[
),

)} CHALMERS |

UNIVERSITY OF TECHNOLOGY

¥ UNIVERSITY OF GOTHENBURG

A testing technique for conflict-resolution
facilities in software configurators

Bachelor of Science Thesis in Software Engineering and Management

EVGENY GROSHEV

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2020

CHALMERS |) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

The Author grants to University of Gothenburg and Chalmers University of Technology
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the
Work does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for
example a publisher or a company), acknowledge the third party about this agreement.
[f the Author has signed a copyright agreement with a third party regarding the Work,
the Author warrants hereby that he/she has obtained any necessary permission from
this third party to let University of Gothenburg and Chalmers University of Technology
store the Work electronically and make it accessible on the Internet.

A testing technique for conflict-resolution facilities in software configurators

© EVGENY GROSHEV, August 2020.

Supervisor: Thorsten Berger
Examiner: Richard Berntsson Svensson

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering
SE-412 96 Goteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2020

A Testing Technique for Conflict-Resolution Facilities in
Software Configurators

Evgeny Groshev
University of Gothenburg
Gothenburg, Sweden

1 INTRODUCTION

Variability modeling and feature models are important concepts
in the context of software product lines, where a large number of
individual products can be generated from the total set of available
configuration options (features). Configuration tools utilise fea-
ture models to check validity of product configurations and detect
anomalies such as conflicts, dead and false-optional features.

These research concepts have been shown to map well to the
Linux kernel project and its feature modeling language Kconfig,
which is also used by a number of other open-source projects [7, 8].
The Linux kernel configurators use Kconfig internally but lack
support for automated conflict-resolution, therefore making kernel
configuration a challenging and error-prone process [12].

The recent years have seen substantial progress in the develop-
ment of conflict-resolution algorithms based on constraint satis-
faction problems (CSP), and in translation of the input variability
models into Boolean form required by such algorithms [9, 15, 21].

Research problem. However, little is known about evaluation of
conflict-resolution algorithms for their use in the real-world con-
figuration tools. We have the algorithms but we need a systematic
way of ensuring that conflict fixes calculated by any such algo-
rithm lead to new valid configurations — the opposite would not
improve the current state, and possibly even make it worse. The
need for additional studies has been identified with connection to
the RangeFix algorithm [21] and its use for Kconfig [15]. Among
others, identified research directions included evaluation of this
algorithm involving real users [21], and its integration with the
Linux kernel configuration tool [15].

Purpose of the study. To address this knowledge gap, we conduct
a design science study that investigates how conflict-resolution
algorithms can be evaluated for their use in software configurators.

We aim at coming up with an approach that will allow to evalu-
ate such algorithms in an experimental setting. By evaluating we
mean capturing data pertaining to the implemented functionality
in order to measure and understand its correctness, and to improve
its quality.

Research questions. The main research question addressed by this
study is the following:

RQ1. How can conflict-resolution algorithms for soft-
ware configurators be evaluated?

This question is related to conceiving a suitable testing technique
for conflict resolution. When such technique is in place, we hope
to additionally address the following question:

RQ2. What is the correctness of the selected conflict-
resolution implementation?

To answer these questions we propose a black-box testing technique
that allows evaluating conflict-resolution algorithms. We then in-
stantiate this technique for a particular configurator (xconfig) and
a particular algorithm (RangeFix), and evaluate it it practice.

Significance. As seen from the design science viewpoint, the re-
search problem of this study can be linked to a larger practical
problem [13] within the practice of software configuration. The
practical problem is that of conflict-resolution for software config-
urators, as confirmed by Linux community survey results in [12].
Not only the practical problem mentioned above is related to this
global practice [13] — its relevance has also been established for
research areas of software product lines, feature modelling and
variability analysis.

The anticipated results of this study may benefit researchers in
the fields of variability modeling and automated variability analysis,
and designers of configuration tools. Secondly, we expect it to be
useful to the users and the developers of software configuration
tools.

We hope that the results of this study will contribute to the
configuration practice by improving conflict-resolution. We also
hope that the results will useful for the ongoing research related to
feature modeling, configuration tools, and conflict resolution.

