THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Differential forms and currents
on non-reduced complex spaces
with applications to divergent
integrals and the J-equation

MATTIAS LENNARTSSON

TSon)
S SOTRN

| CHALMERS | {8)) UNIVERSITY OF GOTHENBURG

’ UNIVERSITY OF TECHNOLOGY

Division of Algebra and Geometry
Department of Mathematical Sciences
UNIVERSITY OF GOTHENBURG
& CHALMERS UNIVERSITY OF TECHNOLOGY
Goteborg, 2021



Differential forms and currents on non-reduced complex spaces
with applications to divergent integrals and the J-equation
Mattias Lennartssson

Gateborg, 2021

ISBN: 978-91-8009-174-9 (TRYCK)
ISBN: 978-91-8009-175-6 (PDF)
Copyright (C) Mattias Lennartsson, 2021.

Division of Algebra and Geometry
Department of Mathematical Sciences
University of Gothenburg

& Chalmers University of Technology
SE-412 96 Goéteborg

Sweden

E-mail: matlen@chalmers.se

Typeset with ETEX. //////
Printed by Stema, Sweden 2020. e,



Differential forms and currents on
non-reduced complex spaces with applications

to divergent integrals and the J-equation

Mattias Lennartsson

Abstract

This thesis consists of three papers in which we study differential
forms and currents on complex spaces. An important tool for us
is the theory of residue currents.

In Paper I we study divergent integrals over singular differential
forms on a complex manifold. The differential form should have
a pole along a complex hypersurface. To such a differential form
we associate a residue form and a current with properties similar
to residue currents. We connect the residue form and the current
in a formula which can be thought of as a residue formula in this
setting.

In Paper II we solve the d-equation for (p,q)-forms on non-
reduced complex spaces. It is not obvious what smooth differen-
tial forms and currents should be on a non-reduced space. We
define these objects using residue calculus and show that we can
(locally) solve the 0-equation.

In Paper III the setting is similar to that of Paper I but we now
allow the differential form to be singular on a complex submani-
fold of higher codimension.
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Preface
This thesis consists of the following papers.

e Paper I. Mattias Lennartsson, “Residues and currents from
singular forms on complex manifolds”, preprint.

e Paper II. Mats Andersson, Richard Lérkéng, Mattias Lennarts-
son and Hakan Samuelsson Kalm, “The 0-equation for (p, q)-
forms on a non-reduced analytic space”, preprint.

e Paper III. Mattias Lennartsson, “Residues of singular dif-
ferential forms on complex submanifolds”, preprint.
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“The fundamental cause of the trouble
in the modern world today

18 that the stupid are cocksure

while the intelligent are full of doubt”

Bertrand Russel



Introduction

This thesis is concerned with the field of complex analysis which
is the study of derivatives and integrals of functions defined in the
complex plane C, or more generally C" and even more generally
on complex spaces. Important tools for us will be distributions
and currents which yield a way of giving a meaning to derivatives
of functions which are not differentiable.

1. ANALYSIS IN THE COMPLEX PLANE

Let us begin by discussing some basic notions of complex analysis
in one variable. The d-operator applied to a function f : C — C
is given by of

of = EE dz, (1)
where 0f /0z = (af/&v —l—iﬁf/ay) /2. If the function f is contin-
uously differentiable then it is holomorphic if and only if 0f = 0,
which is a compact way of writing the Cauchy-Riemann equa-
tions. The function f may of course be defined on some open
subset of C but for simplicity we will often formulate results and
formulas for holomorphic functions on all of C (or C"). We will
do so throughout this introduction.
A function is said to be meromorphic if it is holomorphic ev-
erywhere except possibly at discrete points where it has poles.
Given a meromorphic function f and a point zy € C the residue



Res(f, 20) is defined to be the 27! coefficient in the Laurent series
expansion of f around zy. If f has a pole of order m at zy, so
that (z — 2z9)™ f(2) is holomorphic, then
1 amfl

— )™ 2
=1 (g &~ )" (2)) 2)

The residue theorem says that for a simple, closed and positively
oriented curve v we have

/ f(z)dz=2mi > Res(f,z) (3)
v z€Int(y)

where Int(7y) denotes the bounded component of C\ {v}. We

also need that f does not have any poles on the curve ~.

Let v be a curve as above and f a holomorphic function in a

neighbourhood of the closure of Int(y). Cauchy’s integral formula

says that

Res(f, z0) =

z2=20

f2) = 5 / f;w_)d;” for = € Int(7). (4)

This means that the Cauchy kernel reproduces holomorphic func-
tions. More generally, if ¢ is smooth in a neighbourhood of €2
then

| ¢<w>dw_i/5w—dw forz€ Q. (5)
Q

¢(z):2_7ri 00 W —Z 2mi w—z

A consequence of this formula is that the form Q‘jr";fz is a funda-

mental solution of the d-operator, i.e. a distributional solution of
the equation Ju = [z = 0], where [z = 0] denotes the Dirac dis-
tribution at the origin. This implies that if v = ¢¥dz is a form of
bidegree (0,1) with compact support then u = Q‘ZZ * v is a solu-
tion of the equation du = v; here * denotes convolution. Writing
out what this means we have

il [ ) o
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2. RESIDUE CURRENTS AND RESIDUE CLASSES

A natural question is whether or not one may define residues
of meromorphic functions of several complex variables in such a
way that we get a corresponding residue theorem as in (3).
Trying to define residues for meromorphic functions on C", one
main difference to the one variable case is that the polar set of a
meromorphic function in several variables, if non-empty, cannot
be compact. To get around this problem one may associate a
residue current to a meromorphic function instead of merely a
“residue number” as in the classical approach.

Recall that the space of distributions of C” is the dual of the
space of compactly supported smooth functions in C”. Similarly
a current is an object acting on smooth differential forms with
compact support. A current is said to have bidegree (p, q) if it
acts on (n — p,n — q)-forms. Differential operators are defined on
smooth forms and by duality they are also defined on currents,
just as in distribution theory. For us the most important differ-
ential operator is the d-operator. For a function ¢ in C™ it is
defined as

0 = Z 023 ——dz;.

It can be extended to differential forms so that if ¢ and v are
differential forms then

AP A1) = (09) AN+ (—1)F ¢ A DY

where £ is the degree of ¢.

Let us illustrate the idea of using currents to define residues in
the complex plane. In the complex plane we may study currents
acting on (0, 1)-forms ¥dz where 1 is a smooth function of com-
pact support. Let us see how one may define a current from the
meromorphic form dz/z™ in C. We define the principal value



current of dz/2™ by

< {j_ﬂ ,wd2> = lim L gz ndz (7)

m
e—0 ‘Z|>€ zZ

By expanding 1 in its Taylor series one may show that the limit
exists and defines a current. Let us compute the 0-image of this

current.
o[- (2]

= lim ——dzAdZz
e—0 ‘Z|>€ (92 Zm

Ciim [ Y, (8)
e—0 ‘Z|:€ Zm

where the last equality follows from Stokes’ theorem. If we Taylor
expand ¢ as 1 = Y, , Cy 02"z + O(]z|") then we may show, by
for example changing to polar coordinates, that the only term
which gives a contribution to the limit is the term C,_1 02!
By Taylor’s formula C,_1¢ = oy (m — 1)! where 0f/0z =

Ozm—1

(0f J0x —i0f/0y)/2. Hence we get that

_| dz - 1 . Bm_lw dz

1 o1y ) dz
“ oot OB
2 O™l
" (m— 1)l 9am1 (0), )
or equivalently that
~[dz 2ri(—1)™ gm-t
8[2_’”] " (m—1) 0z} [2=10], (10)
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where this is now an equality of currents and [z = 0] denotes the
Dirac mass at the origin considered as a (1, 1)-current.

Let us generalise this further. Suppose that f is a meromorphic
function in C with polar set given by P(f) = {z1,...,2}. In
analogy with (7) we define

k
([fd2], vdz) = lin%Z/ fodz Adz (11)
E— =1 |

z—zj|>€

and a similar calculation to the one in (8) gives that
) k
(Bfdz], ¥) = lg%z;/lz_ﬂzs fudz A dz. (12)
1= J

From this we conclude that the support of the current 9[fdz] is
contained in P(f). Let us make a calculation to see how 9[fdz]
behaves locally. In some neighbourhood of z; we may write f =
g/(z—z;)™, where g is a non-vanishing holomorphic function. In
this neighbourhood of z; we have, cf. (9),

O[fdz] = 5[%]
T [ R oL )

The action of the right hand side of (13) on the function 1 is

omi am—lg( )
(m — 1)1 §zm—1 “i)s

which equals Res(f, z;) in view of (2) since g = (z —2;)™ f. If we
let ¥ in (12) be a smooth function with compact support which

7



is identically equal to 1 in a neighbourhood €2 of the polar set
P(f) then we get that

k
/ fdz A0 =271y " Res(f, 2).
C =

Letting v tend to the characteristic function of €2 and writing
v = 0 we recover (3). We thus have an alternative approach
to residues and this approach may be generalised to several vari-
ables.

In [HeLi| Herrera and Lieberman constructed principal value
currents and residue currents in quite a general setting. They
proved the following theorem.

Theorem 0.0.1. (Theorem 7.1 in [HeLi]) Given a holomorphic
function g in C", g £ 0, and a smooth form 1 with compact
support the limit

v

lg>¢ 9
exrists and defines a current acting on .

lim
e—0

(14)

If {g = 0} is a complex manifold then it is elementary to see that
the limit in (14) exists, it essentially reduces to the one variable
case. In general the set {g = 0} is not a complex manifold, see
Section 3 below. In general the theorem can be proved by first
assuming that {¢g = 0} has normal crossings, see Example 2 be-
low, and then reducing to this case using Hironaka’s theorem on
resolution of singularities, see [Hi]. As far as we know there is
no proof of the existence of the limit in (14) not using Hiron-
aka’s theorem. Herrera and Lieberman used Theorem 0.0.1 to
define principal value currents on complex manifolds and even
on reduced complex spaces. Principal value currents had been
constructed in certain cases before by, for example, Dolbeault.



The limit (14) defines a current which we denote by [1/g]. One
then defines the residue current of 1/g as 0[1/g] and by Stokes’
theorem we get that

@1/g ) =tim [ 2

e—0 \g\ze g

In particular we see that d[1/g] has support contained in the zero
set of g.

(15)

Another way of defining principal value currents and residue cur-
rents is through analytic continuations of divergent integrals.
This idea originates with Bernstein-Gelfand in 1969 and Atiyah
in 1970, see [BeGe] and [At]. The direct purpose of the construc-
tion is that given a holomorphic function f, or more generally a
real analytic function, we want to find a concrete distribution u
such that fu = 1.

In the context of residue currents this approach was developed
by e.g. Barlet and Maire in [BaMa] and Berenstein, Gay and
Yger in [BGY] and [Yg]. Residue currents have since then been
extensively studied.

Let us be explicit on how to define currents through analytic
continuation. Let X be a complex manifold, g a holomorphic
function on X and v a smooth top degree form with compact
support. For complex numbers A with Re(\) > 1 the integral

2)
/X Iglg (0 (16)

is convergent. Using Hironaka’s theorem to reduce to the case
when {g = 0} has normal crossings one can show that as a func-
tion of A it has an analytic continuation over the origin and then
we define a principal value current of 1/g, acting on v, by the
value of this function at A = 0. By Stokes’ theorem the function

gy
A
— /X . (17)

9



has an analytic continuation over the origin and we define a
residue current of 1/g, acting on 1, by the value at A = 0. It is
not obvious that these currents coincide with the currents defined
but Herrera and Lieberman, but in fact they do.

A different approach to residues was studied by Poincaré and
Leray who defined residue forms and residue classes. Instead of
merely focusing on meromorphic functions in C™ one may look at
differential forms on a complex manifold X of dimension n which
have a pole along a complex hypersurface. The primary residue
form is the Poincaré residue which is defined for a meromorphic
form « of bidegree (n,0) having a pole of order one along a
smooth hypersurface D. If D is locally given by g = 0 then we
may write

dg -
a:?g/\a, (18)

where a is holomorphic, and define the Poincaré residue of a as
a | - The decomposition of a depends on the choice of function
g but actually a } [, is canonical.

Let us see how to relate the Poincaré residue to the residue cur-
rents defined above. To the form « we associate the principal
value current [a] = dg A @[1/g]; let us calculate O of this current.
Since the hypersurface D is smooth the function g is a coordi-
nate. Therefore we may let ¢ = 2; and bring the calculation back
to the one-variable case to get

5[04]:5[%] A&’zé[%} Na=2mlg=0]AG.  (19)
1

From (19) we can actually see that the Poincaré residue does not
depend on any choices: The left hand side does not depend on
any choices and the current [g = 0] is canonical and hence & | D
does not depend on any choices. Furthermore, we see that the
Poincaré residue shows up as a factor in a decomposition of the
residue current.

10



Assume that X is compact and let {2 be a (tubular) neighbour-
hood of D. Further assume that £ is a smooth, d-closed (n — 1)-
form in Q. As in (19) we get d([a] A &) = 27i[g = O AQ A&
and applying this to a smooth function ¥ which is 1 in a neigh-
bourhood of D and has compact support contained in ) gives
that

/XaAgA(w:Qm/azAg. (20)

D

Letting v tend to the characteristic function of €2 of D we get

/maAg:Qm/Daz/\g. (21)

In the case that the dimension is one we can choose £ = 1 and
recover (3).

If a is a meromorphic form on X \ D with a pole along D of
higher order, then there is a cohomologous form £ with a pole of
order one along D. This makes it possible to define a residue for
a but now as a de Rham cohomology class. If we interpret « in
(20) as this cohomology class then the formula in (21) holds for
.

So far we have discussed currents associated to differential forms
which may locally be written a/g for some holomorphic form
a and a holomorphic function g # 0. In two of the papers of
which this thesis consists we will mainly be interested in forms
which may locally be written o/gh where a is a smooth form
and g and h are holomorphic functions which are not identi-
cally zero. These are forms which have real analytic singularities
along complex hypersurfaces. We will be concerned with defining
currents and residue classes from such forms using the method
of analytic continuation of divergent integrals. Furthermore, we

11



connect these objects in a formula which is therefore, in some
sense, a residue theorem in that setting.

To illustrate the main point let us look at the simplest case in one
variable and we look at the form dmgz. This form is obviously
smooth away from the origin and therefore it defines a current
ain C\ {0}. We want to find an extension of  to C. Such an
extension cannot be unique since we may add derivatives of the
Dirac distribution at the origin and we would still have a current
extension of a. Let us apply the method of analytic continuation
discussed above. For complex numbers A with Re(A) > 1 and a

smooth function ¥ in C with compact support we get

|zPMpdzAdz 1 [ D [2* B
/ R %( z >¢dz/\dz

2% v _
= —— —dz Adz 22
)\/C z 0z (22)
The integral
2)
|| ad}dz/\dz
c 2 0Z

is holomorphic in A in a neighbourhood of the origin. Let us cal-
culate the first two terms in its Taylor expansion. The constant
term is given by setting A = 0 and it is

10
/Czafdz/\dz%mb( )

which follows from formula (5). The coefficient of A is given by
differentiating the integrand with respect to A and then setting
A = 0 which gives

2
/log’z‘ 4y nds.
c z 0z

12



Using this in the calculation (22) we get

dzAdz 1 . log |z|? Ov B
22
:—2 ——
/C|z\ Y e 5 7r1¢(0)+/c . agdz/\dz%—@()\)
(23)

From this we conclude: To the singular form dmg‘i we may as-

sociate two currents. The first one is the current 2wi[z = 0] and
the second one is given by

1 2
wwfcﬁg—gdz/\dz (24)

The second current is an extension of a to C. This is seen by
assuming that the test form 1 has support away from the origin
and setting A = 0 in (23).

However, as we have mentioned, the current extension is not
canonical; we may add derivatives of the Dirac distribution at
the origin. We think of the current 27i[z = 0] as a residue current
associated to the form dTQSE and the current in (24) as the finite
part of the form.

We will extend the above construction to forms with higher sin-
gularities and to several variables in Paper I and Paper III.

3. COMPLEX SPACES

Residue currents like 9[1/g] have support on the zero set of a tu-
ple of holomorphic functions. Such sets are called analytic sets.
An analytic set X may be decomposed into X, and Xg,, where
the regular part, X, consists of all points which have a neigh-
bourhood in which X is a complex manifold. The singular part,
Xsing, is defined as the complement of the regular part. For sim-
plicity we here focus on analytic sets given by one holomorphic
function.

13



Ezample 1. Equip C? with coordinates (z,w) and let X =
{2? — w? = 0}. This space is usually called the cusp in C?. The
only singular point of X is the origin. v

Example 2. Equip C" with coordinates (z,...,2,) and let
X = {z1---2z; = 0}. The space X is a union of hyperplanes
{#; = 0} and Xgp,, consists of all points where at least two such
hyperplanes intersect. This is a typical example of an analytic
set with so-called normal crossings. v

Properties of analytic sets are reflected by the holomorphic func-
tions on these sets. However, in the case that X has singular
points it is not obvious what a holomorphic function on X is.
Suppose that X C C™ and let us define holomorphic functions
on X. One natural notion of holomorphic functions on X is de-
fined as follows: A function h : X — C is holomorphic at x € X
if there is an open neighbourhood U of z in C" and a holomor-
phic function h : U — C such that h = h|U This means that
holomorphic functions on X NU are given by holomorphic func-
tions on U and we identify two such functions if they are equal
on X. We denote the (sheaf of) holomorphic functions on C™ by
Oc» and we let £y C Oc» be the holomorphic functions which
vanish on X. We further denote the holomorphic functions on
X by Ox; by the above discussion we have that Ox = Ocn / Ix.
An analytic set together with this kind of holomorphic functions
is a reduced complex space.

There are other notions of holomorphic functions on analytic sets.
We illustrate this with an analytic set X = {g = 0} where g is
a holomorphic function in C". We now define the holomorphic
functions on X as Ox = Ocn/(g). Here (g) denotes the ideal in
Ocr generated by g. In the case that dg is non-zero on X, then
this method produces the same set of holomorphic functions on
X as the one above. If this is not the case then the ideal (g) is

14



strictly smaller than .#x. In this case the objects in Ox do not
have a natural interpretation as functions on X. An analytic set
equipped with such a notion of holomorphic functions is a non-
reduced complex space. Let us illustrate the different notions of
holomorphic functions with an example.

Example 3. Let X = {0} € C and let g = z. A holomorphic
function h in C is zero in Oc¢n/(g) precisely when h(0) = 0.
Therefore h + (g) € Ocn/(g) may be identified with the value of
hon X.

Now instead let ¢ = z2. A holomorphic function 4 in C is zero
in Ocn/(g) if and only if A(0) = A'(0) = 0. This can be seen
by Taylor expanding h around the origin. In this case the set of
equivalence classes in Ocn/(g) is not determined by the value of
the functions on X. Therefore we cannot identify the quotient
with functions on X. v

As mentioned, residue currents have support on analytic sets.
Actually, the residue current 9[1/g] contains all the information
about the possibly non-reduced complex space (X, Ox), where
X = {g = 0} and Ox = Ocn/(g), as shown in the following
proposition.

Proposition 0.0.2. Let h be a holomorphic function in C".
Then h € (g) (locally) if and only if ho[1/g] = 0.

Proof. Let us first notice that as currents we have g[1/g] = 1.
This follows easily since the limit in (14) defines the current [1/g].
Assume that h € (g). Then h = ag for some holomorphic func-
tion a and hence

ho[1/g] = 9(h[1/g]) = d(ag[1/g]) = da = 0.
Now instead assume that hd[1/g] = 0. Then for the current

15



u = h[1/g] we have Ou = hd[1/g] = 0. Hence u is a holomorphic
function and gu = gh[l/g] = h which means that h € (g). O

Proposition 0.0.2 gives an analytic description of the ideal gener-
ated by ¢ which induces an analytic description of the quotient
Ox = Ocn/(g). In [AnWu| Andersson and Wulcan introduced
currents similar to d[1/g] which generalise the so-called Coleff-
Herrera currents, see e.g. [CoHe|, and which describe general
complex spaces. This opens up for the possibility of doing analy-
sis on non-reduced spaces. Let us indicate how this may be done
for the complex space (X, Ox) when Ox = Ocn/(g). We want to
define what smooth (0, ¢)-forms are on a non-reduced space X.
Let us denote the (sheaf of) smooth (p, g)-forms on C" by &g
and the (sheaf of) currents in C” of bidegree (p, q) by €&n. We
define a map U : 24 — %8’3“ by

6 ¢ AO[1/g]

and then let &Y = &%7/ Her(W). This is a natural definition in
view of Proposition 0.0.2 above.

Since d(¢p A 9[1/g]) = 0¢ A J[1/g] we also get a well-defined O-
operator d : &y — &Y In Paper IT we define further analytic
objects on non-reduced spaces and develop some theory for these
objects.

The purpose of Paper I is to make sense of divergent integrals of
the form f A B when a and § have poles along a hypersur-
face D on a complex manifold X. The problem is motivated by
physics, see for example [Wi], but it is also a generalisation of
the theory of residue currents in the sense that we do not just
look at currents associated to 1/¢g but also at currents associated
to 1/gf where both f and g are holomorphic. If f and g vanish
to a higher order along D then this may be thought of as currents
associated with a non-reduced structure on D.

16



4. KOPPELMAN FORMULAS

Let us look at several variable analogues of the formula (5). In
C" one defines the Bochner—Martinelli kernel kgyr by

19|z A (09" — (=1t
ot gl 5
j=1
where ¢,, = (—1)n(n2 2 ( n, dz =dz A--- Adz, and

35]-=d21A---Adzj_1AdzjﬂA---Adzn.

The form kpgys is locally integrable and therefore it defines a
current. Notice that if n = 1 then

1 9lz> 1 dz

omi |22 27z

kBM -

which is the Cauchy kernel. The crucial property of the Bochner—
Martinelli kernel is that

where [z = 0] is the Dirac distribution at the origin considered
as a top degree current. Letting 7 : C" x C" — C" be the map
7(z,w) = z—w and Kpy; = m*kgy we get that 0Ky = [z = w).
We denote by K%1, the part of Kpy which is of bidegree (p, q)
in z and hence of bldegree (n—p,n—q—1) in w.

With this setup one may prove Koppelman’s formula, see e.g.
[Kop]: For any v € &P4(Q2), 2 C C" a bounded domain,

o

This is a several variable analogue of formula (5). We shall now
discuss weighted integral formulas. The presentation will be a
bit sketchy but the point is to illustrate the main ideas.

17
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4.1 Weighted integral formulas. To incorporate weights into
the integral formulas it is convenient to introduce the full Bochner—
Martinelli form as

"1 9z —w?A(00]z — w|?)F?
B=) =

i)k z — w|?k
— (2mi) | |

A weight adapted to a domain €2 C C™ is a certain kind of smooth
form + which is given as a sum of terms Yy, ..., Vnn in € x €.
The subscript means bidegree and the term ~y o should be 1 on
the diagonal in €2 x 2. We will not go further into the details of
the precise definition but the following example gives a hint of
what weights can look like.

Example 4. Let x be a cut-off function in C which is 1 in a
neighbourhood of the closure of a bounded open subset 2 C C.
A weight for €2 is given by

B ~ d(z — w)
v = x(w) + Ox(w) A oi(w — =)

We define a weighted integral kernel by
K’y = (7 A B)n,nfl

where (—),,—1 now means that we pick out the part of the
form which has total bidegree (n,n — 1). In [And] the following
weighted Koppelman formula is proved:

o(z) = /%nm +8/sz/\v /sz/\av()
(26)

In the case that €2 is a bounded pseudoconvex domain it is pos-
sible to choose a weight « which is holomorphic in z and does
not contain any dz;, cf. Example 4. Assume that v is a 0-closed
(p, @)-form in Q. From the formula (26) we get the following:

18



(a) If ¢ = 0 then we get a representation formula for holomor-

phic p-forms:
v = / Y A V(W).
Q

(b) If ¢ > 1 then

v(z) = 8/9 K. (z,w) A v(w).

The latter statement implies that if v is a smooth d-closed (p, q)-
form, with ¢ > 1, then locally there is a smooth (p,q — 1)-form
¢ such that d¢ = v. Hence the same conclusion holds locally
on any complex manifold. One alternative way of stating this is
that for a complex manifold X the complex of sheaves

008 % gnt % gnt 9, (27)

is exact, which is the so-called Dolbeault—Grothendieck lemma,
see [Dol]. Here % denotes the holomorphic p-forms and recall
that &% is the smooth (p, ¢)-forms on X. In particular, for p = 0
we get a resolution of the sheaf of holomorphic functions Ox.

