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Differential forms and currents on
non-reduced complex spaces with applications

to divergent integrals and the ∂̄-equation

Mattias Lennartsson

Abstract

This thesis consists of three papers in which we study differential
forms and currents on complex spaces. An important tool for us
is the theory of residue currents.

In Paper I we study divergent integrals over singular differential
forms on a complex manifold. The differential form should have
a pole along a complex hypersurface. To such a differential form
we associate a residue form and a current with properties similar
to residue currents. We connect the residue form and the current
in a formula which can be thought of as a residue formula in this
setting.

In Paper II we solve the ∂̄-equation for (p, q)-forms on non-
reduced complex spaces. It is not obvious what smooth differen-
tial forms and currents should be on a non-reduced space. We
define these objects using residue calculus and show that we can
(locally) solve the ∂̄-equation.

In Paper III the setting is similar to that of Paper I but we now
allow the differential form to be singular on a complex submani-
fold of higher codimension.
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Preface

This thesis consists of the following papers.

• Paper I. Mattias Lennartsson, “Residues and currents from
singular forms on complex manifolds”, preprint.

•Paper II.Mats Andersson, Richard Lärkäng, Mattias Lennarts-
son and H̊akan Samuelsson Kalm,“The ∂̄-equation for (p, q)-
forms on a non-reduced analytic space”, preprint.

• Paper III. Mattias Lennartsson, “Residues of singular dif-
ferential forms on complex submanifolds”, preprint.
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“The fundamental cause of the trouble
in the modern world today

is that the stupid are cocksure
while the intelligent are full of doubt”

Bertrand Russel

2

Introduction

This thesis is concerned with the field of complex analysis which
is the study of derivatives and integrals of functions defined in the
complex plane C, or more generally Cn and even more generally
on complex spaces. Important tools for us will be distributions
and currents which yield a way of giving a meaning to derivatives
of functions which are not differentiable.

1. Analysis in the complex plane

Let us begin by discussing some basic notions of complex analysis
in one variable. The ∂̄-operator applied to a function f : C → C
is given by

∂̄f =
∂f

∂z̄
dz̄, (1)

where ∂f/∂z̄ =
(
∂f/∂x+i∂f/∂y

)
/2. If the function f is contin-

uously differentiable then it is holomorphic if and only if ∂̄f = 0,
which is a compact way of writing the Cauchy–Riemann equa-
tions. The function f may of course be defined on some open
subset of C but for simplicity we will often formulate results and
formulas for holomorphic functions on all of C (or Cn). We will
do so throughout this introduction.
A function is said to be meromorphic if it is holomorphic ev-
erywhere except possibly at discrete points where it has poles.
Given a meromorphic function f and a point z0 ∈ C the residue

3
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Res(f, z0) is defined to be the z−1 coefficient in the Laurent series
expansion of f around z0. If f has a pole of order m at z0, so
that (z − z0)

mf(z) is holomorphic, then

Res(f, z0) =
1

(m− 1)!

( ∂m−1

∂zm−1
(z − z0)

mf(z)
)∣∣∣∣

z=z0

. (2)

The residue theorem says that for a simple, closed and positively
oriented curve γ we have

∫

γ

f(z) dz = 2πi
∑

z∈Int(γ)
Res(f, z) (3)

where Int(γ) denotes the bounded component of C \ {γ}. We
also need that f does not have any poles on the curve γ.
Let γ be a curve as above and f a holomorphic function in a
neighbourhood of the closure of Int(γ). Cauchy’s integral formula
says that

f(z) =
1

2πi

∫

γ

f(w)dw

w − z
for z ∈ Int(γ). (4)

This means that the Cauchy kernel reproduces holomorphic func-
tions. More generally, if φ is smooth in a neighbourhood of Ω
then

φ(z) =
1

2πi

∫

∂Ω

φ(w)dw

w − z
− 1

2πi

∫

Ω

∂̄φ ∧ dw

w − z
for z ∈ Ω. (5)

A consequence of this formula is that the form dz
2πiz

is a funda-
mental solution of the ∂̄-operator, i.e. a distributional solution of
the equation ∂̄u = [z = 0], where [z = 0] denotes the Dirac dis-
tribution at the origin. This implies that if v = ψdz̄ is a form of
bidegree (0, 1) with compact support then u = dz

2πiz
∗ v is a solu-

tion of the equation ∂̄u = v; here ∗ denotes convolution. Writing
out what this means we have

v = ∂̄
( 1

2πi

∫

Ω

dw ∧ v

w − z

)
. (6)

4

2. Residue currents and residue classes

A natural question is whether or not one may define residues
of meromorphic functions of several complex variables in such a
way that we get a corresponding residue theorem as in (3).
Trying to define residues for meromorphic functions on Cn, one
main difference to the one variable case is that the polar set of a
meromorphic function in several variables, if non-empty, cannot
be compact. To get around this problem one may associate a
residue current to a meromorphic function instead of merely a
“residue number” as in the classical approach.
Recall that the space of distributions of Cn is the dual of the
space of compactly supported smooth functions in Cn. Similarly
a current is an object acting on smooth differential forms with
compact support. A current is said to have bidegree (p, q) if it
acts on (n−p, n− q)-forms. Differential operators are defined on
smooth forms and by duality they are also defined on currents,
just as in distribution theory. For us the most important differ-
ential operator is the ∂̄-operator. For a function φ in Cn it is
defined as

∂̄φ =
n∑

j=1

∂φ

∂z̄j
dz̄j.

It can be extended to differential forms so that if φ and ψ are
differential forms then

∂̄(φ ∧ ψ) = (∂̄φ) ∧ ψ + (−1)kφ ∧ ∂̄ψ

where k is the degree of φ.
Let us illustrate the idea of using currents to define residues in
the complex plane. In the complex plane we may study currents
acting on (0, 1)-forms ψdz̄ where ψ is a smooth function of com-
pact support. Let us see how one may define a current from the
meromorphic form dz/zm in C. We define the principal value

5
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current of dz/zm by

〈[ dz
zm

]
, ψdz̄

〉
= lim

ε→0

∫

|z|>ε

ψ

zm
dz ∧ dz̄. (7)

By expanding ψ in its Taylor series one may show that the limit
exists and defines a current. Let us compute the ∂̄-image of this
current.

〈
∂̄

[
dz

zm

]
, ψ

〉
=

〈[ dz
zm

]
,
∂ψ

∂z̄
dz̄

〉

= lim
ε→0

∫

|z|>ε

∂ψ

∂z̄

1

zm
dz ∧ dz̄

= lim
ε→0

∫

|z|=ε

ψ

zm
dz, (8)

where the last equality follows from Stokes’ theorem. If we Taylor
expand ψ as ψ =

∑
k,�Ck,�z

kz̄� + �(|z|N) then we may show, by
for example changing to polar coordinates, that the only term
which gives a contribution to the limit is the term Cm−1,0z

m−1.

By Taylor’s formula Cm−1,0 = ∂m−1f
∂zm−1 /(m − 1)! where ∂f/∂z =

(∂f/∂x− i∂f/∂y)/2. Hence we get that

〈
∂̄

[
dz

zm

]
, ψ

〉
=

1

(m− 1)!
lim
ε→0

∫

|z|=ε

∂m−1ψ

∂zm−1
(0)

dz

z

=
1

(m− 1)!

∂m−1ψ

∂zm−1
(0) lim

ε→0

∫

|z|=ε

dz

z

=
2πi

(m− 1)!

∂m−1ψ

∂zm−1
(0), (9)

or equivalently that

∂̄

[
dz

zm

]
=

2πi(−1)m

(m− 1)!

∂m−1

∂zm−1
[z = 0], (10)

6

where this is now an equality of currents and [z = 0] denotes the
Dirac mass at the origin considered as a (1, 1)-current.

Let us generalise this further. Suppose that f is a meromorphic
function in C with polar set given by P (f) = {z1, . . . , zk}. In
analogy with (7) we define

〈
[fdz], ψdz̄

〉
= lim

ε→0

k∑

j=1

∫

|z−zj |>ε

fψdz ∧ dz̄ (11)

and a similar calculation to the one in (8) gives that

〈
∂̄[fdz], ψ

〉
= lim

ε→0

k∑

j=1

∫

|z−zj |=ε

fψdz ∧ dz̄. (12)

From this we conclude that the support of the current ∂̄[fdz] is
contained in P (f). Let us make a calculation to see how ∂̄[fdz]
behaves locally. In some neighbourhood of zj we may write f =
g/(z−zj)

m, where g is a non-vanishing holomorphic function. In
this neighbourhood of zj we have, cf. (9),

∂̄[fdz] = ∂̄
[ gdz

(z − zj)m

]

= g∂̄
[ dz

(z − zj)m

]
= g

2πi(−1)m

(m− 1)!

∂m−1

∂zm−1
[z = zj]. (13)

The action of the right hand side of (13) on the function 1 is

2πi

(m− 1)!

∂m−1g

∂zm−1
(zj),

which equals Res(f, zj) in view of (2) since g = (z− zj)
mf . If we

let ψ in (12) be a smooth function with compact support which

7



current of dz/zm by

〈[ dz
zm

]
, ψdz̄

〉
= lim

ε→0

∫

|z|>ε

ψ

zm
dz ∧ dz̄. (7)

By expanding ψ in its Taylor series one may show that the limit
exists and defines a current. Let us compute the ∂̄-image of this
current.

〈
∂̄

[
dz

zm

]
, ψ

〉
=

〈[ dz
zm

]
,
∂ψ

∂z̄
dz̄

〉

= lim
ε→0

∫

|z|>ε

∂ψ

∂z̄

1

zm
dz ∧ dz̄

= lim
ε→0

∫

|z|=ε

ψ

zm
dz, (8)

where the last equality follows from Stokes’ theorem. If we Taylor
expand ψ as ψ =

∑
k,�Ck,�z

kz̄� + �(|z|N) then we may show, by
for example changing to polar coordinates, that the only term
which gives a contribution to the limit is the term Cm−1,0z

m−1.

By Taylor’s formula Cm−1,0 = ∂m−1f
∂zm−1 /(m − 1)! where ∂f/∂z =

(∂f/∂x− i∂f/∂y)/2. Hence we get that

〈
∂̄

[
dz

zm

]
, ψ

〉
=

1

(m− 1)!
lim
ε→0

∫

|z|=ε

∂m−1ψ

∂zm−1
(0)

dz

z

=
1

(m− 1)!

∂m−1ψ

∂zm−1
(0) lim

ε→0

∫

|z|=ε

dz

z

=
2πi

(m− 1)!

∂m−1ψ

∂zm−1
(0), (9)

or equivalently that

∂̄

[
dz

zm

]
=

2πi(−1)m

(m− 1)!

∂m−1

∂zm−1
[z = 0], (10)

6

where this is now an equality of currents and [z = 0] denotes the
Dirac mass at the origin considered as a (1, 1)-current.

Let us generalise this further. Suppose that f is a meromorphic
function in C with polar set given by P (f) = {z1, . . . , zk}. In
analogy with (7) we define

〈
[fdz], ψdz̄

〉
= lim

ε→0

k∑

j=1

∫

|z−zj |>ε

fψdz ∧ dz̄ (11)

and a similar calculation to the one in (8) gives that

〈
∂̄[fdz], ψ

〉
= lim

ε→0

k∑

j=1

∫

|z−zj |=ε

fψdz ∧ dz̄. (12)

From this we conclude that the support of the current ∂̄[fdz] is
contained in P (f). Let us make a calculation to see how ∂̄[fdz]
behaves locally. In some neighbourhood of zj we may write f =
g/(z−zj)

m, where g is a non-vanishing holomorphic function. In
this neighbourhood of zj we have, cf. (9),

∂̄[fdz] = ∂̄
[ gdz

(z − zj)m

]

= g∂̄
[ dz

(z − zj)m

]
= g

2πi(−1)m

(m− 1)!

∂m−1

∂zm−1
[z = zj]. (13)

The action of the right hand side of (13) on the function 1 is

2πi

(m− 1)!

∂m−1g

∂zm−1
(zj),

which equals Res(f, zj) in view of (2) since g = (z− zj)
mf . If we

let ψ in (12) be a smooth function with compact support which

7



is identically equal to 1 in a neighbourhood Ω of the polar set
P (f) then we get that

∫

C

fdz ∧ ∂̄ψ = 2πi
k∑

j=1

Res(f, zj).

Letting ψ tend to the characteristic function of Ω and writing
γ = ∂Ω we recover (3). We thus have an alternative approach
to residues and this approach may be generalised to several vari-
ables.

In [HeLi] Herrera and Lieberman constructed principal value
currents and residue currents in quite a general setting. They
proved the following theorem.

Theorem 0.0.1. (Theorem 7.1 in [HeLi]) Given a holomorphic
function g in Cn, g �≡ 0, and a smooth form ψ with compact
support the limit

lim
ε→0

∫

|g|>ε

ψ

g
(14)

exists and defines a current acting on ψ.

If {g = 0} is a complex manifold then it is elementary to see that
the limit in (14) exists, it essentially reduces to the one variable
case. In general the set {g = 0} is not a complex manifold, see
Section 3 below. In general the theorem can be proved by first
assuming that {g = 0} has normal crossings, see Example 2 be-
low, and then reducing to this case using Hironaka’s theorem on
resolution of singularities, see [Hi]. As far as we know there is
no proof of the existence of the limit in (14) not using Hiron-
aka’s theorem. Herrera and Lieberman used Theorem 0.0.1 to
define principal value currents on complex manifolds and even
on reduced complex spaces. Principal value currents had been
constructed in certain cases before by, for example, Dolbeault.

8

The limit (14) defines a current which we denote by [1/g]. One
then defines the residue current of 1/g as ∂̄[1/g] and by Stokes’
theorem we get that

〈∂̄[1/g], ψ〉 = lim
ε→0

∫

|g|=ε

ψ

g
. (15)

In particular we see that ∂̄[1/g] has support contained in the zero
set of g.

Another way of defining principal value currents and residue cur-
rents is through analytic continuations of divergent integrals.
This idea originates with Bernstein–Gelfand in 1969 and Atiyah
in 1970, see [BeGe] and [At]. The direct purpose of the construc-
tion is that given a holomorphic function f , or more generally a
real analytic function, we want to find a concrete distribution u
such that fu = 1.
In the context of residue currents this approach was developed
by e.g. Barlet and Maire in [BaMa] and Berenstein, Gay and
Yger in [BGY] and [Yg]. Residue currents have since then been
extensively studied.
Let us be explicit on how to define currents through analytic
continuation. Let X be a complex manifold, g a holomorphic
function on X and ψ a smooth top degree form with compact
support. For complex numbers λ with Re(λ) � 1 the integral

∫

X

|g|2λψ
g

(16)

is convergent. Using Hironaka’s theorem to reduce to the case
when {g = 0} has normal crossings one can show that as a func-
tion of λ it has an analytic continuation over the origin and then
we define a principal value current of 1/g, acting on ψ, by the
value of this function at λ = 0. By Stokes’ theorem the function

λ �→
∫

X

∂̄|g|2λψ
g

(17)

9
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∫

|g|>ε

ψ

g
(14)

exists and defines a current acting on ψ.
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on reduced complex spaces. Principal value currents had been
constructed in certain cases before by, for example, Dolbeault.
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g
. (15)
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g
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has an analytic continuation over the origin and we define a
residue current of 1/g, acting on ψ, by the value at λ = 0. It is
not obvious that these currents coincide with the currents defined
but Herrera and Lieberman, but in fact they do.

A different approach to residues was studied by Poincaré and
Leray who defined residue forms and residue classes. Instead of
merely focusing on meromorphic functions in Cn one may look at
differential forms on a complex manifold X of dimension n which
have a pole along a complex hypersurface. The primary residue
form is the Poincaré residue which is defined for a meromorphic
form α of bidegree (n, 0) having a pole of order one along a
smooth hypersurface D. If D is locally given by g = 0 then we
may write

α =
dg

g
∧ α̃, (18)

where α̃ is holomorphic, and define the Poincaré residue of α as
α̃
∣∣
D
. The decomposition of α depends on the choice of function

g but actually α̃
∣∣
D
is canonical.

Let us see how to relate the Poincaré residue to the residue cur-
rents defined above. To the form α we associate the principal
value current [α] = dg∧ α̃[1/g]; let us calculate ∂̄ of this current.
Since the hypersurface D is smooth the function g is a coordi-
nate. Therefore we may let g = z1 and bring the calculation back
to the one-variable case to get

∂̄[α] = ∂̄
[dg
g

]
∧ α̃ = ∂̄

[dz1
z1

]
∧ α̃ = 2πi[g = 0] ∧ α̃. (19)

From (19) we can actually see that the Poincaré residue does not
depend on any choices: The left hand side does not depend on
any choices and the current [g = 0] is canonical and hence α̃

∣∣
D

does not depend on any choices. Furthermore, we see that the
Poincaré residue shows up as a factor in a decomposition of the
residue current.
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Assume that X is compact and let Ω be a (tubular) neighbour-
hood of D. Further assume that ξ is a smooth, d-closed (n− 1)-
form in Ω. As in (19) we get ∂̄([α] ∧ ξ) = 2πi[g = 0] ∧ α̃ ∧ ξ
and applying this to a smooth function ψ which is 1 in a neigh-
bourhood of D and has compact support contained in Ω gives
that

∫

X

α ∧ ξ ∧ ∂̄ψ = 2πi

∫

D

α̃ ∧ ξ. (20)

Letting ψ tend to the characteristic function of Ω of D we get

∫

∂Ω

α ∧ ξ = 2πi

∫

D

α̃ ∧ ξ. (21)

In the case that the dimension is one we can choose ξ = 1 and
recover (3).

If α is a meromorphic form on X \ D with a pole along D of
higher order, then there is a cohomologous form β with a pole of
order one along D. This makes it possible to define a residue for
α but now as a de Rham cohomology class. If we interpret α̃ in
(20) as this cohomology class then the formula in (21) holds for
α.

So far we have discussed currents associated to differential forms
which may locally be written α/g for some holomorphic form
α and a holomorphic function g �≡ 0. In two of the papers of
which this thesis consists we will mainly be interested in forms
which may locally be written α/gh̄ where α is a smooth form
and g and h are holomorphic functions which are not identi-
cally zero. These are forms which have real analytic singularities
along complex hypersurfaces. We will be concerned with defining
currents and residue classes from such forms using the method
of analytic continuation of divergent integrals. Furthermore, we

11
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connect these objects in a formula which is therefore, in some
sense, a residue theorem in that setting.

To illustrate the main point let us look at the simplest case in one
variable and we look at the form dz∧dz̄

|z|2 . This form is obviously
smooth away from the origin and therefore it defines a current
α in C \ {0}. We want to find an extension of α to C. Such an
extension cannot be unique since we may add derivatives of the
Dirac distribution at the origin and we would still have a current
extension of α. Let us apply the method of analytic continuation
discussed above. For complex numbers λ with Re(λ) � 1 and a
smooth function ψ in C with compact support we get

∫

C

|z|2λψdz ∧ dz̄

|z|2 =
1

λ

∫

C

∂

∂z̄

( |z|2λ
z

)
ψdz ∧ dz̄

= −1

λ

∫

C

|z|2λ
z

∂ψ

∂z̄
dz ∧ dz̄ (22)

The integral ∫

C

|z|2λ
z

∂ψ

∂z̄
dz ∧ dz̄

is holomorphic in λ in a neighbourhood of the origin. Let us cal-
culate the first two terms in its Taylor expansion. The constant
term is given by setting λ = 0 and it is

∫

C

1

z

∂ψ

∂z̄
dz ∧ dz̄ = 2πiψ(0)

which follows from formula (5). The coefficient of λ is given by
differentiating the integrand with respect to λ and then setting
λ = 0 which gives

∫

C

log |z|2
z

∂ψ

∂z̄
dz ∧ dz̄.

12

Using this in the calculation (22) we get

∫

C

|z|2λψdz ∧ dz̄

|z|2 =
1

λ
2πiψ(0) +

∫

C

log |z|2
z

∂ψ

∂z̄
dz ∧ dz̄ + �(λ)

(23)

From this we conclude: To the singular form dz∧dz̄
|z|2 we may as-

sociate two currents. The first one is the current 2πi[z = 0] and
the second one is given by

ψ �→
∫

C

log |z|2
z

∂ψ

∂z̄
dz ∧ dz̄ (24)

The second current is an extension of α to C. This is seen by
assuming that the test form ψ has support away from the origin
and setting λ = 0 in (23).
However, as we have mentioned, the current extension is not
canonical; we may add derivatives of the Dirac distribution at
the origin. We think of the current 2πi[z = 0] as a residue current
associated to the form dz∧dz̄

|z|2 and the current in (24) as the finite
part of the form.
We will extend the above construction to forms with higher sin-
gularities and to several variables in Paper I and Paper III.

3. Complex spaces

Residue currents like ∂̄[1/g] have support on the zero set of a tu-
ple of holomorphic functions. Such sets are called analytic sets.
An analytic set X may be decomposed into Xreg and Xsing where
the regular part, Xreg, consists of all points which have a neigh-
bourhood in which X is a complex manifold. The singular part,
Xsing, is defined as the complement of the regular part. For sim-
plicity we here focus on analytic sets given by one holomorphic
function.
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Example 1. Equip C2 with coordinates (z, w) and let X =
{z2 − w3 = 0}. This space is usually called the cusp in C2. The
only singular point of X is the origin. �

Example 2. Equip Cn with coordinates (z1, . . . , zn) and let
X = {z1 · · · zk = 0}. The space X is a union of hyperplanes
{zj = 0} and Xsing consists of all points where at least two such
hyperplanes intersect. This is a typical example of an analytic
set with so-called normal crossings. �

Properties of analytic sets are reflected by the holomorphic func-
tions on these sets. However, in the case that X has singular
points it is not obvious what a holomorphic function on X is.
Suppose that X ⊂ Cn and let us define holomorphic functions
on X. One natural notion of holomorphic functions on X is de-
fined as follows: A function h : X → C is holomorphic at x ∈ X
if there is an open neighbourhood U of x in Cn and a holomor-
phic function h̃ : U → C such that h = h̃|U . This means that
holomorphic functions on X ∩U are given by holomorphic func-
tions on U and we identify two such functions if they are equal
on X. We denote the (sheaf of) holomorphic functions on Cn by
�Cn and we let IX ⊂ �Cn be the holomorphic functions which
vanish on X. We further denote the holomorphic functions on
X by �X ; by the above discussion we have that �X = �Cn/IX .
An analytic set together with this kind of holomorphic functions
is a reduced complex space.

There are other notions of holomorphic functions on analytic sets.
We illustrate this with an analytic set X = {g = 0} where g is
a holomorphic function in Cn. We now define the holomorphic
functions on X as �X = �Cn/(g). Here (g) denotes the ideal in
�Cn generated by g. In the case that dg is non-zero on Xreg then
this method produces the same set of holomorphic functions on
X as the one above. If this is not the case then the ideal (g) is

14

strictly smaller than IX . In this case the objects in �X do not
have a natural interpretation as functions on X. An analytic set
equipped with such a notion of holomorphic functions is a non-
reduced complex space. Let us illustrate the different notions of
holomorphic functions with an example.

Example 3. Let X = {0} ⊂ C and let g = z. A holomorphic
function h in C is zero in �Cn/(g) precisely when h(0) = 0.
Therefore h+ (g) ∈ �Cn/(g) may be identified with the value of
h on X.
Now instead let g = z2. A holomorphic function h in C is zero
in �Cn/(g) if and only if h(0) = h′(0) = 0. This can be seen
by Taylor expanding h around the origin. In this case the set of
equivalence classes in �Cn/(g) is not determined by the value of
the functions on X. Therefore we cannot identify the quotient
with functions on X. �

As mentioned, residue currents have support on analytic sets.
Actually, the residue current ∂̄[1/g] contains all the information
about the possibly non-reduced complex space (X,�X), where
X = {g = 0} and �X = �Cn/(g), as shown in the following
proposition.

Proposition 0.0.2. Let h be a holomorphic function in Cn.
Then h ∈ (g) (locally) if and only if h∂̄[1/g] = 0.

Proof. Let us first notice that as currents we have g[1/g] = 1.
This follows easily since the limit in (14) defines the current [1/g].
Assume that h ∈ (g). Then h = ag for some holomorphic func-
tion a and hence

h∂̄[1/g] = ∂̄
(
h[1/g]

)
= ∂̄

(
ag[1/g]

)
= ∂̄a = 0.

Now instead assume that h∂̄[1/g] = 0. Then for the current
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u = h[1/g] we have ∂̄u = h∂̄[1/g] = 0. Hence u is a holomorphic
function and gu = gh[1/g] = h which means that h ∈ (g).

Proposition 0.0.2 gives an analytic description of the ideal gener-
ated by g which induces an analytic description of the quotient
�X = �Cn/(g). In [AnWu] Andersson and Wulcan introduced
currents similar to ∂̄[1/g] which generalise the so-called Coleff–
Herrera currents, see e.g. [CoHe], and which describe general
complex spaces. This opens up for the possibility of doing analy-
sis on non-reduced spaces. Let us indicate how this may be done
for the complex space (X,�X) when �X = �Cn/(g). We want to
define what smooth (0, q)-forms are on a non-reduced space X.
Let us denote the (sheaf of) smooth (p, q)-forms on Cn by ℰp,q

Cn

and the (sheaf of) currents in Cn of bidegree (p, q) by �p,q
Cn . We

define a map Ψ : ℰ0,q
Cn → �0,q+1

Cn by

φ
Ψ�−→ φ ∧ ∂̄[1/g]

and then let ℰ0,q
X = ℰ0,q

Cn/Kℯ�(Ψ). This is a natural definition in
view of Proposition 0.0.2 above.
Since ∂̄(φ ∧ ∂̄[1/g]) = ∂̄φ ∧ ∂̄[1/g] we also get a well-defined ∂̄-
operator ∂̄ : ℰ0,q

X → ℰ0,q+1
X . In Paper II we define further analytic

objects on non-reduced spaces and develop some theory for these
objects.

The purpose of Paper I is to make sense of divergent integrals of
the form

∫
X
α ∧ β when α and β have poles along a hypersur-

face D on a complex manifold X. The problem is motivated by
physics, see for example [Wi], but it is also a generalisation of
the theory of residue currents in the sense that we do not just
look at currents associated to 1/g but also at currents associated
to 1/gf where both f and g are holomorphic. If f and g vanish
to a higher order along D then this may be thought of as currents
associated with a non-reduced structure on D.
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4. Koppelman formulas

Let us look at several variable analogues of the formula (5). In
Cn one defines the Bochner–Martinelli kernel kBM by

kBM(z) =
1

(2πi)n
∂|z|2 ∧ (∂̄∂|z|2)n−1

|z|2n = cn

n∑

j=1

(−1)j+1z̄j
|z|2n dz ∧ d̂z̄j

where cn = (−1)
n(n−1)

2
(n−1)!
(2πi)n

, dz = dz1 ∧ · · · ∧ dzn and

d̂z̄j = dz̄1 ∧ · · · ∧ dz̄j−1 ∧ dz̄j+1 ∧ · · · ∧ dz̄n.

The form kBM is locally integrable and therefore it defines a
current. Notice that if n = 1 then

kBM =
1

2πi

∂|z|2
|z|2 =

1

2πi

dz

z

which is the Cauchy kernel. The crucial property of the Bochner–
Martinelli kernel is that

∂̄kBM = [z = 0]. (25)

where [z = 0] is the Dirac distribution at the origin considered
as a top degree current. Letting π : Cn ×Cn → Cn be the map
π(z, w) = z−w andKBM = π∗kBM we get that ∂̄KBM = [z = w].
We denote by Kp,q
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where cn = (−1)
n(n−1)

2
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4.1 Weighted integral formulas. To incorporate weights into
the integral formulas it is convenient to introduce the full Bochner–
Martinelli form as

B =
n∑

k=1

1

(2πi)k
∂|z − w|2 ∧ (∂̄∂|z − w|2)k−1

|z − w|2k .

A weight adapted to a domain Ω ⊂ Cn is a certain kind of smooth
form γ which is given as a sum of terms γ0,0, . . . , γn,n in Ω × Ω.
The subscript means bidegree and the term γ0,0 should be 1 on
the diagonal in Ω×Ω. We will not go further into the details of
the precise definition but the following example gives a hint of
what weights can look like.

Example 4. Let χ be a cut-off function in C which is 1 in a
neighbourhood of the closure of a bounded open subset Ω ⊂ C.
A weight for Ω is given by

γ = χ(w) + ∂̄χ(w) ∧ d(z − w)

2πi(w − z)
. �

We define a weighted integral kernel by

Kγ = (γ ∧ B)n,n−1

where (—)n,n−1 now means that we pick out the part of the
form which has total bidegree (n, n− 1). In [And] the following
weighted Koppelman formula is proved:

v(z) =

∫

Ω

γn,n∧v(w)+∂̄

∫

Ω

Kγ(z, w)∧v(w)+
∫

Ω

Kγ(z, w)∧∂̄v(w).
(26)

In the case that Ω is a bounded pseudoconvex domain it is pos-
sible to choose a weight γ which is holomorphic in z and does
not contain any dz̄j, cf. Example 4. Assume that v is a ∂̄-closed
(p, q)-form in Ω. From the formula (26) we get the following:

18

(a) If q = 0 then we get a representation formula for holomor-
phic p-forms:

v =

∫

Ω

γn,n ∧ v(w).

(b) If q � 1 then

v(z) = ∂̄

∫

Ω

Kγ(z, w) ∧ v(w).

The latter statement implies that if v is a smooth ∂̄-closed (p, q)-
form, with q � 1, then locally there is a smooth (p, q − 1)-form
φ such that ∂̄φ = v. Hence the same conclusion holds locally
on any complex manifold. One alternative way of stating this is
that for a complex manifold X the complex of sheaves

0 → Ωp
X

∂̄−→ ℰp,1
X

∂̄−→ ℰp,1
X

∂̄−→ . . . (27)

is exact, which is the so-called Dolbeault–Grothendieck lemma,
see [Dol]. Here Ωp

X denotes the holomorphic p-forms and recall
that ℰp,q

X is the smooth (p, q)-forms onX. In particular, for p = 0
we get a resolution of the sheaf of holomorphic functions �X .

We may also use weights to get so called division-interpolation
formulas in the following way: Take a holomorphic function g in
Cn and let us for simplicity assume that {g = 0} is smooth so
that g is just a coordinate. For Re(λ) � 1 we may then define a
weight by

γ =
∂̄|g(w)|2λ
g(w)

∧H + g(z)
|g(w)|2λ
g(w)

H

where H is a so-called Hefer form which we will not define here,
but it is actually a holomorphic form. Given the weight γ we let
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Kγ = (γ ∧ B)n,n−1 and get a Koppelman formula:

v(z) =

∫

Ω

( ∂̄|g(w)|2λ
g(w)

∧H
)
n,n

∧ v(w)

+ ∂̄

∫

Ω

( ∂̄|g(w)|2λ
g(w)

∧H ∧K
)
n,n−1

∧ v(w)

+

∫

Ω

( ∂̄|g(w)|2λ
g(w)

∧H ∧K
)
n,n−1

∧ ∂̄v(w) + g(z)ψλ.

where ψλ is smooth as long as Re(λ) � 1. If we pull this equality
back to {g = 0} then the last term vanishes and one may show
that the right hand side can be analytically continued over the
origin. Setting λ = 0 gives a Koppelman formula on {g = 0}.
To solve the ∂̄-equation on {g = 0}∩Ω, where Ω is a pseudocon-
vex bounded domain, one can incorporate an additional weight
adapted to Ω.

In Paper II we construct analogous Koppelman formulas for non-
reduced complex spaces.

5. Summary of the papers

As we have mentioned the purpose of Paper I is to study inte-
grals of the form

∫
X
α ∧ β where X is a complex manifold of

dimension n and α and β are meromorphic n-forms with poles
along a hypersurface D with normal crossings. To make sense
of the integral we pick a section s : X → L, where L is the line
bundle associated to D, and a metric | · | on L. For every smooth
function φ with compact support and every complex number λ
with Re(λ) � 1 the integral

∫

X

|s|2λφα ∧ β
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is convergent and holomorphic in λ. Let D1, . . . , Dk be the irre-
ducible components of D. Suppose for simplicity that each Dj is
smooth and that both α and β have poles along each Dj.

Theorem 0.0.3. Let κ be the maximal number of Dj:s that in-
tersect. Then the function

λ �→
∫

X

|s|2λφα ∧ β

has a meromorphic continuation to C with poles contained in Q.
The Laurent expansion around λ = 0 is given by

1

λκ
µκ.φ+ · · ·+ 1

λ
µ1.φ+ µ0.φ+ �(|λ|) (28)

where µj are currents with support on the set where j components
of D intersect.

In Paper I we further show that µκ, the leading term, is indepen-
dent of the choices of section s and metric | · |. Therefore we call
µκ the canonical current associated to α∧ β. The other currents
µκ−1, . . . , µ0 however do depend on the choices we have made.
Let Y = D1 ∩ · · · ∩ Dk and suppose that X is compact. In
Paper I we further define an Aeppli cohomology class ResYA(α∧β)
associated to α ∧ β which is a class on Y such that

〈µκ, 1〉 = (−2πi)κ
∫

Y

ResYA(α ∧ β).

In the case that κ = 1, i.e. when the hypersurface is smooth, and
α and β have poles of order one then the Aeppli residue is given
by Res(α) ∧ Res(β) where Res denotes the Poincaré residue dis-
cussed in Section 2. In the case that α has a pole of higher order
but β still has a pole of order one then the Aeppli residue may
be described by the Felder–Kazhdan residue defined in [FeKa].
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The main objective of Paper II is to solve the ∂̄-equation on
a possibly non-reduced space. Let Z be a analytic subset of a
pseudoconvex domain D ⊂ CN . Suppose that � is an ideal in
ℐZ and let �X = �D/�. We further suppose that �X has pure
dimension. This means that if h ∈ �D is such that hx ∈ �x for
generic x ∈ Z then h ∈ �.
A classical notion of holomorphic p-forms on the complex space
X is the Kähler differentials given by

Ωp
X,Kähler :=

Ωp
D

�Ωp
D + d� ∧ Ωp−1

D

(29)

It is possible that for φ ∈ Ωp
D we have that φx ∈ (�Ωp

D + d� ∧
Ωp−1

D )x for generic x ∈ Z but still φ �∈ (�Ωp
D + d� ∧ Ωp−1

D ). For
technical reasons we want to exclude such forms; it is not a good
property when doing analysis. To achieve this we enlarge the
denominator in (29) to a sub-module �p of Ωp

D which coincides
with �Ωp

D + d� ∧Ωp−1
D for generic x ∈ Z and with the property

that if φ ∈ �p
x for generic x then φ ∈ �p. We then define

Ωp
X = Ωp

D/�
p

and call these forms the holomorphic p-forms on X.
By [AnWu] there is a residue current R such that for φ ∈ Ωp

D

we have
φ ∈ �p if and only if φ ∧R = 0,

cf. Proposition 0.0.2 above. Smooth (p, q)-forms on X are then
defined as

ℰp,q
X =

ℰp,q
D

{φ ∈ ℰp,q
D : φ ∧R = 0} .

This is strictly speaking not the definition given in the article
but according to Proposition 3.9 in Paper II it is equivalent. In
a similar way as in Section 3 above we get a well-defined ∂̄-
operator ∂̄ : ℰp,q

X → ℰp,q+1
X . Hence we may study the ∂̄-equation
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on our non-reduced space. However, even in the reduced case
it is not always possible to solve the ∂̄-equation smoothly when
the complex space is not smooth. Our solution to this is to
define an extension �p,q

X of ℰp,q
X in such a way that �p,q

X,x = ℰp,q
X,x

generically and so that �p,q
X is an ℰ0,q

X -module. In Paper II we
prove the following theorem.

Theorem 0.0.4. If φ ∈ �p,q
X is ∂̄-closed then

(a) if q = 0 then φ ∈ Ωp
X ,

(b) if q � 1 then there exists ψ ∈ �p,q
X with ∂̄ψ = φ locally on

X.

We further prove that ∂̄ : �p,q
X → �p,q+1

X . This together with
theorem 0.0.4 implies that the complex of sheaves

0 → Ωp
X

∂̄−→ �p,1
X

∂̄−→ �p,2
X

∂̄−→ · · ·

is exact, cf. (27). Since �p,q
X are ℰ0,q

X -modules, in particular
smooth partitions of unity are available, the abstract de Rham
theorem implies that we get a representation of the sheaf coho-
mology:

Hq(X,Ωp
X) � Hq(�p,•

X (X)).

In Paper II we also find a similar description of the dual objects
Hq(X,Ωp

X)
∗ and this leads to an analytic version of Serre dual-

ity. This may be compared with the results in [RSW]. Our
method is based on division–interpolation type formulas con-
structed using the residue current R, similar to how we did in
the end of Section 4. This gives integral operators on X and
the sheaves �p,q

X are given by iteratively applying these opera-
tors on smooth forms. This approach is basically a combina-
tion of the methods in [AL] and [Sam]. The idea to achieve
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a Dolbeault–Grothendieck lemma on complex spaces using the
theory of residues currents originates in [AS].

In Paper III the setting is similar to the that of Paper I and
we achieve results similar to the ones in [FeKa2]. We study
divergent integrals on complex manifolds but now we begin with a
differential form ω which is singular along a complex submanifold
Y of possibly higher codimension. We let (E, | · |) be a hermitian
vector bundle with a holomorphic section s : X → E which
generates the ideal of holomorphic functions vanishing on Y . We
assume that it is possible to choose such a metric and section so
that |s|2Nω is smooth on X for some integer N � 0. In Paper
III we prove the following theorem.

Theorem 0.0.5. The function

λ �→
∫

X

|s|2λφω

has a meromorphic continuation to some neighbourhood of the
origin. The Laurent expansion around λ = 0 is given by

1

λ
〈µ1, φ〉+ 〈µ0(|s|2), φ〉+ �(|λ|) (30)

where µ1 and µ0(|s|2) are currents on X. The current µ1 does
not depend on the choice of section or metric and its support is
contained in Y . If ‖ · ‖ is another metric on the vector bundle E
then

µ0(|s|2) = µ0(‖s‖2) + µ1 log
|s|2
‖s‖2 .

Let κ = codim(Y ). If N < κ then ω is locally integrable and in
this case µ1 = 0 and µ0 = ω, where ω is considered as a current.
If |s|2κω is smooth then there is a smooth form res(ω) on Y such
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that

〈µ1, φ〉 = κ(2πi)κ
∫

Y

res(ω)φ. (31)

In the case that |s|2Nω is smooth for N > κ then there is a de
Rham cohomology class res(ω) on Y such that (31) holds.
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Residues and currents from singular forms on
complex manifolds

Mattias Lennartsson

Abstract

Using methods from the theory of residue currents we provide asymptotic expansions of
certain divergent integrals on complex manifolds. We express the coefficients in these ex-
pansions with the conjugate Dolbeault residue, introduced by Felder and Kazhdan in [Fe],
and define a new residue which we call the Aeppli residue.

1. Introduction

Suppose X is a compact complex manifold of dimension d and D ⊂ X is a smooth hy-
persurface. Motivated by perturbative string theory, in [Fe] Felder and Kazhdan discuss
regularisations of divergent integrals of the form

∫

X

α ∧ β

where α and β are (d, 0)-forms which are smooth on X \ D, α has a pole along D and β
has a pole of order one along D. In their paper they use cut-off functions, i.e. functions χ
which are zero on D and otherwise positive, and prove the asymptotic expansion

∫

χ�ε

α ∧ β = log ε I0 + I1(χ) +O(ε)

where I0 =
∫
D
Resα∧Resβ does not depend on the cut-off function (here Res denotes the

classical Leray residue which we discuss later). They also show that I1(χ) depends linearly
on χ and give an explicit expression for it in terms of the conjugate Dolbeault residue, Res∂ ,
defined in the same paper. In a second paper, [Fe2], the same authors generalise the results
to smooth manifolds and forms which have singularities on submanifolds determined by
Morse–Bott functions. In particular they consider the case of a complex hypersurface with
normal crossings. They also study analytic continuations of these divergent integrals.

In this paper we take the analytic continuation of divergent integrals as starting point.
This means that we have a different method of regularising the divergent integrals and this
will give us more explicit formulas. We allow D to be a hypersurface with normal crossings
and α and β to be semi-meromorphic forms with poles along D of any order. If s : X → L
is a holomorphic section of some line bundle such that D = {s = 0} and | · | is a metric on
L we define a function by

λ �→
∫

X

|s|2λα ∧ β̄.

This function is a priori only defined for complex numbers λ with Reλ large enough but we
will see that it has a meromorphic extension to C which is holomorphic when Reλ is large
enough. We get a Laurent expansion at 0, cf. Theorem 2.3,

∫

X

|s|2λα ∧ β̄ = λ−κC−κ + · · ·+ λ−1C−1 + C0 +O(λ) (1)

1

where κ is defined in Section 2. Changing α∧β̄ to α∧β̄∧ξ, where ξ is a test function, we get
currents C−j(ξ) of bidegree (d, d). We will focus on the leading coefficient C−κ, which we
call the canonical current associated to α∧ β̄, and we denote it by {α∧ β̄}. The motivation
for this construction comes from the study of residue currents in complex geometry. Then
one looks at so called semi-meromorphic forms α, i.e. locally α = α̃/f for some smooth
form α̃ and some holomorphic function f such that f �≡ 0. Given such a form one can use
this method to define the principal value current [α]. We will recall more precisely how this
is done in Section 2.

In the third section we discuss cohomological residues. Given a semi-meromorphic
(d, d−1)-form α onX which is polar along a smooth hypersurfaceD the conjugate Dolbeault

residue Res∂(α) is a class in the conjugate Dolbeault cohomology group Hd−1,d−1
∂ (D), see

Definition 3.2 below. We then define a new residue, which we call the Aeppli residue, and
denote it by ResA. Given semi-meromorphic (d, 0)-forms α and β which are polar along D

the Aeppli residue ResA(α ∧ β̄) is a class in the Aeppli cohomology group Hd−1,d−1
A (D).

We relate these residues to the currents defined from analytic continuations of divergent
integrals. The following result relates principal value currents and the conjugate Dolbeault
residue.

Theorem A. For a semi-meromorphic form α which is polar along a smooth hypersurface
D we have, for every test form ξ,

〈
∂̄[α], ξ

〉
=

〈
[∂̄α], ξ

〉
+ 2πi

∫

D

Res∂(α ∧ ξ).

In the same spirit we can relate the canonical current to the Aeppli residue. We prove
a more general result in Theorem 3.9 but a special case is the following.

Theorem B. For semi-meromorphic forms α and β, polar along a smooth hypersurface
D, we have for every test form ξ,

〈
{α ∧ β̄}, ξ

〉
= −2πi

∫

D

ResA(α ∧ β̄ ∧ ξ).

Theorem A and B concerns the leading coefficient in expansions such as (1). In Section
4 we use the previous results to describe the other coefficients, see Theorem 4.1 below. One
of the main points of Theorem 4.1 is the following informally stated result.

Theorem C. The coefficient C−r in the asymptotic expansion (1) depends polynomially
of degree κ− r on the chosen metric.

We finally note that asymptotic expansions similar to (1) have been studied before, see
e.g. [Bar; Bar2], but to our understanding these results are not directly related to our
residues.

2. Currents from singular forms

We recall some facts about semi-meromorphic forms and how to define principal value
currents from them. In Section 2.2 we define currents from more general forms. Throughout
X will be a complex manifold of dimension d.

2.1. Semi-meromorphic forms. We denote by SM(X) the semi-meromorphic forms,
i.e. forms α which can be written locally as α = α̃/f where α̃ is a smooth form and f

2
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a holomorphic function such that f �≡ 0. We write P (α) for the polar set of α, which
consists of the points where α is not smooth. Given the local description above we get
P (α) ⊂ {f = 0}. For a hypersurface D we write E(∗D) for the semi-meromorphic forms
which have a polar set contained in D and Ep,q(∗D) for the ones of bidegree (p, q). Since the
pole of a semi-meromorphic form is determined locally by a holomorphic function, locally
the order of the pole is well defined.

One way to define principal value currents from semi-meromorphic forms is the following
cf. [And; Ber; Sa]: suppose α ∈ E(∗D) has a hypersurface D with normal crossings as
polar set and D = {s = 0} where s : X → L is a holomorphic section of some line bundle
L. Let | · | be a metric on L and ξ a test form of complementary degree. The function

λ �→
∫

X

|s|2λα ∧ ξ

is a priori only defined when Reλ � 1. One can show, however, that the function has an
analytic continuation to Reλ > −ε for some ε > 0. Thus we may define the principal value
current [α] by

〈
[α], ξ

〉
=

(∫

X

|s|2λα ∧ ξ
)∣∣∣

λ=0
.

The current does not depend on the choice of metric | · | or section s.

2.2. Quasi-meromorphic forms. We let QM(X) denote forms ω which can be written
locally as ω = ω̃/f ḡ where ω̃ is a smooth form and f and g are holomorphic functions which
are not identically zero. We call these forms quasi-meromorphic and they are smooth forms
except that they can have real analytic singularities along (local) complex hypersurfaces.

For ω ∈ QM(X) we define its polar set, denoted by P (ω), as the set of points where ω
is not smooth. When ω has a polar set contained in a hypersurface D we write ω ∈ E(∗∗̄D),
we call D the polar set even though ω may be smooth on parts of D. We will focus on
forms in E(∗∗̄D), for some D, since it is notationally more convenient. We write Ep,q(∗∗̄D)
for the forms in E(∗∗̄D) which have bidegree (p, q).

The polar set of a quasi-meromorphic form has different parts between which we need
to distinguish. We define the subset P 1,0(ω) ⊂ P (ω) as follows. A point x in the polar set
is not in P 1,0(ω) if around this point there is holomorphic function g, with g �≡ 0, such that
ḡω is smooth. In the same spirit we define the set P 0,1(ω) to be the subset of polar points
around which there is not a holomorphic function f , with f �≡ 0, such that fω is smooth.
We say that P 1,0(ω) is the set where ω has holomorphic singularities and P 0,1(ω) is the set
where ω has anti-holomorphic singularities. We have that

P (ω) = P 1,0(ω) ∪ P 0,1(ω)

but P 1,0(ω) ∩ P 0,1(ω) need not be empty; it is the set where ω has both holomorphic and
anti-holomorphic singularities. The order of the holomorphic (and anti-holomorphic) pole
is locally well defined.

If ω ∈ E(∗∗̄D) then P 1,0(ω) and P 0,1(ω) are hypersurfaces contained in D and we
temporarily set H(ω) to be the codimension one components of P 1,0(ω) ∩ P 0,1(ω). Since
this is an analytic set there is a natural stratification, see Proposition II.5.6 in [Dem],

H(ω)d ⊂ H(ω)d−1 ⊂ · · · ⊂ H(ω)1 ⊂ H(ω)0 (2)

where

(i) H(ω)0 = X,

(ii) H(ω)1 = H(ω),

3

(iii) if k = 2, . . . , d then H(ω)k is
(
H(ω)k−1

)
sing

together with all the components of

H(ω)k−1 with codimension greater than or equal to k.

Notice thatH(ω)k\H(ω)k+1 is a (d−k)-dimensional complex manifold which is possibly
empty.

Definition 2.1. With the stratification as above we define the integer κ(ω) to be the largest
number k such that H(ω)k is non-empty. We further let E(ω) := H(ω)κ(ω). �

The integer κ(ω) in some sense measures how bad the singularities of ω are. By defini-
tion E(ω) is a complex submanifold of dimension d− κ(ω).

Example 1. To clarify these notions we give an example in C3 in the case of normal
crossings. For

ω =
1

z1z̄1(z1 − 1)z2z̄3

we have

P 1,0 = {z1 = 0} ∪ {z1 = 1} ∪ {z2 = 0},
P 0,1 = {z1 = 0} ∪ {z3 = 0}.

Thus P 1,0 ∩ P 0,1 = {z1 = 0} ∪ {z1 = 1, z3 = 0} and hence H(ω) = {z1 = 0}. Since this is
smooth we get that κ(ω) = 1 and E(ω) = {z1 = 0}. �

For a semi-meromorphic form α we have H(α) = ∅. Hence all components except
H(α)0 = X in the stratification are empty. Thus κ(α) = 0 and E(α) = X.

For a form ω ∈ E(∗∗̄D), where D has normal crossings, there is a more explicit de-
scription of κ(ω). Around any point x ∈ X there are local coordinates (z1, . . . , zd) with D
given by z1z2 · · · zk = 0. Then there are multi-indices J and K so that zJ z̄Kω is smooth.
Choosing J and K minimal we define

κx(ω) = #{j : Jj �= 0 and Kj �= 0}

and then
κ(ω) = max

x∈X
κx(ω).

Now suppose s : X → L is a holomorphic section such that D = {s = 0} has normal
crossings and that ω ∈ E(∗∗̄D). Around any point x ∈ X there are coordinates (z1, . . . , zd)
so that H(ω) is given by z1z2 · · · z� = 0. In a local holomorphic frame the section is given
by s = zIφ for some holomorphic φ which is non-vanishing on H(ω). We define

oω,x(s) =
�∏

j=1

Ij . (3)

and note that this does not depend on the choices of local coordinates or the frame.

Definition 2.2. For a holomorphic section s : X → L which defines a hypersurface D with
normal crossings and ω ∈ E(∗∗̄D) we let

oω(s) = max
x∈X

oω,x(s). �
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∫

X

|s|2λα ∧ ξ
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〈
[α], ξ

〉
=

(∫

X

|s|2λα ∧ ξ
)∣∣∣

λ=0
.

The current does not depend on the choice of metric | · | or section s.
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If ω ∈ E(∗∗̄D) then P 1,0(ω) and P 0,1(ω) are hypersurfaces contained in D and we
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H(ω)d ⊂ H(ω)d−1 ⊂ · · · ⊂ H(ω)1 ⊂ H(ω)0 (2)

where

(i) H(ω)0 = X,

(ii) H(ω)1 = H(ω),

3

(iii) if k = 2, . . . , d then H(ω)k is
(
H(ω)k−1

)
sing

together with all the components of

H(ω)k−1 with codimension greater than or equal to k.

Notice thatH(ω)k\H(ω)k+1 is a (d−k)-dimensional complex manifold which is possibly
empty.

Definition 2.1. With the stratification as above we define the integer κ(ω) to be the largest
number k such that H(ω)k is non-empty. We further let E(ω) := H(ω)κ(ω). �

The integer κ(ω) in some sense measures how bad the singularities of ω are. By defini-
tion E(ω) is a complex submanifold of dimension d− κ(ω).

Example 1. To clarify these notions we give an example in C3 in the case of normal
crossings. For

ω =
1

z1z̄1(z1 − 1)z2z̄3

we have

P 1,0 = {z1 = 0} ∪ {z1 = 1} ∪ {z2 = 0},
P 0,1 = {z1 = 0} ∪ {z3 = 0}.

Thus P 1,0 ∩ P 0,1 = {z1 = 0} ∪ {z1 = 1, z3 = 0} and hence H(ω) = {z1 = 0}. Since this is
smooth we get that κ(ω) = 1 and E(ω) = {z1 = 0}. �

For a semi-meromorphic form α we have H(α) = ∅. Hence all components except
H(α)0 = X in the stratification are empty. Thus κ(α) = 0 and E(α) = X.

