contrast, MES 

NB cells express the stem cell marker CD133 and show high expression of mesenchymal 

markers such as SNAI2, VIM (vimentin) and FN1 (fibronectin) (van Groningen et al., 

2017). Non-MYCN or very low-MYCN expressing NB cell lines are more mesenchymal 

with a striking genetic resemblance to undifferentiated NCCs. They are resistant to 

differentiation by RA, whereas, those with moderate to high MYCN expression resemble 

committed adrenergic lineage precursors and are responsive to RA (Masserot et al., 

2016; Messi et al., 2008; van Groningen et al., 2017). MYCN has been suggested to 

cooperate with and amplify the physiological output of a special class of transcription 

factors that include PHOX2B, ASCL1, GATA3 and HAND2, which form Core 

transcriptional Regulatory Circuitry (CRC) that promote and maintain ADRN identity of 

NB cells (Wang et al., 2019). ADRN NB cells are generally sensitive to chemotherapy 

and responsive to RA induced differentiation (van Groningen et al., 2017). These 

properties of NB cells suggest that despite the poor prognosis associated with MYCN 

amplification, the latter offers a therapeutic vulnerability to explore with differentiation-

inducing agents such as RA since differentiated NB tumour histology predicts good 

prognosis.   

 

1.2.1.2 Chromosome 1p deletion and 17q gain 

 

Another unbalanced chromosomal aberration in NB cells is the deletion of chromosome 

1p arm, which was first identified as a recurrent chromosomal aberration during cytogenic 

analyses of primary NB tumours and NB cell lines (Brodeur et al., 1977; Gilbert et al., 
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1982). Chromosome 1p deletion (1p-del) occurs in about 30-35% of NB cases and has a 

strong association with MYCN amplification, and predicts poor prognosis in a univariant 

analysis but is not an independent predictor of overall survival (OS) (Jensen et al., 1997; 

Maris et al., 2001; Maris et al., 1995; Martinsson et al., 1995). Two 1p del critical regions 

have been reported, one that is distally located in a shorter 1p36.2-3 del, which is 

frequently associated with MYCN single-copy NB, and a more proximal one located in a 

longer 1p35-36.1 del, having a major association with about 70% of MYCN-amplified 

(MNA) NB tumours (Maris et al., 2001; Schleiermacher et al., 1994; Takeda et al., 1994). 

CHD5 (chromodomain helicase DNA binding protein 5), CAMTA1, KIF1B and ARID1A 

are examples of TSGs that are located on chromosome 1p, and lost in 1p del (Bagchi et 

al., 2007; Fujita et al., 2008; García-López et al., 2020). CHD5 overexpression inhibited 

tumour cell growth in NB xenograft models (García-López et al., 2020). Recently, the loss 

of ARID1A in 1p-del has been shown to potentiate MYCN- mediated oncogenesis in NB 

models (García-López et al., 2020; Shi et al., 2020), and causes the conversion of NB 

cells from adrenergic to mesenchymal cell state (Shi et al., 2020).  It is worth noting that 

while the majority of 1p-del occur in the form of somatic aberrations, rare cases of 

constitutional 1p-del have been identified (Maris et al., 2001; White et al., 1997).  

 

The most recurrent segmental chromosomal alteration in NB is the unbalanced gain of 

the long arm of chromosome 17 (i.e. 17q-gain), occurring in about 54-62% cases, and is 

associated with poor prognosis (Bown et al., 1999; Gilbert et al., 1984; Vandesompele et 

al., 2005).  The gain of 17q is a common feature of advanced NB disease, tumours in 

children who are less than one year of age, and frequently occurs with MYCN 

amplification or 1p-del (Bown et al., 1999; Lastowska et al., 1997). The fundamental 

mechanism of 17q-gain is an unbalanced translocation, with different partner 

chromosomes, of which the most frequent site of the translocation is 1p, resulting in a 

gain of the distal arm of 17q and a simultaneous loss of 1p (Lastowska et al., 1997; 

Savelyeva et al., 1994; Van Roy et al., 1994).  

 

PPM1D and BIRC5 (survivin) located on chromosome 17q, are highly expressed in NB 

tumours and strongly associated with poor prognosis (Islam et al., 2000; Saito-Ohara et 

al., 2003). Knockdown of PPM1D or pharmacological inhibition of BIRC5 significantly 

suppresses growth and induces apoptosis in NB cells, making these genes possible 

therapeutic targets in NB (Islam et al., 2000; Lamers et al., 2011; Moreno et al., 2020; 

Saito-Ohara et al., 2003). 
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1.2.1.3 Chromosome 11q deletion 

 

Chromosome 11q alteration is one of the most recurrent SCAs, which occurs in about 20-

45% of all NB cases and is associated with worst prognosis (Carén et al., 2010; Mlakar 

et al., 2017; Spitz et al., 2003; Spitz et al., 2006). 11q-deletions (11q-del) are significantly 

associated with advanced stages of NB (Juan Ribelles et al., 2019; Mosse et al., 2007). 

While NB patients with stage 4S tumours generally tend have better prognosis, stage 4S 

tumours harbouring 11q-del tend to have increased relapse susceptibility (Juan Ribelles 

et al., 2019; Spitz et al., 2006). These observations suggest 11q deletion as a potential 

prognostic marker of NB patient outcome, hence, the inclusion of 11q-del as an 

independent risk factor in the International Neuroblastoma Risk Group (INRG) 

pretreatment risk classification (Cohn et al., 2009). 11q-alteration is mostly associated 

with older NB patients, with a median age at diagnosis for NB tumours with 11q-del 

around 36-42 months, while that of MNA tumours is about 21-24 months (Carén et al., 

2010; Juan Ribelles et al., 2019). 11q-del tumours also exhibit a characteristic propensity 

of high chromosome instability phenotype (Carén et al., 2010; Spitz et al., 2003).  

 

The high frequency of chromosomal breakage associated with 11q-del suggests 

chromosomal instability and shows that certain genes on the q-arm of chromosome 11 

might play key roles in the associated genomic instability phenotype (Carén et al., 2010; 

Spitz et al., 2003). Unbalanced 11q-del occurs in an almost exclusively hemizygous 

manner, suggesting that the recurrent genomic instability phenotype could be due to 

haploinsufficiency, epigenetic modification, or inactivation of second allele by mutation 

(Juan Ribelles et al., 2019; Mlakar et al., 2017). Genes such as ATM (11q22.3), MRE11A 

(11q21), CHEK1 (11q24.2) and H2AFX (11q23.3), located on chromosome 11q, are 

involved in the maintenance of genomic stability (Ditch and Paull, 2012; Mandriota et al., 

2015; Ward and Chen, 2001).  

 

Ataxia-telangiectasia mutated (ATM) regulates cell cycle checkpoints and plays a role in 

the coordination of cellular response to DNA double-strand breaks (DDSBs) by activating 

specific DNA repair and signalling pathways, thereby contributing to maintaining genomic 

stability (Ditch and Paull, 2012; Mandriota et al., 2015). Mandriota et al. described ATM 

as a potential haploinsufficient NB tumour suppressor gene, which when inactivated 

mimics 11q-del related aggressive phenotype in NB (Mandriota et al., 2015). During DNA 

damage repair, MRE11 participates in the formation of a trio-protein complex called MRN 

complex (MRE11-RAD50-NBS1), which identifies DNA damage sites, recruits ATM  to 

the DNA damage site and aids ATM to initiate DNA damage repair by the phosphorylation 

and activation of its respective substrates (Dupré et al., 2006; Podhorecka et al., 2010). 

At the DNA damage site, a histone variant H2AX, coded by H2AFX gene, is 

phosphorylated on serine 139 by ATM and ATR in response to DDSBs and single-strand 
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breaks respectively (Rogakou et al., 1998; Ward and Chen, 2001). Phosphorylation of 

H2AX to γH2AX at DDSB sites has been suggested to be critical in the co-localization 

and assembly of DNA damage repair (DDR) proteins for nuclei foci formation and 

promotion of DDSB repair and genome stability (Podhorecka et al., 2010). Hence, loss of 

H2AX is associated with impairment of recruitment of DDR proteins such as BRCA1 and 

NBS1 to DDSB foci, repair defects and increased chromosomal instability in human cells 

(Bassing et al., 2002; Celeste et al., 2002). CHEK1 acts to relay checkpoint signals when 

it is phosphorylated by the ATR or ATM (Bartek and Lukas, 2003; Walworth et al., 1993). 

In response to DNA damage, upstream checkpoint kinases, particularly ATR, rapidly 

phosphorylate CHEK1 at serine-317 and serine-345, leading to CHEK1 activation (Zhao 

and Piwnica-Worms, 2001). Activated CHEK1 in turn relay checkpoint signals by 

phosphorylating numerous downstream targets resulting in cell cycle checkpoint 

activation, cell cycle arrest, DNA repair or cell death when DNA damage is severe to stop 

damaged cells from continuing through the cell cycle (Carr et al., 1995; Patil et al., 2013; 

Walworth et al., 1993). The apparent cluster of some vital DDR genes on 11q suggests 

the importance of the chromosome 11q arm in maintaining genome stability and, 

therefore, might explain the observed increase in genomic instability associated with 11q-

del NB tumours. This condition also implies that a homozygous 11q deletion could result 

in unsustainable or deleterious genomic instability, with no potential growth advantage to 

tumour cells, hence the frequently observed hemizygous 11q-del instead in NB. it is 

therefore reasonable to assert that hemizygous 11q aberrations create a tolerable 

genomic instability that could be beneficial in tumour progression and or perhaps 

contribute to providing the genetic aberration milieu needed for tumour initiation. 

 

A couple of decades ago, Bader and colleagues showed that microcell-mediated transfer 

of chromosome 11 into an NB cell line, with 11q-del, induced cell differentiation (Bader et 

al., 1991). This finding suggests that chromosome 11 could harbour pro-differentiation 

gene(s), even though none had been characterized until recently. Lopez et al. found that 

SHANK2, a gene located on 11q.13, was disrupted by structural variations in non-MNA 

NB tumours (Lopez et al., 2020). SHANK2 overexpression in NB cells significantly 

inhibited growth and potentiated RA-induced differentiation, thereby suggesting a tumour 

suppressor role of SHANK2, a gene frequently disrupted in 11q-del NB tumours (Lopez 

et al., 2020). These data also suggest that the postsynaptic adapter protein-coding gene, 

SHANK2, could be a pro-differentiation gene on chromosome 11. A more proximal 

breakpoint cluster mediates SHANK2 disruption in non-MNA tumours in the 11q13 region. 

A second distal breakpoint cluster at 11q14 was also identified. The latter leads to 

disruption of DLG2 gene (Lopez et al., 2020; Siaw et al., 2020). DLG2 (discussed later in 

section 1.2.5) has not been functionally characterized in the study by Lopez and 

colleagues (Lopez et al., 2020).  
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The paradox of the role of 11q-del in tumour initiation 

 

11q-alteration occurs mostly in older NB patients. Median age at diagnosis for NB 

tumours with 11q-del is about 36-42 months (Carén et al., 2010; Juan Ribelles et al., 

2019). These observations led to the speculation that 11q-del is a late event and hence 

might not be required for tumour initiation (Juan Ribelles et al., 2019; Mlakar et al., 2017; 

Spitz et al., 2006). Intriguingly, constitutional 11q alterations have been reported in 

children and found to be associated with mental and growth retardation and other multiple 

congenital abnormalities (Mlakar et al., 2017; Passariello et al., 2013). Germline 11-q 

aberrations in NB are rare and reported germline 11q aberrations in NB so far include six 

11q-del, one 11q inversion and two balanced 11q translocations, with associated multiple 

congenital abnormalities including craniofacial abnormalities (Passariello et al., 2013). 

One of these patients with NB was diagnosed at three months, with the remainder 

diagnosed at 18 to 81 months (Koiffmann et al., 1995; Mosse et al., 2003; Passariello et 

al., 2013; Satgé et al., 2003). Notably, the NB patients with late disease onset were 

diagnosed as early as three months of age with multiple congenital abnormalities that far 

preceded the NB onset (Koiffmann et al., 1995; Passariello et al., 2013). In these latter 

patients, the constitutional 11q-del could strongly be an early event which might have 

contributed to tumour initiation and/or progression. Several other germline or 

constitutional 11q-del have been described in children showing mental and growth 

retardations and craniofacial abnormalities but no neoplasm (Mlakar et al., 2017).  

 

These data suggest that 11q-del alone may not be adequate to cause NB. However, in 

conjunction with other genetic events, these might sufficiently initiate NB (Mlakar et al., 

2017). An interesting result from chromosomal transfer experiment by Bader et al., about 

three decades ago, showed that transfer of chromosome 11 into an NB cell line induced 

neuronal differentiation (Bader et al., 1991). More importantly, the gene harbouring the 

differentiation potential is situated between pter and 11q22-2. This result suggests that 

certain genes on chromosome 11 may be essential for the differentiation of NC precursors 

into their fated cell-types such as neurons of the sympathetic ganglia and chromaffin cells 

of the adrenal gland, the common sites of NB origin. This further indicates that blockade 

of terminal differentiation of NC-derived precursors, i.e. NB cellular sources, could be an 

essential early event in perhaps certain subtypes, if not all, of NB. Therefore, it is possible 

that the mechanism of 11q-del-mediated NB tumour initiation may first involve the 

blockade of differentiation or terminal differentiation of precursor cells (Bader et al., 1991) 

(Figure 2). A key feature of undifferentiated multipotent neuronal cell precursors is their 

rapid progression through the G1 phase of the cell cycle, compared to their differentiated 

derivatives (Halliwell et al., 2020; Hardwick and Philpott, 2014). This shorter G1 length 

causes persistent DNA replication stress in undifferentiated neuronal multipotent cell 

precursors, decreasing upon cell differentiation (Halliwell et al., 2020). 
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Figure 2. A model for the role of 11q-del in NB initiation. (1) Neural crest-derived sympathoadrenal 

precursors (SAPs) or Schwann cell precursor (SCPs) normally differentiate into neurons of the sympathetic 

ganglia and or adrenal chromaffin cells. (2) Early SAPs or SCPs acquire genomic aberrations such as 11q-

del, in the 17q-del background, and remain as undifferentiated immature cells. These cells have high 

replication stress, a G1-related event in multipotent neuronal cells, leading to DNA damages and genomic 

instability (Halliwell et al., 2020). Cells may be defective in DNA damage repair (DDR) due to 11q del, and 

resistant to apoptosis due to 17q-gain. High genomic instability may contribute to the acquisition of new 

oncogenic hits that may promote cell transformation and tumour development. DA denotes dorsal aorta. 

 

 

Deletion of the q-arm of chromosome 11 may result in loss of DDR genes such as ATM, 

MRE11 and H2AFX (Ditch and Paull, 2012; Mandriota et al., 2015; Ward and Chen, 

2001), which could potentially impair cells ability to repair DNA damages caused by 

replication stress of shorter G1 length in pluripotent precursor cells (Halliwell et al., 2020), 

thereby promoting genomic instability.  