Report structure. The remainder of this report provides a back-
ground to the research problem (Section 2), explains the used
methodology (Section 3), and describes the proposed evaluation
technique (Section 4.1). Its implementation in practice is demon-
strated in Section 4.2, and Section 5 presents the results of evalu-
ating the technique for testing the RangeFix algorithm. Section 6
discusses the limitations of the proposed technique together with
possible directions for future research. Section 7 concludes the
report.

2 BACKGROUND
2.1 Variability modeling

The research problem of this study fits into the context of software
product line engineering, where variability models are used to de-
scribe common and variable aspects of the product variants, which
may target different hardware, market segments, contexts of use etc.
Having a way to model variability of a given product line allows
to automatically validate its variant configurations (i.e. features
selected therein), detect conflicts and dead features, and to sup-
port users of configuration tools (configurators) by implementing
automated conflict resolution.

Feature modeling languages is one of the approaches to variability
modeling, where available product features are expressed in tree-
like structures. In such models, features can be mandatory and

A Testing Technique for Conflict-Resolution Facilities in Software Configurators

optional, and configuration choices may be limited by group and
cross-tree constraints.

Feature modeling is a long-lived topic within the research liter-
ature, with well established concepts like automated detection of
model anomalies, validity checking of configurations, and conflict-
resolution by decision propagation [6, 16].

Although well established in research, automated reasoning for
resolution of configuration errors is not fully realised in real-world
highly configurable systems [7]. Real-world configurators succeed
at detecting configuration conflicts but challenge their users by pre-
senting inconsistent resolution advice, making it hard to determine
minimal configuration, and to enable inactive features [12].

2.2 Kconfig

The Linux kernel is an open-source project started by Linus Tor-
valds in 1991, aimed at creating a monolithic Unix-like operating
system kernel that is compliant with POSIX and Single Unix Spec-
ification [4]. The project’s main development language is C but
other languages are used for scripting and build infrastructure
(Perl, Python, GNU make).

Today, the Linux kernel has been ported to many different plat-
forms including mainframe, server, smartphones, and embedded
devices, and as such, the kernel represents a highly-configurable
software. More that 500 operating system distributions based on the
Linux kernel exist [3], which target different user groups, device
types, and architectures. Moreover, it is possible to configure and
build the kernel for a device of virtually any size and architecture. In
that regard, the kernel is a family of products, and can be considered
a software product line (SPL), despite that its development process,
led by a "a loosely-knit team of hackers" [4], does not follow the SPL
guidelines [19]. Its variation points include hardware architecture,
device drivers, and specific features and implementations divided
into subsystems, which can be additionally fine-tuned during the
configuration process.

The Linux kernel project uses the Kconfig language to describe
the available configuration options (symbols). The semantics of
the language is defined only informally [1] though researchers
attempted to formalise it [18] and to analyse its consistency [11].
Correspondence between feature modeling concepts and Kconfig
was established in [20], and the analysis was expanded in [7].

The Kconfig syntax includes keywords that allow defining con-
figuration options (config, menuconfig), structuring them (menu,
choice, if), and displaying additional information (mainmenu, com-
ment). The kernel feature model is modular, with more than 1400
files representing different subsystems and features linked in a
top-down manner using the include keyword.

The kernel configuration options are organised into a tree struc-
ture, which the Kconfig documentation ambiguously calls "configu-
ration database", "configuration files", and "menu"; the configuration
options are often called "menu entries" [1]. This overlaps with other
concepts and keywords and may cause a significant confusion for
a novice.

Depending on their purpose, Kconfig menu entries can have
various attributes to specify their type, default and allowed values,
help message, input prompt, and dependencies on other symbols.

Evgeny Groshev

Majority of the symbols have boolean and tristate logical value
types, and strings and numerical values are used to a less extent.

A simple Kconfig example is given in Figure 1. In this configura-
tion space, all symbols in group 2 can only be selected if symbol
A, which defauls to "no", is enabled. Additionally, symbol D is only
available if B is inactive, and C is selected.

mainmenu "Example menu"

menu "Group 1"
config A
bool "Option A"
default n
config B
bool "Option B"

endmenu

menu "Group 2"
depends on A
config C
tristate "Option C"
config D
bool "Option D"
depends on !B && C

endmenu

Figure 1: Example Kconfig file

2.3 Kernel Configuration

The Kernel build system (Kbuild) is a collection of files and tools
used for generating concrete kernel variants. It includes Kconfig
files (describing the kernel configuration space), configuration tools
(used to create a concrete kernel configuration), and makefiles
(compiling the code based on given configuration and linking it
into a runnable kernel image).