We may also use weights to get so called division-interpolation
formulas in the following way: Take a holomorphic function ¢ in
C" and let us for simplicity assume that {g = 0} is smooth so
that ¢ is just a coordinate. For Re(A) > 1 we may then define a
weight by

_ Olg(w)?
g(w)

lg(w)[**

g(w)

where H is a so-called Hefer form which we will not define here,
but it is actually a holomorphic form. Given the weight v we let

¥ NH+ g(z) H
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K, = (y A B) -1 and get a Koppelman formula:

o) = (% M), )
- (M/\HAK> Av(w)

n,n—1

4 /Q (M AHA K)Ml A Ov(w) + g(2)1x.

where 1), is smooth as long as Re(\) > 1. If we pull this equality
back to {g = 0} then the last term vanishes and one may show
that the right hand side can be analytically continued over the
origin. Setting A = 0 gives a Koppelman formula on {g = 0}.
To solve the d-equation on {g = 0} N2, where Q is a pseudocon-
vex bounded domain, one can incorporate an additional weight
adapted to 2.

In Paper II we construct analogous Koppelman formulas for non-
reduced complex spaces.

5. SUMMARY OF THE PAPERS

As we have mentioned the purpose of Paper I is to study inte-
grals of the form [ < A B where X is a complex manifold of
dimension n and « and [ are meromorphic n-forms with poles
along a hypersurface D with normal crossings. To make sense
of the integral we pick a section s : X — L, where L is the line
bundle associated to D, and a metric |-| on L. For every smooth
function ¢ with compact support and every complex number A
with Re(\) > 1 the integral

/ sPga A B
X
2

0



is convergent and holomorphic in A\. Let Dy, ..., Dy be the irre-
ducible components of D. Suppose for simplicity that each D; is
smooth and that both o and 8 have poles along each D).

Theorem 0.0.3. Let x be the mazimal number of D;:s that in-
tersect. Then the function

A / 5| pa A B
X

has a meromorphic continuation to C with poles contained in Q.
The Laurent expansion around A = 0 is given by

1 1
F/"LH'QS_‘_."+X#1‘¢+MO‘¢+@(|)\|) (28)
where p; are currents with support on the set where j components
of D intersect.

In Paper I we further show that pu,, the leading term, is indepen-
dent of the choices of section s and metric |- |. Therefore we call
1, the canonical current associated to aw A 3. The other currents
Mr—1,- - -, Mo however do depend on the choices we have made.
Let Y = Dy N ---N D and suppose that X is compact. In
Paper I we further define an Aeppli cohomology class Res’ (aA )
associated to a A B which is a class on Y such that

(ly, 1) = (—2#1)”/ Res (a A f).
Y
In the case that Kk = 1, i.e. when the hypersurface is smooth, and
a and 8 have poles of order one then the Aeppli residue is given
by Res(a) A Res(5) where Res denotes the Poincaré residue dis-
cussed in Section 2. In the case that a has a pole of higher order

but § still has a pole of order one then the Aeppli residue may
be described by the Felder-Kazhdan residue defined in [FeKa).
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The main objective of Paper II is to solve the O-equation on
a possibly non-reduced space. Let Z be a analytic subset of a
pseudoconvex domain D C CV. Suppose that # is an ideal in
Jz and let Ox = Op/ . We further suppose that Ox has pure
dimension. This means that if h € Op is such that h, € %, for
generic x € Z then h € f.

A classical notion of holomorphic p-forms on the complex space
X is the Kahler differentials given by

Qb = 2
X,Kihler fﬂ% +dj/\Q%—1

(29)

It is possible that for ¢ € QY we have that ¢, € (FQ +df A
QP1), for generic x € Z but still ¢ ¢ (FQ8 +d g AQY). For
technical reasons we want to exclude such forms; it is not a good
property when doing analysis. To achieve this we enlarge the
denominator in (29) to a sub-module #? of 2, which coincides
with QP +d.# A Q! for generic 2 € Z and with the property
that if ¢ € 7P for generic z then ¢ € #P. We then define

0% = /57

and call these forms the holomorphic p-forms on X.
By [AnWu] there is a residue current R such that for ¢ € QF
we have

¢ € FPif and only if p AR =0,

cf. Proposition 0.0.2 above. Smooth (p, q)-forms on X are then
defined as

2P
Pa _ D
X T {pe & pAR=0}
This is strictly speaking not the definition given in the article
but according to Proposition 3.9 in Paper II it is equivalent. In
a similar way as in Section 3 above we get a well-defined O-
operator 0 : &4 — &9 Hence we may study the 0-equation
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on our non-reduced space. However, even in the reduced case
it is not always possible to solve the J-equation smoothly when
the complex space is not smooth. Our solution to this is to
define an extension o/y? of &Y in such a way that #/3% = &Y%

generically and so that &/%7 is an &y%module. In Paper II we
prove the following theorem.

Theorem 0.0.4. If ¢ € % is O-closed then
(a) if ¢ = 0 then ¢ € QF,

b) if ¢ > 1 then there exists 1y € %7 with O = ¢ locally on
X
X.

We further prove that 0 : @/%? — /29" This together with
theorem 0.0.4 implies that the complex of sheaves

5 5 5
0— Q8 5ot S b5

is exact, cf. (27). Since %9 are %%q—modules, in particular
smooth partitions of unity are available, the abstract de Rham
theorem implies that we get a representation of the sheaf coho-
mology:

HI(X, Q%) = HY (/%" (X)),

In Paper II we also find a similar description of the dual objects
HI(X, % )* and this leads to an analytic version of Serre dual-
ity. This may be compared with the results in [RSW]. Our
method is based on division—interpolation type formulas con-
structed using the residue current R, similar to how we did in
the end of Section 4. This gives integral operators on X and
the sheaves o/%? are given by iteratively applying these opera-
tors on smooth forms. This approach is basically a combina-
tion of the methods in [AL] and [Sam]. The idea to achieve
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a Dolbeault-Grothendieck lemma on complex spaces using the
theory of residues currents originates in [AS].

In Paper III the setting is similar to the that of Paper I and
we achieve results similar to the ones in [FeKa2]. We study
divergent integrals on complex manifolds but now we begin with a
differential form w which is singular along a complex submanifold
Y of possibly higher codimension. We let (E, |-|) be a hermitian
vector bundle with a holomorphic section s : X — FE which
generates the ideal of holomorphic functions vanishing on Y. We
assume that it is possible to choose such a metric and section so
that |s|*"w is smooth on X for some integer N > 0. In Paper
IIT we prove the following theorem.

Theorem 0.0.5. The function

)\r—>/ ]s\”&bw
X

has a meromorphic continuation to some neighbourhood of the
origin. The Laurent expansion around A = 0 is given by

1

3 (11, 0) + (po([sl), 6) + (1)) (30)

where py and po(|s|?) are currents on X. The current py does
not depend on the choice of section or metric and its support is
contained in'Y . If || - || is another metric on the vector bundle E

then
2 2 |5|2
:uo(‘8| ) :MO(HSH )+M110g H8H2

Let k = codim(Y). If N < k then w is locally integrable and in
this case py = 0 and py = w, where w is considered as a current.
If |s|*w is smooth then there is a smooth form res(w) on Y such
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that

(12, 6 = (2" / res(w)g. (31)

Y

In the case that |s|*"w is smooth for N > k then there is a de
Rham cohomology class res(w) on Y such that (31) holds.
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Residues and currents from singular forms on
complex manifolds

MATTIAS LENNARTSSON

Abstract
Using methods from the theory of residue currents we provide asymptotic expansions of
certain divergent integrals on complex manifolds. We express the coefficients in these ex-
pansions with the conjugate Dolbeault residue, introduced by Felder and Kazhdan in [Fe],
and define a new residue which we call the Aeppli residue.

1. INTRODUCTION

Suppose X is a compact complex manifold of dimension d and D C X is a smooth hy-
persurface. Motivated by perturbative string theory, in [Fe] Felder and Kazhdan discuss
regularisations of divergent integrals of the form

/Xa/\B

where a and S are (d,0)-forms which are smooth on X \ D, « has a pole along D and 3
has a pole of order one along D. In their paper they use cut-off functions, i.e. functions y
which are zero on D and otherwise positive, and prove the asymptotic expansion

/ aAB=logely+ I(x)+ O(e)
e

where I = || p ResaA Res B does not depend on the cut-off function (here Res denotes the
classical Leray residue which we discuss later). They also show that I1(x) depends linearly
on x and give an explicit expression for it in terms of the conjugate Dolbeault residue, Resg,
defined in the same paper. In a second paper, [Fe2], the same authors generalise the results
to smooth manifolds and forms which have singularities on submanifolds determined by
Morse—Bott functions. In particular they consider the case of a complex hypersurface with
normal crossings. They also study analytic continuations of these divergent integrals.

In this paper we take the analytic continuation of divergent integrals as starting point.
This means that we have a different method of regularising the divergent integrals and this
will give us more explicit formulas. We allow D to be a hypersurface with normal crossings
and « and S to be semi-meromorphic forms with poles along D of any order. If s : X — L
is a holomorphic section of some line bundle such that D = {s = 0} and | - | is a metric on
L we define a function by

A= / |s|?a A B.
Jx

This function is a priori only defined for complex numbers A with Re A large enough but we
will see that it has a meromorphic extension to C which is holomorphic when Re A is large
enough. We get a Laurent expansion at 0, cf. Theorem 2.3,

/ IsPraAB=A""C 4+ A0+ Co+ O(N) (1)
X
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where & is defined in Section 2. Changing aA S to aABAE, where ¢ is a test function, we get
currents C_;(€) of bidegree (d,d). We will focus on the leading coefficient C_,;, which we
call the canonical current associated to a A 3, and we denote it by {a A 3}. The motivation
for this construction comes from the study of residue currents in complex geometry. Then
one looks at so called semi-meromorphic forms «, i.e. locally « = &/f for some smooth
form @& and some holomorphic function f such that f # 0. Given such a form one can use
this method to define the principal value current [o]. We will recall more precisely how this
is done in Section 2.

In the third section we discuss cohomological residues. Given a semi-meromorphic
(d, d—1)-form oo on X which is polar along a smooth hypersurface D the conjugate Dolbeault
residue Resg(a) is a class in the conjugate Dolbeault cohomology group Hgfl’dfl(D), see
Definition 3.2 below. We then define a new residue, which we call the Aeppli residue, and
denote it by Resa. Given semi-meromorphic (d, 0)-forms « and 3 which are polar along D
the Aeppli residue Resa(a A ) is a class in the Aeppli cohomology group ijl‘dfl(D).
We relate these residues to the currents defined from analytic continuations of divergent
integrals. The following result relates principal value currents and the conjugate Dolbeault
residue.

Theorem A. For a semi-meromorphic form o which is polar along a smooth hypersurface
D we have, for every test form &,

(0la), &) = ([0a], &) + 27ri/; Resg(a A €).

In the same spirit we can relate the canonical current to the Aeppli residue. We prove
a more general result in Theorem 3.9 but a special case is the following.

Theorem B. For semi-meromorphic forms « and (3, polar along a smooth hypersurface
D, we have for every test form &,

({an B}, €) = —2mi /D Resa(a A BAE).

Theorem A and B concerns the leading coefficient in expansions such as (1). In Section
4 we use the previous results to describe the other coefficients, see Theorem 4.1 below. One
of the main points of Theorem 4.1 is the following informally stated result.

Theorem C. The coefficient C_,. in the asymptotic expansion (1) depends polynomially
of degree k — r on the chosen metric.

We finally note that asymptotic expansions similar to (1) have been studied before, see
e.g. [Bar; Bar2], but to our understanding these results are not directly related to our
residues.

2. CURRENTS FROM SINGULAR FORMS

We recall some facts about semi-meromorphic forms and how to define principal value
currents from them. In Section 2.2 we define currents from more general forms. Throughout
X will be a complex manifold of dimension d.

2.1. Semi-meromorphic forms. We denote by SM(X) the semi-meromorphic forms,
i.e. forms a which can be written locally as @ = &/f where & is a smooth form and f



a holomorphic function such that f # 0. We write P(a) for the polar set of «, which
consists of the points where « is not smooth. Given the local description above we get
P(a) C {f = 0}. For a hypersurface D we write £(xD) for the semi-meromorphic forms
which have a polar set contained in D and EP+9(xD) for the ones of bidegree (p, ¢). Since the
pole of a semi-meromorphic form is determined locally by a holomorphic function, locally
the order of the pole is well defined.

One way to define principal value currents from semi-meromorphic forms is the following
cf. [And; Ber; Saj: suppose a € £(xD) has a hypersurface D with normal crossings as
polar set and D = {s = 0} where s : X — L is a holomorphic section of some line bundle
L. Let | - | be a metric on L and ¢ a test form of complementary degree. The function

)\>—>/ [s|**a A€
Jx

is a priori only defined when Re A > 1. One can show, however, that the function has an
analytic continuation to Re A > —¢ for some € > 0. Thus we may define the principal value

current [a] by .
([a], &) = (/X |52 a /\5) ‘A:o'

The current does not depend on the choice of metric | - | or section s.

2.2. Quasi-meromorphic forms. We let QM (X) denote forms w which can be written
locally as w = @/ fg where @ is a smooth form and f and g are holomorphic functions which
are not identically zero. We call these forms quasi-meromorphic and they are smooth forms
except that they can have real analytic singularities along (local) complex hypersurfaces.

For w € OM(X) we define its polar set, denoted by P(w), as the set of points where w
is not smooth. When w has a polar set contained in a hypersurface D we write w € E(x*D),
we call D the polar set even though w may be smooth on parts of D. We will focus on
forms in £(x*D), for some D, since it is notationally more convenient. We write EP9(*%D)
for the forms in E(*%D) which have bidegree (p, q).

The polar set of a quasi-meromorphic form has different parts between which we need
to distinguish. We define the subset P1:9(w) C P(w) as follows. A point z in the polar set
is not in P10(w) if around this point there is holomorphic function g, with g # 0, such that
gw is smooth. In the same spirit we define the set P%!(w) to be the subset of polar points
around which there is not a holomorphic function f, with f # 0, such that fw is smooth.
We say that P10(w) is the set where w has holomorphic singularities and P%!(w) is the set
where w has anti-holomorphic singularities. We have that

P(w) = PYO(w) U PYY(w)

but P10(w) N P%!(w) need not be empty; it is the set where w has both holomorphic and
anti-holomorphic singularities. The order of the holomorphic (and anti-holomorphic) pole
is locally well defined.

If w € E(**D) then P19(w) and P%!(w) are hypersurfaces contained in D and we
temporarily set H(w) to be the codimension one components of P:?(w) N P%!(w). Since
this is an analytic set there is a natural stratification, see Proposition IL.5.6 in [Dem)],

H(w)q € H(w)a—1 C -+ C H(w)1 C H(w)o @)
where
(i) Hw)o =X,
(i) H(w)h = Hw),



(iii) if & = 2,...,d then H(w) is (H(w)k,l)smg together with all the components of

H(w),—1 with codimension greater than or equal to k.

Notice that H(w);\ H (w)g+1 is a (d—k)-dimensional complex manifold which is possibly
empty.

Definition 2.1. With the stratification as above we define the integer x(w) to be the largest
number & such that H(w)x is non-empty. We further let E(w) := H(w)u(w)- S

The integer x(w) in some sense measures how bad the singularities of w are. By defini-
tion E(w) is a complex submanifold of dimension d — k(w).

Ezample 1. To clarify these notions we give an example in C? in the case of normal

crossings. For
1
Ww=——""-~+ —
2121 (Zl — 1)2223
we have

PV ={z=0}U{z =1} U{z =0},
POl = {z = 0} U {z = 0}.

Thus P10 N PO = {2 = 0} U {21 = 1,23 = 0} and hence H(w) = {21 = 0}. Since this is
smooth we get that k(w) =1 and E(w) = {1 = 0}. v

For a semi-meromorphic form « we have H(«a) = &. Hence all components except
H(a)g = X in the stratification are empty. Thus x(a) =0 and E(a) = X.

For a form w € &(xxD), where D has normal crossings, there is a more explicit de-
scription of k(w). Around any point 2 € X there are local coordinates (z1,...,24) with D
given by 2123 -+ zx = 0. Then there are multi-indices J and K so that z/ 25w is smooth.
Choosing J and K minimal we define

Re(w) =#{j: J; # 0 and K; # 0}

and then
K(w) = max g (w).

Now suppose s : X — L is a holomorphic section such that D = {s = 0} has normal
crossings and that w € £(x*D). Around any point 2 € X there are coordinates (z1,. .., 2q)
so that H(w) is given by z129--- 2, = 0. In a local holomorphic frame the section is given
by s = 2!¢ for some holomorphic ¢ which is non-vanishing on H(w). We define

‘
0u,2(8) = H I;. 3)
j=1
and note that this does not depend on the choices of local coordinates or the frame.

Definition 2.2. For a holomorphic section s : X — L which defines a hypersurface D with
normal crossings and w € E(**D) we let

ou(s) = glea))((ow,z(s). o



Notice that in (3) we only multiply with the vanishing order for s on the local compo-
nents on which w has both holomorphic and anti-holomorphic poles. For w semi-meromorphic
0, (s) =1 for all sections s since then the product is empty.

We are now assuming that the polar set of w is a hypersurface with normal crossings.
For a test form & of complementary degree and A € C with Re(A) > 1 we let

Fe(A) = ou(s) / Is[Pw A €. )
Jx
The following theorem gives a first description of the function Fp.
Theorem 2.3. Suppose w € QM(X) has a hypersurface D with normal crossings as a
polar set. The function F¢ has the following properties
(a) F¢ has a meromorphic extension to C,
(b) the possible poles of F¢ are at Q C R,
(c) the order of the pole of F¢ at the origin is < k(w).

To prove Theorem 2.3 we need the following lemma, the proof of which is a simple
exercise.

Lemma 2.4. For A € C and multi-indices I, J, K such that if I; = 0 then J; = 0 and
K; =0 we have
\ZI|2)‘ _ h(/\) 3J+K‘ZI‘2)\

2JZK N 9270zK
where
-1 -1
h()) = ( 1 LoL -1 - T+ 1)) ( 1 5oL -1 - K, + 1))
Ji#0 K0

and p=#{j: J; # 0} +#{j : K; #0}.

Notice that this means that h(X) has poles in

1 2 J;i —
A=—, =, ... = for 7 with J; > 1
LG or s =
and 1 2 K —1
A=—, 2, =L forjwith K; > 1.
Ij,[j, s Ij or j wi j>

Proof of Theorem 2.3. We may suppose that £ has support in a coordinate chart and so
we study the integral over, say, a polydisc A € C%. Since D has normal crossings we may

find coordinates so that the section s is a monomial, say s = 2! = z{‘ e zé" and we write
the metric as |- | = | - e~ for some function ¢. Furthermore, we write
wAE= v dzANdz
27 ZK

where dz = dz; A--- Adzg and 9 is some smooth function with support in A. The integral
in (4) may now be written

[2X on
Fe(X) = o0u(s) R ﬁe’ P dz A dz. (5)



We now prove (a). For integers N > 0 we can use Lemma 2.4 and Stokes’ theorem to
simplify the integral in (5) as

I|2A+2N 2
)\)—UW(S)/ ITNIZKINT® P dz A dZ

ou(s)h(A) [ QIHEFRNIIAN .

N A\PN A 02T TNIgzK+NT € Ppdz Adz
(71)‘J+NI‘+|K+NI‘OW(S)h()\) I2adaN oI tK+2NI Zoxe -

= \PN Ja |27 DRI T NTgZRINT (e d))dz Adz.

The last integral in the above expression is holomorphic in Re A > —N — ¢ for some £ > 0.
Furthermore, the function h, which is given by Lemma 2.4 but here depends on N, is
meromorphic in C. Hence F¢ has a meromorphic extension to C, as N may be chosen
arbitrarily large, and we have proven (a).
Now let us prove (b). The fact that the poles are located at rational numbers follows
from the proof of (a) and Lemma 2.4 which describes the locations of the poles of h.
Finally we prove (c). Choosing N = 0 gives

DK (s , . )
() = o) [ porn DO (eoog)az na, ©)

Notice that Lemma 2.4 in particular gives that h does not have a pole at 0. We define a
function g from the integral above by

g(A) = / \zl|2)‘ 9.795K ( 29y)dz A dz.

Then g is holomorphic in Re A > —¢ for some €. To show that F¢ has a pole of order x we
need to show that g has a zero of order p — k at the origin. We have that

p—rk=#{j:Jj#0o0r K; #0} = #{j: I; # 0}.

Repeated use of the product rule for derivatives gives

k 97+ K
() :Z( )( 2)k— f/ (log|2'|?)" ;,W(quk “dz A dz (7)

£=0

and using the multinomial theorem we get
/ (log |21\2)lﬂ(w¢k_[)dz Adz
0z J82K

= Z <M>/ H (I;log %) 'a K(quk*“)dzAdz. (8)

The sum is over multi-indices M = (Mj, ..., My) such that I; = 0 implies that M; = 0, all
M; > 0and }°; M; = (. Thus we have to study integrals of the form

/ H (I;log |2;]%) 8ZJ 5K (W’“—f)dmdz. (9)

Suppose first that I; # 0 but M; = 0. Then the integral in (9) may be written

2 1 2\ M; 8-1+K k—t d dz |d / df/
A'jl;[z(lj og|z;[?) AIW(TM )z Adz |d2’ Adz



where A = Ay x A’. But since I; # 0 implies that J; # 0 or K} # 0 the inner integral
vanishes using Stokes’ theorem. Hence we get the following;:

if I; # 0 but M; = 0 then the integral in (9) vanishes.

Now we suppose k < p — x and we want to show that ¢*)(0) = 0. From (7) and (8) we
know that g(*)(0) is a sum of integrals as in (9). For each of these integrals there are an
integer £ and a multi-index M such that

S My=t<p—r==#{j: I #0}

Hence, for each of the integrals, there is some j so that I; # 0 but M; = 0. Then, as
explained above, all of the integrals are zero and thus g(k)(O) =0 for £ < p — k. Therefore
g has a zero of order p — k at the origin which was what we wanted to prove. |

We use Theorem 2.3 (c) to make the following definition.

Definition 2.5. For w € £(x*D), where D has normal crossings, we define the canonical
current {w} associated to w by

({w}, €) = N Fe(N) o o

A priori {w} depends on choice of s and |- |. Corollary 2.7, however, shows that this is
not the case.

Remark. In the case that w is semi-meromorphic {w} is the principal value current of w
since then k(w) = 0 and o,(s) = 1.

2.3. Local calculations. We will make some calculations of canonical currents associated
to quasi-meromorphic forms to hopefully clarify but also to show that they can behave a
bit odd. Given a multi-index J = (Ji,...,Jg) we write 1; for the multi-index given by
(17); =0if J; =0and (1;5); = 1if J; # 0. We begin with a proposition.

Proposition 2.6. For w € QM(C?) and a test function & in C* with support in A such
that w A € = (¢/2725)dz A dZ we have

_ (,1)1’ 12 8J+K,¢J -
(9= gent=mn L (L el gt

where p is given by Lemma 2.4.

Proof. From the proof of Theorem 2.3 we know

0u(3) (—1) 7111

0= Gyt MOS0

({wh€) = @R

and Lemma 2.4 gives

(_1)|J\+\KH>

h(()):m( I Ij)—l( II Ij>_1.

JiJ;#0 JK;#0



The equation (7) gives an expression for g®=*(“)(0) in terms of the integrals in (8). But
just as in the proof of Theorem 2.3 these integrals vanish if £ < p — k(w). For £ = p — k(w)
we must have all M; = 1 for the integral not to vanish. Using this for k = p — k(w) we get

g<p—n<w)>(0):( 11 1_7>(p7n(w /( H log\zj\) 705 Kdz/\dz

S0

This is the same integral as in the statement of the proposition. We only need to see what
constant we get in front of it. This constant is

(L 0)(IL8) (I 8)
J:J#0 J:K;#0

but since o,(s) =[] jia,70,K, 0 15 this is precisely what is claimed. O

Corollary 2.7. The canonical current {w} does not depend on the choice of section s or
metric | - |.

Proof. This follows immediately from Proposition 2.6 since the right hand side in that
statement does not depend on the section s or the metric | - |, as J and K do not. Hence
(locally and thus also globally) this holds for {w}. O

Remark. We would not get the above corollary if we did not have the factor o, (s) in the
definition of Fg.