 

Upon induction of irreparable DNA damages, cells become inactivated through apoptosis 

(Kaina, 2003). Cancer cells are able to evade apoptosis generally by inactivation of pro-

apoptotic genes such as P53, and or by the activation of anti-apoptotic genes (Fernald 

and Kurokawa, 2013). Unsurprisingly, 11q-del in NB is strongly associated with 17q- gain, 

and the latter harbours an anti-apoptotic gene called BIRC5 (survivin) which is highly 

expressed in NB and predicts poor prognosis (Carén et al., 2010; Islam et al., 2000; 

Lamers et al., 2011). The frequent co-occurrence of 11q-del and 17q-gain in NB tumour 
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cells may therefore appear to be an important event, where the latter may provide cell 

survival properties, during NB tumour initiation and progression (Figure 2). It is therefore 

possible to speculate that 11q-del-mediated genomic instability initiates random genetic 

events which could take time to attain the right oncogenic milieu necessary for tumour 

initiation or progression, hence, the late onset of 11q-del NB. In effect, one can suggest 

that pro-differentiation gene(s) might be located on 11q, and the loss of these genes 

simultaneously, with the previously mentioned DDR genes during unbalanced 11q 

deletion, in 17q-gain background, could lead to maintenance of undifferentiated and 

apoptosis resistant NC-derived precursor cells, with defective DDR machinery (Figure 2). 

These would appear to create suitable conditions for a journey towards tumour initiation. 

Pro-differentiation genes of 11q have not be identified until most recently by Lopez et al 

(discussed in section 1.2.1.3) (Lopez et al., 2020), and us (Siaw et al., 2020) (discussed 

in section 4.3).  

 

Vulnerabilities of neuroblastoma cells with 11q-del and defective DDR  

 

ATM, MRE11A, H2AFX and CHEK1 loss or imbalance in 11q was reported in about 21% 

of NBs, about 90% of which were associated with stage 3 and 4. In addition, 7% of NBs 

were found to contain rare single nucleotide variants in ATM (Takagi et al., 2017). These 

aberrations in DDR-associated genes could ultimately result in DDR defects in NB cells, 

making them vulnerable to DNA damage-inducing therapies such as PARP inhibitors. 

Poly ADP-ribose polymerase (PARP) is involved in repairing single-strand DNA damage. 

Its inhibition has been reported to exhibit synthetic lethality in 11q-del or ATM defective 

NB cell lines (Sanmartín et al., 2017; Takagi et al., 2017). Therefore, a combinatorial 

treatment of 11q-del NB patients with PARP inhibitors and chemotherapy could be an 

attractive therapeutic strategy.  

1.2.2 Stage 4S neuroblastoma and differentiation 

NB is clinically heterogeneous and ranges from aggressive disease to spontaneous 

regression, with little or no therapy. Spontaneous regression is the characteristic feature 

of stage 4S NB, mostly in children less than 12 months of age (Lavarino et al., 2009). 

These tumours, capable of spontaneous regression, generally have the following 

features; no MYCN amplification, no chromosome 1p deletion and are near triploid with 

whole chromosomal gains (Lavarino et al., 2009). They are also characterized by high 

expression of the tropomyosin receptor kinase A (TRKA) which correlates with 

differentiated tumour histology and is associated with favourable tumour stage and 

outcome (Brodeur and Bagatell, 2014; Hoehner et al., 1995). Primary culture of stage 4S 

tumour-derived cells in the presence of NGF, the cognate ligand for TRKA, induced 

neuronal differentiation and survival, whereas withdrawal of NGF resulted in apoptotic 

cell death (Brodeur et al., 1997). These in vitro culture behaviours appear to be 
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reminiscent of the observations that NB tumours expressing high TRKA undergo 

apoptosis/spontaneous-regression or neuronal differentiation in the absence or presence 

of NGF in their surroundings, respectively (Brodeur and Bagatell, 2014). Therefore, 

TRKA/NGF signalling seems to be involved in the underlining mechanism behind the 

spontaneous regression of stage 4S NB. 

 

The clinical observations of spontaneous regression have evoked great interest in NB 

differentiation studies in vitro. Numerous agents, including RA and nerve growth factor 

(NGF), have been demonstrated to induce both morphological and molecular changes in 

NB cell lines that suggest neuronal differentiation (Ponthan et al., 2001; Reynolds et al., 

2000). The ability of these agents to induce differentiation of NB cell lines in preclinical 

models has prompted clinical investigations of these differentiation agents in NB patients 

(Matthay et al., 1999). Both NB cell lines and tumours exhibit differential responses to RA 

and other therapies, which may be due to heterogeneity of the NB tumours and cell lines 

(Sidell et al., 1986). This heterogeneity could reflect differences in the genetic set up of 

different tumours or differences in gene expression by genetically identical tumour cells 

(Tsubota and Kadomatsu, 2018; van Groningen et al., 2017; Vo et al., 2014). 

1.2.3 Tumour heterogeneity 

NB has a remarkable heterogeneous clinical presentation ranging from spontaneous 

maturation or regression in young infants even with metastatic disease, to unresectable 

or metastatic unfavourable disease in children >18 months of age at diagnosis. This 

clinical dichotomy in NB may be reflective of a fundamental biologic intra- or inter-tumour 

heterogeneity.  

 

Inter-tumour heterogeneity 

 

NB  tumours are found in the medulla of the adrenal gland (47%) and the paraspinal or 

periaortic regions of the sympathetic chain ganglia; subdividing into 

abdominal/retroperitoneal regions (24%), neck (2.7%), thoracic (15%), pelvic (3%) and 

other regions (7.9%) (Tsubota and Kadomatsu, 2018; Vo et al., 2014). Different 

combinations of genomic aberrations characterize primary NB tumours. Inter-tumour 

heterogeneity defined by anatomical location of primary NB tumour along the sympathetic 

chain correlates with tumour genomic profile and patient outcome (Brisse et al., 2017). 

For instance, cervical sympathetic chain NBs have numerical-only chromosome 

alterations (NCAs) exclusively, compared to adrenal NB, which comprises 16% NCA, 

36% segmental chromosome alterations (SCAs) or 48% MYCN amplification. 

Furthermore, 92% of all MNA NBs were found to arise from the adrenal gland, and this 

location is associated with the worst prognosis (Brisse et al., 2017). These findings reveal 

a complex inter-tumour heterogeneity in NB defined by differential genetic aberration 
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profiles with a strong association to tumour anatomical location. Furthermore, intra-

tumour heterogeneity is another sphere of complexity with NB tumours. 

 

Intra-tumour heterogeneity 

 

Recent studies have demonstrated that cancer cells with varying driver mutations or 

chromosomal aberrations can coexist within the same tumour (Gillies et al., 2012). This 

phenomenon is referred to as intra-tumour heterogeneity and is functionally vital in 

therapeutic failure and drug resistance (Gillies et al., 2012; McGranahan and Swanton, 

2017). NB, like many other cancers, is not exempt from intra-tumour heterogeneity, a 

critical driver of the fatal outcome of cancer.  

 

Intra-tumoural coexistence of MNA cancer cells, and 11q-del cancer cells, or non-MNA 

cancer cells in the same tumour has been described in NB (Theissen et al., 2009; 

Villamón et al., 2013). MNA tumours and 11q-del tumours are thought to represent distinct 

genetic subtypes of aggressive NB (Carén et al., 2010). Ultra-deep sequencing 

technologies have also led to the identification of subclonal ALK mutation fractions in NB 

tumours, which is indicative of the presence of both clonal ALK wild-type cancer cells and 

subclonal ALK mutant cancer cells in the same tumour (Javanmardi et al., 2019). 

Multiregional whole-genome analyses of tumours have shown that within the same NB 

tumour, neuroblastic cells characteristically develop along one of four unique evolutionary 

trajectories as evidenced by the presence of unique tumour genotypes in different areas 

of the same tumour (Karlsson et al., 2018). This intra-tumour heterogeneity appears to 

be typically driven by collateral branching evolution, often mixed with linear branching 

(Andersson et al., 2020). Higher number of clonal branching events occur in a high-risk 

NB tumour compared to a low-risk tumour (Andersson et al., 2020). Certain mutations or 

aberrations could exist at subclonal levels within subregions of a tumour and might not 

be part of the “trunk” of the tumour’s phylogenetic tree (Karlsson et al., 2018; von Stedingk 

et al., 2019). These findings have implications for treatment failure and relapse in NB. 

 

Another dimension of intra-tumour heterogeneity involves the coexistence of genetically 

identical but transcriptionally divergent cell types within the same tumour (van Groningen 

et al., 2017). van Groningen and colleagues described two cell-type compositions of NB 

tumours, namely undifferentiated mesenchymal cell-type (MES-type); with similar gene 

expression signature to human NC derived cells, and committed adrenergic cell-type 

(ADRN-type) (van Groningen et al., 2017). These two cell types are genetically identical 

but transcriptionally and epigenetically divergent. They are each associated with a unique 

super-enhancer (SE) landscape, which controls the cell-type-specific gene expression 

signatures (van Groningen et al., 2017). Similarly, Boeva et al. identified the core 

transcriptional regulatory circuitries (CRCs) that uniquely drive activity at these cell-type-
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specific SEs (Boeva et al., 2017), and these include PHOX2B-HAND2-GATA3 CRC in 

ADRN-type cells and AP-1 transcription factors (TFs) CRC in the NC cell-like MES-type 

cells (Boeva et al., 2017). CRCs are TFs in an interconnected auto-regulatory feed-

forward loop. CRCs and super-enhancers are known as essential elements in defining 

cell identity (Whyte et al., 2013). Gene expression signature profiling of different primary 

NB tumours placed these tumours in a continuum between MES and ADRN cells types 

(Boeva et al., 2017; van Groningen et al., 2017). This observation may reflect tumour 

cells at different stages of differentiation and further shows that even NB patients with 

very similar tumour genomic profiles may still be starkly different on the “differentiation 

scale” (MES ↔ ADRN). Therefore, MES and ADRN cell states in NB tumours could 

contribute to both intra and inter-tumour heterogeneity in NB. This fact may have a direct 

implication on the choice of therapy for different NB patients. 

 

Treatment regimens against subclonal mutations or “trunk” mutations may only provide 

temporary remission in NB. Intra-tumour heterogeneity presents one of the major 

challenges of precision or personalized therapeutic approaches since this heterogeneity 

hinders accurate genetic profiling of the tumours (Joung et al., 2016). The presence of 

subclonal driver mutations in tumours implies routine Sanger sequencing techniques 

used in tumour profiling could miss these cell populations, leading to incomplete 

information on the tumour’s genome (Javanmardi et al., 2019). Examination of the 

patient’s tumour genome generally involves the use of a single tumour biopsy specimen 

which could be made obsolete by intra-tumour heterogeneity (Joung et al., 2016). In light 

of recent studies on NB’s intra-tumour heterogeneity, any prudent pipeline for NB 

treatment planning should aim at first obtaining near-complete information on the 

tumour’s genetic landscape. This approach will involve multiregional tumour biopsies and 

deep sequencing techniques for more accurate tumour profiling.  

 

1.2.4 The origin of neuroblastoma 

NB is an NC-derived malignancy of the SNS. However, the cell(s) of origin of NB is 

unclear but thought to arise from NC-derived sympathoadrenal lineage precursor cells, 

which differentiate to adrenal chromaffin cells and neurons of the sympathetic ganglia 

(Cheung and Dyer, 2013) Figure 3). Recently, Furlan and colleagues found that NC-

derived peripheral glia stem cells, referred to as Schwann cell precursors (SCPs), were 

the main cellular source of adrenal chromaffin cells (Furlan et al., 2017). These SCPs 

could therefore be a potential cellular source of NB. NB could be described as a tumour 

of developmental arrest and failed or delayed differentiation (Ratner et al., 2016). 

Therefore, precisely defining the origin of NB’s NC-derived cell(s) and understanding their  
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Figure 3. Developmental modes of sympathoadrenal (SA) lineage and adrenal chromaffin cells. (Left 

panel) Freely migrating SOX10+ neural crest cells (NCCs) migrate ventrally towards the dorsal aorta. At the 

aortic region, PHOX2B expression is induced in these NCCs resulting in their commitment to the 

Sympathoadrenal (SA) lineage. SA precursors migrate further, in response to dorsal aorta-secreted bone 

morphogenetic proteins (BMPs), towards the dorsal aorta. At the dorsal aorta, SA precursors split 

dorsoventrally for differentiation into sympathetic ganglia and adrenal chromaffin cells (20%) respectively. 

(Right panel) SOX10+ nerve-associated Schwann cell precursors (SCPs) migrate on axons of preganglionic 

neurons of the intermediolateral cell column (IML) that innervate the adrenal gland. When SCPs reach the 

anlage of the adrenal medulla, they become committed to adrenal chromaffin cells through a transient 

intermediary cell state called bridge cells. SCP-derived adrenal chromaffin cells make up about 80% of 

chromaffin cells of the adrenal medulla. Adapted with permission from (Furlan et al., 2017). 
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normal development will help ascertain the pathways involved in the blockade of 

differentiation and the maintenance of undifferentiated NC progenitor tumour initiating 

clones. This approach will help in identifying drug targets which might provide potential 

therapeutic benefits to NB patients. 

 

1.2.4.1 Sympathoadrenal lineage  

 

The neural crest is a transient embryonic cell population that is bilaterally organised and 

arises from the dorsal lip of the developing neural tube (precursor of the spinal cord) 

during the early stages of embryogenesis in vertebrates (Figure 3). NC cells (NCCs) are 

multipotent and undergo extensive migration throughout the developing embryo, 

differentiating into multiple cell types and tissues including neurons and glia of the 

peripheral and enteric nervous systems, adrenal chromaffin cells, melanocytes and much 

of the craniofacial skeleton (Tomolonis et al., 2018). NCCs undergo epithelial-

mesenchymal transition (EMT) to acquire motile phenotypes. With the inception of EMT, 

SOX10+ NCCs delaminate from the neural tube and migrate along specified routes to 

colonize distant sites throughout the embryo for further specification and differentiation 

(Theveneau and Mayor, 2012) (Figure 3). The processes of NC induction, delamination 

and specification of derived progenitors are regulated by a multifaceted gene regulatory 

network (Sauka-Spengler and Bronner-Fraser, 2008). NCCs concomitantly undergo 

extensive proliferation to generate enough progenitor cells to populate their target tissues 

during their migration. MYCN is involved in the regulation of NCC fate in the aspects of 

ventral migration of the cells and neural differentiation (Wakamatsu et al., 1997). The 

complex nature of NC-derived tissues indicates the presence of multipotent progenitors. 

NB is believed to result from failed differentiation of sympathoadrenal lineage progenitors 

of the NC (Ratner et al., 2016). Early-migrating SOX10+ NCCs fated to become 

sympathoadrenal lineage progenitors migrate ventrally towards the dorsal aorta, the first 

blood vessel to form during embryogenesis. The dorsal aorta secretes bone 

morphogenetic proteins (BMP4 and BMP7) which induce expression of chemoattractants 

such as stromal-derived factor 1 (SDF1) and neuregulin (NRG1) by para-aortic 

mesenchymal cells, and through their cognate receptors, CXCR4 and EGFR respectively, 

act to attract early-migrating NCCs to the dorsal aorta (Saito and Takahashi, 2015; Saito 

et al., 2012). 