For a form ω ∈ E(∗∗̄D), where D has normal crossings, there is a more explicit de-
scription of κ(ω). Around any point x ∈ X there are local coordinates (z1, . . . , zd) with D
given by z1z2 · · · zk = 0. Then there are multi-indices J and K so that zJ z̄Kω is smooth.
Choosing J and K minimal we define

κx(ω) = #{j : Jj �= 0 and Kj �= 0}

and then
κ(ω) = max

x∈X
κx(ω).

Now suppose s : X → L is a holomorphic section such that D = {s = 0} has normal
crossings and that ω ∈ E(∗∗̄D). Around any point x ∈ X there are coordinates (z1, . . . , zd)
so that H(ω) is given by z1z2 · · · z� = 0. In a local holomorphic frame the section is given
by s = zIφ for some holomorphic φ which is non-vanishing on H(ω). We define

oω,x(s) =
�∏

j=1

Ij . (3)

and note that this does not depend on the choices of local coordinates or the frame.

Definition 2.2. For a holomorphic section s : X → L which defines a hypersurface D with
normal crossings and ω ∈ E(∗∗̄D) we let

oω(s) = max
x∈X

oω,x(s). �
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Notice that in (3) we only multiply with the vanishing order for s on the local compo-
nents on which ω has both holomorphic and anti-holomorphic poles. For ω semi-meromorphic
oω(s) = 1 for all sections s since then the product is empty.

We are now assuming that the polar set of ω is a hypersurface with normal crossings.
For a test form ξ of complementary degree and λ ∈ C with Re(λ) � 1 we let

Fξ(λ) = oω(s)

∫

X

|s|2λω ∧ ξ. (4)

The following theorem gives a first description of the function Fξ.

Theorem 2.3. Suppose ω ∈ QM(X) has a hypersurface D with normal crossings as a
polar set. The function Fξ has the following properties

(a) Fξ has a meromorphic extension to C,

(b) the possible poles of Fξ are at Q ⊂ R,

(c) the order of the pole of Fξ at the origin is � κ(ω).

To prove Theorem 2.3 we need the following lemma, the proof of which is a simple
exercise.

Lemma 2.4. For λ ∈ C and multi-indices I, J,K such that if Ij = 0 then Jj = 0 and
Kj = 0 we have

|zI |2λ
zJ z̄K

=
h(λ)

λp

∂J+K |zI |2λ
∂zJ∂z̄K

where

h(λ) =
( ∏

Jj �=0

Ij(λIj − 1) · · · (λIj − Jj + 1)
)−1( ∏

Kj �=0

Ij(λIj − 1) · · · (λIj −Kj + 1)
)−1

and p = #{j : Jj �= 0}+#{j : Kj �= 0}.

Notice that this means that h(λ) has poles in

λ =
1

Ij
,
2

Ij
, . . . ,

Jj − 1

Ij
for j with Jj > 1

and

λ =
1

Ij
,
2

Ij
, . . . ,

Kj − 1

Ij
for j with Kj > 1.

Proof of Theorem 2.3. We may suppose that ξ has support in a coordinate chart and so
we study the integral over, say, a polydisc ∆ ⊂ Cd. Since D has normal crossings we may
find coordinates so that the section s is a monomial, say s = zI = zI11 · · · zIdd and we write
the metric as | · | = | · |e−φ for some function φ. Furthermore, we write

ω ∧ ξ =
ψ

zJ z̄K
dz ∧ dz̄

where dz = dz1 ∧ · · · ∧ dzd and ψ is some smooth function with support in ∆. The integral
in (4) may now be written

Fξ(λ) = oω(s)

∫

∆

|zI |2λ
zJ z̄K

e−2λφψ dz ∧ dz̄. (5)

5

We now prove (a). For integers N � 0 we can use Lemma 2.4 and Stokes’ theorem to
simplify the integral in (5) as

Fξ(λ) = oω(s)

∫

∆

|zI |2λ+2N

zJ+NI z̄K+NI
e−2λφψ dz ∧ dz̄

=
oω(s)h(λ)

λpN

∫

∆

∂J+K+2NI |zI |2λ+2N

∂zJ+NI∂z̄K+NI
e−2λφψ dz ∧ dz̄

=
(−1)|J+NI|+|K+NI|oω(s)h(λ)

λpN

∫

∆

|zI |2λ+2N ∂J+K+2NI

∂zJ+NI∂z̄K+NI

(
e−2λφψ

)
dz ∧ dz̄.

The last integral in the above expression is holomorphic in Reλ > −N − ε for some ε > 0.
Furthermore, the function h, which is given by Lemma 2.4 but here depends on N , is
meromorphic in C. Hence Fξ has a meromorphic extension to C, as N may be chosen
arbitrarily large, and we have proven (a).

Now let us prove (b). The fact that the poles are located at rational numbers follows
from the proof of (a) and Lemma 2.4 which describes the locations of the poles of h.

Finally we prove (c). Choosing N = 0 gives

Fξ(λ) =
(−1)|J|+|K|oω(s)h(λ)

λp

∫

∆

|zI |2λ ∂J+K

∂zJ∂z̄K
(
e−2λφψ

)
dz ∧ dz̄. (6)

Notice that Lemma 2.4 in particular gives that h does not have a pole at 0. We define a
function g from the integral above by

g(λ) =

∫

∆

|zI |2λ ∂J+K

∂zJ∂z̄K
(
e−2λφψ

)
dz ∧ dz̄.

Then g is holomorphic in Reλ > −ε for some ε. To show that Fξ has a pole of order κ we
need to show that g has a zero of order p− κ at the origin. We have that

p− κ = #{j : Jj �= 0 or Kj �= 0} = #{j : Ij �= 0}.

Repeated use of the product rule for derivatives gives

g(k)(0) =
k∑

�=0

(
k

�

)
(−2)k−�

∫

∆

(
log |zI |2

)� ∂J+K

∂zJ∂z̄K
(
ψφk−�

)
dz ∧ dz̄ (7)

and using the multinomial theorem we get

∫

∆

(
log |zI |2

)� ∂J+K

∂zJ∂z̄K
(
ψφk−�

)
dz ∧ dz̄

=
∑

M

(
�

M

)∫

∆

d∏

j=1

(
Ij log |zj |2

)Mj ∂J+K

∂zJ∂z̄K
(
ψφk−�

)
dz ∧ dz̄. (8)

The sum is over multi-indices M = (M1, . . . ,Md) such that Ij = 0 implies that Mj = 0, all
Mj � 0 and

∑
j Mj = �. Thus we have to study integrals of the form

∫

∆

d∏

j=1

(
Ij log |zj |2

)Mj ∂J+K

∂zJ∂z̄K
(
ψφk−�

)
dz ∧ dz̄. (9)

Suppose first that I1 �= 0 but M1 = 0. Then the integral in (9) may be written

∫

∆′

d∏

j=2

(
Ij log |zj |2

)Mj

(∫

∆1

∂J+K

∂zJ∂z̄K
(
ψφk−�

)
dz1 ∧ dz̄1

)
dz′ ∧ dz̄′
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where ∆ = ∆1 × ∆′. But since Ij �= 0 implies that J1 �= 0 or K1 �= 0 the inner integral
vanishes using Stokes’ theorem. Hence we get the following:

if Ij �= 0 but Mj = 0 then the integral in (9) vanishes.

Now we suppose k < p − κ and we want to show that g(k)(0) = 0. From (7) and (8) we
know that g(k)(0) is a sum of integrals as in (9). For each of these integrals there are an
integer � and a multi-index M such that

∑
Mj = � < p− κ = #{j : Ij �= 0}.

Hence, for each of the integrals, there is some j so that Ij �= 0 but Mj = 0. Then, as
explained above, all of the integrals are zero and thus g(k)(0) = 0 for k < p− κ. Therefore
g has a zero of order p− κ at the origin which was what we wanted to prove.

We use Theorem 2.3 (c) to make the following definition.

Definition 2.5. For ω ∈ E(∗∗̄D), where D has normal crossings, we define the canonical
current {ω} associated to ω by

〈
{ω}, ξ

〉
= λκ(ω)Fξ(λ)

∣∣∣
λ=0

. �

A priori {ω} depends on choice of s and | · |. Corollary 2.7, however, shows that this is
not the case.

Remark. In the case that ω is semi-meromorphic {ω} is the principal value current of ω
since then κ(ω) = 0 and oω(s) = 1.

2.3. Local calculations. We will make some calculations of canonical currents associated
to quasi-meromorphic forms to hopefully clarify but also to show that they can behave a
bit odd. Given a multi-index J = (J1, . . . , Jd) we write 1J for the multi-index given by
(1J)j = 0 if Jj = 0 and (1J)j = 1 if Jj �= 0. We begin with a proposition.

Proposition 2.6. For ω ∈ QM(Cd) and a test function ξ in Cd with support in ∆ such
that ω ∧ ξ = (ψ/zJ z̄K)dz ∧ dz̄ we have

〈
{ω}, ξ

〉
=

(−1)p

(J − 1J)!(K − 1K)!

∫

∆

( ∏

j:Jj+Kj �=0

log |zj |2
) ∂J+Kψ

∂zJ∂z̄K
dz ∧ dz̄

where p is given by Lemma 2.4.

Proof. From the proof of Theorem 2.3 we know

〈
{ω}, ξ

〉
= λκ(ω)Fξ(λ)

∣∣∣
λ=0

=
oω(s)(−1)|J|+|K|

(p− κ(ω))!
h(0)g(p−κ(ω))(0)

and Lemma 2.4 gives

h(0) =
(−1)|J|+|K|−p

(J − 1J)!(K − 1K)!

( ∏

j:Jj �=0

Ij

)−1( ∏

j:Kj �=0

Ij

)−1

.
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The equation (7) gives an expression for g(p−κ(ω))(0) in terms of the integrals in (8). But
just as in the proof of Theorem 2.3 these integrals vanish if � < p− κ(ω). For � = p− κ(ω)
we must have all Mj = 1 for the integral not to vanish. Using this for k = p− κ(ω) we get

g(p−κ(ω))(0) =
( ∏

j:Ij �=0

Ij

)
(p− κ(ω))!

∫

∆

( ∏

j:Ij �=0

log |zj |2
) ∂J+Kψ

∂zJ∂z̄K
dz ∧ dz̄.

This is the same integral as in the statement of the proposition. We only need to see what
constant we get in front of it. This constant is

oω(s)
(−1)p

(J − 1J)!(K − 1K)!

( ∏

j:Ij �=0

Ij

)( ∏

j:Jj �=0

Ij

)−1( ∏

j:Kj �=0

Ij

)−1

but since oω(s) =
∏

j:Jj �=0,Kj �=0 Ij this is precisely what is claimed.

Corollary 2.7. The canonical current {ω} does not depend on the choice of section s or
metric | · |.

Proof. This follows immediately from Proposition 2.6 since the right hand side in that
statement does not depend on the section s or the metric | · |, as J and K do not. Hence
(locally and thus also globally) this holds for {ω}.

Remark. We would not get the above corollary if we did not have the factor oω(s) in the
definition of Fξ.

When doing calculations we will get use of the following which is a consequence of
Cauchy–Green’s theorem: If ψ is a smooth function with compact support in ∆ ⊂ C then

ψ(0) = − 1

2πi

∫

∆

log |z|2 ∂2ψ

∂z∂z̄
dz ∧ dz̄. (10)

Corollary 2.8. For ω ∈ QM(Cd) and a test function ξ in Cd with support in ∆ we have

(a) if ω ∧ ξ = (ψ/zm1 z̄n1 )dz ∧ dz̄ then

〈
{ω}, ξ

〉
= − 2πi

(m− 1)!(n− 1)!

∫

∆∩{z1=0}

∂m+n−2ψ

∂zm−1
1 ∂z̄n−1

1

dz′ ∧ dz̄′,

(b) if ω ∧ ξ = (ψ/zJ1
1 . . . zJk

k z̄1 . . . z̄k)dz ∧ dz̄

〈
{ω}, ξ

〉
=

(−2πi)k

(J − 1J)!

∫

∆∩{z1=···=zk=0}

∂J−1Jψ

∂zJ−1J
dz′′ ∧ dz̄′′

where dz′∧dz̄′ = dz2∧dz̄2∧· · ·∧dzd∧dz̄d and dz′′∧dz̄′′ = dzk+1∧dz̄k+1∧· · ·∧dzd∧dz̄d.

Proof. This follows from Proposition 2.6 and (10).

We now use Corollary 2.8 to make some explicit calculations.

Example 2. Let X = CP1 with homogeneous coordinates [z : w] and let 0 be the point
where z = 0 and ∞ the point where w = 0. We let

ω =
dz ∧ dz̄

zz̄
=

dw ∧ dw̄

ww̄
for zw �= 0,
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Definition 2.5. For ω ∈ E(∗∗̄D), where D has normal crossings, we define the canonical
current {ω} associated to ω by

〈
{ω}, ξ

〉
= λκ(ω)Fξ(λ)

∣∣∣
λ=0

. �

A priori {ω} depends on choice of s and | · |. Corollary 2.7, however, shows that this is
not the case.

Remark. In the case that ω is semi-meromorphic {ω} is the principal value current of ω
since then κ(ω) = 0 and oω(s) = 1.

2.3. Local calculations. We will make some calculations of canonical currents associated
to quasi-meromorphic forms to hopefully clarify but also to show that they can behave a
bit odd. Given a multi-index J = (J1, . . . , Jd) we write 1J for the multi-index given by
(1J)j = 0 if Jj = 0 and (1J)j = 1 if Jj �= 0. We begin with a proposition.

Proposition 2.6. For ω ∈ QM(Cd) and a test function ξ in Cd with support in ∆ such
that ω ∧ ξ = (ψ/zJ z̄K)dz ∧ dz̄ we have

〈
{ω}, ξ

〉
=

(−1)p

(J − 1J)!(K − 1K)!

∫

∆

( ∏

j:Jj+Kj �=0

log |zj |2
) ∂J+Kψ

∂zJ∂z̄K
dz ∧ dz̄

where p is given by Lemma 2.4.

Proof. From the proof of Theorem 2.3 we know

〈
{ω}, ξ

〉
= λκ(ω)Fξ(λ)

∣∣∣
λ=0

=
oω(s)(−1)|J|+|K|

(p− κ(ω))!
h(0)g(p−κ(ω))(0)

and Lemma 2.4 gives

h(0) =
(−1)|J|+|K|−p

(J − 1J)!(K − 1K)!

( ∏

j:Jj �=0

Ij

)−1( ∏

j:Kj �=0

Ij

)−1

.
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The equation (7) gives an expression for g(p−κ(ω))(0) in terms of the integrals in (8). But
just as in the proof of Theorem 2.3 these integrals vanish if � < p− κ(ω). For � = p− κ(ω)
we must have all Mj = 1 for the integral not to vanish. Using this for k = p− κ(ω) we get

g(p−κ(ω))(0) =
( ∏

j:Ij �=0

Ij

)
(p− κ(ω))!

∫

∆

( ∏

j:Ij �=0

log |zj |2
) ∂J+Kψ

∂zJ∂z̄K
dz ∧ dz̄.

This is the same integral as in the statement of the proposition. We only need to see what
constant we get in front of it. This constant is

oω(s)
(−1)p

(J − 1J)!(K − 1K)!

( ∏

j:Ij �=0

Ij

)( ∏

j:Jj �=0

Ij

)−1( ∏

j:Kj �=0

Ij

)−1

but since oω(s) =
∏

j:Jj �=0,Kj �=0 Ij this is precisely what is claimed.

Corollary 2.7. The canonical current {ω} does not depend on the choice of section s or
metric | · |.

Proof. This follows immediately from Proposition 2.6 since the right hand side in that
statement does not depend on the section s or the metric | · |, as J and K do not. Hence
(locally and thus also globally) this holds for {ω}.

Remark. We would not get the above corollary if we did not have the factor oω(s) in the
definition of Fξ.

When doing calculations we will get use of the following which is a consequence of
Cauchy–Green’s theorem: If ψ is a smooth function with compact support in ∆ ⊂ C then

ψ(0) = − 1

2πi

∫

∆

log |z|2 ∂2ψ

∂z∂z̄
dz ∧ dz̄. (10)

Corollary 2.8. For ω ∈ QM(Cd) and a test function ξ in Cd with support in ∆ we have

(a) if ω ∧ ξ = (ψ/zm1 z̄n1 )dz ∧ dz̄ then

〈
{ω}, ξ

〉
= − 2πi

(m− 1)!(n− 1)!

∫

∆∩{z1=0}

∂m+n−2ψ

∂zm−1
1 ∂z̄n−1

1

dz′ ∧ dz̄′,

(b) if ω ∧ ξ = (ψ/zJ1
1 . . . zJk

k z̄1 . . . z̄k)dz ∧ dz̄

〈
{ω}, ξ

〉
=

(−2πi)k

(J − 1J)!

∫

∆∩{z1=···=zk=0}

∂J−1Jψ

∂zJ−1J
dz′′ ∧ dz̄′′

where dz′∧dz̄′ = dz2∧dz̄2∧· · ·∧dzd∧dz̄d and dz′′∧dz̄′′ = dzk+1∧dz̄k+1∧· · ·∧dzd∧dz̄d.

Proof. This follows from Proposition 2.6 and (10).

We now use Corollary 2.8 to make some explicit calculations.

Example 2. Let X = CP1 with homogeneous coordinates [z : w] and let 0 be the point
where z = 0 and ∞ the point where w = 0. We let

ω =
dz ∧ dz̄

zz̄
=

dw ∧ dw̄

ww̄
for zw �= 0,
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which means that κ(ω) = 1. In view of Corollary 2.8 (a), given a test function ξ, we get
〈
{ω}, ξ

〉
= −2πiξ(0)− 2πiξ(∞).

On the other hand, if X = U for some open set U ⊂ CP1 which does not contain the origin
or ∞ then κ(ω) = 0 and therefore

〈
{ω}, ξ

〉
=

∫

U

ξ(z)

|z|2 dz ∧ dz̄. �

Remark. The above example shows that for canonical currents we have the following prop-
erty: in general χ{ω} �= {χω} for a smooth function χ. This means that when we define
the canonical current associated to a form ω it is important to decide on what underlying
space we consider it.

Example 3. If we let X = C and apply Corollary 2.8 with ω = 1/(zmz̄n) then we get that

z

{
1

zmz̄n

}
=

{
1

zm−1z̄n

}
and z̄

{
1

zmz̄n

}
=

{
1

zmz̄n−1

}

for m,n � 2. On the other hand

zm
{

1

zmz̄n

}
= 0 and z̄n

{
1

zmz̄n

}
= 0

for m,n � 1. �

Theorem 2.3 (b) gives some insight about the poles of Fξ but the following proposition
gives more information.

Proposition 2.9. The poles of the function Fξ are located at rational numbers less than or
equal to

max

{
min

{Jj − 1

Ij
,
Kj − 1

Ij

}
: j = 1, . . . , d

}
.

Proof. First suppose Ki = 0 or Ki = 1 for all i = 1, . . . , d. We may assume that ξ has
support in a local chart and so we can write down the integral locally as

Fξ(λ) = oω(s)

∫

∆

|zI |2λ
zJ z̄K

e−2λφψdz ∧ dz̄

=
h(λ)

λp

∫

∆

∂K |zI |2λ
∂z̄K

1

zJ
e−2λφψdz ∧ dz̄

=
(−1)|K|h(λ)

λp

∫

∆

|zI |2λ
zJ

∂Ke−2λφψ

∂z̄K
dz ∧ dz̄.

We made a similar computation in the proof of Theorem 2.3, cf. Lemma 2.4, but now
we only considered the anti-holomorphic derivatives. Since these are of at most order one
the function h will not have any poles at all, see Lemma 2.4. But the integral in the last

expression above is the principal value current of 1
/
zJ acting on ∂Ke−2λφψ

∂z̄K dz ∧ dz̄. This is
known not to have any poles in the right half plane (and not at the origin). Hence Fξ does
not have any poles in Re(λ) > 0.

Note that the above result would also hold as long as Ji � 1 or Ki � 1 for all i. Now
suppose we are in the general case. Let µ = λ−M for some integer M . Then

|zI |2λ
zJ z̄K

=
|zI |2µ+2M

zJ z̄K
= |zI |2µ z

MI z̄MI

zJ z̄K

9

and choosing M so that MIi � Ji − 1 or MIi � Ki − 1 for each i we get from the above
that Fξ has no poles in Re(µ) > 0. That is, Fξ has no poles in Re(λ) > M . Choosing M
so that this holds we get the proposition.

One can note that by choosing higher powers I of the section s we can get the poles in
the right half-plane arbitrarily close to the origin. Suppose ω = α∧ β̄ for semi-meromorphic
forms α and β. Proposition 2.9 gives us a hint that the situation is a bit more well behaved
when β only has poles of order one since then the proposition says that Fξ does not have
poles in the right half plane.

3. Cohomological residues

We will discuss the classical Leray residue, the conjugate Dolbeault residue and then define
a residue for the Aeppli cohomology. Now X is assumed to be a compact complex manifold.

3.1. The conjugate Dolbeault residue. To define residues the classical setting is the
following: suppose D is a smooth hypersurface and α a d-closed form in X \ D with a
holomorphic pole of order one along D. If z1 = 0 is a local equation for D then α may
locally be written as

α =
dz1
z1

∧ α̃+ τ

for some forms α̃ and τ such that τ does not contain dz1. Certainly α̃ is smooth but it is
well known that the closedness implies that τ is smooth. One defines the Poincaré residue
by Res(α) = α̃

∣∣
D
. It is easy to check that this gives a well defined closed form on D. If α

is any closed form on X \D then there is a cohomologous form α′ with a pole of order one
along D, cf. [Ch, Thm. 6.3.3, p. 233]. The Leray residue is defined by

Res(α) =
[
Res(α′)

]
dR

which gives a map
Res : Hk(X \D) → Hk−1(D).

Since the groups Ep,q(∗D) form a complex with the operator ∂ we get cohomology
groups Hp,q

∂ (∗D). In [Fe] the conjugate Dolbeault residue was constructed as a map

Res∂ : Hp,0
∂ (∗D) → Hp−1,0

∂ (D).

We will give an alternative definition for forms in Hd,q
∂ (∗D) which is quite explicit. Given a

(d, q)-form α in Cd, with coordinates z = (z1, . . . , zd), which has a holomorphic pole along
z1 = 0 we may write

α =
dz1 ∧ α̃z

zm1
(11)

for some smooth form α̃z which does not contain dz1. To define a residue we need the
following lemma. We do not give the proof since it is very similar to the proof of Lemma 3.4
below.

Lemma 3.1. Let z and w be coordinates in Cd such that z1/w1 is a non-vanishing holo-
morphic function and let D = {z1 = 0}. Suppose α ∈ Ed,q(∗D) has compact support and
write

dz1
zm1

∧ α̃z(z) = α =
dw1

wm
1

∧ α̃w(w),

for some smooth forms α̃z(z) and α̃w(w) which does not contain dz1 or dw1.
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which means that κ(ω) = 1. In view of Corollary 2.8 (a), given a test function ξ, we get
〈
{ω}, ξ

〉
= −2πiξ(0)− 2πiξ(∞).

On the other hand, if X = U for some open set U ⊂ CP1 which does not contain the origin
or ∞ then κ(ω) = 0 and therefore

〈
{ω}, ξ

〉
=

∫

U

ξ(z)

|z|2 dz ∧ dz̄. �

Remark. The above example shows that for canonical currents we have the following prop-
erty: in general χ{ω} �= {χω} for a smooth function χ. This means that when we define
the canonical current associated to a form ω it is important to decide on what underlying
space we consider it.

Example 3. If we let X = C and apply Corollary 2.8 with ω = 1/(zmz̄n) then we get that

z

{
1

zmz̄n

}
=

{
1

zm−1z̄n

}
and z̄

{
1

zmz̄n

}
=

{
1

zmz̄n−1

}

for m,n � 2. On the other hand

zm
{

1

zmz̄n

}
= 0 and z̄n

{
1

zmz̄n

}
= 0

for m,n � 1. �

Theorem 2.3 (b) gives some insight about the poles of Fξ but the following proposition
gives more information.

Proposition 2.9. The poles of the function Fξ are located at rational numbers less than or
equal to

max

{
min

{Jj − 1

Ij
,
Kj − 1

Ij

}
: j = 1, . . . , d

}
.

Proof. First suppose Ki = 0 or Ki = 1 for all i = 1, . . . , d. We may assume that ξ has
support in a local chart and so we can write down the integral locally as

Fξ(λ) = oω(s)

∫

∆

|zI |2λ
zJ z̄K

e−2λφψdz ∧ dz̄

=
h(λ)

λp

∫

∆

∂K |zI |2λ
∂z̄K

1

zJ
e−2λφψdz ∧ dz̄

=
(−1)|K|h(λ)

λp

∫

∆

|zI |2λ
zJ

∂Ke−2λφψ

∂z̄K
dz ∧ dz̄.

We made a similar computation in the proof of Theorem 2.3, cf. Lemma 2.4, but now
we only considered the anti-holomorphic derivatives. Since these are of at most order one
the function h will not have any poles at all, see Lemma 2.4. But the integral in the last

expression above is the principal value current of 1
/
zJ acting on ∂Ke−2λφψ

∂z̄K dz ∧ dz̄. This is
known not to have any poles in the right half plane (and not at the origin). Hence Fξ does
not have any poles in Re(λ) > 0.

Note that the above result would also hold as long as Ji � 1 or Ki � 1 for all i. Now
suppose we are in the general case. Let µ = λ−M for some integer M . Then

|zI |2λ
zJ z̄K

=
|zI |2µ+2M

zJ z̄K
= |zI |2µ z

MI z̄MI

zJ z̄K
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and choosing M so that MIi � Ji − 1 or MIi � Ki − 1 for each i we get from the above
that Fξ has no poles in Re(µ) > 0. That is, Fξ has no poles in Re(λ) > M . Choosing M
so that this holds we get the proposition.

One can note that by choosing higher powers I of the section s we can get the poles in
the right half-plane arbitrarily close to the origin. Suppose ω = α∧ β̄ for semi-meromorphic
forms α and β. Proposition 2.9 gives us a hint that the situation is a bit more well behaved
when β only has poles of order one since then the proposition says that Fξ does not have
poles in the right half plane.

3. Cohomological residues

We will discuss the classical Leray residue, the conjugate Dolbeault residue and then define
a residue for the Aeppli cohomology. Now X is assumed to be a compact complex manifold.

3.1. The conjugate Dolbeault residue. To define residues the classical setting is the
following: suppose D is a smooth hypersurface and α a d-closed form in X \ D with a
holomorphic pole of order one along D. If z1 = 0 is a local equation for D then α may
locally be written as

α =
dz1
z1

∧ α̃+ τ

for some forms α̃ and τ such that τ does not contain dz1. Certainly α̃ is smooth but it is
well known that the closedness implies that τ is smooth. One defines the Poincaré residue
by Res(α) = α̃

∣∣
D
. It is easy to check that this gives a well defined closed form on D. If α

is any closed form on X \D then there is a cohomologous form α′ with a pole of order one
along D, cf. [Ch, Thm. 6.3.3, p. 233]. The Leray residue is defined by

Res(α) =
[
Res(α′)

]
dR

which gives a map
Res : Hk(X \D) → Hk−1(D).

Since the groups Ep,q(∗D) form a complex with the operator ∂ we get cohomology
groups Hp,q

∂ (∗D). In [Fe] the conjugate Dolbeault residue was constructed as a map

Res∂ : Hp,0
∂ (∗D) → Hp−1,0

∂ (D).

We will give an alternative definition for forms in Hd,q
∂ (∗D) which is quite explicit. Given a

(d, q)-form α in Cd, with coordinates z = (z1, . . . , zd), which has a holomorphic pole along
z1 = 0 we may write

α =
dz1 ∧ α̃z

zm1
(11)

for some smooth form α̃z which does not contain dz1. To define a residue we need the
following lemma. We do not give the proof since it is very similar to the proof of Lemma 3.4
below.

Lemma 3.1. Let z and w be coordinates in Cd such that z1/w1 is a non-vanishing holo-
morphic function and let D = {z1 = 0}. Suppose α ∈ Ed,q(∗D) has compact support and
write

dz1
zm1

∧ α̃z(z) = α =
dw1

wm
1

∧ α̃w(w),

for some smooth forms α̃z(z) and α̃w(w) which does not contain dz1 or dw1.
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(a) If there is a form η ∈ E(∗D) with compact support such that α = ∂η then there is a
smooth form η̂ on D such that

∂m−1α̃z

∂zm−1
1

∣∣∣∣
D

= ∂η̂,

with supp(η̂) ⊂ supp(α) ∩D.

(b) There is a smooth form β on D whose support is contained in supp(α) ∩D such that

∂m−1α̃z

∂zm−1
1

∣∣∣∣
D

=
∂m−1α̃w

∂wm−1
1

∣∣∣∣
D

+ ∂β.

Now suppose α ∈ Ed,q(∗D) and (ρj) is a partition of unity subordinate to a cover of X
by charts with coordinates

(
zj = (zj,1, zj,2 . . . , zj,d)

)
such that D is locally given by zj,1 = 0.

We write

α =
dzj,1 ∧ α̃j(z)

zmj,1
on supp(ρj),

and then define

Rρ,z(ω) =
∑

j

1

(m− 1)!

∂m−1(ρjα̃j)

∂zm−1
j,1

∣∣∣∣
D

.

Using Lemma 3.1 one can prove that, for α ∈ Ed,q(∗D),

(a) Rρ,z(α) = Rσ,w(α) + ∂β,

(b) Rρ,z(∂η) = ∂η̂.

The proof of (a) and (b) is very similar to the proof of Proposition 3.5 below. We can now
make the following definition.

Definition 3.2. For a class [α] ∈ Hd,q
∂ (∗D) we define its conjugate Dolbeault residue by

Res∂(α) =
[
Rρ,z(α)

]
∂
. �

The claims (a) and (b) above give that Res∂(α) is well defined and independent of the
choice of partition of unity and local coordinates. We now present a theorem which is not
very related to the rest of the paper, but we think it is a nice application of the conjugate
Dolbeault residue.

Theorem 3.3. If α ∈ Ep,q(∗D), where D is a smooth hypersurface, and ξ a test form of
bidegree (d− p, d− q − 1) then

〈
∂̄[α], ξ

〉
=

〈
[∂̄α], ξ

〉
+ 2πi

∫

D

Res∂(α ∧ ξ).

Proof. We may suppose ξ has support contained in a coordinate chart which is biholomor-
phic to the unit polydisc ∆ and that D is there given by z1 = 0. We may further suppose
that α = a

zm
1
dzP ∧ dz̄Q and ξ = b dzR ∧ dz̄S where |P | = p and |Q| = q. Then we get

α ∧ ξ = (−1)q(d−p)+s ab

zm1
dz ∧ dz̄Q ∧ dz̄S ,

α ∧ ∂̄ξ =
∑

k

(−1)(q+1)(d−p)+s+t a

zm1

∂b

∂z̄k
dz ∧ dz̄,

∂̄α ∧ ξ =
∑

k

(−1)q(d−p)+d+q+s+t ∂a

∂z̄k

b

zm1
dz ∧ dz̄,
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where s and t are given by dzP ∧ dzR = (−1)sdz and dz̄Q ∧ dz̄k ∧ dz̄S = (−1)tdz̄ (so t
depends on k but we suppress this). For k = 1 we have

(−1)tdz̄ = dz̄Q ∧ dz̄1 ∧ dz̄S = (−1)qdz̄1 ∧ dz̄Q ∧ dz̄S

and hence
dz̄′ := dz̄2 ∧ · · · ∧ dz̄d = (−1)q+tdz̄Q ∧ dz̄S .

This means that

Res∂(α ∧ ξ) =
(−1)q(d−p)+q+s+t

(m− 1)!

∂m−1(ab)

∂zm−1
1

dz′ ∧ dz̄′.

We write ∆′ = ∆∩{z1 = 0} = ∆∩D. Using Proposition 2.6 and the remark after Definition
2.5 we get

〈
∂̄[α], ξ

〉
= (−1)p+q+1

〈
[α], ∂̄ξ

〉

=
∑

k

(−1)q(d−p)+q+d+s+t

(m− 1)!

∫

∆

log |z1|2
∂m

∂zm1

(
a
∂b

∂z̄k

)
dz ∧ dz̄

=
(−1)q(d−p)+q+d+s+t

(m− 1)!

∫

∆

log |z1|2
∂m+1(ab)

∂zm1 ∂z̄1
dz ∧ dz̄

−
∑

k

(−1)q(d−p)+q+d+s+t

(m− 1)!

∫

∆

log |z1|2
∂m

∂zm1

( ∂a

∂z̄k
b
)
dz ∧ dz̄

=
2πi(−1)q(d−p)+q+s+t

(m− 1)!

∫

∆′

∂m−1(ab)

∂zm−1
1

dz′ ∧ dz̄′ +
〈
[∂̄α], ξ

〉

= 2πi

∫

D

Res∂(α ∧ ξ) +
〈
[∂̄α], ξ

〉

3.2. A residue for the Aeppli cohomology. Recall that for a complex manifold X
one defines the Bott–Chern cohomology groups by

Hp,q
BC(X) =

ker(∂) ∩ ker(∂̄)

im(∂∂̄)

and the Aeppli cohomology groups by

Hp,q
A (X) =

ker(∂∂̄)

im(∂) + im(∂̄)
.

Given a hermitian metric on X the induced Hodge star operator gives an isomorphism

∗ : Hp,q
BC(X) → Hn−p,n−q

A (X)

so in this sense the Aeppli cohomology is dual to the Bott–Chern cohomology. We have the
following natural maps

Hp,q
BC(X)

Hp,q
∂ (X) Hp+q

dR (X) Hp,q

∂̄
(X)

Hp,q
A (X)
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The proof of (a) and (b) is very similar to the proof of Proposition 3.5 below. We can now
make the following definition.
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∂ (∗D) we define its conjugate Dolbeault residue by

Res∂(α) =
[
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The claims (a) and (b) above give that Res∂(α) is well defined and independent of the
choice of partition of unity and local coordinates. We now present a theorem which is not
very related to the rest of the paper, but we think it is a nice application of the conjugate
Dolbeault residue.

Theorem 3.3. If α ∈ Ep,q(∗D), where D is a smooth hypersurface, and ξ a test form of
bidegree (d− p, d− q − 1) then

〈
∂̄[α], ξ

〉
=

〈
[∂̄α], ξ

〉
+ 2πi

∫

D

Res∂(α ∧ ξ).

Proof. We may suppose ξ has support contained in a coordinate chart which is biholomor-
phic to the unit polydisc ∆ and that D is there given by z1 = 0. We may further suppose
that α = a

zm
1
dzP ∧ dz̄Q and ξ = b dzR ∧ dz̄S where |P | = p and |Q| = q. Then we get

α ∧ ξ = (−1)q(d−p)+s ab

zm1
dz ∧ dz̄Q ∧ dz̄S ,

α ∧ ∂̄ξ =
∑

k

(−1)(q+1)(d−p)+s+t a

zm1

∂b

∂z̄k
dz ∧ dz̄,

∂̄α ∧ ξ =
∑

k

(−1)q(d−p)+d+q+s+t ∂a

∂z̄k

b

zm1
dz ∧ dz̄,
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where s and t are given by dzP ∧ dzR = (−1)sdz and dz̄Q ∧ dz̄k ∧ dz̄S = (−1)tdz̄ (so t
depends on k but we suppress this). For k = 1 we have

(−1)tdz̄ = dz̄Q ∧ dz̄1 ∧ dz̄S = (−1)qdz̄1 ∧ dz̄Q ∧ dz̄S

and hence
dz̄′ := dz̄2 ∧ · · · ∧ dz̄d = (−1)q+tdz̄Q ∧ dz̄S .

This means that

Res∂(α ∧ ξ) =
(−1)q(d−p)+q+s+t

(m− 1)!

∂m−1(ab)

∂zm−1
1

dz′ ∧ dz̄′.

We write ∆′ = ∆∩{z1 = 0} = ∆∩D. Using Proposition 2.6 and the remark after Definition
2.5 we get

〈
∂̄[α], ξ

〉
= (−1)p+q+1

〈
[α], ∂̄ξ

〉

=
∑

k

(−1)q(d−p)+q+d+s+t

(m− 1)!

∫

∆

log |z1|2
∂m

∂zm1

(
a
∂b

∂z̄k

)
dz ∧ dz̄

=
(−1)q(d−p)+q+d+s+t

(m− 1)!

∫

∆

log |z1|2
∂m+1(ab)

∂zm1 ∂z̄1
dz ∧ dz̄

−
∑

k

(−1)q(d−p)+q+d+s+t

(m− 1)!

∫

∆

log |z1|2
∂m

∂zm1

( ∂a

∂z̄k
b
)
dz ∧ dz̄

=
2πi(−1)q(d−p)+q+s+t

(m− 1)!

∫

∆′

∂m−1(ab)

∂zm−1
1

dz′ ∧ dz̄′ +
〈
[∂̄α], ξ

〉

= 2πi

∫

D

Res∂(α ∧ ξ) +
〈
[∂̄α], ξ

〉

3.2. A residue for the Aeppli cohomology. Recall that for a complex manifold X
one defines the Bott–Chern cohomology groups by

Hp,q
BC(X) =

ker(∂) ∩ ker(∂̄)

im(∂∂̄)

and the Aeppli cohomology groups by

Hp,q
A (X) =

ker(∂∂̄)

im(∂) + im(∂̄)
.

Given a hermitian metric on X the induced Hodge star operator gives an isomorphism

∗ : Hp,q
BC(X) → Hn−p,n−q

A (X)

so in this sense the Aeppli cohomology is dual to the Bott–Chern cohomology. We have the
following natural maps

Hp,q
BC(X)

Hp,q
∂ (X) Hp+q

dR (X) Hp,q

∂̄
(X)

Hp,q
A (X)

12



and for a manifold on which the ∂∂̄-lemma holds all the outer maps are isomorphisms. In
particular this is true for Kähler manifolds. For a more elaborate discussion on these facts
we refer to [Ang1; Ang2; Del].

Restricting our attention to forms in Ed,d(∗∗̄D) we consider the cohomology group

Hd,d
A (∗∗̄D). To define a residue we need the following lemma.

Lemma 3.4. Let z and w be coordinates in Cd such that z1/w1 is a non-vanishing holo-
morphic function and let D = {z1 = 0}. Suppose ω ∈ Ed,d(∗∗̄D) has compact support and
write

dz1 ∧ dz̄1
zm1 z̄n1

∧ ω̃z(z) = ω =
dw1 ∧ dw̄1

wm′
1 w̄n′

1

∧ ω̃w(w),

for some smooth forms ω̃z(z) and ω̃w(w) which does not contain dz1, dz̄1 or dw1, dw̄1.

(a) If there are forms η, ν ∈ E(∗∗̄D) with compact support such that ω = ∂η + ∂̄ν then
there are smooth forms η̂ and ν̂ on D such that

∂m+n−2ω̃z

∂zm−1
1 ∂z̄n−1

1

∣∣∣∣
D

= ∂η̂ + ∂̄ν̂,

with supp(η̂), supp(ν̂) ⊂ supp(ω) ∩D.

(b) There are smooth forms α̂ and β̂ on D whose support is contained in supp(ω)∩D such
that

1

(m− 1)!(n− 1)!

∂m+n−2ω̃z

∂zm−1
1 ∂z̄n−1

1

∣∣∣∣
D

=
1

(m′ − 1)!(n′ − 1)!

∂m+n−2ω̃w

∂wm′−1
1 ∂w̄n′−1

1

∣∣∣∣
D

+ ∂α̂+ ∂̄β̂.

Proof. We first prove (a) and suppose ω = ∂η. If

η =
dz1 ∧ dz̄1 ∧ η1 + dz̄1 ∧ η2

zm−1
1 z̄n1

,

where η1 and η2 does not contain dz1 or dz̄1, then

ω = ∂η =
dz1 ∧ dz̄1
zm1 z̄n1

∧
(
− (m− 1)η2 + z1∂η1 + z1

∂η2
∂z1

)

and therefore

ω̃z = −(m− 1)η2 + z1∂η1 + z1
∂η2
∂z1

.

We get

∂m+n−2ω̃z

∂zm−1
1 ∂z̄n−1

1

∣∣∣∣
D

=
∂m+n−2

∂zm−1
1 ∂z̄n−1

1

(
− (m− 1)η2 + z1∂η1 + z1

∂η2
∂z1

)∣∣∣∣
D

= (m− 1)
(
− ∂m+n−2η2

∂zm−1
1 ∂z̄n−1

1

+
∂m+n−3∂η1

∂zm−2
1 ∂z̄n−1

1

+
∂m+n−2η2

∂zm−1
1 ∂z̄n−1

1

)∣∣∣∣
D

= ∂
(
(m− 1)

∂m+n−3η1

∂zm−2
1 ∂z̄n−1

1

∣∣∣
D

)
.

The case ω = ∂̄ν is treated analogously. By linearity we get the case ω = ∂η + ∂̄ν and
hence we have proven (a). Now we prove (b) and we first suppose (m,n) = (m′, n′). The
calculation

ω = −∂
( 1

m− 1

dz̄1 ∧ ω̃z

zm−1
1 z̄n1

)
− 1

m− 1

dz̄1 ∧ ∂ω̃z

zm−1
1 z̄n1

= −∂
( 1

m− 1

dz̄1 ∧ ω̃z

zm−1
1 z̄n1

)
+

1

m− 1

dz1 ∧ dz̄1

zm−1
1 z̄n1

∧ ∂ω̃z

∂z1
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may be iterated and so we can write

ω = ∂α1 + ∂̄β1 +
1

(m− 1)!(n− 1)!

dz1 ∧ dz̄1
z1z̄1

∧ ∂m+n−2ω̃z

∂zm−1
1 ∂z̄n−1

1

.

Doing the same for the coordinate w we get that

dz1 ∧ dz̄1
z1z̄1

∧ ∂m+n−2ω̃z

∂zm−1
1 ∂z̄n−1

1

− dw1 ∧ dw̄1

w1w̄1
∧ ∂m+n−2ω̃w

∂wm−1
1 ∂w̄n−1

1

= ∂α+ ∂̄β

for some α and β. Using (a) we get

∂m+n−2ω̃z

∂zm−1
1 ∂z̄n−1

1

∣∣∣∣
D

=
∂m+n−2ω̃w

∂wm−1
1 ∂w̄n−1

1

∣∣∣∣
D

+ ∂α̂+ ∂̄β̂

which is what was to be proven. Now we treat the case that (m,n) �= (m′, n′) and for
simplicity we suppose m′ � m and n′ � n. We get

1

(m′ − 1)!(n′ − 1)!

∂m′+n′−2zm
′−m

1 z̄n
′−n

1 ω̃z

∂zm
′−1

1 ∂z̄n
′−1

1

∣∣∣∣
D

=
1

(m′ − 1)!(n′ − 1)!

(
m′ − 1

m′ −m

)(
n′ − 1

n′ − n

)
∂m′−mzm

′−m
1

∂zm
′−m

1

∂n′−nz̄n
′−n

1

∂z̄n
′−n

1

∂m+n−2ω̃z

∂zm−1
1 ∂z̄n−1

1

∣∣∣∣
D

=
1

(m− 1)!(n− 1)!

∂m+n−2ω̃z

∂zm−1
1 ∂z̄n−1

1

∣∣∣∣
D

since the restriction to D forces the correct amount of derivatives to land on zm
′−m

1 and

z̄n
′−n

1 . This proves (b).

For a form ω ∈ Ed,d(∗∗̄D) and a partition of unity (ρj) subordinate to a cover of X by
charts with coordinates

(
zj = (zj,1, zj,2 . . . , zj,d)

)
such that D is locally given by zj,1 = 0

and

ω =
dzj,1 ∧ dz̄j,1

zmj,1z̄
n
j,1

∧ ω̃j(z) on supp(ρj),

we let

Resρ,z(ω) =
∑

j

1

(m− 1)!(n− 1)!

∂m+n−2(ρjω̃j)

∂zm−1
j,1 ∂z̄n−1

j,1

∣∣∣∣
D

.

Proposition 3.5. For ω ∈ Ed,d(∗∗̄D) we have

(a) Resρ,z(ω) = Resσ,w(ω) + ∂α+ ∂̄β,

(b) Resρ,z(∂η + ∂̄ν) = ∂α+ ∂̄β.

Proof. We write

Resjρ,z(ω) =
1

(m− 1)!(n− 1)!

∂m+n−2(ρjω̃j)

∂zm−1
j,1 ∂z̄n−1

j,1

∣∣∣∣
D

so that
Resρ,z(ω) =

∑

j

Resjρ,z(ω).

We have the following two identities:

(i) Resjρ,z(σiω) = Resiσ,w(ρjω) + ∂αi,j + ∂̄βi,j ,
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and for a manifold on which the ∂∂̄-lemma holds all the outer maps are isomorphisms. In
particular this is true for Kähler manifolds. For a more elaborate discussion on these facts
we refer to [Ang1; Ang2; Del].
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write

dz1 ∧ dz̄1
zm1 z̄n1

∧ ω̃z(z) = ω =
dw1 ∧ dw̄1

wm′
1 w̄n′

1
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(a) If there are forms η, ν ∈ E(∗∗̄D) with compact support such that ω = ∂η + ∂̄ν then
there are smooth forms η̂ and ν̂ on D such that

∂m+n−2ω̃z

∂zm−1
1 ∂z̄n−1

1

∣∣∣∣
D

= ∂η̂ + ∂̄ν̂,

with supp(η̂), supp(ν̂) ⊂ supp(ω) ∩D.

(b) There are smooth forms α̂ and β̂ on D whose support is contained in supp(ω)∩D such
that

1

(m− 1)!(n− 1)!

∂m+n−2ω̃z

∂zm−1
1 ∂z̄n−1

1

∣∣∣∣
D

=
1

(m′ − 1)!(n′ − 1)!

∂m+n−2ω̃w

∂wm′−1
1 ∂w̄n′−1

1

∣∣∣∣
D

+ ∂α̂+ ∂̄β̂.

Proof. We first prove (a) and suppose ω = ∂η. If

η =
dz1 ∧ dz̄1 ∧ η1 + dz̄1 ∧ η2

zm−1
1 z̄n1

,

where η1 and η2 does not contain dz1 or dz̄1, then

ω = ∂η =
dz1 ∧ dz̄1
zm1 z̄n1

∧
(
− (m− 1)η2 + z1∂η1 + z1

∂η2
∂z1

)

and therefore

ω̃z = −(m− 1)η2 + z1∂η1 + z1
∂η2
∂z1

.

We get

∂m+n−2ω̃z

∂zm−1
1 ∂z̄n−1

1

∣∣∣∣
D

=
∂m+n−2

∂zm−1
1 ∂z̄n−1

1

(
− (m− 1)η2 + z1∂η1 + z1

∂η2
∂z1

)∣∣∣∣
D

= (m− 1)
(
− ∂m+n−2η2

∂zm−1
1 ∂z̄n−1

1

+
∂m+n−3∂η1

∂zm−2
1 ∂z̄n−1

1

+
∂m+n−2η2

∂zm−1
1 ∂z̄n−1

1

)∣∣∣∣
D

= ∂
(
(m− 1)

∂m+n−3η1

∂zm−2
1 ∂z̄n−1

1

∣∣∣
D

)
.

The case ω = ∂̄ν is treated analogously. By linearity we get the case ω = ∂η + ∂̄ν and
hence we have proven (a). Now we prove (b) and we first suppose (m,n) = (m′, n′). The
calculation

ω = −∂
( 1

m− 1

dz̄1 ∧ ω̃z

zm−1
1 z̄n1

)
− 1

m− 1

dz̄1 ∧ ∂ω̃z

zm−1
1 z̄n1

= −∂
( 1

m− 1

dz̄1 ∧ ω̃z

zm−1
1 z̄n1

)
+

1

m− 1

dz1 ∧ dz̄1

zm−1
1 z̄n1

∧ ∂ω̃z

∂z1
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may be iterated and so we can write

ω = ∂α1 + ∂̄β1 +
1

(m− 1)!(n− 1)!

dz1 ∧ dz̄1
z1z̄1

∧ ∂m+n−2ω̃z

∂zm−1
1 ∂z̄n−1

1

.

Doing the same for the coordinate w we get that

dz1 ∧ dz̄1
z1z̄1

∧ ∂m+n−2ω̃z

∂zm−1
1 ∂z̄n−1
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− dw1 ∧ dw̄1

w1w̄1
∧ ∂m+n−2ω̃w

∂wm−1
1 ∂w̄n−1

1

= ∂α+ ∂̄β

for some α and β. Using (a) we get

∂m+n−2ω̃z

∂zm−1
1 ∂z̄n−1

1

∣∣∣∣
D

=
∂m+n−2ω̃w

∂wm−1
1 ∂w̄n−1

1

∣∣∣∣
D

+ ∂α̂+ ∂̄β̂

which is what was to be proven. Now we treat the case that (m,n) �= (m′, n′) and for
simplicity we suppose m′ � m and n′ � n. We get

1

(m′ − 1)!(n′ − 1)!

∂m′+n′−2zm
′−m

1 z̄n
′−n

1 ω̃z

∂zm
′−1

1 ∂z̄n
′−1

1

∣∣∣∣
D

=
1

(m′ − 1)!(n′ − 1)!

(
m′ − 1

m′ −m

)(
n′ − 1

n′ − n

)
∂m′−mzm

′−m
1

∂zm
′−m

1

∂n′−nz̄n
′−n

1

∂z̄n
′−n

1

∂m+n−2ω̃z

∂zm−1
1 ∂z̄n−1

1

∣∣∣∣
D

=
1

(m− 1)!(n− 1)!

∂m+n−2ω̃z

∂zm−1
1 ∂z̄n−1

1

∣∣∣∣
D

since the restriction to D forces the correct amount of derivatives to land on zm
′−m

1 and

z̄n
′−n

1 . This proves (b).

For a form ω ∈ Ed,d(∗∗̄D) and a partition of unity (ρj) subordinate to a cover of X by
charts with coordinates

(
zj = (zj,1, zj,2 . . . , zj,d)

)
such that D is locally given by zj,1 = 0

and

ω =
dzj,1 ∧ dz̄j,1

zmj,1z̄
n
j,1

∧ ω̃j(z) on supp(ρj),

we let
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1

(m− 1)!(n− 1)!

∂m+n−2(ρjω̃j)

∂zm−1
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j,1

∣∣∣∣
D

.

Proposition 3.5. For ω ∈ Ed,d(∗∗̄D) we have
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Proof. We write
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∂zm−1
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∣∣∣∣
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so that
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We have the following two identities:
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(ii) Resjρ,z(ω) =
∑

i Res
j
ρ,z(σiω).

The first is basically Lemma 3.5 (b) and (ii) is just an interchange of the differentiation and
the sum. Using the claims we get

Resρ,z(ω)
def
=

∑

j

Resjρ,z(ω)

(ii)
=

∑

j,i

Resjρ,z(σiω)

(i)
=

∑

i,j

Resiσ,w(ρjω) + ∂αi,j + ∂̄βi,j

(ii)
=

∑

i

Resiσ,w(ω) +
∑

i,j

∂αi,j + ∂̄βi,j

def
= Resσ,w(ω) + ∂

(∑

i,j

αi,j

)
+ ∂̄

(∑

i,j

βi,j

)

since αi,j and βi,j has support contained in supp(ρjσi). Thus we have proven (a). We
further have

Resρ,z(∂η + ∂̄ν) = Resρ,z

(∑

i

∂(σiη) + ∂̄(σiν)
)

=
∑

i

Resρ,z
(
∂(σiη) + ∂̄(σiν)

)

=
∑

i

∂αi

= ∂
(∑

i

αi

)
.

which proves (b).