When doing calculations we will get use of the following which is a consequence of
Cauchy—Green’s theorem: If ¢ is a smooth function with compact support in A C C then

0% _
6z62dZ/\dz' (10)

Corollary 2.8. For w € QM(C?) and a test function & in C? with support in A we have
(a) if wANE = (/27"Z1)dz A dZ then

27 am+n72,¢) , .
{fwh) = C(m=1)!(n-1)! /Aﬁ{zl_o} oz oz rde Adz,

() ifwAE= (/2] .. 2 5. 5)dz AdZ

( 27r1) / 8J71J1/} " =
({wh,€) = T NN = e dz" Adz

where dz' NdZ' = dzg AdZa A+~ Adzg AdZg and d2" AdZ" = dzpi1 AdZgsa A+ - Adzg AdZg.

Proof. This follows from Proposition 2.6 and (10). O

We now use Corollary 2.8 to make some explicit calculations.

Ezample 2. Let X = CP! with homogeneous coordinates [z : w] and let 0 be the point
where z = 0 and oo the point where w = 0. We let

_dzAdz dwAdw

- — for zw # 0,
2z ww

8



which means that x(w) = 1. In view of Corollary 2.8 (a), given a test function £, we get
({w},€) = —2mi€(0) — 2ig(c0).

On the other hand, if X = U for some open set U € CP! which does not contain the origin
or oo then x(w) = 0 and therefore

<{w},§>:/[j%dz/\d2. v

Remark. The above example shows that for canonical currents we have the following prop-
erty: in general x{w} # {xw} for a smooth function x. This means that when we define
the canonical current associated to a form w it is important to decide on what underlying
space we consider it.

Ezample 3. If we let X = C and apply Corollary 2.8 with w = 1/(2™2z") then we get that

1 1 _ 1 1
z — = ——— and Z — =9 —
Zmzn zm—lzn Zmzn zmzn—1

for m,n > 2. On the other hand

1 1
z'”{m} =0 and 2”{ mfn} =0
Zmz Zmzn

for m,n > 1. v

Theorem 2.3 (b) gives some insight about the poles of F¢ but the following proposition
gives more information.

Proposition 2.9. The poles of the function Fe are located at rational numbers less than or

equal to
rdi—1 Kj—1 . }
maxq miny ———, ——— 5 :j=1,...,d .

Proof. First suppose K; = 0 or K; = 1 for all i = 1,...,d. We may assume that & has
support in a local chart and so we can write down the integral locally as

LI > e Pydz Adz
A 272K

_ Y / Chl i L2044, pdz
A

Fe(A) = ou(s)

P ozK 27
(IR [ [ 0Ky

= 0 L 95K dz A dz.

We made a similar computation in the proof of Theorem 2.3, c¢f. Lemma 2.4, but now
we only considered the anti-holomorphic derivatives. Since these are of at most order one
the function h will not have any poles at all, see Lemma 2.4. But the integral in the last
expression above is the principal value current of 1/2“7 acting on ")K?);ﬁdz A dz. This is
known not to have any poles in the right half plane (and not at the origin). Hence F¢ does
not have any poles in Re(\) > 0.

Note that the above result would also hold as long as J; < 1 or K; < 1 for all i. Now
suppose we are in the general case. Let 4 = A — M for some integer M. Then

|z
2/ zZK zJZK

I|2)\ ‘ZI|2;L+2]W 112 ZMIEA/II
= = ‘Z ‘ " 2K




and choosing M so that MI; > J; — 1 or MI; > K; — 1 for each i we get from the above
that F¢ has no poles in Re(u) > 0. That is, F¢ has no poles in Re(\) > M. Choosing M
so that this holds we get the proposition. O

One can note that by choosing higher powers I of the section s we can get the poles in
the right half-plane arbitrarily close to the origin. Suppose w = aA f for semi-meromorphic
forms « and 3. Proposition 2.9 gives us a hint that the situation is a bit more well behaved
when 3 only has poles of order one since then the proposition says that F¢ does not have
poles in the right half plane.

3. COHOMOLOGICAL RESIDUES

We will discuss the classical Leray residue, the conjugate Dolbeault residue and then define
a residue for the Aeppli cohomology. Now X is assumed to be a compact complex manifold.

3.1. The conjugate Dolbeault residue. To define residues the classical setting is the
following: suppose D is a smooth hypersurface and « a d-closed form in X \ D with a
holomorphic pole of order one along D. If z; = 0 is a local equation for D then « may

locally be written as
dzy

a= ANa+T1

Z1
for some forms & and 7 such that 7 does not contain dz;. Certainly & is smooth but it is
well known that the closedness implies that 7 is smooth. One defines the Poincaré residue
by Res(a) = @ p- It is easy to check that this gives a well defined closed form on D. If
is any closed form on X \ D then there is a cohomologous form o’ with a pole of order one
along D, cf. [Ch, Thm. 6.3.3, p. 233]. The Leray residue is defined by

Res(a) = [Res(a’)]

which gives a map

Res: H*(X \ D) — H* (D).

Since the groups EP9(xD) form a complex with the operator 9 we get cohomology
groups HY(+xD). In [Fe] the conjugate Dolbeault residue was constructed as a map

Resg : Hg’o(*D) — HE V(D).

We will give an alternative definition for forms in Hg"q(*D) which is quite explicit. Given a

(d,q)-form a in C%, with coordinates z = (z1,...,24), which has a holomorphic pole along
z1 = 0 we may write

le A a z

o= _-"""Z 11

e (1)

for some smooth form &, which does not contain dz;. To define a residue we need the

following lemma. We do not give the proof since it is very similar to the proof of Lemma 3.4

below.

Lemma 3.1. Let z and w be coordinates in C% such that z1/w1 is a non-vanishing holo-
morphic function and let D = {2 = 0}. Suppose a € E¥9(xD) has compact support and

write
dz 1

m
21

naa(2) = a = 3\ G ),

anm
wy

for some smooth forms a&(z) and du,(w) which does not contain dz, or dws.

10



(a) If there is a form n € E(xD) with compact support such that e = On then there is a
smooth form 1 on D such that
6m—1&z

— o,
ozt !

D

with supp(7) C supp(a) N D.

(b) There is a smooth form 8 on D whose support is contained in supp(a) N D such that
o la, 0™ 1@,

2ty ow?

+ 8.
D

Now suppose a € E%9(xD) and (p;) is a partition of unity subordinate to a cover of X

by charts with coordinates (zj = (21,252 - 7zj,d)) such that D is locally given by z;; = 0.
We write ~

de,l A Qaj (Z)

o= —r——"r

m
Zja

on supp(p;),

and then define L omi(pa)
" (pidy
Roz(w) =D ——i et
s ; (m — 1)' sz,l 1

Using Lemma 3.1 one can prove that, for a € £%9(xD),

(a) Rp‘z(a) = Rdﬂll(a) + 867

(b) Rp,z(an) = 0.
The proof of (a) and (b) is very similar to the proof of Proposition 3.5 below. We can now
make the following definition.

D

Definition 3.2. For a class [a] € Hg’q(*D) we define its conjugate Dolbeault residue by
Resp(a) = [Ry ()], o
The claims (a) and (b) above give that Resg(«) is well defined and independent of the
choice of partition of unity and local coordinates. We now present a theorem which is not

very related to the rest of the paper, but we think it is a nice application of the conjugate
Dolbeault residue.

Theorem 3.3. If a € EP4(xD), where D is a smooth hypersurface, and & a test form of
bidegree (d — p,d — q — 1) then

(0la), &) = ([0al,£&) +27ri/DResa(a/\£).

Proof. We may suppose ¢ has support contained in a coordinate chart which is biholomor-
phic to the unit polydisc A and that D is there given by z; = 0. We may further suppose
that o = Srdzp AdZg and £ = bdzg A dZg where |P| = p and |Q| = ¢. Then we get

1

b
ang= (=11 D0 dz N dzg A ds,

Z{n
- ob
A dE = _1)(@+D)(d=p)+s+t ¢ dz AdZ
a Ao Ek (-1 A
_ da b
daNg = (—1)ad=pitdratsatt 22 —dz A dz,

11



where s and ¢ are given by dzp A dzg = (—1)*dz and dzg A dz; A dzs = (—1)'dz (so ¢
depends on k but we suppress this). For k = 1 we have
(—1)'dz = dzg Adz Adzs = (—1)%dz; AdZg Adzs
and hence
dZ :==dz A - Adzg = (1)1 dzg A dzs.
This means that
(_1)q(d7p)+q+s+t am—l(ab)
(m—1)! 9t

Resp(a A &) = dz' AdZ'.

We write A’ = AN{z = 0} = AND. Using Proposition 2.6 and the remark after Definition
2.5 we get

(9la],€) = (-1) ”*q“<[a] )
q(d p)+q+d+s+t om ab
=) 207 (00 .
; =1 /Alog|z1| 62{”<a62k>d2/\dz

_ (_1) q(d— p)+q+d+s+t/ 23m+1(ab) ~
,#~ log |21 | Wdz/\dz

1)(1 (d—p)+q+d+s+t da
,ZT/ 1og\zl| Ey ’”(8’ b)dz/\dz

zm(_l)q(d p)tat+s+t o™= (ab)
= (m — 1)' N 82’1”71

:27ri/DResa(a/\§)+<[<§o¢],§> O

dz’ Adz' + ([0a], €)

3.2. A residue for the Aeppli cohomology. Recall that for a complex manifold X
one defines the Bott—Chern cohomology groups by

ker(9) N ker(9)

H56(0 = — @)
and the Aeppli cohomology groups by
ker(99)
HIMI X)= "\
A'X) im(9) + im(9)

Given a hermitian metric on X the induced Hodge star operator gives an isomorphism
#: HRL(X) — H P I(X)

s0 in this sense the Aeppli cohomology is dual to the Bott—Chern cohomology. We have the
following natural maps

Hib(X)

RN

3 (X) HE(X) H5(X)

~ 7

H(X)

12



and for a manifold on which the 9-lemma holds all the outer maps are isomorphisms. In
particular this is true for Kéhler manifolds. For a more elaborate discussion on these facts
we refer to [Angl; Ang2; Del].

Restricting our attention to forms in £%?(x%¥D) we consider the cohomology group
H;i‘"d(*lD)‘ To define a residue we need the following lemma.

Lemma 3.4. Let z and w be coordinates in C% such that z1/w1 is a non-vanishing holo-
morphic function and let D = {z; = 0}. Suppose w € E*(xxD) has compact support and
write dz Adz dw; A dw
z1 z1 ~ w1 w1 ~
W Nw.(z) =w= W A Wy (W),
for some smooth forms @,(z) and @, (w) which does not contain dz1,dz; or dwy,dw;.

(a) If there are forms n,v € E(x%D) with compact support such that w = dn + dv then
there are smooth forms 1 and U on D such that
aern—Z‘;Z

| =03+ 0D,
825{”_182?_1 D Y

with supp(7), supp(7) C supp(w) N D.
(b) There are smooth forms & and /B\ on D whose support is contained in supp(w)ND such
that
1 anH—n—Qaz
(m—1)!(n— 1)l gz"Tozp—"

1 a7n+n—20"jw N
_ — Yw | L 9a+dB.
D (m/ _ 1)'(%’ _ 1)| 811)1” _18'[I)? -1 D B

Proof. We first prove (a) and suppose w = 9. If

_dzAdB A +dE A
n= Z;n—lz? ’

where 77 and 72 does not contain dz; or dz;, then

w=0n= %/\ (—(m—l)ﬂ2+213771+21%>
and therefore
Wy =—(m—1)ne +210m + =1 g—Zi
We get
omtn=y, gmtn—2

( — (m—1)ng + z10m + Zl%) ,

B 8m+n—2n2 8m+n—30n1 am+n—2n2 >‘
m—1g9zn—1 m—29zn—1 m—1g9z-n—1
021" 0% 021" “0%] 021" 07}

= om -1 T ),

2229z D

= m—1g9zn—1
p 0z 0%

= (m-1)(

m—1g9zn—1
021" 0%

The case w = v is treated analogously. By linearity we get the case w = dn + dv and
hence we have proven (a). Now we prove (b) and we first suppose (m,n) = (m’,n’). The
calculation

wzfa( 1 dfM@)i 1 dz Aow,

m=1z""tep /) m—1 ey

:_a( 1 dél/\UNJZ> 1 dzl/\dél/\&ﬁz

m—1 "tz m—1 "1z 0z

13



may be iterated and so we can write

1 dz1 Adzy 6”‘*”’21@

=day + 0B + .
w = a1 +9h (m—-1ln-1)! 2z 9ozt

Doing the same for the coordinate w we get that

le A le 0m+n—2‘:}z d’LU1 A d’LT}l 8m+n72a)w

217 2 lozn—t w1 Wy dwowy

=da +0p

for some « and (. Using (a) we get

—27
am+n W,

m—1g9-n—1
021" 0%

+n—27
6m+n W

= +oa+dp
p  Owrtowr! “ p

D

which is what was to be proven. Now we treat the case that (m,n) # (m’,n’) and for
simplicity we suppose m’ > m and n’ > n. We get

1 R
(m’ = D)l = 1)! 2 tozn 1 ‘D
1 m —1 n —1 87”’*”12;",*7” 8%,*712?/*% g2
- m (m/ _ m) <7L' _ n) 0Z{n’—m az;ﬂ—n aZ{nflag?fl b
1 omtn=2g,
T m-Din— Do oz,

,
since the restriction to D forces the correct amount of derivatives to land on z{" =" and

2{"/7”. This proves (b). O

For a form w € £%(+x%D) and a partition of unity (p;) subordinate to a cover of X by
charts with coordinates (z; = (2j1,%j2-..,2;,4)) such that D is locally given by z;1 = 0
and

_ (12’]',1 A de,l

LM ozn A "NJJ(Z) on Supp(pj)a

31751
we let . " Z 1 am+n—2(pj:)j)
es w) = o .
o —~ (m=1)l(n - 1)! oozt |p

Proposition 3.5. For w € £44(xxD) we have
(a) Res, . (w) = Resy,(w) + da + B,
(b) Res, -(0n + Ov) = da + 0.

Proof. We write
1 a'm-%—n—Q(pj&j)

Res? _(w) =
p.x () (m—1)(n—1)! 8z_;:”1_1(92;f1_1 D

so that

Res),»(w) = Z Ros{,ﬁz(w)‘

We have the following two identities:

(i) Res) _(oiw) = Res), ,(pjw) + Oa; ; + 9Bi 5,

14



(it) Resf)jz(w) =>, Resf,ﬂz(az-w).

The first is basically Lemma 3.5 (b) and (ii) is just an interchange of the differentiation and
the sum. Using the claims we get

Res, - (w) def Z Resf;,z(‘d)
J
@) Z Res? . (oiw)
3
(;) Z Res’(if,w(p]'w) + 6a1] + 5[3)1’]

4]
(I:l) Z Resf,_’w(w) + Z@am + éﬂzj

i
4 Resy, (W) + 8( > Ule,j) + 5( > ﬂ”’)
i 3

since «; ; and B;; has support contained in supp(p;jo;). Thus we have proven (a). We
further have

Res) (O + 0v) = Res, - ( Z O(oim) + 5(0“1))
- Z Resp, (3(0"]) + g(criy))
= Zaai
=o( Y a).

which proves (b). O

Using Proposition 3.5 we can give the following definition.

Definition 3.6. For w € HY%(x%D) we define the Aeppli residue by

Resa(w) = [Res, . (w)]a ¢

Remark. Our definition of the Aeppli residue is very similar to the definition of the residue
map in [Fe2]. They define this in a different context and for forms with, what they call,
tame singularities.

We thus have a map Resz : Hj’d(*iD) — ijl‘dfl(D).

Proposition 3.7. (a) If w € HY4(+%D) is semi-meromorphic then Res(w) = 0.

(b) If a and 8 are meromorphic (d,0)-forms with poles along a smooth hypersurface D
and the pole of B is of order one then

Resa(aAB) = (—1)* [Respa ARes 3] ,

where the right hand side is a well defined class and Res denotes the Poincaré
residue.

15



Proof. We get (a) from Lemma 3.4 since we may choose n > 1. To prove (b) write locally
o = (a/z1")dz and 8 = (b/z1)dz. Then a A B = (=1)4"(ab/(2}"21))dz1 A dZz Ad2' AdZ
and hence

o la ]

Resa(aAf) = (=1)%! [E)zm_l bdz' A dZ B
1

-1 . 3 . . . . . .
and Resp(a) = [am ¢dz’ } o The Poincaré residue Res /3 is meromorphic since (3 is. Letting

ot

R = g;,:‘fdz’ we get that (—1)?R A Res 8 is a representative of Resa(a A ) and R is a
1

representative of Resg(a). If we choose a different representative, say R + v, of Resg(«)

we get

(R+9v) ARes8 = RARes3+ 0(y ARes )
and therefore [Rcsa a AResf] , is well defined. |

The next theorem relates the Aeppli residue to the canonical currents defined in Section
2.2. It gives an indication that canonical currents do not behave like principle value currents
but rather as residue currents.

Theorem 3.8. For w € E(x*D) with k(w) > 0 and D a smooth hypersurface we have

({w}, &) = 727ri/DResA(w AE).

Proof. Choose a partition of unity (p,) subordinate to a cover consisting of charts which
are mapped to the unit polydisc in which the hypersurface is given by z; = 0. Suppose the
holomorphic pole has order m and the anti-holomorphic pole order n. Since x(w) > 0 by
assumption we have m,n > 0. Notice that x(w) > 0 together with that D is smooth implies
that rk(w) = 1. Write locally w A € = ¢/(2]"2]")dz A dz. Then, using Proposition 2.6, (10)
and Definition 3.6 we get

B 1 20m+"/)ﬂ/) B
({w},@—Zm/Aloglzl\ Wdz/\dz

1 87n+n—2 .
= —2mi / DY 4 pae
— (m —1Dl(n — 1! Janp 82" 71027

= —2771/1.j Resa(w A E). -

We can define the Aeppli residue for (d, d)-forms which have poles along a hypersurface
with normal crossings as follows. Suppose D = D; U --- U Dy, for smooth hypersurfaces
Di,...,Dy and that w € Hff“d(*lD). Considering w on X \ D we may define its residue
with respect to the hypersurface Dy \ (D2 U---u Dk) and we denote it Resgl(w). We
should note here that, even though X \ D is not compact, we can define the residue since
the orders of the poles of w are bounded, cf. the remark after Lemma 3.1.

The residue Resg !(w) is represented by a form which has poles along the hypersurfaces
D; N D; and so in particular Resg1 (w) € ijl’dfl(*iDsing). We can make the same
construction for every D; and then let

RCSE (w) = RCSQI (W) + -+ RCSgk ().

By iterating this construction for the hypersurfaces D; N D; in D and so on we may define

the Aeppli residues for all normal crossings. In particular, writing £ = Dy N---N Dy, we get

a residue Res’j (w) which is now represented by a smooth form. We also set Res? (w) = w.
We get the following generalisation of Theorem 3.8.

16



Theorem 3.9. For w € E(x*D) such that D has normal crossings we have

(fh &)y = (2m) @ ({Resf D @nOh1) -

Remark. In the above theorem we take the canonical current of a cohomology class which
is not a well defined object. However, its action on 1 is.

Proof. Take a partition of unity with the same properties as in the proof of Theorem 3.8, but
now the hypersurface will be given by z! = 0. Suppose E(w) is given by z; = -+ = 2, = 0.
Then we let dz’ = dzp41 A---Adzgq. Let R the multi-index which is 1 in the ¢ first positions
and otherwise 0. If we write p = 2k(w) + p’ then

P =4{j: J;=0,K; # 0} + #{K; #0,J; = 0}.
Now, similar to the proof of Theorem 3.8, we get

({w},€)
(_1)11 . 8J+KpL1/) B
:Zmﬂ [I togll?) e de Adz

: §iJj+K;#£0
o (_I)Zm(w)er’ . 9 BJ+K—2RPL,I/} , .
— (= 2mi)r) MR ( log |2] )77 A2’ Adz
Z (J = 1)K —1k)! AﬁE(w)j:J]=1;[K]#O ) 927 -RozK-R

or J;#0,K;=0

= (—2mi)" ) 3" (—1) / ( IT tos |zj|2)Res§<“>(w Ap )z AdZ
. ANE(W): 7,20, K,;#0
or J;#0,K;=0

= (=27)" @ ({Res; (@A O} 1) - i

The right hand side of Theorem 3.9 is a bit messy but with one extra assumption we
get a cleaner statement.

Corollary 3.10. For w € E(x%xD) such that D has normal crossings and P10(w) = P%1(w)
we have

({w},6) = (727ri)“<“>/ Resi ) (w A €).

E(w)

Proof. Under these assumptions Resg(w) (wA€) is smooth on E(w) so the statement follows

from Theorem 3.9. O

4. ANALYTIC CONTINUATION OF DIVERGENT INTEGRALS

We will use the results in the previous sections to describe asymptotic expansions coming
from analytic continuations of divergent integrals. In this section we drop the point of view
of currents of quasi-meromorphic forms. Instead we suppose we have two semi-meromorphic
forms a and B, on a compact complex manifold X, which have poles along the same
hypersurface D. As before we assume D to have normal crossings. We write

DygC---C Dy C Dy

for the natural stratification of D, cf. (2) in Section 2. Recall that Dy = X and D, = D.
Regularising the integral i
/ a A B
X

17



we use Theorem 2.3 to get the asymptotic expansion
/ ISP A B = A"CLy + -+ A1y + Co + O(|A])
b'e

where k = k(a A ). Interpreting Corollary 3.10 in this setting we get
(—2mi)" / 7
C_p=—"— Resa(a A
o) Jp, R )

where o(s) = 0,,5(s). We will now make some calculations of the other coefficients and
we will in particular see how they depend on the metric. The coefficients also depend on
the choice of section but as long as we do not change the line bundle this can be seen as a
change of metric. The result is the following theorem.

Theorem 4.1. For the coefficients C_,. in the asymptotic expansion
/ Is|2aAB=C A+ -+ C_ A+ Co+ O(JA])
X

we have

(a) C_, depends polynomially of degree k — r on the metric. More precisely, if ¢ is the
difference of two metrics then there are differential operators Q. ; with integrable

coefficients such that
C_.(¢) = E Q,.i(¢7).
(#) ]’:0‘/ ,J( )

(b) The term [ Qrn—r(¢""") may be written

(~2mi)(~2)
o(s)(k —1)!

(¢) C_, may be written as an integral over D,., i.e. the codimension r components in the
stratification of D.

/ Resa (qb“*Ta A 5)7
Dy

Proof. Similarly as in Section 2.2 we let

s) /x s a A B

and from the proof of Theorem 2.3 we get

T1+IK o g
Fy = C0 0000

where

g(A) = Z/ Edl 2)‘0(:102 ( ’2)‘¢1/1L)dz/\d2,

1, is given by (wL/(z' z ))dz Adz = p,aAfB and h and p is given by Lemma 2.4. We may
choose J and K independent of . From now on we will suppress ¢ and p,. Since we have
assumed that o and 8 have poles along the same hypersurface p = 2k. From the proof of
Theorem 2.3 we know that g(k)(O) =0for k=0,...,p— k — 1. Taylor expanding hg we
get, for r =0,1...,k

(=)7K BT

5 (oo

C ="
p—rt ==
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Lemma 2.4 implies that the derivatives of h are combinatorial expressions involving .J and
K. From the proof of Theorem 2.3 we also get

g<k>(o):2(l> (—2)k- fZ(M>/ H (I log |2 ?) 6 N ~ (e¢h")dz A dz

l=K

and hence we have proven the first part of (a), that C_, = [} > Qr;(¢7) for some differ-
ential operators @, ;. We further see that the highest power of ¢ is obtained when k is as
large as possible and £ is as small as possible. Thus setting k = p — r, £ = x and collecting
the constants we get that the leading term is given by

I+ K| K
% /H (1;log |2?) a 795 K(dnb"’r)dz/\dz

if we do a similar calculation as in the proof of Proposition 2.6. This proves the rest of (a)
and (b).

To prove (c) we may suppose that Ir,..., I, # 0 and I,.41,...,I; = 0. We must show
that we can reduce all the integrals in all the derivatives of g to an integral over D,. Let us
look at ¢g®) for k = k,...,p—r. In the expression for the derivative we have a multi-index
M such that >, M; = E, where £ < k. We have seen that when M; = 1, so that we have
log |2;|? in the integral, we may reduce it to an integral over A N {z; = 0}.