 

In the vicinity of the dorsal aorta, the induction of PHOX2B gene expression commits 

SOX10+ NCCs to become PHOX2B+and SOX10- sympathoadrenal lineage progenitor 

cells (Callahan et al., 2008). Sympathoadrenal progenitor cells at the dorsal aorta split in 

a dorsoventral direction, giving rise to sympathetic ganglionic and adrenomedullary 

lineages respectively (Figure 3). This segregation is orchestrated directly by differential 

aortic BMP4 and BMP7 signalling (Saito et al., 2012). After segregation, the sympathetic 
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ganglionic precursors remain in the aortic region to form the sympathetic chain ganglia. 

In contrast, the adrenomedullary precursor further migrates ventrally to become 

associated with adrenal gland to form catecholamine-secreting cells of the adrenal gland, 

called chromaffin cells (Saito et al., 2012) (Figure 3). Until recently, sympathoadrenal 

precursors were thought to be the main source of adrenal chromaffin cells and also the 

main cellular source of NB  

 

1.2.4.2 Schwann cell precursors and adrenal chromaffin cells 

 

Adrenergic chromaffin cells of the adrenal gland were originally considered to arise from 

fate-committed NC-derived sympathoadrenal lineage progenitors located near the dorsal 

aorta (Anderson et al., 1991; Huber et al., 2009). These sympathoadrenal precursors later 

split dorsoventrally forming the sympathetic ganglia and adrenal chromaffin cells 

respectively, as described above (Saito et al., 2012). However, clear evidence that 

implicates sympathoadrenal precursors as the direct cellular source of adrenal chromaffin 

cells is lacking.  

 

 

 
Figure 4. Schematic outline of the transcription-based hypothesis outlining the differentiation 

trajectory of Schwann cell precursors (SCPs) towards adrenal chromaffin fate (Furlan et al., 2017). 

Neural crest-derived SCPs destined to become adrenal chromaffin cells make the transcriptional transition 

through a transient cell-state called “bridge cells”. Adapted with permission from (Furlan et al., 2017) 

 

 

Recent genetic cell lineage tracing experiments by Furlan et al. provided substantial 

evidence that sympathetic ganglia indeed arise from the early-migrating stream of NCCs 

committed to sympathoadrenal lineage. In contrast, most of the adrenal chromaffin cells 

are formed from SCPs (Furlan et al., 2017). SCPs are SOX10+/p75+ nerve-associated 

peripheral glia and multipotent stem cells, which are derived from late-migrating NCCs. 
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They can differentiate into several cell types, including almost all cells of the 

parasympathetic nervous systems (Adameyko and Ernfors, 2014). During 

embryogenesis, late-migrating SOX10+ NCCs become attached to preganglionic neurons 

and become SCPs. Preganglionic sympathetic neurons, originating in the 

intermediolateral cell column (IML) of the spinal cord, are the source of adrenal medulla 

innervation (Appel and Elde, 1988; Dun et al., 1993) (Figure 3). SCPs destined to become 

adrenal chromaffin cells migrate along preganglionic neurons towards the anlage of the 

adrenal medulla. At the adrenal medulla, SCPs initiate the transition to become 

chromaffin cells. Unique gene expression programs govern SCP-to-chromaffin cell 

transition. Single-cell RNA sequencing analysis of developing adrenomedullary cells at 

E12.5 and E13.5, stages at which chromaffin cells start to appear, identified unique gene 

expression signatures separating three major distinct subpopulations of cells (Furlan et 

al., 2017). These cell clusters appear to form a continuum where an intermediate cell type 

spans a gene expression state between SCP-like cells to more chromaffin-like cells as 

illustrated in Figure 4. This phenomenon reflects a transcriptional transition from SCP to 

chromaffin cells along a differentiation trajectory and suggested the presence of an 

intermediate transient cellular state, governed by a complex regulatory network, within 

the “bridge structure” connecting SCPs and chromaffin cells (Furlan et al., 2017) (Figure 

4). The intermediate cells were referred to as “bridge cells”. Some genes were found to 

be up- or down-regulated at the beginning or end of the SCP-chromaffin route. For 

instance, SCP genes such as PHOX2B, ASCL1, TBX2, CHEK1, BUB1, ID2 and SOX2 

were progressively downregulated in the “bridge cells” and in the differentiated chromaffin 

cells. MYCN expression was high in SCPs but appeared to decline upon the commitment 

of SCPs to the “bridge” structure. Conversely, genes including DLG2, DLGAP2, NEFM, 

NEFL, were uniquely and progressively upregulated later in the “bridge” structure towards 

chromaffin differentiation (Furlan et al., 2017).  

 

Through genetic fate tracing of nerve-associated SCPs, it was found that the majority 

(about 80%) of TH+ (tyrosine hydroxylase) chromaffin cells of the mouse adrenal medulla 

originated from SCPs. In contrast, the remaining 20% of adrenal chromaffin cells might 

be derived from early-migrating NC-derived sympathoadrenal lineage cells (Furlan et al., 

2017). These new findings about SCPs as a cellular source of adrenal chromaffin cells 

may offer new perspectives regarding the cellular origin of NB because it is thought that 

about half of NB arise from the vicinity of the adrenal gland (Brisse et al., 2011). 

 

 

Common genes in neural crest and neuroblastoma development 

 

NB is thought to originate from NC-derived progenitor cells, hence, it may share genes 

and signalling pathways in common with NC-derived progenitors. High expression of, or 
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mutation in, SCP genes such as MYCN, PHOX2B, ASCL1, TBX2, CHEK1, ID2, and 

SOX2, are believed to play vital roles in NB and are associated with poor prognosis (Cole 

et al., 2011; Decaesteker et al., 2018; Mathew et al., 2001; Mosse et al., 2004; Sauka-

Spengler and Bronner-Fraser, 2008; Trochet et al., 2004; Wang et al., 2019). MYCN acts 

in concert with the NB core regulatory circuitry (CRC) consisting of PHOX2B, TBX2 

ASCL1, GATA3, HAND2 and ISL1 in a feed-forward autoregulatory loop to drive NB 

pathogenesis and the maintenance of adrenergic NB identity (Boeva et al., 2017; Tan et 

al., 2019; van Groningen et al., 2017). Activated CHEK1 relay checkpoint signals by 

phosphorylating numerous downstream targets resulting in the activation of cell cycle 

checkpoints, cell cycle arrest, DNA repair, and cell death when DNA damage is severe in 

order to stop damaged cells from continuing through the cell cycle (Beckwith and Perrin, 

1963; Patil et al., 2013; Schleiermacher et al., 1994; Walworth et al., 1993). CHEK1 is 

located on chromosome 11q, which is frequently deleted in NB tumour cells and is 

associated with poor prognosis (Carén et al., 2010). ID2 (inhibitor of DNA-binding 2) and 

SOX2 maintain self-renewal and undifferentiated state of progenitor cells (Yang et al., 

2015; Ying et al., 2003). Inhibition of ID2 in NB resulted in the spontaneous induction of 

cell differentiation (Ciarapica et al., 2009).  

 

The expression of NB associated genes, including some member genes of NB’s CRC, by 

NC-derived precursors such as SCPs, “bridge cells” and sympathoadrenal precursors 

potentially substantiates the notion of NC as the cellular source of NB. Additionally, this 

suggests SCPs as perhaps one of the potential NC-derived progenitor cellular sources of 

NB. The Furlan “bridge cells” represent a transient developmental cell state, the only route 

from SCPs to differentiated chromaffin cells, with very dynamic transcriptional profiles that 

may reflect regulatory activities. Therefore, it is enticing to speculate that perturbation or 

deregulation of genes and signalling within the “bridge structure” could result in the 

blockade of differentiation, increase cell proliferation, and potentially contribute to NB 

pathogenesis. This result implies that the exploration of genes expressed within the 

bridge structure will help understand the mechanisms involved in the delay or blockade 

of differentiation, leading to NB (Paper III).  

1.2.5 Disks Large Homologue 2 in cancer  

Disks large homologue 2 (DLG2) is one of the genes which are uniquely upregulated in 

“bridge cells” during SCP differentiation toward chromaffin cell fate (Furlan et al., 2017).  

DLG2 is located on chromosome 11q, which is hemizygously deleted in about 20-45% of 

NB tumours and is associated with poor prognosis (Mlakar et al., 2017; Spitz et al., 2003; 

Spitz et al., 2006). Lately, DLG2 has been suggested to be a tumour suppressor in 

osteosarcoma (Shao et al., 2019). DLG2 is located on chromosome 11q14.1 and codes 

for a protein called postsynaptic density protein 93 (PSD93). DLG2 a.k.a PSD93 protein 

is a member of the membrane-associated guanylate kinase (MAGUK) family. It acts as a 
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molecular scaffold for the tethering of membrane structures, clustering of receptors, ion 

channels and other proteins in signalling (Pan et al., 2011). DLG2, like other MAGUKs, 

shares a core structural module consisting of a PSD95/Dlg/ZO-1 (PDZ) domain, a Src 

homology (SH3) domain and a catalytically inert guanylate kinase (GK) domain: These 

domains are arranged in tandem to form PDZ-SH3-GK structural sequence (Pan et al., 

2011) (Figure 5). 

 

 

 
Figure 5.  Domain organization of DLG2 protein. DLG2 consists of six domains, namely L27, PDZ1, 

PDZ2, PDZ3, src homology 3 (SH3) and guanylate kinase (GK). The numbers represent the range of the 

amino acids (aa) that make up each domain. 

 

 

Studies in model organisms such as Drosophila melanogaster and Caenorhabditis 

elegans showed that both organisms have DLG homologues.  Drosophila DLG is a vital 

component of septate junctions and plays a role in sustaining the apicobasal polarity in 

Drosophila epithelium (Woods et al., 1996). The mammalian Dlg homologue are a family 

of four paralogs, namely DLG1, DLG2, DLG3 and DLG4. Similar to Drosophila dlg1, the 

mammalian homologues localize to the cell membrane and are involved in the formation 

of different types of cell junctions (Roberts et al., 2012). The proteins of the DLG subfamily 

of MAGUKs are also expressed in the central nervous system and are mostly restricted 

to the postsynaptic density of postsynaptic neurons (Oliva et al., 2012). Deletion of DLG2 

(PSD93) resulted in disruption of neuronal cholinergic synapse formation and elicited 

rapid disassembling of synaptic clusters of neuronal nicotinic acetylcholine receptors 

(nAChRs) in mice (Parker et al., 2004). These findings suggest that DLG2 is required to 

maintain synaptic stability, and is an integral member of the postsynaptic scaffold at 

neuronal synapses (Parker et al., 2004).  

 

The Drosophila homologue, Dlg1 is a well-characterized tumour suppressor, which when 

mutated leads to neoplastic outgrowth in the Drosophila imaginal discs (Woods and 

Bryant, 1991). Expression of Rat homologues of DLG1 and DLG3 suppressed tumour 

formation in dlg1 mutant Drosophila flies (Thomas et al., 1997), indicating a tumour 

suppressor function by the DLG subfamily of proteins in mammals. This result further 

suggests a conservation of the tumour suppressor role of DLG homologues across 

different species. Unlike other members of the DLG subfamily, a tumour suppressor role 

for DLG2 had not been described until recently. Shao and colleagues have recently 
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described DLG2 gene as a tumour suppressor in human and dog osteosarcoma (Shao 

et al., 2019). However, the role of DLG2 in NB is unknown. The upregulation of DLG2 in 

“bridge cells”, which represents a transcriptional trajectory towards chromaffin cell 

differentiation, may suggest a role for DLG2 in the differentiation of NC-derived precursor 

cells. It is worth restating that NB is thought to arise as a result of failed differentiation of 

NC-derived progenitors, and chromosome 11q which harbours DLG2 is frequently 

deleted in NB (Carén et al., 2010; Mlakar et al., 2017; Ratner et al., 2016). Therefore, this 

result motivates a study to uncover the role of DLG2 in NB. 

 

 

 
Figure 6. Domain structure of human LTK and ALK. (A, B) The extracellular domain (ECD) of LTK 

contains only glycine-rich (GR) domain. ALK ECD contains two MAM domains, an LDLa domain and a GR 

domain. Both receptors have a transmembrane domain (TM) which connects the ECD with the intracellular 

domain that harbours the tyrosine kinase domain (TKD). (C) The kinase domain of inactive ALK (PDB: 

3LCT). The kinase domain consists of a smaller N-terminal lobe (N-lobe) and a larger C-terminal lobe (C-

lobe). The N-lobe harbours the αC helix (teal), glycine loop (red),  and five β-sheets (grey). The C-lobe 

consists of the activation loop (blue), which harbours three tyrosine auto-phosphorylation sites (purple 

balls). ADP (cyan) inside the ATP/inhibitor binding site. Hydrophobic non-contiguous motifs, which are 

conserved in all kinases, span both the N-lobe and the C-lobe, referred to as regulatory (yellow) and 

catalytic (brown) spines. 
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1.2.6 Anaplastic lymphoma kinase  

Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase (RTK) that together with 

the related leucocyte tyrosine kinase (LTK) constitutes a subfamily of the insulin receptor  

superfamily (Figure 6). ALK was originally identified as a fusion partner of nucleophosmin 

(NPM) in the t(2;5) chromosomal translocation in anaplastic large cell lymphoma (ALCL) 

(Morris et al., 1994). The ALK gene located on chromosome 2p codes for a 1620 amino 

acid long, 177 kDa polypeptide, which undergoes post-transcriptional N-linked 

glycosylation to form a mature 200 kDa ALK protein (Morris et al., 1997). Proteolytic 

cleavage of the full-length ALK yields a tyrosine-phosphorylated 140 kDa truncated 

receptor (Degoutin et al., 2009; Hallberg and Palmer, 2013).  

 

Structure of ALK 

 

Wild type ALK is a 1620 amino acid protein comprising of an extracellular ligand-binding 

domain, a transmembrane domain and an intracellular tyrosine kinase domain (Iwahara 

et al., 1997; Morris et al., 1997) (Figure 6).   

 

Extracellular domain 

 

The extracellular region of ALK contains two MAM (meprin, A-5 protein and receptor 

protein- tyrosine phosphatase mu) domains, a low-density lipoprotein class A (LDLa) 

region, and a glycine-rich (GR) domain (Morris et al., 1997) (Figure 6A). The extracellular 

region of ALK is thought to be required for ligand binding, dimerization and interaction 

with potential co-receptors, all of which could result in conformational changes leading to 

activation of the intracellular kinase domain (Hallberg and Palmer, 2013). ALKAL1 and 

ALKAL2 have recently be identified as the ligands for ALK (Guan et al., 2015; Reshetnyak 

et al., 2015).  