Using Proposition 3.5 we can give the following definition.

Definition 3.6. For ω ∈ Hd,d
A (∗∗̄D) we define the Aeppli residue by

ResA(ω) = [Resρ,z(ω)]A �

Remark. Our definition of the Aeppli residue is very similar to the definition of the residue
map in [Fe2]. They define this in a different context and for forms with, what they call,
tame singularities.

We thus have a map ResA : Hd,d
A (∗∗̄D) → Hd−1,d−1

A (D).

Proposition 3.7. (a) If ω ∈ Hd,d
A (∗∗̄D) is semi-meromorphic then ResA(ω) = 0.

(b) If α and β are meromorphic (d, 0)-forms with poles along a smooth hypersurface D
and the pole of β is of order one then

ResA(α ∧ β̄) = (−1)d−1
[
Res∂ α ∧ Resβ

]
A

where the right hand side is a well defined class and Resβ denotes the Poincaré
residue.
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Proof. We get (a) from Lemma 3.4 since we may choose n � 1. To prove (b) write locally
α = (a/zm1 )dz and β = (b/z1)dz. Then α ∧ β̄ = (−1)d−1

(
ab̄/(zm1 z̄1)

)
dz1 ∧ dz̄1 ∧ dz′ ∧ dz̄′

and hence

ResA(α ∧ β̄) = (−1)d−1
[∂m−1a

∂zm−1
1

b̄ dz′ ∧ dz̄′
]
A

and Res∂(α) =
[
∂m−1a
∂zm−1

1

dz′
]
∂
. The Poincaré residue Resβ is meromorphic since β is. Letting

R = ∂m−1a
∂zm−1

1

dz′ we get that (−1)dR ∧ Resβ is a representative of ResA(α ∧ β̄) and R is a

representative of Res∂(α). If we choose a different representative, say R + ∂γ, of Res∂(α)
we get

(R+ ∂γ) ∧ Resβ = R ∧ Resβ + ∂(γ ∧ Resβ)

and therefore
[
Res∂ α ∧ Resβ

]
A
is well defined.

The next theorem relates the Aeppli residue to the canonical currents defined in Section
2.2. It gives an indication that canonical currents do not behave like principle value currents
but rather as residue currents.

Theorem 3.8. For ω ∈ E(∗∗̄D) with κ(ω) > 0 and D a smooth hypersurface we have

〈
{ω}, ξ

〉
= −2πi

∫

D

ResA(ω ∧ ξ).

Proof. Choose a partition of unity (ρι) subordinate to a cover consisting of charts which
are mapped to the unit polydisc in which the hypersurface is given by z1 = 0. Suppose the
holomorphic pole has order m and the anti-holomorphic pole order n. Since κ(ω) > 0 by
assumption we have m,n > 0. Notice that κ(ω) > 0 together with that D is smooth implies
that κ(ω) = 1. Write locally ω ∧ ξ = ψ/(zm1 z̄n1 )dz ∧ dz̄. Then, using Proposition 2.6, (10)
and Definition 3.6 we get

〈
{ω}, ξ

〉
=

∑

ι

1

(m− 1)!(n− 1)!

∫

∆

log |z1|2
∂m+nριψ

∂zm1 ∂z̄n1
dz ∧ dz̄

= −2πi
∑

ι

1

(m− 1)!(n− 1)!

∫

∆∩D

∂m+n−2ριψ

∂zm−1
1 ∂z̄n−1

1

dz′ ∧ dz̄′

= −2πi

∫

D

ResA(ω ∧ ξ).

We can define the Aeppli residue for (d, d)-forms which have poles along a hypersurface
with normal crossings as follows. Suppose D = D1 ∪ · · · ∪ Dk for smooth hypersurfaces
D1, . . . , Dk and that ω ∈ Hd,d

A (∗∗̄D). Considering ω on X \ D we may define its residue

with respect to the hypersurface D1 \
(
D2 ∪ · · · ∪ Dk

)
and we denote it ResD1

A (ω). We
should note here that, even though X \D is not compact, we can define the residue since
the orders of the poles of ω are bounded, cf. the remark after Lemma 3.1.

The residue ResD1

A (ω) is represented by a form which has poles along the hypersurfaces

D1 ∩ Di and so in particular ResD1

A (ω) ∈ Hd−1,d−1
A (∗∗̄Dsing). We can make the same

construction for every Di and then let

ResDA (ω) = ResD1

A (ω) + · · ·+ResDk

A (ω).

By iterating this construction for the hypersurfaces Di ∩Dj in D and so on we may define
the Aeppli residues for all normal crossings. In particular, writing E = D1∩· · ·∩Dk, we get
a residue ResEA(ω) which is now represented by a smooth form. We also set ResXA (ω) = ω.

We get the following generalisation of Theorem 3.8.
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(ii) Resjρ,z(ω) =
∑

i Res
j
ρ,z(σiω).
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Resρ,z(ω)
def
=

∑

j

Resjρ,z(ω)

(ii)
=

∑

j,i

Resjρ,z(σiω)

(i)
=

∑

i,j

Resiσ,w(ρjω) + ∂αi,j + ∂̄βi,j

(ii)
=

∑

i

Resiσ,w(ω) +
∑

i,j

∂αi,j + ∂̄βi,j

def
= Resσ,w(ω) + ∂

(∑

i,j

αi,j

)
+ ∂̄

(∑

i,j

βi,j

)
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(∑

i

∂(σiη) + ∂̄(σiν)
)

=
∑

i

Resρ,z
(
∂(σiη) + ∂̄(σiν)

)

=
∑

i

∂αi

= ∂
(∑

i

αi

)
.

which proves (b).
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Definition 3.6. For ω ∈ Hd,d
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map in [Fe2]. They define this in a different context and for forms with, what they call,
tame singularities.
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Res∂ α ∧ Resβ

]
A
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[∂m−1a

∂zm−1
1

b̄ dz′ ∧ dz̄′
]
A
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∂m−1a
∂zm−1

1

dz′
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∂
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1
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〉
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∑

ι

1
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∫
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log |z1|2
∂m+nριψ

∂zm1 ∂z̄n1
dz ∧ dz̄
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ι

1
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∫
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Theorem 3.9. For ω ∈ E(∗∗̄D) such that D has normal crossings we have

〈
{ω}, ξ

〉
X

= (−2πi)κ(ω)
〈{

Res
E(ω)
A (ω ∧ ξ)

}
, 1
〉
E(ω)

.

Remark. In the above theorem we take the canonical current of a cohomology class which
is not a well defined object. However, its action on 1 is.

Proof. Take a partition of unity with the same properties as in the proof of Theorem 3.8, but
now the hypersurface will be given by zI = 0. Suppose E(ω) is given by z1 = · · · = z� = 0.
Then we let dz′ = dz�+1∧ · · ·∧dzd. Let R the multi-index which is 1 in the � first positions
and otherwise 0. If we write p = 2κ(ω) + p′ then

p′ = #{j : Jj = 0,Kj �= 0}+#{Kj �= 0, Jj = 0}.
Now, similar to the proof of Theorem 3.8, we get

〈
{ω}, ξ

〉

=
∑

ι

(−1)p

(J − 1J)!(K − 1K)!

∫

∆

( ∏

j:Jj+Kj �=0

log |zj |2
)∂J+Kριψ

∂zJ∂z̄K
dz ∧ dz̄

= (−2πi)κ(ω)
∑

ι

(−1)2κ(ω)+p′

(J − 1J)!(K − 1K)!

∫

∆∩E(ω)

( ∏

j:Jj=0,Kj �=0
or Jj �=0,Kj=0

log |zj |2
) ∂J+K−2Rριψ

∂zJ−R∂z̄K−R
dz′ ∧ dz̄′

= (−2πi)κ(ω)
∑

ι

(−1)p
′
∫

∆∩E(ω)

( ∏

j:Jj=0,Kj �=0
or Jj �=0,Kj=0

log |zj |2
)
Res

E(ω)
A (ω ∧ ξρι)dz

′ ∧ dz̄′

= (−2πi)κ(ω)
〈
{ResE(ω)

A (ω ∧ ξ)}, 1
〉
E(ω)

.

The right hand side of Theorem 3.9 is a bit messy but with one extra assumption we
get a cleaner statement.

Corollary 3.10. For ω ∈ E(∗∗̄D) such that D has normal crossings and P 1,0(ω) = P 0,1(ω)
we have 〈

{ω}, ξ
〉
= (−2πi)κ(ω)

∫

E(ω)

Res
E(ω)
A (ω ∧ ξ).

Proof. Under these assumptions Res
E(ω)
A (ω∧ξ) is smooth on E(ω) so the statement follows

from Theorem 3.9.

4. Analytic continuation of divergent integrals

We will use the results in the previous sections to describe asymptotic expansions coming
from analytic continuations of divergent integrals. In this section we drop the point of view
of currents of quasi-meromorphic forms. Instead we suppose we have two semi-meromorphic
forms α and β, on a compact complex manifold X, which have poles along the same
hypersurface D. As before we assume D to have normal crossings. We write

Dd ⊂ · · · ⊂ D1 ⊂ D0

for the natural stratification of D, cf. (2) in Section 2. Recall that D0 = X and D1 = D.
Regularising the integral ∫

X

α ∧ β̄

17

we use Theorem 2.3 to get the asymptotic expansion
∫

X

|s|2λα ∧ β̄ = λ−κC−κ + · · ·+ λ−1C−1 + C0 +O
(
|λ|

)

where κ = κ(α ∧ β̄). Interpreting Corollary 3.10 in this setting we get

C−κ =
(−2πi)κ

o(s)

∫

Dκ

ResA
(
α ∧ β̄

)

where o(s) = oα∧β̄(s). We will now make some calculations of the other coefficients and
we will in particular see how they depend on the metric. The coefficients also depend on
the choice of section but as long as we do not change the line bundle this can be seen as a
change of metric. The result is the following theorem.

Theorem 4.1. For the coefficients C−r in the asymptotic expansion
∫

X

|s|2λα ∧ β̄ = C−κλ
−κ + · · ·+ C−1λ

−1 + C0 +O
(
|λ|

)

we have

(a) C−r depends polynomially of degree κ − r on the metric. More precisely, if φ is the
difference of two metrics then there are differential operators Qr,j with integrable
coefficients such that

C−r(φ) =

κ−r∑

j=0

∫

X

Qr,j(φ
j).

(b) The term
∫
X
Qr,κ−r(φ

κ−r) may be written

(−2πi)κ(−2)κ−r

o(s)(κ− r)!

∫

Dκ

ResA
(
φκ−rα ∧ β̄

)
,

(c) C−r may be written as an integral over Dr, i.e. the codimension r components in the
stratification of D.

Proof. Similarly as in Section 2.2 we let

F (λ) = o(s)

∫

X

|s|2λα ∧ β̄

and from the proof of Theorem 2.3 we get

F (λ) =
(−1)|J|+|K|o(s)

λp
h(λ)g(λ)

where

g(λ) =
∑

ι

∫

∆

|zI |2λ ∂J+K

∂zJ∂z̄K
(
e−2λφψι

)
dz ∧ dz̄,

ψι is given by
(
ψι/(z

J z̄K)
)
dz ∧ dz̄ = ρια ∧ β̄ and h and p is given by Lemma 2.4. We may

choose J and K independent of ι. From now on we will suppress ι and ρι. Since we have
assumed that α and β have poles along the same hypersurface p = 2κ. From the proof of
Theorem 2.3 we know that g(k)(0) = 0 for k = 0, . . . , p − κ − 1. Taylor expanding hg we
get, for r = 0, 1 . . . , κ,

C−r =
(−1)|J|+|K|

(p− r)!

p−r∑

k=p−κ

(
p− r

k

)
h(p−r−k)(0)g(k)(0).
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Lemma 2.4 implies that the derivatives of h are combinatorial expressions involving J and
K. From the proof of Theorem 2.3 we also get

g(k)(0) =
k∑

�=κ

(
k

�

)
(−2)k−�

∑

M

(
�

M

)∫

∆

d∏

j=1

(
Ij log |zj |2

)Mj ∂J+K

∂zJ∂z̄K
(
ψφk−�

)
dz ∧ dz̄

and hence we have proven the first part of (a), that C−r =
∫
X

∑
Qr,j(φ

j) for some differ-
ential operators Qr,j . We further see that the highest power of φ is obtained when k is as
large as possible and � is as small as possible. Thus setting k = p− r, � = κ and collecting
the constants we get that the leading term is given by

(−1)|J|+|K|(−2)κ−r

(κ− r)!
h(0)

∫

∆

d∏

j=1

(
Ij log |zj |2

)Mj ∂J+K

∂zJ∂z̄K
(
ψφκ−r

)
dz ∧ dz̄

=
(−2πi)κ(−2)κ−r

o(s)(κ− r)!

∫

Dκ

ResA(φ
κ−rα ∧ β̄)

if we do a similar calculation as in the proof of Proposition 2.6. This proves the rest of (a)
and (b).

To prove (c) we may suppose that I1, . . . , Iκ �= 0 and Iκ+1, . . . , Id = 0. We must show
that we can reduce all the integrals in all the derivatives of g to an integral over Dr. Let us
look at g(k) for k = κ, . . . , p− r. In the expression for the derivative we have a multi-index
M such that

∑
j Mj = �, where � � k. We have seen that when Mi = 1, so that we have

log |zi|2 in the integral, we may reduce it to an integral over ∆ ∩ {zi = 0}.
First let M1 = · · · = Mκ = 1. But then we need to add � − κ to these indices, i.e. at

most we need to add p − r − κ = κ − r. But if we add 1 to κ − r different Mj there are
still r number of Mj which are equal to one. And in these variables we may reduce the
integrals r times, hence to codimension r. Adding more than one to some Mj only makes
it better.

Theorem 4.1 points out why we call the currents defined from quasi-meromorphic forms
canonical; the currents come from the only coefficient in the asymptotic expansion which is
independent of the metric. In the special case that D is a smooth hypersurface we get the
following corollary.

Corollary 4.2. If D is a smooth hypersurface then

∫

X

|s|2λα ∧ β̄ = λ−1C−1 + C0 +O
(
|λ|

)

with C−1 = − 2πi
o(s)

∫
D
ResA(α ∧ β̄) and

C0(φ) =
4πi

o(s)

∫

D

ResA
(
φα ∧ β̄

)
.
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To prove (c) we may suppose that I1, . . . , Iκ �= 0 and Iκ+1, . . . , Id = 0. We must show
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∑
j Mj = �, where � � k. We have seen that when Mi = 1, so that we have
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following corollary.

Corollary 4.2. If D is a smooth hypersurface then

∫

X

|s|2λα ∧ β̄ = λ−1C−1 + C0 +O
(
|λ|

)

with C−1 = − 2πi
o(s)

∫
D
ResA(α ∧ β̄) and

C0(φ) =
4πi

o(s)

∫

D
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(
φα ∧ β̄

)
.
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THE ∂̄-EQUATION FOR (p, q)-FORMS ON A NON-REDUCED

ANALYTIC SPACE

MATS ANDERSSON & RICHARD LÄRKÄNG & MATTIAS LENNARTSSON
& HÅKAN SAMUELSSON KALM

Abstract. On any pure-dimensional, possibly non-reduced analytic space X we
introduce sheaves A p,q

X and show that the corresponding Dolbeault complex is
exact, i.e., that the ∂̄-equation is locally solvable in AX . The sheaves A p,q

X are
extensions of, and modules over the sheaves E p,q

X of smooth (p, q)-forms, which are
introduced as well.

We also introduce sheaves Bn−p,n−q
X of certain currents on X. These are dual

to A p,q
X in the sense of Serre duality. More precisely, we show that the compactly

supported Dolbeault cohomology of Bn−p,n−q(X) in a natural way is the dual of
the Dolbeault cohomology of A p,q(X).

1. Introduction

It is natural to try to find concrete realizations of abstract objects like sheaf coho-
mology groups and their duals. On a smooth complex manifold X of dimension n the
Ωp
X -cohomology can be represented by Dolbeault cohomology. In fact, Dolbeault–

Grothendieck’s lemma states that the Dolbeault complex,

(1.1) 0 → Ωp
X → E p,0

X
∂̄→ E p,1

X → · · · ,
is a fine resolution of Ωp

X , and by standard arguments it follows that

(1.2) Hp,q(X) := Hq(X,Ωp
X) � Hq(E p,•(X), ∂̄).

If X is compact, then the duals of these groups are represented by Hn−p,n−q(X) via
the non-degenerate pairing

(1.3) Hp,q(X)×Hn−p,n−q(X) → C, ([φ], [ψ]) →
∫

X
φ ∧ ψ,

where φ and ψ are ∂̄-closed (p, q) and (n − p, n − q)-forms, respectively. There are
analogues of this so-called Serre duality even when X is not compact.

If X is a non-smooth reduced analytic space, then the complex (1.1) has a meaning
but it is not exact in general except at q = 0. Thus the direct analogue of (1.2) does
not hold. However, there are fine sheaves A p,q

X of (p, q)-currents, introduced in [7]
for p = 0 and in [24] for p ≥ 0, that coincide with E p,q

X on Xreg, such that

(1.4) 0 → Ωp
X → A p,0

X
∂̄→ A p,1

X → · · ·
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are fine resolutions of1 Ωp
X . This leads to the representation

(1.5) Hp,q(X) = Hq(X,Ωp
X) � Hq(A p,•(X), ∂̄).

In the non-smooth case however the duality is more involved. Let ωp
X be the sheaves

of meromorphic (p, 0)-forms which are ∂̄-closed considered as currents on X. They
were first introduced by Barlet in [13] in a slightly different way; see also [17]. In
[23, 24] were introduced fine sheaves Bp,q

X of (p, q)-currents, that are smooth on Xreg,
with the following properties: For each p we have a complex

(1.6) 0 → ωp
X → Bp,0

X
∂̄→ Bp,1

X → · · ·
such that, given that X is compact, Hn−q(Bn−p,•(X), ∂̄) is the dual of Hp,q(X),
realized via the non-degenerate pairing

(1.7) Hp,q(X)×Hn−q(Bn−p,•(X), ∂̄) → C, ([φ], [ψ]) →
∫

X
φ ∧ ψ,

where φ and ψ are ∂̄-closed currents in A p,q(X) and Bn−p,n−q(X), respectively. The
complex (1.6) is exact at q = 0 but it is a resolution of ωp

X if and only if Ωp
X is

Cohen–Macaulay.

The aim of this paper is to extend these results to the case whenX is a non-reduced
analytic space of pure dimension n. Already in [6] were defined a resolution of the
structure sheaf OX , that is, (1.4) for p = 0, and as a consequence a representation
(1.5) for p = 0. We thus have to extend this representation to p ≥ 0 and find
analogues of (1.6) and (1.7).

Let us describe various forms and currents on our non-reduced X. First recall
that locally we have an embedding i : X → D ⊂ CN and a surjective sheaf mapping
i∗ : Op

D → Op
X . This means more concretely that we have an ideal sheaf JX ⊂ OD

with zero set Xred such that i∗ is the natural mapping OD → OD/JX � OX . There
are similar surjective mappings i∗ : Ωp

D → Ωp
X for p ≥ 1. Moreover, we have the OX -

sheaves E p,∗
X of smooth (p, ∗)-forms and natural surjective mappings i∗ : E p,∗

D → E p,∗
X .

It turns out that i∗ is a ring homomorphism as usual so that we natural products

(1.8) E p,q
X × E p′,q′

X → E p+p′,q+q′
X , (φ, ψ) �→ φ ∧ ψ.

We define the sheaf C p,q
X of (p, q)-currents on X as the dual of the space of com-

pactly supported sections of E n−p,n−q
X . Given the embedding i : X → D ⊂ CN we

have natural injective mappings i∗ : C p,q
X → CN−n+p,N−n+q

D so that the elements in
C p,q
X are identified with the ordinary (N −n+p,N −n+q)-currents in D that vanish

on Ker i∗. In view of (1.8) we have natural products

(1.9) E p,q
X × C p′,q′

X → C p+p′,q+q′
X , (φ, u) �→ φ ∧ u.

We are mainly interested in subsheaves Wp,q
X of C p,q

X where the elements have a
certain regularity property; (1.9) holds also with CX replaced by WX . The subsheaf

of ∂̄-closed members of Wp,0
X are denoted by ωp

X ; they are natural extensions to our
non-reduced space X of the Barlet sheaves.

We are also interested in another class of non-smooth forms Vp,q
X , which however

are fundamentally different from C p,q
X . The sheaves Vp,q

X are extensions of E p,q
X and

contain for instance principal values of meromorphic forms. Generically on X ele-
ments in Vp,q

X are weak limits of elements in E p,q
X .

1In this paper Ωp
X denotes the sheaf of Kähler differential p-forms modulo torion.
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Remark 1.1. Notice that when X is reduced we have the inclusion Ωp
X ⊂ ωp

X with
equality if X is smooth. In the non-reduced case there is no such relation at all since
the elements in ωX , although holomorphic, are dual objects whereas elements in Ωp

X

have no natural interpretation as dual objects. However, if φ is in Ωp
X and µ in ωp′

X ,

then φ ∧ µ is in ωp+p′
X .

Here is our first main theorem.

Theorem A. Let X be a non-reduced analytic space of pure dimension n. For each
p ≥ 0 there are fine2 subsheaves A p,q

X of Vp,q
X that coincide with E p,q

X generically on
X, such that (1.4) is a resolution of Ωp

X .

As an immediate corollary we get the representation (1.5) of sheaf cohomology.

For our second main theorem we must introduce an intrinsic notion of integration
over X. If we have a current u on X of bidegree (n, n) with compact support, then
there is a well-defined integral

∫

X
u.

Given a local embedding as before and assuming that u has support in D ∩X it is
defined as the integral of i∗u over D.

Theorem B. Let X be a non-reduced analytic space of pure dimension n. Moreover
assume that X is compact. There are fine subsheaves Bp,q of Wp,q

X such that

(i) (1.6) is a complex,

(ii) (1.6) is exact if and only if Ωp
X is Cohen–Macaulay,

(iii) the products φ ∧ µ for φ in A p,∗
X and µ in Bn−p,∗

X are well-defined in Wn,∗
X ,

(iv) the pairing (1.7) is well-defined and non-degenerate so that Hn−q(Bn−p,•(X), ∂̄)
is the dual of Hp,q(X).

There are variants of Theorem B even when X is not compact, see Section 7.

The construction of the new sheaves on X relies on the ideas in the previous papers
[7, 24, 6]. The proofs of Theorems A and B relies on explicit Koppelman formulas for
the ∂̄-equation. The main novelty in this paper is the adaption of the ideas in [6] to
the framework in [24]. We also believe that the non-reduced point of view sheds new
light on Serre duality, even in the reduced case, cf. Remark 1.1. Finally, we think
that the notions and result of this paper may serve as a basis for doing analysis on
non-reduced spaces.

The paper is organized as follows. The main objects are introduced in Sections 3
and 4 and their basic properties are proved. In the rather technical Section 5 the
integral operators used in the Koppelman formulas are defined and their basic map-
ping properties are shown. The sheaves A p,∗

X and Bn−p,∗
X are introduced in Section 6

and Theorem A as well as Koppelman formulas are proved. In Section 7 we show
Theorem B and in Section 8 some further examples are given.

2As in the reduced case, a sheaf is “fine” if it is closed under multiplication by smooth forms.
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2. Preliminaries

Throughout this paper, unless otherwise said, J is a coherent pure n-dimensional
ideal sheaf in a domain D ⊂ CN , Z is the zero set of J , i : X ↪→ D is the (possibly)
non-reduced analytic subspace with structure sheaf OD/J , and κ = N − n.

Let ι : Z → D be the inclusion. The sheaf of smooth (p, q)-forms on Z is E p,q
Z :=

E p,q
D /Ker ι∗. It is well-known that this is an intrinsic notion, i.e., does not depend

on the embedding Z → D. The space of (n − p, n − q)-currents on Z is defined
as the dual of E p,q

Z . More concretely, (p, q)-currents on Z can, via ι∗, be identified
with (κ + p, κ + q)-currents µ in D such that JZµ = dJZµ = J̄Zµ = dJ̄Zµ = 0. If
π : Z ′ → Z is proper, µ a current on Z ′, and ψ is smooth on Z, then

(2.1) π∗(π∗ψ ∧ µ) = ψ ∧ π∗µ.

In [9], see also [7], was introduced the sheaf PMZ of pseudomeromorphic currents.
A current τ in U ⊂ CN is an elementary pseudomeromorphic current if τ = ϕ ∧ τ ′,
where ϕ is smooth with compact support in U and τ ′ is the tensor product of one-
variable currents 1/zmk

k and ∂̄(1/zm�
� ). If Z is smooth, then, [10, Theorem 2.15], a

current on Z is pseudomeromorphic if and only if it is a locally finite sum of currents
of the form f∗τ , where f : U → Z is holomorphic, U ⊂ CN , and τ is elementary.
If Z has singularities the definition is slightly more involved. Pseudomeromorphic
currents are closed under ∂̄ and direct images of modifications, simple projections,
and open inclusions.

Example 2.1. Recall that a current on Z is semi-meromorphic if it is of the form ϕ/s,
where s is a generically non-vanishing section of some line bundle L and ϕ is a smooth
form with values in L. If | · | is any Hermitian metric on L, then χ(|s|2/ε)ϕ/s → ϕ/s
as currents, where χ is a smooth approximation of the characteristic function of
[1,∞) ⊂ R. Semi-meromorphic currents, and ∂̄ of such, are sections of PM.

We refer to [10] for properties of pseudomeromorphic currents. If V = {h = 0} for
some holomorphic tuple h in D and µ ∈ PM(D), then

(2.2) 1D\V µ := lim
ε→0

χ(|h|2/ε)µ.

The limit (2.2) exists, is in PMD, and is independent of such h and χ. Set

1V µ := µ− 1D\V µ.

If π : D̃ → D is a modification or a simple projection and τ ∈ PM(D̃) has compact
support in the fiber direction, then

(2.3) 1V π∗τ = π∗(1π−1V τ).

If µ ∈ PMD has support in Z then

(2.4) J̄Zµ = dJ̄Z ∧ µ = 0.

Dimension principle. If µ ∈ PMZ has bidegree (∗, q) and support in a subvariety
V ⊂ Z such that codimZ V > q, then µ = 0.

A current µ ∈ PMD with support in Z has the standard extension property (SEP)
with respect to Z if 1V µ = 0 for all germs of analytic sets V in D intersecting Z
properly. The subsheaf of PMD of (N, ∗)-currents with support in Z and the SEP

with respect to Z is denoted WZ,∗
D . The subsheaf of PMZ of pseudomeromorphic

currents on Z with the SEP with respect to Z is denoted WZ .
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2. Preliminaries

Throughout this paper, unless otherwise said, J is a coherent pure n-dimensional
ideal sheaf in a domain D ⊂ CN , Z is the zero set of J , i : X ↪→ D is the (possibly)
non-reduced analytic subspace with structure sheaf OD/J , and κ = N − n.

Let ι : Z → D be the inclusion. The sheaf of smooth (p, q)-forms on Z is E p,q
Z :=

E p,q
D /Ker ι∗. It is well-known that this is an intrinsic notion, i.e., does not depend

on the embedding Z → D. The space of (n − p, n − q)-currents on Z is defined
as the dual of E p,q

Z . More concretely, (p, q)-currents on Z can, via ι∗, be identified
with (κ + p, κ + q)-currents µ in D such that JZµ = dJZµ = J̄Zµ = dJ̄Zµ = 0. If
π : Z ′ → Z is proper, µ a current on Z ′, and ψ is smooth on Z, then

(2.1) π∗(π∗ψ ∧ µ) = ψ ∧ π∗µ.

In [9], see also [7], was introduced the sheaf PMZ of pseudomeromorphic currents.
A current τ in U ⊂ CN is an elementary pseudomeromorphic current if τ = ϕ ∧ τ ′,
where ϕ is smooth with compact support in U and τ ′ is the tensor product of one-
variable currents 1/zmk

k and ∂̄(1/zm�
� ). If Z is smooth, then, [10, Theorem 2.15], a

current on Z is pseudomeromorphic if and only if it is a locally finite sum of currents
of the form f∗τ , where f : U → Z is holomorphic, U ⊂ CN , and τ is elementary.
If Z has singularities the definition is slightly more involved. Pseudomeromorphic
currents are closed under ∂̄ and direct images of modifications, simple projections,
and open inclusions.

Example 2.1. Recall that a current on Z is semi-meromorphic if it is of the form ϕ/s,
where s is a generically non-vanishing section of some line bundle L and ϕ is a smooth
form with values in L. If | · | is any Hermitian metric on L, then χ(|s|2/ε)ϕ/s → ϕ/s
as currents, where χ is a smooth approximation of the characteristic function of
[1,∞) ⊂ R. Semi-meromorphic currents, and ∂̄ of such, are sections of PM.

We refer to [10] for properties of pseudomeromorphic currents. If V = {h = 0} for
some holomorphic tuple h in D and µ ∈ PM(D), then

(2.2) 1D\V µ := lim
ε→0

χ(|h|2/ε)µ.

The limit (2.2) exists, is in PMD, and is independent of such h and χ. Set

1V µ := µ− 1D\V µ.

If π : D̃ → D is a modification or a simple projection and τ ∈ PM(D̃) has compact
support in the fiber direction, then

(2.3) 1V π∗τ = π∗(1π−1V τ).

If µ ∈ PMD has support in Z then

(2.4) J̄Zµ = dJ̄Z ∧ µ = 0.

Dimension principle. If µ ∈ PMZ has bidegree (∗, q) and support in a subvariety
V ⊂ Z such that codimZ V > q, then µ = 0.

A current µ ∈ PMD with support in Z has the standard extension property (SEP)
with respect to Z if 1V µ = 0 for all germs of analytic sets V in D intersecting Z
properly. The subsheaf of PMD of (N, ∗)-currents with support in Z and the SEP

with respect to Z is denoted WZ,∗
D . The subsheaf of PMZ of pseudomeromorphic

currents on Z with the SEP with respect to Z is denoted WZ .
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Remark 2.2. We will frequently consider Hom -sheaves, for instance like Hom OD
(Ωp

D,W
Z,∗
D ).

For future reference we notice that such sheaves in a natural way can be identified
with sheaves of currents of bidegree (N − p, ∗). For instance,

WZ,(N−p,∗)
D

∼−→ Hom OD
(Ωp

D,W
Z,∗
D ), µ �→ (ϕ �→ ϕ ∧ µ),

where we temporarily let WZ,(N−p,∗)
D denote the sheaf of pseudomeromorphic (N −

p, ∗)-currents in D with support on Z and the SEP with respect to Z. It is clear
that if ϕ ∧ µ = 0 for all ϕ ∈ Ωp

D then µ = 0. Hence, the mapping is injective.
To see that it is surjective, let {dzI} be a basis of Ωp

D and let {∂/∂zI} be the dual

basis. If u ∈ Hom OD
(Ωp

D,W
Z,∗
D ) then u(dzI) ∈ WZ,∗

D and so, by [10, Theorem 3.7],

there are uI ∈ WZ,(0,∗)
D such that u(dzI) = dz ∧ uI , where dz = dz1 ∧ · · · ∧ dzN .

Define µI ∈ WZ,(N−p,∗)
D by µI = ±(∂/∂zI�dz) ∧ uI , where ± is chosen so that

dzI∧µI = dz∧uI . Setting µ =
∑

I µI it is straightforward to check that ϕ∧µ = u(ϕ)
for all ϕ ∈ Ωp

D since {dzI} is a basis of Ωp
D.

In this paper we will use the Hom -notation but, keeping the identification in
mind, we will for a Hom -element µ write ϕ ∧ µ (or possibly µ ∧ ϕ) instead of µ(ϕ).

Suppose there are local coordinates (z, w) centered at some z ∈ Z such that

Z = {w = 0}, i.e., Z is smooth in a neighborhood of z. Then, if µ ∈ WZ,∗
D , we have

π∗(wαµ) ∈ Wn,∗
Z , where π(z, w) = z and wα = wα1

1 wα2
2 · · · . Moreover, there is a

unique representation

(2.5) µ =
1

(2πi)κ

∑

α

π∗(wαµ) ∧ ∂̄
dw

wα+1
,

where the products are tensor products and ∂̄(dw/wα+1) is shorthand for ∂̄(dw1/w
α1+1
1 )∧

∂̄(dw2/w
α2+1
2 ) ∧ · · · . By [11, Proposition 3.12, Theorem 3.14] we have

Proposition 2.3. If u, µ1, . . . , µ� ∈ Wn,∗
Z and u = 0 on the set where µj is smooth,

then u = 0.

The sheaf CH Z
D of Coleff-Herrera currents with support on Z was introduced by

Björk, see [14]. An (N, κ)-current µ in D is in CH Z
D if ∂̄µ = 0, h̄µ = 0 for any

h ∈ JZ , and µ has the SEP with respect to Z. Alternatively, by [2], we have

(2.6) CH Z
D = {µ ∈ WZ,κ

D ; ∂̄µ = 0}.
Notice that Hom OD

(Ωp
D,CH Z

D ) can be identified with Coleff–Herrera currents of
bidegree (N − p, κ) in view of Remark 2.2. Assume that there are local coordinates
(z, w) such that Z = {w = 0} and set π(z, w) = z. Given µ ∈ Hom OD

(Ωp
D,CH Z

D )

there are unique µα ∈ Ωn−p
Z , µα = 0 if |α| � 0, such that

(2.7) µ =
∑

α

µα(z) ∧ ∂̄
dw

wα+1
.

The sheaf ωn−p
Z was introduced by Barlet in [13] as the kernel of a certain map

j∗j∗Ω
n−p
Z → H 1

Zsing
(Ext κOD

(OZ ,Ω
N−p
D )), where j : Zreg → Z is the inclusion. It

follows from [13] that sections of ωn−p
Z are ∂̄-closed meromorphic (n − p)-forms on

Z, cf. [24, Section 4] and [17]. By [13, Lemma 4] we have

(2.8) ι∗ωn−p
Z = {µ ∈ Hom OD

(Ωp
D,CH Z

D ); JZµ = dJZ ∧ µ = 0},
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where ι : Z → D is the inclusion, cf. [24, Section 4].
A current a on Z is almost semi-meromorphic if there are a modification π : Z ′ → Z

and a semi-meromorphic current ν on Z ′ such that a = π∗ν. In particular, a is
generically smooth. Thus, if µ ∈ PMZ , then a ∧ µ is generically well-defined. By
[10, Theorem 4.8], there is a unique T ∈ PMZ such that T = a∧µ where a is smooth
and 1V T = 0, where V is the Zariski closure of the singular support of a. Henceforth
we let a ∧ µ denote the extension T . One can define a ∧ µ as

(2.9) a ∧ µ := lim
ε→0

χ(|h|2/ε)a ∧ µ,

where h is a holomorphic tuple cutting out V . If µ ∈ WZ , then a ∧ µ ∈ WZ .
Let Ej → D, j = 0, . . . , N , be complex vector bundles. Let fj : Ej → Ej−1 be

holomorphic morphisms and suppose that we have a complex

0 → EN
fN−→ · · · f1−→ E0 → 0,

which is exact outside Z ⊂ D. Assume that the associated sheaf complex

(2.10) 0 → O(EN )
fN−→ · · · f1−→ O(E0)

is exact and set F := O(E0)/Im f1 so that (2.10) is a resolution of F . Recall that
F is Cohen–Macaulay if and only if there is a resolution (2.10) with N = κ. Let
ZF
j ⊂ D be the set where fj does not have optimal rank. These sets are independent

of the resolution and thus invariants of F . These singularity subvarieties reflect the
complexity of F . It is well-known that

(2.11) ZF
N ⊂ · · · ⊂ ZF

κ = ZF
κ−1 = · · · = ZF

1 = Z

and that codimDZ
F
j ≥ j, j = κ, κ + 1, . . .. Moreover, [16, Corollary 20.14], F has

pure codimension κ (i.e., no stalk of F has embedded primes or associated primes
of codimension > κ) if and only if codimDZ

F
j ≥ j + 1 for j ≥ κ+ 1.

Assume that the Ej are equipped with Hermitian metrics and let σj : Ej−1 → Ej

be the Moore-Penrose inverse of fj , i.e., the pointwise minimal inverse of fj . The
σj are smooth outside Z and are almost semi-meromorphic in D. Following [8], we
define currents U ∈ WD and R ∈ PMD with support in Z and values in EndE,
where E = ⊕jEj . Set σ = σ1 + σ2 + · · · and set u = σ+ σ∂̄σ+ σ(∂̄σ)2 + · · · outside
Z. Then fu+ uf − ∂̄f = IE , where f = ⊕jfj . We extend u across Z as

U := lim
ε→0

χ(|F |2/ε)u,

where F is a (non-trivial) holomorphic tuple vanishing on Z. Alternatively, U can
be defined in terms of the calculus of almost semi-meromorphic currents mentioned
above. Since fu+ uf − ∂̄f = IE ,

(2.12) R := IE − (fU + Uf − ∂̄f) = lim
ε→0

∂̄χ(|F |2/ε) ∧ u

has support in Z. It is proved in [8] that

R = Rκ +Rκ+1 + · · · ,
where Rj ∈ PM0,j

D has support in Z, takes values in Hom(E0, Ej), and

(2.13) fR = ∂̄R.

Moreover, if ϕ ∈ O(E0) then Rϕ = 0 if and only if ϕ ∈ Im f1. In particular,
R induces an injective map from F to (0, ∗)-currents with values in E. We are
interested in the case when F has pure codimension κ. It follows from [9] that,
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where ι : Z → D is the inclusion, cf. [24, Section 4].
A current a on Z is almost semi-meromorphic if there are a modification π : Z ′ → Z

and a semi-meromorphic current ν on Z ′ such that a = π∗ν. In particular, a is
generically smooth. Thus, if µ ∈ PMZ , then a ∧ µ is generically well-defined. By
[10, Theorem 4.8], there is a unique T ∈ PMZ such that T = a∧µ where a is smooth
and 1V T = 0, where V is the Zariski closure of the singular support of a. Henceforth
we let a ∧ µ denote the extension T . One can define a ∧ µ as

(2.9) a ∧ µ := lim
ε→0

χ(|h|2/ε)a ∧ µ,

where h is a holomorphic tuple cutting out V . If µ ∈ WZ , then a ∧ µ ∈ WZ .
Let Ej → D, j = 0, . . . , N , be complex vector bundles. Let fj : Ej → Ej−1 be

holomorphic morphisms and suppose that we have a complex
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fN−→ · · · f1−→ E0 → 0,

which is exact outside Z ⊂ D. Assume that the associated sheaf complex

(2.10) 0 → O(EN )
fN−→ · · · f1−→ O(E0)

is exact and set F := O(E0)/Im f1 so that (2.10) is a resolution of F . Recall that
F is Cohen–Macaulay if and only if there is a resolution (2.10) with N = κ. Let
ZF
j ⊂ D be the set where fj does not have optimal rank. These sets are independent

of the resolution and thus invariants of F . These singularity subvarieties reflect the
complexity of F . It is well-known that

(2.11) ZF
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κ−1 = · · · = ZF

1 = Z
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Assume that the Ej are equipped with Hermitian metrics and let σj : Ej−1 → Ej

be the Moore-Penrose inverse of fj , i.e., the pointwise minimal inverse of fj . The
σj are smooth outside Z and are almost semi-meromorphic in D. Following [8], we
define currents U ∈ WD and R ∈ PMD with support in Z and values in EndE,
where E = ⊕jEj . Set σ = σ1 + σ2 + · · · and set u = σ+ σ∂̄σ+ σ(∂̄σ)2 + · · · outside
Z. Then fu+ uf − ∂̄f = IE , where f = ⊕jfj . We extend u across Z as
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where F is a (non-trivial) holomorphic tuple vanishing on Z. Alternatively, U can
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above. Since fu+ uf − ∂̄f = IE ,
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D has support in Z, takes values in Hom(E0, Ej), and
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Moreover, if ϕ ∈ O(E0) then Rϕ = 0 if and only if ϕ ∈ Im f1. In particular,
R induces an injective map from F to (0, ∗)-currents with values in E. We are
interested in the case when F has pure codimension κ. It follows from [9] that,
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in this case, R has the SEP with respect to Z, i.e., R ∈ Hom OD
(ΩN

D ,WZ,∗
D (cf.

Remark 2.2), and that

(2.14) Rκϕ = 0 ⇐⇒ ϕ ∈ Im f1.

3. Holomorphic forms, smooth forms, and currents on X

3.1. Holomorphic forms on X and associated residue currents. Recall that
the structure sheaf of holomorphic functions on X is defined as OX = OD/J . In a
similar way one defines the sheaves of Kähler differentials on X: Let Ωp

D be the sheaf
of holomorphic p-forms in D and set

Ĵ p := J · Ωp
D + dJ ∧ Ωp−1

D , Ωp
X,Kähler := Ωp

D/Ĵ p.

Notice that Ĵ 0 = J so that Ω0
X,Kähler = OX . Notice also that Ωp

X,Kähler is an OX -

module. It is well-known that Ωp
X,Kähler is intrinsic to X, i.e., that it does not depend

on the embedding as a subspace of D. Since Ĵ 0 = J has pure dimension it follows
that Ω0

X,Kähler = OX is torsion-free. In general, Ωp
X,Kähler has torsion.

The sheaf of strongly holomorphic p-forms on X is

Ωp
X := Ωp

X,Kähler/torsion,

where torsion means OX -torsion. Notice that Ωp
X is intrinsic and that it is the same

considered as an OX -module or an OD-module.

Example 3.1. Let X be the subspace of C2 defined by J = 〈zw〉. Then OX = Oz+
Ow and dJ = 〈zdw+wdz〉. For the 1-forms we have Ω1

X,Kähler = OX{dz, dw}
/
〈zdw+

wdz〉. When w �= 0 then J = 〈z〉 and therefore zdw = wdz = 0. By symmetry this
also holds when z �= 0. However, one easily checks that zdw and wdz are not zero as
Kähler differentials and therefore they are torsion elements. If we mod these out the
result is a torsion-free module which therefore is the strongly holomorphic 1-forms,
i.e., Ω1

X = Oz{dz}+ Ow{dw}.
An alternative definition of Ωp

X is as follows. From a primary decomposition of

Ĵ p one obtains coherent sheaves J p and S p such that Ĵ p = J p ∩S p, J p has pure
dimension n, and S p has dimension < n. Hence, Ωp

D/J p has pure dimension and
coincides with Ωp

X,Kähler generically on Z. It follows that

Ωp
X = Ωp

D/J p.

If X is reduced and j : Xreg ↪→ D is the inclusion, then J p = {ϕ ∈ Ωp
D; j

∗ϕ = 0},
see, e.g., [24].

Suppose that 0 is a smooth point of Z and choose local coordinates (z, w) for
CN such that Z = {w = 0}. Then we can identify OZ with holomorphic functions
of z. If g(z) is holomorphic we let g̃ be the extension to ambient space given by
g̃(z, w) = g(z). In a neighborhood of 0 we can then define an OZ-module structure
on Ωp

X by setting gϕ := g̃ϕ. Clearly this depends on the choice of local coordinates.

Proposition 3.2. Assume that we have coordinates (z, w) so that Z = {w = 0}.
Then, with the associated OZ-module structure, Ωp

X is coherent. Moreover, if OX is
Cohen–Macaulay, then the following are equivalent

(i) Ωp
X is Cohen–Macaulay as an OX-module,

(ii) Ωp
X is a locally free OX-module,

(iii) Ωp
X is Cohen–Macaulay as an OZ-module,
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(iv) Ωp
X is a locally free OZ-module.

Proof. By the Nullstellensatz there is an M ∈ N such that I := 〈wα; |α| = M〉 ⊂ J .

Set Ip := IΩp
D + dI ∧ Ωp−1

D and let

Ap := Ωp
D/Ip.

Clearly Ap is coherent both as an OD-module and an OD/I-module, and these struc-
tures are the same. Moreover, the choice of coordinates makes Ap an OZ-module
and one checks that it in fact is a free OZ-module. In particular, Ap is a coherent
OZ-module. Since I ⊂ J it follows that Ip ⊂ Ĵ p ⊂ J p and so we have a natural
surjective map of OZ-modules

Ap → Ωp
X , ϕ+ Ip �→ ϕ+ J p.

The kernel K of this map is J p/Ip. Since J p is a coherent OD-module there are
finitely many ϕj ∈ J p generating J p over OD. By Taylor expanding any g(z, w) ∈
OD in the w-variables to order M we see that K is generated as an OZ-module by
wαϕj + Ip with |α| < M . Since K ⊂ Ap and Ap is a coherent OZ-module it follows
that K is coherent. Hence, Ωp

X � Ap/K is a coherent OZ-module.
Claim 1: depthOX

Ωp
X = depthOZ

Ωp
X .

Claim 2: n = dimOX
Ωp
X = dimOZ

Ωp
X .

Recall that, for an R-module M , dimRM := dimR(R/annRM) and that M is
Cohen–Macaulay if depthRM = dimRM .

We postpone the proofs of these claims and show that (i), (ii), (iii), and (iv) are
equivalent if OX is Cohen–Macaulay. Notice that it is a local (stalk-wise) statement;
in what follows we suppress the point indicating stalk. Recall that if R is a Cohen–
Macaulay ring and M is an R-module that has a finite free resolution over R, then
the Auslander–Buchsbaum formula gives

depthRM + pdRM = dimRR,

where pdRM is the length of a minimal free resolution of M over R, see [16, Theo-
rem 19.9]. Thus, M is free over R if and only if depthRM = dimRR.

We now have that Ωp
X is free over OX if and only if depthOX

Ωp
X = dimOX

OX . But

dimOX
OX = n = dimOX

Ωp
X , where we use the first equality of Claim 1, so (i) and (ii)

are equivalent. In the same way, since OZ is Cohen–Macaulay and n-dimensional,
(iii) and (iv) are equivalent. Assume (i) so that depthOX

Ωp
X = dimOX

Ωp
X . Then by

Claims 1 and 2 we get

depthOZ
Ωp
X = depthOX

Ωp
X = dimOX

Ωp
X = dimOZ

Ωp
X ,

and so (iii) follows. In the same way, (iii) implies (i). It remains to prove Claims 1
and 2.

Proof of Claim 1: For notational convenience, set R = OX , R′ = OZ , and M =
Ωp
X ; notice that R is a Noetherian local Cohen–Macaulay ring and that R′ is a

regular Notherian local ring. Since any function in J vanishes on Z we have an
inclusion R′ ↪→ R given by g(z) �→ g̃(z, w) + J , where g̃(z, w) = g(z); cf. the OZ-
module structure on Ωp

X . By “Miracle flatness”, see, e.g., [16, Corollary 18.17] or [6,
Proposition 3.1], R is a free R′ module if and only if R is Cohen–Macaulay. Thus, R
is a free R′ module. By [16, Proposition 18.4] and the comment after Corollary 18.5,
for a local ring (A,m) and an A-module N we have

depthAN = min{i; ExtiA(A/m, N) �= 0}.
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in this case, R has the SEP with respect to Z, i.e., R ∈ Hom OD
(ΩN

D ,WZ,∗
D (cf.

Remark 2.2), and that

(2.14) Rκϕ = 0 ⇐⇒ ϕ ∈ Im f1.

3. Holomorphic forms, smooth forms, and currents on X

3.1. Holomorphic forms on X and associated residue currents. Recall that
the structure sheaf of holomorphic functions on X is defined as OX = OD/J . In a
similar way one defines the sheaves of Kähler differentials on X: Let Ωp

D be the sheaf
of holomorphic p-forms in D and set

Ĵ p := J · Ωp
D + dJ ∧ Ωp−1

D , Ωp
X,Kähler := Ωp

D/Ĵ p.

Notice that Ĵ 0 = J so that Ω0
X,Kähler = OX . Notice also that Ωp

X,Kähler is an OX -

module. It is well-known that Ωp
X,Kähler is intrinsic to X, i.e., that it does not depend

on the embedding as a subspace of D. Since Ĵ 0 = J has pure dimension it follows
that Ω0

X,Kähler = OX is torsion-free. In general, Ωp
X,Kähler has torsion.

The sheaf of strongly holomorphic p-forms on X is

Ωp
X := Ωp

X,Kähler/torsion,

where torsion means OX -torsion. Notice that Ωp
X is intrinsic and that it is the same

considered as an OX -module or an OD-module.

Example 3.1. Let X be the subspace of C2 defined by J = 〈zw〉. Then OX = Oz+
Ow and dJ = 〈zdw+wdz〉. For the 1-forms we have Ω1

X,Kähler = OX{dz, dw}
/
〈zdw+

wdz〉. When w �= 0 then J = 〈z〉 and therefore zdw = wdz = 0. By symmetry this
also holds when z �= 0. However, one easily checks that zdw and wdz are not zero as
Kähler differentials and therefore they are torsion elements. If we mod these out the
result is a torsion-free module which therefore is the strongly holomorphic 1-forms,
i.e., Ω1

X = Oz{dz}+ Ow{dw}.
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X is as follows. From a primary decomposition of
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D/J p has pure dimension and
coincides with Ωp

X,Kähler generically on Z. It follows that

Ωp
X = Ωp

D/J p.

If X is reduced and j : Xreg ↪→ D is the inclusion, then J p = {ϕ ∈ Ωp
D; j

∗ϕ = 0},
see, e.g., [24].

Suppose that 0 is a smooth point of Z and choose local coordinates (z, w) for
CN such that Z = {w = 0}. Then we can identify OZ with holomorphic functions
of z. If g(z) is holomorphic we let g̃ be the extension to ambient space given by
g̃(z, w) = g(z). In a neighborhood of 0 we can then define an OZ-module structure
on Ωp

X by setting gϕ := g̃ϕ. Clearly this depends on the choice of local coordinates.

Proposition 3.2. Assume that we have coordinates (z, w) so that Z = {w = 0}.
Then, with the associated OZ-module structure, Ωp

X is coherent. Moreover, if OX is
Cohen–Macaulay, then the following are equivalent

(i) Ωp
X is Cohen–Macaulay as an OX-module,

(ii) Ωp
X is a locally free OX-module,

(iii) Ωp
X is Cohen–Macaulay as an OZ-module,
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(iv) Ωp
X is a locally free OZ-module.

Proof. By the Nullstellensatz there is an M ∈ N such that I := 〈wα; |α| = M〉 ⊂ J .

Set Ip := IΩp
D + dI ∧ Ωp−1

D and let

Ap := Ωp
D/Ip.

Clearly Ap is coherent both as an OD-module and an OD/I-module, and these struc-
tures are the same. Moreover, the choice of coordinates makes Ap an OZ-module
and one checks that it in fact is a free OZ-module. In particular, Ap is a coherent
OZ-module. Since I ⊂ J it follows that Ip ⊂ Ĵ p ⊂ J p and so we have a natural
surjective map of OZ-modules

Ap → Ωp
X , ϕ+ Ip �→ ϕ+ J p.