First let My = --- = M, = 1. But then we need to add ¢ — k to these indices, i.e. at
most we need to add p —r —x = k — 7. But if we add 1 to x — r different M; there are
still 7 number of Mj; which are equal to one. And in these variables we may reduce the
integrals 7 times, hence to codimension r. Adding more than one to some A; only makes
it better. |

Theorem 4.1 points out why we call the currents defined from quasi-meromorphic forms
canonical; the currents come from the only coefficient in the asymptotic expansion which is
independent of the metric. In the special case that D is a smooth hypersurface we get the
following corollary.

Corollary 4.2. If D is a smooth hypersurface then
/ [s|raAB=A"1C1 + Co+ O(|1N])
X

with C_y = 70(5 In Resa(a A B) and

47

Co(¢) = o)

[ Resa(oan).
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THE §-EQUATION FOR. (p,q)-FORMS ON A NON-REDUCED
ANALYTIC SPACE

MATS ANDERSSON & RICHARD LARKANG & MATTIAS LENNARTSSON
& HAKAN SAMUELSSON KALM

ABSTRACT. On any pure-dimensional, possibly non-reduced analytic space X we
introduce sheaves #7%'? and show that the corresponding Dolbeault complex is
exact, i.e., that the d-equation is locally solvable in «/x. The sheaves &2 are
extensions of, and modules over the sheaves &5'? of smooth (p, ¢)-forms, which are
introduced as well.

We also introduce sheaves % "7 of certain currents on X. These are dual
to #/y’? in the sense of Serre duality. More precisely, we show that the compactly
supported Dolbeault cohomology of " P"~9(X) in a natural way is the dual of
the Dolbeault cohomology of &77?(X).

1. INTRODUCTION

It is natural to try to find concrete realizations of abstract objects like sheaf coho-
mology groups and their duals. On a smooth complex manifold X of dimension n the
2% -cohomology can be represented by Dolbeault cohomology. In fact, Dolbeault—
Grothendieck’s lemma states that the Dolbeault complex,

(1.1) 0—>(2§—>(5"§’0i§>£’§‘1—>m,
is a fine resolution of 2%, and by standard arguments it follows that
(1.2) HP(X) := HI(X, %) ~ H(67*(X), 0).

If X is compact, then the duals of these groups are represented by H" P"~1(X) via
the non-degenerate pairing

(1.3) HPU(X) x H*P9(X) = C, ([¢]»[¢])%/X¢/\w7

where ¢ and ¢ are d-closed (p,q) and (n — p,n — q)-forms, respectively. There are
analogues of this so-called Serre duality even when X is not compact.

If X is a non-smooth reduced analytic space, then the complex (1.1) has a meaning
but it is not exact in general except at ¢ = 0. Thus the direct analogue of (1.2) does
not hold. However, there are fine sheaves &/¥? of (p, g)-currents, introduced in [7]
for p =0 and in [24] for p > 0, that coincide with £¢'? on X4, such that

(1.4) 0 Q% = a0 % bt

Date: January 16, 2020.
2010 Mathematics Subject Classification. 32A26, 32A27, 32C15, 32C30, 32C37.
The first and second author was partially supported by the Swedish Research Council.



2 M. ANDERSSON, R. LARKANG, M. LENNARTSSON, H. SAMUELSSON KALM

are fine resolutions of! 2% This leads to the representation

(1.5) HPY(X) = HY(X, Q%) ~ HY(«/P*(X),0).

In the non-smooth case however the duality is more involved. Let WE be the sheaves
of meromorphic (p,0)-forms which are d-closed considered as currents on X. They
were first introduced by Barlet in [13] in a slightly different way; see also [17]. In

[23, 24] were introduced fine sheaves BY? of (p, ¢)-currents, that are smooth on X,.g,
with the following properties: For each p we have a complex

(1.6) 0— wh — B % a0t ..
such that, given that X is compact, H""9(#"P*(X),0) is the dual of HP4(X),
realized via the non-degenerate pairing

(L.7) HPU(X) x H" (2" (X),0) = C, ([(b]v[w])ﬁ/xcb/\w,

where ¢ and 1 are d-closed currents in .&7P4(X) and " P"~9(X), respectively. The
complex (1.6) is exact at ¢ = 0 but it is a resolution of W% if and only if 2% is
Cohen—Macaulay.

The aim of this paper is to extend these results to the case when X is a non-reduced
analytic space of pure dimension n. Already in [6] were defined a resolution of the
structure sheaf Ox, that is, (1.4) for p = 0, and as a consequence a representation
(1.5) for p = 0. We thus have to extend this representation to p > 0 and find
analogues of (1.6) and (1.7).

Let us describe various forms and currents on our non-reduced X. First recall
that locally we have an embedding i: X — D C CV and a surjective sheaf mapping
i*: 0%, — 0%. This means more concretely that we have an ideal sheaf Jx C Op
with zero set X,.q such that i* is the natural mapping 0p — Op/JTx ~ Ox. There
are similar surjective mappings i*: 28 — Q% for p > 1. Moreover, we have the Ox-
sheaves &% of smooth (p, *)-forms and natural surjective mappings i*: &5 — &%~
It turns out that ¢* is a ring homomorphism as usual so that we natural products
(1.8) ELY x EVT L YT (4 ) s ¢ A

We define the sheaf €57 of (p, g)-currents on X as the dual of the space of com-
pactly supported sections of & "7, Given the embedding i: X — D C CN we
have natural injective mappings i.: €57 — (ra”g AP NN+ oo that the elements in
¢%? are identified with the ordinary (N —n+p, N —n+g)-currents in D that vanish
on Heei*. In view of (1.8) we have natural products

(1.9) ELTx T o GEITTT (g ) s g A

We are mainly interested in subsheaves Wi of 447 where the elements have a
certain regularity property; (1.9) holds also with €x replaced by Wx. The subsheaf
of O-closed members of Wf("o are denoted by W% ; they are natural extensions to our
non-reduced space X of the Barlet sheaves.

We are also interested in another class of non-smooth forms V5%, which however
are fundamentally different from €%?. The sheaves V{7 are extensions of &7 and
contain for instance principal values of meromorphic forms. Generically on X ele-
ments in V{7 are weak limits of elements in &7

n this paper 2% denotes the sheaf of Kéhler differential p-forms modulo torion.
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Remark 1.1. Notice that when X is reduced we have the inclusion Qf( C wg( with
equality if X is smooth. In the non-reduced case there is no such relation at all since
the elements in Wy, although holomorphic, are dual objects whereas elements in 25§

have no natural interpretation as dual objects. However, if ¢ is in 2§ and p in wgé,
then ¢ A p is in ng’".

Here is our first main theorem.

Theorem A. Let X be a non-reduced analytic space of pure dimension n. For each
p > 0 there are fine? subsheaves AV of VR that coincide with X7 generically on
X, such that (1.4) is a resolution of 2%.

As an immediate corollary we get the representation (1.5) of sheaf cohomology.

For our second main theorem we must introduce an intrinsic notion of integration
over X. If we have a current u on X of bidegree (n,n) with compact support, then
there is a well-defined integral

/ "
X

Given a local embedding as before and assuming that « has support in D N X it is
defined as the integral of i,u over D.

Theorem B. Let X be a non-reduced analytic space of pure dimension n. Moreover
assume that X is compact. There are fine subsheaves BP1 of W such that

(i) (1.6) is a complez,
ii) (1.6) is exact if and only if 2% is Cohen—Macaulay,
X
(iii) the products ¢ A p for ¢ in /%" and p in By 7" are well-defined in Wy,

(iv) the pairing (1.7) is well-defined and non-degenerate so that H"~9(%"P*(X), )
is the dual of HPI(X).

There are variants of Theorem B even when X is not compact, see Section 7.

The construction of the new sheaves on X relies on the ideas in the previous papers
[7, 24, 6]. The proofs of Theorems A and B relies on explicit Koppelman formulas for
the d-equation. The main novelty in this paper is the adaption of the ideas in [6] to
the framework in [24]. We also believe that the non-reduced point of view sheds new
light on Serre duality, even in the reduced case, cf. Remark 1.1. Finally, we think
that the notions and result of this paper may serve as a basis for doing analysis on
non-reduced spaces.

The paper is organized as follows. The main objects are introduced in Sections 3
and 4 and their basic properties are proved. In the rather technical Section 5 the
integral operators used in the Koppelman formulas are defined and their basic map-
ping properties are shown. The sheaves Jzi)';’* and By " "* are introduced in Section 6
and Theorem A as well as Koppelman formulas are proved. In Section 7 we show
Theorem B and in Section 8 some further examples are given.

2As in the reduced case, a sheaf is “fine” if it is closed under multiplication by smooth forms.
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2. PRELIMINARIES

Throughout this paper, unless otherwise said, J is a coherent pure n-dimensional
ideal sheaf in a domain D C CV, Z is the zero set of 7, i: X < D is the (possibly)
non-reduced analytic subspace with structure sheaf &p/ 7, and Kk = N — n.

Let ¢: Z — D be the inclusion. The sheaf of smooth (p, ¢)-forms on Z is &5 :=
&R/ Her ¥, Tt is well-known that this is an intrinsic notion, i.e., does not depend
on the embedding Z — D. The space of (n — p,n — g)-currents on Z is defined
as the dual of é”Zp’q. More concretely, (p, g)-currents on Z can, via (s, be identified
with (k + p, k + ¢)-currents g in D such that Jzp = dJzpu = Jzpu = dJzp = 0. If
w: Z' — Z is proper, p a current on Z’, and v is smooth on Z, then

(2.1) 7o (T A ) = 6 A T

In [9], see also [7], was introduced the sheaf PMz of pseudomeromorphic currents.
A current 7 in U € CV is an elementary pseudomeromorphic current if 7 = ¢ A 7/,
where ¢ is smooth with compact support in U and 7' is the tensor product of one-
variable currents 1/z," and 9(1/z)*). If Z is smooth, then, [10, Theorem 2.15], a
current on Z is pseudomeromorphic if and only if it is a locally finite sum of currents
of the form f,7, where f: U — Z is holomorphic, U c CV, and 7 is elementary.
If Z has singularities the definition is slightly more involved. Pseudomeromorphic
currents are closed under d and direct images of modifications, simple projections,
and open inclusions.

Example 2.1. Recall that a current on Z is semi-meromorphic if it is of the form ¢/,
where s is a generically non-vanishing section of some line bundle L and ¢ is a smooth
form with values in L. If | | is any Hermitian metric on L, then x(|s|?/€)p/s — ¢/s
as currents, where y is a smooth approximation of the characteristic function of
[1,00) C R. Semi-meromorphic currents, and d of such, are sections of PM.

We refer to [10] for properties of pseudomeromorphic currents. If V = {h = 0} for
some holomorphic tuple k in D and u € PM(D), then

(2.2) Ip\vp = lim xX([h*/e)p.
The limit (2.2) exists, is in PMp, and is independent of such h and x. Set
lyp:=p—1p\vp.

If 7: D — D is a modification or a simple projection and 7 € PM(B) has compact
support in the fiber direction, then

(2.3) Ly = mu (L1 7).
If 4 € PMp has support in Z then
(2.4) Tzp=dJTz A =0.

Dimension principle. If u € PMy has bidegree (x,q) and support in a subvariety
V' C Z such that codimzV > q, then u = 0.

A current p € PMp with support in Z has the standard extension property (SEP)
with respect to Z if 1yp = 0 for all germs of analytic sets V' in D intersecting Z
properly. The subsheaf of PMp of (IV,*)-currents with support in Z and the SEP
with respect to Z is denoted Wg’*. The subsheaf of PMyz of pseudomeromorphic
currents on Z with the SEP with respect to Z is denoted Wj.
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Remark 2.2. We will frequently consider #22-sheaves, for instance like #2272 ¢, (125, Wg*)
For future reference we notice that such sheaves in a natural way can be identified
with sheaves of currents of bidegree (N — p, *). For instance,
Z,(N—p,x) ~ Z %
WS 2y Hoorn (2 WE), 1 (0 9 A ),

where we temporarily let Wg(N—p *) denote the sheaf of pseudomeromorphic (N —
p, *)-currents in D with support on Z and the SEP with respect to Z. It is clear
that if @ Ap = 0 for all ¢ € 27 then p = 0. Hence, the mapping is injective.
To see that it is surjective, let {dz;} be a basis of 227, and let {8/dz} be the dual
basis. If u € Hormep, (28, WE*) then u(dzr) € W2™ and so, by [10, Theorem 3.7],
there are u; € Wg"(o’*) such that u(dzy) = dz A uy, where dz = dz; A -+ A dzy.
Define u; € Wg’<N7p’*) by u;r = +(8/0z1.dz) A uy, where £ is chosen so that
dzrApr = dzAuy. Setting o1 = Y, pr it is straightforward to check that o Ap = u(yp)
for all p € 27 since {dzr} is a basis of 25

In this paper we will use the #z»2-notation but, keeping the identification in
mind, we will for a #zs7z-element p write ¢ A p (or possibly u A ¢) instead of p(p).

Suppose there are local coordinates (z,w) centered at some z € Z such that
Z = {w = 0}, i.e., Z is smooth in a neighborhood of z. Then, if p € Wg’*, we have
m (W) € Wy*, where m(z,w) = z and w* = wi'wy?---. Moreover, there is a
unique representation

1 o 5 dw
(2.5) Mzizﬂ*(w M)/\QW7

(273)" -
where the products are tensor products and d(dw /w**1) is shorthand for d(dw; /wS* A
A(dwsz/ws> ™) A -+, By [11, Proposition 3.12, Theorem 3.14] we have

Proposition 2.3. If u,u,..., e € Wy~ and u =0 on the set where p; is smooth,
then u = 0.

The sheaf %”ijZ of Coleff-Herrera currents with support on Z was introduced by
Bjork, see [14]. An (N, k)-current u in D is in 6% if Ou = 0, hy = 0 for any
h € Jz, and u has the SEP with respect to Z. Alternatively, by [2], we have

(2.6) CHF = {ne WE"; O = 0}.
Notice that Mz e, (25, 67#7) can be identified with Coleff-Herrera currents of
bidegree (N — p, k) in view of Remark 2.2. Assume that there are local coordinates
(z,w) such that Z = {w = 0} and set 7(z,w) = z. Given u € Horre g, (25, CH7F)
there are unique piq € 25 7, po = 0 if |a| > 0, such that

(27) N OLY

dw
a+1"

w
The sheaf WY ” was introduced by Barlet in [13] as the kernel of a certain map
G2y = C%”lemg(é"z['gl)(ﬁ’z,ﬂgfp)), where j: Zy.g — Z is the inclusion. It

follows from [13] that sections of W’ are d-closed meromorphic (n — p)-forms on
Z, cf. [24, Section 4] and [17]. By [13, Lemma 4] we have

(2.8) LWy P = {1 € Hom g, (20, CHEL); Tan = dTz A p =0},
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where ¢: Z — D is the inclusion, cf. [24, Section 4].

A current a on Z is almost semi-meromorphic if there are a modification 7: Z’ — Z
and a semi-meromorphic current v on Z’ such that a = mv. In particular, a is
generically smooth. Thus, if u € PMy, then a A p is generically well-defined. By
[10, Theorem 4.8], there is a unique ' € P Mz such that T' = a Ay where a is smooth
and 1yT = 0, where V is the Zariski closure of the singular support of a. Henceforth
we let a A p denote the extension 7. One can define a A p as

(2.9) a A p=lim x(|h/€)a A p,
e—0
where h is a holomorphic tuple cutting out V. If p € Wy, then a A u € Wy.
Let E; =+ D, j = 0,...,N, be complex vector bundles. Let f;: £; — E;_1 be
holomorphic morphisms and suppose that we have a complex

0 Ey 2% ... Iy gy o,

which is exact outside Z C D. Assume that the associated sheaf complex

(2.10) 0— O(Ey) 25 25 o(By)

is exact and set & := O(Ey)/ S22 f1 so that (2.10) is a resolution of .#. Recall that
F is Cohen-Macaulay if and only if there is a resolution (2.10) with N = k. Let
Z ]97 C D be the set where f; does not have optimal rank. These sets are independent

of the resolution and thus invariants of .%. These singularity subvarieties reflect the
complexity of #. It is well-known that

(2.11) Zic...czZ=27,=...=2F =2

and that codimDZf >j,j=kK,k+1,.... Moreover, [16, Corollary 20.14], .# has
pure codimension k (i.e., no stalk of # has embedded primes or associated primes
of codimension > k) if and only if codimDij >j+1forj>r+1.

Assume that the E; are equipped with Hermitian metrics and let o;: Ej_; — Ej
be the Moore-Penrose inverse of f;, i.e., the pointwise minimal inverse of f;. The
o0; are smooth outside Z and are almost semi-meromorphic in D. Following [8], we
define currents U € Wp and R € PMp with support in Z and values in End E,
where E = ®;E;. Set 0 =01+ 02+-- and set u =0+ 000 + ¢(do)? + - - - outside
Z. Then fu+uf — 0f = Ig, where f = @, f;. We extend u across Z as

U := lim x(|F|*/é)u,
e—0
where F' is a (non-trivial) holomorphic tuple vanishing on Z. Alternatively, U can

be defined in terms of the calculus of almost semi-meromorphic currents mentioned
above. Since fu+uf —9of = Ig,

(2.12) Ri=1Ip—(fU+Uf - 0f) = limox(|F|*/e) Au
has support in Z. It is proved in [8] that

R=Ri+Rey1+---,
where R; € PM%’j has support in Z, takes values in Hom(FEjy, Ej), and
(2.13) fR=0R.

Moreover, if ¢ € O(Ep) then Rp = 0 if and only if ¢ € S22 fi. In particular,
R induces an injective map from . to (0,*)-currents with values in E. We are
interested in the case when % has pure codimension k. It follows from [9] that,
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in this case, R has the SEP with respect to Z, i.e., R € %ﬂng(Qg,Wg’* (ct.
Remark 2.2), and that

(2.14) Ryp=0 <= @€ Im fi.
3. HOLOMORPHIC FORMS, SMOOTH FORMS, AND CURRENTS ON X

3.1. Holomorphic forms on X and associated residue currents. Recall that
the structure sheaf of holomorphic functions on X is defined as Ox = Op/J. In a
similar way one defines the sheaves of K#hler differentials on X: Let 27, be the sheaf
of holomorphic p-forms in D and set

TP =T -+ dT N, B anien = 25/ T7.

Notice that J° = J so that Q%Kahlcr = Ox. Notice also that Q;Kahler is an Ox-
module. It is well-known that Q?(,K'ahler is intrinsic to X, i.e., that it does not depend
on the embedding as a subspace of D. Since J° = J has pure dimension it follows
that Q?(,Kéhler = Ox is torsion-free. In general, Q?(,Kahler has torsion.

The sheaf of strongly holomorphic p-forms on X is

P . (P :
2% 1= 0% gane/torsion,

where torsion means O'x-torsion. Notice that Qf( is intrinsic and that it is the same
considered as an 0x-module or an &p-module.

Example 3.1. Let X be the subspace of C? defined by J = (zw). Then Ox = &, +
Oy and dJ = (zdw+wdz). For the 1-forms we have “Q)l(,Kéihler = Ox{dz,dw}/(zdw+
wdz). When w # 0 then J = (z) and therefore zdw = wdz = 0. By symmetry this
also holds when z # 0. However, one easily checks that zdw and wdz are not zero as
Kéhler differentials and therefore they are torsion elements. If we mod these out the
result is a torsion-free module which therefore is the strongly holomorphic 1-forms,

ie., 2% = 0,{dz} + Op{dw}.

An alternative definition of Qf( is as follows. From a primary decomposition of
j” one obtains coherent sheaves J? and .#? such that j” =JPN.SP, JP has pure
dimension n, and .#? has dimension < n. Hence, 21,/ 7? has pure dimension and
coincides with Q)p(,Kahler generically on Z. It follows that

o5 =08/ J7.
If X is reduced and j: X,¢g < D is the inclusion, then J? = {¢ € 027; j*¢ = 0},
see, e.g., [24].

Suppose that 0 is a smooth point of Z and choose local coordinates (z,w) for
CY such that Z = {w = 0}. Then we can identify & with holomorphic functions
of z. If g(z) is holomorphic we let § be the extension to ambient space given by
g(z,w) = g(z). In a neighborhood of 0 we can then define an &z-module structure
on 2% by setting go := gy. Clearly this depends on the choice of local coordinates.

Proposition 3.2. Assume that we have coordinates (z,w) so that Z = {w = 0}.
Then, with the associated Oz-module structure, Qf( is coherent. Moreover, if Ox is
Cohen—Macaulay, then the following are equivalent
(i) 2% is Cohen-Macaulay as an Ox-module,
(ii) 2% is a locally free Ox-module,
(iii) 2% is Cohen—Macaulay as an Oz-module,
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(iv) 2% is a locally free z-module.

Proof. By the Nullstellensatz there is an M € N such that Z := (w®; |a| = M) C J.
Set ZP := TRV +dZ A Q%" and let

AP = O /TP,

Clearly AP is coherent both as an &p-module and an & /Z-module, and these struc-
tures are the same. Moreover, the choice of coordinates makes AP an &z-module
and one checks that it in fact is a free 0z-module. In particular, AP is a coherent
Oz-module. Since Z C J it follows that ZP C jp C JP and so we have a natural
surjective map of &z-modules

AP = 0%, o+ IV o+ TP

The kernel ¢ of this map is J?/ZP. Since J? is a coherent ¢p-module there are
finitely many ¢; € J? generating J” over Op. By Taylor expanding any g(z,w) €
Op in the w-variables to order M we see that ¢ is generated as an &z-module by
w%pj + IP with |a| < M. Since £ C AP and AP is a coherent &z-module it follows
that ¢ is coherent. Hence, 2§ ~ AP/.¢ is a coherent &z-module.

Claim 1: depthg, 2% = depth,, 2%.

Claim 2: n = dimg, Qf( = dimg, .Qf(.

Recall that, for an R-module M, dimpM := dimg(R/anngM) and that M is
Cohen-Macaulay if depthpM = dimpM.

We postpone the proofs of these claims and show that (i), (ii), (iii), and (iv) are
equivalent if Ox is Cohen-Macaulay. Notice that it is a local (stalk-wise) statement;
in what follows we suppress the point indicating stalk. Recall that if R is a Cohen—
Macaulay ring and M is an R-module that has a finite free resolution over R, then
the Auslander-Buchsbaum formula gives

depthp M + pdpM = dimgR,

where pdp M is the length of a minimal free resolution of M over R, see [16, Theo-
rem 19.9]. Thus, M is free over R if and only if depthp M = dimgR.

We now have that 2% is free over O if and only if depth,, 2% = dimg, Ox. But
dimg, Ox = n = dimg, 2%, where we use the first equality of Claim 1, so (i) and (ii)
are equivalent. In the same way, since 0z is Cohen—Macaulay and n-dimensional,
(iii) and (iv) are equivalent. Assume (i) so that depthg, 25 = dimg, £25. Then by
Claims 1 and 2 we get

depthg, .Qf( = depthy, _Qf( = dimg, Qf( = dimg, Qf(,

and so (iil) follows. In the same way, (iii) implies (i). It remains to prove Claims 1
and 2.

Proof of Claim 1: For notational convenience, set R = Ox, R' = Oz, and M =
2% notice that R is a Noetherian local Cohen-Macaulay ring and that R’ is a
regular Notherian local ring. Since any function in J vanishes on Z we have an
inclusion R’ < R given by ¢(z) — g(z,w) + J, where §(z,w) = g(z); cf. the 0z-
module structure on 2%. By “Miracle flatness”, see, e.g., [16, Corollary 18.17] or [6,
Proposition 3.1], R is a free R’ module if and only if R is Cohen-Macaulay. Thus, R
is a free R’ module. By [16, Proposition 18.4] and the comment after Corollary 18.5,
for a local ring (A, m) and an A-module N we have

depth, N = min{s; Ext’y(A/m, N) # 0}.
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Notice that R/m = C = R'/m. Claim 1 thus follows if we show that Exth(C, M) =
Ext’ (C, M). To do this, let

(3.1) 0—- M- N’ Nt ...

be aresolution of M as an R-module by injective R-modules N°*. Then Extj’Q((C7 M) =
H'(Hompg(C, N*)).

The complex (3.1) is straightforwardly checked to be exact also considered as a
complex of R'-modules. Moreover, by [19, p. 62, since R is a free R'-module, the N*
are injective R’-modules. Hence, Ext}, (C, M) = H'(Hompg (C, N*)). However,

Homp(C, N*) = Homc(C, N*) = Hompg (C, N*)
and so Ext(C, M) = Ext, (C, M).
Proof of Claim 2: We know from above that
dimg, 2% = dimg_ 25 = dimg_y .Q;Kihler =n.
On the other hand, anng, 2%, = {0} because if g(z) 2}, € J? then g(z)|z = 0. Hence,
dimg, 2% = dimg, (07/{0}) = n.
O

Corollary 3.3. Assume that there are coordinates (z,w) such that Z = {w = 0}, that
Ox 1is Cohen-Macaulay, and that 0% is Cohen-Macaulay either as an Ox-module
or as an Oz-module. Then, locally there is an M € N such that 2% is generated by

(3.2) {w2d2 naw? + 77 ol < M, |8 + 1| = p}
over Oz and a minimal set of generators is an Oz-basis.
See Example 8.1 below for a simple illustration of this Corollary.