 

Intracellular domain 

 

Similar to other RTKs, the ALK intracellular region harbours a kinase domain which is 

made up of a conserved N-terminal lobe (N-lobe) and a C-terminal lobe (C-lobe) (Figure 

6C). These lobes are connected by a ‘hinge’ region to form an ATP binding pocket (Bossi 

et al., 2010; Lee et al., 2010). The C-lobe contains an activation loop which is involved in 

an inhibitory structural feature that blocks the substrate-binding region of the kinase 

domain during inactive conformation (Hallberg and Palmer, 2013). A common feature of 

the insulin receptor (InR) family members is the presence of Y’XXX’YY triple tyrosine motif 

in the activation loop. Likewise, ALK activation loop contains a 1278-Y’RAS’YY-1283 

motif, comparable to 1158-Y’ETD’YY-1163 in the InR activation loop (Wei et al., 1995). 

The unique ‘RAS’ sequence in ALK activation loop has been shown to be responsible for 
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phosphoacceptor substrate selectivity of ALK (Donella-Deana et al., 2005). In the fusion 

protein, NPM-ALK, the initial tyrosine (Y1278) in the triple tyrosine motif (1278-Y’RAS’YY-

1283) of ALK has been reported to be the first tyrosine in the motif to be phosphorylated 

(Donella-Deana et al., 2005; Tartari et al., 2008). It is therefore believed that when ALK 

is inactive, Y1278 of the activation loop is inaccessible and hence its phosphorylation is 

crucial for ALK activation by releasing ALK from inactive conformational restraints (Bossi 

et al., 2010; Lee et al., 2010; Taylor and Kornev, 2011). Guan and colleagues later 

showed that, contrary to the reported preferential phosphorylation of Y1278 of the triple 

tyrosine motif in NPM-ALK, the third tyrosine (Y1283) of the motif is rather the critical 

tyrosine required in the activation of full-length ALK protein (Guan et al., 2017). The 

authors showed that a single mutation of Y1283 to phenylalanine (Y1283F), but not 

Y1278F or Y1282F, sufficiently abrogated ligand-mediated phosphorylation of ALK and 

its downstream target ERKl/2 (Guan et al., 2017). It is worth noting that the activation of 

the fusion protein, NPM-ALK is preceded by dimerization of the fusion protein, 

orchestrated by the fusion partner, NPM, through its oligomerization domain. In contrast, 

activation of the full-length ALK is thought to be initiated by ligand binding of the ECD of 

the full-length ALK leading to dimerization of the full-length receptor (Bischof et al., 1997; 

Fujimoto et al., 1996).  

 

Protein kinases, including the RTKs, contain two conserved hydrophobic motifs referred 

to as regulatory (R) and catalytic (C) spines, and each of these spines consists of residues 

from both N-lobe and C-lobe (Taylor and Kornev, 2011) (Figure 6C). The R and C spines 

integrate the core of the kinase domain and regulate its activity (Taylor and Kornev, 2011). 

The ALK R-spine is made up of I1171, C1182, H1247, F1271 and D1311 residues, and 

is assembled after phosphorylation of the activation loop, i.e. when the kinase is active 

(Hallberg and Palmer, 2013; Taylor and Kornev, 2011). 

 

The biological role of ALK in model organisms 

 

Despite the involvement of ALK in numerous cancers, including adult and pediatric 

cancers, the exact physiological role of ALK in mammals is somehow unclear. ALK 

expression patterns in chickens, mice, rats, and humans suggest a role for ALK in 

neurogenesis (Hallberg and Palmer, 2013; Iwahara et al., 1997; Vernersson et al., 2006). 

In the model organism Drosophila melanogaster, Alk is essential for the development of 

visceral mesoderm during embryogenesis, and Drosophila embryos lacking Alk 

expression die due to lack of founder cells (Englund et al., 2003; Lee et al., 2003; Stute 

et al., 2004). Upon binding of Jelly belly (Jeb), the Drosophila Alk ligand, activated Alk 

signals through the MAPK-ERK1/2 pathway to mediate the specification of visceral 

muscle precursors called founder cells (Englund et al., 2003; Lee et al., 2003). Further, 

Alk and Jeb signalling have been reported to be involved in the assembly of the neuronal 
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circuit in the Drosophila visual system and are required for retinal axon targeting and 

neuromuscular junction function (Bazigou et al., 2007; Rohrbough and Broadie, 2010). 

Coincidently, two of the common side effects of ALK inhibitors in cancer patients are 

fatigue and visual disturbances (American Cancer Society, 2020; Camidge et al., 2012). 

The fatigue phenomena occur at nerve endings and neuromuscular junctions (Boyas and 

Guével, 2011). Hence, the involvement of ALK signalling in the neuronal circuit in the 

visual system and at neuromuscular junction imply that the above-mentioned side effects 

could represent ALK specific effects. Caenorhabditis elegans’ HEN1 and SCD2, the C. 

elegans Jeb and Alk  homologues respectively, are likewise not required for development 

but also have similar neural functions, play roles in neuromuscular junction formation by 

regulating presynaptic differentiation, and integration of sensory input and control dauer 

formation (Liao et al., 2004; Reiner et al., 2008). SCD2/ALK also modulates the 

transforming growth factor-β (TGFβ) signalling in the regulation of a developmentally 

arrested diapause state, called dauer stage, in C. elegans (Reiner et al., 2008). Both 

Drosophila and C. elegans have single orthologous receptors which are similar to ALK, 

whereas vertebrates genomes harbour the structurally related ALK and LTK receptors. 

 

The structural resemblance between ALK and LTK, particularly in the kinase domain, and 

their inferred shared ancestral origin, indicate that these receptors may have similar or 

even overlapping functions in mammals (Weiss et al., 2012) (Figure 6A-B). Both alk and 

ltk have been investigated in zebrafish. Ltk, previously referred to as shady in zebrafish, 

was found to be uniquely expressed in a subset of zebrafish NCCs, before becoming 

committed to the iridophore lineage, and ltk (shady) mutants lack iridophores (pigment 

cells) (Kelsh et al., 1996; Lopes et al., 2008). Zebrafish ltk rather displays more structural 

similarities to human ALK, in that both zebrafish ltk and human ALK have two MAM 

domains in their extracellular domain. In contrast, human LTK has no MAM domain 

(Fadeev et al., 2018) (Figure 6A-B). Zebrafish alk is expressed in the developing central 

nervous systems and plays a vital role in neural progenitor proliferation, differentiation 

and survival during embryonic neurogenesis (Yao et al., 2013). Drosophila and C. 

elegans Alk ligands have long been known and studied, but vertebrate ALK’s have been 

considered orphan receptors until lately (Ishihara et al., 2002; Weiss et al., 2001). By 

screening the extracellular proteome, Zhang and colleagues discovered that the two 

related secreted proteins, FAM150A and FAM150B (family with sequence similarity 150 

member A and member B), now known as ALKAL1 and ALKAL2 respectively, are ligands 

for LTK (Zhang et al., 2014). Shortly after this report, FAM150A/B (ALKAL1/2) were 

functionally proven to activate human ALK in vitro (Guan et al., 2015; Reshetnyak et al., 

2015). An in vivo study in zebrafish later confirmed zebrafish alkals (Alkal1, Alkal2a and 

Alkal2b) as physiological ligands for zebrafish alk and ltk, which are required for neural 

crest-derived iridophores development (Fadeev et al., 2018; Mo et al., 2017).  
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Figure 7. Schematic representation of Anaplastic Lymphoma Kinase (ALK) signalling cascades. Wild 

type ALK is activated in a ligand-dependent manner, whereas ALK gain-of-function mutant and ALK fusion 

protein are activated in a ligand-independent manner. Activated ALK signals through numerous signalling 

axes, such as PI3K-AKT, RAS-MAPK etc., via transcription factors such as MYCN, STAT3, HIF1A etc that 

mediate different cell responses including cell survival, differentiation, proliferation, and metastasis. 

Adapted wih permission from (Hallberg and Palmer, 2013). 

 

 

ALK loss-of-function including ALK/LTK double mutant mice were viable, with a reported 

defect in neurogenesis and testosterone production (Bilsland et al., 2008; Weiss et al., 

2012; Witek et al., 2015). ALK mRNA is expressed in certain regions of both peripheral 

and central nervous system, including the sympathetic chain – a common site of NB 
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origin, thereby suggesting a potential role for ALK in nervous system development 

(Iwahara et al., 1997; Morris et al., 1997; Vernersson et al., 2006). ALK is expressed in 

mouse NCCs at the neural plate border and believed to play a role in the migration of 

NCCs (Gonzalez Malagon et al., 2018). In the gain-of-function knock-in ALK mice, the 

ALK mutant induced increased neuroblast proliferation in ganglia of the sympathetic chain 

with concomitant enlargement of the ganglia and extended neurogenesis (Borenäs et al., 

2020; Cazes et al., 2014; Witek et al., 2015). Considering the NC origin of NB, 

understanding the function of ALK family RTKs in the development of NC may be crucial 

in gaining insight into NB pathogenesis, in which a subset has been described to harbour 

ALK mutations (Carén et al., 2008; Chen et al., 2008; George et al., 2008; Janoueix-

Lerosey et al., 2008; Javanmardi et al., 2019; Mossé et al., 2008) 

 

1.2.6.1 ALK in cancer and signalling 

 

Several dozens of ALK fusions in diverse cancer types have been described over the 

years, making ALK a hotspot for translocation (Hallberg and Palmer, 2013). NPM-ALK 

accounts for about 80% of all ALK-positive ALCL cases (Amin and Lai, 2007; Umapathy 

et al., 2019). An example of another notable ALK fusion oncoprotein is EML4-ALK 

(Echinoderm microtubule-associated protein-like 4 –ALK).  EML4-ALK accounts for about 

2-9% of non-small cell lung cancer (NSCLC), a subgroup of lung cancer (Kwak et al., 

2010; Rikova et al., 2007; Soda et al., 2007; Umapathy et al., 2019). Generally, in ALK 

fusion proteins, the fusion partners drive the fusion protein's transcriptional activation 

through their regulatory elements. ALK fusion partners also determine the subcellular 

localization of the fusion oncoproteins and mediate their dimerization, resulting in 

constitutive activation (Hallberg and Palmer, 2013).  

 

Furthermore, while point mutations have not been reported in ALK fusion proteins in 

primary tumours, they commonly arise in relapsed tumour as secondary drug-resistance 

mutations (Choi et al., 2010; Hallberg and Palmer, 2013). ALK fusions commonly occur 

in adult cancers. At the same time, in pediatric NBs, ALK aberrations have been frquently 

reported in the context of full-length ALK (Hallberg and Palmer, 2013).  

 

Both constitutively active ALK fusions and full-length ALK have been reported to activate 

several downstream signalling pathways, such as RAS/MAPK, PI3K/AKT/mTOR, PLCγ, 

STAT3/STAT5, CRKL-C3G-RAP1 and MEKK2/3-MEK5-ERK5 (Hallberg and Palmer, 

2013; Schönherr et al., 2010; Umapathy et al., 2019)(Figure 7). Activation of ALK also 

results in successive activation of numerous adaptor proteins such as Shc-GRB2, Src, 

FRS2, and IRS2 (Hallberg and Palmer, 2013, 2016) (Figure 7). Constitutive activation of 

ALK has been shown to be an oncogenic driver in many cancers, such as NSCLC, ALCL, 

IMT and NB thereby making ALK a tractable drug target (Carén et al., 2008; Chen et al., 
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2008; Christensen et al., 2007; George et al., 2008; Janoueix-Lerosey et al., 2008; Mossé 

et al., 2008; Rikova et al., 2007; Soda et al., 2008; Wei et al., 1995).  

 

1.2.6.2 ALK in neuroblastoma 

 

The identification of gain-of-function ALK mutations in both familial and sporadic NB 

reported by numerous groups during 2008 have spurred interests to understand the role 

of ALK-driven signalling, including downstream targets, in NB (Carén et al., 2008; Chen 

et al., 2008; George et al., 2008; Janoueix-Lerosey et al., 2008; Mossé et al., 2008). ALK-

mutants are found in about 8-10% of sporadic NB (De Brouwer et al., 2010; Pugh et al., 

2013). ALK point mutations characterised to date are located in the intracellular domain 

which harbours the ALK kinase domain (Hallberg and Palmer, 2013). In cell culture and 

in-vitro model systems, ALK mutations in NB have been categorized into three classes 

using biochemical analysis: gain-of-function ligand-independent mutations, ligand-

dependent mutations and kinase-dead mutations (Chand et al., 2013). The gain-of-

function mutations result in constitutive or ligand-independent activation of the ALK 

receptor with concomitant activation of its downstream signalling pathways (Chand et al., 

2013; Hallberg and Palmer, 2013)(Figure 7). ALK mutation significantly associates with 

poor survival in intermediate and high-risk NBs (Bresler et al., 2014). In addition, ALK 

mutants occur in about 11% of MNA NB and 7% of non-MNA NB (Bresler et al., 2014; De 

Brouwer et al., 2010).  

 

Three “hot spot” residues in the ALK kinase domain, namely F1245 (12%), F1174 (30%) 

and R1275 (45%), account for about 85% of all the ALK point mutations (Bresler et al., 

2014; De Brouwer et al., 2010). These three residues are involved in autoinhibitory 

interactions involving αC-helix and the activation loop. These interactions are thought to 

stabilize the inactive conformation of the non-phosphorylated ALK tyrosine kinase domain 

(Bossi et al., 2010).  Mutations in these residues lead to ligand-independent ALK 

activation (Chand et al., 2013; George et al., 2008; Schönherr et al., 2011).  

 

As stated earlier, both ALK and MYCN are located on chromosome 2p.23 and 2p.24, 

respectively. A low copy number of unbalanced gain of chromosome 2p, which 

predominantly encompasses ALK and MYCN loci among others, has been reported in 

about 19-23% of NB cases, with no focal gain of the ALK locus (De Brouwer et al., 2010; 

Jeison et al., 2010). The unbalanced 2p gain increases ALK mRNA and ALK protein 

expressions and predicts poor patient outcome (De Brouwer et al., 2010; Jeison et al., 

2010). Surprisingly, copy number gain of ALK locus rarely occurs simultaneously with 

ALK point mutation (De Brouwer et al., 2010), suggesting that ALK copy number gain and 

ALK point mutations may represent two distinct modes of ALK aberrations. The recently 

identified ALK ligand gene, ALKAL2, is located on chromosome 2p.25 and was found to 
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be encompassed in most of the unbalanced chromosome 2p gain aberrations, together 

with ALK and MYCN (Javanmardi et al., 2019). Although the 2p-gain cassette consisting 

of ALK, MYCN and ALKAL2 is associated with inferior survival outcome in NB, the 

presence of MYCN on this cassette might overshadow the real significance, if any, of the 

concurrent presence of ALK (a receptor) and ALKAL2 (ALK ligand) on the same 2p-gain 

cassette. Therefore, one could ask, what is the biological significance of ALKAL2 to the 

2p-gain cassette in NB? 