The kernel K of this map is J p/Ip. Since J p is a coherent OD-module there are
finitely many ϕj ∈ J p generating J p over OD. By Taylor expanding any g(z, w) ∈
OD in the w-variables to order M we see that K is generated as an OZ-module by
wαϕj + Ip with |α| < M . Since K ⊂ Ap and Ap is a coherent OZ-module it follows
that K is coherent. Hence, Ωp

X � Ap/K is a coherent OZ-module.
Claim 1: depthOX

Ωp
X = depthOZ

Ωp
X .

Claim 2: n = dimOX
Ωp
X = dimOZ

Ωp
X .

Recall that, for an R-module M , dimRM := dimR(R/annRM) and that M is
Cohen–Macaulay if depthRM = dimRM .

We postpone the proofs of these claims and show that (i), (ii), (iii), and (iv) are
equivalent if OX is Cohen–Macaulay. Notice that it is a local (stalk-wise) statement;
in what follows we suppress the point indicating stalk. Recall that if R is a Cohen–
Macaulay ring and M is an R-module that has a finite free resolution over R, then
the Auslander–Buchsbaum formula gives

depthRM + pdRM = dimRR,

where pdRM is the length of a minimal free resolution of M over R, see [16, Theo-
rem 19.9]. Thus, M is free over R if and only if depthRM = dimRR.

We now have that Ωp
X is free over OX if and only if depthOX

Ωp
X = dimOX

OX . But

dimOX
OX = n = dimOX

Ωp
X , where we use the first equality of Claim 1, so (i) and (ii)

are equivalent. In the same way, since OZ is Cohen–Macaulay and n-dimensional,
(iii) and (iv) are equivalent. Assume (i) so that depthOX

Ωp
X = dimOX

Ωp
X . Then by

Claims 1 and 2 we get

depthOZ
Ωp
X = depthOX

Ωp
X = dimOX

Ωp
X = dimOZ

Ωp
X ,

and so (iii) follows. In the same way, (iii) implies (i). It remains to prove Claims 1
and 2.

Proof of Claim 1: For notational convenience, set R = OX , R′ = OZ , and M =
Ωp
X ; notice that R is a Noetherian local Cohen–Macaulay ring and that R′ is a

regular Notherian local ring. Since any function in J vanishes on Z we have an
inclusion R′ ↪→ R given by g(z) �→ g̃(z, w) + J , where g̃(z, w) = g(z); cf. the OZ-
module structure on Ωp

X . By “Miracle flatness”, see, e.g., [16, Corollary 18.17] or [6,
Proposition 3.1], R is a free R′ module if and only if R is Cohen–Macaulay. Thus, R
is a free R′ module. By [16, Proposition 18.4] and the comment after Corollary 18.5,
for a local ring (A,m) and an A-module N we have

depthAN = min{i; ExtiA(A/m, N) �= 0}.
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Notice that R/m = C = R′/m. Claim 1 thus follows if we show that ExtiR(C,M) =
ExtiR′(C,M). To do this, let

(3.1) 0 → M → N0 → N1 → · · ·
be a resolution ofM as anR-module by injectiveR-modulesN•. Then ExtiR(C,M) =
H i(HomR(C, N•)).

The complex (3.1) is straightforwardly checked to be exact also considered as a
complex of R′-modules. Moreover, by [19, p. 62], since R is a free R′-module, the N•

are injective R′-modules. Hence, ExtiR′(C,M) = H i(HomR′(C, N•)). However,

HomR(C, N•) = HomC(C, N•) = HomR′(C, N•)

and so ExtiR(C,M) = ExtiR′(C,M).

Proof of Claim 2: We know from above that

dimOX
Ωp
X = dimOCN

Ωp
X = dimOCN

Ωp
X,Kähler = n.

On the other hand, annOZ
Ωp
X = {0} because if g(z)Ωp

D ∈ J p then g(z)|Z = 0. Hence,

dimOZ
Ωp
X = dimOZ

(OZ/{0}) = n.

�
Corollary 3.3. Assume that there are coordinates (z, w) such that Z = {w = 0}, that
OX is Cohen–Macaulay, and that Ωp

X is Cohen–Macaulay either as an OX-module
or as an OZ-module. Then, locally there is an M ∈ N such that Ωp

X is generated by

(3.2)
{
wαdzβ ∧ dwγ + J p; |α| < M, |β|+ |γ| = p

}

over OZ and a minimal set of generators is an OZ-basis.

See Example 8.1 below for a simple illustration of this Corollary.

Proof. Recall the module Ap from the proof of Proposition 3.2 and let ϕ(z, w) ∈ Ωp
D.

Taylor expanding the coefficients of ϕ with respect to w to order M shows that Ap is
generated as an OZ-module by (3.2) with J p replaced by Ip. Thus, Ωp

X is generated
by (3.2) over OZ . By a standard argument using Nakayama’s lemma, a minimal
generating set is a basis, cf., e.g., the proof of [21, Theorem 2.5]. �
Definition 3.4. We let Xp-reg be the subset of Zreg where OX is Cohen–Macaulay
and Ωp

X,Kähler is Cohen–Macaulay.

Remark 3.5. The property of being Cohen–Macaulay is generic on Z so Xp-reg is
a dense open subset of Zreg. Notice also that Ωp

X,Kähler is torsion-free where it is

Cohen–Macaulay. Hence,

Ωp
X,Kähler = Ωp

X on Xp-reg.

In view of Proposition 3.2, thus Ωp
X and Ωp

X,Kähler are locally free OX -modules and

have locally a structure as a free OZ-module on Xp-reg.

Assume that (2.10) is a resolution of Ωp
X and that E0 = T ∗

p,0D. If D is pseudo-

convex, such resolutions exist since Ωp
X is coherent, possibly after replacing D by

a slightly smaller set. Notice that O(E0) = Ωp
D and that Im f1 = J p. Let, for

some choice of Hermitian metrics on Ej , R = Rκ+Rκ+1+ · · · be the associated cur-
rent. Recall from Section 2 that, since Ωp

X has pure codimension, R is an injective
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homomorphism from Ωp
D to E-valued pseudomeromorphic (0, ∗)-currents in D with

support in Z and the SEP with respect to Z. Letting dζ = dζ1 ∧ · · · ∧ dζN we define

(3.3) R := R⊗ dζ ∈ Hom OD
(Ωp

D, E ⊗WZ,∗
D ).

Notice that in view of Remark 2.2, R can be identified with an (N − p, ∗)-current,
cf. [24, Section 3]. We set R� = R� ⊗ dζ.

By construction, in view of (2.13), we have the following lemma.

Lemma 3.6. The current R = Rκ+Rκ+1+ · · · has bidegree (N −p, ∗), takes values
in E, has the SEP with respect to Z, depends only on dζ (and R), and

fR = ∂̄R.

If ϕ ∈ Ωp
D then R∧ ϕ = R ∧ ϕ ∧ dζ.

3.2. Smooth forms on X. To begin with, in view of Remark 2.2 we notice that if
I ⊂ Ωp

D is a submodule such that J · Ωp
D ⊂ I, then we have the isomorphism

(3.4) {µ ∈ Hom OD
(Ωp

D,CH Z
D ); I ∧ µ = 0} ∼−→ Hom OX

(Ωp
D/I,CH Z

D ),

µ �→ (ϕ �→ ϕ ∧ µ).

We remark that if Hom OX
is replaced by Hom OD

the assumption J · Ωp
D ⊂ I is

superfluous.
Since J p = Ĵ p generically on Z and any µ ∈ Hom OD

(Ωp
D,CH Z

D ) has the SEP
with respect to Z, in view of (3.4) and Remark 2.2 we have

Hom OX
(Ωp

X ,CH Z
D ) = Hom OX

(Ωp
X,Kähler,CH Z

D )(3.5)

= {µ ∈ Hom OD
(Ωp

D,CH Z
D ); J µ = dJ ∧ µ = 0}.

Definition 3.7. We let

Ker p i∗ = {ϕ ∈ E p,∗
D ; ϕ ∧ µ = 0, ∀µ ∈ Hom OX

(Ωp
X ,CH Z

D )},
cf. Remark 2.2, and we define the sheaf of smooth (p, ∗)-forms on X by

E p,∗
X := E p,∗

D /Ker p i∗.
Notice that if ϕ ∈ Ker p i∗ then ∂̄ϕ ∈ Ker p i∗ and so ∂̄ is well-defined on E p,∗

X .
We write i∗ for the natural map E p,∗

D → E p,∗
X . Notice that if X is reduced, then, in

view of (2.8) and (3.5), a smooth (p, ∗)-form ϕ is in Ker p i∗ if and only if i∗ϕ = 0.
As in [6, Section 4] one shows that E p,∗

X is intrinsic, i.e., does not dependent on the
embedding i : X → D.

Proposition 3.8. If ϕ ∈ E p,∗
D and ϕ′ ∈ E p′,∗

D then i∗(ϕ ∧ ϕ′) only depends on i∗ϕ
and i∗ϕ′. Setting i∗ϕ ∧ i∗ϕ′ := i∗(ϕ ∧ ϕ′), E ∗,∗

X becomes a (bigraded) algebra. In

particular, E p,∗
X is an E 0,∗

X -module.

Proof. Assume that ϕ ∈ Ker p i∗. We must show that ϕ ∧ ϕ′ ∈ Ker p+p′ i
∗. Suppose

that µ ∈ Hom OX
(Ωp+p′

X ,CH Z
D ). Then ϕ′ ∧ µ is (a sum of terms) of the form

ξ ∧ ν, where ξ ∈ E 0,∗
D and ν ∈ Hom OX

(Ωp
X ,CH Z

D ). Since, by definition of Ker p i∗,
ϕ ∧ ν = 0 it follows that ϕ ∧ ϕ′ ∧ µ = 0, and hence ϕ ∧ ϕ′ ∈ Ker p+p′ i

∗. �

Proposition 3.9. Let R = Rκ+Rκ+1+· · · be the residue current associated with Ωp
X

defined in Section 3.1 and let ϕ ∈ E p,∗
D . Then ϕ ∈ Ker p i∗ if and only if Rκ ∧ϕ = 0.
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Notice that R/m = C = R′/m. Claim 1 thus follows if we show that ExtiR(C,M) =
ExtiR′(C,M). To do this, let

(3.1) 0 → M → N0 → N1 → · · ·
be a resolution ofM as anR-module by injectiveR-modulesN•. Then ExtiR(C,M) =
H i(HomR(C, N•)).

The complex (3.1) is straightforwardly checked to be exact also considered as a
complex of R′-modules. Moreover, by [19, p. 62], since R is a free R′-module, the N•

are injective R′-modules. Hence, ExtiR′(C,M) = H i(HomR′(C, N•)). However,

HomR(C, N•) = HomC(C, N•) = HomR′(C, N•)

and so ExtiR(C,M) = ExtiR′(C,M).

Proof of Claim 2: We know from above that

dimOX
Ωp
X = dimOCN

Ωp
X = dimOCN

Ωp
X,Kähler = n.

On the other hand, annOZ
Ωp
X = {0} because if g(z)Ωp

D ∈ J p then g(z)|Z = 0. Hence,

dimOZ
Ωp
X = dimOZ

(OZ/{0}) = n.

�
Corollary 3.3. Assume that there are coordinates (z, w) such that Z = {w = 0}, that
OX is Cohen–Macaulay, and that Ωp

X is Cohen–Macaulay either as an OX-module
or as an OZ-module. Then, locally there is an M ∈ N such that Ωp

X is generated by

(3.2)
{
wαdzβ ∧ dwγ + J p; |α| < M, |β|+ |γ| = p

}

over OZ and a minimal set of generators is an OZ-basis.

See Example 8.1 below for a simple illustration of this Corollary.

Proof. Recall the module Ap from the proof of Proposition 3.2 and let ϕ(z, w) ∈ Ωp
D.

Taylor expanding the coefficients of ϕ with respect to w to order M shows that Ap is
generated as an OZ-module by (3.2) with J p replaced by Ip. Thus, Ωp

X is generated
by (3.2) over OZ . By a standard argument using Nakayama’s lemma, a minimal
generating set is a basis, cf., e.g., the proof of [21, Theorem 2.5]. �
Definition 3.4. We let Xp-reg be the subset of Zreg where OX is Cohen–Macaulay
and Ωp

X,Kähler is Cohen–Macaulay.

Remark 3.5. The property of being Cohen–Macaulay is generic on Z so Xp-reg is
a dense open subset of Zreg. Notice also that Ωp

X,Kähler is torsion-free where it is

Cohen–Macaulay. Hence,

Ωp
X,Kähler = Ωp

X on Xp-reg.

In view of Proposition 3.2, thus Ωp
X and Ωp

X,Kähler are locally free OX -modules and

have locally a structure as a free OZ-module on Xp-reg.

Assume that (2.10) is a resolution of Ωp
X and that E0 = T ∗

p,0D. If D is pseudo-

convex, such resolutions exist since Ωp
X is coherent, possibly after replacing D by

a slightly smaller set. Notice that O(E0) = Ωp
D and that Im f1 = J p. Let, for

some choice of Hermitian metrics on Ej , R = Rκ+Rκ+1+ · · · be the associated cur-
rent. Recall from Section 2 that, since Ωp

X has pure codimension, R is an injective
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homomorphism from Ωp
D to E-valued pseudomeromorphic (0, ∗)-currents in D with

support in Z and the SEP with respect to Z. Letting dζ = dζ1 ∧ · · · ∧ dζN we define

(3.3) R := R⊗ dζ ∈ Hom OD
(Ωp

D, E ⊗WZ,∗
D ).

Notice that in view of Remark 2.2, R can be identified with an (N − p, ∗)-current,
cf. [24, Section 3]. We set R� = R� ⊗ dζ.

By construction, in view of (2.13), we have the following lemma.

Lemma 3.6. The current R = Rκ+Rκ+1+ · · · has bidegree (N −p, ∗), takes values
in E, has the SEP with respect to Z, depends only on dζ (and R), and

fR = ∂̄R.

If ϕ ∈ Ωp
D then R∧ ϕ = R ∧ ϕ ∧ dζ.

3.2. Smooth forms on X. To begin with, in view of Remark 2.2 we notice that if
I ⊂ Ωp

D is a submodule such that J · Ωp
D ⊂ I, then we have the isomorphism

(3.4) {µ ∈ Hom OD
(Ωp

D,CH Z
D ); I ∧ µ = 0} ∼−→ Hom OX

(Ωp
D/I,CH Z

D ),

µ �→ (ϕ �→ ϕ ∧ µ).

We remark that if Hom OX
is replaced by Hom OD

the assumption J · Ωp
D ⊂ I is

superfluous.
Since J p = Ĵ p generically on Z and any µ ∈ Hom OD

(Ωp
D,CH Z

D ) has the SEP
with respect to Z, in view of (3.4) and Remark 2.2 we have

Hom OX
(Ωp

X ,CH Z
D ) = Hom OX

(Ωp
X,Kähler,CH Z

D )(3.5)

= {µ ∈ Hom OD
(Ωp

D,CH Z
D ); J µ = dJ ∧ µ = 0}.

Definition 3.7. We let

Ker p i∗ = {ϕ ∈ E p,∗
D ; ϕ ∧ µ = 0, ∀µ ∈ Hom OX

(Ωp
X ,CH Z

D )},
cf. Remark 2.2, and we define the sheaf of smooth (p, ∗)-forms on X by

E p,∗
X := E p,∗

D /Ker p i∗.
Notice that if ϕ ∈ Ker p i∗ then ∂̄ϕ ∈ Ker p i∗ and so ∂̄ is well-defined on E p,∗

X .
We write i∗ for the natural map E p,∗

D → E p,∗
X . Notice that if X is reduced, then, in

view of (2.8) and (3.5), a smooth (p, ∗)-form ϕ is in Ker p i∗ if and only if i∗ϕ = 0.
As in [6, Section 4] one shows that E p,∗

X is intrinsic, i.e., does not dependent on the
embedding i : X → D.

Proposition 3.8. If ϕ ∈ E p,∗
D and ϕ′ ∈ E p′,∗

D then i∗(ϕ ∧ ϕ′) only depends on i∗ϕ
and i∗ϕ′. Setting i∗ϕ ∧ i∗ϕ′ := i∗(ϕ ∧ ϕ′), E ∗,∗

X becomes a (bigraded) algebra. In

particular, E p,∗
X is an E 0,∗

X -module.

Proof. Assume that ϕ ∈ Ker p i∗. We must show that ϕ ∧ ϕ′ ∈ Ker p+p′ i
∗. Suppose

that µ ∈ Hom OX
(Ωp+p′

X ,CH Z
D ). Then ϕ′ ∧ µ is (a sum of terms) of the form

ξ ∧ ν, where ξ ∈ E 0,∗
D and ν ∈ Hom OX

(Ωp
X ,CH Z

D ). Since, by definition of Ker p i∗,
ϕ ∧ ν = 0 it follows that ϕ ∧ ϕ′ ∧ µ = 0, and hence ϕ ∧ ϕ′ ∈ Ker p+p′ i

∗. �

Proposition 3.9. Let R = Rκ+Rκ+1+· · · be the residue current associated with Ωp
X

defined in Section 3.1 and let ϕ ∈ E p,∗
D . Then ϕ ∈ Ker p i∗ if and only if Rκ ∧ϕ = 0.
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Proof. Recall the complex (2.10) that we used to define R and therefore also R.
Consider the dual complex:

· · ·
f∗
κ+1←− O(E∗

κ)
f∗
κ←− · · · f∗

1←− O(E∗
0) ← 0,

where f∗
j is the transpose of fj . If ξ ∈ O(E∗

κ) and f∗
κ+1ξ = 0, then, in view of

Lemma 3.6,

(3.6) ∂̄(ξ · Rκ) = ξ · ∂̄Rκ = ξ · fκ+1Rκ = f∗
κ+1ξ · Rκ = 0.

Hence, ξ ·Rκ is a ∂̄-closed (scalar valued) pseudomeromorphic (N−p, κ)-current with
support on Z. Moreover, since J p∧R = 0, it follows that ξ·Rκ ∈ Hom OX

(Ωp
X ,CH Z

D ).
If ξ = f∗

κξ
′, since Rκ−1 = 0, a computation similar to (3.6) shows that ξ · Rκ = 0.

Hence, we have a map

(3.7) H κ(O(E∗
•), f

∗
• ) → Hom OX

(Ωp
X ,CH Z

D ), [ξ] �→ ξ · Rκ.

By [4, Theorem 1.5], this map is an isomorphism. If Rκ ∧ ϕ = 0 thus ϕ ∈ Ker p i∗.
Conversely, assume that ϕ ∈ Ker p i∗. If Ωp

X is Cohen–Macaulay and (2.10) is
a resolution of minimal length, i.e., if Ej = 0 for j > κ, then ∂̄Rκ = 0 and so
Rκ ∈ Hom OX

(Ωp
X ,CH Z

D ). In this case, thus, Rκ∧ϕ = 0. In general, Ωp
X is Cohen–

Macaulay generically on Z and the minimal resolution is a direct summand in any
resolution. It follows, cf. the proof of [4, Theorem 1.2], that Rκ ∧ ϕ = 0 generically
on Z. By the SEP it then holds everywhere. �

Corollary 3.10. There is a natural injective map Ωp
X ↪→ E p,0

X .

Proof. Since J p ⊂ Ker p i∗, the inclusion Ωp
D ⊂ E p,0

D induces a map Ωp
X → E p,0

X . By
Proposition 3.9, if ϕ ∈ Ker p i∗, then Rκ ∧ ϕ = 0 and so Ker p i∗ ∩ Ωp

D = J p in view

of (2.14). It follows that Ωp
X → E p,0

X is injective. �

The following result is not necessary for this paper but is included here for future
reference. We believe that it interesting in its own right since it shows that the
de Rham operator d = ∂ + ∂̄ is well-defined on EX .

Proposition 3.11. We have ∂ : E p,q
X → E p+1,q

X .

Proof. We need to show that ∂(Ker p i∗) ⊂ Ker p+1 i
∗, i.e., that if ϕ ∈ Ker p i∗ then

∂ϕ ∧ µ = 0 for all µ ∈ Hom OX
(Ωp+1

X ,CH Z
D ). Let µ ∈ Hom OX

(Ωp+1
X ,CH Z

D );

cf. Remark 2.2 and (3.5). By [10, Theorem 3.7] we get ∂µ ∈ Hom OD
(Ωp

D,W
Z,κ
D )

and we certainly have ∂̄∂µ = 0. We also have J ∂µ = ∂(J µ) ± dJ ∧ µ = 0 and
dJ ∧ ∂µ = ∂(dJ ∧ µ) = 0. Therefore ∂µ ∈ Hom OX

(Ωp
X ,CH Z

D ).

Let ϕ ∈ Ker p i∗ and µ ∈ Hom OX
(Ωp+1

X ,CH Z
D ). We have ∂ϕ∧µ = ∂(ϕ∧µ)±ϕ∧∂µ

and by the above the second term vanishes. Since ϕ ∈ Ker p i∗, ϕ ∧ µ̃ = 0 for all
µ̃ ∈ Hom OX

(Ωp
X ,CH Z

D ) and therefore ϕ ∧ µ ∧ α = 0 for all α ∈ Ω1
D. But then we

must have ϕ ∧ µ = 0 which shows that ∂ϕ ∈ Ker p+1 i
∗. �

3.3. Smooth forms on Xp-reg. Here we give a more concrete description of E p,∗
X

on Xp-reg. Choose local coordinates (z, w) centered at a point in Xp-reg such that
Z = {w = 0}. Recall that the local coordinates induce an OZ-module structure on
Ωp
X . On Xp-reg we get a sequence of mappings

(3.8)

(OZ)
ν ∼→ Ωp

X
∼→ Hom OX

(
Hom OX

(Ωp
X ,CH Z

D ),CH Z
D

)
→ (CH Z

D )m → (Ωn
Z)

mM̃
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defined as follows. On Xp-reg, Ω
p
X is a free OZ-module and the first mapping is the

isomorphism given by an OZ-basis {bk} ⊂ Ωp
D of Ωp

X .
The second mapping is defined on all ofX and is the natural mapping into a double

dual, ϕ �→ (µ �→ ϕ∧ µ), cf. Remark 2.2. It is injective since if ϕ ∈ Ωp
D and ϕ∧ µ = 0

for all µ ∈ Hom OX
(Ωp

X ,CH Z
D ), then ϕ ∈ J p; cf. the proof of Corollary 3.10. It

follows from a fundamental theorem of J.-E. Roos that the second mapping in fact
is an isomorphism if and only if Ωp

X is S2, cf. [6, Theorem 7.3] and the discussion
following it. On Xp-reg, Ω

p
X is Cohen–Macaulay, in particular S2, and thus the second

mapping is an isomorphism on Xp-reg.
The third mapping depends on a choice of generators µj , j = 1, . . . ,m, of Hom OX

(Ωp
X ,CH Z

D ).
An element h of the double-Hom then is mapped to the tuple (h ∧ µ1, . . . , h ∧ µm).

For the fourth mapping we choose M > 0 such that wαµj = 0 for j = 1, . . . ,m
and wα ∈ J if |α| ≥ M . Then a tuple (νj)j ∈ (CH Z

D )m is mapped to the tuple
(π∗(wανj))j,|α|<M , where π is the projection π(z, w) = z. Since wανj are ∂̄-closed of

bidegree (N, κ) in D, π∗(wανj) are ∂̄-closed of bidegree (n, 0) on Z, i.e., holomorphic
n-forms on Z.

We will see, Lemma 3.12, that the composition (3.8), denoted T̃ from now on, is

injective and OZ-linear and thus given by a matrix, also denoted T̃ , with Ωn
Z-entries.

To analyze E p,∗
X on Xp-reg we consider a variant of (3.8). First, as we did for Ωp

X ,

cf. the paragraph before Proposition 3.2, we define a E 0,∗
Z -module structure on E p,∗

X
by

ψ ∧ ϕ := π∗ψ ∧ ϕ, ψ ∈ E 0,∗
Z , ϕ ∈ E p,∗

X .

Corresponding to the mapping Ωp
X → (CH Z

D )m of (3.8) we have the mapping

(3.9) E p,∗
X → (WZ

D)
m, ϕ �→ (ϕ ∧ µ1, . . . , ϕ ∧ µm).

Notice that, by Definition 3.7, if ϕ ∈ E p,∗
X and ϕ∧µj = 0 for all j, then ϕ = 0. Thus,

(3.9) is injective. Corresponding to the mapping (CH Z
D )m → (Ωn

Z)
mM̃ of (3.8) we

have

(3.10) (WZ
D)

m → (WZ)
mM̃ , (τj)j �→

(
π∗(wατj)

)
j,|α|<M

,

where M̃ is the number of monomials wα with |α| < M . In view of [11, Proposi-
tion 4.1 and (4.3)] and [10, Theorem 3.5], (3.10) is injective. Composing (3.9) and
(3.10) we get the injective map

(3.11) T : E p,∗
X → (Wn,∗

Z )mM̃ , Tϕ =
(
π∗(ϕ ∧ wαµj)

)
|α|<M,j=1,...,m

.

The restriction of T to Ωp
X is (after the identification Ωp

X � (OZ)
ν) the mapping T̃ .

For reference we notice that

(3.12) T̃ : (OZ)
ν → (Ωn

Z)
mM̃ , (hk)k=1,...,ν �→

(
π∗(

∑

k

hkbk ∧ wαµj)
)
|α|<M,j=1,...,m

on Xp-reg.

Lemma 3.12. The injective mappings T and T̃ are E 0,∗
Z -linear and OZ-linear, re-

spectively. Any ϕ ∈ E p,∗
X can be written

(3.13) ϕ =
ν∑

k=1

ϕk ∧ bk + Ker p i∗, ϕk ∈ E 0,∗
Z ,
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Proof. Recall the complex (2.10) that we used to define R and therefore also R.
Consider the dual complex:

· · ·
f∗
κ+1←− O(E∗

κ)
f∗
κ←− · · · f∗

1←− O(E∗
0) ← 0,

where f∗
j is the transpose of fj . If ξ ∈ O(E∗

κ) and f∗
κ+1ξ = 0, then, in view of

Lemma 3.6,

(3.6) ∂̄(ξ · Rκ) = ξ · ∂̄Rκ = ξ · fκ+1Rκ = f∗
κ+1ξ · Rκ = 0.

Hence, ξ ·Rκ is a ∂̄-closed (scalar valued) pseudomeromorphic (N−p, κ)-current with
support on Z. Moreover, since J p∧R = 0, it follows that ξ·Rκ ∈ Hom OX

(Ωp
X ,CH Z

D ).
If ξ = f∗

κξ
′, since Rκ−1 = 0, a computation similar to (3.6) shows that ξ · Rκ = 0.

Hence, we have a map

(3.7) H κ(O(E∗
•), f

∗
• ) → Hom OX

(Ωp
X ,CH Z

D ), [ξ] �→ ξ · Rκ.

By [4, Theorem 1.5], this map is an isomorphism. If Rκ ∧ ϕ = 0 thus ϕ ∈ Ker p i∗.
Conversely, assume that ϕ ∈ Ker p i∗. If Ωp

X is Cohen–Macaulay and (2.10) is
a resolution of minimal length, i.e., if Ej = 0 for j > κ, then ∂̄Rκ = 0 and so
Rκ ∈ Hom OX

(Ωp
X ,CH Z

D ). In this case, thus, Rκ∧ϕ = 0. In general, Ωp
X is Cohen–

Macaulay generically on Z and the minimal resolution is a direct summand in any
resolution. It follows, cf. the proof of [4, Theorem 1.2], that Rκ ∧ ϕ = 0 generically
on Z. By the SEP it then holds everywhere. �

Corollary 3.10. There is a natural injective map Ωp
X ↪→ E p,0

X .

Proof. Since J p ⊂ Ker p i∗, the inclusion Ωp
D ⊂ E p,0

D induces a map Ωp
X → E p,0

X . By
Proposition 3.9, if ϕ ∈ Ker p i∗, then Rκ ∧ ϕ = 0 and so Ker p i∗ ∩ Ωp

D = J p in view

of (2.14). It follows that Ωp
X → E p,0

X is injective. �

The following result is not necessary for this paper but is included here for future
reference. We believe that it interesting in its own right since it shows that the
de Rham operator d = ∂ + ∂̄ is well-defined on EX .

Proposition 3.11. We have ∂ : E p,q
X → E p+1,q

X .

Proof. We need to show that ∂(Ker p i∗) ⊂ Ker p+1 i
∗, i.e., that if ϕ ∈ Ker p i∗ then

∂ϕ ∧ µ = 0 for all µ ∈ Hom OX
(Ωp+1

X ,CH Z
D ). Let µ ∈ Hom OX

(Ωp+1
X ,CH Z

D );

cf. Remark 2.2 and (3.5). By [10, Theorem 3.7] we get ∂µ ∈ Hom OD
(Ωp

D,W
Z,κ
D )

and we certainly have ∂̄∂µ = 0. We also have J ∂µ = ∂(J µ) ± dJ ∧ µ = 0 and
dJ ∧ ∂µ = ∂(dJ ∧ µ) = 0. Therefore ∂µ ∈ Hom OX

(Ωp
X ,CH Z

D ).

Let ϕ ∈ Ker p i∗ and µ ∈ Hom OX
(Ωp+1

X ,CH Z
D ). We have ∂ϕ∧µ = ∂(ϕ∧µ)±ϕ∧∂µ

and by the above the second term vanishes. Since ϕ ∈ Ker p i∗, ϕ ∧ µ̃ = 0 for all
µ̃ ∈ Hom OX

(Ωp
X ,CH Z

D ) and therefore ϕ ∧ µ ∧ α = 0 for all α ∈ Ω1
D. But then we

must have ϕ ∧ µ = 0 which shows that ∂ϕ ∈ Ker p+1 i
∗. �

3.3. Smooth forms on Xp-reg. Here we give a more concrete description of E p,∗
X

on Xp-reg. Choose local coordinates (z, w) centered at a point in Xp-reg such that
Z = {w = 0}. Recall that the local coordinates induce an OZ-module structure on
Ωp
X . On Xp-reg we get a sequence of mappings

(3.8)

(OZ)
ν ∼→ Ωp

X
∼→ Hom OX

(
Hom OX

(Ωp
X ,CH Z

D ),CH Z
D

)
→ (CH Z

D )m → (Ωn
Z)

mM̃
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defined as follows. On Xp-reg, Ω
p
X is a free OZ-module and the first mapping is the

isomorphism given by an OZ-basis {bk} ⊂ Ωp
D of Ωp

X .
The second mapping is defined on all ofX and is the natural mapping into a double

dual, ϕ �→ (µ �→ ϕ∧ µ), cf. Remark 2.2. It is injective since if ϕ ∈ Ωp
D and ϕ∧ µ = 0

for all µ ∈ Hom OX
(Ωp

X ,CH Z
D ), then ϕ ∈ J p; cf. the proof of Corollary 3.10. It

follows from a fundamental theorem of J.-E. Roos that the second mapping in fact
is an isomorphism if and only if Ωp

X is S2, cf. [6, Theorem 7.3] and the discussion
following it. On Xp-reg, Ω

p
X is Cohen–Macaulay, in particular S2, and thus the second

mapping is an isomorphism on Xp-reg.
The third mapping depends on a choice of generators µj , j = 1, . . . ,m, of Hom OX

(Ωp
X ,CH Z

D ).
An element h of the double-Hom then is mapped to the tuple (h ∧ µ1, . . . , h ∧ µm).

For the fourth mapping we choose M > 0 such that wαµj = 0 for j = 1, . . . ,m
and wα ∈ J if |α| ≥ M . Then a tuple (νj)j ∈ (CH Z

D )m is mapped to the tuple
(π∗(wανj))j,|α|<M , where π is the projection π(z, w) = z. Since wανj are ∂̄-closed of

bidegree (N, κ) in D, π∗(wανj) are ∂̄-closed of bidegree (n, 0) on Z, i.e., holomorphic
n-forms on Z.

We will see, Lemma 3.12, that the composition (3.8), denoted T̃ from now on, is

injective and OZ-linear and thus given by a matrix, also denoted T̃ , with Ωn
Z-entries.

To analyze E p,∗
X on Xp-reg we consider a variant of (3.8). First, as we did for Ωp

X ,

cf. the paragraph before Proposition 3.2, we define a E 0,∗
Z -module structure on E p,∗

X
by

ψ ∧ ϕ := π∗ψ ∧ ϕ, ψ ∈ E 0,∗
Z , ϕ ∈ E p,∗

X .

Corresponding to the mapping Ωp
X → (CH Z

D )m of (3.8) we have the mapping

(3.9) E p,∗
X → (WZ

D)
m, ϕ �→ (ϕ ∧ µ1, . . . , ϕ ∧ µm).

Notice that, by Definition 3.7, if ϕ ∈ E p,∗
X and ϕ∧µj = 0 for all j, then ϕ = 0. Thus,

(3.9) is injective. Corresponding to the mapping (CH Z
D )m → (Ωn

Z)
mM̃ of (3.8) we

have

(3.10) (WZ
D)

m → (WZ)
mM̃ , (τj)j �→

(
π∗(wατj)

)
j,|α|<M

,

where M̃ is the number of monomials wα with |α| < M . In view of [11, Proposi-
tion 4.1 and (4.3)] and [10, Theorem 3.5], (3.10) is injective. Composing (3.9) and
(3.10) we get the injective map

(3.11) T : E p,∗
X → (Wn,∗

Z )mM̃ , Tϕ =
(
π∗(ϕ ∧ wαµj)

)
|α|<M,j=1,...,m

.

The restriction of T to Ωp
X is (after the identification Ωp

X � (OZ)
ν) the mapping T̃ .

For reference we notice that

(3.12) T̃ : (OZ)
ν → (Ωn

Z)
mM̃ , (hk)k=1,...,ν �→

(
π∗(

∑

k

hkbk ∧ wαµj)
)
|α|<M,j=1,...,m

on Xp-reg.

Lemma 3.12. The injective mappings T and T̃ are E 0,∗
Z -linear and OZ-linear, re-

spectively. Any ϕ ∈ E p,∗
X can be written

(3.13) ϕ =
ν∑

k=1

ϕk ∧ bk + Ker p i∗, ϕk ∈ E 0,∗
Z ,
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on Xp-reg and T is given by matrix multiplication by T̃ , i.e., Tϕ = T̃ (ϕ1, . . . , ϕν)
t.

Proof. Let ψ ∈ E 0,∗
Z . By definition of T and (2.1),

T (ψ ∧ ϕ) = T (π∗ψ ∧ ϕ) =
(
π∗(π∗ψ ∧ ϕ ∧ wαµj)

)
|α|<M,j=1,...,m

= ψ ∧
(
π∗(ϕ ∧ wαµj)

)
|α|<M,j=1,...,m

.

Hence, T is E 0,∗
Z -linear. The same computation shows that T̃ is OZ-linear and there-

fore given by a matrix with elements in Ωn
Z . Explicitly, since any ϕ ∈ Ωp

X can be
written ϕ =

∑
k ϕkbk + J p for (unique) ϕk ∈ OZ ,

(3.14) T̃ =



π∗(wα1b1 ∧ µ1) . . . π∗(wα1bν ∧ µ1)

...
. . .

...
π∗(wαM̃ b1 ∧ µm) . . . π∗(wαM̃ bν ∧ µm)


 .

Let ϕ ∈ E p,∗
X and let ϕ̃ ∈ E p,∗

D be any representative. We can write ϕ̃ =
∑

i ϕ̃
′
i∧ ϕ̃′′

i ,

where ϕ̃′
i ∈ E 0,∗

D and ϕ̃′′
i ∈ Ωp

D. Moreover, we write ϕ̃′
i = φi+ψi, where every term of

φi contains a factor dw̄j for some j and no term of ψi contains such a factor. Taylor
expanding (the coefficients of) ψi with respect to w and w̄ to the order M we get

ψi(z, w) =
∑

|α|<M

∂αψi

∂wα
(z, 0)

wα

α!
+

∑

|α|=M

wαψ̃i,α +O(w̄),

where ψ̃i,α ∈ E 0,∗
D and O(w̄) is a sum of terms divisible by some w̄j . In view of (3.5)

and (2.4), φi, w
αψ̃i,α, and O(w̄) are in Ker p i∗. Hence,

(3.15) ϕ̃ =
∑

i,|α|<M

∂αψi

∂wα
(z, 0)

wα

α!
∧ ϕ̃′′

i + Ker p i∗.

Since wαϕ̃′′
i ∈ Ωp

D there are ϕ̃α,i,k ∈ OZ such that wαϕ̃′′
i =

∑
k ϕ̃α,i,k(z)bk + J p, and

so (3.13) follows from (3.15). By E 0,∗
Z -linearity,

T (ϕk ∧ bk) = ϕk ∧ T |Ωp
X
bk = ϕkT̃ (0, . . . , 1k, . . . , 0)

t

and the last statement of the lemma follows. �
Notice that by this lemma, T is a map E p,∗

X → (E n,∗
Z )mM̃ on Xp-reg.

Proposition 3.13. On Xp-reg, E p,∗
X is a free E 0,∗

Z -module, the representation (3.13)
of an element ϕ ∈ E p,∗

X is unique, and

E p,∗
X = E p,∗

D /
(
J E p,∗

D + dJ ∧ E p−1,∗
D + JZE p,∗

D + dJZ ∧ E p,∗
D

)
,

where JZ =
√
J .

Proof. Notice first that since T̃ is injective and Ωp
X is a free OZ-module on Xp-reg it

follows that, generically on Xp-reg, T̃ is a pointwise injective matrix (times dz1∧· · ·∧
dzn). Consider a representation (3.13) and assume that

∑
k ϕk ∧ bk ∈ Ker p i∗. Then

T̃ (ϕ1, . . . , ϕν)
t = 0. Since T̃ is generically pointwise injective on Xp-reg it follows that

ϕj = 0, j = 1, . . . , ν, on Xp-reg. Hence, the representation (3.13) is unique and E p,∗
X

is a free E 0,∗
X -module.

It remains to see that

(3.16) Ker p i∗ = J E p,∗
D + dJ ∧ E p−1,∗

D + JZE p,∗
D + dJZ ∧ E p,∗

D
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onXp-reg. Assume that ϕ is an element of the right-hand side and let µ ∈ Hom OX
(Ωp

X ,CH Z
D ).

In view of (2.4), the terms of ϕ contained in JZE p,∗
D + dJZ ∧ E p,∗

D annihilate µ so we

may assume that ϕ ∈ J E p,∗
D +dJ ∧E p−1,∗

D = Ĵ p ∧E 0,∗
D . Write ϕ as (a sum of terms)

ϕ′ ∧ ϕ′′, where ϕ′ ∈ Ĵ p and ϕ′′ ∈ E 0,∗
D . Since J p ⊃ Ĵ p we have ϕ′ ∧ µ = 0. Thus

ϕ ∧ µ = 0 and so ϕ ∈ Ker p i∗.
Assume that ϕ ∈ Ker p i∗ and write ϕ as (a sum of terms) ϕ′ ∧ϕ′′, where ϕ′ ∈ Ωp

D

and ϕ′′ ∈ E 0,∗
D . As in the proof of Lemma 3.12, by Taylor expanding (the coefficients

of) ϕ′′ with respect to w to order M , we have

(3.17) ϕ(z, w) = ϕ′ ∧
∑

|α|<M

∂αϕ′′

∂wα
(z, 0)

wα

α!
+ ϕ′ ∧

∑

|α|=M

wαϕ̃′
α +O(w̄, dw̄),

where ϕ̃′
α ∈ E 0,∗

D and O(w̄, dw̄) is a sum of smooth terms containing either some w̄j

or dw̄j . The second and the last term in the right-hand side of (3.17) belong to the
right-hand side of (3.16). As in the proof of Lemma 3.12 again, this time by writing
wαϕ′ ∈ Ωp

D modulo J p as a OZ-combination of the bk on Xp-reg,

(3.18) ϕ′ ∧
∑

|α|<M

∂αϕ′′

∂wα
(z, 0)

wα

α!
=

ν∑

k=1

φk ∧ bk + J p ∧ E 0,∗
Z ,

where φk ∈ E 0,∗
Z . Since Ĵ p = J p on Xp-reg the last term on the right-hand side

is contained in the right-hand side of (3.16). The sum S in the right-hand side of
(3.18) is in Ker p i∗ since, by the proof so far, ϕ and ϕ − S are in Ker p i∗. Thus,

in view of Lemma 3.12, T̃ (φ1, . . . , φν)
t = TS = 0. Since T̃ is generically pointwise

injective on Xp-reg, φj = 0 on Xp-reg. Hence, the left-hand side of (3.18) belongs to
the right-hand side of (3.16). Thus, all terms in the right-hand side of (3.17) do too,
and so (3.16) follows. �

3.4. Currents and structure forms on X. The (n−p, n−q)-currents on X is the
dual of the space of compactly supported sections of E p,q

X , cf. [18, Section 4.2]. The
topology on E p,∗

X = E p,∗
D /Ker p i∗ is the quotient topology. Notice that Ker p i∗ is a

closed subspace of E p,∗
D since it is defined as the annihilator of currents. It follows

that the (n−p, n−q)-currents on X can be identified with the (N−p,N−q)-currents
µ in D such that µ.ϕ = 0 for all ϕ ∈ Ker p i∗ with compact support. This holds if
and only if ϕ ∧ µ = 0 for all ϕ ∈ Ker p i∗ since Ker p i∗ is both a right and left

E 0,∗
D -submodule of E p,∗

D . If τ is an (n − p, n − q)-current on X we write i∗τ for the
corresponding (N −p,N − q)-current in D. Notice that if ϕ ∈ E p,∗

D , then ϕ∧ i∗τ only
depends on i∗ϕ and we write

ϕ ∧ i∗τ = i∗(i∗ϕ ∧ τ).

Since ∂̄ is well-defined on E p,∗
X , ∂̄ is defined on (n− p, ∗)-currents τ on X by ∂̄τ.ϕ =

±τ.∂̄µ and we have ∂̄i∗τ = i∗∂̄τ .
If τ is an (n, n)-current on X with compact support we define

(3.19)

∫

X
τ := τ.i∗1.

Notice that i∗1 is a well-defined element in E 0,0
X independent of the local embedding

i : X → D. Hence, (3.19) makes sense on any pure-dimensionalX, not just embedded
ones.
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on Xp-reg and T is given by matrix multiplication by T̃ , i.e., Tϕ = T̃ (ϕ1, . . . , ϕν)
t.

Proof. Let ψ ∈ E 0,∗
Z . By definition of T and (2.1),

T (ψ ∧ ϕ) = T (π∗ψ ∧ ϕ) =
(
π∗(π∗ψ ∧ ϕ ∧ wαµj)

)
|α|<M,j=1,...,m

= ψ ∧
(
π∗(ϕ ∧ wαµj)

)
|α|<M,j=1,...,m

.

Hence, T is E 0,∗
Z -linear. The same computation shows that T̃ is OZ-linear and there-

fore given by a matrix with elements in Ωn
Z . Explicitly, since any ϕ ∈ Ωp

X can be
written ϕ =

∑
k ϕkbk + J p for (unique) ϕk ∈ OZ ,

(3.14) T̃ =



π∗(wα1b1 ∧ µ1) . . . π∗(wα1bν ∧ µ1)

...
. . .

...
π∗(wαM̃ b1 ∧ µm) . . . π∗(wαM̃ bν ∧ µm)


 .

Let ϕ ∈ E p,∗
X and let ϕ̃ ∈ E p,∗

D be any representative. We can write ϕ̃ =
∑

i ϕ̃
′
i∧ ϕ̃′′

i ,

where ϕ̃′
i ∈ E 0,∗

D and ϕ̃′′
i ∈ Ωp

D. Moreover, we write ϕ̃′
i = φi+ψi, where every term of

φi contains a factor dw̄j for some j and no term of ψi contains such a factor. Taylor
expanding (the coefficients of) ψi with respect to w and w̄ to the order M we get

ψi(z, w) =
∑

|α|<M

∂αψi

∂wα
(z, 0)

wα

α!
+

∑

|α|=M

wαψ̃i,α +O(w̄),

where ψ̃i,α ∈ E 0,∗
D and O(w̄) is a sum of terms divisible by some w̄j . In view of (3.5)

and (2.4), φi, w
αψ̃i,α, and O(w̄) are in Ker p i∗. Hence,

(3.15) ϕ̃ =
∑

i,|α|<M

∂αψi

∂wα
(z, 0)

wα

α!
∧ ϕ̃′′

i + Ker p i∗.

Since wαϕ̃′′
i ∈ Ωp

D there are ϕ̃α,i,k ∈ OZ such that wαϕ̃′′
i =

∑
k ϕ̃α,i,k(z)bk + J p, and

so (3.13) follows from (3.15). By E 0,∗
Z -linearity,

T (ϕk ∧ bk) = ϕk ∧ T |Ωp
X
bk = ϕkT̃ (0, . . . , 1k, . . . , 0)

t

and the last statement of the lemma follows. �
Notice that by this lemma, T is a map E p,∗

X → (E n,∗
Z )mM̃ on Xp-reg.

Proposition 3.13. On Xp-reg, E p,∗
X is a free E 0,∗

Z -module, the representation (3.13)
of an element ϕ ∈ E p,∗

X is unique, and

E p,∗
X = E p,∗

D /
(
J E p,∗

D + dJ ∧ E p−1,∗
D + JZE p,∗

D + dJZ ∧ E p,∗
D

)
,

where JZ =
√
J .

Proof. Notice first that since T̃ is injective and Ωp
X is a free OZ-module on Xp-reg it

follows that, generically on Xp-reg, T̃ is a pointwise injective matrix (times dz1∧· · ·∧
dzn). Consider a representation (3.13) and assume that

∑
k ϕk ∧ bk ∈ Ker p i∗. Then

T̃ (ϕ1, . . . , ϕν)
t = 0. Since T̃ is generically pointwise injective on Xp-reg it follows that

ϕj = 0, j = 1, . . . , ν, on Xp-reg. Hence, the representation (3.13) is unique and E p,∗
X

is a free E 0,∗
X -module.

It remains to see that

(3.16) Ker p i∗ = J E p,∗
D + dJ ∧ E p−1,∗

D + JZE p,∗
D + dJZ ∧ E p,∗

D
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onXp-reg. Assume that ϕ is an element of the right-hand side and let µ ∈ Hom OX
(Ωp

X ,CH Z
D ).

In view of (2.4), the terms of ϕ contained in JZE p,∗
D + dJZ ∧ E p,∗

D annihilate µ so we

may assume that ϕ ∈ J E p,∗
D +dJ ∧E p−1,∗

D = Ĵ p ∧E 0,∗
D . Write ϕ as (a sum of terms)

ϕ′ ∧ ϕ′′, where ϕ′ ∈ Ĵ p and ϕ′′ ∈ E 0,∗
D . Since J p ⊃ Ĵ p we have ϕ′ ∧ µ = 0. Thus

ϕ ∧ µ = 0 and so ϕ ∈ Ker p i∗.
Assume that ϕ ∈ Ker p i∗ and write ϕ as (a sum of terms) ϕ′ ∧ϕ′′, where ϕ′ ∈ Ωp

D

and ϕ′′ ∈ E 0,∗
D . As in the proof of Lemma 3.12, by Taylor expanding (the coefficients

of) ϕ′′ with respect to w to order M , we have

(3.17) ϕ(z, w) = ϕ′ ∧
∑

|α|<M

∂αϕ′′

∂wα
(z, 0)

wα

α!
+ ϕ′ ∧

∑

|α|=M

wαϕ̃′
α +O(w̄, dw̄),

where ϕ̃′
α ∈ E 0,∗

D and O(w̄, dw̄) is a sum of smooth terms containing either some w̄j

or dw̄j . The second and the last term in the right-hand side of (3.17) belong to the
right-hand side of (3.16). As in the proof of Lemma 3.12 again, this time by writing
wαϕ′ ∈ Ωp

D modulo J p as a OZ-combination of the bk on Xp-reg,

(3.18) ϕ′ ∧
∑

|α|<M

∂αϕ′′

∂wα
(z, 0)

wα

α!
=

ν∑

k=1

φk ∧ bk + J p ∧ E 0,∗
Z ,

where φk ∈ E 0,∗
Z . Since Ĵ p = J p on Xp-reg the last term on the right-hand side

is contained in the right-hand side of (3.16). The sum S in the right-hand side of
(3.18) is in Ker p i∗ since, by the proof so far, ϕ and ϕ − S are in Ker p i∗. Thus,

in view of Lemma 3.12, T̃ (φ1, . . . , φν)
t = TS = 0. Since T̃ is generically pointwise

injective on Xp-reg, φj = 0 on Xp-reg. Hence, the left-hand side of (3.18) belongs to
the right-hand side of (3.16). Thus, all terms in the right-hand side of (3.17) do too,
and so (3.16) follows. �

3.4. Currents and structure forms on X. The (n−p, n−q)-currents on X is the
dual of the space of compactly supported sections of E p,q

X , cf. [18, Section 4.2]. The
topology on E p,∗

X = E p,∗
D /Ker p i∗ is the quotient topology. Notice that Ker p i∗ is a

closed subspace of E p,∗
D since it is defined as the annihilator of currents. It follows

that the (n−p, n−q)-currents on X can be identified with the (N−p,N−q)-currents
µ in D such that µ.ϕ = 0 for all ϕ ∈ Ker p i∗ with compact support. This holds if
and only if ϕ ∧ µ = 0 for all ϕ ∈ Ker p i∗ since Ker p i∗ is both a right and left

E 0,∗
D -submodule of E p,∗

D . If τ is an (n − p, n − q)-current on X we write i∗τ for the
corresponding (N −p,N − q)-current in D. Notice that if ϕ ∈ E p,∗

D , then ϕ∧ i∗τ only
depends on i∗ϕ and we write

ϕ ∧ i∗τ = i∗(i∗ϕ ∧ τ).

Since ∂̄ is well-defined on E p,∗
X , ∂̄ is defined on (n− p, ∗)-currents τ on X by ∂̄τ.ϕ =

±τ.∂̄µ and we have ∂̄i∗τ = i∗∂̄τ .
If τ is an (n, n)-current on X with compact support we define

(3.19)

∫

X
τ := τ.i∗1.

Notice that i∗1 is a well-defined element in E 0,0
X independent of the local embedding

i : X → D. Hence, (3.19) makes sense on any pure-dimensionalX, not just embedded
ones.
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Let µ ∈ Hom OD
(Ωp

D,W
Z,∗
D ), cf. Remark 2.2, and assume that J p ∧ µ = 0. Then

Ĵ p ∧ µ = 0 and so, in view of (2.4) and (3.13), if ϕ ∈ Ker p i∗ we have ϕ ∧ µ = 0 on
Xp-reg. Thus, by the SEP, ϕ ∧ µ = 0. Hence, µ corresponds to an (n− p, ∗)-current
on X.

Definition 3.14. The subsheaf Wn−p,∗
X of the sheaf of currents on X is defined by

(3.20) i∗Wn−p,∗
X = {µ ∈ Hom OD

(Ωp
D,W

Z,∗
D ); J µ = dJ ∧ µ = 0}.

Notice that, since Ĵ p = J p on Xp-reg and currents in WZ
D have the SEP with

respect to Z, we have, cf. (3.5),

i∗Wn−p,∗
X = {µ ∈ Hom OD

(Ωp
D,W

Z,∗
D ); J p ∧ µ = 0}.

Recall that the current R associated with Ωp
X has the SEP with respect to Z and

J p ∧ R = 0. By (3.3), R has the same properties. Therefore, there is ω ∈ Wn−p,∗
X

such that

(3.21) R = i∗ω.