Proof. Recall the module AP from the proof of Proposition 3.2 and let ¢(z,w) € 25,
Taylor expanding the coefficients of ¢ with respect to w to order M shows that AP is
generated as an &z-module by (3.2) with J? replaced by ZP. Thus, 2% is generated
by (3.2) over 0z. By a standard argument using Nakayama’s lemma, a minimal
generating set is a basis, cf., e.g., the proof of [21, Theorem 2.5]. O

Definition 3.4. We let X,..¢; be the subset of Z.¢; where Ox is Cohen-Macaulay
and 2% Kihler 18 Cohen—Macaulay.

Remark 3.5. The property of being Cohen-Macaulay is generic on Z s0 X reg is
a dense open subset of Z,.,. Notice also that Qf( Kahler 18 torsion-free where it is
Cohen—Macaulay. Hence,
Qfﬂ}(ahler =0% on Xpreg.

In view of Proposition 3.2, thus 2§ and 0% ;... are locally free &x-modules and
have locally a structure as a free &z-module on X, reg.

Assume that (2.10) is a resolution of 2% and that Ey = T ,D. If D is pseudo-
convex, such resolutions exist since £2% is coherent, possibly after replacing D by
a slightly smaller set. Notice that &(Fy) = 28 and that . fi = JP. Let, for

some choice of Hermitian metrics on E;, R = R, + Ry.41+ - be the associated cur-
rent. Recall from Section 2 that, since 2§ has pure codimension, R is an injective
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homomorphism from 2%, to E-valued pseudomeromorphic (0, ¥)-currents in D with
support in Z and the SEP with respect to Z. Letting d¢ = d{; A --- A d{n we define
(3.3) R = R®d( € Hom g, (2, EQWE™).

Notice that in view of Remark 2.2, R can be identified with an (N — p, *)-current,
cf. [24, Section 3]. We set Ry = Ry ® dC.
By construction, in view of (2.13), we have the following lemma.

Lemma 3.6. The current R = R+ Rut1+- - has bidegree (N —p, x), takes values
in E, has the SEP with respect to Z, depends only on d¢ (and R), and

fR =0R.
Ifpe 20 then RAp=RApAd.
3.2. Smooth forms on X. To begin with, in view of Remark 2.2 we notice that if
T C 27 is a submodule such that J - 28, C Z, then we have the isomorphism
(B4) U € Koo (D CHE ) TN =0} =5 Hoomn o ()T, 6HF),

p (o o Ap).
We remark that if #2224, is replaced by Hzs2¢,, the assumption J - 27, C T is
superfluous.
Since JP = J? generically on Z and any u € Home g, (20, €72) has the SEP
with respect to Z, in view of (3.4) and Remark 2.2 we have

(3.5) Hom oy (R, CHE) = Hom oy (9 ksnier CHD)
{1 € Horr o, (00, CHL); Tu=dT Ap=0}.

Definition 3.7. We let
Heryi® ={p € EN™s o A =0, € Horr oy (0%, 675 )},
cf. Remark 2.2, and we define the sheaf of smooth (p, x)-forms on X by
ERT = EV | Hevy i

Notice that if ¢ € ez, i* then Jp € Hezpi* and so 0 is well-defined on &7
We write ¢* for the natural map &5° — &%". Notice that if X is reduced, then, in
view of (2.8) and (3.5), a smooth (p, *)-form ¢ is in ez, i* if and only if i*¢ = 0.
As in [6, Section 4] one shows that & )’;’* is intrinsic, i.e., does not dependent on the
embedding i: X — D.

Proposition 3.8. If ¢ € &5" and ¢’ € 6’5”* then i*(o A ') only depends on i*p

and i*¢'. Setting i*p A i*¢’ == i*(p A ), E" becomes a (bigraded) algebra. In
; I 0,

particular, £ is an &y -module.

Proof. Assume that ¢ € Jzzpi*. We must show that o A ¢’ € Heepi,y i*. Suppose
that p € j%mgx(ﬂfgrp/,%jf[)z). Then ¢ A p is (a sum of terms) of the form
&N v, where £ € é"g’* and v € Hwme g, (125, €7, Since, by definition of #ee,, i*,
@ Av =0 it follows that ¢ A ¢’ A p =0, and hence p A ¢’ € Herpyy i*. O
Proposition 3.9. Let R = Rx+Ry+1+- -+ be the residue current associated with Qg’(
defined in Section 3.1 and let ¢ € E5™. Then p € Hezyi* if and only if R A = 0.
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Proof. Recall the complex (2.10) that we used to define R and therefore also R.
Consider the dual complex:

e £ I ) o,

where fI is the transpose of f;. If £ € O(Ey) and f;, & = 0, then, in view of
Lemma 3.6,
(3~6) 5(5 : Rm) = f : gRH = € : fn+1Rn = f:+1£ : Rm =0.
Hence, &R, is a 0-closed (scalar valued) pseudomeromorphic (N —p, k)-current with
support on Z. Moreover, since JPAR = 0, it follows that &R, € Horre g, (025, ‘K}WDZ)
If € = fr¢, since Ry—1 = 0, a computation similar to (3.6) shows that & - R,, = 0.
Hence, we have a map
By [4, Theorem 1.5], this map is an isomorphism. If R, A ¢ = 0 thus ¢ € ez i*.
Conversely, assume that ¢ € ez, i*. If 02 is Cohen-Macaulay and (2.10) is
a resolution of minimal length, i.e., if £; = 0 for j > &, then OR, = 0 and so
Ry € Hpsre gy (25, 6547). In this case, thus, R Ap = 0. In general, 2% is Cohen—
Macaulay generically on Z and the minimal resolution is a direct summand in any
resolution. It follows, cf. the proof of [4, Theorem 1.2], that R, A ¢ = 0 generically
on Z. By the SEP it then holds everywhere. O

Corollary 3.10. There is a natural injective map 25 — éa)’;’o.

Proof. Since JP C Hezyi*, the inclusion 27, C fg’o induces a map 24§ — 5)7;’0. By
Proposition 3.9, if ¢ € Jezy, i*, then Ry; A o = 0 and so Hezpi* N 027, = J? in view
of (2.14). It follows that 2% — &%° is injective. O

The following result is not necessary for this paper but is included here for future
reference. We believe that it interesting in its own right since it shows that the
de Rham operator d = 9 4 0 is well-defined on &.

Proposition 3.11. We have 9: £¢7 — éa)]frl’q.

Proof. We need to show that 0(#ezp,i*) C Hezpy1i*, ie., that if p € Hez,i* then
dp A =0 for all u € Homey (W5, CHE). Let p € Hompy (O, €HF);
cf. Remark 2.2 and (3.5). By [10, Theorem 3.7] we get du € jfﬂm/jD(.Qf),Wg‘n)
and we certainly have 99y = 0. We also have Jou = d(Jpu) £dJ A p = 0 and
dJ A Ou=0(dJ A p) = 0. Therefore Ou € Hom o, (2%, CH7).

Let p € Herpi* and p € %mﬁx(ﬁf(“,%”jfljz). We have dpAp = O(pAp)tpAdu
and by the above the second term vanishes. Since ¢ € JHeepi*, ¢ A fi = 0 for all
fi € Horngy (2%, 6#7) and therefore p A p Ao =0 for all o € 2}, But then we
must have ¢ A = 0 which shows that 0y € ez i*. O

3.3. Smooth forms on X, ;cg. Here we give a more concrete description of é"ﬁ"*
on Xpreg. Choose local coordinates (z,w) centered at a point in X e such that
Z = {w = 0}. Recall that the local coordinates induce an &'z-module structure on
2%, On X, e we get a sequence of mappings
(3.8)

(O2)" 5 8% 5 Home gy (Homeoo (%, CHE ), CHE) — (€A5)™ — (25)™M
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defined as follows. On X, ,¢g, 25 is a free &z-module and the first mapping is the
isomorphism given by an &z-basis {b;} C 2% of 2%.

The second mapping is defined on all of X and is the natural mapping into a double
dual, ¢ — (1 — @ Ap), cf. Remark 2.2. It is injective since if ¢ € 2, and ¢ A =0
for all i € oy (2%, 627%), then p € JP; cf. the proof of Corollary 3.10. It
follows from a fundamental theorem of J.-E. Roos that the second mapping in fact
is an isomorphism if and only if £2% is Ss, cf. [6, Theorem 7.3] and the discussion
following it. On X.req, 2% is Cohen—Macaulay, in particular S,, and thus the second
mapping is an isomorphism on X reg.

The third mapping depends on a choice of generators p;, j = 1, ..., m, of #ome g, (2%, ‘&%”DZ ).
An element h of the double-7#27. then is mapped to the tuple (A A pg, ..., A A ).

For the fourth mapping we choose M > 0 such that w®u; = 0 for j = 1,...,m
and w® € J if o] > M. Then a tuple (v;); € (¢42)™ is mapped to the tuple
(7 (w*V§));,|a|<ar> Where 7 is the projection 7(z,w) = z. Since w®v; are O-closed of
bidegree (N, k) in D, 7, (w®v;) are O-closed of bidegree (n,0) on Z, i.e., holomorphic
n-forms on Z. N

We will see, Lemma 3.12, that the composition (3.8), denoted T' from now on, is
injective and €@z-linear and thus given by a matrix, also denoted T, with 27-entries.

To analyze &%" on X, e We consider a variant of (3.8). First, as we did for £5,

cf. the paragraph before Proposition 3.2, we define a &*-module structure on &%*
by

YAp =T YA, PEEY, pE Y
Corresponding to the mapping 2§ — (4¢Z)™ of (3.8) we have the mapping
(3.9) EXT = WE™ e (P ApL - 9 A i)
Notice that, by Definition 3.7, if ¢ € &% and ¢ A p; = 0 for all j, then ¢ = 0. Thus,
(3.9) is injective. Corresponding to the mapping (65£2)™ — (022)™M of (3.8) we
have

(3.10) W™ = W)™ (135 (me(w®3)) ; cnr

where M is the number of monomials w® with |a| < M. In view of [11, Proposi-
tion 4.1 and (4.3)] and [10, Theorem 3.5], (3.10) is injective. Composing (3.9) and
(3.10) we get the injective map

(3.11) T: 68" = W)™, To= (e A1) crrjmr,.m

The restriction of T' to £2% is (after the identification 2% ~ (07)") the mapping T.
For reference we notice that

(3.12) T: (O7) — (Q})mM, (hk)kzl,“.,u = (W*(Z hiby A waﬂj))‘aKM’j:me
k
on Xpreg-

Lemma 3.12. The injective mappings T and T are (o@ZO’*—linear and Oz-linear, re-
) e .
spectively. Any ¢ € & can be written

(3.13) o= QpNbi+ Heryi®, g € EYF,
k=1
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on Xp_reg and T' is given by matriz multiplication by JN“, ie, Typ= f(apl, s o)t
Proof. Let ¢ € &, By definition of T and (2.1),
TWAp) = T(r*YAp)= (m(m* Ap A wu/lj))|a\<lw,j:1,..‘,m
= YA (mleA waﬂj))\a\<1w,j:1,.4.,m'
Hence, T is é"g’*-linear. The same computation shows that T is Oz-linear and there-

fore given by a matrix with elements in £2%. Explicitly, since any ¢ € 25 can be
written ¢ = >, prbr + J? for (unique) ¢, € Oy,

Ty A pn) .. (Wb, A pr)
(3.14) T = : - :
T (WY A ) oo T (WD, A )

Let ¢ € &¥" and let ¢ € &7 be any representative. We can write @ = >, @i A @Y,
where @ € & B’* and @/ € £27,. Moreover, we write @ = ¢; +1;, where every term of
¢; contains a factor dw; for some j and no term of v; contains such a factor. Taylor
expanding (the coefficients of) 1; with respect to w and @ to the order M we get

0%, w® s _
vilzw) = Y (2,07 + > wia +O(w),

ow™ !
la|<M la|l=M

where t; o, € é"g’* and O(w) is a sum of terms divisible by some @;. In view of (3.5)
and (2.4), ¢i, w*Y; o, and O(w) are in Heepi*. Hence,

. 9YY; w® -
(3.15) p= Z aw;(z,O)J/\g&;'Jr%%pz .
iJal<M
Since w*@} € 2% there are @o; € Oz such that w*@! = 3", Gaik(2)bi + JP, and
o0 (3.13) follows from (3.15). By é"g‘*—linearity7
T(ox Nbi) = o AT o by = erT(0, ... 1y, ..., 0)
and the last statement of the lemma follows. O

Notice that by this lemma, T is a map &% — (éag*)mﬁ on Xp-reg-

Proposition 3.13. On X, oy, &% is a free éaZO’*—module, the representation (3.13)
of an element ¢ € EY is unique, and

EY =B (TEN +dT NERV + Tz +dTz AEET),
where Jz =/ J.

Proof. Notice first that since T is injective and 2% is a free 6z-module on X, yeg it
follows that, generically on X.reg, Tisa pointwise injective matrix (times dz; A« -+ A
dz,). Consider a representation (3.13) and assume that ), ¢ Aby € Hezpi*. Then
f(cpl, ..., py)t = 0. Since T is generically pointwise injective on Xpreg it follows that
0;j=0,j=1,...,v, on X,cs. Hence, the representation (3.13) is unique and é”)p(’*
is a free &y *-module.

It remains to see that

(3.16) Heryi® = JEV +dT NELV 4 TzE0" +d Tz N EL
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on Xpreg. Assume that ¢ is an element of the right-hand side and let y € s g (025, C572).
In view of (2.4), the terms of ¢ contained in Jz&5" + dJz A &5 annihilate p so we
may assume that ¢ € jéa[p)’* +dJ A 5571’* =JPA éag’*. Write ¢ as (a sum of terms)
¢ A", where ¢ € JP and ¢" € £*. Since JP D JP we have ¢’ A pu = 0. Thus
@A p=0andso g€ Heopi*
Assume that ¢ € ez, i* and write ¢ as (a sum of terms) ¢’ A ¢”, where ¢’ € 28

and " € & g’*. As in the proof of Lemma 3.12, by Taylor expanding (the coefficients
of) ¢” with respect to w to order M, we have

(3.17) w(z,w) = ¢' A Z (z 0) f—l-ga A Z w*@, + O(w, dw),
|a\<]\/[ lal=M

where ¢/, € & g‘* and O(w, dw) is a sum of smooth terms containing either some w;

or dw;. The second and the last term in the right-hand side of (3.17) belong to the

right-hand side of (3.16). As in the proof of Lemma 3.12 again, this time by writing
RS Q% modulo J? as a € z-combination of the by, on X reg,

(3.18) dn 32 o A mekmpwg*,

|| <M

where ¢, € é"ZO’*. Since J? = JP on Xp,eq the last term on the right-hand side
is contained in the right-hand side of (3.16). The sum S in the right-hand side of
(3.18) is in Jeepi* since, by the proof so far, ¢ and ¢ — S are in #zzpi*. Thus,
in view of Lemma 3.12, f(qﬁl, .., ¢)t =T8S = 0. Since T is generically pointwise
injective on X reg, ¢j = 0 on X ree. Hence, the left-hand side of (3.18) belongs to
the right-hand side of (3.16). Thus, all terms in the right-hand side of (3.17) do too,
and so (3.16) follows. O

3.4. Currents and structure forms on X. The (n—p,n—q)-currents on X is the
dual of the space of compactly supported sections of £¥?, cf. [18, Section 4.2]. The
topology on &% = B/ Hev,i* is the quotient topology. Notice that Fee,i* is a
closed subspace of &5 since it is defined as the annihilator of currents. It follows
that the (n—p, n—q)-currents on X can be identified with the (N —p, N —q)-currents
p in D such that p.p = 0 for all ¢ € Jeep,i* with compact support. This holds if
and only if p A u = 0 for all ¢ € Hez,i* since Heepi* is both a right and left
é"g’*—submodule of &5%. If 7 is an (n — p,n — g)-current on X we write i, for the
corresponding (N — p, N — ¢)-current in D. Notice that if ¢ € éag’*, then ¢ Ad,7 only
depends on ¢*¢ and we write

PAWT =" A T).

Since dis well-defined on éa)’;’*_, 0 is defined on (n — p, *)-currents 7 on X by 0r.p =
+7.0p and we have 9,7 = 1,07
If 7 is an (n,n)-current on X with compact support we define

(3.19) / T :=T1.4"L
X

Notice that i*1 is a well-defined element in é’g’o independent of the local embedding
i: X — D. Hence, (3.19) makes sense on any pure-dimensional X, not just embedded
ones.
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Let 1 € Home g, (125, Wg’*), cf. Remark 2.2, and assume that JP A u = 0. Then
JP A p =0 and so, in view of (2.4) and (3.13), if ¢ € Heepi* we have ¢ A p =0 on
Xpreg- Thus, by the SEP, ¢ A p = 0. Hence, p corresponds to an (n — p, %)-current
on X.

Definition 3.14. The subsheaf WY 7" of the sheaf of currents on X is defined by
(3.20) WV P = {1 € Hom ) (R0, WE); Ti=dJ A p=0}.

Notice that, since jp = JP on X} e and currents in Wg have the SEP with
respect to Z, we have, cf. (3.5),
VYT = {1 € Hommn g, (28, WE); TP A = 0}.
Recall that the current R associated with 2% has the SEP with respect to Z and

JP? AR = 0. By (3.3), R has the same properties. Therefore, there is w € Wy "
such that

(3.21) R = iww.
We say that w is an (n — p)-structure form on X.
Definition 3.15. We let W ? = {7 ¢ Wi ?°; ar = 0}.
By Definition 3.14, in view of Remark 2.2, (2.6), and (3.5), we have

(3.22) W' P = Horn gy (0%, CHF),

cf. (2.8).

Proposition 3.16. There is a tuple wy = (wo1, .. .,wor), where wy; € WY ¥, and a
tuple ag = (ap1,...,a0) of Ex-valued almost semi-meromorphic (0,0)-currents ag;

) . ) 2%
in D such that ao is smooth outside Z% , := Z, 7, and

(3.23) Ry = ag - ixwg.

Moreover, forj =1,2,...,n, there are Hom(E;_1, E;)-valued almost semi-meromorphic
(0, §)-currents a; in D, smooth outside Zgﬂ- = Z,?j%j, such that

(3.24) Ritj = ajRitj-1,

where the product is defined as in (2.9).

Proof. Since Hee [, | C O(E}) is coherent, in particular finitly generated, there is
a trivial vector bundle F — D and a morphism g: O(E;) — O(F) such that the
image of the transpose g*: O(F*) — O(E}) equals e f ;. Notice that gfcy1 =0
since fX 19" = 0. As in the proofs of [7, Proposition 3.3] and [25, Proposition 3.2],
the pointwise minimal (with respect to some choice of metric) inverse, ag, of g is
smooth outside Zfs 1, has an almost semi-meromorphic extension across Zﬁ 11, and
Ry, = apgR,;. Hence,
(3.25) Ry = Ry ®d¢ = apgRy.
In view of Lemma 3.6 we have

5972& =gfkr1Re =0,

gR is an F-valued section of 7#2s7 ¢,, (125), Wg’*), and JP A gR.. = 0. Thus, after
a choice of frame of F, we can identify gR, with a tuple wy of sections of WY 7,
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i.e., gRx = i«wp. By the choice of frame of F, ag is a tuple of E,-valued almost
semi-meromorphic currents. Hence, (3.23) follows from (3.25).

By [8, Theorem 4.4], in D\ Z7; there are smooth (0, j)-forms a; such that
Ritj = ajRuqj—1. As in the proof of [7, Proposition 3.3] the a; have almost semi-
meromorphic extensions (also denoted a;) across Z7 4j and Reyj = ajReq 51 holds
in D; here a;jR,1j_1 is defined as in (2.9), and we remark that for this last identity
to hold in D it is necessary that 2§ has pure dimension. Thus, (3.24) follows. O

4. THE SHEAF Vi™.

The sheaf Vg(’* is an intrinsic sheaf on X that extends & )’;’*. In terms of our local
embedding i: X — D the idea is as follows. Recall that Z = X,eq and that 2%
locally on X, reg C Zreg is a free Oz-module, where the module structure depends
on a choice of local coordinates. As in Section 3.3 we let {b;}}_, be a local &z-basis
of 2%. By Lemma 3.12, each ¢ € &¢" has a representative Y, ¢x A by on Xp.reg,
where ¢ € éaZO’*. One can define V" on X, g as such sums with ¢y, € W%* instead
of (%0(’* and require ¢y, to transform under changes of coordinates and base {by} as
in the case of &%". However, we choose a more invariant approach. To motivate it
we notice that each sum Y, @ A by with ¢, € W%* induces an Ox-linear mapping
Wyt — W;’;* as follows.

Let € W' P. Then by Adyp is in €% and depends only on the class of by in
.Qf(. Moreover, Jbg Ad«p = 0. If @ € Wg’* then, in view of (2.7), pr A bk A iwp is
well-defined in Wg’* since g A O(dw/w*1) exists as a tensor product. Moreover,
Tk A b Nk = 0 and so g A b A ixp defines an element in W;l(* Hence, @i A by
induces a mapping WY ¥ — W™

With this in mind we make the following definition.
Definition 4.1. V" := #ome o, (W5 P WEY).

Remark 4.2. The sheaf Vg(’* was introduced in [6, Section 7] but was denoted Wg(’*
there. In this paper Wg(* naturally has another meaning, see Definition 3.14; cf. also
Proposition 4.6 below.

If p € &5, then ¢ defines an element ¢’ in V§* by ¢/(p) = 7, where i, 7 = @ Adypu.
By Definition 3.7 and (3.22), ¢’ = 0 if and only if ¢ € J#ee,i*. Hence, we have a
well-defined injection

EVT = VR
In( C())nsistency with Remark 2.2, for ¢ € V&* and p € W'y ¥ we write ¢ A p instead
of ().

Definition 4.3. Let ¢,v € V", We say that dp = 1 if d(p A p) = 1 A p for all
pewy?.
Proposition 4.4. Let ¢ € Vi, On Xj_peq there are ¢, € W%* such that, for any
pewy?,

dw

(4.1) lup A= Z(pk Abg Nigpr = ZZ@;C AT (Wb A daps) A 5m
k=1 k=1 «
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Proof. Recall from (3.12) the matrix T. We can choose a holomorphic matrix A such
that

(4.2) (02)" > (@)™ 2 (2p)
is exact. Then also
(4.3) (W%*)V x, (W;’*)mM A, (Wg,*)M’
is exact. To see this, notice first that (4.2) is generically pointwise exact. Take
Hermitian metrics on the vector bundles underlying the free sheaves in (4 2) and let
B and S be the Moore-Penrose inverses of T and A, respectively. Then B and S are
almost semi-meromorphic, cf. the definition of ¢; in connection to (2.10). Moreover,
on the set where (4.2) is pointwise exact, SA + T'B is the identity on (£25)™M.
Thus, if 1 € (Wg’*)mM and Aﬂ = 0, we have p = TE,LL since W is closed under
multiplication by almost semi-meromorphic currents, cf. (2.9).

Let ¢ € Vg(’* and let p;, j = 1,...,m, be generators of W'y ?. For notational
convenience, we will identify ¢ A p1; and i, A p1; as well as p; and the corresponding
currents in ¢, . In view of (2.5),

1 = dw
(4.4) PN = e D mewp A pg) NO—r
[e%

We claim that the tuple (m,(w¥p A j1j))a,; € (W}’*)mﬁ is in the image of (Wg"*)”
under 7. Given the claim, there are ¢} € Wg’* such that, cf. (3.14),

me(W A p1y) = (2mi)"~ Z o A T (Wb A ).
K
By (4.4), (4.1) follows with p = p1j. Since p; generate W' 7, (4.1) follows.
It remains to prove the claim. By exactness of (4.3) we need to show that

(4.5) A(me (W A ptj))ag =0

In view of Proposition 2.3 it is enough to show (4.5) where 7. (w*@ A p15) are smooth
and (4.2) is pointwise exact. Fix such a point; for notational convenience, suppose it
is 0.