 

Understanding the biological role of ALKAL2 with its presence on the 2p-gain cassette 

could potentially elevate the extent of ALK signalling involvement in NB pathogenesis 

because unbalanced 2p gain in NB is found in as high as 23% of cases.  An infrequent 

mechanism of ALK aberration in NB, occurring in 2-3% of cases, is focal amplification of 

the ALK gene which occurs almost always in parallel with MYCN amplification (Brodeur, 

2018; Javanmardi et al., 2019; Nakagawara, 1998; Ratner et al., 2016) and are highly 

associated with aggressive NB clinical phenotype (Bresler et al., 2014; De Brouwer et al., 

2010). Another less well characterised mechanism of ALK activation in NB is the deletion 

of exons leading to truncation of parts of the ALK extracellular region (Cazes et al., 2013; 

Fransson et al., 2015; Okubo et al., 2012).  

 

Further highlights on the clinical relevance of ALK in NB have been demonstrated by 

studies in which deep sequencing of paired diagnosis-relapse NB samples showed the 

presence of mutated ALK alleles at subclonal levels during diagnosis and a later clonal 

evolution and expansion of these alleles at relapse (Eleveld et al., 2015; Martinsson et 

al., 2011; Schleiermacher et al., 2014). Driver ALK mutant alleles have been detected in 

8-10% of NB samples at diagnosis, increasing to more than 20% in relapse samples (De 

Brouwer et al., 2010; Pugh et al., 2013; Schleiermacher et al., 2014). In addition, 

chemotherapy treatment of NB patients also resulted in enrichment of recurrent 

RAS/MAPK pathway mutations (Eleveld et al., 2015; Padovan-Merhar et al., 2016). 

These findings suggest a role for ALK as a driver in a subset of primary NB and as a more 

likely candidate in driving other subtypes of relapse NB (Eleveld et al., 2015; Martinsson 

et al., 2011; Schleiermacher et al., 2014), thereby making ALK an attractive target for the 

treatment of ALK-positive primary and relapse NBs.  

 

Notably, ALK mRNA and protein expression appear to significantly decrease in all tissues 

after birth, reaching low levels as early as three weeks of age, and maintained at minimum 

levels in adult animals (Iwahara et al., 1997). Additionally, ALK loss-of-function mutant 

mice are viable (Bilsland et al., 2008; Witek et al., 2015). These findings imply that the 

use of ALK inhibitors in the treatment of ALK-positive tumours in children and adults could 

represent a more tolerable clinical option. Given the potential of ALK-targeted therapy, it 

is therefore essential to incorporate genomic sequencing or even deep sequencing in 



32 
 

diagnosis and examination of relapse tumour materials for detection of ALK mutant 

alleles, in addition to other targetable oncogenes, and monitoring of their clonal evolution 

for therapeutic decisions. 

 

1.2.6.3 Synergistic cooperation between ALK and MYCN in neuroblastoma 

 

ALK and MYCN are well-established oncogenes in NB and are located on chromosome 

2p23 and 2p24 respectively. ALK amplification occurs in about 2-3% of NB cases, most 

frequently with parallel MYCN amplification (Azarova et al., 2011; Bresler et al., 2014; De 

Brouwer et al., 2010; Mossé et al., 2008).  Gain-of-function ALK mutants, especially ALK-

F1174L, are generally found to associate with a high proportion of MNA NB cases and 

this combined occurrence results in a worst outcome (De Brouwer et al., 2010). This result 

suggests positive pathogenic cooperation between these two aberrations. The first 

mechanistic link between ALK and MYCN was established by Schönherr et al., where 

they showed that both wild-type and gain-of-function mutant ALK stimulate the initiation 

of MYCN transcription in NB and neuronal cell lines (Schönherr et al., 2012).  

 

The co-expression of ALK and MYCN synergistically mediated transformation of NIH3T3, 

mouse fibroblast cells (Schönherr et al., 2012). The pathogenicity of the cooperation 

between ALK and MYCN was subsequently demonstrated in-vivo in mouse and zebrafish 

NB models (Berry et al., 2012; Zhu et al., 2012). Co-expression of constitutively active 

ALK and MYCN in mouse and zebrafish models increased tumour penetrance with earlier 

tumour onset and potentiated lethality (Berry et al., 2012; Zhu et al., 2012) (Figure 8). 

Overexpression of MYCN drives increased sympathetic neuroblast proliferation and 

inhibited chromaffin cell differentiation, but eventually elicits a developmentally-

programmed apoptotic response in the hyperplastic NC-derived progenitors (Berry et al., 

2012; Zhu et al., 2012) (Figure 8). This result gives rise to low penetrance of tumour 

formation in NB models. On another note, continuous expression of gain-of-function ALK 

in neuroblasts does not lead to tumour formation (Berry et al., 2012; Zhu et al., 2012). Alk 

gain-of-function knock-in mice enhanced neuroblast proliferation in the sympathetic 

ganglia with concomitant enlargement of the ganglia and extended neurogenesis (Cazes 

et al., 2014). In contrast, expression of gain-of-function ALK in neuroblasts or gain-of-

function Alk knock-in contributes to MYCN-driven NB by providing pro-survival signals 

which enable transformed neuroblasts to escape MYCN-induced apoptosis, thus 

promoting progression to NB and increases tumour penetrance (Berry et al., 2012; Cazes 

et al., 2014; Kramer et al., 2016; Zhu et al., 2012) (Figure 8). The dependency of MYCN-

transformed-cells on ALK signalling for survival and potentiation further underscore the 

potential therapeutic benefit of targeting ALK in ALK-positive and MNA NBs.  
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Figure 8. A model of the mechanism for cooperation between ALK gain-of-function (GoF) mutant 

and MYCN in neuroblastoma development in model organisms. The overexpression of MYCN in 

neuroblasts drives proliferation and induces developmentally-timed apoptosis of some of the cells, resulting 

in a low penetrance of tumour formation. Expression of ALK GoF mutant alone in neuroblasts does not lead 

to tumour formation. ALK GoF signalling enhances the survival of differentiated neuroblasts. Coexpression 

of MYCN and ALK GoF mutant in neuroblasts promote neuroblast proliferation and blockade of MYCN-

induced apoptosis, leading to high penetrance tumour formation. Figure is based on (Berry et al., 2012; 

Cazes et al., 2014; Zhu et al., 2012). 

 
 

1.2.6.4 Role of ALK in neuroblastoma differentiation 

 

While activated ALK has been reported to stimulate neuronal differentiation when 

expressed in chick sympathetic neuroblasts in-vitro (Kramer et al., 2016), SOX10 

promoter-driven expression of ALK-F1174L in mice NCCs has been found to enhance 

cell proliferation and block differentiation (Montavon et al., 2014; Vivancos Stalin et al., 

2019). Stalin and colleagues reported that ectopic expression of ALK-F1174L in migrating 
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NCCs in mouse resulted in inhibition of differentiation and increased proliferation of early 

sympathetic progenitor cells but showed no neoplastic transformation (Vivancos Stalin et 

al., 2019). The expression of ALK-F1174L or ALK- R1275Q in MYC-mediated 

immortalized NC progenitor cells, MONC-1 or JoMa1, produced undifferentiated non-NB 

tumours (Montavon et al., 2014). Furthermore, analyses of the prognostic roles of ALK 

and MYCN protein expressions revealed high ALK and high MYCN protein expression in 

41% and 39% NB tumours, respectively (Chang et al., 2020). An overwhelming majority 

(about 86%) of NB tumours showing high expression of ALK or MYCN protein displayed 

poorly differentiated or undifferentiated histology (Chang et al., 2020). These suggest a 

potential role of deregulated ALK activity impairing NC progenitor cells differentiation 

during neuroblastic tumour initiation and or progression. The mechanism by which gain-

of-function ALK impairs NC-derived precursor differentiation is, however, unclear. This 

result partly motivated our study in Paper III (briefly described in section 4.3). 

 

1.2.6.5 Targeting ALK in cancer 

 

The most common forms of ALK aberrations in human cancer manifest as ALK 

chromosomal rearrangements, resulting in the formation of constitutively active 

oncogenic ALK fusion proteins (Amin and Lai, 2007; Kwak et al., 2010; Lovly et al., 2014). 

ALK rearrangements account for about 55% of all cases of ALCL, 2-9% of NSCLC and 

up to 50% of inflammatory myofibroblastic tumours (IMT) (Amin and Lai, 2007; Kwak et 

al., 2010; Lovly et al., 2014). Point mutations occur in ALK full-length protein, mostly in 

the kinase domain, and these represent the most recurrent mutations found in NB, up to 

10% of the cases (De Brouwer et al., 2010; Hallberg and Palmer, 2013; Janoueix-Lerosey 

et al., 2008; Mossé et al., 2008). ALK-positive cancers have been shown to be addicted 

to ALK signalling in preclinical settings, thereby spurring the development of ALK tyrosine 

kinase inhibitors (TKIs) such as crizotinib, ceritinib, alectinib brigatinib and lorlatinib 

(George et al., 2008; Soda et al., 2008).  

 

Crizotinib 

 

Crizotinib was initially developed as a potent TKI against MET and became the first ALK 

TKI to enter clinical trials (Christensen et al., 2007) (Figure 9A). The results of a phase 

I/II clinical trial in ALK-positive NSCLC patients treated with crizotinib showed remarkable 

clinical activity resulting in accelerated approval of crizotinib by FDA, in 2011, for 

treatment of advanced ALK-positive NSCLC (Hallberg and Palmer, 2010; Kwak et al., 

2010). Crizotinib was shown to be superior to chemotherapy, as a first-line therapy, in 

ALK-positive NSCLC patients in phase III clinical trials with mean progression-free 

survival (PFS) of 8 to 11 months (Shaw et al., 2013; Solomon et al., 2014b). Despite the 

initial response, crizotinib treated patients eventually develop resistance partly due to 
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emergence of secondary ALK mutations, thereby warranting the search and development 

of next-generation ALK TKIs (Choi et al., 2010; Lopez et al., 2020; Shaw et al., 2013; 

Solomon et al., 2014a). 

 

The first clinical trial of crizotinib in pediatric cancer patients, resulted in a rather 

disappointing outcome for NB patients as only one of 11 NB patients, with known ALK 

status, showed a complete response (Mossé et al., 2013). A follow-up clinical study which 

involved crizotinib treatment of recurrent or unresectable ALK-fusion-positive pediatric 

ALCL and inflammatory myofibroblastic tumours (IMTs) respectively, showed an overall 

response rate of 83-90% for both cancer types, with a complete response rate of about 

80% in ALCL patients and a complete or partial response of about 86% in IMT patients 

(Mossé et al., 2017). The response rate, type and duration recorded in this study is far 

superior to those recorded in even most late-phase clinical trial involving crizotinib use in 

adult ALK-fusion-positive cancer patients (Mossé et al., 2017; Shaw et al., 2013; Solomon 

et al., 2014a). This difference could be due to the less complex genetic landscape or 

reduced mutation burden of pediatric cancers and their possible dependency on a single 

oncogenic driver.  

 

The poor clinical outcome earlier mentioned for NB patients (Mossé et al., 2013) could be 

due to the heterogeneous clinical nature of NB or could be indicative of a less potent 

inhibitor due to intrinsic resistance of full-length ALK mutants. Moreover, anecdotal 

evidence showed that crizotinib treatment of some chemotherapy-refractory NB patients, 

showing high ALK protein expression, resulted in complete initial response (Verma et al., 

2017). This result highlights the potential benefits of exploring and targeting ALK in NB 

with more potent next-generation ALK TKIs.  

 

Ceritinib 

  

Ceritinib, originally known as LDK378, is an orally administered, ATP-competitive ALK 

TKI (Marsilje et al., 2013) (Figure 9B). In preclinical studies involving ALK-fusion proteins, 

ceritinib was 20 times more potent against ALK activity than crizotinib (Shaw et al., 2014). 

This TKI also exhibited significant antitumour activity in ALK-rearranged NSCLC 

xenograft models, against both crizotinib-resistant mutations, such as G1269A, S1206Y, 

I1171T V1180L, and crizotinib-sensitive ALK mutations (Friboulet et al., 2014; Marsilje et 

al., 2013). Ceritinib displayed antitumour activity against both crizotinib-naïve and 

crizotinib-resistant tumours in NSCLC patients, and yielded a median PFS of 7 months in 

phase I clinical trial (Shaw et al., 2014), resulting in the accelerated approval of ceritinib  
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Figure 9. ALK tyrosine kinase inhibitors (TKIs) (lemon green) in the ATP binding pocket of the ALK kinase 

domain (blue). Visualization of the modelled binding of different ALK TKIs in the ATP binding pocket of wild-

type ALK, showing the difference in contact sites between the different ALK TKIs. (A) Crizotinib 

(PF2341066, PDB: 2XP2). (B) Ceritinib (LDK378, PDB: 4MKC). (C) Brigatinib. (D) Lorlatinib (PF06463922, 

PDB: 4CLI). Chemical structure (black) of each TKI is located to the left in each subfigure. 

 
 

by the FDA in 2014. Dose-limiting toxicities associated with ceritinib included diarrhoea, 

vomiting, dehydration, elevated aminotransferase levels, and hypophosphatemia (Shaw 

et al., 2014). Subsequently, in a phase III trial, ceritinib was demonstrated to be 

significantly superior to chemotherapy as a first-line therapy in patients with advanced 

ALK-rearranged NSCLC, with PFS for ceritinib at 16.6 months and that for chemotherapy 

at 8.1 months (Soria et al., 2017). These demonstrated the potential of ceritinib as a 

therapeutic option for ALK-positive cancers. 

 

The combination of ceritinib and a dual CDK4/6 inhibitor, ribociclib, synergistically induced 

tumour regression in NB xenograft model (Wood et al., 2017). The therapeutic benefit of 

ceritinib in ALK-positive NB patients is unclear and needs further exploration. A phase I 

trial of ceritinib in NB, IMT, ALCL patients has been completed (NCT01742286) awaiting 

results, and other trials are currently underway to explore the benefits of combination 

treatments with ceritinib and other drugs in high-risk NB patients (NCT02559778). 

 

Brigatinib 

 

Brigatinib was developed as a potent TKI of ALK (Figure 9C) but can also inhibit other 

kinases, including some EGFR mutants, ROS1 and IGF-1R (Zhang et al., 2016). 

Preclinical studies in ALK-positive NSCLC models showed that brigatinib is superior to 

crizotinib and potently inhibited ALK mutants that confer resistance to crizotinib (G1269A, 
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S1206Y, I1171T V1180L F1174C/V/L, G1202R), ceritinib (F1174C/V/L, L1198F, 

G1202R) and alectinib (I1171N/T/S, G1202R) (Zhang et al., 2016). The brain is a 

common site of disease progression or relapse during treatment failure in cancer patients, 

and this result could be due to poor penetrance of the blood-brain barrier by many drugs 

(Gadgeel et al., 2014). Remarkably, brigatinib was found to be superior to crizotinib in 

improving survival in an orthotopic mouse brain tumour model, which may be indicative 

of enhanced central nervous system (CNS) penetration by brigatinib compared to 

crizotinib (Zhang et al., 2016). Clinical trials of brigatinib in ALK TKI-naïve or crizotinib-

resistant ALK-positive NSCLC patients demonstrated significantly higher systemic and 

CNS response rates and PFS (Bazhenova et al., 2017; Camidge et al., 2018; Kim et al., 

2017). The response rate among patients with measurable brain metastatic lesions was 

dramatically higher for brigatinib (78%) compared to crizotinib (29%) (Camidge et al., 

2018). These reports highlight the potential of brigatinib as a first-line therapy for ALK-

positive NSCLC patients and more importantly, for patients with baseline brain 

metastasis.  