We say that ω is an (n− p)-structure form on X.

Definition 3.15. We let ωn−p
X = {τ ∈ Wn−p,0

X ; ∂̄τ = 0}.
By Definition 3.14, in view of Remark 2.2, (2.6), and (3.5), we have

(3.22) i∗ωn−p
X = Hom OX

(Ωp
X ,CH Z

D ),

cf. (2.8).

Proposition 3.16. There is a tuple ω0 = (ω01, . . . , ω0r), where ω0i ∈ ωn−p
X , and a

tuple a0 = (a01, . . . , a0r) of Eκ-valued almost semi-meromorphic (0, 0)-currents a0i

in D such that a0 is smooth outside Zp
κ+1 := Z

Ωp
X

κ+1 and

(3.23) Rκ = a0 · i∗ω0.

Moreover, for j = 1, 2, . . . , n, there are Hom(Ej−1, Ej)-valued almost semi-meromorphic

(0, j)-currents aj in D, smooth outside Zp
κ+j := Z

Ωp
X

κ+j, such that

(3.24) Rκ+j = ajRκ+j−1,

where the product is defined as in (2.9).

Proof. Since Ker f∗
κ+1 ⊂ O(E∗

κ) is coherent, in particular finitly generated, there is
a trivial vector bundle F → D and a morphism g : O(Eκ) → O(F ) such that the
image of the transpose g∗ : O(F ∗) → O(E∗

κ) equals Ker f∗
κ+1. Notice that gfκ+1 = 0

since f∗
κ+1g

∗ = 0. As in the proofs of [7, Proposition 3.3] and [25, Proposition 3.2],
the pointwise minimal (with respect to some choice of metric) inverse, a0, of g is
smooth outside Zp

κ+1, has an almost semi-meromorphic extension across Zp
κ+1, and

Rκ = a0gRκ. Hence,

(3.25) Rκ = Rκ ⊗ dζ = a0gRκ.

In view of Lemma 3.6 we have

∂̄gRκ = gfκ+1Rκ = 0,

gRκ is an F -valued section of Hom OD
(Ωp

D,W
Z,∗
D ), and J p ∧ gRκ = 0. Thus, after

a choice of frame of F , we can identify gRκ with a tuple ω0 of sections of ωn−p
X ,
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i.e., gRκ = i∗ω0. By the choice of frame of F , a0 is a tuple of Eκ-valued almost
semi-meromorphic currents. Hence, (3.23) follows from (3.25).

By [8, Theorem 4.4], in D \ Zp
κ+j there are smooth (0, j)-forms aj such that

Rκ+j = ajRκ+j−1. As in the proof of [7, Proposition 3.3] the aj have almost semi-
meromorphic extensions (also denoted aj) across Zp

κ+j and Rκ+j = ajRκ+j−1 holds

in D; here ajRκ+j−1 is defined as in (2.9), and we remark that for this last identity
to hold in D it is necessary that Ωp

X has pure dimension. Thus, (3.24) follows. �

4. The sheaf Vp,∗
X .

The sheaf Vp,∗
X is an intrinsic sheaf on X that extends E p,∗

X . In terms of our local
embedding i : X → D the idea is as follows. Recall that Z = Xred and that Ωp

X
locally on Xp-reg ⊂ Zreg is a free OZ-module, where the module structure depends
on a choice of local coordinates. As in Section 3.3 we let {bk}νk=1 be a local OZ-basis
of Ωp

X . By Lemma 3.12, each ϕ ∈ E p,∗
X has a representative

∑
k ϕk ∧ bk on Xp-reg,

where ϕ ∈ E 0,∗
Z . One can define Vp,∗

X on Xp-reg as such sums with ϕk ∈ W0,∗
Z instead

of E 0,∗
X and require ϕk to transform under changes of coordinates and base {bk} as

in the case of E p,∗
X . However, we choose a more invariant approach. To motivate it

we notice that each sum
∑

k ϕk ∧ bk with ϕk ∈ W0,∗
Z induces an OX -linear mapping

ωn−p
X → Wn,∗

X as follows.

Let µ ∈ ωn−p
X . Then bk ∧ i∗µ is in CH Z

D and depends only on the class of bk in

Ωp
X . Moreover, J bk ∧ i∗µ = 0. If ϕk ∈ W0,∗

Z then, in view of (2.7), ϕk ∧ bk ∧ i∗µ is

well-defined in WZ,∗
D since ϕk ∧ ∂̄(dw/wα+1) exists as a tensor product. Moreover,

Jϕk ∧ bk ∧ i∗µ = 0 and so ϕk ∧ bk ∧ i∗µ defines an element in Wn,∗
X . Hence, ϕk ∧ bk

induces a mapping ωn−p
X → Wn,∗

X .

With this in mind we make the following definition.

Definition 4.1. Vp,∗
X := Hom OX

(ωn−p
X ,Wn,∗

X ).

Remark 4.2. The sheaf V0,∗
X was introduced in [6, Section 7] but was denoted W0,∗

X

there. In this paper W0,∗
X naturally has another meaning, see Definition 3.14; cf. also

Proposition 4.6 below.

If ϕ ∈ E p,∗
D , then ϕ defines an element ϕ′ in Vp,∗

X by ϕ′(µ) = τ , where i∗τ = ϕ∧ i∗µ.
By Definition 3.7 and (3.22), ϕ′ = 0 if and only if ϕ ∈ Ker p i∗. Hence, we have a
well-defined injection

E p,∗
X ↪→ Vp,∗

X .

In consistency with Remark 2.2, for ϕ ∈ Vp,∗
X and µ ∈ ωn−p

X we write ϕ∧µ instead
of ϕ(µ).

Definition 4.3. Let ϕ, ψ ∈ Vp,∗
X . We say that ∂̄ϕ = ψ if ∂̄(ϕ ∧ µ) = ψ ∧ µ for all

µ ∈ ωn−p
X .

Proposition 4.4. Let ϕ ∈ Vp,∗
X . On Xp-reg there are ϕk ∈ W0,∗

Z such that, for any

µ ∈ ωn−p
X ,

(4.1) i∗ϕ ∧ µ =

ν∑

k=1

ϕk ∧ bk ∧ i∗µ =

ν∑

k=1

∑

α

ϕk ∧ π∗(wαbk ∧ i∗µ) ∧ ∂̄
dw

wα+1
.
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Let µ ∈ Hom OD
(Ωp

D,W
Z,∗
D ), cf. Remark 2.2, and assume that J p ∧ µ = 0. Then

Ĵ p ∧ µ = 0 and so, in view of (2.4) and (3.13), if ϕ ∈ Ker p i∗ we have ϕ ∧ µ = 0 on
Xp-reg. Thus, by the SEP, ϕ ∧ µ = 0. Hence, µ corresponds to an (n− p, ∗)-current
on X.

Definition 3.14. The subsheaf Wn−p,∗
X of the sheaf of currents on X is defined by

(3.20) i∗Wn−p,∗
X = {µ ∈ Hom OD

(Ωp
D,W

Z,∗
D ); J µ = dJ ∧ µ = 0}.

Notice that, since Ĵ p = J p on Xp-reg and currents in WZ
D have the SEP with

respect to Z, we have, cf. (3.5),

i∗Wn−p,∗
X = {µ ∈ Hom OD

(Ωp
D,W

Z,∗
D ); J p ∧ µ = 0}.

Recall that the current R associated with Ωp
X has the SEP with respect to Z and

J p ∧ R = 0. By (3.3), R has the same properties. Therefore, there is ω ∈ Wn−p,∗
X

such that

(3.21) R = i∗ω.

We say that ω is an (n− p)-structure form on X.

Definition 3.15. We let ωn−p
X = {τ ∈ Wn−p,0

X ; ∂̄τ = 0}.
By Definition 3.14, in view of Remark 2.2, (2.6), and (3.5), we have

(3.22) i∗ωn−p
X = Hom OX

(Ωp
X ,CH Z

D ),

cf. (2.8).

Proposition 3.16. There is a tuple ω0 = (ω01, . . . , ω0r), where ω0i ∈ ωn−p
X , and a

tuple a0 = (a01, . . . , a0r) of Eκ-valued almost semi-meromorphic (0, 0)-currents a0i

in D such that a0 is smooth outside Zp
κ+1 := Z

Ωp
X

κ+1 and

(3.23) Rκ = a0 · i∗ω0.

Moreover, for j = 1, 2, . . . , n, there are Hom(Ej−1, Ej)-valued almost semi-meromorphic

(0, j)-currents aj in D, smooth outside Zp
κ+j := Z

Ωp
X

κ+j, such that

(3.24) Rκ+j = ajRκ+j−1,

where the product is defined as in (2.9).

Proof. Since Ker f∗
κ+1 ⊂ O(E∗

κ) is coherent, in particular finitly generated, there is
a trivial vector bundle F → D and a morphism g : O(Eκ) → O(F ) such that the
image of the transpose g∗ : O(F ∗) → O(E∗

κ) equals Ker f∗
κ+1. Notice that gfκ+1 = 0

since f∗
κ+1g

∗ = 0. As in the proofs of [7, Proposition 3.3] and [25, Proposition 3.2],
the pointwise minimal (with respect to some choice of metric) inverse, a0, of g is
smooth outside Zp

κ+1, has an almost semi-meromorphic extension across Zp
κ+1, and

Rκ = a0gRκ. Hence,

(3.25) Rκ = Rκ ⊗ dζ = a0gRκ.

In view of Lemma 3.6 we have

∂̄gRκ = gfκ+1Rκ = 0,

gRκ is an F -valued section of Hom OD
(Ωp

D,W
Z,∗
D ), and J p ∧ gRκ = 0. Thus, after

a choice of frame of F , we can identify gRκ with a tuple ω0 of sections of ωn−p
X ,
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i.e., gRκ = i∗ω0. By the choice of frame of F , a0 is a tuple of Eκ-valued almost
semi-meromorphic currents. Hence, (3.23) follows from (3.25).

By [8, Theorem 4.4], in D \ Zp
κ+j there are smooth (0, j)-forms aj such that

Rκ+j = ajRκ+j−1. As in the proof of [7, Proposition 3.3] the aj have almost semi-
meromorphic extensions (also denoted aj) across Zp

κ+j and Rκ+j = ajRκ+j−1 holds

in D; here ajRκ+j−1 is defined as in (2.9), and we remark that for this last identity
to hold in D it is necessary that Ωp

X has pure dimension. Thus, (3.24) follows. �

4. The sheaf Vp,∗
X .

The sheaf Vp,∗
X is an intrinsic sheaf on X that extends E p,∗

X . In terms of our local
embedding i : X → D the idea is as follows. Recall that Z = Xred and that Ωp

X
locally on Xp-reg ⊂ Zreg is a free OZ-module, where the module structure depends
on a choice of local coordinates. As in Section 3.3 we let {bk}νk=1 be a local OZ-basis
of Ωp

X . By Lemma 3.12, each ϕ ∈ E p,∗
X has a representative

∑
k ϕk ∧ bk on Xp-reg,

where ϕ ∈ E 0,∗
Z . One can define Vp,∗

X on Xp-reg as such sums with ϕk ∈ W0,∗
Z instead

of E 0,∗
X and require ϕk to transform under changes of coordinates and base {bk} as

in the case of E p,∗
X . However, we choose a more invariant approach. To motivate it

we notice that each sum
∑

k ϕk ∧ bk with ϕk ∈ W0,∗
Z induces an OX -linear mapping

ωn−p
X → Wn,∗

X as follows.

Let µ ∈ ωn−p
X . Then bk ∧ i∗µ is in CH Z

D and depends only on the class of bk in

Ωp
X . Moreover, J bk ∧ i∗µ = 0. If ϕk ∈ W0,∗

Z then, in view of (2.7), ϕk ∧ bk ∧ i∗µ is

well-defined in WZ,∗
D since ϕk ∧ ∂̄(dw/wα+1) exists as a tensor product. Moreover,

Jϕk ∧ bk ∧ i∗µ = 0 and so ϕk ∧ bk ∧ i∗µ defines an element in Wn,∗
X . Hence, ϕk ∧ bk

induces a mapping ωn−p
X → Wn,∗

X .

With this in mind we make the following definition.

Definition 4.1. Vp,∗
X := Hom OX

(ωn−p
X ,Wn,∗

X ).

Remark 4.2. The sheaf V0,∗
X was introduced in [6, Section 7] but was denoted W0,∗

X

there. In this paper W0,∗
X naturally has another meaning, see Definition 3.14; cf. also

Proposition 4.6 below.

If ϕ ∈ E p,∗
D , then ϕ defines an element ϕ′ in Vp,∗

X by ϕ′(µ) = τ , where i∗τ = ϕ∧ i∗µ.
By Definition 3.7 and (3.22), ϕ′ = 0 if and only if ϕ ∈ Ker p i∗. Hence, we have a
well-defined injection

E p,∗
X ↪→ Vp,∗

X .

In consistency with Remark 2.2, for ϕ ∈ Vp,∗
X and µ ∈ ωn−p

X we write ϕ∧µ instead
of ϕ(µ).

Definition 4.3. Let ϕ, ψ ∈ Vp,∗
X . We say that ∂̄ϕ = ψ if ∂̄(ϕ ∧ µ) = ψ ∧ µ for all

µ ∈ ωn−p
X .

Proposition 4.4. Let ϕ ∈ Vp,∗
X . On Xp-reg there are ϕk ∈ W0,∗

Z such that, for any

µ ∈ ωn−p
X ,

(4.1) i∗ϕ ∧ µ =

ν∑

k=1

ϕk ∧ bk ∧ i∗µ =

ν∑

k=1

∑

α

ϕk ∧ π∗(wαbk ∧ i∗µ) ∧ ∂̄
dw

wα+1
.



THE ∂̄-EQUATION FOR (p, q)-FORMS ON A NON-REDUCED ANALYTIC SPACE 17

Proof. Recall from (3.12) the matrix T̃ . We can choose a holomorphic matrix Ã such
that

(4.2) (OZ)
ν T̃−→ (Ωn

Z)
mM̃ Ã−→ (Ωn

Z)
M ′

is exact. Then also

(4.3) (W0,∗
Z )ν

T̃−→ (Wn,∗
Z )mM̃ Ã−→ (Wn,∗

Z )M
′

is exact. To see this, notice first that (4.2) is generically pointwise exact. Take
Hermitian metrics on the vector bundles underlying the free sheaves in (4.2) and let

B̃ and S̃ be the Moore-Penrose inverses of T̃ and Ã, respectively. Then B̃ and S̃ are
almost semi-meromorphic, cf. the definition of σj in connection to (2.10). Moreover,

on the set where (4.2) is pointwise exact, S̃Ã + T̃ B̃ is the identity on (Ωn
Z)

mM̃ .

Thus, if µ ∈ (Wn,∗
Z )mM̃ and Ãµ = 0, we have µ = T̃ B̃µ since W is closed under

multiplication by almost semi-meromorphic currents, cf. (2.9).

Let ϕ ∈ Vp,∗
X and let µj , j = 1, . . . ,m, be generators of ωn−p

X . For notational
convenience, we will identify ϕ∧µj and i∗ϕ∧µj as well as µj and the corresponding

currents in i∗ωn−p
X . In view of (2.5),

(4.4) ϕ ∧ µj =
1

(2πi)κ

∑

α

π∗(wαϕ ∧ µj) ∧ ∂̄
dw

wα+1
.

We claim that the tuple (π∗(wαϕ ∧ µj))α,j ∈ (Wn,∗
Z )mM̃ is in the image of (W0,∗

Z )ν

under T̃ . Given the claim, there are ϕk ∈ W0,∗
Z such that, cf. (3.14),

π∗(wαϕ ∧ µj) = (2πi)κ
∑

k

ϕk ∧ π∗(wαbk ∧ µj).

By (4.4), (4.1) follows with µ = µj . Since µj generate ωn−p
X , (4.1) follows.

It remains to prove the claim. By exactness of (4.3) we need to show that

(4.5) Ã(π∗(wαϕ ∧ µj))α,j = 0.

In view of Proposition 2.3 it is enough to show (4.5) where π∗(wαϕ∧µj) are smooth
and (4.2) is pointwise exact. Fix such a point; for notational convenience, suppose it
is 0.

Let (2.10) be a minimal resolution of Ωp
X in a neighborhood of 0. Since Ωp

X is
Cohen–Macaulay on Xp-reg, E� = 0 for � > κ, and the corresponding currents R = Rκ

and R = Rκ are ∂̄-closed. Since the mapping (3.7) is an isomorphism it follows that
the components, µj , j = 1, . . . ,m, of R (with respect to some frame of Eκ) generate

i∗ωn−p
X . Let (O(E′

•), f
′
•) be the Koszul complex of the regular sequence z1, . . . , zn in

D. Then (O(E′
•), f

′
•) is a resolution of OD/〈z〉, O(E′

0) = OD, O(E′
n) = OD, and the

corresponding current is R′ = ∂̄(1/z) := ∂̄(1/z1) ∧ · · · ∧ ∂̄(1/zn).
Let (O(E′′

• ), f
′′
• ) be the tensor product of the complexes (O(E•), f•) and (O(E′

•), f
′
•),

i.e., E′′
k = ⊕i+j=kEi⊗E′

j and f ′′
• = f•⊗1E′+1E⊗f ′

•. As the tensor product of minimal

resolutions of properly intersecting Cohen–Macaulay modules, (O(E′′
• ), f

′′
• ) is a reso-

lution of F := O(E′′
0 )/Im f ′′

1 . Notice that O(E′′
0 ) = O(E0)⊗O(E′

0) = O(E0) = Ωp
D

and that I := Im f ′′
1 = Im f1 · O(E′

0) + Im f ′
1 · O(E0) so that

(4.6) F = Ωp
D/I = Ωp

D/(J p + 〈z〉Ωp
D).

Clearly F is supported at 0 and since (O(E′′
• ), f

′′
• ) has length κ + n = N , F is

Cohen–Macaulay and (O(E′′
• ), f

′′
• ) is a minimal resolution. Following [3, Section 4],
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the product R ∧ R′ makes sense and is the current R′′ associated with (O(E′′
• ), f

′′
• ).

It follows that µj ∧ ∂̄(1/z) generate Hom OX
(Ωp

D/I,CH Z
D ). Since F is Cohen–

Macaulay, for the same reason that the second map in (3.8) is an isomorphism on
Xp-reg, the map

(4.7) F → Hom OX

(
Hom OX

(Ωp
D/I,CH Z

D ),Hom OX
(OD/(J + 〈z〉),CH Z

D )
)
,

φ �→ (µ �→ φ ∧ µ),

is an isomorphism. In view of (2.5), if φ ∈ F , then

(4.8) φ ∧ µj ∧ ∂̄(1/z) =
1

(2πi)N

∑

α

π′
∗(w

αφ ∧ µj ∧ ∂̄
1

z
) ∧ ∂̄

dw

wα+1
∧ ∂̄

dz

z
,

where π′ is the map (z, w) �→ 0. The tuple (π′
∗(w

αφ ∧ µj ∧ ∂̄(1/z)))α,j ∈ CmM̃

determines φ and we have the injective map

(4.9) F → CmM̃ ,

cf. (3.12). In view of (4.6), since bk generate Ωp
X = Ωp

D/J p over OZ , bk also generate
F over OZ . Hence, we have the surjective map (OZ)

ν → F , (hk)k �→ ∑
k hkbk.

Composing with (4.9), we get

T̃ : (OZ)
ν → CmM̃ , T̃ (hk)k =

(∑

k

π′
∗(w

αhkbk ∧ µj ∧ ∂̄
1

z
)
)
α,j

.

Recall (again) the map T̃ from (3.12) and (3.14) and write T̃ = T̃ ′dz, where T̃ ′ is a
matrix of holomorphic functions. Let π′′ : Z → {0} and notice that π′ = π′′ ◦ π. We
get

π′
∗(w

αhkbk ∧ µj ∧ ∂̄
1

z
) = π′′

∗
(
π∗(wαbk ∧ µj)hk ∧ ∂̄

1

z

)
= π′′

∗
(
T̃ ′
α,j,khkdz ∧ ∂̄

1

z

)

= T̃ ′
α,j,k(0)hk(0).

Hence, T̃ dz = T̃ (0). Since (4.2) is pointwise exact at 0 it follows that a tuple

(λα,j) ∈ CmM̃ is in the image of T̃ if and only if Ã(0)(λα,j) = 0. We remark that

this implies that T̃ is pointwise injective on Xp-reg.
Now, by (4.4), since π∗(wαϕ ∧ µj) is smooth in a neighborhood of 0, we have

(4.10) ϕ ∧ µj =
∑

α

′∑

|L|=∗
φj,α,L(z) ∧ dz̄L ∧ ∂̄

dw

wα+1
,

where φj,α,L(z) are smooth (n, 0)-forms on Z and dz̄L are a basis of T ∗
0,∗Z. Set

(4.11) φL(µj ∧ ∂̄(1/z)) :=
∑

α

φj,α,L(z) ∧ ∂̄
dw

wα+1
∧ ∂̄

1

z
.

To see that φL is well-defined, recall that µj are the components of R. Since (3.7)
is an isomorphism it follows that the relations between the µj are generated by f∗

κ .
In the same way, it follows that the relations between µj ∧ ∂̄(1/z), which are the
components of R′′, are generated by (f ′′

κ+n)
∗ = f∗

κ ⊗ 1(E′
n)

∗ ⊕ 1E∗
κ
⊗ (f ′

n)
∗. Thus,

if aj are such that
∑

j a
′′
jµj ∧ ∂̄(1/z) = 0, then we have that a′′j = aj + a′j , where∑

j ajµj = 0, and a′j ∂̄(1/z) = 0. This implies that φL is well-defined.
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Proof. Recall from (3.12) the matrix T̃ . We can choose a holomorphic matrix Ã such
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(4.2) (OZ)
ν T̃−→ (Ωn

Z)
mM̃ Ã−→ (Ωn

Z)
M ′
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(4.3) (W0,∗
Z )ν

T̃−→ (Wn,∗
Z )mM̃ Ã−→ (Wn,∗

Z )M
′
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Z)

mM̃ .
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X and let µj , j = 1, . . . ,m, be generators of ωn−p

X . For notational
convenience, we will identify ϕ∧µj and i∗ϕ∧µj as well as µj and the corresponding

currents in i∗ωn−p
X . In view of (2.5),

(4.4) ϕ ∧ µj =
1

(2πi)κ

∑

α

π∗(wαϕ ∧ µj) ∧ ∂̄
dw

wα+1
.

We claim that the tuple (π∗(wαϕ ∧ µj))α,j ∈ (Wn,∗
Z )mM̃ is in the image of (W0,∗

Z )ν

under T̃ . Given the claim, there are ϕk ∈ W0,∗
Z such that, cf. (3.14),

π∗(wαϕ ∧ µj) = (2πi)κ
∑

k

ϕk ∧ π∗(wαbk ∧ µj).

By (4.4), (4.1) follows with µ = µj . Since µj generate ωn−p
X , (4.1) follows.
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•), f
′
•) be the Koszul complex of the regular sequence z1, . . . , zn in
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•), f

′
•) is a resolution of OD/〈z〉, O(E′

0) = OD, O(E′
n) = OD, and the

corresponding current is R′ = ∂̄(1/z) := ∂̄(1/z1) ∧ · · · ∧ ∂̄(1/zn).
Let (O(E′′

• ), f
′′
• ) be the tensor product of the complexes (O(E•), f•) and (O(E′

•), f
′
•),

i.e., E′′
k = ⊕i+j=kEi⊗E′

j and f ′′
• = f•⊗1E′+1E⊗f ′

•. As the tensor product of minimal

resolutions of properly intersecting Cohen–Macaulay modules, (O(E′′
• ), f

′′
• ) is a reso-

lution of F := O(E′′
0 )/Im f ′′

1 . Notice that O(E′′
0 ) = O(E0)⊗O(E′

0) = O(E0) = Ωp
D

and that I := Im f ′′
1 = Im f1 · O(E′

0) + Im f ′
1 · O(E0) so that

(4.6) F = Ωp
D/I = Ωp

D/(J p + 〈z〉Ωp
D).

Clearly F is supported at 0 and since (O(E′′
• ), f

′′
• ) has length κ + n = N , F is

Cohen–Macaulay and (O(E′′
• ), f

′′
• ) is a minimal resolution. Following [3, Section 4],
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the product R ∧ R′ makes sense and is the current R′′ associated with (O(E′′
• ), f

′′
• ).

It follows that µj ∧ ∂̄(1/z) generate Hom OX
(Ωp

D/I,CH Z
D ). Since F is Cohen–

Macaulay, for the same reason that the second map in (3.8) is an isomorphism on
Xp-reg, the map

(4.7) F → Hom OX

(
Hom OX

(Ωp
D/I,CH Z

D ),Hom OX
(OD/(J + 〈z〉),CH Z

D )
)
,

φ �→ (µ �→ φ ∧ µ),

is an isomorphism. In view of (2.5), if φ ∈ F , then

(4.8) φ ∧ µj ∧ ∂̄(1/z) =
1

(2πi)N

∑

α

π′
∗(w

αφ ∧ µj ∧ ∂̄
1

z
) ∧ ∂̄

dw

wα+1
∧ ∂̄

dz

z
,

where π′ is the map (z, w) �→ 0. The tuple (π′
∗(w

αφ ∧ µj ∧ ∂̄(1/z)))α,j ∈ CmM̃

determines φ and we have the injective map

(4.9) F → CmM̃ ,

cf. (3.12). In view of (4.6), since bk generate Ωp
X = Ωp

D/J p over OZ , bk also generate
F over OZ . Hence, we have the surjective map (OZ)

ν → F , (hk)k �→ ∑
k hkbk.

Composing with (4.9), we get

T̃ : (OZ)
ν → CmM̃ , T̃ (hk)k =

(∑

k

π′
∗(w

αhkbk ∧ µj ∧ ∂̄
1

z
)
)
α,j

.

Recall (again) the map T̃ from (3.12) and (3.14) and write T̃ = T̃ ′dz, where T̃ ′ is a
matrix of holomorphic functions. Let π′′ : Z → {0} and notice that π′ = π′′ ◦ π. We
get

π′
∗(w

αhkbk ∧ µj ∧ ∂̄
1

z
) = π′′

∗
(
π∗(wαbk ∧ µj)hk ∧ ∂̄

1

z

)
= π′′

∗
(
T̃ ′
α,j,khkdz ∧ ∂̄

1

z

)

= T̃ ′
α,j,k(0)hk(0).

Hence, T̃ dz = T̃ (0). Since (4.2) is pointwise exact at 0 it follows that a tuple

(λα,j) ∈ CmM̃ is in the image of T̃ if and only if Ã(0)(λα,j) = 0. We remark that

this implies that T̃ is pointwise injective on Xp-reg.
Now, by (4.4), since π∗(wαϕ ∧ µj) is smooth in a neighborhood of 0, we have

(4.10) ϕ ∧ µj =
∑

α

′∑

|L|=∗
φj,α,L(z) ∧ dz̄L ∧ ∂̄

dw

wα+1
,

where φj,α,L(z) are smooth (n, 0)-forms on Z and dz̄L are a basis of T ∗
0,∗Z. Set

(4.11) φL(µj ∧ ∂̄(1/z)) :=
∑

α

φj,α,L(z) ∧ ∂̄
dw

wα+1
∧ ∂̄

1

z
.

To see that φL is well-defined, recall that µj are the components of R. Since (3.7)
is an isomorphism it follows that the relations between the µj are generated by f∗

κ .
In the same way, it follows that the relations between µj ∧ ∂̄(1/z), which are the
components of R′′, are generated by (f ′′

κ+n)
∗ = f∗

κ ⊗ 1(E′
n)

∗ ⊕ 1E∗
κ
⊗ (f ′

n)
∗. Thus,

if aj are such that
∑

j a
′′
jµj ∧ ∂̄(1/z) = 0, then we have that a′′j = aj + a′j , where∑

j ajµj = 0, and a′j ∂̄(1/z) = 0. This implies that φL is well-defined.
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Now, φL(µj ∧ ∂̄(1/z)) is an (N,N)-current, in particular ∂̄-closed, and it is anni-
hilated by 〈z〉. Moreover, it is annihilated by J since ϕ ∧ µj is, and

ϕ ∧ µj ∧ dz̄Lc = ±dz̄ ∧
∑

α

φj,α,L(z) ∧ ∂̄
dw

wα+1
,

where Lc = {1, . . . , n}\L. Hence, φL(µj∧∂̄(1/z)) is in Hom OX
(OD/(J+〈z〉),CH Z

D )
and it follows that φL is in the right-hand side of (4.7). Since (4.7) is an isomorphism,
φL is multiplication by an element, also denoted φL, in F . In view of (4.8) and (4.11),
the image under (4.9) of φL is the tuple

(2πi)N
(
φj,α,L(0)

)
α,j

.

It is in the image of T̃ and hence in the kernel of Ã(0). Thus,

0 = Ã(0)
( ′∑

|L|=∗
φj,α,L(0) ∧ dz̄L

)
α,j

.

However, in view of (4.4) and (4.10),
∑′

|L|=∗ φj,α,L(0)∧dz̄L is the value of π∗(wαϕ∧µj)

at 0 and so (4.5) follows at 0. Hence, (4.5) follows at points where π∗(wαϕ∧ µj) are
smooth and (4.2) is pointwise exact, concluding the proof of the claim. �

By Proposition 4.4, if ϕ ∈ Vp,∗
X then, on Xp-reg, there are ϕk ∈ W0,∗

Z such that ϕ is
given by multiplication by

∑
k ϕk ∧ bk in the way described in the second paragraph

of this section. In this way we can identify Vp,∗
X with such sums on Xp-reg.

The following lemma is proved in the same way as Lemma 7.7 and Corollary 7.8
are proved in [6].

Lemma 4.5. Each ϕ ∈ Vp,∗
X = Hom OX

(ωn−p
X ,Wn,∗

X ) has a unique extension to

an element in Hom E 0,∗
X

(E 0,∗
X ∧ωn−p

X ,Wn,∗
X ). Moreover, if µ ∈ Wn−p,∗

X is such that

i∗µ =
∑

� a� ∧ i∗µ�, where µ� ∈ ωn−p
X and a� are almost semi-meromorphic in D and

generically smooth on Z, then ϕ ∧ µ is well-defined in Wn,∗
X by the formula

i∗(ϕ ∧ µ) =
∑

�

(−1)deg a�·degϕa� ∧ i∗(ϕ ∧ µ�),

where the product by a� is defined as in (2.9).

Notice that by this lemma Vp,∗
X gets a natural E 0,∗

X -module structure, which is the

same as the E 0,∗
X -module structure it inherits from Wn,∗

X .

4.1. The sheaf Vp,∗
X in case X is reduced.

Proposition 4.6. If X = Z is reduced then Vp,∗
X = Wp,∗

X .

Lemma 4.7. If π : Z̃ → Z is a modification then π∗ : WZ̃
→ WZ is a bijection.

Proof. Denote the exceptional set of the modification by E. If π∗τ = 0 then τ is zero

on Z̃ \ E and by the SEP τ is zero everywhere. Hence π∗ is injective.
To show that the map is surjective pick ν ∈ WZ . By [5, Proposition 1.2] there is

a τ̃ ∈ PM
Z̃
such that π∗τ̃ = ν . We have τ̃ ∈ W

Z̃\E since π is a biholomorphism on

Z̃ \E. If we let τ := 1
Z̃\E τ̃ then τ ∈ W

Z̃
since τ must have the SEP with respect to

every subvariety. We also have π∗τ = ν since both π∗τ and π∗τ̃ are in WZ and they
are equal generically and therefore equal everywhere. �
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Lemma 4.8. Given ν ∈ Wn,q
Z and a generically non-zero µ ∈ ωn

Z there is a unique

ν ′ ∈ W0,q
Z such that ν = µ ∧ ν ′.

Proof. Let π : Z̃ → Z be a resolution of singularities. Then π∗µ is a generically non-

zero meromorphic n-form on Z̃. Moreover, by Lemma 4.7 there is a unique τ ∈ Wn,q

Z̃

such that π∗τ = ν. In view of [10, Theorem 3.7], since Z̃ is smooth, τ is a K
Z̃
-valued

section of W0,q

Z̃
. Thus, τ ′ := τ/π∗µ is a section of W0,q

Z̃
, and τ = π∗µ ∧ τ ′, cf. (2.9).

Then ν = π∗τ = π∗(π∗µ ∧ τ ′) = µ ∧ π∗τ ′ and thus π∗τ ′ does the job.
If we have two currents satisfying the lemma then they are equal where µ is non-

zero. By assumption this means that they are equal generically and then, by the
SEP, they are equal everywhere. �

Remark 4.9. Any h ∈ Hom OZ
(ωn−p

Z ,Wn,q
Z ) naturally extends to operate on forms

fµ, where f is a germ of a meromorphic function on Z, and µ ∈ ωn−p
Z . The extension

is unique and h becomes linear over the sheaf of meromorphic functions on Z. Notice
that fµ is not necessarily in ωn−p

Z .

Proof of Proposition 4.6. The currents in ωn−p
Z are meromorphic and in particular

almost semi-meromorphic. In view of (2.9) and the comment following it, a∧ν is well-
defined and in WZ for any almost semi-meromorphic current a on Z and any ν ∈ WZ .
Hence we can define a map Ψ: Wp,q

Z → Hom OZ
(ωn−p

Z ,Wn,q
Z ) by (Ψν)(µ) = µ ∧ ν.

If µ ∧ ν = 0 for all µ ∈ ωn−p
Z then ν = 0 on Zreg. But then, by the SEP, ν = 0 on Z

and hence Ψ is injective.
To show that Ψ is surjective take h ∈ Hom OZ

(ωn−p
Z ,Wn,q

Z ). Suppose we have a
local parametrization Z∩(∆z×∆w) → ∆z of Z, where ∆z and ∆w are polydiscs in Cn

z

and Cκ
w, respectively, so that {dzI}|I|=n−p generically is a basis forωn−p

Z . This means

that µ ∈ ωn−p
Z may be written µ =

∑
|I|=n−p fIdzI for some meromorphic functions

fI on Z. Therefore, by Remark 4.9, it suffices to find ν ∈ Wp,q
Z so that h(dzI) = dzI∧ν

for all I. By Lemma 4.8 there are unique νJ ∈ W0,q
Z with h(dzJ) = dz ∧ νJ . We let

ν =
∑

J dzJc ∧νJ , so that ν ∈ Wp,q
Z , and get dzI ∧ν =

∑
J dzI ∧dzJc ∧νJ = dz∧νI =

h(dzI). �

5. Integral operators on X

Given our local embedding i : X → D ⊂ CN as usual and a choice of local coordi-
nates z in D we define integral operators and prove their basic mapping properties.

Let R and R be the currents associated with a resolution (2.10) of Ωp
X such that

E0 = T ∗
p,0D. The (full) Bochner-Martinelli form in Dζ ×Dz, where ζ and z are the

same local coordinates in D, is

B =

N∑

j=1

1

(2πi)j
∂|ζ − z|2 ∧ (∂̄∂|ζ − z|2)j−1

|ζ − z|2j

and we let Bj be the component of B of bidegree (j, j − 1). Let H = H0 +H1 + · · ·
be a holomorphic form in Dζ ×Dz with values in Hom(E, T ∗

p,0(D ×D)), where Hj

has bidegree (j, 0) and values in Hom(Ej , T
∗
p,0(D×D)), and let g = g0 + g1 + · · · be

a smooth form in D′′
ζ ×D′

z, where gj has bidegree (j, j) and D′, D′′ ⊂ D. The forms
H and g will be specified in the next section.
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Now, φL(µj ∧ ∂̄(1/z)) is an (N,N)-current, in particular ∂̄-closed, and it is anni-
hilated by 〈z〉. Moreover, it is annihilated by J since ϕ ∧ µj is, and

ϕ ∧ µj ∧ dz̄Lc = ±dz̄ ∧
∑

α

φj,α,L(z) ∧ ∂̄
dw

wα+1
,

where Lc = {1, . . . , n}\L. Hence, φL(µj∧∂̄(1/z)) is in Hom OX
(OD/(J+〈z〉),CH Z

D )
and it follows that φL is in the right-hand side of (4.7). Since (4.7) is an isomorphism,
φL is multiplication by an element, also denoted φL, in F . In view of (4.8) and (4.11),
the image under (4.9) of φL is the tuple

(2πi)N
(
φj,α,L(0)

)
α,j

.

It is in the image of T̃ and hence in the kernel of Ã(0). Thus,

0 = Ã(0)
( ′∑

|L|=∗
φj,α,L(0) ∧ dz̄L

)
α,j

.

However, in view of (4.4) and (4.10),
∑′

|L|=∗ φj,α,L(0)∧dz̄L is the value of π∗(wαϕ∧µj)

at 0 and so (4.5) follows at 0. Hence, (4.5) follows at points where π∗(wαϕ∧ µj) are
smooth and (4.2) is pointwise exact, concluding the proof of the claim. �

By Proposition 4.4, if ϕ ∈ Vp,∗
X then, on Xp-reg, there are ϕk ∈ W0,∗

Z such that ϕ is
given by multiplication by

∑
k ϕk ∧ bk in the way described in the second paragraph

of this section. In this way we can identify Vp,∗
X with such sums on Xp-reg.

The following lemma is proved in the same way as Lemma 7.7 and Corollary 7.8
are proved in [6].

Lemma 4.5. Each ϕ ∈ Vp,∗
X = Hom OX

(ωn−p
X ,Wn,∗

X ) has a unique extension to

an element in Hom E 0,∗
X

(E 0,∗
X ∧ωn−p

X ,Wn,∗
X ). Moreover, if µ ∈ Wn−p,∗

X is such that

i∗µ =
∑

� a� ∧ i∗µ�, where µ� ∈ ωn−p
X and a� are almost semi-meromorphic in D and

generically smooth on Z, then ϕ ∧ µ is well-defined in Wn,∗
X by the formula

i∗(ϕ ∧ µ) =
∑

�

(−1)deg a�·degϕa� ∧ i∗(ϕ ∧ µ�),

where the product by a� is defined as in (2.9).

Notice that by this lemma Vp,∗
X gets a natural E 0,∗

X -module structure, which is the

same as the E 0,∗
X -module structure it inherits from Wn,∗

X .

4.1. The sheaf Vp,∗
X in case X is reduced.

Proposition 4.6. If X = Z is reduced then Vp,∗
X = Wp,∗

X .

Lemma 4.7. If π : Z̃ → Z is a modification then π∗ : WZ̃
→ WZ is a bijection.

Proof. Denote the exceptional set of the modification by E. If π∗τ = 0 then τ is zero

on Z̃ \ E and by the SEP τ is zero everywhere. Hence π∗ is injective.
To show that the map is surjective pick ν ∈ WZ . By [5, Proposition 1.2] there is

a τ̃ ∈ PM
Z̃
such that π∗τ̃ = ν . We have τ̃ ∈ W

Z̃\E since π is a biholomorphism on

Z̃ \E. If we let τ := 1
Z̃\E τ̃ then τ ∈ W

Z̃
since τ must have the SEP with respect to

every subvariety. We also have π∗τ = ν since both π∗τ and π∗τ̃ are in WZ and they
are equal generically and therefore equal everywhere. �
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Lemma 4.8. Given ν ∈ Wn,q
Z and a generically non-zero µ ∈ ωn

Z there is a unique

ν ′ ∈ W0,q
Z such that ν = µ ∧ ν ′.

Proof. Let π : Z̃ → Z be a resolution of singularities. Then π∗µ is a generically non-

zero meromorphic n-form on Z̃. Moreover, by Lemma 4.7 there is a unique τ ∈ Wn,q

Z̃

such that π∗τ = ν. In view of [10, Theorem 3.7], since Z̃ is smooth, τ is a K
Z̃
-valued

section of W0,q

Z̃
. Thus, τ ′ := τ/π∗µ is a section of W0,q

Z̃
, and τ = π∗µ ∧ τ ′, cf. (2.9).

Then ν = π∗τ = π∗(π∗µ ∧ τ ′) = µ ∧ π∗τ ′ and thus π∗τ ′ does the job.
If we have two currents satisfying the lemma then they are equal where µ is non-

zero. By assumption this means that they are equal generically and then, by the
SEP, they are equal everywhere. �

Remark 4.9. Any h ∈ Hom OZ
(ωn−p

Z ,Wn,q
Z ) naturally extends to operate on forms

fµ, where f is a germ of a meromorphic function on Z, and µ ∈ ωn−p
Z . The extension

is unique and h becomes linear over the sheaf of meromorphic functions on Z. Notice
that fµ is not necessarily in ωn−p

Z .

Proof of Proposition 4.6. The currents in ωn−p
Z are meromorphic and in particular

almost semi-meromorphic. In view of (2.9) and the comment following it, a∧ν is well-
defined and in WZ for any almost semi-meromorphic current a on Z and any ν ∈ WZ .
Hence we can define a map Ψ: Wp,q

Z → Hom OZ
(ωn−p

Z ,Wn,q
Z ) by (Ψν)(µ) = µ ∧ ν.

If µ ∧ ν = 0 for all µ ∈ ωn−p
Z then ν = 0 on Zreg. But then, by the SEP, ν = 0 on Z

and hence Ψ is injective.
To show that Ψ is surjective take h ∈ Hom OZ

(ωn−p
Z ,Wn,q

Z ). Suppose we have a
local parametrization Z∩(∆z×∆w) → ∆z of Z, where ∆z and ∆w are polydiscs in Cn

z

and Cκ
w, respectively, so that {dzI}|I|=n−p generically is a basis forωn−p

Z . This means

that µ ∈ ωn−p
Z may be written µ =

∑
|I|=n−p fIdzI for some meromorphic functions

fI on Z. Therefore, by Remark 4.9, it suffices to find ν ∈ Wp,q
Z so that h(dzI) = dzI∧ν

for all I. By Lemma 4.8 there are unique νJ ∈ W0,q
Z with h(dzJ) = dz ∧ νJ . We let

ν =
∑

J dzJc ∧νJ , so that ν ∈ Wp,q
Z , and get dzI ∧ν =

∑
J dzI ∧dzJc ∧νJ = dz∧νI =

h(dzI). �

5. Integral operators on X

Given our local embedding i : X → D ⊂ CN as usual and a choice of local coordi-
nates z in D we define integral operators and prove their basic mapping properties.

Let R and R be the currents associated with a resolution (2.10) of Ωp
X such that

E0 = T ∗
p,0D. The (full) Bochner-Martinelli form in Dζ ×Dz, where ζ and z are the

same local coordinates in D, is

B =

N∑

j=1

1

(2πi)j
∂|ζ − z|2 ∧ (∂̄∂|ζ − z|2)j−1

|ζ − z|2j

and we let Bj be the component of B of bidegree (j, j − 1). Let H = H0 +H1 + · · ·
be a holomorphic form in Dζ ×Dz with values in Hom(E, T ∗

p,0(D ×D)), where Hj

has bidegree (j, 0) and values in Hom(Ej , T
∗
p,0(D×D)), and let g = g0 + g1 + · · · be

a smooth form in D′′
ζ ×D′

z, where gj has bidegree (j, j) and D′, D′′ ⊂ D. The forms
H and g will be specified in the next section.
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If τ is a current in Dζ ×Dz we let (τ)N be the component of bidegree (N, ∗) in ζ
and (0, ∗) in z. Let ϑ(τ) be the current defined by

(τ)N = ϑ(τ) ∧ dζ.

Notice that, in view of (3.3),

(g ∧HR)N = ϑ(g ∧H)R;

here and for the rest of this section, R = R(ζ) and R = R(ζ). Similarly, outside the
diagonal ∆ ⊂ Dζ ×Dz,

(B ∧ g ∧HR)N = ϑ(B ∧ g ∧H)R.

Let ϕ ∈ Vp,∗
X and let µ ∈ Wn−p,∗

X . We give a meaning to

(5.1) ϑ(g ∧H)R∧ ϕ(ζ) ∧ i∗µ(z)

as follows. By Proposition 3.16, R = a ∧ i∗ω0 where a is almost semi-meromorphic
and generically smooth on Z. Therefore, by Lemma 4.5, R ∧ ϕ := a ∧ i∗(ϕ ∧ ω0) is

well-defined and is in WZ,∗
D . Since R ∧ ϕ(ζ) ∧ i∗µ(z) exists as a tensor product and

ϑ(g ∧H) is smooth, (5.1) is defined. Notice that it is annihilated by both J (ζ) and
J (z), i.e., it is OX -linear both in ϕ and µ. Moreover, by [11, Corollary 4.7] it is in
PMD′′×D′ , has support in Z × Z and the SEP with respect to Z × Z.

Let πi : Dζ ×Dz → D, i = 1, 2, be the natural projections on the first and second
factor, respectively. If τ is a current in D×D such that πi is proper on the support
of τ , then πi∗τ is a current in D. Moreover, in view of (2.3), if τ ∈ PMD×D has
support in Z×Z and the SEP with respect to Z×Z, then πi∗τ ∈ PMD has support
in Z and the SEP with respect to Z.

Definition 5.1 (The operators P and P̌ ). If g is smooth in D×D′ and ζ �→ g(ζ, z)
has support in a fixed compact subset of D for all z ∈ D′, we define P : Vp,∗(X) →
Vp,∗(X ∩D′) by

(5.2) i∗Pϕ∧µ = π2∗
(
ϑ(g∧H)R∧ϕ(ζ)∧i∗µ(z)

)
, ϕ ∈ Vp,∗(X), µ ∈ ωn−p(X∩D′).

If g is smooth in D′′ ×D and z �→ g(ζ, z) has support in a fixed compact subset
of D for all ζ ∈ D′′, we define P̌ : Wn−p,∗(X) → Wn−p,∗(X ∩D′′) by

(5.3) i∗P̌ µ = π1∗
(
ϑ(g ∧H)R∧ i∗µ(z)

)
, µ ∈ Wn−p,∗(X).

If ϕ and µ have compact support in X, then Pϕ and P̌ µ are defined by (5.2) and
(5.3), respectively, for any g.

Notice that i∗Pϕ is a smooth (p, ∗)-form in D′ since ϑ(g ∧ H)R is smooth in z;
if g is holomorphic in z, then i∗Pϕ is holomorphic. Moreover, since R = R(ζ), it
follows that i∗P̌ µ = ψ ∧R for some smooth form ψ in D′′.

To define the operators K and Ǩ notice first that, in a similar way as for P and
P̌ , we can give a meaning to

(5.4) ϑ(B ∧ g ∧H)R∧ ϕ(ζ) ∧ i∗µ(z)

outside the diagonal ∆ ⊂ D ×D since B is smooth there.

Lemma 5.2. The current (5.4) has a unique extension to a current in PMD×D with
support in Z × Z and the SEP with respect to Z × Z. The extension is annihilated
by both J (ζ) and J (z), i.e., the extension depends OX-linearly on both ϕ and µ.
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Proof. The uniqueness is clear by the SEP since (5.4) a priori is defined in D×D \∆
and has support in Z × Z \∆.

Recall that R∧ϕ(ζ)∧ i∗µ(z) ∈ PMD×D has support in Z ×Z and the SEP with
respect to Z ×Z. Since B is almost semi-meromorphic in D×D, also ϑ(B ∧ g ∧H)
has these properties. Hence, cf. (2.9), ϑ(B ∧ g ∧H)R∧ ϕ(ζ) ∧ i∗µ(z) is in PMD×D

with support in Z × Z and the SEP with respect to Z × Z.
Clearly J (ζ) and J (z) annihilate (5.4) outside ∆. Since the extension has the

SEP with respect to Z × Z it is annihilated by J (ζ) and J (z). �

We will use the notation (5.4) to denote the extension as well.

Definition 5.3 (The operators K and Ǩ). If g is smooth in D×D′ and ζ �→ g(ζ, z)
has support in a fixed compact subset of D for all z ∈ D′, we define K : Vp,∗(X) →
Vp,∗(X ∩D′) by

i∗Kϕ∧µ = π2∗
(
ϑ(B ∧ g ∧H)R∧ϕ(ζ)∧ i∗µ(z)

)
, ϕ ∈ Vp,∗(X), µ ∈ ωn−p(X ∩D′).

If g is smooth in D′′ ×D and z �→ g(ζ, z) has support in a fixed compact subset
of D for all ζ ∈ D′′, we define Ǩ : Wn−p,∗(X) → Wn−p,∗(X ∩D′′) by

i∗Ǩµ = π1∗
(
ϑ(B ∧ g ∧H)R∧ i∗µ(z)

)
, µ ∈ Wn−p,∗(X).

As with the operators P and P̌ , if ϕ and µ have compact support in X, then Kϕ
and Ǩµ are defined for any g.

Theorem 5.4. (i) If ϕ ∈ Vp,∗
X is in E p,∗

X in a neighborhood of a point x ∈ Xp-reg,
then Kϕ is in E p,∗

X in a neighborhood of x.

(ii) If µ ∈ Wn−p,∗
X is such that, in a neighborhood of x ∈ Xp-reg, i∗µ =

∑
� µ�∧i∗ω�,

where µ� ∈ E 0,∗
D and ω� ∈ ωn−p

X , then i∗Ǩµ is of the same form in a neighborhood of
x.

Recall that, by Proposition 4.4, in a neighborhood of x ∈ Xp-reg, any φ ∈ Vp,∗
X is

represented by
∑

k φk ∧ bk for some φk ∈ W0,∗
Z . That φ ∈ Vp,∗

X is smooth means, cf.

Lemma 3.12, that φk ∈ E 0,∗
Z . In view of this it is natural to call a µ ∈ Wn−p,∗

X with
the property in (ii) smooth. Analogously to part (i), part (ii) of the theorem thus

says that Ǩ preserves the smooth elements of Wn−p,∗
X .

Proof. Notice that if ϕ = ϕ(ζ) ≡ 0 in a neighborhood of x, then Kϕ is smooth
in a neighborhood of x since in that case ϑ(B ∧ g ∧ H)R ∧ ϕ is smooth for z in a
neighborhood of x. To prove the first part of the theorem we may thus assume that
ϕ has support in a small neighborhood of x. In this proof we let ϕ be also a fixed
representative of ϕ in E p,∗

D .
Let (z, w) and (ζ, τ) be two sets of the same local coordinates in D centered at

x such that Z = {w = 0} = {τ = 0} in a neighborhood of x; these coordinates
need not have any relation to our previous local coordinates which were used to
define B. Suppose that ϕ has support where the coordinates (z, w) are defined. Let

χε := χ(|ζ − z|2/ε) and let, for any µ ∈ Wn−p,∗
X ,

(5.5) T := ϑ(B ∧ g ∧H)R∧ ϕ(ζ, τ) ∧ i∗µ(z, w).

Then, in view of (2.2),

lim
ε→0

χεT = 1D×D\{ζ=z}T.
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If τ is a current in Dζ ×Dz we let (τ)N be the component of bidegree (N, ∗) in ζ
and (0, ∗) in z. Let ϑ(τ) be the current defined by

(τ)N = ϑ(τ) ∧ dζ.

Notice that, in view of (3.3),

(g ∧HR)N = ϑ(g ∧H)R;

here and for the rest of this section, R = R(ζ) and R = R(ζ). Similarly, outside the
diagonal ∆ ⊂ Dζ ×Dz,

(B ∧ g ∧HR)N = ϑ(B ∧ g ∧H)R.