Let (2.10) be a minimal resolution of £2% in a neighborhood of 0. Since 2% is
Cohen-Macaulay on X, reg, £y = 0 for £ > x, and the corresponding currents R = R,
and R = R, are O-closed. Since the mapping (3.7) is an isomorphism it follows that
the components, pj, j = 1,...,m, of R (with respect to some frame of E;) generate

WY T Let (ﬁ(E’) fl) be the Koszul complex of the regular sequence z1, ..., z, in
D. Then (O(E,), f,) is a resolution of Op/(z), (E[’J) = Op, O(E)) = Op, and the
corresponding current is R’ = 9(1/2) := 0(1/z1) A+ -+ A O(1/zp).

Let (O(EY), f) be the tensor product of the complexes (0(F,), fo) and (O(E.), f.),
Le, By = ®ipj=rEi@F) and f) = fe®@1p+1p®f,. Asthe tensor product of minimal
resolutions of properly intersecting Cohen—-Macaulay modules, (0(EY), f!) is a reso-
lution of F := O(E{))/ S f{. Notice that O(E{) = O(Ey)® O(E}) = O(Ey) = 27,
and that Z := S f' = I f1 - O(E}) + I22 f1 - O(Ep) so that

(4.6) F = 0p/T = 2p/(TP + (2)12p).
Clearly .Z is supported at 0 and since (O(EY), f!) has length kK + n = N, F is

Cohen-Macaulay and (€(FEY), fI) is a minimal resolution. Following [3, Section 4],
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the product R A R’ makes sense and is the current R” associated with (G(EY), fI).
It follows that p; A O(1/z) generate Hzme oy (29I, 65,2). Since F is Cohen—
Macaulay, for the same reason that the second map in (3.8) is an isomorphism on
Xp-reg, the map

(A7) T = Hom oy (Hom oy ()| T, CHE), Horm oy (0D (T + (2)), 6HF))),
¢ (prr dAp),

is an isomorphism. In view of (2.5) if € F, then

(4.8) & A NO(1/z) = NZvr %AujAé)

where 7/ is the map (z,w) — 0. The tuple (7, (w®® A p; A d(1/2)))a; € cmM
determines ¢ and we have the injective map

(4.9) F M

cf. (3.12). In view of (4.6), since by generate 2% = 2 /JP over 0y, by, also generate
F over Oyz. Hence, we have the surjective map (0z)" — Z, (hi)r — > hibi.
Composing with (4.9), we get

T (072)" = C™M Thy), = (Y ml(whyby Ay A= ))a,j~
k
Recall (again) the map T from (3.12) and (3.14) and write T = T"dz, where T” is a
matrix of holomorphic functions. Let ©”: Z — {0} and notice that 7’ = 7" o m. We
get

-1 =1
o (W¥hgby A g A (');) = (m (Wb A ) A E)Z) = (T' njkhedz N O= )
= Toju(0)hk(0).
Hence, %dzmz T(0). Since (4.2) is pointwise exact at 0 it follows that a tuple
(Aa,j) € C™M is in the image of T if and only if E(O)(/\QJ) = 0. We remark that

this implies that 7" is pointwise injective on X eg.
Now, by (4.4), since m,(w*p A ;) is smooth in a neighborhood of 0, we have

!
_ = dw
(4.10) PN py = Z Z Gja,r(2) N dZL A awa+17

« |L\:*

where ¢; o 1,(2) are smooth (n,0)-forms on Z and dzj, are a basis of T, Z. Set
= dw
(4.11) or(pj A O(1/2) Z Bji1(2) N O A 8

To see that ¢y, is well-defined, recall that p; are the components of R. Since (3.7)
is an isomorphism it follows that the relations between the u; are generated by fy.
In the same way, it follows that the relations between u; A 9(1/2), which are the
components of R", are generated by (fi},)* = fi ® 1(g)- ® 1gz ® (f})*. Thus,
if a; are such that Z] aug A d(1/z) = 0, then we have that a = aj + a}, where
>-jajp; =0, and a0(1/2) = 0. This implies that ¢y, is well-defined.
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Now, ¢r,(s; A9(1/z)) is an (N, N)-current, in particular d-closed, and it is anni-
hilated by (z). Moreover, it is annihilated by J since ¢ A p; is, and

) ) = dw
oAy Ndze = £dZN Y Gan(2) NI
«

where L¢ = {1,...,n}\L. Hence, ¢ (1; AO(1/2)) is in Horre g, (Op /(T +(2)), €$5%)
and it follows that ¢, is in the right-hand side of (4.7). Since (4.7) is an isomorphism,
¢, is multiplication by an element, also denoted ¢r,, in .%. In view of (4.8) and (4.11),
the image under (4.9) of ¢y, is the tuple

@mi)N (¢j.0,L(0)), ;-
It is in the image of 7 and hence in the kernel of A(0). Thus,

/
0=A40)( Y ¢jar0)A dz1), -
|L|=+
However, in view of (4.4) and (4.10), Z"le* ®j.a,L(0)AdZ, is the value of 7, (w* @A)
at 0 and so (4.5) follows at 0. Hence, (4.5) follows at points where m,(w®p A ;) are
smooth and (4.2) is pointwise exact, concluding the proof of the claim. O

By Proposition 4.4, if ¢ € V¥ then, on X, eg, there are ¢, € W™ such that ¢ is
given by multiplication by »~, ¢ A by in the way described in the second paragraph
of this section. In this way we can identify V§™ with such sums on Xp .

The following lemma is proved in the same way as Lemma 7.7 and Corollary 7.8

are proved in [6].
Lemma 4.5. Fach ¢ € VY = Hormep, (W5 P, W) has a unique extension to
an element in Hose go.- (&Y AW P W), Moreover, if p € Wy P* is such that
Tufl = Y, G Nixfig, where pgp € w’;("’ and ap are almost semi-meromorphic in D and
generically smooth on Z, then ¢ A p is well-defined in W;L(* by the formula

in(p Ap) =Y (—1)%0 9090, Niy (o A ),
14

where the product by ay is defined as in (2.9).

Notice that by this lemma V%" gets a natural £%*-module structure, which is the
same as the é?)g‘*—module structure it inherits from W;l(’*.

4.1. The sheaf Vg(’* in case X is reduced.

Proposition 4.6. If X = Z is reduced then V" = W§™.

Lemma 4.7. If : Z—Zisa modification then m.: Wz — Wz is a bijection.

Proof. Denote the exceptional set of the modification by E. If .7 = 0 then 7 is zero
on Z \ E and by the SEP 7 is zero everywhere. Hence 7, is injective.

To show that the map is surjective pick v € Wy. By [5, Proposition 1.2] there is
aT € PMz such that m.7 = v . We have 7 € WZ\ g since 7 is a biholomorphism on
Z \E. If welet 7:= 1Z\E; then 7 € W since 7 must have the SEP with respect to

every subvariety. We also have m,7 = v since both 7,7 and 7,7 are in Wz and they
are equal generically and therefore equal everywhere. O
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Lemma 4.8. Given v € W37 and a generically non-zero i € W% there is a unique
Ve W%q such that v = pu AV

Proof. Let w: Z — Z be a resolution of singularities. Then 7*u is a generically non-

zero meromorphic n-form on Z. Moreover, by Lemma 4.7 there is a unique 7 € W;l’q

such that 7,7 = v. In view of [10, Theorem 3.7], since 7 is smooth, Tis a K 7-valued
section of W%’q‘ Thus, 7/ := 7/7*u is a section of W%q, and 7 = 7*u A 7', cf. (2.9).
Then v = w7 = m(m*pu A 7') = p A w7’ and thus 7" does the job.

If we have two currents satisfying the lemma then they are equal where y is non-
zero. By assumption this means that they are equal generically and then, by the
SEP, they are equal everywhere. O

Remark 4.9. Any h € Hor2p, (WY 7, W) naturally extends to operate on forms
f 1, where f is a germ of a meromorphic function on Z, and p € W% . The extension
is unique and h becomes linear over the sheaf of meromorphic functions on Z. Notice
that fu is not necessarily in W, 7.

Proof of Proposition 4.6. The currents in wg*p are meromorphic and in particular
almost semi-meromorphic. In view of (2.9) and the comment following it, aAv is well-
defined and in Wy for any almost semi-meromorphic current ¢ on Z and any v € W.
Hence we can define a map W: W57 — Hosre g, (W75 7, Wy9) by (Tv)(n) = pAv.
If pAv =0 for all p € WY ¥ then v =0 on Z,ey. But then, by the SEP, v =0 on Z
and hence ¥ is injective.

To show that U is surjective take h € Sz g, (WY ¥, W5?). Suppose we have a
local parametrization ZN(A,;xA,) = A, of Z, where A, and A, are polydiscs in C?
and Cf, respectively, so that {dzl}‘ I|=n—p generically is a basis for w7 P. This means
that p € WY ¥ may be written = 37,_,,_, frdzr for some meromorphic functions
f1on Z. Therefore, by Remark 4.9, it suffices to find v € W57 so that h(dz;) = dz;Av
for all I. By Lemma 4.8 there are unique v; € Wg"q with h(dzy) = dz Avy. We let
v=>,dzjeAvy, sothat v € WO, and get dzr Av =Y dzy Adzye Avy = dzAvp =
h(dzr). O

5. INTEGRAL OPERATORS ON X

Given our local embedding i: X — D C CV as usual and a choice of local coordi-
nates z in D we define integral operators and prove their basic mapping properties.

Let R and R be the currents associated with a resolution (2.10) of £2% such that
Ey=T;,D. The (full) Bochner-Martinelli form in D¢ x D, where ¢ and z are the
same local coordinates in D, is

o~ 1 0l¢— 22 A (9]¢ — =AY
B=Y —— 2

2wy C— 2
and we let B; be the component of B of bidegree (4,5 —1). Let H = Hy+ H1 + - -
be a holomorphic form in D¢ x D, with values in Hom(E, T,;((D x D)), where H;
has bidegree (j,0) and values in Hom(Ej, T, o(D x D)), and let g = go + g1 + -~ be
a smooth form in D’C/ x DY, where g; has bidegree (j,7) and D', D" C D. The forms
H and g will be specified in the next section.
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If 7 is a current in D¢ x D, we let (7)n be the component of bidegree (N, *) in ¢
and (0, ) in z. Let ¥(7) be the current defined by

(T)n =9(7) ANdC.
Notice that, in view of (3.3),
(9 NHR)N = 9(9 N H)R;

here and for the rest of this section, R = R(¢) and R = R(({). Similarly, outside the
diagonal A C D¢ x D,

(BANgANHR)y =9(BAgAH)R.
Let ¢ € V& and let 4 € Wy ", We give a meaning to
(5.1) Vg NH)R A @(C) Nisp(z)

as follows. By Proposition 3.16, R = a A i,wg where a is almost semi-meromorphic
and generically smooth on Z. Therefore, by Lemma 4.5, R A ¢ := a A i.(p Awp) is
well-defined and is in Wg‘*. Since R A ¢(C) A ixpu(2) exists as a tensor product and
Y(g A H) is smooth, (5.1) is defined. Notice that it is annihilated by both J({) and
J(z), i.e., it is Ox-linear both in ¢ and . Moreover, by [11, Corollary 4.7] it is in
PMprypr, has support in Z x Z and the SEP with respect to Z x Z.

Let m;: D¢ x D, — D, i = 1,2, be the natural projections on the first and second
factor, respectively. If 7 is a current in D x D such that m; is proper on the support
of 7, then w7 is a current in D. Moreover, in view of (2.3), if 7 € PMpxp has
support in Z x Z and the SEP with respect to Z x Z, then m;,,7 € PMp has support
in Z and the SEP with respect to Z.

Definition 5.1 (The operators P and P). If g is smooth in D x D’ and ¢ — ¢((, 2)
has support in a fixed compact subset of D for all z € D', we define P: VP*(X) —
VP*(X N D) by

(5.2) ixPoAp = ma (VGNH)RAQ(ONixp(2)), @ € VPH(X), pew™?(XND').

If g is smooth in D” x D and z + ¢(¢, 2) has support in a fixed compact subset
of D for all ¢ € D", we define P: W' P*(X) — Wn~P*(X N D") by

(5.3) i Pp = T (Vg A H)R Adap(2)),  p €W P*(X).

If ¢ and g have compact support in X, then Py and Py are defined by (5.2) and
(5.3), respectively, for any g.

Notice that i, P is a smooth (p, *)-form in D’ since ¥(g A H)R is smooth in z;
if g is holomorphic in z, then i, Py is holomorphic. Moreover, since R = R((), it
follows that i, Py = ¢ A R for some smooth form ) in D",

To define the operators K and K notice first that, in a similar way as for P and
P, we can give a meaning to

(5.4) Y(BAgNH)R A @(Q) Niwp(2)
outside the diagonal A C D x D since B is smooth there.

Lemma 5.2. The current (5.4) has a unique extension to a current in PMpxp with
support in Z X Z and the SEP with respect to Z x Z. The extension is annihilated
by both J(C) and J(2), i.e., the extension depends Ox-linearly on both ¢ and p.
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Proof. The uniqueness is clear by the SEP since (5.4) a priori is defined in D x D\ A
and has support in Z x Z \ A.

Recall that R A (C) Aixpi(z) € PMpxp has support in Z x Z and the SEP with
respect to Z x Z. Since B is almost semi-meromorphic in D x D, also 9(BAgA H)
has these properties. Hence, cf. (2.9), 9(BAgA H)R A @(C) A iwp(z) is in PMpxp
with support in Z x Z and the SEP with respect to Z x Z.

Clearly J(¢) and J(z) annihilate (5.4) outside A. Since the extension has the
SEP with respect to Z x Z it is annihilated by J(¢) and J(z). O

We will use the notation (5.4) to denote the extension as well.

Definition 5.3 (The operators K and K). If g is smooth in D x D’ and ¢ +— g(¢, 2)
has support in a fixed compact subset of D for all z € D', we define K: VP*(X) —
VP*(X N D') by

WKpAp=mu(9(BAgANHRAQ(Q) Niupa(2)), ¢ € VPHX), pew™?(XND).

If g is smooth in D” x D and z +— ¢(¢, #) has support in a fixed compact subset
of D for all ¢ € D", we define K: W"P*(X) — W' P*(X N D") by

iKp=m.(9(BAgANH)RNiu(2)), peW'P*(X).

As with the operators P and P, if ¢ and p have compact support in X, then K¢
and Ky are defined for any g.

Theorem 5.4. (i) If ¢ € Vi* is in X" in a neighborhood of a point T € Xp.reg,
then Ky is in (5’)’;’* in a neighborhood of x.

(ii) If p € WY P is such that, in a neighborhood of € € Xp_reg, txft = ¥ pe Nixwy,
where jig € é"g’* and we € WP, then i Ky is of the same form in a neighborhood of
T.

Recall that, by Proposition 4.4, in a neighborhood of z € X reg, any ¢ € V™ is
represented by >°, ¢x A by, for some ¢y, € Wg’*. That ¢ € V§™ is smooth means, cf.
Lemma 3.12, that ¢ € 5’3’*. In view of this it is natural to call a p € Wy ™" with
the property in (ii) smooth. Analogously to part (i), part (ii) of the theorem thus
says that K preserves the smooth elements of Wy ”

Proof. Notice that if ¢ = ¢(¢) = 0 in a neighborhood of z, then K¢ is smooth
in a neighborhood of z since in that case (B A g A H)R A ¢ is smooth for z in a
neighborhood of x. To prove the first part of the theorem we may thus assume that
¢ has support in a small neighborhood of z. In this proof we let ¢ be also a fixed
representative of ¢ in 5.

Let (z,w) and (¢,7) be two sets of the same local coordinates in D centered at
x such that Z = {w = 0} = {7 = 0} in a neighborhood of z; these coordinates
need not have any relation to our previous local coordinates which were used to
define B. Suppose that ¢ has support where the coordinates (z,w) are defined. Let
x€ = x(|¢ — 2[%/€) and let, for any p € Wy P,

(5.5) T:=9(BAgNH)RAN@(,T) Nipp(z,w).
Then, in view of (2.2),
lim XT = 1pup\fc=)T"
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By Lemma 5.2, T has the SEP with respect to Z x Z and so, since {{( = 2} NZ x Z is
a proper subset of Z x Z, 1y, 1T = 0. Hence, 1pyxp\{¢c=17 =T and thus xT' — T
Define K€p by

(5.6) Kp:= Wg*(xeﬁ(B/\g/\H)’R/\go((,T)).

Then K*€p is smooth since x*¢(BAgAH)RAp((, T) is smooth in (z,w) and it follows
that

(5.7) K@ Niwpt = mo.(XT) = mo.T =i Kp A

as currents in D’.
By Lemma 3.12 there are ¢, € &9 such that

0= G Nbj+ Heryi*
k
and by the proof of that lemma ¢ are obtained by applying linear combinations of
a1l /ow™ to (the coefficients) of Ko and evaluate at w = 0. We claim that there
are ¢y, € éag’* such that ¢, — ¢ as currents on Z.
Given the claim we can conclude the proof of the first part of the theorem. Let
€ Wy P Then by Aiwp € ¥ and so, in view of (2.7), there are ayo(z) € 2
such that by Adwp =3, aga(2) A d(dw/w>*t). Hence,

. dw
Ko nNiwu = Z@c/\bwl*u D 65(2) Akl )/\awaJrl
ko
= > ol Z)/\aka(z)/\a Z¢kAbkAZ*M

k,a

as currents in D'. In view of (5.7), thus

Ko Ap= de/\bkM*m
k
which means that K¢ € V" is smooth.

To show the claim, notice that since R = R, + R;+1 + -+ we can replace H in
(5.6) by Hy+ Hyq1+---. Hence, only Bj with j < N —k = n contribute in (5.6). In
view of Proposition 3.16, R = a - iswp, where a is smooth on X, ;¢ and wy € wnxfp.
Since ixw € Horr gy (20, €HF), in view of (2.7) it follows that K¢p is a sum of
terms of the form
dr

(58) 7T2*(XEB]' A¢(<,T,Z,W) Agm),

where j < n and ¢ is smooth with support in a neighborhood of (¢,7) = z. It
is proved in [6, Proposition 10.5], cf. in particular [6, Equation (10.5)], that after
applying 8!°1/8w® to a term (5.8) and evaluating at w = 0 the limit as € — 0 is
smooth in z. The claim thus follows.

The proof of part (ii) of the theorem is similar. First notice that if 4 = 0 in a
neighborhood of z, then i, K equals R times a smooth form in a neighborhood of
z. Since R = a - iywp, where a is smooth on X, ¢, the second part follows in this
case. We can thus assume that p has support in a small neighborhood of x.

Let T be given by (5.5) with ¢ = 1. As above it follows that x*T" — T'. Set

u =1 (XV(BAgAH) Niwp(z)).
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Then u€ is smooth and it follows that
(5.9) uAR = i Kp

as currents in D”. As in the proof of Lemma 3.12 we have

. OIPlye
u(Gn) =3 55 0)5, +o(rM, 7, dr),
[Bl<M
where O(|7|M,7,d7) is a sum of terms which are either O(|7|M) or divisible by
some 7; or d7;. Since O(|7|M,7,d7) AR = 0, if there are ug(¢) € éa)g’* such that
AMBlue(¢,0)/07° — ug(¢) as current on Z, it follows as above that
u AR — z U,B(C)Tﬂ A dxwo/ B!
1Bl<M

as currents in D”. Thus, by (5.9), i.K 1 has the desired form. To see that there are
such ug, notice that if i,p0 = >, pue Aiywy then u€ is a sum of terms

dw
(X Bj A((, T, 2, w) AD a+1)
where j < n and ¢ is smooth, cf. (5.8) and the preceding argument. The existence
of such ug thus follows as above by [6]. O

The following lemma will be useful in the next section. The corresponding result,
[6, Lemma 9.5], is formulated in terms of a A-regularization of R whereas we here use
an e-regularization. However, in view of [20, Lemma 6], the proof of [6, Lemma 9.5]
goes through in our case.

Lemma 5.5. Let R := Ox(|F|?/¢) Au, cf. (2.12), and let R := R ® d(. Then
1111(1)7?,(2) ANIBAgANH)R =R(z) NI(BANgANH)R,
e
where the right-hand side is the product of the almost semi-meromorphic current
Y(B A g A H) by the tensor product R(z) AR, c¢f. Lemma 5.2.

6. KOPPELMAN FORMULAS AND THE SHEAVES &/%* AND #y "

We assume now that i: X — D € CV is a local embedding into a pseudoconvex
open set. Let z and ¢ be two sets of the same local coordinates in D and let B be
the corresponding Bochner—Martinelli form. We choose g and H in the definition of
the integral operators of Section 5 to be a weight, in the sense of [1, Section 2], and a
Hefer morphism, in the sense of [8, Section 5] and [1, Proposition 5.3], respectively.

Example 6.1 (Example 2 in [1]). Let D’ € D and assume that D' is holomorphically
convex. Let x be a cutoff function in D such that y = 1 in a neighborhood of D.
One can find a smooth (1,0)-form s(¢,2) = >, s;(¢,2)d((; — 2;), defined for ¢ in
a neighborhood of suppdx and z in a neighborhood of ﬁ/, such that 27i Zj(Cj —
zj)si(¢,2) =1 and z — s((, 2) is holomorphic. Then

9=x(¢ AZ (€,2) A (Ds(¢,2))

is a weight with compact support in DC, depends holomorphically on z in a neigh-
borhood of 5/, and contains no dz;.
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If D’ is the unit ball we can take s(¢,z) = Zj(fj —2)d(¢ — z)/2mi(|¢)? — 2 {)

Let w be an (n — p)-structure form on X and recall, see (3.21), that ixw = R for
some R associated to a resolution (2.10). Then by Proposition 3.16, i.w = a-i.wq for
some tuple wy of elements in W' ” and a matrix of almost semi-meromorphic currents
a which is smooth on X, ;ee. In view of Lemma 4.5 it follows that if ¢ € V2*  then
¢ Aw is well-defined in W™

Definition 6.2. If ¢ € V" we say that ¢ € Domdx if (¢ Aw) € W™ for any
(n — p)-structure form w on X.

Let us notice a few consequences. We can define §: Dom dx — Vi as follows.
Let p € W'y P, In view of (3.22), since the map (3.7) is an isomorphism, there is a
current R and a holomorphic E*-valued function £ such that i,u = & - R. Thus, by
(3.21) there is an (n — p)-structure form w such that u = i*¢ - w. If ¢ € Dom dy it
follows that 9(p A ) € W™, Hence, for ¢ € Dom dx we can define dp € VE™ by

OpAp:=0(pAp), pewy?

Since dp € VY™ if ¢ € Dom dx it follows as in the paragraph preceding Defini-
tion 6.2 that dpAw is well-defined in W™ for any (n—p)-structure form w. Moreover,
if as above i,w = R = a - ixwp, where R is associated to the resolution (2.10), then
(6.1) dp Aw=—Vy(pAw),
where Vy = f — 0. In fact, by Lemma 3.6, fa - iwwp = O(a - ixwp) and so, since a is
smooth on X, e, in view of Lemma 4.5, we get

=VilpAw)

e Nita-wo) = flp Ni*a-wo)
+i*a - 0(p Awo) £ o Ad(i*a-wo) Fo A fita-wy
= +i*a-0(pAwy) =0p Ai*a-wy=0p Aw

on Xpreg. Since both sides of (6.1) have the SEP, (6.1) holds everywhere.
We also notice that

(6.2) &%" C Dom dx.

This follows since, as above, any (n — p)-structure form w satisfies 0w = fw for an
appropriate f and hence, if ¢ € E¥", O(p Aw) = dp Aw £ p A fw € W™

Proposition 6.3. Let D' @ D be a relatively compact open subset and set X' =
X ND'. There are integral operators

K: &PHH(X) = VPH(X') N Domdyx, P:&PF(X) — &P (X))
such that for any ¢ € EP*T1(X),
(6.3) 0 =0Kp+ Kdp+ Pop.

If ¢ € &P*Y1(X) has compact support in X one can choose K and P such that,
additionally, K¢ and Py have compact support in X.

Proposition 6.4. Let D' € D be a relatively compact open subset and set X' =
X ND'. There are integral operators

K: Wipstl(x) 5 WP (X'),  P: WPH(X) — WPH(XT)
such that if ipe =Y, pe A iwwe for some g € zg’g’* and we € WY, then
(6.4) pw=0Ku+Kou+ Pp.
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If i in addition has compact support in X one can choose K and P such that K¢
and Py have compact support in X .