Recurrent mutations in full-length ALK are found in high-risk NB which is mostly 

associated with metastatic disease (Carén et al., 2008; Chen et al., 2008; Eleveld et al., 

2015; George et al., 2008; Janoueix-Lerosey et al., 2008; Mossé et al., 2008). The 

superior efficacies demonstrated by brigatinib against diverse ALK-rearranged mutants 

and against metastatic brain disease in NSCLC suggest a potential for brigatinib in high-

risk ALK-positive NB patients. Data on brigatinib in NB is generally lacking, thereby, 

warranting preclinical studies of brigatinib to ascertain its efficacy in NB setting (Paper I) 

(Siaw et al., 2016). 

 

Lorlatinib 

 

Lorlatinib is a novel, potent, third-generation macrocyclic TKI of ALK and ROS1 (Figure 

9D). Lorlatinib demonstrated enhanced ability to penetrate the blood-brain barrier and 

exhibited broad-spectrum potency against most ALK kinase domain mutations which are 

resistant to crizotinib and even second-generation ALK TKIs such as ceritinib, alectinib 

and brigatinib (Solomon et al., 2018). In general, treatment of ALK-positive NSCLC 

patients with lorlatinib showed significantly high overall and CNS or intracranial activity in 

both treatment-naïve patients and those previously treated with other ALK TKIs (Solomon 

et al., 2018), thereby motivating the accelerated approval of lorlatinib by FDA in 2018, 

and approval by the European Medicine Agency (EMA) in 2019, for the treatment of 

crizotinib, alectinib, or ceritinib-refractory ALK-positive NSCLC patients. 

 

Lorlatinib has also been reported to effectively block the growth of ALK-addicted NB in a 

xenograft model (Guan et al., 2016; Infarinato et al., 2016), which suggests lorlatinib could 

be a potential therapeutic option for ALK-positive NB patients. The first pediatric phase I 
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trial of lorlatinib as a single agent and in combination with chemotherapy for treatment of 

relapsed or refractory NB patients, is currently on-going (NCT03107988). 

1.2.7 Treatment strategies in neuroblastoma  

The Children's Oncology Group (COG) risk stratification classifies NB as low, 

intermediate and high-risk groups based on age at diagnosis, tumour stage, and 

biological factors such as MYCN amplification, ploidy, and tumour histology (Davidoff, 

2012). This classification and other refined versions are employed in the planning of 

treatment strategy for NB patients (Davidoff, 2012). The major treatment modalities used 

in NB include surgery, chemotherapy, radiotherapy, differentiation therapy and 

immunotherapy (Swift et al., 2018).  

 

1.2.7.1 Surgery 

 

NB patients without metastatic disease undergo initial surgery which aims to resect as 

much of the primary tumour as is safely possible with minimal residual disease (Luo et 

al., 2018). This procedure is the most suitable for low- and intermediate-risk NBs. Surgery 

is also performed to obtain tissues for diagnosis. There are, however, complications that 

can be associated with surgery. In intermediate-risk NB patients where surgery is 

considered too risky, tumours are first treated with chemotherapy for debulking and 

metastatic remission, followed by surgery after tumours response (Hero et al., 2008; 

Parikh et al., 2015). Surgical resection alone has been shown to be curative in low-risk 

NBs with 5-year OS at 97% (Luo et al., 2018). In high-risk NBs, with 5-year OS at 40-

50%, surgical resection of the tumour after several chemotherapy cycles has been shown 

to be beneficial (Pinto et al., 2015; Rojas et al., 2016). 

 

1.2.7.2 Radiotherapy and radionuclide therapy 

 

Adrenergic neuroblasts, which are the cellular sources of NB, are typically very sensitive 

to radiation, thereby motivating the use radiotherapy in protocols for NB treatment, 

particularly in high-risk NBs (Deacon et al., 1985). Inclusion of radiotherapy in 

chemotherapy protocols to treat intermediate-risk and high-risk NB patients significantly 

improves both PFS and OS (Sibley et al., 1995). Targeted radiotherapy involving the use 

of radio-labelled Iodine (radionuclide) coupled to MIBG (131I-MIBG), has been 

demonstrated to provide benefits in NB (de Kraker et al., 2008; Swift et al., 2018). 

Mechanistically, NB cells are MIBG avid, due to the presence of transmembrane 

norepinephrine transporter (NET) which allows uptake of MIBG, and its later accumulation 

in neurosecretory granules in the tumour cells (Bomanji et al., 1987; Pandit-Taskar and 

Modak, 2017). While inside cell granules, radiation from 131I-MIBG results in the efficient 
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killing of tumour cells (Pandit-Taskar and Modak, 2017). First-line 131I-MIBG targeted 

therapy in NB achieved a significant response rate of 66%, with myelosuppression, 

particularly thrombocytopenia, and hypothyroidism as the dose-limiting toxicities (de 

Kraker et al., 2008; Garaventa et al., 1999; Lashford et al., 1992). This result highlights 
131I-MIBG therapy as a valuable option in NB treatment planning. 

 

1.2.7.3 Chemotherapy 

 

Chemotherapy is generally an essential part of NB treatment protocols. The decision to 

include chemotherapy in a treatment schedule for NB patient is greatly influenced by the 

risk group to which the patient belongs (Matthay et al., 2016). For children with low-risk 

NB and presenting clinical symptoms, a limited number of chemotherapy cycles are 

applied. In contrast, two to eight chemotherapy cycles are prescribed for intermediate-

risk patients (Pearson et al., 1992). The following drugs are used in different combinations 

for chemotherapy; cisplatin, vincristine, carboplatin, etoposide, and cyclophosphamide 

(Pearson et al., 1992). Current protocols for treating high-risk NB are divided into three 

main stages – (i) induction chemotherapy involving five to eight cycles of intensive 

chemotherapy which aims to shrink the primary tumour and reduce metastasis, (ii) 

consolidation therapy involving a high dose chemotherapy, followed by autologous stem 

cell transplant (ASCT) and radiation therapy to eliminate the remaining minimal disease, 

and (iii) maintenance phase by immunotherapy or use of differentiation-inducing agents 

such as 13-cis retinoic acid for treatment of minimal residual disease (RA) (Matthay et al., 

2016; Smith and Foster, 2018).  

 

1.2.7.4 Immunotherapy 

 

After two decades of research, patients with high-risk NB can be maintained in continual 

remission with anti-GD2 monoclonal antibody therapy, and this is becoming one of the 

standard cares for treating minimal residual disease (Navid et al., 2010). GD2 is 

disialoganglioside expressed primarily on the surface of NC derived cells and tissues 

including pain fibres, skin cells and mature neurons (Cheung and Dyer, 2013). NB is a 

neuroectodermal or NC-derived tumour and specifically expresses GD2, making GD2 an 

attractive target for immunotherapy. The two frequently explored anti-GD2 monoclonal 

antibodies in NB are chimeric anti-GD2 antibody (ch14.18) and mouse 3F8 (Sait and 

Modak, 2017). Ch14.18 has been combined with interleukin-2 (IL-2), granulocyte-

macrophage colony-stimulating factor (GM-CSF) and 13-cis-RA as a maintenance 

therapy in treating minimal residual disease after intensive chemotherapy.  This 

combination has significantly improved EFS (Yu et al., 2010). Several other anti-GD2 

monoclonal antibodies are currently in clinical trials in NB patients (NCT02650648, 

NCT00072358, NCT00072358, clinicaltrials.gov).  



40 
 

1.2.7.5 Retinoic acid therapy and differentiation 

 

NB is thought to arise from failed differentiation of NC-derived sympathoadrenal 

precursors. It has the highest rate of spontaneous regression of any human cancer and 

can mature spontaneously to a benign ganglioneuroma (Brodeur, 2018; Nakagawara, 

1998; Ratner et al., 2016). These observations have aroused an interest in the study NB 

of differentiation and exploration of differentiation-inducing agents. NGF and vitamin A 

derivatives such as 13-cis-RA, all trans-retinoic acid (ATRA) and fenretinide have been 

shown to induce neuronal differentiation and growth arrest of NB cell lines in vitro (Preis 

et al., 1988; Påhlman et al., 1984).  Incorporation of 13-cis RA as a maintenance therapy 

in high-risk NB patients has significantly improved EFS. This result was particularly 

dramatic in patients with minimal residual disease prior to RA therapy (Matthay et al., 

1999). A recent case report has also corroborated the clinical efficacy of the use of 13-

cis RA as a maintenance therapy for minimal residual disease in high-risk NB (Sato et al., 

2015). Generally, RA has been used in combination with anti-GD2 monoclonal antibodies 

as a maintenance therapy for high-risk NB (Cheung and Dyer, 2013; Smith and Foster, 

2018). Clinical trials are underway to explore further the combination of RA and different 

anti-GD2 antibodies in high-risk NB settings (clinicaltrials.gov). 

 

High-risk NB represents about 50% of all NBs and has a relapse rate of more than 50% 

(Cohn et al., 2009). MYCN amplification also accounts for 40% to 50% for high-risk NB 

(Kreissman et al., 2013). Since RA therapy is a component of treatment regimens for 

high-risk NB patients (Matthay et al., 1999), this implies that a high percentage of RA 

treated NB patients experience relapse disease. Knowing MYCN expression status could 

influence NB cell identity, thus, MES versus ADRN, and also responsiveness to RA 

(Wang et al., 2019), it would be reasonable to ask if high-risk NB patients should be further 

stratified based on MYCN expression status in deciding who receives RA as a 

maintenance therapy, hence a study to clarify this possibility and any related therapeutic 

benefit may be warranted. 

 

1.2.7.6 Targeted therapy in neuroblastoma 

 

While conventional therapies and interventions such as surgery, chemotherapy and 

radiotherapy have shown great efficacy in treating especially low- and intermediate-risk 

primary NBs, treatment outcome for high-risk NB patients is poor (Moreno et al., 2020). 

In relapsed or refractory NBs, the therapies mentioned above fail and result in the death 

of about 90% of these patients within 5 years (London et al., 2017; London et al., 2011; 

Moreno et al., 2020). It is evident that treatment options for high-risk NB, and particularly 

relapsed NB are limited or lacking, making it necessary to explore other novel therapeutic 

options. Recent investigations which aimed to understand the mechanisms of NB 
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pathogenesis and relapse have uncovered several novel actionable drug targets such as 

ALK, CDK4/6, MYCN, CHEK1, BIRC5, MEK etc., which are critical to developing targeted 

therapies for NB (Moreno et al., 2020; Moreno et al., 2017).  

 

Despite its genetic underpinning, which manifests frequently through SCAs, NCAs and or 

copy number variations (CNVs), NB is increasingly recognized as a disease of aberrant 

protein signalling in cells. This result perhaps explains why in both the first and second 

Neuroblastoma New Drug Development Strategy (NDDS) forums it was recommended 

that protein products with deregulated or enhanced activities with proven capabilities of 

driving tumour growth and progression should be prioritized for therapeutic targeting in 

NB (Moreno et al., 2020; Moreno et al., 2017). The revised NDDS priority targets include 

ALK, Aurora kinase, CDK4/6, MEK, BIRC5, CHEK1 MDM2, BCL2, PARP, WEE1, 

mTORC1/2, BET, ATR, CDK7, CDK2/9, BRIP1, RRM2, ATRX, TERT telomerase and 

ALT (alternative lengthening of telomere lengthening) (Moreno et al., 2020).  

 

Preclinical investigations of some ALK TKIs such as crizotinib, alectinib, ceritinib, lorlatinib 

and repotrectinib in ALK-positive NB models have yielded encouraging results (Alam et 

al., 2019; Cervantes-Madrid et al., 2019; George et al., 2008; Guan et al., 2016; Infarinato 

et al., 2016; Schönherr et al., 2011), thereby motivating the recently completed, and 

ongoing clinical trials of ceritinib (NCT01742286) and lorlatinib (NCT03107988) 

respectively in NB patients. MEK inhibitors such as trametinib, selumetinib sulfate, 

cobimetinib which target activating MAPK pathway mutations, P13K inhibitor SF1126, 

and CDK4/6 inhibitor ribociclib are currently in clinical trials in NB patients 

(NCT03434262) (Moreno et al., 2017). Early phase clinical trials for MDM2, CHEK1, and 

BET bromodomain inhibitors in pediatric cancer patients have just been started (Moreno 

et al., 2020). 

 

Telomeres are repetitive hexanucleotides DNA sequence at both terminals of a 

chromosome which protects the chromosome from degradation and interchromosomal 

fusion (Moyzis et al., 1988). Telomere length undergoes gradual shortening for every 

DNA replication, and critically short telomeres elicit replicative senescence and apoptosis 

(Greider, 1990). Immortal cells such as cancer cells bypass this progressive telomere 

shortening through de novo synthesis and elongation of the telomere, mediated by a 

ribonucleoprotein called telomerase (Blackburn et al., 1989; Greider and Blackburn, 1987; 

Kim et al., 1994). The catalytic unit of this enzyme is called telomere reverse transcriptase 

(TERT) (Blackburn et al., 1989). Telomerase is activated in about 80-90% of human 

cancers (Bartek and Lukas, 2003; Kim et al., 1994). Additionally, some tumour cells use 

another homologous recombination mechanism known as alternative lengthening of 

telomeres (ALT) to maintain or elongate their telomeres in a telomerase independent 

manner (Bryan et al., 1997; Dunham et al., 2000). TERT-mediated telomere maintenance 
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and ALT have emerged as important prognostic markers of neuroblastoma (Nozaki et al., 

2000; Ohali et al., 2006). Telomerase activation in some high-risk NBs has been found to 

be due to TERT rearrangement (Peifer et al., 2015; Valentijn et al., 2015). Therapeutic 

targeting of telomerase and ALT pathways may represent promising strategy for 

treatment of high-risk NBs (Moreno et al., 2020). Clinical drug candidates for these targets 

are currently unavailable. 

 

1.2.7.7 Prospects for treatment of relapsed neuroblastoma 

 

About 50% of high-risk NB relapse (Cohn et al., 2009), and the 5-year OS rate for relapse 

NB stands at 20% (London et al., 2017; London et al., 2011). This discouraging OS rate 

for relapsed NB may be reflective of a more aggressive relapsed disease or lack of 

effective treatment options for relapsed disease or perhaps the clinician’s inadequate 

knowledge of the relapsed tumour’s new “driver” genetic landscape. 