Let ϕ ∈ Vp,∗
X and let µ ∈ Wn−p,∗

X . We give a meaning to

(5.1) ϑ(g ∧H)R∧ ϕ(ζ) ∧ i∗µ(z)

as follows. By Proposition 3.16, R = a ∧ i∗ω0 where a is almost semi-meromorphic
and generically smooth on Z. Therefore, by Lemma 4.5, R ∧ ϕ := a ∧ i∗(ϕ ∧ ω0) is

well-defined and is in WZ,∗
D . Since R ∧ ϕ(ζ) ∧ i∗µ(z) exists as a tensor product and

ϑ(g ∧H) is smooth, (5.1) is defined. Notice that it is annihilated by both J (ζ) and
J (z), i.e., it is OX -linear both in ϕ and µ. Moreover, by [11, Corollary 4.7] it is in
PMD′′×D′ , has support in Z × Z and the SEP with respect to Z × Z.

Let πi : Dζ ×Dz → D, i = 1, 2, be the natural projections on the first and second
factor, respectively. If τ is a current in D×D such that πi is proper on the support
of τ , then πi∗τ is a current in D. Moreover, in view of (2.3), if τ ∈ PMD×D has
support in Z×Z and the SEP with respect to Z×Z, then πi∗τ ∈ PMD has support
in Z and the SEP with respect to Z.

Definition 5.1 (The operators P and P̌ ). If g is smooth in D×D′ and ζ �→ g(ζ, z)
has support in a fixed compact subset of D for all z ∈ D′, we define P : Vp,∗(X) →
Vp,∗(X ∩D′) by

(5.2) i∗Pϕ∧µ = π2∗
(
ϑ(g∧H)R∧ϕ(ζ)∧i∗µ(z)

)
, ϕ ∈ Vp,∗(X), µ ∈ ωn−p(X∩D′).

If g is smooth in D′′ ×D and z �→ g(ζ, z) has support in a fixed compact subset
of D for all ζ ∈ D′′, we define P̌ : Wn−p,∗(X) → Wn−p,∗(X ∩D′′) by

(5.3) i∗P̌ µ = π1∗
(
ϑ(g ∧H)R∧ i∗µ(z)

)
, µ ∈ Wn−p,∗(X).

If ϕ and µ have compact support in X, then Pϕ and P̌ µ are defined by (5.2) and
(5.3), respectively, for any g.

Notice that i∗Pϕ is a smooth (p, ∗)-form in D′ since ϑ(g ∧ H)R is smooth in z;
if g is holomorphic in z, then i∗Pϕ is holomorphic. Moreover, since R = R(ζ), it
follows that i∗P̌ µ = ψ ∧R for some smooth form ψ in D′′.

To define the operators K and Ǩ notice first that, in a similar way as for P and
P̌ , we can give a meaning to

(5.4) ϑ(B ∧ g ∧H)R∧ ϕ(ζ) ∧ i∗µ(z)

outside the diagonal ∆ ⊂ D ×D since B is smooth there.

Lemma 5.2. The current (5.4) has a unique extension to a current in PMD×D with
support in Z × Z and the SEP with respect to Z × Z. The extension is annihilated
by both J (ζ) and J (z), i.e., the extension depends OX-linearly on both ϕ and µ.
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Proof. The uniqueness is clear by the SEP since (5.4) a priori is defined in D×D \∆
and has support in Z × Z \∆.

Recall that R∧ϕ(ζ)∧ i∗µ(z) ∈ PMD×D has support in Z ×Z and the SEP with
respect to Z ×Z. Since B is almost semi-meromorphic in D×D, also ϑ(B ∧ g ∧H)
has these properties. Hence, cf. (2.9), ϑ(B ∧ g ∧H)R∧ ϕ(ζ) ∧ i∗µ(z) is in PMD×D

with support in Z × Z and the SEP with respect to Z × Z.
Clearly J (ζ) and J (z) annihilate (5.4) outside ∆. Since the extension has the

SEP with respect to Z × Z it is annihilated by J (ζ) and J (z). �

We will use the notation (5.4) to denote the extension as well.

Definition 5.3 (The operators K and Ǩ). If g is smooth in D×D′ and ζ �→ g(ζ, z)
has support in a fixed compact subset of D for all z ∈ D′, we define K : Vp,∗(X) →
Vp,∗(X ∩D′) by

i∗Kϕ∧µ = π2∗
(
ϑ(B ∧ g ∧H)R∧ϕ(ζ)∧ i∗µ(z)

)
, ϕ ∈ Vp,∗(X), µ ∈ ωn−p(X ∩D′).

If g is smooth in D′′ ×D and z �→ g(ζ, z) has support in a fixed compact subset
of D for all ζ ∈ D′′, we define Ǩ : Wn−p,∗(X) → Wn−p,∗(X ∩D′′) by

i∗Ǩµ = π1∗
(
ϑ(B ∧ g ∧H)R∧ i∗µ(z)

)
, µ ∈ Wn−p,∗(X).

As with the operators P and P̌ , if ϕ and µ have compact support in X, then Kϕ
and Ǩµ are defined for any g.

Theorem 5.4. (i) If ϕ ∈ Vp,∗
X is in E p,∗

X in a neighborhood of a point x ∈ Xp-reg,
then Kϕ is in E p,∗

X in a neighborhood of x.

(ii) If µ ∈ Wn−p,∗
X is such that, in a neighborhood of x ∈ Xp-reg, i∗µ =

∑
� µ�∧i∗ω�,

where µ� ∈ E 0,∗
D and ω� ∈ ωn−p

X , then i∗Ǩµ is of the same form in a neighborhood of
x.

Recall that, by Proposition 4.4, in a neighborhood of x ∈ Xp-reg, any φ ∈ Vp,∗
X is

represented by
∑

k φk ∧ bk for some φk ∈ W0,∗
Z . That φ ∈ Vp,∗

X is smooth means, cf.

Lemma 3.12, that φk ∈ E 0,∗
Z . In view of this it is natural to call a µ ∈ Wn−p,∗

X with
the property in (ii) smooth. Analogously to part (i), part (ii) of the theorem thus

says that Ǩ preserves the smooth elements of Wn−p,∗
X .

Proof. Notice that if ϕ = ϕ(ζ) ≡ 0 in a neighborhood of x, then Kϕ is smooth
in a neighborhood of x since in that case ϑ(B ∧ g ∧ H)R ∧ ϕ is smooth for z in a
neighborhood of x. To prove the first part of the theorem we may thus assume that
ϕ has support in a small neighborhood of x. In this proof we let ϕ be also a fixed
representative of ϕ in E p,∗

D .
Let (z, w) and (ζ, τ) be two sets of the same local coordinates in D centered at

x such that Z = {w = 0} = {τ = 0} in a neighborhood of x; these coordinates
need not have any relation to our previous local coordinates which were used to
define B. Suppose that ϕ has support where the coordinates (z, w) are defined. Let

χε := χ(|ζ − z|2/ε) and let, for any µ ∈ Wn−p,∗
X ,

(5.5) T := ϑ(B ∧ g ∧H)R∧ ϕ(ζ, τ) ∧ i∗µ(z, w).

Then, in view of (2.2),

lim
ε→0

χεT = 1D×D\{ζ=z}T.
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By Lemma 5.2, T has the SEP with respect to Z×Z and so, since {ζ = z}∩Z×Z is
a proper subset of Z×Z, 1{ζ=z}T = 0. Hence, 1D×D\{ζ=z}T = T and thus χεT → T .
Define Kεϕ by

(5.6) Kεϕ := π2∗
(
χεϑ(B ∧ g ∧H)R∧ ϕ(ζ, τ)

)
.

Then Kεϕ is smooth since χεϑ(B∧g∧H)R∧ϕ(ζ, τ) is smooth in (z, w) and it follows
that

(5.7) Kεϕ ∧ i∗µ = π2∗(χεT ) → π2∗T = i∗Kϕ ∧ µ

as currents in D′.
By Lemma 3.12 there are φε

k ∈ E 0,∗
Z such that

Kεϕ =
∑

k

φε
k ∧ bk + Ker p i∗

and by the proof of that lemma φε
k are obtained by applying linear combinations of

∂|α|/∂wα to (the coefficients) of Kεϕ and evaluate at w = 0. We claim that there

are φk ∈ E 0,∗
Z such that φε

k → φk as currents on Z.
Given the claim we can conclude the proof of the first part of the theorem. Let

µ ∈ ωn−p
X . Then bk ∧ i∗µ ∈ CH Z

D and so, in view of (2.7), there are ak,α(z) ∈ Ωn
Z

such that bk ∧ i∗µ =
∑

α ak,α(z) ∧ ∂̄(dw/wα+1). Hence,

Kεϕ ∧ i∗µ =
∑

k

φε
k ∧ bk ∧ i∗µ =

∑

k,α

φε
k(z) ∧ ak,α(z) ∧ ∂̄

dw

wα+1

→
∑

k,α

φk(z) ∧ ak,α(z) ∧ ∂̄
dw

wα+1
=

∑

k

φk ∧ bk ∧ i∗µ

as currents in D′. In view of (5.7), thus

i∗Kϕ ∧ µ =
∑

k

φk ∧ bk ∧ i∗µ,

which means that Kϕ ∈ Vp,∗
X is smooth.

To show the claim, notice that since R = Rκ +Rκ+1 + · · · we can replace H in
(5.6) by Hκ+Hκ+1+ · · · . Hence, only Bj with j ≤ N −κ = n contribute in (5.6). In

view of Proposition 3.16, R = a · i∗ω0, where a is smooth on Xp-reg and ω0 ∈ ωn−p
X .

Since i∗ω ∈ Hom OD
(Ωp

D,CH Z
D ), in view of (2.7) it follows that Kεϕ is a sum of

terms of the form

(5.8) π2∗
(
χεBj ∧ φ(ζ, τ, z, w) ∧ ∂̄

dτ

τβ+1

)
,

where j ≤ n and φ is smooth with support in a neighborhood of (ζ, τ) = x. It
is proved in [6, Proposition 10.5], cf. in particular [6, Equation (10.5)], that after

applying ∂|α|/∂wα to a term (5.8) and evaluating at w = 0 the limit as ε → 0 is
smooth in z. The claim thus follows.

The proof of part (ii) of the theorem is similar. First notice that if µ ≡ 0 in a
neighborhood of x, then i∗Ǩµ equals R times a smooth form in a neighborhood of
x. Since R = a · i∗ω0, where a is smooth on Xp-reg, the second part follows in this
case. We can thus assume that µ has support in a small neighborhood of x.

Let T be given by (5.5) with ϕ = 1. As above it follows that χεT → T . Set

uε := π1∗
(
χεϑ(B ∧ g ∧H) ∧ i∗µ(z)

)
.
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Then uε is smooth and it follows that

(5.9) uε ∧R → i∗Ǩµ

as currents in D′′. As in the proof of Lemma 3.12 we have

uε(ζ, τ) =
∑

|β|<M

∂|β|uε

∂τβ
(ζ, 0)

τβ

β!
+O(|τ |M , τ̄ , dτ̄),

where O(|τ |M , τ̄ , dτ̄) is a sum of terms which are either O(|τ |M ) or divisible by

some τ̄j or dτ̄j . Since O(|τ |M , τ̄ , dτ̄) ∧ R = 0, if there are uβ(ζ) ∈ E 0,∗
X such that

∂|β|uε(ζ, 0)/∂τβ → uβ(ζ) as current on Z, it follows as above that

uε ∧R →
∑

|β|<M

uβ(ζ)τ
β ∧ i∗ω0/β!

as currents in D′′. Thus, by (5.9), i∗Ǩµ has the desired form. To see that there are
such uβ , notice that if i∗µ =

∑
� µ� ∧ i∗ω� then uε is a sum of terms

π1∗
(
χεBj ∧ φ(ζ, τ, z, w) ∧ ∂̄

dw

wα+1

)
,

where j ≤ n and φ is smooth, cf. (5.8) and the preceding argument. The existence
of such uβ thus follows as above by [6]. �

The following lemma will be useful in the next section. The corresponding result,
[6, Lemma 9.5], is formulated in terms of a λ-regularization of R whereas we here use
an ε-regularization. However, in view of [20, Lemma 6], the proof of [6, Lemma 9.5]
goes through in our case.

Lemma 5.5. Let Rε := ∂̄χ(|F |2/ε) ∧ u, cf. (2.12), and let Rε := Rε ⊗ dζ. Then

lim
ε→0

R(z) ∧ ϑ(B ∧ g ∧H)Rε = R(z) ∧ ϑ(B ∧ g ∧H)R,

where the right-hand side is the product of the almost semi-meromorphic current
ϑ(B ∧ g ∧H) by the tensor product R(z) ∧R, cf. Lemma 5.2.

6. Koppelman formulas and the sheaves A p,∗
X and Bn−p,∗

X

We assume now that i : X → D ⊂ CN is a local embedding into a pseudoconvex
open set. Let z and ζ be two sets of the same local coordinates in D and let B be
the corresponding Bochner–Martinelli form. We choose g and H in the definition of
the integral operators of Section 5 to be a weight, in the sense of [1, Section 2], and a
Hefer morphism, in the sense of [8, Section 5] and [1, Proposition 5.3], respectively.

Example 6.1 (Example 2 in [1]). LetD′ � D and assume thatD
′
is holomorphically

convex. Let χ be a cutoff function in D such that χ = 1 in a neighborhood of D
′
.

One can find a smooth (1, 0)-form s(ζ, z) =
∑

j sj(ζ, z)d(ζj − zj), defined for ζ in

a neighborhood of supp ∂̄χ and z in a neighborhood of D
′
, such that 2πi

∑
j(ζj −

zj)sj(ζ, z) = 1 and z �→ s(ζ, z) is holomorphic. Then

g = χ(ζ)− ∂̄χ(ζ) ∧
N∑

k=1

s(ζ, z) ∧ (∂̄s(ζ, z))k−1

is a weight with compact support in Dζ , depends holomorphically on z in a neigh-

borhood of D
′
, and contains no dz̄j .
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By Lemma 5.2, T has the SEP with respect to Z×Z and so, since {ζ = z}∩Z×Z is
a proper subset of Z×Z, 1{ζ=z}T = 0. Hence, 1D×D\{ζ=z}T = T and thus χεT → T .
Define Kεϕ by

(5.6) Kεϕ := π2∗
(
χεϑ(B ∧ g ∧H)R∧ ϕ(ζ, τ)

)
.

Then Kεϕ is smooth since χεϑ(B∧g∧H)R∧ϕ(ζ, τ) is smooth in (z, w) and it follows
that

(5.7) Kεϕ ∧ i∗µ = π2∗(χεT ) → π2∗T = i∗Kϕ ∧ µ

as currents in D′.
By Lemma 3.12 there are φε

k ∈ E 0,∗
Z such that

Kεϕ =
∑

k

φε
k ∧ bk + Ker p i∗

and by the proof of that lemma φε
k are obtained by applying linear combinations of

∂|α|/∂wα to (the coefficients) of Kεϕ and evaluate at w = 0. We claim that there

are φk ∈ E 0,∗
Z such that φε

k → φk as currents on Z.
Given the claim we can conclude the proof of the first part of the theorem. Let

µ ∈ ωn−p
X . Then bk ∧ i∗µ ∈ CH Z

D and so, in view of (2.7), there are ak,α(z) ∈ Ωn
Z

such that bk ∧ i∗µ =
∑

α ak,α(z) ∧ ∂̄(dw/wα+1). Hence,

Kεϕ ∧ i∗µ =
∑

k

φε
k ∧ bk ∧ i∗µ =

∑

k,α

φε
k(z) ∧ ak,α(z) ∧ ∂̄

dw

wα+1

→
∑

k,α

φk(z) ∧ ak,α(z) ∧ ∂̄
dw

wα+1
=

∑

k

φk ∧ bk ∧ i∗µ

as currents in D′. In view of (5.7), thus

i∗Kϕ ∧ µ =
∑

k

φk ∧ bk ∧ i∗µ,

which means that Kϕ ∈ Vp,∗
X is smooth.

To show the claim, notice that since R = Rκ +Rκ+1 + · · · we can replace H in
(5.6) by Hκ+Hκ+1+ · · · . Hence, only Bj with j ≤ N −κ = n contribute in (5.6). In

view of Proposition 3.16, R = a · i∗ω0, where a is smooth on Xp-reg and ω0 ∈ ωn−p
X .

Since i∗ω ∈ Hom OD
(Ωp

D,CH Z
D ), in view of (2.7) it follows that Kεϕ is a sum of

terms of the form

(5.8) π2∗
(
χεBj ∧ φ(ζ, τ, z, w) ∧ ∂̄

dτ

τβ+1

)
,

where j ≤ n and φ is smooth with support in a neighborhood of (ζ, τ) = x. It
is proved in [6, Proposition 10.5], cf. in particular [6, Equation (10.5)], that after

applying ∂|α|/∂wα to a term (5.8) and evaluating at w = 0 the limit as ε → 0 is
smooth in z. The claim thus follows.

The proof of part (ii) of the theorem is similar. First notice that if µ ≡ 0 in a
neighborhood of x, then i∗Ǩµ equals R times a smooth form in a neighborhood of
x. Since R = a · i∗ω0, where a is smooth on Xp-reg, the second part follows in this
case. We can thus assume that µ has support in a small neighborhood of x.

Let T be given by (5.5) with ϕ = 1. As above it follows that χεT → T . Set

uε := π1∗
(
χεϑ(B ∧ g ∧H) ∧ i∗µ(z)

)
.
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Then uε is smooth and it follows that

(5.9) uε ∧R → i∗Ǩµ

as currents in D′′. As in the proof of Lemma 3.12 we have

uε(ζ, τ) =
∑

|β|<M

∂|β|uε

∂τβ
(ζ, 0)

τβ

β!
+O(|τ |M , τ̄ , dτ̄),

where O(|τ |M , τ̄ , dτ̄) is a sum of terms which are either O(|τ |M ) or divisible by

some τ̄j or dτ̄j . Since O(|τ |M , τ̄ , dτ̄) ∧ R = 0, if there are uβ(ζ) ∈ E 0,∗
X such that

∂|β|uε(ζ, 0)/∂τβ → uβ(ζ) as current on Z, it follows as above that

uε ∧R →
∑

|β|<M

uβ(ζ)τ
β ∧ i∗ω0/β!

as currents in D′′. Thus, by (5.9), i∗Ǩµ has the desired form. To see that there are
such uβ , notice that if i∗µ =

∑
� µ� ∧ i∗ω� then uε is a sum of terms

π1∗
(
χεBj ∧ φ(ζ, τ, z, w) ∧ ∂̄

dw

wα+1

)
,

where j ≤ n and φ is smooth, cf. (5.8) and the preceding argument. The existence
of such uβ thus follows as above by [6]. �

The following lemma will be useful in the next section. The corresponding result,
[6, Lemma 9.5], is formulated in terms of a λ-regularization of R whereas we here use
an ε-regularization. However, in view of [20, Lemma 6], the proof of [6, Lemma 9.5]
goes through in our case.

Lemma 5.5. Let Rε := ∂̄χ(|F |2/ε) ∧ u, cf. (2.12), and let Rε := Rε ⊗ dζ. Then

lim
ε→0

R(z) ∧ ϑ(B ∧ g ∧H)Rε = R(z) ∧ ϑ(B ∧ g ∧H)R,

where the right-hand side is the product of the almost semi-meromorphic current
ϑ(B ∧ g ∧H) by the tensor product R(z) ∧R, cf. Lemma 5.2.

6. Koppelman formulas and the sheaves A p,∗
X and Bn−p,∗

X

We assume now that i : X → D ⊂ CN is a local embedding into a pseudoconvex
open set. Let z and ζ be two sets of the same local coordinates in D and let B be
the corresponding Bochner–Martinelli form. We choose g and H in the definition of
the integral operators of Section 5 to be a weight, in the sense of [1, Section 2], and a
Hefer morphism, in the sense of [8, Section 5] and [1, Proposition 5.3], respectively.

Example 6.1 (Example 2 in [1]). LetD′ � D and assume thatD
′
is holomorphically

convex. Let χ be a cutoff function in D such that χ = 1 in a neighborhood of D
′
.

One can find a smooth (1, 0)-form s(ζ, z) =
∑

j sj(ζ, z)d(ζj − zj), defined for ζ in

a neighborhood of supp ∂̄χ and z in a neighborhood of D
′
, such that 2πi

∑
j(ζj −

zj)sj(ζ, z) = 1 and z �→ s(ζ, z) is holomorphic. Then

g = χ(ζ)− ∂̄χ(ζ) ∧
N∑

k=1

s(ζ, z) ∧ (∂̄s(ζ, z))k−1

is a weight with compact support in Dζ , depends holomorphically on z in a neigh-

borhood of D
′
, and contains no dz̄j .
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If D′ is the unit ball we can take s(ζ, z) =
∑

j(ζ̄j − z̄j)d(ζj − zj)/2πi(|ζ|2 − z · ζ̄)
Let ω be an (n − p)-structure form on X and recall, see (3.21), that i∗ω = R for

some R associated to a resolution (2.10). Then by Proposition 3.16, i∗ω = a · i∗ω0 for

some tuple ω0 of elements inωn−p
X and a matrix of almost semi-meromorphic currents

a which is smooth on Xp-reg. In view of Lemma 4.5 it follows that if ϕ ∈ Vp,∗
X , then

ϕ ∧ ω is well-defined in Wn,∗
X .

Definition 6.2. If ϕ ∈ Vp,∗
X we say that ϕ ∈ Dom ∂̄X if ∂̄(ϕ ∧ ω) ∈ Wn,∗

X for any
(n− p)-structure form ω on X.

Let us notice a few consequences. We can define ∂̄ : Dom ∂̄X → Vp,∗
X as follows.

Let µ ∈ ωn−p
X . In view of (3.22), since the map (3.7) is an isomorphism, there is a

current R and a holomorphic E∗-valued function ξ such that i∗µ = ξ · R. Thus, by
(3.21) there is an (n − p)-structure form ω such that µ = i∗ξ · ω. If ϕ ∈ Dom ∂̄X it
follows that ∂̄(ϕ ∧ µ) ∈ Wn,∗

X . Hence, for ϕ ∈ Dom ∂̄X we can define ∂̄ϕ ∈ Vp,∗
X by

∂̄ϕ ∧ µ := ∂̄(ϕ ∧ µ), µ ∈ ωn−p
X .

Since ∂̄ϕ ∈ Vp,∗
X if ϕ ∈ Dom ∂̄X it follows as in the paragraph preceding Defini-

tion 6.2 that ∂̄ϕ∧ω is well-defined inWn,∗
X for any (n−p)-structure form ω. Moreover,

if as above i∗ω = R = a · i∗ω0, where R is associated to the resolution (2.10), then

(6.1) ∂̄ϕ ∧ ω = −∇f (ϕ ∧ ω),

where ∇f = f − ∂̄. In fact, by Lemma 3.6, fa · i∗ω0 = ∂̄(a · i∗ω0) and so, since a is
smooth on Xp-reg, in view of Lemma 4.5, we get

−∇f (ϕ ∧ ω) = ∂̄(ϕ ∧ i∗a · ω0)− f(ϕ ∧ i∗a · ω0)

= ±i∗a · ∂̄(ϕ ∧ ω0)± ϕ ∧ ∂̄(i∗a · ω0)∓ ϕ ∧ fi∗a · ω0

= ±i∗a · ∂̄(ϕ ∧ ω0) = ∂̄ϕ ∧ i∗a · ω0 = ∂̄ϕ ∧ ω

on Xp-reg. Since both sides of (6.1) have the SEP, (6.1) holds everywhere.
We also notice that

(6.2) E p,∗
X ⊂ Dom ∂̄X .

This follows since, as above, any (n − p)-structure form ω satisfies ∂̄ω = fω for an
appropriate f and hence, if ϕ ∈ E p,∗

X , ∂̄(ϕ ∧ ω) = ∂̄ϕ ∧ ω ± ϕ ∧ fω ∈ Wn,∗
X .

Proposition 6.3. Let D′ � D be a relatively compact open subset and set X ′ =
X ∩D′. There are integral operators

K : E p,∗+1(X) → Vp,∗(X ′) ∩Dom ∂̄X , P : E p,∗(X) → E p,∗(X ′)

such that for any ϕ ∈ E p,∗+1(X),

(6.3) ϕ = ∂̄Kϕ+K∂̄ϕ+ Pϕ.

If ϕ ∈ E p,∗+1(X) has compact support in X one can choose K and P such that,
additionally, Kϕ and Pϕ have compact support in X.

Proposition 6.4. Let D′ � D be a relatively compact open subset and set X ′ =
X ∩D′. There are integral operators

Ǩ : Wn−p,∗+1(X) → Wn−p,∗(X ′), P̌ : Wn−p,∗(X) → Wn−p,∗(X ′)

such that if i∗µ =
∑

� µ� ∧ i∗ω� for some µ� ∈ E 0,∗
D and ω� ∈ ωn−p

X , then

(6.4) µ = ∂̄Ǩµ+ Ǩ∂̄µ+ P̌ µ.

26 M. ANDERSSON, R. LÄRKÄNG, M. LENNARTSSON, H. SAMUELSSON KALM

If µ in addition has compact support in X one can choose Ǩ and P̌ such that Ǩϕ
and P̌ϕ have compact support in X.

Proof of Propositions 6.3 and 6.4. Let Rε be as in Lemma 5.5. In the same way as
in [24, Section 5], cf. also [7, Section 5] and [6, Eq. (9.16)], one obtains

(6.5) ∇f(z)

(
R(z) ∧ ϑ(B ∧ g ∧H)Rε

)
= R∧ [∆]−R(z) ∧ ϑ(g ∧H)Rε,

where ∇f(z) = f(z)− ∂̄. Notice that, for ε > 0, all current products are well-defined
as tensor products. Letting ε → 0 we get, by Lemma 5.5,

(6.6) ∇f(z)

(
R(z) ∧ ϑ(B ∧ g ∧H)R

)
= R∧ [∆]−R(z) ∧ ϑ(g ∧H)R.

To show the first statement of Proposition 6.3, choose g such that ζ �→ g(ζ, z) has
support in a fixed compact subset, containing D′, of D for all z ∈ D′. Multiplying
(6.6) by a ϕ̃(ζ) ∈ E p,∗+1(D) such that i∗ϕ̃ = ϕ and applying π2∗ we get

∇f (R∧ i∗Kϕ) +R∧ i∗K(∂̄ϕ) = R∧ ϕ̃−R ∧ i∗Pϕ,

i.e.,

(6.7) ∇f (ω ∧Kϕ) + ω ∧K(∂̄ϕ) = ω ∧ ϕ− ω ∧ Pϕ.

In view of Definitions 5.1 and 5.3 all terms except ∇f (ω ∧ Kϕ) are in Wn,∗
X and

consequently ∇f (ω ∧Kϕ) is too. Hence, since f(ω ∧Kϕ) ∈ Wn,∗
X also ∂̄(ω ∧Kϕ) ∈

Wn,∗
X , and so Kϕ ∈ Dom ∂̄X . Thus, by (6.1), we can replace ∇f (ω ∧ Kϕ) in (6.7)

by −ω ∧ ∂̄Kϕ. Multiplying the resulting equality by holomorphic E∗-valued ξ such
that f∗ξ = 0 we get, since the map (3.7) is an isomorphism,

(6.8) µ ∧ ϕ = µ ∧ ∂̄Kϕ+ µ ∧K∂̄ϕ+ µ ∧ Pϕ, ∀µ ∈ ωn−p
X ,

which is what (6.3) means.
If ϕ has compact support we can take a weight g such that z �→ g(ζ, z) has compact

support. The preceding argument goes through unchanged and it is clear that Kϕ
and Pϕ have compact support.

To show Proposition 6.4, let ξ� be holomorphic f∗-closed sections of E∗ such that
i∗ω� = ξ� · R, so that i∗µ =

∑
� µ� ∧ ξ� · R. Since ∇fR = 0 and ∂̄ξ� = 0 a simple

computations gives

µ� ∧ ξ� · ∇f(z)

(
R(z) ∧ ϑ(B ∧ g ∧H)Rε

)
= ∂̄

(
µ� ∧ ξ� · R(z) ∧ ϑ(B ∧ g ∧H)Rε

)

+∂̄µ� ∧ ξ� · R(z) ∧ ϑ(B ∧ g ∧H)Rε.

Hence, in view of Lemma 5.5, multiplying (6.5) by
∑

� µ� ∧ ξ� and letting ε → 0 we
obtain

∂̄
(
i∗µ(z)∧ϑ(B ∧ g∧H)R

)
+ ∂̄i∗µ(z)∧ϑ(B ∧ g∧H)R = i∗µ∧ [∆]− i∗µ∧ϑ(g∧H)R.

If g is chosen so that z �→ g(ζ, z) has support in a fixed compact for all ζ ∈ D′,
then (6.4) follows by applying π1∗. If µ has compact support we instead choose g
such that ζ �→ g(ζ, z) has compact support and apply π1∗. �
Definition 6.5. If U ⊂ X is open and ϕ ∈ Vp,q(U) we say that ϕ is a section of A p,q

X
over U , ϕ ∈ A p,q(U), if for every x ∈ U the germ ϕx can be written as a finite sum
of terms

(6.9) ξν ∧Kν(· · · ξ2 ∧K2(ξ1 ∧K1(ξ0)) · · · ),
where ν ≥ 0, ξ0 ∈ E p,∗

X , ξj ∈ E 0,∗
X for j ≥ 1, Kj are integral operators as defined in

Section 5, and ξj has compact support in the set where z �→ Kj(ζ, z) is defined.



THE ∂̄-EQUATION FOR (p, q)-FORMS ON A NON-REDUCED ANALYTIC SPACE 25

If D′ is the unit ball we can take s(ζ, z) =
∑

j(ζ̄j − z̄j)d(ζj − zj)/2πi(|ζ|2 − z · ζ̄)
Let ω be an (n − p)-structure form on X and recall, see (3.21), that i∗ω = R for

some R associated to a resolution (2.10). Then by Proposition 3.16, i∗ω = a · i∗ω0 for

some tuple ω0 of elements inωn−p
X and a matrix of almost semi-meromorphic currents

a which is smooth on Xp-reg. In view of Lemma 4.5 it follows that if ϕ ∈ Vp,∗
X , then

ϕ ∧ ω is well-defined in Wn,∗
X .

Definition 6.2. If ϕ ∈ Vp,∗
X we say that ϕ ∈ Dom ∂̄X if ∂̄(ϕ ∧ ω) ∈ Wn,∗

X for any
(n− p)-structure form ω on X.

Let us notice a few consequences. We can define ∂̄ : Dom ∂̄X → Vp,∗
X as follows.

Let µ ∈ ωn−p
X . In view of (3.22), since the map (3.7) is an isomorphism, there is a

current R and a holomorphic E∗-valued function ξ such that i∗µ = ξ · R. Thus, by
(3.21) there is an (n − p)-structure form ω such that µ = i∗ξ · ω. If ϕ ∈ Dom ∂̄X it
follows that ∂̄(ϕ ∧ µ) ∈ Wn,∗

X . Hence, for ϕ ∈ Dom ∂̄X we can define ∂̄ϕ ∈ Vp,∗
X by

∂̄ϕ ∧ µ := ∂̄(ϕ ∧ µ), µ ∈ ωn−p
X .

Since ∂̄ϕ ∈ Vp,∗
X if ϕ ∈ Dom ∂̄X it follows as in the paragraph preceding Defini-

tion 6.2 that ∂̄ϕ∧ω is well-defined inWn,∗
X for any (n−p)-structure form ω. Moreover,

if as above i∗ω = R = a · i∗ω0, where R is associated to the resolution (2.10), then

(6.1) ∂̄ϕ ∧ ω = −∇f (ϕ ∧ ω),

where ∇f = f − ∂̄. In fact, by Lemma 3.6, fa · i∗ω0 = ∂̄(a · i∗ω0) and so, since a is
smooth on Xp-reg, in view of Lemma 4.5, we get

−∇f (ϕ ∧ ω) = ∂̄(ϕ ∧ i∗a · ω0)− f(ϕ ∧ i∗a · ω0)

= ±i∗a · ∂̄(ϕ ∧ ω0)± ϕ ∧ ∂̄(i∗a · ω0)∓ ϕ ∧ fi∗a · ω0

= ±i∗a · ∂̄(ϕ ∧ ω0) = ∂̄ϕ ∧ i∗a · ω0 = ∂̄ϕ ∧ ω

on Xp-reg. Since both sides of (6.1) have the SEP, (6.1) holds everywhere.
We also notice that

(6.2) E p,∗
X ⊂ Dom ∂̄X .

This follows since, as above, any (n − p)-structure form ω satisfies ∂̄ω = fω for an
appropriate f and hence, if ϕ ∈ E p,∗

X , ∂̄(ϕ ∧ ω) = ∂̄ϕ ∧ ω ± ϕ ∧ fω ∈ Wn,∗
X .

Proposition 6.3. Let D′ � D be a relatively compact open subset and set X ′ =
X ∩D′. There are integral operators

K : E p,∗+1(X) → Vp,∗(X ′) ∩Dom ∂̄X , P : E p,∗(X) → E p,∗(X ′)

such that for any ϕ ∈ E p,∗+1(X),

(6.3) ϕ = ∂̄Kϕ+K∂̄ϕ+ Pϕ.

If ϕ ∈ E p,∗+1(X) has compact support in X one can choose K and P such that,
additionally, Kϕ and Pϕ have compact support in X.

Proposition 6.4. Let D′ � D be a relatively compact open subset and set X ′ =
X ∩D′. There are integral operators

Ǩ : Wn−p,∗+1(X) → Wn−p,∗(X ′), P̌ : Wn−p,∗(X) → Wn−p,∗(X ′)

such that if i∗µ =
∑

� µ� ∧ i∗ω� for some µ� ∈ E 0,∗
D and ω� ∈ ωn−p

X , then

(6.4) µ = ∂̄Ǩµ+ Ǩ∂̄µ+ P̌ µ.
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If µ in addition has compact support in X one can choose Ǩ and P̌ such that Ǩϕ
and P̌ϕ have compact support in X.

Proof of Propositions 6.3 and 6.4. Let Rε be as in Lemma 5.5. In the same way as
in [24, Section 5], cf. also [7, Section 5] and [6, Eq. (9.16)], one obtains

(6.5) ∇f(z)

(
R(z) ∧ ϑ(B ∧ g ∧H)Rε

)
= R∧ [∆]−R(z) ∧ ϑ(g ∧H)Rε,

where ∇f(z) = f(z)− ∂̄. Notice that, for ε > 0, all current products are well-defined
as tensor products. Letting ε → 0 we get, by Lemma 5.5,

(6.6) ∇f(z)

(
R(z) ∧ ϑ(B ∧ g ∧H)R

)
= R∧ [∆]−R(z) ∧ ϑ(g ∧H)R.

To show the first statement of Proposition 6.3, choose g such that ζ �→ g(ζ, z) has
support in a fixed compact subset, containing D′, of D for all z ∈ D′. Multiplying
(6.6) by a ϕ̃(ζ) ∈ E p,∗+1(D) such that i∗ϕ̃ = ϕ and applying π2∗ we get

∇f (R∧ i∗Kϕ) +R∧ i∗K(∂̄ϕ) = R∧ ϕ̃−R ∧ i∗Pϕ,

i.e.,

(6.7) ∇f (ω ∧Kϕ) + ω ∧K(∂̄ϕ) = ω ∧ ϕ− ω ∧ Pϕ.

In view of Definitions 5.1 and 5.3 all terms except ∇f (ω ∧ Kϕ) are in Wn,∗
X and

consequently ∇f (ω ∧Kϕ) is too. Hence, since f(ω ∧Kϕ) ∈ Wn,∗
X also ∂̄(ω ∧Kϕ) ∈

Wn,∗
X , and so Kϕ ∈ Dom ∂̄X . Thus, by (6.1), we can replace ∇f (ω ∧ Kϕ) in (6.7)

by −ω ∧ ∂̄Kϕ. Multiplying the resulting equality by holomorphic E∗-valued ξ such
that f∗ξ = 0 we get, since the map (3.7) is an isomorphism,

(6.8) µ ∧ ϕ = µ ∧ ∂̄Kϕ+ µ ∧K∂̄ϕ+ µ ∧ Pϕ, ∀µ ∈ ωn−p
X ,

which is what (6.3) means.
If ϕ has compact support we can take a weight g such that z �→ g(ζ, z) has compact

support. The preceding argument goes through unchanged and it is clear that Kϕ
and Pϕ have compact support.

To show Proposition 6.4, let ξ� be holomorphic f∗-closed sections of E∗ such that
i∗ω� = ξ� · R, so that i∗µ =

∑
� µ� ∧ ξ� · R. Since ∇fR = 0 and ∂̄ξ� = 0 a simple

computations gives

µ� ∧ ξ� · ∇f(z)

(
R(z) ∧ ϑ(B ∧ g ∧H)Rε

)
= ∂̄

(
µ� ∧ ξ� · R(z) ∧ ϑ(B ∧ g ∧H)Rε

)

+∂̄µ� ∧ ξ� · R(z) ∧ ϑ(B ∧ g ∧H)Rε.

Hence, in view of Lemma 5.5, multiplying (6.5) by
∑

� µ� ∧ ξ� and letting ε → 0 we
obtain

∂̄
(
i∗µ(z)∧ϑ(B ∧ g∧H)R

)
+ ∂̄i∗µ(z)∧ϑ(B ∧ g∧H)R = i∗µ∧ [∆]− i∗µ∧ϑ(g∧H)R.

If g is chosen so that z �→ g(ζ, z) has support in a fixed compact for all ζ ∈ D′,
then (6.4) follows by applying π1∗. If µ has compact support we instead choose g
such that ζ �→ g(ζ, z) has compact support and apply π1∗. �
Definition 6.5. If U ⊂ X is open and ϕ ∈ Vp,q(U) we say that ϕ is a section of A p,q

X
over U , ϕ ∈ A p,q(U), if for every x ∈ U the germ ϕx can be written as a finite sum
of terms

(6.9) ξν ∧Kν(· · · ξ2 ∧K2(ξ1 ∧K1(ξ0)) · · · ),
where ν ≥ 0, ξ0 ∈ E p,∗

X , ξj ∈ E 0,∗
X for j ≥ 1, Kj are integral operators as defined in

Section 5, and ξj has compact support in the set where z �→ Kj(ζ, z) is defined.



THE ∂̄-EQUATION FOR (p, q)-FORMS ON A NON-REDUCED ANALYTIC SPACE 27

Definition 6.6. If U ⊂ X is open and µ ∈ Wn−p,q(U) we say that µ is a section of

Bn−p,q
X over U , µ ∈ Bn−p,q(U), if for every x ∈ U the germ µx can be written as a

finite sum of terms

(6.10) ξν ∧ Ǩν(· · · ξ2 ∧ Ǩ2(ξ1 ∧ Ǩ1(ξ0 ∧ ω)) · · · ),

where ν ≥ 0, ω is an (n− p)-structure form, ξj ∈ E 0,∗
X , Ǩj are integral operators as

defined in Section 5, ξj has compact support in the set where ζ �→ Ǩj(ζ, z) is defined,
and ξ0 takes values in E∗.

Proposition 6.7. The sheaf A p,∗
X has the following properties.

(a1) It is a module over E 0,∗
X ,

(a2) if K is an integral operator as defined in Section 5 then K : A p,∗+1
X → A p,∗

X ,
(a3) A p,∗

X ⊂ Dom ∂̄X ,

(a4) ∂̄ : A p,∗
X → A p,∗+1

X ,
(a5) A p,∗

X = E p,∗
X on Xp-reg,

(a6) (6.3) holds for ϕ ∈ A p,∗
X .

The sheaf Bn−p,∗
X has the following properties.

(b1) It is a module over E 0,∗
X ,

(b2) if Ǩ is an integral operator as defined in Section 5 then Ǩ : Bn−p,∗+1
X →

Bn−p,∗
X ,

(b3) ∂̄ : Bn−p,∗
X → Bn−p,∗+1

X ,

(b4) if µ ∈ Bn−p,∗
X then on Xp-reg, µ =

∑
� µ� ∧ ω� for some µ� ∈ E 0,∗

X and

ω� ∈ ωn−p
X ,

(b5) (6.4) holds for µ ∈ Bn−p,∗
X .

To prove this proposition we need the following two lemmas. The first one is a
variant of Propositions 6.3 and 6.4.

Lemma 6.8. Let ϕ ∈ Vp,∗(X). Assume that ϕ,Kϕ ∈ Dom ∂̄X and that ϕ ∈ E p,∗
X on

Xp-reg. Then (6.3) holds on X ′. If in addition ϕ has compact support, then K and
P can be chosen such that Kϕ and Pϕ have compact support.

Let µ ∈ Wn−p,∗(X). Assume that ∂̄µ, ∂̄Ǩµ ∈ Wn−p,∗
X and that i∗µ =

∑
� µ� ∧ ω�

on Xp-reg for some µ� ∈ E 0,∗
D and ω� ∈ ωn−p,∗

X . Then (6.4) holds on X ′. If µ in

addition has compact support, then Ǩ and P̌ can be chosen such that Ǩµ and P̌ µ
have compact support.

Proof. Let h be a holomorphic tuple vanishing precisely on Xp-sing and set χε =
χ(|h|2/ε). Then Proposition 6.3 applies to χεϕ and hence

χεϕ = ∂̄K(χεϕ) +K(χε∂̄ϕ) +K(∂̄χε ∧ ϕ) + P (χεϕ);

recall that this means that (6.8), with ϕ replaced by χεϕ, holds. Since ϕ ∈ Vp,∗
X it

follows that χεϕ → ϕ, i.e., χεϕ ∧ µ → ϕ ∧ µ for all µ ∈ ωn−p
X . By Lemma 5.2 the

current (5.4) is in has the SEP with respect to Z × Z and therefore K(χεϕ) → Kϕ.
Similarly, P (χεϕ) → Pϕ. Moreover, ∂̄ϕ ∈ Vp,∗

X since ϕ ∈ Dom ∂̄X and so K(χε∂̄ϕ) →
K(∂̄ϕ). We claim that limε→0K(∂̄χε ∧ ϕ) = 0 on Xp-reg. Given the claim it follows
that (6.3) holds on Xp-reg. Since Kϕ ∈ Dom ∂̄X by assumption it follows by the SEP
that (6.3) holds.
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To show that claim we may assume that z is in a fixed compact subset of Xp-reg.
Then B ∧ ∂̄χε(ζ) is smooth if ε is small enough. It thus suffices to show that

R(ζ) ∧ ∂̄χε(ζ) ∧ ϕ(ζ) ∧ i∗µ(z) → 0, ∀µ ∈ ωn−p
X .

Since this is a tensor product it suffices to see that ω ∧ ∂̄χε ∧ ϕ → 0. However,
ϕ ∧ ω ∈ Wn,∗

X and, since ϕ ∈ Dom ∂̄X , ∇f (ϕ ∧ ω) ∈ Wn,∗
X . In view of (6.1) thus

∂̄χε ∧ ϕ ∧ ω = ∂̄(χεϕ) ∧ ω − χε∂̄ϕ ∧ ω = −∇f (χ
εϕ ∧ ω) + χε∇f (ϕ ∧ ω)

→ −∇f (ϕ ∧ ω) +∇f (ϕ ∧ ω) = 0.

The proof of the second part of the lemma is similar: By Proposition 6.4,

χεµ = ∂̄Ǩ(χεµ) + Ǩ(χε∂̄µ) + Ǩ(∂̄χε ∧ µ) + P̌ (χεµ).

Since µ ∈ Wn−p,∗
X we have χεµ → µ. By Lemma 5.2 the current (5.4) has the

SEP with respect to Z × Z and therefore Ǩ(χεµ) → Ǩµ. Similarly, P̌ (χεµ) →
P̌ µ and, since ∂̄µ ∈ Wn−p,∗

X , Ǩ(χε∂̄µ) → Ǩ∂̄µ. Hence, (6.4) holds modulo τ :=

limε→0 Ǩ(∂̄χε ∧ µ). Since ∂̄Ǩµ ∈ Wp,∗
X by assumption, all terms in (6.4) are in

Wn−p,∗
X and so (6.4) follows by the SEP if τ = 0 on Xp-reg. For ζ in a fixed compact

subset of Xp-reg, B ∧ ∂̄χε(z) is smooth if ε is small enough. Thus, as above, to see
that τ = 0 on Xp-reg it suffices to see that R(ζ)∂̄χε(z) ∧ µ(z) → 0, which follows if

∂̄χε ∧ µ → 0. However, since ∂̄µ ∈ Wn−p,∗
X by assumption, we have

∂̄χε ∧ µ = ∂̄(χεµ)− χε∂̄µ → ∂̄µ− ∂̄µ = 0.

�
The second lemma we need is (a version of) the crucial Lemma 6.2 in [7]. The proof

of that lemma goes through in our case; cf. also the proof of [24, Lemma 5.3]. We
remark that in these cited lemmas the statements and proofs are intrinsic on (Carte-
sian products of) X whereas we here formulate our version in (Cartesian products
of) D. Let

k(ζ, z) = ϑ
(
B(ζ, z) ∧ g(ζ, z) ∧H(ζ, z)

)
R(ζ).

Let zj be coordinates on the jth factor of D in D × · · · ×D. The current

(6.11) T := R(zν) ∧ k(zν−1, zν) ∧ · · · ∧ k(z1, z2)

is well-defined in PMD×···×D, has support in Z × · · · ×Z and the SEP with respect
to Z × · · · × Z since it is the product of an almost semi-meromorphic current by
the tensor product of the R-factors, cf. Lemma 5.2. The different k-factors may
correspond to different choices of B, g, H, and R.

Lemma 6.9. Let h be a holomorphic tuple which is generically non-vanishing on Z.
Then

lim
ε→0

∂̄χ(|h(zj)|2/ε) ∧ T = 0.

Proof of Proposition 6.7. It is clear from the definition that A p,∗
X and Bn−p,∗

X are

modules over E 0,∗
X and that A p,∗

X and Bn−p,∗
X are closed under K-operators and Ǩ-

operators, respectively. By Theorem 5.4 it follows that A p,∗
X = E p,∗

X on Xp-reg and

that sections of Bn−p,∗
X are of the claimed form on Xp-reg.

To show that A p,∗
X ⊂ Dom ∂̄X assume that ϕ is given by (6.9), where the ξj are

smooth, and let ω be a structure form. Then i∗ω = R for some R and i∗(ω ∧ ϕ) =
πν∗(T ∧ ξ), where T is given by (6.11), ξ is some smooth form in D × · · · × D,
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Definition 6.6. If U ⊂ X is open and µ ∈ Wn−p,q(U) we say that µ is a section of

Bn−p,q
X over U , µ ∈ Bn−p,q(U), if for every x ∈ U the germ µx can be written as a

finite sum of terms

(6.10) ξν ∧ Ǩν(· · · ξ2 ∧ Ǩ2(ξ1 ∧ Ǩ1(ξ0 ∧ ω)) · · · ),

where ν ≥ 0, ω is an (n− p)-structure form, ξj ∈ E 0,∗
X , Ǩj are integral operators as

defined in Section 5, ξj has compact support in the set where ζ �→ Ǩj(ζ, z) is defined,
and ξ0 takes values in E∗.

Proposition 6.7. The sheaf A p,∗
X has the following properties.

(a1) It is a module over E 0,∗
X ,

(a2) if K is an integral operator as defined in Section 5 then K : A p,∗+1
X → A p,∗

X ,
(a3) A p,∗

X ⊂ Dom ∂̄X ,

(a4) ∂̄ : A p,∗
X → A p,∗+1

X ,
(a5) A p,∗

X = E p,∗
X on Xp-reg,

(a6) (6.3) holds for ϕ ∈ A p,∗
X .

The sheaf Bn−p,∗
X has the following properties.

(b1) It is a module over E 0,∗
X ,

(b2) if Ǩ is an integral operator as defined in Section 5 then Ǩ : Bn−p,∗+1
X →

Bn−p,∗
X ,

(b3) ∂̄ : Bn−p,∗
X → Bn−p,∗+1

X ,

(b4) if µ ∈ Bn−p,∗
X then on Xp-reg, µ =

∑
� µ� ∧ ω� for some µ� ∈ E 0,∗

X and

ω� ∈ ωn−p
X ,

(b5) (6.4) holds for µ ∈ Bn−p,∗
X .

To prove this proposition we need the following two lemmas. The first one is a
variant of Propositions 6.3 and 6.4.

Lemma 6.8. Let ϕ ∈ Vp,∗(X). Assume that ϕ,Kϕ ∈ Dom ∂̄X and that ϕ ∈ E p,∗
X on

Xp-reg. Then (6.3) holds on X ′. If in addition ϕ has compact support, then K and
P can be chosen such that Kϕ and Pϕ have compact support.

Let µ ∈ Wn−p,∗(X). Assume that ∂̄µ, ∂̄Ǩµ ∈ Wn−p,∗
X and that i∗µ =

∑
� µ� ∧ ω�

on Xp-reg for some µ� ∈ E 0,∗
D and ω� ∈ ωn−p,∗

X . Then (6.4) holds on X ′. If µ in

addition has compact support, then Ǩ and P̌ can be chosen such that Ǩµ and P̌ µ
have compact support.

Proof. Let h be a holomorphic tuple vanishing precisely on Xp-sing and set χε =
χ(|h|2/ε). Then Proposition 6.3 applies to χεϕ and hence

χεϕ = ∂̄K(χεϕ) +K(χε∂̄ϕ) +K(∂̄χε ∧ ϕ) + P (χεϕ);

recall that this means that (6.8), with ϕ replaced by χεϕ, holds. Since ϕ ∈ Vp,∗
X it

follows that χεϕ → ϕ, i.e., χεϕ ∧ µ → ϕ ∧ µ for all µ ∈ ωn−p
X . By Lemma 5.2 the

current (5.4) is in has the SEP with respect to Z × Z and therefore K(χεϕ) → Kϕ.
Similarly, P (χεϕ) → Pϕ. Moreover, ∂̄ϕ ∈ Vp,∗

X since ϕ ∈ Dom ∂̄X and so K(χε∂̄ϕ) →
K(∂̄ϕ). We claim that limε→0K(∂̄χε ∧ ϕ) = 0 on Xp-reg. Given the claim it follows
that (6.3) holds on Xp-reg. Since Kϕ ∈ Dom ∂̄X by assumption it follows by the SEP
that (6.3) holds.
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To show that claim we may assume that z is in a fixed compact subset of Xp-reg.
Then B ∧ ∂̄χε(ζ) is smooth if ε is small enough. It thus suffices to show that

R(ζ) ∧ ∂̄χε(ζ) ∧ ϕ(ζ) ∧ i∗µ(z) → 0, ∀µ ∈ ωn−p
X .

Since this is a tensor product it suffices to see that ω ∧ ∂̄χε ∧ ϕ → 0. However,
ϕ ∧ ω ∈ Wn,∗

X and, since ϕ ∈ Dom ∂̄X , ∇f (ϕ ∧ ω) ∈ Wn,∗
X . In view of (6.1) thus

∂̄χε ∧ ϕ ∧ ω = ∂̄(χεϕ) ∧ ω − χε∂̄ϕ ∧ ω = −∇f (χ
εϕ ∧ ω) + χε∇f (ϕ ∧ ω)

→ −∇f (ϕ ∧ ω) +∇f (ϕ ∧ ω) = 0.