Proof of Propositions 6.3 and 6.4. Let R be as in Lemma 5.5. In the same way as
in [24, Section 5], cf. also [7, Section 5] and [6, Eq. (9.16)], one obtains

(6.5) Vi (R(z) AN(BAgAH)RS) =RA[A] = R(2) A (g A H)RS,

where V() = f(2) — 0. Notice that, for € > 0, all current products are well-defined
as tensor products. Letting ¢ — 0 we get, by Lemma 5.5,

(6.6) Vi (R(z)ANIBAgAH)R) = RA[A] = R(z) ANd(g A H)R.

To show the first statement of Proposition 6.3, choose g such that ¢ — ¢(, z) has
support in a fixed compact subset, containing D', of D for all z € D’. Multiplying
(6.6) by a ¢(¢) € &P*F1(D) such that i*p = ¢ and applying o, we get

ViR ANiKp)+RANiK(Dp) =RAG—RAiPop,

ie.,
(6.7) VilwAKp)+wAK(@Op) =wAp—wA Pp.
In view of Definitions 5.1 and 5.3 all terms except Vy(w A K¢) are in Wy* and
consequently Vs (w A K¢) is too. Hence, since f(w A Kp) € Wy™ also d(w A Ky) €
Wy, and so K¢ € Domdx. Thus, by (6.1), we can replace Vy(w A K¢) in (6.7)
by —w A 0K . Multiplying the resulting equality by holomorphic E*-valued & such
that f*¢ =0 we get, since the map (3.7) is an isomorphism,
(6.8) pAe=pAOKp+uANKdp+puAPp, Yuewy?,
which is what (6.3) means.

If  has compact support we can take a weight g such that z — ¢((, z) has compact

support. The preceding argument goes through unchanged and it is clear that K¢
and Py have compact support.

To show Proposition 6.4, let § be holomorphic f*-closed sections of E* such that
iwwe = & - R, so that d,u =Y , i A& - R. Since VyR = 0 and 9¢ = 0 a simple
computations gives

e N - Vi) (R(z) NIBAgANH)RS) = (e A& R(z) NI (B AgAH)RE)
+Opue A& - R(2) ANO(B A g A H)RE.
Hence, in view of Lemma 5.5, multiplying (6.5) by >, e A & and letting € — 0 we
obtain
O(isp(z) NO(BAGNH)R) + iai(2) NO(BAgAH)R = ixp AN[A] — iuu NI (g AH)R.

If ¢ is chosen so that z — g((, 2) has support in a fixed compact for all ¢ € D,
then (6.4) follows by applying 7. If u has compact support we instead choose g
such that ¢ — ¢(¢, z) has compact support and apply .. O

Definition 6.5. If i C X is open and ¢ € VP(U) we say that ¢ is a section of &/}
over U, ¢ € &P1(U), if for every x € U the germ ¢, can be written as a finite sum
of terms

(6.9) o NEL (- & N Ka(61 A K1(&)) -0 ),

where v > 0, & € 8", & € éa)g’* for j > 1, K are integral operators as defined in
Section 5, and &; has compact support in the set where z — Kj;((, z) is defined.
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Definition 6.6. If &/ C X is open and p € W"P4(U) we say that u is a section of
By over U, p € BV PUU), if for every x € U the germ p, can be written as a
finite sum of terms

(6.10) & NEL (- & AN Ko (& A K1 (6o Aw)) ),

where v > 0, w is an (n — p)-structure form, &; € éa)%’*, f(j are integral operators as
defined in Section 5, §; has compact support in the set where ¢ K (¢, 2) is defined,
and &y takes values in E™.

Proposition 6.7. The sheaf &/%" has the following properties.

(al) It is a module over 5‘2"*,
a2) if K is an integral operator as defined in Section 5 then K: @/?*T1 — oz
( tegral op X %
(a3) F%" C Domox,
3. 5% k41
(ad) O: sz)’; —>;Q7)’é ,
(a5) d)}é, = g)p(’ on Xp—regr
(a6) (6.3) holds for ¢ € /%"
The sheaf BY ™ has the following properties.

(b1) It is a module over &Y,

(b2) if K is an integral operator as defined in Section 5 then K : %’?{p’*“ —

(b3) B: B s B )

(b4) if p € BY " then on Xpoyeg, o = Dy Awe for some py € Ey" and
wy € w&_p,

(b5) (6.4) holds for p € By .

To prove this proposition we need the following two lemmas. The first one is a
variant of Propositions 6.3 and 6.4.

Lemma 6.8. Let ¢ € VP*(X). Assume that o, K € Domdx and that ¢ € X" on
Xp-reg- Then (6.3) holds on X'. If in addition ¢ has compact support, then K and
P can be chosen such that Ky and Py have compact support.

Let i € WPP*(X). Assume that Op, 0K € WP and that i = 3, je A wy
on Xp.reg for some g € éa[()),* and wy € WYy 7. Then (6.4) holds on X'. If pu in
addition has compact support, then K and P can be chosen such that Ku and Pp
have compact support.

Proof. Let h be a holomorphic tuple vanishing precisely on X, ¢ne and set x© =
x(|R|?/€). Then Proposition 6.3 applies to Xy and hence
X = 0K (X @) + K(x“0p) + K(Ox" A¢) + P(X“¢);

recall that this means that (6.8), with ¢ replaced by x‘p, holds. Since ¢ € VE™ it
follows that xp — ¢, i.e, X Ap — @ Ap for all p € W5 P. By Lemma 5.2 the
current (5.4) is in has the SEP with respect to Z x Z and therefore K(x¢p) — K.
Similarly, P(x¢¢) — Py. Moreover, Jp € Vi" since ¢ € Dom 0x and so K (x0¢p) —
K (9¢). We claim that lim._,o K(9x° A ¢) = 0 on X, res. Given the claim it follows
that (6.3) holds on X.res. Since K¢ € Dom Ox by assumption it follows by the SEP
that (6.3) holds.
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To show that claim we may assume that z is in a fixed compact subset of X, reg.

Then B A 0x¢(¢) is smooth if € is small enough. It thus suffices to show that
R(Q) NOX(C) A Q) Niwpal(z) = 0, Vp € W™
Since this is a tensor product it suffices to see that w A Oxc A ¢ — 0. However,
0 Aw € W™ and, since ¢ € Domdy, Vy(p Aw) € W™, In view of (6.1) thus
W ApAw = XY Aw=XpAw=-Vi(XPAw)+XVi(pAw)
= —VilpAw)+Vi(pAw)=0.
The proof of the second part of the lemma is similar: By Proposition 6.4,
Xp = 0K (xn) + K(xOp) + K(Ox A p) + P(xn).
Since p € Wy " we have x4 — p. By Lemma 5.2 the current (5.4) has the
SEP with respect to Z x Z and therefore Kgxeu) — Kp. Similarly, P(xu) —
Pp and, since Ou € wy P, K(x°Ou) — KOu. Hence, (6.4) holds modulo 7 :=
lim_,q K(Ox¢ A p). Since dKp € WY by assumption, all terms in (6.4) are in
Wy 7" and so (6.4) follows by the SEP if 7 = 0 on X req. For ¢ in a fixed compact
subset of X reg, B A 0Xx¢(2) is smooth if € is small enough. Thus, as above, to see
that 7 = 0 on X, 1cg it suffices to see that R(¢)0x“(z) A () — 0, which follows if
Ox° A i1 — 0. However, since Ou € W;L(_p‘* by assumption, we have
IX A p=0(x W) — XOp— Ou—0p=0.
]

The second lemma we need is (a version of) the crucial Lemma 6.2 in [7]. The proof
of that lemma goes through in our case; cf. also the proof of [24, Lemma 5.3]. We
remark that in these cited lemmas the statements and proofs are intrinsic on (Carte-

sian products of) X whereas we here formulate our version in (Cartesian products
of) D. Let

k(C.2) = 9(B(C,2) A g(C,2) AH(C 2))R(C).
Let 2/ be coordinates on the jth factor of D in D x --- x D. The current

(6.11) T :=RE) AL 2 A Ak(2h 22)
is well-defined in PMpx...xp, has support in Z x --- x Z and the SEP with respect
to Z X --- X Z since it is the product of an almost semi-meromorphic current by

the tensor product of the R-factors, cf. Lemma 5.2. The different k-factors may
correspond to different choices of B, g, H, and R.

Lemma 6.9. Let h be a holomorphic tuple which is generically non-vanishing on Z.
Then ~ ‘

lim dx(|h(27)2/e) AT = 0.

e—0

Proof of Proposition 6.7. 1t is clear from the definition that /%" and &% 7" are
modules over (5‘}3’* and that &7%” and # 7" are closed under K-operators and K-
operators, respectively. By Theorem 5.4 it follows that &/¥* = 8™ on Xj g and
that sections of E%?(_p ™ are of the claimed form on Xpreg-

To show that &/§"* C Dom Ox assume that ¢ is given by (6.9), where the &; are
smooth, and let w be a structure form. Then i.w = R for some R and i, (w A @) =
(T A E), where T is given by (6.11), £ is some smooth form in D X --- X D,
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and m,: D x --- x D — D is the natural projection on the factor with coordinates
2. Let h be as in Lemma 6.9 and set x° = x(|h|?/¢). By Lemma 6.9 we have
lime_,0 O AT A& = 0 and so, since ix(w A ) has the SEP with respect to Z, we

get
(61Dis(wAp) = limI(x%«(w A ) = lim X A T T A € + lim X i (w A )
e—=0 e—=0 e—0
= lim x“i.(w A ).
e—=0

Hence, i, (w A ) has the SEP with respect to Z and it follows that d(w Ap) € W™

In a similar way we show that if p € 2% P, then ou € Wy P*. Assume that p
is given by (6.10). Then i.pu = m,. T A€ for some smooth €. Replacing w A ¢ by p in
(6.12) it follows that 9 € Wy ™.

Since M)];’* is closed under K-operators, d)’é’* C Dom Oy, and M)’;’* = éa)];’* on
Xpreg the Koppelman formula (6.3) follows for sections of &% by Lemma 6.8.
Similarly, since Z% 7" is closed under K-operators, &y 7" C WY ", and p =
ot Awg on Xy reg for any p € By 7" it follows from Lemma 6.8 that the Koppel-
man formula (6.4) holds for sections of Z% 7"

It remains to see that &% and %% 7" are closed under 0. Let ¢ € &% and
assume that ¢ is given by (6.9). We show by induction over v that dp € ﬂi)’;"*.
If v = 0, then p = & € &X" and so dp € EVT C AP Utv > 1 we write
© =&, N K¢, where ¢ is given by (6.9) with v replaced by v — 1. By the induction
hypothesis, d¢ € szf);?’*. Hence, Kd¢ € Jz/)’;’*. Since the Koppelman formula (6.3),
with ¢ replaced by ¢, holds and since P¢ € &4 it follows that 0K ¢ € «/%™. Hence,
0o =06, NKp+& NOK¢p € 77

IfpeBy? " is given by (6.10) we proceed in a similar way by induction over v.
If v = 0 then p = § A w. Then, by the computation showing (6.2), it follows that
Oy has the same form. If v > 1 we write u = &, A K/ and the induction hypothesis
gives O’ € By ", As before, since Py’ = £ Aw for some smooth ¢, cf. Section 5, it
follows from (6.4), with u replaced by , that Ou € £y . O

Proof of Theorem A. In view of Proposition 6.7 it only remains to show that (1.4) is
a resolution of £2%. This is a local statement so we may assume that X is an analytic
subspace of a pseudoconvex domain D C CV and that the point in which we want
to show that (1.4) is exact is 0. Let ¢ € &/P4(U4 N X) be d-closed, where U is a
neighborhood of 0. Choose operators K and P corresponding to a choice of weight
g such that z — ¢((, z) is holomorphic in some neighborhood of 0 and ¢ — ¢(¢, 2)
has support in a fixed compact subset of #. Then ¥(g A H)R(¢) has degree 0 in dz.
Since it has total bidegree (N, N) it must have full degree in d¢. Hence, Py = 0
if ¢ > 1. Since, by Proposition 6.7, the Koppelman formula (6.3) holds it follows
that ¢ = 0K¢ if ¢ > 1 and ¢ = Py if ¢ = 0. In the latter case, since ¥(g A H) is
holomorphic in z, we get ¢ € 2%.. O

Theorem 6.10. The sheaf complex

(6.13) 0 Wi — g0 L 9 grorn g

is exact if and only if Q% is Cohen-Macaulay. In general #1( By P*,0) ~ é",@/;;q(ﬂf(, Op).
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Proof. Consider the free resolution (2.10) of £2% and let R and R be the associated
currents. Let (O(EY), f&) be the dual complex of (2.10), cf. the proof of Proposi-
tion 3.9. It is well-known that

(6.14) AFUOEY), f3) = &t (2%, Op).
Define the mapping
Oe: (ﬁ(E:+o)7 f:+-) - (‘%?(7“.’ 5)7 Z*Q(f) = E . RH+.~

Since fR = IR it follows that g, is a map of complexes and hence induces a map
on cohomology. As in the proof of [24, Theorem 1.7], cf. also the proof of [23,
Theorem 1.2], one shows that the map on cohomology is an isomorphism. Hence,
the last statement of the theorem follows.

If 2% is Cohen-Macaulay we can choose the free resolution (2.10) of length .
Thus, by (6.14), é’x['}?(()ﬁ’(, Op) =0 for ¢ > 1 and so (B P*,0) =0 for ¢ > 1.
Hence (6.13) is exact. Conversely, if (6.13) is exact then g’f['ggq(ﬁp ,O0p) = 0 for

P
q > 1. Recall the singularity subvarieties Zy := Z,;QX associated with 2%, cf. (2.11).
From, e.g., the proof of [12, Theorem I1.2.1] it follows that

Zyyq = U supp 6z, (2%, Op).
r>K+q

Hence, Z,,14 = 0 for ¢ > 1. Tt follows that Im f,,+1 C E, is a subbundle. Replacing
E; by E/Im fit1 and Eiqq, ¢ > 1, by 0 in (2.10) we obtain a free resolution of 2%
of length x. Thus, 2% is Cohen-Macaulay. O

7. SERRE DUALITY

In this section X is a pure n-dimensional analytic space. When considering lo-
cal problems we tacitly assume that X is an analytic subset of some pseudoconvex
domain D ¢ CV.

Let ¢ € &% and p € #% 7", By Proposition 6.7, on Xp e ¢ is smooth and
=Y, e ANwy, where pg are smooth and wy € W 7. Hence, ¢ A p is well-defined in
W™ on Xpreg.

Theorem 7.1. There is a unique map A: d;;’* X ,%;L{p’* — W;* eztending the
wedge product on Xp.reg. If ¢ € Z¥* and p € BYP", then 0(p A ) € W™ and

(7.1) o Ap)=0¢ Ap+ (=1)"%0 A dp.

Proof. This is a local statement. The uniqueness is clear by the SEP. Moreover, if
oA € WY and d(p A p) € W™ for all p € &F" and p € By ", then (7.1)
follows since it holds on X g and both the left-hand side and the right-hand side
have the SEP.

To show that p A € W™ and d(pAp) € W™ we represent ¢ and p by (6.9) and
(6.10), respectively. The case when v = 0 in (6.9) needs to be handled separately. In
this case ¢ € &% and so clearly ¢ A p € W™, Moreover, since by Proposition 6.7,
Op € B P it follows that d(p A ) € W™

Assume now that v > 0 in (6.9). Then, cf. (6.11),

ix0(¢) = me (k(w”, Q) Ak(w”™ L w”) A Ak(w',w?) AE) = T,
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where 7: D¢ X Dy X+ - - x D1 — D¢ is the natural projection, v > 1, and § is smooth.
Hence, ¢ = K¢ for an appropriate ¢(w”) € &% and so, in view of Section 5, since
w e By P C WP we have

A =i puANKe=m () ATy).
On X 1eg, Where ¢ is smooth, this coincides with the natural wedge product, cf. the
proof of Theorem 5.4. In view of Definition 6.6 we may assume that

Q) = T (R(ZX) NK(Z77H 25 Ao AK(C, 2Y) A E) =2 7.T,

where 7: D¢ x D5 X -+ x D,1 — D¢ is the natural projection and E=£6(C,2) s
smooth. Hence,

Tl \ (P = iy (Tu A T(P).
Since T, AT}, is of the form (6.11) (times EAE) it follows that uAp € Wi™. Moreover,
by Lemma 6.9 and the computation (6.12), with w and T replaced by p and T}, AT,
respectively, it follows that (i A ) has the SEP. |

Let %; P"(X) be the vector space of sections of %y ¥"* with compact support.
By Theorem 7.1 we have, cf. (3.19), a bilinear pairing

(7.2) APUX) X BEPUX) 5 C (o, 1) / oAk,
X

which only depends on the class of u in H"~9(%; "*(X),0) and the class of ¢ in
H(e/P4(X),0). In particular, since HO(a/P*(X),0) = 27(X) we have a pairing
25(X) x HY(%:7*(X),0) — C.

Theorem 7.2. Assume that X is an analytic subspace of a pseudoconver domain
D c CN. Then

0= B PO(x) 2 ... O grrn(x) S50

is exact except on level n. The pairing (7.2) makes the cohomology group H™(Be *(X),d)
the (topological) dual of 25.(X).

Recall that the topology on 27(X) = 2P(D)/JP(D) is the quotient topology and
that 2P(X) is a Fréchet space with this topology, see, e.g., [15, Ch. IX]. Notice that
since convergence in 2P(D) is uniform convergence on compact subsets, a sequence
pe € 2P(X) converges to 0 if there are @, € 2P(D) such that ¢ = i*@c and g — 0
uniformly on compacts. By the Cauchy estimates it follows that ¢, — 0 in &P0(D).

Proof. Let € B¢ 7" 9(X) be 0-closed. Choose the weight g in the operators
K and P of Section 5 such that z +— g(¢,z) is holomorphic in a neighborhood of
the holomorphically compact closure of suppp and ¢ — g(¢,z) has support in a
fixed compact for all z in that neighborhood, cf. Example 6.1. Then 9(g A H)R(¢)
has degree 0 in dZ and so Py = 0 if ¢ > 1, cf. (5.3). Since by Proposition 6.7 the
Koppelman formula (6.4) holds we conclude that u = 0K if ¢ > 1. Since ¢ — g((, 2)
has compact support also K has and the first statement of the theorem follows.

Suppose now that u € % P"(X). Since convergence of a sequence in 27(X)
implies convergence in &P9(D) for a suitable sequence of representatives it follows
that p defines a continuous linear functional fi on 2P(X) via (7.2). This functional
only depends on the cohomology class of 1 and so we can, in view of (6.4), assume
that ;1 = Pp. We have

Pu=mu(9(g AHYR(O) A dapa(2)) = 1 (90 A H) A duga(2))R(O),
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where 71 : D¢ x D, — D¢. Since g and H are holomorphic for z in a neighborhood of
the holomorphically compact closure of supp u it follows from the Oka-Weil theorem
that if [y ¢ A p =0 for all ¢ € 2P(X), then 7. (g A H) Aiwu(z)) = 0. Hence,
i =0 implies g = 0, i.e., the map p + fi is injective.

To show surjectivity, let A be a continuous linear functional on 27(X). Then A
lifts to a functional, also denoted A, on 2?(D). By the Hahn-Banach theorem this
functional has to be carried by some compact K C D, which we may assume is
holomorphically convex, and there is an (N — p, N)-current v in D of order 0 with
compact support in a neighborhood V' of K such that

)\(W)Z/DSO/\’G v € (D).

Let P be an operator corresponding to a choice of weight g such that z — ¢((, 2) is
holomorphic in V' and ¢ — ¢((, z) has support in a fixed compact subset of D for all
z € V. Then, if ¢ € 2P(X), Py is an extension of ¢ to V. Let also ¢ € 2P(D) be
an arbitrary representative of ¢. Then

Me) = A(Pg) = / Po(z) Av(z) = / mau (99 A HYR(C) A S(C)) A (2)
D JD
(9(g A HYR(C) A () Av(2)).1pxp
+ / 6(C) A (9(g A H) A V(2))R(Q).
D

Since 71, (ﬂ(g/\H) /\V(z)) is smooth with compact support in D it follows that there
is p € B¢ P"(X) such that

Tk (19(9 ANH)A V(z))R(() = Qe

A(¢)=/D¢Ai*u=/xs0/\u-

Theorem 7.3. Let X be a (paracompact) analytic space of pure dimension n. If
HY(X, %) and HI (X, 02%) are Hausdorff, then the pairing

Hence,

O

(7.3) H9(a/7*(X),0) x H" YA ™*(X),0) = C, ([¢], [u]) — /X‘P Ap

is non-degenerate so that H"~9(B:"*(X),0) is the dual of H1(«/P*(X),d).

Sketch of proof. Referring to, e.g., [23, Section 6.2] and [24, Section 7.3] for details
we outline a proof showing that H"~9(%; 7"*(X),0) is the dual of H(/?*(X),0)
via (7.3). The idea is to use Cech cohomology and homological algebra to reduce to
the local duality of Theorem 7.2.

Let U = {Uj}; be alocally finite covering of X such that Uj is an analytic subspace
of some pseudoconvex domain D in some CV. Then U is a Leray covering for 5.
Let (C*(U, 2%),6) be the associated Cech cochain complex. Then

(7.4) H9(a/7*(X),0) ~ HY(C*(U, £2%),6)

since both the left- and the right-hand sides are isomorphic to H UX,08). Ttis
standard to make the isomorphism (7.4) explicit by solving local d-equations.
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The Fréchet topology on £2?(U;) induces a natural Fréchet topology on C*(U, £25,)
and, consequently, on the cohomology of (C*(U, 2%),5). Recall that the standard
topology on H?(X, £2%) is defined as this topology. In view of, e.g., [22, Lemma 2]
it follows that if H9(X, 2%) and H7™1(X, %) are Hausdorff, then

(7.5) HYC*(U, 12%),6)" ~ HI(C*(U, 2%)%,6%),

where (C*(U, 2%)*,6*) is the (topological) dual complex of (C*(U, 25%),6).

Let .C_k(ll,%?*m) be the group of formal sums Z\,I\:kHF‘IUI*v where p; €
Be P (MierU;) and Up = Ui Ao AU is a formal wedge product. It follows
from Theorem 7.2 that

(7.6) CHU, Q%) =~ H*(C™ U, BL7"*), D)

via the pairing induced by (7.2). The operator §* on C*(U, £25)* gives in a natural
way an operator, also denoted §*, on C~*(U, 55’2‘”). It turns out that this operator
is formal interior multiplication by »-, Up; pr is extended to N;cpy;,Us by 0. Thus we
get the double complex

(7.7) (C™* (U, BLP*),6%,0).
In view of (7.6) we have
(7.8) HY(C*(U, 0%)*,6*) ~ HI(H™(C™*(U, B2 P*),6*,0)).

By Theorem 6.10, the §-cohomology of (7.7) is trivial except on level n and, by, e.g.,
[23, Lemma 6.3], since the #x-sheaves are fine, the *-cohomology of (7.7) is trivial
except on level 0 where the cohomology is %.(X)"P*. By standard homological
algebra it follows that

(7.9) HIUH™ (C™(U, B"P*),5%),8) ~ H""U(B.(X)"?,d).

From (7.4), (7.5), (7.8), and (7.9) we see that H"9(%B.(X)""P,0) is the dual of
H(o/P*(X),0). To see that this duality is given by (7.3) one can make these iso-
morphisms explicit and use that (7.6) is induced by the pairing (7.2). d

Proof of Theorem B. Part (i) follows from Definition 6.6 and Proposition 6.7. Part
(ii) follows from Theorem 6.10. Part (iii) follows from Theorem 7.1. Part (iv) fol-
lows from Theorem 7.3; indeed, if X is compact then we can replace %. 7*(X)
by %" P*(X) and, moreover, by the Cartan-Serre theorem, the cohomology of any
coherent sheaf is finite-dimensional, in particular Hausdorff. O

8. EXAMPLES

We present two examples which illustrate our various notions of holomorphic forms
and currents. The first one is rather straightforward whereas the second one is more
elaborate.

Example 8.1. Let D = C* with coordinates (z1, 22, w;,ws). For the ideal J =
(wi, w3, wiwz) we have vJ = (wy,ws) so that Z = {w = 0}. In this case dJ =
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<w1dw1, wodwsy, wadwy + wldw2> and it is straightforward to check that
Ox = 0Oz{1,wi,wa},
Q)l( = ‘Q)l(,Kéhlcr = Qé{l, w1y, w2} + ﬁz{dwl, dws, widws — wgdw1}7
‘Q)Z( = ‘Q)Z(,Kéhler
= Q%{Lwl, wa} + Q} A dwy, dwa, widwy — wadw, } + Oz{dw; A dws}.