 

Current treatment options for relapsed NB include chemotherapy and 131I-MIBG 

radiotherapy, which produce temporary benefits but mostly fail in the long term (Zage, 

2018). Clinicians have also been reported to be reluctant to prescribe invasive 

procedures, including tumour sampling in relapsed high-risk NB patients (Schleiermacher 

et al., 2014). While treatment naïve NB tumours exhibit paucity of mutations in targetable 

genes, recent reports have demonstrated that the mutational burden in relapsed NB 

tumours increase significantly, and have reduced subclonal heterogeneity (Padovan-

Merhar et al., 2016; Schramm et al., 2015). Therapeutically relevant target genes such 

as ALK, ATRX, CDK4 and FGFR1 are recurrently mutated and enriched in relapsed NB 

tumours (Padovan-Merhar et al., 2016; Schleiermacher et al., 2014; Schramm et al., 

2015). Mutations in reported recurrent RAS/MAPK pathway genes have also been 

significantly enriched in relapsed NB tumours (Eleveld et al., 2015; Padovan-Merhar et 

al., 2016; Schramm et al., 2015). These mutated genes consist of druggable targets such 

as ALK, FGFR1, PTPN11, and difficult-to-drug targets such as K-RAS, H-RAS and N-

RAS (Eleveld et al., 2015). Although ALK mutations are found in about 10% of primary 

NBs, this percentage is as high as over 20 - 43% in relapsed tumours, highlighting the 

clinical and the biological significance of ALK in NB (Eleveld et al., 2015; Schleiermacher 

et al., 2014). Genomic alterations in genes that are directly engaged in RAS-RAF 

signalling, such as PTPN11, NF1, RAS, and RAF, all together have been found in about 

30% of relapsed NB (Eleveld et al., 2015). 

 

While the RAS family genes have proven difficult to target with small molecule inhibitors, 

the recent identification of a novel pocket called switch-II pocket (S-IIP) in the inactive 

GDP-bound RAS spurred a breakthrough discovery of a covalent small molecule inhibitor, 

ARS-1620, that selectively targets and potently inhibits K-RAS(G12C) mutant in vitro and 
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in vivo (Janes et al., 2018; Ostrem et al., 2013). Another covalent inhibitor, MRTX849, 

inhibits K-RAS(G12C) mutant by binding in the switch-II pocket in K-RAS(G12C) mutant 

allele and engages in an irreversible covalent bonding with cysteine 12  (Fell et al., 2020). 

The K-RAS(G12C) inhibitors, ARS-1620 and MRTX849, showed robust antitumour 

activity in in vitro, in vivo and xenograft models, with MRTX849 currently in phase I/II 

clinical trials in patients with K-RAS(G12C) mutation cancers (KRYSTAL-1 

NCT03785249, KRYSTAL-2 NCT04330664) (Fell et al., 2020; Janes et al., 2018; Ostrem 

et al., 2013).  These achievements in targeting K-RAS(G12C) imply that similar strategies 

could be employed in targeting other K-RAS mutations and other RAS family gene 

mutations. These results suggest that therapeutic targeting of mutated genes of the RAS 

signalling cascade may be a viable option for relapsed NB patients. 

 

Altogether, these results suggest that the driver of a relapsed NB is more likely to be a 

targetable or therapeutically relevant oncogenic pathway. Against this background, the 

advent of targeted therapies, including ALK TKIs in NSCLC, and their proven success in 

other cancers, and the recent advances made with RAS inhibitors may be suggestive of 

a new era and alternative therapeutic option for treatment of relapsed NBs (Fell et al., 

2020; Friboulet et al., 2014; Gadgeel et al., 2014; Janes et al., 2018; O'Bryan, 2019; Shaw 

et al., 2014; Solomon et al., 2014a). It, therefore, implies that the molecular profile of 

relapsed NB tumours should be a critical reference in treatment decisions, highlighting 

the need to make genetic profiling of relapsed NB tumours a routine clinical practice. 

 

However, these questions remain: what should be the right time for high-risk NB patients 

to receive targeted therapy? Should targeted therapy be part of first-line regimens even 

if the target is present at subclonal level? Or should it be administered as part of 

maintenance therapy to treat minimal residual disease after conventional therapy 

sessions? Or should it be applied at relapse?  After all, precision medicine is about this 

issue. 
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2 AIMS 

This thesis aims to further our understanding of ALK signalling and its role in NB 

differentiation and explore novel ALK TKIs in NB setting. 

 

Specific aims 

 

Paper I 

 We aimed to investigate the therapeutic efficacy of the second-generation ALK 

TKI, brigatinib, in NB cell lines and other preclinical models. 

 Further, we aimed to establish inhibitory profiles of brigatinib against major ALK 

gain-of-function mutant alleles identified in NB. 

 

Paper II 

 To perform genomic analysis of a tumour biopsy from an NB patient 

 To characterize a novel ALK-I1171T mutant allele identified in the NB tumour 

biopsy. 

 To perform pharmacological inhibition profile of the novel ALK-I1171T mutant with 

ALK TKIs. 

 

Paper III 

 To investigate the role of DLG2 in NB differentiation.  

 To explore the mechanistic relationship between ALK and DLG2 in the regulation 

of the differentiation state of NB cells. 

 To further explore the genetic landscape of the DLG2 gene in 11q-del NB tumours. 
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3 MATERIALS AND METHODS 

Cell culture 

 

The human NB cell lines used in this study are CLB-BA, CLB-GE, CLB-GA, CLB-PE,  

IMR-32, SK-N-DZ, SH-SY5Y, SK-N-SH, SK-N-AS and SK-N-BE(2) and a rat 

pheochromocytoma cell line, PC12. NB cells were cultured in RPM1640 medium 

supplemented with 10% fetal bovine serum (FBS) and 1% penicillin and streptomycin and 

PC12 cells cultured in DMEM (Dulbecco's modified Eagle's medium) supplemented with 

7% horse serum and 3% FBS (fetal bovine serum) and 1% penicillin and streptomycin, at 

37 ˚C with 5%  carbon dioxide. 

 

Neurite outgrowth and differentiation assay 

 

PC12 cells (2 x106) were co-transfected with pEGFPN1 (0.5 ng) and ALK-mutant (0.75 

ng) or ALK-wt (0.75 ng), in 100 μl of Ingenio electroporation solution (Minus Bio LCC). 

ALK-wild type was stimulated with 1 μg/ml mAb31. Neurite-outgrowth was scored 48 

hours post-transfection, by counting the fraction of neurite bearing GFP-positive cell 

versus all GFP-positive cells visualized under a Zeiss Axiovert 40 CFL microscope. 

Neurite-carrying cells had neurite(s) that was at least twice the length of a normal cell 

body diameter.  

 

For differentiation assays, NB cell lines were seeded in collagen-coated 6-well plates, in 

RPMI-1640 medium supplemented with 10% FBS. After overnight culture, cells were 

treated with either DMSO or 10µM RA or 100 ng/ml NGF. Differentiation was scored after 

24 hrs or more, post-treatment, depending on cell line and differentiation agent used. 

Cells were considered morphologically differentiated if neurite(s) length was at least 1.5 

times that of the cell body. 

 

Drosophila transgenic lines and brigatinib treatment 

 

Transgenic Drosophila lines carrying the UAS-ALKF1174L or UAS-ALKR1275Q gain-of-

function mutations were crossed with the pGMR-Gal4 transgenic driver to drive ectopic 

expression of ALK mutants in the imaginal discs. The first instar larvae from these crosses 

were transferred to food containing either 100 μM or 200 μM brigatinib or on food 

containing 2% ethanol (as control) and allowed to grow at 25 °C.  
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Immunostaining eye imaginal discs of Drosophila 

 

Imaginal discs were obtained from the third instar larvae and fixed for 20 min in 4% 

formaldehyde diluted in phosphate-buffered saline (PBS). Afterwards, discs were 

permeabilized for 10 min in PBS, followed by blocking in PBST supplemented with 4% 

fetal bovine serum. The discs were then incubated with ALK antibody in PBST overnight. 

Samples were washed with PBS and further incubated for 2 hours in the fluorescently 

labelled secondary antibody. Discs were fine dissected prior to mounting in flouromount 

G. 

 

Mouse xenografts  

 

Female BALB/cAnNRj-Foxn1nu mice (Janvier Labs, France) or Female Balbc/nude mice 

(Charles River, Germany) 4-6 weeks old were housed. After acclimatizing, NB cells, 

mixed in Matrigel, were subcutaneously injected into the left flank. Tumour size was 

measured continuously, and then tumours were excised and weighed at the end of the 

experiment. Following the Regional Animal Ethics Committee approval, all experimental 

procedures and protocols were performed, Jordbruksverket (230-2014, 01890-2018).  

 

Western blotting and quantification 

 

Whole-cell lysates were collected in RIPA lysis buffer. Protein concentration was 

determined, and samples were subjected to SDS polyacrylamide gel electrophoresis 

(PAGE). Samples were transferred from the gel to polyvinylidene difluoride membranes 

and immunoblotted with primary antibodies overnight at 4°C.  After washing in PBST, 

blots were further incubated with secondary antibodies and subsequently developed with 

ECL prime western blotting detection reagents. Quantification of western blotting was 

performed using Image Studio™ Lite software (LI-COR Biotechnology - UK).  

 

Viral transduction and establishing lentiviral stable cell lines 

 

Cell lines were transduced independently with lentiviral particles at MOI of one. 

Transduced cells were selected with 1 µg/ml of puromycin (Gibco) to establish stable cell 

lines. 

 

Proliferation assay 

 

Cells were seeded in triplicates into wells of 48-well plates and cultured at 37°C in 

Incucyte S3 (Essen BioScience, USA). Cell growth/proliferation was recorded by 

scanning the cells at 12- hour intervals for five days. Cell percentage confluency was 
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determined for each scan using Incucyte S3 software (Essen BioScience, USA). Cell 

proliferation was also determined in some cases by resazurin assay. 

 

Cell cycle analysis 

 

Cells were seeded and cultured for 48 hours, harvested and rinsed with PBS, followed by 

ethanol fixation for 3 hours at 4°C. Cell cycle analysis was carried out using 

NucleoCounter NC-3000 (Chemometec, Denmark) according to manufacturer’s protocol, 

Fixed-Cell-Cycle-DAPI-Assay. Cell cycle data were analyzed using the plot manager in 

NucleoView NC-3000 software. 

 

DNA probes and nuclear extract Isolation 

 

The predicted SP1 binding locus (chr11:85628043..85628782) located within one 

kilobase pair upstream of DLG2 transcriptional start site was amplified using biotinylated 

primers in PCR reaction using genomic DNA, extracted from a NB cell line, as template 

and the control DNA probe (628 bp) was amplified from a random sequence with the 

DLG2 gene using a different set of biotinylated primer pair. Nuclear fractions were isolated 

from the NB cell line using cell fractionation buffers and stored at -80 ̊C.  

 

DNA probe pulldown assay 

 

Nuclear extract (50 µg to 100 µg) was mixed with Dynabeads MyOne streptavidin C1 

(Thermo Fisher Scientific, Sweden) and 4 µg of appropriate biotinylated DNA probes and 

incubated overnight. Dynabeads were washed with ice-cold PBS. After that, beads were 

heated at 95 ̊C for 5 minutes in 2X SDS sample buffer. The sample was subjected to 

PAGE and immunoblotted with SP1 antibody. 

 

SNP microarray analysis and whole-genome sequencing 

 

High-density Affymetrix single nucleotide polymorphism (SNP) microarrays were used for 

genomic profiling on human NB tumours. The following software packages were used in 

primary data analysis, the GDAS software (Affymetrix), Chromosome Analysis Suite 

(ChAS) (Affymetrix) or Copy Number Analyzer for Affymetrix GeneChip Mapping arrays 

(CNAG 3.0, Genome Laboratory, Tokyo, Japan; www.genome.umin.jp). Whole-genome 

sequencing (WGS) was performed on tumour DNA and constitutional DNA extracted from 

the blood of patients with coverage between 30X to 60X using Illumina instrumentation. 

The Sentieon suite of bioinformatics tools (Sentieon Inc, Mountain View, CA) were used 

for data processing, including variant calling. Calling of copy number alterations was 

executed using the Canvas tool (version 1.38.0.1554) (17). 
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Foci formation Assay 

 

NIH3T3 cells were transfected for 24 hours, with 0.55 µg of indicated plasmids using 

Lipofectamine 2000 (Invitrogen). After transfection, cells were maintained in DMEM 

supplemented with 0.5 mg/ml G418 and 10% FBS for few days, and subsequently 

cultured in DMEM supplemented with 0.25 mg/ml G418 and 5% FBS for 10 – 15 days. 

Cells were rinsed with PBS and air-dried, followed by methanol fixation and staining with 

0.2% crystal violet in 20% ethanol.  After this, plates were washed, air-dried and scanned. 

 

Immunohistochemistry 

 

Xylene was used to rehydrate slides, and further with a series of alcohol dilutions and 

rinsed finally in a buffer (DAKO 8007). For enzyme antigen retrieval PTLINK (DAKO) was 

used. Slides were treated with EnVision FLEX Peroxidase-Blocking Reagent (DAKO) to 

block endogenous enzymes. Slides were then incubated with antibodies and rinsed, 

followed by addition of EnVision FLEX/HRP (DAKO). After rinsing slides, substrate-

chromogen was added and incubated for 10 min. Slides were then rinsed and stained in 

Hematoxylin before mounting. 

 

Statistical analyses 

 

Graphs were generated, and statistical analysis was performed using GraphPad Prism 

8.01 or the R statistical package (v. 3.5). Details on the statistical tests used in this study 

are reported in the respective sections and figure captions of the published papers. 

 

Ethics statement 

 

Written informed consent from the patient's guardians was obtained.  The patient was 

enrolled in the Novartis compassionate use program for ceritinib (CLDK378A2003M). 

Treatment of patient was done following HR-NBL-1 SIOPEN protocol (permit 02-294). 

MPA license (LVFS 2008:1) and Clinical Ethical Board meeting supported LDK378 

compassionate use. Linkage of clinical information to tumour analyses was performed 

according to the ethical permit 2009/1369-31/1. For the publication of this research, 

written informed consent was obtained from the patient's guardians. 
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4 RESULT AND DISCUSSION 

4.1 Paper I 

Brigatinib, an anaplastic lymphoma kinase inhibitor, abrogates activity and growth 

in ALK-positive neuroblastoma cells, Drosophila and mice. 

 

Crizotinib was the first clinically approved TKI of ALK for the treatment of ALK-positive 

NSCLC after showing significant efficacy in these patients in a clinical trial (Kwak et al., 

2010). However, results from the treatment of ALK-positive NB patients with crizotinib 

was less encouraging, with limited response observed (Mossé et al., 2013). The use of 

brigatinib, a second-generation ALK TKI, resulted in about 72% response rate in crizotinib 

refractory ALK-positive NSCLC patients in a clinical trial (Camidge et al., 2015). As a 

result of this promising finding, we decided to investigate the therapeutic potential of 

brigatinib in the NB setting. 