The proof of the second part of the lemma is similar: By Proposition 6.4,

χεµ = ∂̄Ǩ(χεµ) + Ǩ(χε∂̄µ) + Ǩ(∂̄χε ∧ µ) + P̌ (χεµ).

Since µ ∈ Wn−p,∗
X we have χεµ → µ. By Lemma 5.2 the current (5.4) has the

SEP with respect to Z × Z and therefore Ǩ(χεµ) → Ǩµ. Similarly, P̌ (χεµ) →
P̌ µ and, since ∂̄µ ∈ Wn−p,∗

X , Ǩ(χε∂̄µ) → Ǩ∂̄µ. Hence, (6.4) holds modulo τ :=

limε→0 Ǩ(∂̄χε ∧ µ). Since ∂̄Ǩµ ∈ Wp,∗
X by assumption, all terms in (6.4) are in

Wn−p,∗
X and so (6.4) follows by the SEP if τ = 0 on Xp-reg. For ζ in a fixed compact

subset of Xp-reg, B ∧ ∂̄χε(z) is smooth if ε is small enough. Thus, as above, to see
that τ = 0 on Xp-reg it suffices to see that R(ζ)∂̄χε(z) ∧ µ(z) → 0, which follows if

∂̄χε ∧ µ → 0. However, since ∂̄µ ∈ Wn−p,∗
X by assumption, we have

∂̄χε ∧ µ = ∂̄(χεµ)− χε∂̄µ → ∂̄µ− ∂̄µ = 0.

�
The second lemma we need is (a version of) the crucial Lemma 6.2 in [7]. The proof

of that lemma goes through in our case; cf. also the proof of [24, Lemma 5.3]. We
remark that in these cited lemmas the statements and proofs are intrinsic on (Carte-
sian products of) X whereas we here formulate our version in (Cartesian products
of) D. Let

k(ζ, z) = ϑ
(
B(ζ, z) ∧ g(ζ, z) ∧H(ζ, z)

)
R(ζ).

Let zj be coordinates on the jth factor of D in D × · · · ×D. The current

(6.11) T := R(zν) ∧ k(zν−1, zν) ∧ · · · ∧ k(z1, z2)

is well-defined in PMD×···×D, has support in Z × · · · ×Z and the SEP with respect
to Z × · · · × Z since it is the product of an almost semi-meromorphic current by
the tensor product of the R-factors, cf. Lemma 5.2. The different k-factors may
correspond to different choices of B, g, H, and R.

Lemma 6.9. Let h be a holomorphic tuple which is generically non-vanishing on Z.
Then

lim
ε→0

∂̄χ(|h(zj)|2/ε) ∧ T = 0.

Proof of Proposition 6.7. It is clear from the definition that A p,∗
X and Bn−p,∗

X are

modules over E 0,∗
X and that A p,∗

X and Bn−p,∗
X are closed under K-operators and Ǩ-

operators, respectively. By Theorem 5.4 it follows that A p,∗
X = E p,∗

X on Xp-reg and

that sections of Bn−p,∗
X are of the claimed form on Xp-reg.

To show that A p,∗
X ⊂ Dom ∂̄X assume that ϕ is given by (6.9), where the ξj are

smooth, and let ω be a structure form. Then i∗ω = R for some R and i∗(ω ∧ ϕ) =
πν∗(T ∧ ξ), where T is given by (6.11), ξ is some smooth form in D × · · · × D,
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and πν : D × · · · × D → D is the natural projection on the factor with coordinates
zν . Let h be as in Lemma 6.9 and set χε = χ(|h|2/ε). By Lemma 6.9 we have
limε→0 ∂̄χ

ε ∧ πν∗T ∧ ξ = 0 and so, since i∗(ω ∧ϕ) has the SEP with respect to Z, we
get

∂̄i∗(ω ∧ ϕ) = lim
ε→0

∂̄(χεi∗(ω ∧ ϕ)) = lim
ε→0

∂̄χε ∧ πν∗T ∧ ξ + lim
ε→0

χε∂̄i∗(ω ∧ ϕ)(6.12)

= lim
ε→0

χε∂̄i∗(ω ∧ ϕ).

Hence, ∂̄i∗(ω∧ϕ) has the SEP with respect to Z and it follows that ∂̄(ω∧ϕ) ∈ Wn,∗
X .

In a similar way we show that if µ ∈ Bn−p,∗
X , then ∂̄µ ∈ Wn−p,∗

X . Assume that µ
is given by (6.10). Then i∗µ = πν∗T ∧ ξ for some smooth ξ. Replacing ω ∧ϕ by µ in

(6.12) it follows that ∂̄µ ∈ Wn−p,∗
X .

Since A p,∗
X is closed under K-operators, A p,∗

X ⊂ Dom ∂̄X , and A p,∗
X = E p,∗

X on
Xp-reg the Koppelman formula (6.3) follows for sections of A p,∗

X by Lemma 6.8.

Similarly, since Bn−p,∗
X is closed under Ǩ-operators, ∂̄Bn−p,∗

X ⊂ Wn−p,∗
X , and µ =∑

� µ� ∧ω� on Xp-reg for any µ ∈ Bn−p,∗
X it follows from Lemma 6.8 that the Koppel-

man formula (6.4) holds for sections of Bn−p,∗
X .

It remains to see that A p,∗
X and Bn−p,∗

X are closed under ∂̄. Let ϕ ∈ A p,∗
X and

assume that ϕ is given by (6.9). We show by induction over ν that ∂̄ϕ ∈ A p,∗
X .

If ν = 0, then ϕ = ξ0 ∈ E p,∗
X and so ∂̄ϕ ∈ E p,∗

X ⊂ A p,∗
X . If ν ≥ 1 we write

ϕ = ξν ∧Kφ, where φ is given by (6.9) with ν replaced by ν − 1. By the induction
hypothesis, ∂̄φ ∈ A p,∗

X . Hence, K∂̄φ ∈ A p,∗
X . Since the Koppelman formula (6.3),

with ϕ replaced by φ, holds and since Pφ ∈ E p,∗
X it follows that ∂̄Kφ ∈ A p,∗

X . Hence,
∂̄ϕ = ∂̄ξν ∧Kφ+ ξν ∧ ∂̄Kφ ∈ A p,∗

X .

If µ ∈ Bn−p,∗
X is given by (6.10) we proceed in a similar way by induction over ν.

If ν = 0 then µ = ξ0 ∧ ω. Then, by the computation showing (6.2), it follows that
∂̄µ has the same form. If ν ≥ 1 we write µ = ξν ∧ Ǩµ′ and the induction hypothesis
gives ∂̄µ′ ∈ Bn−p,∗

X . As before, since P̌ µ′ = ξ ∧ω for some smooth ξ, cf. Section 5, it

follows from (6.4), with µ replaced by µ′, that ∂̄µ ∈ Bn−p,∗
X . �

Proof of Theorem A. In view of Proposition 6.7 it only remains to show that (1.4) is
a resolution of Ωp

X . This is a local statement so we may assume that X is an analytic

subspace of a pseudoconvex domain D ⊂ CN and that the point in which we want
to show that (1.4) is exact is 0. Let ϕ ∈ A p,q(U ∩ X) be ∂̄-closed, where U is a
neighborhood of 0. Choose operators K and P corresponding to a choice of weight
g such that z �→ g(ζ, z) is holomorphic in some neighborhood of 0 and ζ �→ g(ζ, z)
has support in a fixed compact subset of U . Then ϑ(g ∧H)R(ζ) has degree 0 in dz̄.
Since it has total bidegree (N,N) it must have full degree in dζ̄. Hence, Pϕ = 0
if q ≥ 1. Since, by Proposition 6.7, the Koppelman formula (6.3) holds it follows
that ϕ = ∂̄Kϕ if q ≥ 1 and ϕ = Pϕ if q = 0. In the latter case, since ϑ(g ∧ H) is
holomorphic in z, we get ϕ ∈ Ωp

X . �

Theorem 6.10. The sheaf complex

(6.13) 0 → ωn−p
X → Bn−p,0

X
∂̄−→ · · · ∂̄−→ Bn−p,n

X → 0

is exact if and only if Ωp
X is Cohen–Macaulay. In general H q(Bn−p,•

X , ∂̄) � Ext κ+q
OD

(Ωp
X ,OD).
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Proof. Consider the free resolution (2.10) of Ωp
X and let R and R be the associated

currents. Let (O(E∗
•), f

∗
• ) be the dual complex of (2.10), cf. the proof of Proposi-

tion 3.9. It is well-known that

(6.14) H κ+q(O(E∗
•), f

∗
• ) � Ext κ+q

OD
(Ωp

X ,OD).

Define the mapping

�• : (O(E∗
κ+•), f

∗
κ+•) → (Bn−p,•

X , ∂̄), i∗�(ξ) = ξ · Rκ+•.

Since fR = ∂̄R it follows that �• is a map of complexes and hence induces a map
on cohomology. As in the proof of [24, Theorem 1.7], cf. also the proof of [23,
Theorem 1.2], one shows that the map on cohomology is an isomorphism. Hence,
the last statement of the theorem follows.

If Ωp
X is Cohen–Macaulay we can choose the free resolution (2.10) of length κ.

Thus, by (6.14), Ext κ+q
OD

(Ωp
X ,OD) = 0 for q ≥ 1 and so H q(Bn−p,•

X , ∂̄) = 0 for q ≥ 1.

Hence (6.13) is exact. Conversely, if (6.13) is exact then Ext κ+q
OD

(Ωp
X ,OD) = 0 for

q ≥ 1. Recall the singularity subvarieties Zk := Z
Ωp

X
k associated with Ωp

X , cf. (2.11).
From, e.g., the proof of [12, Theorem II.2.1] it follows that

Zκ+q =
⋃

r≥κ+q

supp Ext rOD
(Ωp

X ,OD).

Hence, Zκ+q = ∅ for q ≥ 1. It follows that Im fκ+1 ⊂ Eκ is a subbundle. Replacing
Eκ by Eκ/Im fκ+1 and Eκ+q, q ≥ 1, by 0 in (2.10) we obtain a free resolution of Ωp

X
of length κ. Thus, Ωp

X is Cohen–Macaulay. �

7. Serre duality

In this section X is a pure n-dimensional analytic space. When considering lo-
cal problems we tacitly assume that X is an analytic subset of some pseudoconvex
domain D ⊂ CN .

Let ϕ ∈ A p,∗
X and µ ∈ Bn−p,∗

X . By Proposition 6.7, on Xp-reg ϕ is smooth and

µ =
∑

� µ� ∧ω�, where µ� are smooth and ω� ∈ ωn−p
X . Hence, ϕ∧µ is well-defined in

Wn,∗
X on Xp-reg.

Theorem 7.1. There is a unique map ∧ : A p,∗
X × Bn−p,∗

X → Wn,∗
X extending the

wedge product on Xp-reg. If ϕ ∈ A p,∗
X and µ ∈ Bn−p,∗

X , then ∂̄(ϕ ∧ µ) ∈ Wn,∗
X and

(7.1) ∂̄(ϕ ∧ µ) = ∂̄ϕ ∧ µ+ (−1)degϕϕ ∧ ∂̄µ.

Proof. This is a local statement. The uniqueness is clear by the SEP. Moreover, if
ϕ ∧ µ ∈ Wn,∗

X and ∂̄(ϕ ∧ µ) ∈ Wn,∗
X for all ϕ ∈ A p,∗

X and µ ∈ Bn−p,∗
X , then (7.1)

follows since it holds on Xp-reg and both the left-hand side and the right-hand side
have the SEP.

To show that ϕ∧µ ∈ Wn,∗
X and ∂̄(ϕ∧µ) ∈ Wn,∗

X we represent ϕ and µ by (6.9) and
(6.10), respectively. The case when ν = 0 in (6.9) needs to be handled separately. In
this case ϕ ∈ E p,∗

X and so clearly ϕ ∧ µ ∈ Wn,∗
X . Moreover, since by Proposition 6.7,

∂̄µ ∈ Bn−p,∗
X it follows that ∂̄(ϕ ∧ µ) ∈ Wn,∗

X .
Assume now that ν > 0 in (6.9). Then, cf. (6.11),

i∗ϕ(ζ) = π∗
(
k(wν , ζ) ∧ k(wν−1, wν) ∧ · · · ∧ k(w1, w2) ∧ ξ

)
=: π∗Tϕ,
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and πν : D × · · · × D → D is the natural projection on the factor with coordinates
zν . Let h be as in Lemma 6.9 and set χε = χ(|h|2/ε). By Lemma 6.9 we have
limε→0 ∂̄χ

ε ∧ πν∗T ∧ ξ = 0 and so, since i∗(ω ∧ϕ) has the SEP with respect to Z, we
get

∂̄i∗(ω ∧ ϕ) = lim
ε→0

∂̄(χεi∗(ω ∧ ϕ)) = lim
ε→0

∂̄χε ∧ πν∗T ∧ ξ + lim
ε→0

χε∂̄i∗(ω ∧ ϕ)(6.12)

= lim
ε→0

χε∂̄i∗(ω ∧ ϕ).

Hence, ∂̄i∗(ω∧ϕ) has the SEP with respect to Z and it follows that ∂̄(ω∧ϕ) ∈ Wn,∗
X .

In a similar way we show that if µ ∈ Bn−p,∗
X , then ∂̄µ ∈ Wn−p,∗

X . Assume that µ
is given by (6.10). Then i∗µ = πν∗T ∧ ξ for some smooth ξ. Replacing ω ∧ϕ by µ in

(6.12) it follows that ∂̄µ ∈ Wn−p,∗
X .

Since A p,∗
X is closed under K-operators, A p,∗

X ⊂ Dom ∂̄X , and A p,∗
X = E p,∗

X on
Xp-reg the Koppelman formula (6.3) follows for sections of A p,∗

X by Lemma 6.8.

Similarly, since Bn−p,∗
X is closed under Ǩ-operators, ∂̄Bn−p,∗

X ⊂ Wn−p,∗
X , and µ =∑

� µ� ∧ω� on Xp-reg for any µ ∈ Bn−p,∗
X it follows from Lemma 6.8 that the Koppel-

man formula (6.4) holds for sections of Bn−p,∗
X .

It remains to see that A p,∗
X and Bn−p,∗

X are closed under ∂̄. Let ϕ ∈ A p,∗
X and

assume that ϕ is given by (6.9). We show by induction over ν that ∂̄ϕ ∈ A p,∗
X .

If ν = 0, then ϕ = ξ0 ∈ E p,∗
X and so ∂̄ϕ ∈ E p,∗

X ⊂ A p,∗
X . If ν ≥ 1 we write

ϕ = ξν ∧Kφ, where φ is given by (6.9) with ν replaced by ν − 1. By the induction
hypothesis, ∂̄φ ∈ A p,∗

X . Hence, K∂̄φ ∈ A p,∗
X . Since the Koppelman formula (6.3),

with ϕ replaced by φ, holds and since Pφ ∈ E p,∗
X it follows that ∂̄Kφ ∈ A p,∗

X . Hence,
∂̄ϕ = ∂̄ξν ∧Kφ+ ξν ∧ ∂̄Kφ ∈ A p,∗

X .

If µ ∈ Bn−p,∗
X is given by (6.10) we proceed in a similar way by induction over ν.

If ν = 0 then µ = ξ0 ∧ ω. Then, by the computation showing (6.2), it follows that
∂̄µ has the same form. If ν ≥ 1 we write µ = ξν ∧ Ǩµ′ and the induction hypothesis
gives ∂̄µ′ ∈ Bn−p,∗

X . As before, since P̌ µ′ = ξ ∧ω for some smooth ξ, cf. Section 5, it

follows from (6.4), with µ replaced by µ′, that ∂̄µ ∈ Bn−p,∗
X . �

Proof of Theorem A. In view of Proposition 6.7 it only remains to show that (1.4) is
a resolution of Ωp

X . This is a local statement so we may assume that X is an analytic

subspace of a pseudoconvex domain D ⊂ CN and that the point in which we want
to show that (1.4) is exact is 0. Let ϕ ∈ A p,q(U ∩ X) be ∂̄-closed, where U is a
neighborhood of 0. Choose operators K and P corresponding to a choice of weight
g such that z �→ g(ζ, z) is holomorphic in some neighborhood of 0 and ζ �→ g(ζ, z)
has support in a fixed compact subset of U . Then ϑ(g ∧H)R(ζ) has degree 0 in dz̄.
Since it has total bidegree (N,N) it must have full degree in dζ̄. Hence, Pϕ = 0
if q ≥ 1. Since, by Proposition 6.7, the Koppelman formula (6.3) holds it follows
that ϕ = ∂̄Kϕ if q ≥ 1 and ϕ = Pϕ if q = 0. In the latter case, since ϑ(g ∧ H) is
holomorphic in z, we get ϕ ∈ Ωp

X . �

Theorem 6.10. The sheaf complex

(6.13) 0 → ωn−p
X → Bn−p,0

X
∂̄−→ · · · ∂̄−→ Bn−p,n

X → 0

is exact if and only if Ωp
X is Cohen–Macaulay. In general H q(Bn−p,•

X , ∂̄) � Ext κ+q
OD

(Ωp
X ,OD).
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Proof. Consider the free resolution (2.10) of Ωp
X and let R and R be the associated

currents. Let (O(E∗
•), f

∗
• ) be the dual complex of (2.10), cf. the proof of Proposi-

tion 3.9. It is well-known that

(6.14) H κ+q(O(E∗
•), f

∗
• ) � Ext κ+q

OD
(Ωp

X ,OD).

Define the mapping

�• : (O(E∗
κ+•), f

∗
κ+•) → (Bn−p,•

X , ∂̄), i∗�(ξ) = ξ · Rκ+•.

Since fR = ∂̄R it follows that �• is a map of complexes and hence induces a map
on cohomology. As in the proof of [24, Theorem 1.7], cf. also the proof of [23,
Theorem 1.2], one shows that the map on cohomology is an isomorphism. Hence,
the last statement of the theorem follows.

If Ωp
X is Cohen–Macaulay we can choose the free resolution (2.10) of length κ.

Thus, by (6.14), Ext κ+q
OD

(Ωp
X ,OD) = 0 for q ≥ 1 and so H q(Bn−p,•

X , ∂̄) = 0 for q ≥ 1.

Hence (6.13) is exact. Conversely, if (6.13) is exact then Ext κ+q
OD

(Ωp
X ,OD) = 0 for

q ≥ 1. Recall the singularity subvarieties Zk := Z
Ωp

X
k associated with Ωp

X , cf. (2.11).
From, e.g., the proof of [12, Theorem II.2.1] it follows that

Zκ+q =
⋃

r≥κ+q

supp Ext rOD
(Ωp

X ,OD).

Hence, Zκ+q = ∅ for q ≥ 1. It follows that Im fκ+1 ⊂ Eκ is a subbundle. Replacing
Eκ by Eκ/Im fκ+1 and Eκ+q, q ≥ 1, by 0 in (2.10) we obtain a free resolution of Ωp

X
of length κ. Thus, Ωp

X is Cohen–Macaulay. �

7. Serre duality

In this section X is a pure n-dimensional analytic space. When considering lo-
cal problems we tacitly assume that X is an analytic subset of some pseudoconvex
domain D ⊂ CN .

Let ϕ ∈ A p,∗
X and µ ∈ Bn−p,∗

X . By Proposition 6.7, on Xp-reg ϕ is smooth and

µ =
∑

� µ� ∧ω�, where µ� are smooth and ω� ∈ ωn−p
X . Hence, ϕ∧µ is well-defined in

Wn,∗
X on Xp-reg.

Theorem 7.1. There is a unique map ∧ : A p,∗
X × Bn−p,∗

X → Wn,∗
X extending the

wedge product on Xp-reg. If ϕ ∈ A p,∗
X and µ ∈ Bn−p,∗

X , then ∂̄(ϕ ∧ µ) ∈ Wn,∗
X and

(7.1) ∂̄(ϕ ∧ µ) = ∂̄ϕ ∧ µ+ (−1)degϕϕ ∧ ∂̄µ.

Proof. This is a local statement. The uniqueness is clear by the SEP. Moreover, if
ϕ ∧ µ ∈ Wn,∗

X and ∂̄(ϕ ∧ µ) ∈ Wn,∗
X for all ϕ ∈ A p,∗

X and µ ∈ Bn−p,∗
X , then (7.1)

follows since it holds on Xp-reg and both the left-hand side and the right-hand side
have the SEP.

To show that ϕ∧µ ∈ Wn,∗
X and ∂̄(ϕ∧µ) ∈ Wn,∗

X we represent ϕ and µ by (6.9) and
(6.10), respectively. The case when ν = 0 in (6.9) needs to be handled separately. In
this case ϕ ∈ E p,∗

X and so clearly ϕ ∧ µ ∈ Wn,∗
X . Moreover, since by Proposition 6.7,

∂̄µ ∈ Bn−p,∗
X it follows that ∂̄(ϕ ∧ µ) ∈ Wn,∗

X .
Assume now that ν > 0 in (6.9). Then, cf. (6.11),

i∗ϕ(ζ) = π∗
(
k(wν , ζ) ∧ k(wν−1, wν) ∧ · · · ∧ k(w1, w2) ∧ ξ

)
=: π∗Tϕ,
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where π : Dζ×Dwν×· · ·×Dw1 → Dζ is the natural projection, ν ≥ 1, and ξ is smooth.
Hence, ϕ = Kφ for an appropriate φ(wν) ∈ A p,∗

X and so, in view of Section 5, since

µ ∈ Bn−p,∗
X ⊂ Wn−p,∗

X we have

i∗µ ∧ ϕ = i∗µ ∧Kφ = π∗
(
µ(ζ) ∧ Tϕ

)
.

On Xp-reg, where ϕ is smooth, this coincides with the natural wedge product, cf. the
proof of Theorem 5.4. In view of Definition 6.6 we may assume that

i∗µ(ζ) = π̃∗
(
R(zν̃) ∧ k(zν̃−1, zν̃) ∧ · · · ∧ k(ζ, z1) ∧ ξ̃

)
=: π̃∗Tµ,

where π̃ : Dζ × Dzν̃ × · · · × Dz1 → Dζ is the natural projection and ξ̃ = ξ̃(ζ, z) is
smooth. Hence,

i∗µ ∧ ϕ = π∗π̃∗
(
Tµ ∧ Tϕ

)
.

Since Tµ∧Tϕ is of the form (6.11) (times ξ∧ ξ̃) it follows that µ∧ϕ ∈ Wn,∗
X . Moreover,

by Lemma 6.9 and the computation (6.12), with ω and T replaced by µ and Tµ∧Tϕ,
respectively, it follows that ∂̄(µ ∧ ϕ) has the SEP. �

Let Bn−p,∗
c (X) be the vector space of sections of Bn−p,∗

X with compact support.
By Theorem 7.1 we have, cf. (3.19), a bilinear pairing

(7.2) A p,q(X)× Bn−p,n−q
c (X) → C (ϕ, µ) �→

∫

X
ϕ ∧ µ,

which only depends on the class of µ in Hn−q(Bn−p,•
c (X), ∂̄) and the class of ϕ in

Hq(A p,q(X), ∂̄). In particular, since H0(A p,•(X), ∂̄) = Ωp(X) we have a pairing

Ωp
X(X)×Hn(Bn−p,•

c (X), ∂̄) → C.

Theorem 7.2. Assume that X is an analytic subspace of a pseudoconvex domain
D ⊂ CN . Then

0 → Bn−p,0
c (X)

∂̄−→ · · · ∂̄−→ Bn−p,n
c (X) → 0

is exact except on level n. The pairing (7.2) makes the cohomology group Hn(Bn−p,•
c (X), ∂̄)

the (topological) dual of Ωp
X(X).

Recall that the topology on Ωp(X) = Ωp(D)/J p(D) is the quotient topology and
that Ωp(X) is a Fréchet space with this topology, see, e.g., [15, Ch. IX]. Notice that
since convergence in Ωp(D) is uniform convergence on compact subsets, a sequence
ϕε ∈ Ωp(X) converges to 0 if there are ϕ̃ε ∈ Ωp(D) such that ϕε = i∗ϕ̃ε and ϕ̃ε → 0
uniformly on compacts. By the Cauchy estimates it follows that ϕ̃ε → 0 in E p,0(D).

Proof. Let µ ∈ Bn−p,n−q
c (X) be ∂̄-closed. Choose the weight g in the operators

Ǩ and P̌ of Section 5 such that z �→ g(ζ, z) is holomorphic in a neighborhood of
the holomorphically compact closure of suppµ and ζ �→ g(ζ, z) has support in a
fixed compact for all z in that neighborhood, cf. Example 6.1. Then ϑ(g ∧H)R(ζ)
has degree 0 in dz̄ and so P̌ µ = 0 if q ≥ 1, cf. (5.3). Since by Proposition 6.7 the
Koppelman formula (6.4) holds we conclude that µ = ∂̄Ǩµ if q ≥ 1. Since ζ �→ g(ζ, z)
has compact support also Ǩµ has and the first statement of the theorem follows.

Suppose now that µ ∈ Bn−p,n
c (X). Since convergence of a sequence in Ωp(X)

implies convergence in E p,0(D) for a suitable sequence of representatives it follows
that µ defines a continuous linear functional µ̃ on Ωp(X) via (7.2). This functional
only depends on the cohomology class of µ and so we can, in view of (6.4), assume
that µ = P̌ µ. We have

P̌ µ = π1∗
(
ϑ(g ∧H)R(ζ) ∧ i∗µ(z)

)
= ±π1∗

(
ϑ(g ∧H) ∧ i∗µ(z)

)
R(ζ),
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where π1 : Dζ ×Dz → Dζ . Since g and H are holomorphic for z in a neighborhood of
the holomorphically compact closure of suppµ it follows from the Oka-Weil theorem
that if

∫
X ϕ ∧ µ = 0 for all ϕ ∈ Ωp(X), then π1∗

(
ϑ(g ∧ H) ∧ i∗µ(z)

)
= 0. Hence,

µ̃ = 0 implies µ = 0, i.e., the map µ �→ µ̃ is injective.
To show surjectivity, let λ be a continuous linear functional on Ωp(X). Then λ

lifts to a functional, also denoted λ, on Ωp(D). By the Hahn-Banach theorem this
functional has to be carried by some compact K ⊂ D, which we may assume is
holomorphically convex, and there is an (N − p,N)-current ν in D of order 0 with
compact support in a neighborhood V of K such that

λ(ϕ) =

∫

D
ϕ ∧ ν, ϕ ∈ Ωp(D).

Let P be an operator corresponding to a choice of weight g such that z �→ g(ζ, z) is
holomorphic in V and ζ �→ g(ζ, z) has support in a fixed compact subset of D for all
z ∈ V . Then, if ϕ ∈ Ωp(X), Pϕ is an extension of ϕ to V . Let also φ ∈ Ωp(D) be
an arbitrary representative of ϕ. Then

λ(ϕ) = λ(Pϕ) =

∫

D
Pϕ(z) ∧ ν(z) =

∫

D
π2∗

(
ϑ(g ∧H)R(ζ) ∧ φ(ζ)

)
∧ ν(z)

=
(
ϑ(g ∧H)R(ζ) ∧ φ(ζ) ∧ ν(z)

)
.1D×D

= ±
∫

D
φ(ζ) ∧ π1∗

(
ϑ(g ∧H) ∧ ν(z)

)
R(ζ).

Since π1∗
(
ϑ(g∧H)∧ν(z)

)
is smooth with compact support in D it follows that there

is µ ∈ Bn−p,n
c (X) such that

π1∗
(
ϑ(g ∧H) ∧ ν(z)

)
R(ζ) = i∗µ.

Hence,

λ(ϕ) =

∫

D
φ ∧ i∗µ =

∫

X
ϕ ∧ µ.

�

Theorem 7.3. Let X be a (paracompact) analytic space of pure dimension n. If
Hq(X,Ωp

X) and Hq+1(X,Ωp
X) are Hausdorff, then the pairing

(7.3) Hq(A p,•(X), ∂̄)×Hn−q(Bn−p,•
c (X), ∂̄) → C, ([ϕ], [µ]) �→

∫

X
ϕ ∧ µ

is non-degenerate so that Hn−q(Bn−p,•
c (X), ∂̄) is the dual of Hq(A p,•(X), ∂̄).

Sketch of proof. Referring to, e.g., [23, Section 6.2] and [24, Section 7.3] for details

we outline a proof showing that Hn−q(Bn−p,•
c (X), ∂̄) is the dual of Hq(A p,•(X), ∂̄)

via (7.3). The idea is to use Čech cohomology and homological algebra to reduce to
the local duality of Theorem 7.2.

Let U = {Uj}j be a locally finite covering of X such that Uj is an analytic subspace
of some pseudoconvex domain D in some CN . Then U is a Leray covering for Ωp

X .

Let (C•(U ,Ωp
X), δ) be the associated Čech cochain complex. Then

(7.4) Hq(A p,•(X), ∂̄) � Hq(C•(U ,Ωp
X), δ)

since both the left- and the right-hand sides are isomorphic to Hq(X,Ωp
X). It is

standard to make the isomorphism (7.4) explicit by solving local ∂̄-equations.
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where π : Dζ×Dwν×· · ·×Dw1 → Dζ is the natural projection, ν ≥ 1, and ξ is smooth.
Hence, ϕ = Kφ for an appropriate φ(wν) ∈ A p,∗

X and so, in view of Section 5, since

µ ∈ Bn−p,∗
X ⊂ Wn−p,∗

X we have

i∗µ ∧ ϕ = i∗µ ∧Kφ = π∗
(
µ(ζ) ∧ Tϕ

)
.

On Xp-reg, where ϕ is smooth, this coincides with the natural wedge product, cf. the
proof of Theorem 5.4. In view of Definition 6.6 we may assume that

i∗µ(ζ) = π̃∗
(
R(zν̃) ∧ k(zν̃−1, zν̃) ∧ · · · ∧ k(ζ, z1) ∧ ξ̃

)
=: π̃∗Tµ,

where π̃ : Dζ × Dzν̃ × · · · × Dz1 → Dζ is the natural projection and ξ̃ = ξ̃(ζ, z) is
smooth. Hence,

i∗µ ∧ ϕ = π∗π̃∗
(
Tµ ∧ Tϕ

)
.

Since Tµ∧Tϕ is of the form (6.11) (times ξ∧ ξ̃) it follows that µ∧ϕ ∈ Wn,∗
X . Moreover,

by Lemma 6.9 and the computation (6.12), with ω and T replaced by µ and Tµ∧Tϕ,
respectively, it follows that ∂̄(µ ∧ ϕ) has the SEP. �

Let Bn−p,∗
c (X) be the vector space of sections of Bn−p,∗

X with compact support.
By Theorem 7.1 we have, cf. (3.19), a bilinear pairing

(7.2) A p,q(X)× Bn−p,n−q
c (X) → C (ϕ, µ) �→

∫

X
ϕ ∧ µ,

which only depends on the class of µ in Hn−q(Bn−p,•
c (X), ∂̄) and the class of ϕ in

Hq(A p,q(X), ∂̄). In particular, since H0(A p,•(X), ∂̄) = Ωp(X) we have a pairing

Ωp
X(X)×Hn(Bn−p,•

c (X), ∂̄) → C.

Theorem 7.2. Assume that X is an analytic subspace of a pseudoconvex domain
D ⊂ CN . Then

0 → Bn−p,0
c (X)

∂̄−→ · · · ∂̄−→ Bn−p,n
c (X) → 0

is exact except on level n. The pairing (7.2) makes the cohomology group Hn(Bn−p,•
c (X), ∂̄)

the (topological) dual of Ωp
X(X).

Recall that the topology on Ωp(X) = Ωp(D)/J p(D) is the quotient topology and
that Ωp(X) is a Fréchet space with this topology, see, e.g., [15, Ch. IX]. Notice that
since convergence in Ωp(D) is uniform convergence on compact subsets, a sequence
ϕε ∈ Ωp(X) converges to 0 if there are ϕ̃ε ∈ Ωp(D) such that ϕε = i∗ϕ̃ε and ϕ̃ε → 0
uniformly on compacts. By the Cauchy estimates it follows that ϕ̃ε → 0 in E p,0(D).

Proof. Let µ ∈ Bn−p,n−q
c (X) be ∂̄-closed. Choose the weight g in the operators

Ǩ and P̌ of Section 5 such that z �→ g(ζ, z) is holomorphic in a neighborhood of
the holomorphically compact closure of suppµ and ζ �→ g(ζ, z) has support in a
fixed compact for all z in that neighborhood, cf. Example 6.1. Then ϑ(g ∧H)R(ζ)
has degree 0 in dz̄ and so P̌ µ = 0 if q ≥ 1, cf. (5.3). Since by Proposition 6.7 the
Koppelman formula (6.4) holds we conclude that µ = ∂̄Ǩµ if q ≥ 1. Since ζ �→ g(ζ, z)
has compact support also Ǩµ has and the first statement of the theorem follows.

Suppose now that µ ∈ Bn−p,n
c (X). Since convergence of a sequence in Ωp(X)

implies convergence in E p,0(D) for a suitable sequence of representatives it follows
that µ defines a continuous linear functional µ̃ on Ωp(X) via (7.2). This functional
only depends on the cohomology class of µ and so we can, in view of (6.4), assume
that µ = P̌ µ. We have

P̌ µ = π1∗
(
ϑ(g ∧H)R(ζ) ∧ i∗µ(z)

)
= ±π1∗

(
ϑ(g ∧H) ∧ i∗µ(z)

)
R(ζ),
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where π1 : Dζ ×Dz → Dζ . Since g and H are holomorphic for z in a neighborhood of
the holomorphically compact closure of suppµ it follows from the Oka-Weil theorem
that if

∫
X ϕ ∧ µ = 0 for all ϕ ∈ Ωp(X), then π1∗

(
ϑ(g ∧ H) ∧ i∗µ(z)

)
= 0. Hence,

µ̃ = 0 implies µ = 0, i.e., the map µ �→ µ̃ is injective.
To show surjectivity, let λ be a continuous linear functional on Ωp(X). Then λ

lifts to a functional, also denoted λ, on Ωp(D). By the Hahn-Banach theorem this
functional has to be carried by some compact K ⊂ D, which we may assume is
holomorphically convex, and there is an (N − p,N)-current ν in D of order 0 with
compact support in a neighborhood V of K such that

λ(ϕ) =

∫

D
ϕ ∧ ν, ϕ ∈ Ωp(D).

Let P be an operator corresponding to a choice of weight g such that z �→ g(ζ, z) is
holomorphic in V and ζ �→ g(ζ, z) has support in a fixed compact subset of D for all
z ∈ V . Then, if ϕ ∈ Ωp(X), Pϕ is an extension of ϕ to V . Let also φ ∈ Ωp(D) be
an arbitrary representative of ϕ. Then

λ(ϕ) = λ(Pϕ) =

∫

D
Pϕ(z) ∧ ν(z) =

∫

D
π2∗

(
ϑ(g ∧H)R(ζ) ∧ φ(ζ)

)
∧ ν(z)

=
(
ϑ(g ∧H)R(ζ) ∧ φ(ζ) ∧ ν(z)

)
.1D×D

= ±
∫

D
φ(ζ) ∧ π1∗

(
ϑ(g ∧H) ∧ ν(z)

)
R(ζ).

Since π1∗
(
ϑ(g∧H)∧ν(z)

)
is smooth with compact support in D it follows that there

is µ ∈ Bn−p,n
c (X) such that

π1∗
(
ϑ(g ∧H) ∧ ν(z)

)
R(ζ) = i∗µ.

Hence,

λ(ϕ) =

∫

D
φ ∧ i∗µ =

∫

X
ϕ ∧ µ.

�

Theorem 7.3. Let X be a (paracompact) analytic space of pure dimension n. If
Hq(X,Ωp

X) and Hq+1(X,Ωp
X) are Hausdorff, then the pairing

(7.3) Hq(A p,•(X), ∂̄)×Hn−q(Bn−p,•
c (X), ∂̄) → C, ([ϕ], [µ]) �→

∫

X
ϕ ∧ µ

is non-degenerate so that Hn−q(Bn−p,•
c (X), ∂̄) is the dual of Hq(A p,•(X), ∂̄).

Sketch of proof. Referring to, e.g., [23, Section 6.2] and [24, Section 7.3] for details

we outline a proof showing that Hn−q(Bn−p,•
c (X), ∂̄) is the dual of Hq(A p,•(X), ∂̄)

via (7.3). The idea is to use Čech cohomology and homological algebra to reduce to
the local duality of Theorem 7.2.

Let U = {Uj}j be a locally finite covering of X such that Uj is an analytic subspace
of some pseudoconvex domain D in some CN . Then U is a Leray covering for Ωp

X .

Let (C•(U ,Ωp
X), δ) be the associated Čech cochain complex. Then

(7.4) Hq(A p,•(X), ∂̄) � Hq(C•(U ,Ωp
X), δ)

since both the left- and the right-hand sides are isomorphic to Hq(X,Ωp
X). It is

standard to make the isomorphism (7.4) explicit by solving local ∂̄-equations.
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The Fréchet topology on Ωp(Uj) induces a natural Fréchet topology on Ck(U ,Ωp
X)

and, consequently, on the cohomology of (C•(U ,Ωp
X), δ). Recall that the standard

topology on Hq(X,Ωp
X) is defined as this topology. In view of, e.g., [22, Lemma 2]

it follows that if Hq(X,Ωp
X) and Hq+1(X,Ωp

X) are Hausdorff, then

(7.5) Hq(C•(U ,Ωp
X), δ)∗ � Hq(C•(U ,Ωp

X)∗, δ∗),

where (C•(U ,Ωp
X)∗, δ∗) is the (topological) dual complex of (C•(U ,Ωp

X), δ).

Let C−k(U ,Bn−p,j
c ) be the group of formal sums

∑′
|I|=k+1 µIU

∗
I , where µI ∈

Bn−p,j
c (∩i∈IUi) and U∗

I := U∗
i0
∧ · · · ∧ U∗

ik
is a formal wedge product. It follows

from Theorem 7.2 that

(7.6) Ck(U ,Ωp
X)∗ � Hn(C−k(U ,Bn−p,•

c ), ∂̄)

via the pairing induced by (7.2). The operator δ∗ on C•(U ,Ωp
X)∗ gives in a natural

way an operator, also denoted δ∗, on C−•(U ,Bn−p,j
c ). It turns out that this operator

is formal interior multiplication by
∑

� U�; µI is extended to ∩i∈I\i�Ui by 0. Thus we
get the double complex

(7.7)
(
C−•(U ,Bn−p,•

c ), δ∗, ∂̄
)
.

In view of (7.6) we have

(7.8) Hq(C•(U ,Ωp
X)∗, δ∗) � Hq(Hn(C−•(U ,Bn−p,•

c ), δ∗, ∂̄)).

By Theorem 6.10, the ∂̄-cohomology of (7.7) is trivial except on level n and, by, e.g.,
[23, Lemma 6.3], since the BX -sheaves are fine, the δ∗-cohomology of (7.7) is trivial
except on level 0 where the cohomology is Bc(X)n−p,•. By standard homological
algebra it follows that

(7.9) Hq(Hn(C−•(U ,Bn−p,•
c ), δ∗), ∂̄) � Hn−q(Bc(X)n−p, ∂̄).

From (7.4), (7.5), (7.8), and (7.9) we see that Hn−q(Bc(X)n−p, ∂̄) is the dual of
Hq(A p,•(X), ∂̄). To see that this duality is given by (7.3) one can make these iso-
morphisms explicit and use that (7.6) is induced by the pairing (7.2). �

Proof of Theorem B. Part (i) follows from Definition 6.6 and Proposition 6.7. Part
(ii) follows from Theorem 6.10. Part (iii) follows from Theorem 7.1. Part (iv) fol-

lows from Theorem 7.3; indeed, if X is compact then we can replace Bn−p,•
c (X)

by Bn−p,•(X) and, moreover, by the Cartan-Serre theorem, the cohomology of any
coherent sheaf is finite-dimensional, in particular Hausdorff. �

8. Examples

We present two examples which illustrate our various notions of holomorphic forms
and currents. The first one is rather straightforward whereas the second one is more
elaborate.

Example 8.1. Let D = C4 with coordinates (z1, z2, w1, w2). For the ideal J =〈
w2
1, w

2
2, w1w2

〉
we have

√
J = 〈w1, w2〉 so that Z = {w = 0}. In this case dJ =
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〈
w1dw1, w2dw2, w2dw1 + w1dw2

〉
and it is straightforward to check that

OX = OZ{1, w1, w2},
Ω1
X = Ω1

X,Kähler = Ω1
Z{1, w1, w2}+ OZ{dw1, dw2, w1dw2 − w2dw1},

Ω2
X = Ω2

X,Kähler

= Ω2
Z{1, w1, w2}+ Ω1

Z ∧ {dw1, dw2, w1dw2 − w2dw1}+ OZ{dw1 ∧ dw2}.
Since the underlying reduced space is smooth we may use Proposition 3.13 to describe
the smooth forms on X. By this proposition we have, for example, that

E 2,∗
X = E 2,∗

D

/(
J E 2,∗

D + dJ ∧ E 1,∗
D + 〈w1, w2〉E 2,∗

D + d〈w1, w2〉 ∧ E 2,∗
D

)
.

We see that the denominator above, i.e., Ker 2 i∗, contains all w̄i and dw̄i and what
remains is

E 2,∗
X = E 2,∗

Z {1, w1, w2}+ E 1,∗
Z ∧ {dw1, dw2, w1dw2 − w2dw1}+ E 0,∗

Z ∧ {dw1 ∧ dw2},
very much in analogy with Ω2

X above. Now let us look at currents onX; for simplicity
we restrict to currents of bidegree (2, ∗). If α is a (2, ∗)-current on X then, by
definition, i∗α is annihilated by Ker 0 i∗, which contains all w̄i and dw̄i. It follows
that

i∗α =
∑

k,�≥0

αk,�(z)dz1 ∧ dz2 ∧ dw1 ∧ dw2 ∧ ∂̄
1

wk+1
1

∧ ∂̄
1

w�+1
2

with αk,� ∈ C 0,∗
Z ,

where CZ is the sheaf of currents on Z. But we must also have that i∗α ∧ J = 0 =
i∗α ∧ dJ . The first equality implies that k, � ≤ 1 and the second is automatically
satisfied for degree reasons. We also see that w1w2∂̄(dw1/w

2
1) ∧ ∂̄(dw2/w

2
2) �= 0 and

therefore

i∗C
2,∗
X = C 2,∗

Z

{
∂̄
dw1

w1
∧ ∂̄

dw2

w2
, ∂̄

dw1

w2
1

∧ ∂̄
dw2

w2
, ∂̄

dw1

w1
∧ ∂̄

dw2

w2
2

}
.

Writing B for the set of three basis elements above, we get i∗ω2
X = Ω2

ZB.
Example 8.2. Let D = C4 with the same coordinates as above. Let i : X → D be
defined by

J =
〈
w2
1, w

2
2, w1w2, z1w2 − z2w1

〉

and write f = z1w2 − z2w1 so that dJ =
〈
w1dw1, w2dw2, w1dw2 + w2dw1, df

〉
. It is

straightforward to see that

OX =
OZ{1, w1, w2}

OZ{f}
, Ω1

X,Kähler =
Ω1
Z{1, w1, w2}+ OZ{dw1, dw2, w1dw2 − w2dw1}

Ω1
Z{f}+ OZ{df}

.

Here we write the quotient as a quotient of OZ-modules but to see how the multipli-
cation in the rings work notice that wiwj = 0 and widwi = 0.

We now describe the torsion elements of Ω1
X,Kähler. If z1 �= 0 then w2 = w1z2/z1 and

since w1dw1 = 0 we get w2dw1 =
(
z2w1/z1

)
dw1 = 0. We have w1dw2 + w2dw1 = 0

everywhere and therefore we also get w1dw2 = 0 when z1 �= 0. By symmetry both
w1dw2 and w2dw1 vanish when z2 �= 0. One may verify that neither w1dw2 nor
w2dw1 is in Ω1

Z{f} + OZ{df} and therefore they are torsion elements. These are
actually the only torsion elements and hence

Ω1
X =

Ω1
Z{1, w1, w2}+ OZ{dw1, dw2}

Ω1
Z{f}+ OZ{df}

.
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The Fréchet topology on Ωp(Uj) induces a natural Fréchet topology on Ck(U ,Ωp
X)

and, consequently, on the cohomology of (C•(U ,Ωp
X), δ). Recall that the standard

topology on Hq(X,Ωp
X) is defined as this topology. In view of, e.g., [22, Lemma 2]

it follows that if Hq(X,Ωp
X) and Hq+1(X,Ωp

X) are Hausdorff, then

(7.5) Hq(C•(U ,Ωp
X), δ)∗ � Hq(C•(U ,Ωp

X)∗, δ∗),

where (C•(U ,Ωp
X)∗, δ∗) is the (topological) dual complex of (C•(U ,Ωp

X), δ).

Let C−k(U ,Bn−p,j
c ) be the group of formal sums

∑′
|I|=k+1 µIU

∗
I , where µI ∈

Bn−p,j
c (∩i∈IUi) and U∗

I := U∗
i0
∧ · · · ∧ U∗

ik
is a formal wedge product. It follows

from Theorem 7.2 that

(7.6) Ck(U ,Ωp
X)∗ � Hn(C−k(U ,Bn−p,•

c ), ∂̄)

via the pairing induced by (7.2). The operator δ∗ on C•(U ,Ωp
X)∗ gives in a natural

way an operator, also denoted δ∗, on C−•(U ,Bn−p,j
c ). It turns out that this operator

is formal interior multiplication by
∑

� U�; µI is extended to ∩i∈I\i�Ui by 0. Thus we
get the double complex

(7.7)
(
C−•(U ,Bn−p,•

c ), δ∗, ∂̄
)
.

In view of (7.6) we have

(7.8) Hq(C•(U ,Ωp
X)∗, δ∗) � Hq(Hn(C−•(U ,Bn−p,•

c ), δ∗, ∂̄)).

By Theorem 6.10, the ∂̄-cohomology of (7.7) is trivial except on level n and, by, e.g.,
[23, Lemma 6.3], since the BX -sheaves are fine, the δ∗-cohomology of (7.7) is trivial
except on level 0 where the cohomology is Bc(X)n−p,•. By standard homological
algebra it follows that

(7.9) Hq(Hn(C−•(U ,Bn−p,•
c ), δ∗), ∂̄) � Hn−q(Bc(X)n−p, ∂̄).

From (7.4), (7.5), (7.8), and (7.9) we see that Hn−q(Bc(X)n−p, ∂̄) is the dual of
Hq(A p,•(X), ∂̄). To see that this duality is given by (7.3) one can make these iso-
morphisms explicit and use that (7.6) is induced by the pairing (7.2). �

Proof of Theorem B. Part (i) follows from Definition 6.6 and Proposition 6.7. Part
(ii) follows from Theorem 6.10. Part (iii) follows from Theorem 7.1. Part (iv) fol-

lows from Theorem 7.3; indeed, if X is compact then we can replace Bn−p,•
c (X)

by Bn−p,•(X) and, moreover, by the Cartan-Serre theorem, the cohomology of any
coherent sheaf is finite-dimensional, in particular Hausdorff. �

8. Examples

We present two examples which illustrate our various notions of holomorphic forms
and currents. The first one is rather straightforward whereas the second one is more
elaborate.

Example 8.1. Let D = C4 with coordinates (z1, z2, w1, w2). For the ideal J =〈
w2
1, w

2
2, w1w2

〉
we have

√
J = 〈w1, w2〉 so that Z = {w = 0}. In this case dJ =
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〈
w1dw1, w2dw2, w2dw1 + w1dw2

〉
and it is straightforward to check that

OX = OZ{1, w1, w2},
Ω1
X = Ω1

X,Kähler = Ω1
Z{1, w1, w2}+ OZ{dw1, dw2, w1dw2 − w2dw1},

Ω2
X = Ω2

X,Kähler

= Ω2
Z{1, w1, w2}+ Ω1

Z ∧ {dw1, dw2, w1dw2 − w2dw1}+ OZ{dw1 ∧ dw2}.
Since the underlying reduced space is smooth we may use Proposition 3.13 to describe
the smooth forms on X. By this proposition we have, for example, that

E 2,∗
X = E 2,∗

D

/(
J E 2,∗

D + dJ ∧ E 1,∗
D + 〈w1, w2〉E 2,∗

D + d〈w1, w2〉 ∧ E 2,∗
D

)
.

We see that the denominator above, i.e., Ker 2 i∗, contains all w̄i and dw̄i and what
remains is

E 2,∗
X = E 2,∗

Z {1, w1, w2}+ E 1,∗
Z ∧ {dw1, dw2, w1dw2 − w2dw1}+ E 0,∗

Z ∧ {dw1 ∧ dw2},
very much in analogy with Ω2

X above. Now let us look at currents onX; for simplicity
we restrict to currents of bidegree (2, ∗). If α is a (2, ∗)-current on X then, by
definition, i∗α is annihilated by Ker 0 i∗, which contains all w̄i and dw̄i. It follows
that

i∗α =
∑

k,�≥0

αk,�(z)dz1 ∧ dz2 ∧ dw1 ∧ dw2 ∧ ∂̄
1

wk+1
1

∧ ∂̄
1

w�+1
2

with αk,� ∈ C 0,∗
Z ,

where CZ is the sheaf of currents on Z. But we must also have that i∗α ∧ J = 0 =
i∗α ∧ dJ . The first equality implies that k, � ≤ 1 and the second is automatically
satisfied for degree reasons. We also see that w1w2∂̄(dw1/w

2
1) ∧ ∂̄(dw2/w

2
2) �= 0 and

therefore

i∗C
2,∗
X = C 2,∗

Z

{
∂̄
dw1

w1
∧ ∂̄

dw2

w2
, ∂̄

dw1

w2
1

∧ ∂̄
dw2

w2
, ∂̄

dw1

w1
∧ ∂̄

dw2

w2
2

}
.

Writing B for the set of three basis elements above, we get i∗ω2
X = Ω2

ZB.
Example 8.2. Let D = C4 with the same coordinates as above. Let i : X → D be
defined by

J =
〈
w2
1, w

2
2, w1w2, z1w2 − z2w1

〉

and write f = z1w2 − z2w1 so that dJ =
〈
w1dw1, w2dw2, w1dw2 + w2dw1, df

〉
. It is

straightforward to see that

OX =
OZ{1, w1, w2}

OZ{f}
, Ω1

X,Kähler =
Ω1
Z{1, w1, w2}+ OZ{dw1, dw2, w1dw2 − w2dw1}

Ω1
Z{f}+ OZ{df}

.

Here we write the quotient as a quotient of OZ-modules but to see how the multipli-
cation in the rings work notice that wiwj = 0 and widwi = 0.

We now describe the torsion elements of Ω1
X,Kähler. If z1 �= 0 then w2 = w1z2/z1 and

since w1dw1 = 0 we get w2dw1 =
(
z2w1/z1

)
dw1 = 0. We have w1dw2 + w2dw1 = 0

everywhere and therefore we also get w1dw2 = 0 when z1 �= 0. By symmetry both
w1dw2 and w2dw1 vanish when z2 �= 0. One may verify that neither w1dw2 nor
w2dw1 is in Ω1

Z{f} + OZ{df} and therefore they are torsion elements. These are
actually the only torsion elements and hence

Ω1
X =

Ω1
Z{1, w1, w2}+ OZ{dw1, dw2}

Ω1
Z{f}+ OZ{df}

.
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The way we check we found all torsion elements is to check that the module above
is torsion-free. Similar calculations yield that

Ω2
X =

Ω2
Z{1, w1, w2}+ Ω1

Z{dw1, dw2}
Ω2
Z{f}+ Ω1

Z{df}
.