Since the underlying reduced space is smooth we may use Proposition 3.13 to describe
the smooth forms on X. By this proposition we have, for example, that

Ex* = EF [(TES +dT NEY + (wi, wa)E5* + d{wy, wa) A EF).
We see that the denominator above, i.e., #ez9i*, contains all w; and dw; and what
remains is
(5")2(* = é"g’*{l,wl,wg} + zg’Zl‘* A {dwy, dws, widws — wadws } + é"g’* A {dwy A dws},
very much in analogy with 9)2( above. Now let us look at currents on X; for simplicity
we restrict to currents of bidegree (2,%). If « is a (2,%)-current on X then, by

definition, i.« is annihilated by J#ezz¢¢*, which contains all w; and dw;. It follows
that

. = 1 = . 0
i = Z ape(z)da1 Adza A dwi A dws NO—5 N O—g with agp € €y,
k>0 wy Wy

where % is the sheaf of currents on Z. But we must also have that i,a A J =0 =
ixa A dJ. The first equality implies that k,¢ < 1 and the second is automatically
satisfied for degree reasons. We also see that wiw20(dwy /w?) A O(dws/w?) # 0 and
therefore

G2 = @*{5% pglez gl gdwa gdwi 5&?}_
1

w9 wy wy w1 wy
Writing B for the set of three basis elements above, we get i,W% = 2%B.
Example 8.2. Let D = C* with the same coordinates as above. Let i: X — D be
defined by
J = {wi, i, wiwa, 2wy — zpwr)
and write f = zwg — zow; so that dJ = <w1dw1,w2dw27w1dw2 + wgdwl,df>. It is
straightforward to see that

Oy = Oz{1, w1, wa}

0l B Q}{l, wy, we} + Oz{dwi, dws, wdws — wadw; }
ﬁZ{f} ’ X,Kidhler Qé{f} T ﬁZ{df} .

Here we write the quotient as a quotient of &z-modules but to see how the multipli-
cation in the rings work notice that w;w; = 0 and w;dw; = 0.

We now describe the torsion elements of 2% 1. If 21 # 0 then wy = w129/21 and
since widw; = 0 we get wodw, = (22w1/21)dw1 = 0. We have widws + wadwy = 0
everywhere and therefore we also get widws = 0 when z; # 0. By symmetry both
widwy and wedw; vanish when zo # 0. One may verify that neither widws nor
wodwy is in QL{f} + Oz{df} and therefore they are torsion elements. These are
actually the only torsion elements and hence

QL{L, wi, we} + Oz{dw:, dws}

1 _
Ox = QLY+ O7{df}
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The way we check we found all torsion elements is to check that the module above
is torsion-free. Similar calculations yield that

Q2{1, wy, wo} + 2 {dwy, dws}
Q3 f} + 25{df}

03 =

We now describe generators for wﬁ;ﬁ . In [6, Example 6.9], it was shown that the
generators for z‘*wﬁ( are given by

=1 =1 =1 =1 ~1 _
00— NO— Adz A dw and (zla—Q/\af+z28—/\8
U}l w2 w1

) ANdz A dw,
w1 w29

1
2
wy

where dz = dz; A dze and dw = dw; A dws. These correspond to intrinsic objects in
wg(, which can be considered as differential operators, and in view of the formula

1 - 1 D 1 w( ) 1 gmitma
Vvwy= ——
(2m1)? w;"l*l w;’”“ mylma! Qwl™ dwy*

P

9’
w=0

they correspond (up to constants) to the form-valued differential operators
0 0
dz1 ANdzold and dzqy ANdzg | 21— + 29—
Jwn Ows

followed by restriction to Z.

By a similar calculation as in [6, Example 6.9], one can obtain also generators for
i*wﬁgfj for p=1,2. Indeed, if (E, f) is a locally free resolution of 2%, then wi{” is
generated by all currents of the form £€RE, where ¢ is in e f3 and RYP is the part
in Hom(Fy, E5) of the residue current associated to (E, f). To calculate ¢ RY, by the
same argument as in [6, Example 6.9], if (F, g) is the direct sum of ry copies of the
Koszul complex of (wf, w3), where ro = rank Ey = rank £7,, and a: (F,g) — (E, f)
is a morphism of complexes such that ag: Fy — Ey is the identity, then

. =1 =1
REh = ay(he) NO— AN O—;.
3 2 5“2( 6) w% ,w%

With the help of the software Macaulay2, we could calculate the morphism as and
generators for . f3, and could thus calculate generators for i*wﬁ("’ . The sheaf
W is generated by

=1 =1 =1 =1
dz1 AN dwy ANdwg NO— NO—, dzg ANdwi Adws NO— NO—,
wa w1 w2 w1
=1 =1
((zow1 4 z1w2)dza A dwi A dwy + wiwadzy A dze A dwa) AN O—5 A O—;,
w3 wy
-1 -1
((Zle + lez)dzl A dwy A dwg + wiwadzy A dzg A\ dwl) A 872 A 872,
wy wy
=1 =1
(ngzl ANdzg A dwy — z1dzy Ndzo A dwg) NO— N O—.
w2 w1



36 M. ANDERSSON, R. LARKANG, M. LENNARTSSON, H. SAMUELSSON KALM

These correspond (up to constants) to the differential operators

dzld,  dzld,

0 d
dzo (22% + ZlTw) +dz1 ANdzo N (d’le)7

0 0
dz (22({‘)7102 + ZlTu@) +dz Ndze A (dwgJ),

zodz1 N dzg N (du}gJ) — z1dz1 ANdzo N (dle)

followed by restriction to Z. Finally, the sheaf i*wg( is generated by

=1 =1
dwy A\ dwy N O— N O—,
w9 w1
= =1
((Zzwl + lez)d’wl A dws + wiwadze A dwy — wiwadzy A de) AOD A 672,
w. 'LUl

mm‘ =

=1 =1
(zldzl A dwgy — z9dz1 A\ dwl) ANO— NO—,
w2 w1

=1 =1
(ZleQ A dwg — z9dzo A\ dwl) NO— N O—.
w2 w1

These correspond (up to constants) to the differential operators

Id, Zzaiw2 + Zlaiwl +dzy A (dwzJ) +dz A (d’le)7

dz N\ (Zld’le + szwgJ), dzo N (Zld’le + szwgJ)
followed by restriction to Z.

We conclude this paper by putting the calculations of W% into the context of
Noetherian differential operators. Let as before i: X — D C CV be defined by
J and Z = Z(J). Recall that a holomorphic differential operator L: Op — Oy
is Noetherian for J if Lo = 0 for any ¢ € J. A set {£;}; is a complete set of
Noetherian operators for J if ¢ € J if and only if £;¢ = 0 for all j.

Assume that Z is smooth and that (z,w) are coordinates such that Z = {w =
0} and let w: D — Z be the projection 7(z,w) = z. Given a set of generators
p=(p,---,pm) of WY T we construct a complete set of Noetherian type operators
08 — 27 (acting as Lie derivatives) for J? in a way similar to the construction of
the mapping T in Section 3.3. Take M > 0 large enough so that w®u; = 0 for all j
if |of > M. We set

Lja: 20— 2%, Ljap=m(we Aiwpy);
that L;.p € (27 follows as in Section 3.3. Moreover, ¢ A i,u; = 0 if and only if
T (w¥pAdyp;) = 0 for all . Since Hzep* is the annihilator of p and Hee, i* N QL =
J?, see the proof of Corollary 3.10, it follows that Lja, j =1,...,m, |a| < M, is a
complete set of Noetherian operators for JP.
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Residues of singular differential forms
on complex submanifolds

MATTIAS LENNARTSSON

Abstract

In this short note we investigate integration of differential forms which are
singular along a complex submanifold.

1. INTRODUCTION

Let X be a complex manifold of dimension n, Y C X a submanifold of codimension x and w a differential
(n, n)-form which is smooth on X \ Y. Our aim is to make sense of divergent integrals on the form

Such problems arise for instance in distribution theory and lead to notions such as the finite part and
the principal value of an integral.

In this short note we will consider forms w of the following form: We assume that there is a section
s : X — E of a hermitian vector bundle (E,|-|) — X such that {s = 0} =Y, ds has rank x on Y
and |s|?Nw is smooth on all of X, for some integer N > 0. This means that s generates the ideal of all
holomorphic functions which vanish on Y. Integrals of such forms show up naturally in modern physics,
e.g. in perturbative string theory and renormalisation quantum field theory. The special case when Y is
a hypersurface has been considered by [Wi], [FK] and by ourselves in [ML]. In [FK2] is considered the
more general setup of real submanifolds. We will reach similar results and we use our special setup to
get easier proofs and somewhat more explicit formulas.

Our approach is inspired by the theory of residue currents. Let £ be a test function on X. We
regularise the integral (1) by defining

F(w,6, 52, \) = /X 5| (2)

for A € C with Re()\) > 1. For such values of A the integrand is smooth and compactly supported, the
integral is well-defined and F' is holomorphic in A. The following theorem gives a further description of
the function F.

Theorem 1.1. The function F, defined in (2), has a meromorphic continuation to Re(\) > —e, for
some € > 0, F has poles at A = 0,1,...,N — 1 and the pole at X = 0 is of order at most one. The
Laurent expansion of F at A =0 is

1
F(w,&ls1%0) = 3 Cilw, |5%).€ + Co(w, |s[*).€ + O(IA])
where the Cj(w, |s|?) are currents on X.

Suppose that || - || is another metric on E and define F(w,&,]s]|?,\) analogously as for | -|. The
function F(w,&, ||s]|?,A\) also has a pole at A = 0 of order at most one and we denote the current
coefficients in the Laurent expansion by C(w, ||s||?) and Co(w, ||s||?). Then



(i) Ca(w,|s]*) = Cu(w, [1s]1?),
(i1) Co(w, s[2) = Cofw, [112) + Ca (e /2 log {2Fs.
Remark. (1) If |s|*Nw is smooth for N < , then w is integrable. In this case C; = 0 and Cy.§ = [, wé.

| 2

5 is not smooth but it is part of Theorem 1.1 that we may multiply C;(w, |s|?)

(2) The function log HlZH
by it.

In the case that w has compact support Theorem 1.1 gives us one way of making sense of the integral
Jx w, namely as Co(w, |s|?).1. However, this does depend on the choice of metric in accordance with
Theorem 1.1 (ii).

By Theorem 1.1 (i) we may now write C;(w) := C1(w,|s|?) since this is independent of the choice
of metric. We also see that the way the coefficient Cy(w, |s|?) depends on the metric is determined by
C1(w). The next theorem describes C (w).

Theorem 1.2. Let € be a test function on X. If|s|**w is smooth in X then there is a smooth (n—k, n—k)-
form res(w) on'Y such that

Cy(w).E = n(27ri)"/ res(w)é.

Y

If |s|*Nw is smooth in X, for N > & then there is a de Rham cohomology class Res(wg) € H"~*m=r(Y)
such that

Ci(w).£ = K(?ﬂi)“/yRes(wf).

Remark. In the first statement of Theorem 1.2 res(w) is the differential form @, defined below in Lemma
2.1 (a), restricted to Y. In the second statement Res(w&) = [res(|s|2"Q(|s|*Yw&))] where @ is a
differential operator on (n,n)-forms of order 2(N — k) and the square brackets denote the de Rham
cohomology class. The differential operator @ depends on the choice of local coordinates and a partition
of unity but the de Rham class Res(w§) does not.

In the case that X is compact, given |s|? and w as above it follows from the above results that the

following
/ w = lim (/ |s]Pw — m/ Rcs(w))
X,|s|2 A—=0 b'e A Y

is well-defined. This is one way of making sense of the integral we started with. It depends on |s|?; if
|s|? is replaced with ||s||? = f|s|?, for some positive function f, then

/XvHslP “ ./)qs‘z w = Cr(w)log(f)-1.

2. PROOFsS

Proof of Theorem 1.1. We shall consider somewhat more general regularisations than (2). Let o : X — E
be a section of a hermitian bundle (E, ||-||) such that {c = 0} = Y and do # 0 on Y. This does not imply
that ||o|>Nw is smooth, but it is bounded. We then define F(w,¢,]|o||?, \) analogously to F(w, &, |s|2, \)
but with |s|? replaced by ||o||2.

Let 7 : Bly(X) — X be the blow-up of X along Y. As |o||**w¢ is integrable for Re(\) > 1 and 7
is biholomorphic outside a null set we have

F& ol = [ a0l (w) for Re(¥) > 1.
Bly (X)



Both 7*¢ and 7*s define the smooth hypersurface D := 7~1(Y). We take a partition of unity {p,}
on Bly (X) subordinate to coordinate charts {U,, z,} such that locally the hypersurface D is given by
2,1 = 0. Therefore locally ||7*c||? = |2, 1|?¢~% and |7*s|?> = |2, 1|?e™¥: for some locally defined smooth
functions ¢, and 1,. Notice that |7*s|?" 7*w is smooth and so it follows that ||7*c||?N 7*w is also smooth.
We now have

zo1 |Vt (w)p,  for Re(\) > 1.

2,11 ot
Flo,& o], ) Z/ ] oo
|21
Dropping the index ¢ for the moment we have

‘21‘2)\ _ h(/\) aZNfl <|Z1|2)\)

[222Y & 92N 1aEN &

where B(A) = (A—1)%--- (A= N + 1)2)_1. Notice that & is holomorphic when Re(A\) < 1. Stokes’
theorem now gives

) Jzal? P 9Nt b N
F(w,& [lof*,A) = Z 90 N( 21PN 7* (wE)p,) for Re(\) > 1. (3)
Ly ,1

Denote the integral in (3) by gHUHZ()‘) so that we have

& ol 0) = $h g2 (V) (1)

We see that g, (2(A) is defined and, by dominated convergence, holomorphic for Re(A) > —1/2. Hence
F(w,&,||o]|?,A) is meromorphic for Re(\) > —1/2, has a pole at A = 0, and the order of the pole is at
most one. Furthermore, the function F(w,¢&,]|o]|?,\) has poles at A = 1,2,..., N — 1 coming from the
poles of h. In the view of (4) the Laurent expansion of F(w,¢&, [|o||?,\) at A = 0 is given by

F(w,& ||o]*,A) = %h(o)guaw(o) + (h’(O)gua||2(0) + h(O)g"\Uuz(O)) + O(AD). (5)
We set

Ci(w, [|o*)-€ == 1(0)g)2(0),
Co(w, [|o][?)-€ := 1 (0)gjo12(0) + h(0) ]2 (0)-
and we get that
92N-1

i o) = hO9(0) = 1O S | oy (2l w0n) ©)

and the expression on the right hand side does not depend on the metric. This proves (i).
Now we look at the coefficient Cy(w, [|o|?). Differentiating g2 gives

J 2()\)22/ log |z,1[%|z,4|* 92V 7! (e=9>
Il ~Ju, Zu1 azNlozN,

82N—1

\ZL<1|2A —pA ON _x
+ - ——( — ¢, 7|z T (w
ZL /U 21 az{Yl—lazng( G e (@)

za PNt (we)p.)

and letting A = 0 we get
Co(w, [lo]*).6 = h(0 )9)102(0) + 1 (0) g2 (0)

= h(0) Z/ %(MJFNW*(MQ/JL) )
—h<0>Z_/ ;ﬁ(¢/,\z,,,1|2Nw*<w§)p,,) ®)

azN 1

“v’hl Z/l; ZLlaZN la—N(

™ (@E)p.)- (©)



Notice that of (7)-(9) only (8) depends on the metric. Doing the same calculations but using |s|? instead
of ||||? to regularise the integral we get similar coefficients in the Laurent expansion of F(w, &, |s|?, \).
We denote these coefficients by C)(w, |s|?) and Cy(w, |s|?). We then get

a?Nfl

Coler 571 = s )€ = (03 / Zlm(\zhn”(@fwﬁ)n*wg)pl,)
3 1 “u,1

8N—1 |7T* |

=" Z/ errriar=A G o )

= O ol oz e
lloll?
where the last step follows in view of (6). In pau"ticulaur7 choosing E=FEando=s we get the statement
in (ii). Finally, (6) also shows that C1(w, ||o||?) is the push-forward of some current T on Bly (X). The
product C (w, ||o||?) log ””HQZ should be interpreted as C; (w, ||o||?) log H‘U‘IP =7, (Tlog H‘: ;‘Hz) Then the
last step of the final calculation shows that this is well-defined.

Remark. (1) The proof of Theorem 1.1 shows that given w such that |s|?"w is smooth we may regularise
F with any section o such that {o =0} = {s =0} =Y and do # 0 along Y.

(2) One may show that F' has a meromorphic continuation to C.
To prove Theorem 1.2 we need a lemma. Around a point in Y we pick local coordinates (z,w) of

X such that Y = {w = 0} and a local frame {e;} of E such that s =}, s;e;. Let H be the hermitian

matrix defined by |s|? = (sj)tﬁ (57). Since both w and s define the ideal of Y there is a holomorphic
matrix A such that (s;) = Aw'. Letting H = A'HA we get

|s|? = w'Hw (10)

and H is a hermitian (k x x)-matrix of rank .

Lemma 2.1. (a) If |s|*"w is smooth then there is a smooth (n — k,n — K)-form @ in a neighbourhood
a 2
of Y such that w = (dlas“i‘ ) A

(b) There are real local coordinates (ti,...,tan) for X such that Y = {t1
|sf* = 8 +--- + 83,

= 0} and

(c) For the “local Laplacian” Ay = 27 1 6f2 we have
ALs"OH) = d(3)[s20=5-0

where dN) = A —k)- - A=k —L+ 1A=k —1+k)-- A=k —€+K). (Here AY means £
applications of Ay.)

Proof. (a) Let (z,w) be local coordinates in X such that Y = {w = 0}. By assumption we can write

/

for some smooth function w’. We also have (éﬁ\s|2)“ = tx!det(H)dw A dw on Y; where H is the
hermitian matrix defined in (10). Therefore (99]s|?)" = (k!det(H) + O(|w| )dw Adw + O(dz,dz)
where O(dz,dZ) means any terms containing some dz; or dz;. Hence (99|s[*)" A dz ANdz =
(k!det(H) + O(|w]))dw A dw A dz A dZ and therefore (99]s|?)* (k! det(H) + O(|w]))~ 'de A dz =
dw A dw A dz Adz. Thus

w—dw/\dw/\ dz/\dz

/

w = (00|s|*)" (k! det(H) + O(\w|)) e ANdz Adz



and we may choose @ = (k!det(H) + O(|w\))71w’ Adz AdZz (or rather a sum of such expressions
using a partition of unity).

(b) We write z and w in real local coordinates w = u + iv and z = z + iy. By noting that w'Hw =
w'Re(H)w and in view of (10) we get

o=l | et [

Therefore the real Hessian of |s|? has rank 2k on Y. By the Morse-Bott lemma there are real
local coordinates t1,...,ts, for X such that |s|? =2 + ... +13,.

(c) Using that |s|? = Z?ll t% we have

2
%M%HJ = (A= B)A— = 1)[sPOR24g2 4 (A — k)[s[2A+Dg
J

and
AfsP7E = (A= B)A = k = D)[sP 75D 4 k(A = k)|s[XA 74D
=M=k —k—1+5)s> A1,
Tterating this gives part (c) of the lemma. |

Proof of Theorem 1.2. First we suppose that |s|>*w is smooth and let x be a smooth function which is

identically 1 in a neighbourhood of Y in which w =@ A (5%52'2 )KA Then

82)\ — S2/\ 32)\ _ 11
/quf /qux§+/x||w<1 Ve (11)

and the second integral is holomorphic in A close to the origin and therefore does not contribute to C; (w).
We need the following two identities, valid for Re(\) > 1;

_ - o1 Jls|?>  0|s[2  00|s[F\r—1

8ls|** A dlog|s|? A (BOlog]s|?) :/\\5\2)‘%/\ \L|‘2 /\( |S|‘2‘ ) , (12)
. 5 5 k-1 99s|>\* dls|>  9ls|? 00|s]?\x—1
ifs#0: 6(010g|5\2/\(8810g|s\2) ):( |s|2‘ ) - K ‘L|‘2 A |L‘2 /\( ‘5“2 ) . (13)

They are straightforward to prove by applying the left-most 0 in both cases and then noting that

ols|*  dls|®
A

dls|>  9ls|? A0|s|?\ -1
s " s - < )

A (801og [s)?)"
010810y =T A o Ul
Multiplying the identity (13) with |s|?* it holds, in the sense of currents, on all of X if Re(\) > 1 and

it then says

2)5 2, (5 a1\ _ | _1ox (008 " o Ols|®  dls|? D05\ w1
|s| 8(010g|3\ A (001og|s|?) )7|s\ ( EE ) Kls| o2 A e /\( EE ) . (14)

Using (14) and (12) we get

dls|>  9|s|? (58|s\2)'<*1
A

K = = k—1
~8|s|** A dlog|s|? A (8D log |s|? = k|s|?
5 (91cgel) o T e

L. ) ) .
:\SI”(G@"Z' ) —|s\2*a(mog\s|2A(aalog|.s\2)“ 1). (15)



5 2 <
By Lemma 2.1 (a) and by our choice of the function x we can write w = (Oi\‘zl )h A @, with @ smooth

in some neighbourhood of Y. Using this and (15) gives

00 -
[ s = [ 1 (R e

- X/ d|s[** A dlog|s|* A (09 1og |s\2)'€71 A X@DE (16)
X

+/ \slng(alog\sﬂ2 A (87310g\s|2)'€71> A XWE. (17)
X

The integral in (16) is studied in [And, Proposition 4.1 and 4.3]. It is holomorphic in A for Re(\) > —
for some € > 0, and its value at A = 0 equals £(271)" [,, &€.

We claim that the integral (17) does not contribute to C(w). To see this it suffices to prove that it
is holomorphic in A close to A = 0. Let m : Bly (X) — X be the blow-up of X along Y as before. Locally,
7*s = 28’ where s’ # 0 and hence ddlog|7*s|> = ddlog|z1|* + ddlog|s'|* = mi[z1 = 0] 4+ DD log|s'|>.
The form 99 log |s'| is the first Chern form of the bundle 7* E, up to some constant, in particular it is a
global form on Bly (X). For Re()\) 3> 1 we have |7*s|**[2; = 0] = 0 and therefore

|7r*s\2>‘5<810g |7*s)? A (90 1og |7r*s|2)K71> = |n*s[**(981og |s'|*)"
which is integrable for Re(\) > —1/2. Hence, the integral (17) becomes
/ |7 s|?* (00 1og |s'[2)" A 7" (x&€) (18)
Bly (X)

which is holomorphic in A for close to A = 0. Therefore the integral (17) is holomorphic in A and does
not contribute to C;(w). Summing up the only contribution to Ci(w) comes from (16) and

C1(e) = wemi)” [ G

since x = 1 on Y. This gives the first part of the theorem with res(w) = @y

Now we suppose |s|?Vw is smooth with N > x. By Lemma 2.1 (b) there are local coordinates
(t1, ... tas, 7) around every point in Y such that |s|?> =2 + --- 4+ t2,.. Let {p;} be a partition of unity
chosen so that we may find such coordinates in every supp(p;). We will use the local differential operator
A defined in Lemma 2.1 (¢). Recall that Af|s|?A=%) = d(\)|s[**—#=0 with d(0) # 0. Letting { = N —x
we get

/Pt = / SPA=F=02N ) ¢
/X s Z [1s 15Y p,
1 —K
_@Z/ AL (Is]PA= ) [s|*N pjwe
j JX
1 —K
= a0 22 [ O (1 ).
J

We define a global differential operator on (n,n)-forms 1 acting as Lie derivatives by

Q(y) =d(0 ZAZ '1/)/)]

which obviously depends on local coordinates and the partition of unity. Letting w’ = |s|~2%Q(|s|?Nw¢)

we have
d(0)
s P :7/ S
_/XH e= g [



and |s|?%w’ is smooth. Therefore the calculations in the proof of the first part of the theorem now gives

Ca() € = w(zmi)® [ xes(jal Qs wg)).
Y
If Q' is another differential operator constructed in the above way we get
/y ves |5 2QUIs*Vwg) ) - ves 15| 2Q(|sVw€) ) = C1(w)-€ — Cu(w).£ = 0.
Since ¢ is a test function both res(|s|~2*Q(|s|*Nw¢)) and res(|s|2*Q’(|s|*"w¢)) have compact support

and thus by Poincaré duality [res(|s|~2%Q(|s|*Nw¢))] is a well-defined de Rham cohomology class on Y.
This proves the second claim of the theorem with Res(w¢) = [res(|s| =2 Q(|s|*Mw¢))]. O
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