 

We showed that brigatinib inhibited phosphorylation of ALK and its bona fide downstream 

targets, including ERK1/2, ERK5, AKT and MYCN, in a dose-dependent manner. These 

effects culminated in the in inhibition, by brigatinib, of growth of ALK-addicted NB cell 

lines both in vitro and in a xenograft model. Brigatinib inhibited NB cells with IC50 values 

about two-fold less than crizotinib, suggesting a superiority of brigatinib over crizotinib. 

Brigatinib treatment of ALK-wild type NB cells showed no observable effect on cell growth, 

demonstrating the specificity of brigatinib against ALK activity. Additionally, we observed 

similar superior performance of brigatinib in vitro using a set of diverse gain-of-function 

ALK mutant alleles in biochemical and neurite outgrowth assays, in which brigatinib 

inhibited ALK phosphorylation with IC50 of 5-35 fold less compared to that of crizotinib 

and robustly abrogated ALK-mediated neurite outgrowth in PC12 cells. These results 

suggest that brigatinib demonstrates superior inhibition profiles compared to crizotinib in 

the context of full-length ALK gain-of-function alleles and ALK-addicted NB cell lines. 

 

To test the potency of brigatinib in-vivo, we used Drosophila melanogaster as a model 

organism in which ectopic expression of ALK mutant alleles resulted in the disruption of 

the eyes in all offspring, described as “rough eye” phenotype. Further, growing of fly 

larvae on brigatinib-containing food led to the dose-dependent rescue of the rough eye 

phenotype, demonstrating the ability of brigatinib to inhibit ALK activity in-vivo.  

 

In summary, we show that brigatinib inhibits the activity of diverse ALK gain-of-function 

alleles in NB cell lines, in mice xenografts and in vivo Drosophila melanogaster models. 

Together, these results suggest brigatinib is a potent ALK inhibitor, warranting its further 

investigation in ALK-positive NB setting. 
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4.2 Paper II 

Clinical response of the novel activating ALK-I1171T mutation in neuroblastoma to 

the ALK inhibitor ceritinib. 

 

The occurrence of ALK gain-of-function driver mutations in NB tumours offers a 

therapeutic target in these tumours to explore with ALK TKIs (Chand et al., 2013; George 

et al., 2008; Pugh et al., 2013). Ceritinib is an ALK TKI approved for the treatment of ALK-

positive metastatic NSCLC patients (Shaw et al., 2014). In this study, we characterized a 

novel ALK-I1171T mutant allele identified in an NB patient. Based on preclinical 

pharmacological inhibition profiling of the ALK-I1171T gain-of-function mutant against 

different ALK TKIs, ceritinib was used to treat the patient and showed dramatic response 

and recovery. 

 

Patient Presentation: A 16-month-old boy was diagnosed with metastatic neuroblastoma 

stage M (INRGSS). Initial genomic analysis revealed no MYCN amplification but showed 

numeral other unfavourable segmental chromosomal alterations. The patient received 

different courses of chemotherapy treatment. Chemotherapy was stopped after about 

three weeks due to severe bone marrow toxicity. Genomic analysis of tumour biopsy and 

blood sample showed inherited mutations L910F and V230I in the FANCA gene. 

Clinically, the patient displayed Fanconi anaemia features that could be explained by the 

FANCA-L910F mutation. This mutation was thought to cause a defect in DNA repair, 

advising against the continued use of chemo or radiation therapy. Further genomic 

analysis also led to the identification of a novel ALK-I1171T mutation in the patient tumour. 

Hence, treatment with ALK TKI was deliberated and preclinical investigation of the ALK-

I1171T mutation carried out for the patient.   

 

ALK mutations can be categorized as a gain-of-function ligand-independent (driver) 

mutation or a passenger mutation (Chand et al., 2013). Since this is the first report of 

I1171T mutation in full-length ALK in NB, we sought to determine whether it was a gain-

of-function or passenger mutation. We observed ligand-independent phosphorylation of 

ALK-I1171T allele in a biochemical assay and concomitant activation of the downstream 

target ERK1/2. Furthermore, we found that ALK-I1171T was able to induce neurite 

outgrowth in the PC12 cells and potently transform NIH3T3 cells leading to a foci 

formation. These results suggest ALK-I1171T is a gain-of-function mutant capable of 

ligand-independent activation of bonafide downstream targets, and capable of 

transforming cells. They further imply that ALK-I1171T could be an oncogenic driver in 

the NB tumour being investigated. 

 

In order to select suitable ALK TKI for use in this clinical case, we performed a 

pharmacological inhibition profile of ALK-I1171T mutant against ALK inhibitors ceritinib, 
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brigatinib, crizotinib and lorlatinib. We showed that the full-length ALK-I1171T was 

resistant to crizotinib but sensitive to next-generation ALK TKIs as determined in a 

biochemical assay. The IC50 of ceritinib for inhibition ALK-I1171T phosphorylation was 

11-fold lower than that of crizotinib, while brigatinib and lorlatinib were about 1/28th the 

IC50 of crizotinib. These results indicate that ceritinib, brigatinib and lorlatinib represent 

better therapeutic choices for tumours driven by ALK-I1171T mutation. We extended our 

analysis and showed that ceritinib effectively abrogated the growth of ALK-addicted NB 

cell lines, with no observable effect on ALK-non-addicted cell lines. The lack of activity 

against control cell lines, i.e. ALK-non-addicted NB cell lines, by ceritinib, demonstrated 

the specificity of ceritinib against ALK activity. 

 

Based on the preclinical experimental data outlined here that suggested a possibility of 

poor response to the first generation ALK TKI, crizotinib, and the indication for Fanconi 

anaemia preventing chemotherapy or radiotherapy, the patient was recruited unto the 

compassionate use individual patient program for ceritinib. Treatment of the patient with 

ceritinib resulted in tumour shrinkage, and the residual primary tumour was removed 

surgically after 7.5 months of ceritinib treatment. Immunohistochemical analysis of tumour 

sample revealed a significant reduction in cell proliferation, increased expression of 

markers of tumour differentiation and the tumour histologically resembled 

ganglioneuroblastoma which was rich in Schwannian stroma. This result suggests that 

oncogenic ALK signalling could promote an undifferentiated or poorly differentiated NB 

tumour histology, which is associated with poor prognosis. One year after surgery and 21 

months after the start of ceritinib treatment, clinical evaluation of the patient revealed the 

absence of residual tumour in the abdomen and complete disappearance of all metastatic 

disease. The patient remains in complete remission 58 months after continuous treatment 

with ceritinib. 

 

These results highlight the enormous potential and importance of combined extensive 

genetic profiling and preclinical investigation in tailoring treatment for NB patients (Figure 

10). It also suggests the potential benefit of next-generation ALK TKIs, such as ceritinib, 

as monotherapy for ALK-positive NB tumours. 
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Figure 10. An overview of workflow showing steps leading to target identification and targeted 

therapy administration in neuroblastoma (NB) patient. A tumour biopsy was taken from the patient for 

genomic profiling, which indicated several copy number variations (CNVs) indicative of high-risk NB. The 

patient was put on chemotherapy but later developed severe toxic side effects. Targeted exome sequencing 

(Exome-Seq) revealed FANCA-L910F and novel ALK-I1171T mutations. Chemotherapy was stopped, and 

radiotherapy advised against due to germline FANCA mutation. Preclinical investigation of ALK-I1171T 

revealed a gain-of-function mutation, which is resistant to crizotinib but sensitive to the second and third-

generation ALK TKIs, ceritinib, brigatinib and lorlatinib. Treatment with ceritinib resulted in tumour shrinkage 

and differentiation, followed by subsequent surgical removal of residual primary tumour. 
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4.3 Paper III.  

11q deletion or ALK activity curbs DLG2 expression to maintain an undifferentiated 

state in neuroblastoma. 

 

High-risk NB tumours are characteristically undifferentiated or poorly differentiated 

(Chang et al., 2020). Understanding the mechanism leading to progenitor cell 

differentiation blockade is essential in discovering new therapeutic approaches against 

NB. We also showed in Paper II that treatment of ALK-positive NB tumour with ALK TKI 

promoted tumour differentiation, thereby implicating ALK signalling in NB differentiation 

(Guan et al., 2018). A recent study by Furlan and colleagues suggested SCPs as one of 

the NC-derived cellular sources of NB (Furlan et al., 2017). They uncovered a transient 

intermediate cellular state, consisting of “bridge cells”, identifiable by a unique 

transcriptional pattern referred to as the “bridge” signature, in the differentiation trajectory 

of SCPs towards adrenal chromaffin cells (Furlan et al., 2017). We therefore hypothesized 

that, deregulation of genes in the “bridge cells” could affect differentiation and potentially 

contribute to NB development. DLG2 is among the genes that are uniquely upregulated 

in the bridge cells. Herein, Paper III, we investigated a tumour suppressor role for DLG2 

in NB cells. 

 

We showed that high expression, in NB tumours, of genes that are downregulated in 

bridge cells strongly correlated with poor prognosis, while high expression in NB tumours 

of upregulated “bridge genes” correlated with better prognosis. More specifically, We 

found that high expression of DLG2, an upregulated “bridge gene”, in NB tumours is 

associated with better prognosis and event-free survival across four different NB data 

sets in R2 (http://r2.amc.nl). Importantly, DLG2 is located on chromosome 11q that is 

frequently deleted in high-risk NB, and this deletion is associated with poor prognosis 

(Carén et al., 2010). We showed that DLG2 protein expression is almost lost in a panel 

of NB cell lines. Overexpression of DLG2 significantly inhibited cell proliferation in vitro, 

induced a G1 cell cycle arrest and displayed robust anti-tumour properties in mice 

xenograft models. These findings suggest DLG2 is a putative tumour suppressor gene in 

NB cells. 

 

DLG2 is a “bridge” signature gene that is upregulated in the differentiation trajectory from 

SCPs to adrenal chromaffin cells (Furlan et al., 2017), suggesting a pro-differentiation 

role for DLG2. We found that forced expression of DLG2 spontaneously induced both 

biochemical and morphological differentiation of NB cell lines. Remarkably, DLG2 

expression potently enhanced RA induced differentiation of NB cells. One main 

characteristic feature of NBs capable of spontaneous 

regression/maturation/differentiation is the high expression of TRKA (Hoehner et al., 

1995). We found that DLG2 expression induced high TRKA expression and potentiated 
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NGF, the ligand of TRKA, induced differentiation of NB.  In addition, we showed RA and 

NGF both positively regulate DLG2 expression. These results suggest that DLG2 

promotes differentiation of NC-derived progenitors and might be an integral component 

of the differentiation machinery in NC progenitors. NB tumours have been described to 

consist of two cell types, namely ADRN and MES cells, which can coexist and are capable 

of interconversion (van Groningen et al., 2019; van Wezel et al., 2019). Enrichment of 

MES cells in NB tumours is highly predictive of relapse (van Groningen et al., 2017; van 

Wezel et al., 2019). We found that DLG2 overexpression increased ADRN genes and 

decreased MES genes expression in NB cells. 

 

Mechanistically we showed that oncogenic ALK signalling transcriptionally suppressed 

DLG2 expression through MAPK/ERK1/2-SP1 signalling axis. In agreement, 

pharmacological inhibition of ALK, MEK1/2 or SP1 resulted in increased DLG2 expression 

(Figure 11). Interestingly, similar to DLG2 overexpression, we found that siRNA mediated 

knockdown of SP1 caused increased DLG2 expression with spontaneous induction of 

neuronal differentiation and further potentiated RA induced differentiation (Figure 11). 

These results suggest that ALK-ERK1/2-SP1 signalling promotes undifferentiated NB 

phenotype through transcriptional repression of DLG2 expression. 

 

Additionally, we analyzed high-risk 11q-del NB tumours and identified genetic lesions in 

the DLG2 gene, located on chromosome 11q, which indicate that the DLG2 is a target for 

deletion and disruption in NB tumours, thereby suggesting a tumour suppressor role for 

DLG2 in NB tumour initiation or progression.  

 

 



55 
 

 
Figure 11. A model of the proposed role of DLG2 in embryogenesis and neuroblastoma. (Left panel) 

During embryogenesis, neural crest (NC)-derived Schwann cell precursors (SCPs) or sympathoadrenal 

precursors (SAPs) are committed to differentiation into adrenal chromaffin cells (ChCs) and/or sympathetic 

neurons through an intermediary cell state called “bridge cells” (BCs), with simultaneous and progressive 

upregulation of DLG2 (Furlan et al., 2017). (Right panel) In NB, deletion of chromosome 11q (11q-del) leads 

to, in part, loss or reduction of DLG2 expression in SAPs, BCs or SAPs. These cells become deregulated, 

leading to the formation of undifferentiated NB tumour. Oncogenic ALK-ERK1/2-SP1 signalling also inhibits 

DLG2 expression in cells. Treatment of cells with retinoic acid (RA) treatment or inhibition of SP1 restores 

DLG2 expression and promotes NB cell differentiation. NT denotes neural tube. Figure is adapted from 

(Siaw et al., 2020) 
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5 CONCLUSIONS 

Paper I 

 Brigatinib abrogated ALK activity in NB cell lines. 

 Brigatinib potently inhibited NB cell growth in vitro and in NB mice xenografts. 

 In general, we showed that brigatinib is a potent inhibitor of ALK, supporting further 

investigation of brigatinib as a potential therapy for ALK-positive NB.  

 

Paper II 

 We uncovered a novel ALK-I1171T mutation in the ALK full-length gene and 

FANCA mutations in an NB patient biopsy. 

 We characterised ALK-I1171T as a gain-of-function mutation. 

 ALK TKIs such brigatinib, ceritinib and lorlatinib potently inhibited ALK-I1171T 

activity, although it was resistant to crizotinib, a first-generation ALK TKI. 

 Monotherapy with ceritinib was well tolerated and produced dramatic patient 

response involving tumour shrinkage, followed by removal of residual primary 

tumour by surgery and, ultimately, a complete clinical remission, including all 

metastatic sites. 

 The resected primary tumour showed significant differentiation and resembled 

ganglioneuroblastoma. 

 Our data suggest that ceritinib presents a feasible therapeutic option for ALK-

positive NB patients and highlighted the importance of combining preclinical 

investigations with comprehensive genetic profiling in personalizing therapy. 

 

Paper III 

 “Bridge genes” are prognostic of NB patient outcome. 

 DLG2 overexpression inhibited NB cell proliferation, induced and potentiated RA 

mediated cell differentiation, thereby acting as a tumour suppressor in NB. 

 Oncogenic ALK signalling suppresses DLG2 expression through the 

MAPK/ERK1/2-SP1 signalling axis. 

 Knockdown of SP1 induced DLG2 mediated differentiation. 

 Chromosome 11q harbouring DLG2 is hemizygously deleted in NB tumours, with 

genetic lesions such as breakpoints clusters, and rearrangements occurring within 

or in close proximity to the DLG2 locus. 

 Deletion of DLG2 and or oncogenic ALK-ERK1/2-SP1 signalling suppression of 

DLG2 protein expression contributes to promote undifferentiated NB tumour 

histology. 
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