We now describe generators for ω2−p
X . In [6, Example 6.9], it was shown that the

generators for i∗ω2
X are given by

∂̄
1

w1
∧ ∂̄

1

w2
∧ dz ∧ dw and

(
z1∂̄

1

w2
1

∧ ∂̄
1

w2
+ z2∂̄

1

w1
∧ ∂̄

1

w2
2

)
∧ dz ∧ dw,

where dz = dz1 ∧ dz2 and dw = dw1 ∧ dw2. These correspond to intrinsic objects in
ω2

X , which can be considered as differential operators, and in view of the formula

1

(2πi)2
∂̄

1

wm1+1
1

∧ ∂̄
1

wm2+1
2

.ψ(w) =
1

m1!m2!

∂m1+m2

∂wm1
1 ∂wm2

2

ψ

∣∣∣∣
w=0

,

they correspond (up to constants) to the form-valued differential operators

dz1 ∧ dz2Id and dz1 ∧ dz2

(
z1

∂

∂w1
+ z2

∂

∂w2

)

followed by restriction to Z.
By a similar calculation as in [6, Example 6.9], one can obtain also generators for

i∗ω2−p
X for p = 1, 2. Indeed, if (E, f) is a locally free resolution of Ωp

X , then ω2−p
X is

generated by all currents of the form ξRE
2 , where ξ is in Ker f∗

3 and RE
2 is the part

in Hom(E0, E2) of the residue current associated to (E, f). To calculate ξRE
2 , by the

same argument as in [6, Example 6.9], if (F, g) is the direct sum of r0 copies of the
Koszul complex of (w2

1, w
2
2), where r0 = rankE0 = rankΩp

C4 , and a : (F, g) → (E, f)
is a morphism of complexes such that a0 : F0 → E0 is the identity, then

ξRE
2 h = ξa2(he) ∧ ∂̄

1

w2
2

∧ ∂̄
1

w2
1

.

With the help of the software Macaulay2, we could calculate the morphism a2 and
generators for Ker f∗

3 , and could thus calculate generators for i∗ω2−p
X . The sheaf

i∗ω1
X is generated by

dz1 ∧ dw1 ∧ dw2 ∧ ∂̄
1

w2
∧ ∂̄

1

w1
, dz2 ∧ dw1 ∧ dw2 ∧ ∂̄

1

w2
∧ ∂̄

1

w1
,

((z2w1 + z1w2)dz2 ∧ dw1 ∧ dw2 + w1w2dz1 ∧ dz2 ∧ dw2) ∧ ∂̄
1

w2
2

∧ ∂̄
1

w2
1

,

((z2w1 + z1w2)dz1 ∧ dw1 ∧ dw2 + w1w2dz1 ∧ dz2 ∧ dw1) ∧ ∂̄
1

w2
2

∧ ∂̄
1

w2
1

,

(z2dz1 ∧ dz2 ∧ dw1 − z1dz1 ∧ dz2 ∧ dw2) ∧ ∂̄
1

w2
∧ ∂̄

1

w1
.
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These correspond (up to constants) to the differential operators

dz1Id, dz2Id,

dz2

(
z2

∂

∂w2
+ z1

∂

∂w1

)
+ dz1 ∧ dz2 ∧ (dw1�),

dz1

(
z2

∂

∂w2
+ z1

∂

∂w1

)
+ dz1 ∧ dz2 ∧ (dw2�),

z2dz1 ∧ dz2 ∧ (dw2�)− z1dz1 ∧ dz2 ∧ (dw1�)
followed by restriction to Z. Finally, the sheaf i∗ω0

X is generated by

dw1 ∧ dw2 ∧ ∂̄
1

w2
∧ ∂̄

1

w1
,

((z2w1 + z1w2)dw1 ∧ dw2 + w1w2dz2 ∧ dw1 − w1w2dz1 ∧ dw2) ∧ ∂̄
1

w2
2

∧ ∂̄
1

w2
1

,

(z1dz1 ∧ dw2 − z2dz1 ∧ dw1) ∧ ∂̄
1

w2
∧ ∂̄

1

w1
,

(z1dz2 ∧ dw2 − z2dz2 ∧ dw1) ∧ ∂̄
1

w2
∧ ∂̄

1

w1
.

These correspond (up to constants) to the differential operators

Id, z2
∂

∂w2
+ z1

∂

∂w1
+ dz2 ∧ (dw2�) + dz1 ∧ (dw1�),

dz1 ∧ (z1dw1�+ z2dw2�), dz2 ∧ (z1dw1�+ z2dw2�)
followed by restriction to Z.

We conclude this paper by putting the calculations of ω•
X into the context of

Noetherian differential operators. Let as before i : X → D ⊂ CN be defined by
J and Z = Z(J ). Recall that a holomorphic differential operator L : OD → OZ

is Noetherian for J if Lϕ = 0 for any ϕ ∈ J . A set {Lj}j is a complete set of
Noetherian operators for J if ϕ ∈ J if and only if Ljϕ = 0 for all j.

Assume that Z is smooth and that (z, w) are coordinates such that Z = {w =
0} and let π : D → Z be the projection π(z, w) = z. Given a set of generators

µ = (µ1, . . . , µm) of ωn−p
X we construct a complete set of Noetherian type operators

Ωp
D → Ωn

Z (acting as Lie derivatives) for J p in a way similar to the construction of

the mapping T̃ in Section 3.3. Take M > 0 large enough so that wαµj = 0 for all j
if |α| ≥ M . We set

Lj,α : Ω
p
D → Ωn

Z , Lj,αϕ = π∗(wαϕ ∧ i∗µj);

that Lj,αϕ ∈ Ωn
Z follows as in Section 3.3. Moreover, ϕ ∧ i∗µj = 0 if and only if

π∗(wαϕ∧i∗µj) = 0 for all α. Since Ker p i∗ is the annihilator of µ and Ker p i∗∩Ωp
X =

J p, see the proof of Corollary 3.10, it follows that Lj,α, j = 1, . . . ,m, |α| < M , is a
complete set of Noetherian operators for J p.
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The way we check we found all torsion elements is to check that the module above
is torsion-free. Similar calculations yield that

Ω2
X =

Ω2
Z{1, w1, w2}+ Ω1

Z{dw1, dw2}
Ω2
Z{f}+ Ω1

Z{df}
.

We now describe generators for ω2−p
X . In [6, Example 6.9], it was shown that the

generators for i∗ω2
X are given by

∂̄
1

w1
∧ ∂̄

1

w2
∧ dz ∧ dw and

(
z1∂̄

1

w2
1

∧ ∂̄
1

w2
+ z2∂̄

1

w1
∧ ∂̄

1

w2
2

)
∧ dz ∧ dw,

where dz = dz1 ∧ dz2 and dw = dw1 ∧ dw2. These correspond to intrinsic objects in
ω2

X , which can be considered as differential operators, and in view of the formula

1

(2πi)2
∂̄

1

wm1+1
1

∧ ∂̄
1

wm2+1
2

.ψ(w) =
1

m1!m2!

∂m1+m2

∂wm1
1 ∂wm2

2

ψ

∣∣∣∣
w=0

,

they correspond (up to constants) to the form-valued differential operators

dz1 ∧ dz2Id and dz1 ∧ dz2

(
z1

∂

∂w1
+ z2

∂

∂w2

)

followed by restriction to Z.
By a similar calculation as in [6, Example 6.9], one can obtain also generators for

i∗ω2−p
X for p = 1, 2. Indeed, if (E, f) is a locally free resolution of Ωp

X , then ω2−p
X is

generated by all currents of the form ξRE
2 , where ξ is in Ker f∗

3 and RE
2 is the part

in Hom(E0, E2) of the residue current associated to (E, f). To calculate ξRE
2 , by the

same argument as in [6, Example 6.9], if (F, g) is the direct sum of r0 copies of the
Koszul complex of (w2

1, w
2
2), where r0 = rankE0 = rankΩp

C4 , and a : (F, g) → (E, f)
is a morphism of complexes such that a0 : F0 → E0 is the identity, then

ξRE
2 h = ξa2(he) ∧ ∂̄

1

w2
2

∧ ∂̄
1

w2
1

.

With the help of the software Macaulay2, we could calculate the morphism a2 and
generators for Ker f∗

3 , and could thus calculate generators for i∗ω2−p
X . The sheaf

i∗ω1
X is generated by

dz1 ∧ dw1 ∧ dw2 ∧ ∂̄
1

w2
∧ ∂̄

1

w1
, dz2 ∧ dw1 ∧ dw2 ∧ ∂̄

1

w2
∧ ∂̄

1

w1
,

((z2w1 + z1w2)dz2 ∧ dw1 ∧ dw2 + w1w2dz1 ∧ dz2 ∧ dw2) ∧ ∂̄
1

w2
2

∧ ∂̄
1

w2
1

,

((z2w1 + z1w2)dz1 ∧ dw1 ∧ dw2 + w1w2dz1 ∧ dz2 ∧ dw1) ∧ ∂̄
1

w2
2

∧ ∂̄
1

w2
1

,

(z2dz1 ∧ dz2 ∧ dw1 − z1dz1 ∧ dz2 ∧ dw2) ∧ ∂̄
1

w2
∧ ∂̄

1

w1
.
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These correspond (up to constants) to the differential operators

dz1Id, dz2Id,

dz2

(
z2

∂

∂w2
+ z1

∂

∂w1

)
+ dz1 ∧ dz2 ∧ (dw1�),

dz1

(
z2

∂

∂w2
+ z1

∂

∂w1

)
+ dz1 ∧ dz2 ∧ (dw2�),

z2dz1 ∧ dz2 ∧ (dw2�)− z1dz1 ∧ dz2 ∧ (dw1�)
followed by restriction to Z. Finally, the sheaf i∗ω0

X is generated by

dw1 ∧ dw2 ∧ ∂̄
1

w2
∧ ∂̄

1

w1
,

((z2w1 + z1w2)dw1 ∧ dw2 + w1w2dz2 ∧ dw1 − w1w2dz1 ∧ dw2) ∧ ∂̄
1

w2
2

∧ ∂̄
1

w2
1

,

(z1dz1 ∧ dw2 − z2dz1 ∧ dw1) ∧ ∂̄
1

w2
∧ ∂̄

1

w1
,

(z1dz2 ∧ dw2 − z2dz2 ∧ dw1) ∧ ∂̄
1

w2
∧ ∂̄

1

w1
.

These correspond (up to constants) to the differential operators

Id, z2
∂

∂w2
+ z1

∂

∂w1
+ dz2 ∧ (dw2�) + dz1 ∧ (dw1�),

dz1 ∧ (z1dw1�+ z2dw2�), dz2 ∧ (z1dw1�+ z2dw2�)
followed by restriction to Z.

We conclude this paper by putting the calculations of ω•
X into the context of

Noetherian differential operators. Let as before i : X → D ⊂ CN be defined by
J and Z = Z(J ). Recall that a holomorphic differential operator L : OD → OZ

is Noetherian for J if Lϕ = 0 for any ϕ ∈ J . A set {Lj}j is a complete set of
Noetherian operators for J if ϕ ∈ J if and only if Ljϕ = 0 for all j.

Assume that Z is smooth and that (z, w) are coordinates such that Z = {w =
0} and let π : D → Z be the projection π(z, w) = z. Given a set of generators

µ = (µ1, . . . , µm) of ωn−p
X we construct a complete set of Noetherian type operators

Ωp
D → Ωn

Z (acting as Lie derivatives) for J p in a way similar to the construction of

the mapping T̃ in Section 3.3. Take M > 0 large enough so that wαµj = 0 for all j
if |α| ≥ M . We set

Lj,α : Ω
p
D → Ωn

Z , Lj,αϕ = π∗(wαϕ ∧ i∗µj);

that Lj,αϕ ∈ Ωn
Z follows as in Section 3.3. Moreover, ϕ ∧ i∗µj = 0 if and only if

π∗(wαϕ∧i∗µj) = 0 for all α. Since Ker p i∗ is the annihilator of µ and Ker p i∗∩Ωp
X =

J p, see the proof of Corollary 3.10, it follows that Lj,α, j = 1, . . . ,m, |α| < M , is a
complete set of Noetherian operators for J p.
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géométrie analytique complexe. Inst. Hautes Études Sci. Publ. Math. No. 38 (1970), 77–91.
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géométrie analytique complexe. Inst. Hautes Études Sci. Publ. Math. No. 38 (1970), 77–91.
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Residues of singular differential forms
on complex submanifolds

Mattias Lennartsson

Abstract

In this short note we investigate integration of differential forms which are
singular along a complex submanifold.

1. Introduction

Let X be a complex manifold of dimension n, Y ⊆ X a submanifold of codimension κ and ω a differential
(n, n)-form which is smooth on X \ Y . Our aim is to make sense of divergent integrals on the form

∫

X

ω. (1)

Such problems arise for instance in distribution theory and lead to notions such as the finite part and
the principal value of an integral.

In this short note we will consider forms ω of the following form: We assume that there is a section
s : X → E of a hermitian vector bundle (E, | · |) → X such that {s = 0} = Y , ds has rank κ on Y
and |s|2Nω is smooth on all of X, for some integer N � 0. This means that s generates the ideal of all
holomorphic functions which vanish on Y . Integrals of such forms show up naturally in modern physics,
e.g. in perturbative string theory and renormalisation quantum field theory. The special case when Y is
a hypersurface has been considered by [Wi], [FK] and by ourselves in [ML]. In [FK2] is considered the
more general setup of real submanifolds. We will reach similar results and we use our special setup to
get easier proofs and somewhat more explicit formulas.

Our approach is inspired by the theory of residue currents. Let ξ be a test function on X. We
regularise the integral (1) by defining

F (ω, ξ, |s|2, λ) :=
∫

X

|s|2λωξ (2)

for λ ∈ C with Re(λ) � 1. For such values of λ the integrand is smooth and compactly supported, the
integral is well-defined and F is holomorphic in λ. The following theorem gives a further description of
the function F .

Theorem 1.1. The function F , defined in (2), has a meromorphic continuation to Re(λ) > −ε, for
some ε > 0, F has poles at λ = 0, 1, . . . , N − 1 and the pole at λ = 0 is of order at most one. The
Laurent expansion of F at λ = 0 is

F (ω, ξ, |s|2, λ) = 1

λ
C1(ω, |s|2).ξ + C0(ω, |s|2).ξ +O(|λ|)

where the Cj(ω, |s|2) are currents on X.
Suppose that ‖ · ‖ is another metric on E and define F (ω, ξ, ‖s‖2, λ) analogously as for | · |. The

function F (ω, ξ, ‖s‖2, λ) also has a pole at λ = 0 of order at most one and we denote the current
coefficients in the Laurent expansion by C1(ω, ‖s‖2) and C0(ω, ‖s‖2). Then

1

(i) C1(ω, |s|2) = C1(ω, ‖s‖2),

(ii) C0(ω, |s|2) = C0(ω, ‖s‖2) + C1(ω, |s|2) log |s|2
‖s‖2 .

Remark. (1) If |s|2Nω is smooth for N < κ, then ω is integrable. In this case C1 = 0 and C0.ξ =
∫
X
ωξ.

(2) The function log |s|2
‖s‖2 is not smooth but it is part of Theorem 1.1 that we may multiply C1(ω, |s|2)

by it.

In the case that ω has compact support Theorem 1.1 gives us one way of making sense of the integral∫
X
ω, namely as C0(ω, |s|2).1. However, this does depend on the choice of metric in accordance with

Theorem 1.1 (ii).
By Theorem 1.1 (i) we may now write C1(ω) := C1(ω, |s|2) since this is independent of the choice

of metric. We also see that the way the coefficient C0(ω, |s|2) depends on the metric is determined by
C1(ω). The next theorem describes C1(ω).

Theorem 1.2. Let ξ be a test function on X. If |s|2κω is smooth in X then there is a smooth (n−κ, n−κ)-
form res(ω) on Y such that

C1(ω).ξ = κ(2πi)κ
∫

Y

res(ω)ξ.

If |s|2Nω is smooth in X, for N > κ then there is a de Rham cohomology class Res(ωξ) ∈ Hn−κ,n−κ(Y )
such that

C1(ω).ξ = κ(2πi)κ
∫

Y

Res(ωξ).

Remark. In the first statement of Theorem 1.2 res(ω) is the differential form ω̃, defined below in Lemma
2.1 (a), restricted to Y . In the second statement Res(ωξ) = [res(|s|−2κQ(|s|2Nωξ))] where Q is a
differential operator on (n, n)-forms of order 2(N − κ) and the square brackets denote the de Rham
cohomology class. The differential operator Q depends on the choice of local coordinates and a partition
of unity but the de Rham class Res(ωξ) does not.

In the case that X is compact, given |s|2 and ω as above it follows from the above results that the
following ∫

X,|s|2
ω := lim

λ→0

(∫

X

|s|2λω − κ(2πi)κ

λ

∫

Y

Res(ω)

)

is well-defined. This is one way of making sense of the integral we started with. It depends on |s|2; if
|s|2 is replaced with ‖s‖2 = f |s|2, for some positive function f , then

∫

X,‖s‖2

ω =

∫

X,|s|2
ω − C1(ω) log(f).1.

2. Proofs

Proof of Theorem 1.1. We shall consider somewhat more general regularisations than (2). Let σ : X → Ê

be a section of a hermitian bundle (Ê, ‖·‖) such that {σ = 0} = Y and dσ �= 0 on Y . This does not imply
that ‖σ‖2Nω is smooth, but it is bounded. We then define F (ω, ξ, ‖σ‖2, λ) analogously to F (ω, ξ, |s|2, λ)
but with |s|2 replaced by ‖σ‖2.

Let π : BlY (X) → X be the blow-up of X along Y . As ‖σ‖2λωξ is integrable for Re(λ) � 1 and π
is biholomorphic outside a null set we have

F (ω, ξ, ‖σ‖2, λ) =
∫

BlY (X)

‖π∗σ‖2λπ∗(ωξ) for Re(λ) � 1.

2
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Let π : BlY (X) → X be the blow-up of X along Y . As ‖σ‖2λωξ is integrable for Re(λ) � 1 and π
is biholomorphic outside a null set we have

F (ω, ξ, ‖σ‖2, λ) =
∫

BlY (X)

‖π∗σ‖2λπ∗(ωξ) for Re(λ) � 1.

2



Both π∗σ and π∗s define the smooth hypersurface D := π−1(Y ). We take a partition of unity {ρι}
on BlY (X) subordinate to coordinate charts {Uι, zι} such that locally the hypersurface D is given by
zι,1 = 0. Therefore locally ‖π∗σ‖2 = |zι,1|2e−φι and |π∗s|2 = |zι,1|2e−ψι for some locally defined smooth
functions φι and ψι. Notice that |π∗s|2Nπ∗ω is smooth and so it follows that ‖π∗σ‖2Nπ∗ω is also smooth.
We now have

F (ω, ξ, ‖σ‖2, λ) =
∑

ι

∫

Uι

|zι,1|2λ
|zι,1|2N

e−φιλ|zι,1|2Nπ∗(ωξ)ρι for Re(λ) � 1.

Dropping the index ι for the moment we have

|z1|2λ
|z1|2N

=
h(λ)

λ

∂2N−1

∂zN−1
1 ∂z̄N1

( |z1|2λ
z1

)

where h(λ) =
(
(λ − 1)2 · · · (λ − N + 1)2

)−1
. Notice that h is holomorphic when Re(λ) < 1. Stokes’

theorem now gives

F (ω, ξ, ‖σ‖2, λ) = h(λ)

λ

∑

ι

∫

Uι

|zι,1|2λ
zι,1

∂2N−1

∂zN−1
ι,1 ∂z̄Nι,1

(
e−φιλ|zι,1|2Nπ∗(ωξ)ρι

)
for Re(λ) � 1. (3)

Denote the integral in (3) by g‖σ‖2(λ) so that we have

F (ω, ξ, ‖σ‖2, λ) = 1

λ
h(λ)g‖σ‖2(λ) (4)

We see that g‖σ‖2(λ) is defined and, by dominated convergence, holomorphic for Re(λ) > −1/2. Hence
F (ω, ξ, ‖σ‖2, λ) is meromorphic for Re(λ) > −1/2, has a pole at λ = 0, and the order of the pole is at
most one. Furthermore, the function F (ω, ξ, ‖σ‖2, λ) has poles at λ = 1, 2, . . . , N − 1 coming from the
poles of h. In the view of (4) the Laurent expansion of F (ω, ξ, ‖σ‖2, λ) at λ = 0 is given by

F (ω, ξ, ‖σ‖2, λ) = 1

λ
h(0)g‖σ‖2(0) +

(
h′(0)g‖σ‖2(0) + h(0)g′‖σ‖2(0)

)
+O(|λ|). (5)

We set

C1(ω, ‖σ‖2).ξ := h(0)g‖σ‖2(0),

C0(ω, ‖σ‖2).ξ := h′(0)g‖σ‖2(0) + h(0)g′‖σ‖2(0).

and we get that

C1(ω, ‖σ‖2).ξ = h(0)g(0) = h(0)
∑

ι

∫

Uι

1

zι,1

∂2N−1

∂zN−1
ι,1 ∂z̄Nι,1

(
|zι,1|2Nπ∗(ωξ)ρι

)
(6)

and the expression on the right hand side does not depend on the metric. This proves (i).
Now we look at the coefficient C0(ω, ‖σ‖2). Differentiating g‖σ‖2 gives

g′‖σ‖2(λ) =
∑

ι

∫

Uι

log |zι,1|2|zι,1|2λ
zι,1

∂2N−1

∂zN−1
ι,1 ∂z̄Nι,1

(
e−φιλ|zι,1|2Nπ∗(ωξ)ρι

)

+
∑

ι

∫

Uι

|zι,1|2λ
zι,1

∂2N−1

∂zN−1
ι,1 ∂z̄Nι,1

(
− φιe

−φιλ|zι,1|2Nπ∗(ωξ)ρι
)

and letting λ = 0 we get

C0(ω, ‖σ‖2).ξ = h(0)g′‖σ‖2(0) + h′(0)g‖σ‖2(0)

= h(0)
∑

ι

∫

Uι

log |zι,1|2
z1

∂2N−1

∂zN−1
ι,1 ∂z̄Nι,1

(
|zι,1|2Nπ∗(ωξ)ρι

)
(7)

− h(0)
∑

ι

∫

Uι

1

zι,1

∂2N−1

∂zN−1
ι,1 ∂z̄Nι,1

(
φι|zι,1|2Nπ∗(ωξ)ρι

)
(8)

+ h′(0)
∑

ι

∫

Uι

1

zι,1

∂2N−1

∂zN−1
ι,1 ∂z̄Nι,1

(
|zι,1|2Nπ∗(ωξ)ρι

)
. (9)

3

Notice that of (7)-(9) only (8) depends on the metric. Doing the same calculations but using |s|2 instead
of ‖σ‖2 to regularise the integral we get similar coefficients in the Laurent expansion of F (ω, ξ, |s|2, λ).
We denote these coefficients by C1(ω, |s|2) and C0(ω, |s|2). We then get

C0(ω, |s|2).ξ − C0(ω, ‖σ‖2).ξ = h(0)
∑

ι

∫

Uι

1

zι,1

∂2N−1

∂zN−1
ι,1 ∂z̄Nι,1

(
|zι,1|2N

(
φι − ψι

)
π∗(ωξ)ρι

)

= h(0)
∑

ι

∫

Uι

1

zι,1

∂2N−1

∂zN−1
ι,1 ∂z̄Nι,1

(
|zι,1|2N log

|π∗s|2
‖π∗σ‖2π

∗(ωξ)ρι
)

= C1(ω, ‖σ‖2) log
|s|2
‖σ‖2 ξ,

where the last step follows in view of (6). In particular, choosing Ê = E and σ = s we get the statement
in (ii). Finally, (6) also shows that C1(ω, ‖σ‖2) is the push-forward of some current T on BlY (X). The

product C1(ω, ‖σ‖2) log |s|2
‖σ‖2 should be interpreted as C1(ω, ‖σ‖2) log |s|2

‖σ‖2 := π∗
(
T log |π∗s|2

‖π∗σ‖2

)
. Then the

last step of the final calculation shows that this is well-defined.

Remark. (1) The proof of Theorem 1.1 shows that given ω such that |s|2Nω is smooth we may regularise
F with any section σ such that {σ = 0} = {s = 0} = Y and dσ �= 0 along Y .

(2) One may show that F has a meromorphic continuation to C.

To prove Theorem 1.2 we need a lemma. Around a point in Y we pick local coordinates (z, w) of

X such that Y = {w = 0} and a local frame {ej} of E such that s =
∑

j sjej . Let H̃ be the hermitian

matrix defined by |s|2 = (sj)
tH̃(s̄j). Since both w and s define the ideal of Y there is a holomorphic

matrix A such that (sj) = Awt. Letting H = AtH̃Ā we get

|s|2 = wtHw̄ (10)

and H is a hermitian (κ× κ)-matrix of rank κ.

Lemma 2.1. (a) If |s|2κω is smooth then there is a smooth (n − κ, n − κ)-form ω̃ in a neighbourhood

of Y such that ω =
( ∂̄∂|s|2

|s|2
)κ ∧ ω̃.

(b) There are real local coordinates (t1, . . . , t2n) for X such that Y = {t1 = · · · = t2κ = 0} and
|s|2 = t21 + · · ·+ t22κ.

(c) For the “local Laplacian”∆t =
1
4

∑2κ
j=1

∂2

∂t2j
we have

∆�
t|s|2(λ−k) = d(λ)|s|2(λ−k−�)

where d(λ) = (λ − k) · · · (λ − k − � + 1)(λ − k − 1 + κ) · · · (λ − k − � + κ). (Here ∆�
t means �

applications of ∆t.)

Proof. (a) Let (z, w) be local coordinates in X such that Y = {w = 0}. By assumption we can write

ω = dw ∧ dw̄ ∧ ω′

|s|2κ dz ∧ dz̄

for some smooth function ω′. We also have (∂̄∂|s|2)κ = ±κ! det(H)dw ∧ dw̄ on Y ; where H is the
hermitian matrix defined in (10). Therefore (∂̄∂|s|2)κ =

(
κ! det(H)+O(|w|)

)
dw∧dw̄+O(dz, dz̄)

where O(dz, dz̄) means any terms containing some dzj or dz̄j . Hence (∂̄∂|s|2)κ ∧ dz ∧ dz̄ =(
κ! det(H) +O(|w|)

)
dw ∧ dw̄ ∧ dz ∧ dz̄ and therefore (∂̄∂|s|2)κ

(
κ! det(H) +O(|w|)

)−1
dz ∧ dz̄ =

dw ∧ dw̄ ∧ dz ∧ dz̄. Thus

ω = (∂̄∂|s|2)κ
(
κ! det(H) +O(|w|)

)−1 ω′

|s|2κ ∧ dz ∧ dz̄

4



Both π∗σ and π∗s define the smooth hypersurface D := π−1(Y ). We take a partition of unity {ρι}
on BlY (X) subordinate to coordinate charts {Uι, zι} such that locally the hypersurface D is given by
zι,1 = 0. Therefore locally ‖π∗σ‖2 = |zι,1|2e−φι and |π∗s|2 = |zι,1|2e−ψι for some locally defined smooth
functions φι and ψι. Notice that |π∗s|2Nπ∗ω is smooth and so it follows that ‖π∗σ‖2Nπ∗ω is also smooth.
We now have

F (ω, ξ, ‖σ‖2, λ) =
∑

ι

∫

Uι

|zι,1|2λ
|zι,1|2N

e−φιλ|zι,1|2Nπ∗(ωξ)ρι for Re(λ) � 1.

Dropping the index ι for the moment we have

|z1|2λ
|z1|2N

=
h(λ)

λ

∂2N−1

∂zN−1
1 ∂z̄N1

( |z1|2λ
z1

)

where h(λ) =
(
(λ − 1)2 · · · (λ − N + 1)2

)−1
. Notice that h is holomorphic when Re(λ) < 1. Stokes’

theorem now gives

F (ω, ξ, ‖σ‖2, λ) = h(λ)

λ

∑

ι

∫

Uι

|zι,1|2λ
zι,1

∂2N−1

∂zN−1
ι,1 ∂z̄Nι,1

(
e−φιλ|zι,1|2Nπ∗(ωξ)ρι

)
for Re(λ) � 1. (3)

Denote the integral in (3) by g‖σ‖2(λ) so that we have

F (ω, ξ, ‖σ‖2, λ) = 1

λ
h(λ)g‖σ‖2(λ) (4)

We see that g‖σ‖2(λ) is defined and, by dominated convergence, holomorphic for Re(λ) > −1/2. Hence
F (ω, ξ, ‖σ‖2, λ) is meromorphic for Re(λ) > −1/2, has a pole at λ = 0, and the order of the pole is at
most one. Furthermore, the function F (ω, ξ, ‖σ‖2, λ) has poles at λ = 1, 2, . . . , N − 1 coming from the
poles of h. In the view of (4) the Laurent expansion of F (ω, ξ, ‖σ‖2, λ) at λ = 0 is given by

F (ω, ξ, ‖σ‖2, λ) = 1

λ
h(0)g‖σ‖2(0) +

(
h′(0)g‖σ‖2(0) + h(0)g′‖σ‖2(0)

)
+O(|λ|). (5)

We set

C1(ω, ‖σ‖2).ξ := h(0)g‖σ‖2(0),

C0(ω, ‖σ‖2).ξ := h′(0)g‖σ‖2(0) + h(0)g′‖σ‖2(0).

and we get that

C1(ω, ‖σ‖2).ξ = h(0)g(0) = h(0)
∑

ι

∫

Uι

1

zι,1

∂2N−1

∂zN−1
ι,1 ∂z̄Nι,1

(
|zι,1|2Nπ∗(ωξ)ρι

)
(6)

and the expression on the right hand side does not depend on the metric. This proves (i).
Now we look at the coefficient C0(ω, ‖σ‖2). Differentiating g‖σ‖2 gives

g′‖σ‖2(λ) =
∑

ι

∫

Uι

log |zι,1|2|zι,1|2λ
zι,1

∂2N−1

∂zN−1
ι,1 ∂z̄Nι,1

(
e−φιλ|zι,1|2Nπ∗(ωξ)ρι

)

+
∑

ι

∫

Uι

|zι,1|2λ
zι,1

∂2N−1

∂zN−1
ι,1 ∂z̄Nι,1

(
− φιe

−φιλ|zι,1|2Nπ∗(ωξ)ρι
)

and letting λ = 0 we get

C0(ω, ‖σ‖2).ξ = h(0)g′‖σ‖2(0) + h′(0)g‖σ‖2(0)

= h(0)
∑

ι

∫

Uι

log |zι,1|2
z1

∂2N−1

∂zN−1
ι,1 ∂z̄Nι,1

(
|zι,1|2Nπ∗(ωξ)ρι

)
(7)

− h(0)
∑

ι

∫

Uι

1

zι,1

∂2N−1

∂zN−1
ι,1 ∂z̄Nι,1

(
φι|zι,1|2Nπ∗(ωξ)ρι

)
(8)

+ h′(0)
∑

ι

∫

Uι

1

zι,1

∂2N−1

∂zN−1
ι,1 ∂z̄Nι,1

(
|zι,1|2Nπ∗(ωξ)ρι

)
. (9)

3

Notice that of (7)-(9) only (8) depends on the metric. Doing the same calculations but using |s|2 instead
of ‖σ‖2 to regularise the integral we get similar coefficients in the Laurent expansion of F (ω, ξ, |s|2, λ).
We denote these coefficients by C1(ω, |s|2) and C0(ω, |s|2). We then get

C0(ω, |s|2).ξ − C0(ω, ‖σ‖2).ξ = h(0)
∑

ι

∫

Uι

1

zι,1

∂2N−1

∂zN−1
ι,1 ∂z̄Nι,1

(
|zι,1|2N

(
φι − ψι

)
π∗(ωξ)ρι

)

= h(0)
∑

ι

∫

Uι

1

zι,1

∂2N−1

∂zN−1
ι,1 ∂z̄Nι,1

(
|zι,1|2N log

|π∗s|2
‖π∗σ‖2π

∗(ωξ)ρι
)

= C1(ω, ‖σ‖2) log
|s|2
‖σ‖2 ξ,

where the last step follows in view of (6). In particular, choosing Ê = E and σ = s we get the statement
in (ii). Finally, (6) also shows that C1(ω, ‖σ‖2) is the push-forward of some current T on BlY (X). The

product C1(ω, ‖σ‖2) log |s|2
‖σ‖2 should be interpreted as C1(ω, ‖σ‖2) log |s|2

‖σ‖2 := π∗
(
T log |π∗s|2

‖π∗σ‖2

)
. Then the

last step of the final calculation shows that this is well-defined.

Remark. (1) The proof of Theorem 1.1 shows that given ω such that |s|2Nω is smooth we may regularise
F with any section σ such that {σ = 0} = {s = 0} = Y and dσ �= 0 along Y .

(2) One may show that F has a meromorphic continuation to C.

To prove Theorem 1.2 we need a lemma. Around a point in Y we pick local coordinates (z, w) of

X such that Y = {w = 0} and a local frame {ej} of E such that s =
∑

j sjej . Let H̃ be the hermitian

matrix defined by |s|2 = (sj)
tH̃(s̄j). Since both w and s define the ideal of Y there is a holomorphic

matrix A such that (sj) = Awt. Letting H = AtH̃Ā we get

|s|2 = wtHw̄ (10)

and H is a hermitian (κ× κ)-matrix of rank κ.

Lemma 2.1. (a) If |s|2κω is smooth then there is a smooth (n − κ, n − κ)-form ω̃ in a neighbourhood

of Y such that ω =
( ∂̄∂|s|2

|s|2
)κ ∧ ω̃.

(b) There are real local coordinates (t1, . . . , t2n) for X such that Y = {t1 = · · · = t2κ = 0} and
|s|2 = t21 + · · ·+ t22κ.

(c) For the “local Laplacian”∆t =
1
4

∑2κ
j=1

∂2

∂t2j
we have

∆�
t|s|2(λ−k) = d(λ)|s|2(λ−k−�)

where d(λ) = (λ − k) · · · (λ − k − � + 1)(λ − k − 1 + κ) · · · (λ − k − � + κ). (Here ∆�
t means �

applications of ∆t.)

Proof. (a) Let (z, w) be local coordinates in X such that Y = {w = 0}. By assumption we can write

ω = dw ∧ dw̄ ∧ ω′

|s|2κ dz ∧ dz̄

for some smooth function ω′. We also have (∂̄∂|s|2)κ = ±κ! det(H)dw ∧ dw̄ on Y ; where H is the
hermitian matrix defined in (10). Therefore (∂̄∂|s|2)κ =

(
κ! det(H)+O(|w|)

)
dw∧dw̄+O(dz, dz̄)

where O(dz, dz̄) means any terms containing some dzj or dz̄j . Hence (∂̄∂|s|2)κ ∧ dz ∧ dz̄ =(
κ! det(H) +O(|w|)

)
dw ∧ dw̄ ∧ dz ∧ dz̄ and therefore (∂̄∂|s|2)κ

(
κ! det(H) +O(|w|)

)−1
dz ∧ dz̄ =

dw ∧ dw̄ ∧ dz ∧ dz̄. Thus

ω = (∂̄∂|s|2)κ
(
κ! det(H) +O(|w|)

)−1 ω′

|s|2κ ∧ dz ∧ dz̄

4



and we may choose ω̃ =
(
κ! det(H) +O(|w|)

)−1
ω′ ∧ dz ∧ dz̄ (or rather a sum of such expressions

using a partition of unity).

(b) We write z and w in real local coordinates w = u + iv and z = x + iy. By noting that wtHw̄ =
wtRe(H)w̄ and in view of (10) we get

|s|2 =
[
ut vt

] [ Re(H) Im(H)
−Im(H) Re(H)

] [
u
v

]
.

Therefore the real Hessian of |s|2 has rank 2κ on Y . By the Morse–Bott lemma there are real
local coordinates t1, . . . , t2n for X such that |s|2 = t21 + · · ·+ t22κ.

(c) Using that |s|2 =
∑2κ

j=1 t
2
j we have

∂2

∂t2j
|s|2(λ−k) = (λ− k)(λ− k − 1)|s|2(λ−k−2)4t2j + (λ− k)|s|2(λ−k−1)2

and

∆t|s|2(λ−k) = (λ− k)(λ− k − 1)|s|2(λ−k−1) + κ(λ− k)|s|2(λ−k−1)

= (λ− k)(λ− k − 1 + κ)|s|2(λ−k−1).

Iterating this gives part (c) of the lemma.

Proof of Theorem 1.2. First we suppose that |s|2κω is smooth and let χ be a smooth function which is

identically 1 in a neighbourhood of Y in which ω = ω̃ ∧
( ∂̄∂|s|2

|s|2
)κ
. Then

∫

X

|s|2λωξ =

∫

X

|s|2λωχξ +
∫

X

|s|2λω(1− χ)ξ (11)

and the second integral is holomorphic in λ close to the origin and therefore does not contribute to C1(ω).
We need the following two identities, valid for Re(λ) � 1;

∂̄|s|2λ ∧ ∂ log |s|2 ∧
(
∂̄∂ log |s|2

)κ−1
= λ|s|2λ ∂̄|s|

2

|s|2 ∧ ∂|s|2
|s|2 ∧

( ∂̄∂|s|2
|s|2

)κ−1

, (12)

if s �= 0 : ∂̄
(
∂ log |s|2 ∧

(
∂̄∂ log |s|2

)κ−1
)
=

( ∂̄∂|s|2
|s|2

)κ

− κ
∂̄|s|2
|s|2 ∧ ∂|s|2

|s|2 ∧
( ∂̄∂|s|2

|s|2
)κ−1

. (13)

They are straightforward to prove by applying the left-most ∂̄ in both cases and then noting that

∂̄|s|2
|s|2 ∧ ∂|s|2

|s|2 ∧
(
∂̄∂ log |s|2

)κ−1
=

∂̄|s|2
|s|2 ∧ ∂|s|2

|s|2 ∧
( ∂̄∂|s|2

|s|2
)κ−1

.

Multiplying the identity (13) with |s|2λ it holds, in the sense of currents, on all of X if Re(λ) � 1 and
it then says

|s|2λ∂̄
(
∂ log |s|2 ∧

(
∂̄∂ log |s|2

)κ−1
)
= |s|2λ

( ∂̄∂|s|2
|s|2

)κ

− κ|s|2λ ∂̄|s|
2

|s|2 ∧ ∂|s|2
|s|2 ∧

( ∂̄∂|s|2
|s|2

)κ−1

. (14)

Using (14) and (12) we get

κ

λ
∂̄|s|2λ ∧ ∂ log |s|2 ∧

(
∂̄∂ log |s|2

)κ−1
= κ|s|2λ ∂̄|s|

2

|s|2 ∧ ∂|s|2
|s|2 ∧

( ∂̄∂|s|2
|s|2

)κ−1

= |s|2λ
( ∂̄∂|s|2

|s|2
)κ

− |s|2λ∂̄
(
∂ log |s|2 ∧

(
∂̄∂ log |s|2

)κ−1
)
. (15)

5

By Lemma 2.1 (a) and by our choice of the function χ we can write ω =
( ∂̄∂|s|2

|s|2
)κ ∧ ω̃, with ω̃ smooth

in some neighbourhood of Y . Using this and (15) gives

∫

X

|s|2λχωξ =

∫

X

|s|2λ
( ∂̄∂|s|2

|s|2
)κ

∧ χω̃ξ

=
κ

λ

∫

X

∂̄|s|2λ ∧ ∂ log |s|2 ∧
(
∂̄∂ log |s|2

)κ−1 ∧ χω̃ξ (16)

+

∫

X

|s|2λ∂̄
(
∂ log |s|2 ∧

(
∂̄∂ log |s|2

)κ−1
)
∧ χω̃ξ. (17)

The integral in (16) is studied in [And, Proposition 4.1 and 4.3]. It is holomorphic in λ for Re(λ) > −ε,
for some ε > 0, and its value at λ = 0 equals κ(2πi)κ

∫
Y
ω̃ξ.

We claim that the integral (17) does not contribute to C1(ω). To see this it suffices to prove that it
is holomorphic in λ close to λ = 0. Let π : BlY (X) → X be the blow-up of X along Y as before. Locally,
π∗s = z1s

′ where s′ �= 0 and hence ∂̄∂ log |π∗s|2 = ∂̄∂ log |z1|2 + ∂̄∂ log |s′|2 = πi[z1 = 0] + ∂̄∂ log |s′|2.
The form ∂̄∂ log |s′| is the first Chern form of the bundle π∗E, up to some constant, in particular it is a
global form on BlY (X). For Re(λ) � 1 we have |π∗s|2λ[z1 = 0] = 0 and therefore

|π∗s|2λ∂̄
(
∂ log |π∗s|2 ∧

(
∂̄∂ log |π∗s|2

)κ−1
)
= |π∗s|2λ

(
∂̄∂ log |s′|2

)κ

which is integrable for Re(λ) > −1/2. Hence, the integral (17) becomes

∫

BlY (X)

|π∗s|2λ
(
∂̄∂ log |s′|2

)κ ∧ π∗(χω̃ξ) (18)

which is holomorphic in λ for close to λ = 0. Therefore the integral (17) is holomorphic in λ and does
not contribute to C1(ω). Summing up the only contribution to C1(ω) comes from (16) and

C1(ω) = κ(2πi)κ
∫

Y

ω̃ξ,

since χ ≡ 1 on Y . This gives the first part of the theorem with res(ω) = ω̃|Y .
Now we suppose |s|2Nω is smooth with N > κ. By Lemma 2.1 (b) there are local coordinates

(t1, . . . , t2κ, τ) around every point in Y such that |s|2 = t21 + · · · + t22κ. Let {ρj} be a partition of unity
chosen so that we may find such coordinates in every supp(ρj). We will use the local differential operator
∆t defined in Lemma 2.1 (c). Recall that ∆�

t|s|2(λ−κ) = d(λ)|s|2(λ−κ−�) with d(0) �= 0. Letting � = N−κ
we get

∫

X

|s|2λωξ =
∑

j

∫

X

|s|2(λ−κ−�)|s|2Nρjωξ

=
1

d(λ)

∑

j

∫

X

∆�
t

(
|s|2(λ−κ)

)
|s|2Nρjωξ

=
1

d(λ)

∑

j

∫

X

|s|2(λ−κ)∆�
t

(
|s|2Nρjωξ

)
.

We define a global differential operator on (n, n)-forms ψ acting as Lie derivatives by

Q(ψ) = d(0)−1
∑

j

∆�
t

(
ψρj

)

which obviously depends on local coordinates and the partition of unity. Letting ω′ = |s|−2κQ(|s|2Nωξ)
we have

∫

X

|s|2λωξ =
d(0)

d(λ)

∫

X

|s|2λω′
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and we may choose ω̃ =
(
κ! det(H) +O(|w|)

)−1
ω′ ∧ dz ∧ dz̄ (or rather a sum of such expressions

using a partition of unity).

(b) We write z and w in real local coordinates w = u + iv and z = x + iy. By noting that wtHw̄ =
wtRe(H)w̄ and in view of (10) we get

|s|2 =
[
ut vt

] [ Re(H) Im(H)
−Im(H) Re(H)

] [
u
v

]
.

Therefore the real Hessian of |s|2 has rank 2κ on Y . By the Morse–Bott lemma there are real
local coordinates t1, . . . , t2n for X such that |s|2 = t21 + · · ·+ t22κ.

(c) Using that |s|2 =
∑2κ

j=1 t
2
j we have

∂2

∂t2j
|s|2(λ−k) = (λ− k)(λ− k − 1)|s|2(λ−k−2)4t2j + (λ− k)|s|2(λ−k−1)2

and

∆t|s|2(λ−k) = (λ− k)(λ− k − 1)|s|2(λ−k−1) + κ(λ− k)|s|2(λ−k−1)

= (λ− k)(λ− k − 1 + κ)|s|2(λ−k−1).

Iterating this gives part (c) of the lemma.

Proof of Theorem 1.2. First we suppose that |s|2κω is smooth and let χ be a smooth function which is

identically 1 in a neighbourhood of Y in which ω = ω̃ ∧
( ∂̄∂|s|2

|s|2
)κ
. Then

∫

X

|s|2λωξ =

∫

X

|s|2λωχξ +
∫

X

|s|2λω(1− χ)ξ (11)

and the second integral is holomorphic in λ close to the origin and therefore does not contribute to C1(ω).
We need the following two identities, valid for Re(λ) � 1;

∂̄|s|2λ ∧ ∂ log |s|2 ∧
(
∂̄∂ log |s|2

)κ−1
= λ|s|2λ ∂̄|s|

2

|s|2 ∧ ∂|s|2
|s|2 ∧

( ∂̄∂|s|2
|s|2

)κ−1

, (12)

if s �= 0 : ∂̄
(
∂ log |s|2 ∧

(
∂̄∂ log |s|2

)κ−1
)
=

( ∂̄∂|s|2
|s|2

)κ

− κ
∂̄|s|2
|s|2 ∧ ∂|s|2

|s|2 ∧
( ∂̄∂|s|2

|s|2
)κ−1

. (13)

They are straightforward to prove by applying the left-most ∂̄ in both cases and then noting that

∂̄|s|2
|s|2 ∧ ∂|s|2

|s|2 ∧
(
∂̄∂ log |s|2

)κ−1
=

∂̄|s|2
|s|2 ∧ ∂|s|2

|s|2 ∧
( ∂̄∂|s|2

|s|2
)κ−1

.

Multiplying the identity (13) with |s|2λ it holds, in the sense of currents, on all of X if Re(λ) � 1 and
it then says

|s|2λ∂̄
(
∂ log |s|2 ∧

(
∂̄∂ log |s|2

)κ−1
)
= |s|2λ

( ∂̄∂|s|2
|s|2

)κ

− κ|s|2λ ∂̄|s|
2

|s|2 ∧ ∂|s|2
|s|2 ∧

( ∂̄∂|s|2
|s|2

)κ−1

. (14)

Using (14) and (12) we get

κ

λ
∂̄|s|2λ ∧ ∂ log |s|2 ∧

(
∂̄∂ log |s|2

)κ−1
= κ|s|2λ ∂̄|s|

2

|s|2 ∧ ∂|s|2
|s|2 ∧

( ∂̄∂|s|2
|s|2

)κ−1

= |s|2λ
( ∂̄∂|s|2

|s|2
)κ

− |s|2λ∂̄
(
∂ log |s|2 ∧

(
∂̄∂ log |s|2

)κ−1
)
. (15)

5

By Lemma 2.1 (a) and by our choice of the function χ we can write ω =
( ∂̄∂|s|2

|s|2
)κ ∧ ω̃, with ω̃ smooth

in some neighbourhood of Y . Using this and (15) gives

∫

X

|s|2λχωξ =

∫

X

|s|2λ
( ∂̄∂|s|2

|s|2
)κ

∧ χω̃ξ

=
κ

λ

∫

X

∂̄|s|2λ ∧ ∂ log |s|2 ∧
(
∂̄∂ log |s|2

)κ−1 ∧ χω̃ξ (16)

+

∫

X

|s|2λ∂̄
(
∂ log |s|2 ∧

(
∂̄∂ log |s|2

)κ−1
)
∧ χω̃ξ. (17)

The integral in (16) is studied in [And, Proposition 4.1 and 4.3]. It is holomorphic in λ for Re(λ) > −ε,
for some ε > 0, and its value at λ = 0 equals κ(2πi)κ

∫
Y
ω̃ξ.

We claim that the integral (17) does not contribute to C1(ω). To see this it suffices to prove that it
is holomorphic in λ close to λ = 0. Let π : BlY (X) → X be the blow-up of X along Y as before. Locally,
π∗s = z1s

′ where s′ �= 0 and hence ∂̄∂ log |π∗s|2 = ∂̄∂ log |z1|2 + ∂̄∂ log |s′|2 = πi[z1 = 0] + ∂̄∂ log |s′|2.
The form ∂̄∂ log |s′| is the first Chern form of the bundle π∗E, up to some constant, in particular it is a
global form on BlY (X). For Re(λ) � 1 we have |π∗s|2λ[z1 = 0] = 0 and therefore

|π∗s|2λ∂̄
(
∂ log |π∗s|2 ∧

(
∂̄∂ log |π∗s|2

)κ−1
)
= |π∗s|2λ

(
∂̄∂ log |s′|2

)κ

which is integrable for Re(λ) > −1/2. Hence, the integral (17) becomes

∫

BlY (X)

|π∗s|2λ
(
∂̄∂ log |s′|2

)κ ∧ π∗(χω̃ξ) (18)

which is holomorphic in λ for close to λ = 0. Therefore the integral (17) is holomorphic in λ and does
not contribute to C1(ω). Summing up the only contribution to C1(ω) comes from (16) and

C1(ω) = κ(2πi)κ
∫

Y

ω̃ξ,

since χ ≡ 1 on Y . This gives the first part of the theorem with res(ω) = ω̃|Y .
Now we suppose |s|2Nω is smooth with N > κ. By Lemma 2.1 (b) there are local coordinates

(t1, . . . , t2κ, τ) around every point in Y such that |s|2 = t21 + · · · + t22κ. Let {ρj} be a partition of unity
chosen so that we may find such coordinates in every supp(ρj). We will use the local differential operator
∆t defined in Lemma 2.1 (c). Recall that ∆�

t|s|2(λ−κ) = d(λ)|s|2(λ−κ−�) with d(0) �= 0. Letting � = N−κ
we get

∫

X

|s|2λωξ =
∑

j

∫

X

|s|2(λ−κ−�)|s|2Nρjωξ

=
1

d(λ)

∑

j

∫

X

∆�
t

(
|s|2(λ−κ)

)
|s|2Nρjωξ

=
1

d(λ)

∑

j

∫

X

|s|2(λ−κ)∆�
t

(
|s|2Nρjωξ

)
.

We define a global differential operator on (n, n)-forms ψ acting as Lie derivatives by

Q(ψ) = d(0)−1
∑

j

∆�
t

(
ψρj

)

which obviously depends on local coordinates and the partition of unity. Letting ω′ = |s|−2κQ(|s|2Nωξ)
we have

∫

X

|s|2λωξ =
d(0)

d(λ)

∫

X

|s|2λω′
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and |s|2κω′ is smooth. Therefore the calculations in the proof of the first part of the theorem now gives

C1(ω).ξ = κ(2πi)κ
∫

Y

res
(
|s|−2κQ(|s|2Nωξ)

)
.

If Q′ is another differential operator constructed in the above way we get

∫

Y

res
(
|s|−2κQ(|s|2Nωξ)

)
− res

(
|s|−2κQ′(|s|2Nωξ)

)
= C1(ω).ξ − C1(ω).ξ = 0.

Since ξ is a test function both res
(
|s|−2κQ(|s|2Nωξ)

)
and res

(
|s|−2κQ′(|s|2Nωξ)

)
have compact support

and thus by Poincaré duality
[
res

(
|s|−2κQ(|s|2Nωξ)

)]
is a well-defined de Rham cohomology class on Y .

This proves the second claim of the theorem with Res(ωξ) =
[
res

(
|s|−2κQ(|s|2Nωξ)

)]
.
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