The first step needed in order to build a kernel is kernel config-
uration which results in a configuration file, called .config. It is
important to distinguish between this file and the kernel configura-
tion space (represented by Kconfig files), especially since both are
sometimes misleadingly called "configuration".

Kbuild offers a number of configurators that rely on the same
backend code for parsing Kconfig and . config files and dependency
checking [20], but use different frontends that differ significantly
with respect to the granularity of user choices. The options range
from fully interactive graphical user interfaces (xconfig, gconfig) to
more constrained text-based user interfaces (menuconfig, config)
to fully automatic .config generation based on default choices
(localyesconfig, allnoconfig) or even random values (randconfig) [2].
Technically, these configurators are separate executables and as
such may demonstrate differences in the behaviour.

Besides relying on a default or random symbol selection, users
may control the configuration process interactively, by manually

A Testing Technique for Conflict-Resolution Facilities in Software Configurators

creating or reusing existing . config files, and by setting environ-
ment variables like KCONFIG_ALLCONFIG and KCONFIG_PROBABILITY,
which would affect the automatic configurators.

When a valid . config file is present, it is possible to build an ex-
ecutable kernel module that will include the selected configuration
options.

2.4 Conflict resolution

The Kconfig dependency checking algorithm is only sparsely doc-
umented. The documentation [1] provides rules for calculating
symbol values and visibility, but omits implementation details that
can be crucial for the user.

For example, the Kconfig backend maintains two values for every
symbol: the externally set (for example, by the user or in a pre-
created .config file) and the calculated value (which is saved in
.config when a configurator terminates). The external choices only
propagate to the calculated values only in the absence of conflicts.
This is definitely a desired property from the validity point of view
but may be confusing from the usability perspective.

Consider an example configuration presented in Figure 2. Ac-
cording to the configuration space (Fig. 1), the symbols B and D
cannot be selected at the same time, and the configurator will re-
solve this conflict by disabling and hiding symbol D, giving the user
little choice on the matter.

CONFIG_A=y
CONFIG_B=y
CONFIG_C=y
CONFIG=D=y

Figure 2: Conflicting configuration

This silent disregard for some of the user choices without pre-
senting options for conflict resolution poses a serious problem for
the actual kernel model, with thousands of features and numerous
cross-tree constraints.

On the other hand, even when a desired option is visible in the
configurator, enabling it might still be a challenge due to complex
dependencies. The configurator will prevent selecting a disabled
symbol if that would lead to a conflict with the currently active
feature selection — again, without providing clear guidance.

Lack of automated conflict-resolution and insufficient guidance
were among the main kernel configuration challenges identified in
the survey conducted by Hubaux et al. [12].

2.5 RangeFix

In this context, when the Kconfig dependency checker makes literal
conflicts unlikely, conflict resolution means finding a solution that
would allow enabling one or several symbols that are blocked by
the current configuration. Such a solution would typically require
changing the choice of several other symbols. One such algorithm,
dubbed RangeFix, was proposed in [21], and its feasibility for use
in kernel configuration was studied in [15].

One of the main advantages of this algorithm is producing a list
of configuration options that must be changed in order to resolve a

Evgeny Groshev

conflict — together with a range of values for every such option, al-
lowing for for a more compact representation of conflict-resolution
choices. The fixes themselves are generated based on unsatisfiable
cores that can be calculated by a constraint satisfaction problem
(CSP) solver.

Besides correctness, designers of the algorithms pursued the
following properties for it [21]:

o Generating a complete set of fixes.
e Minimal number of options included in conflict fixes.
e Maximal range of option values leading to conflict resolution.

In this study, we focus on evaluating the RangeFix algorithm
implementation that was developed by Patrick Franz during his
master’s thesis project [10].

3 METHODOLOGY

This study joins a larger ongoing design science research [10, 15],
and follows the framework described in [13]. It focuses mainly on
the evaluation activity of that framework, because the practical
problem being addressed is well-understood (see Section 1). The
high-level requirements for its solution have been elicited in [7, 12],
and the more detailed requirements for RangeFix integration were
reported in [15].

RQ1. To answer this question, we focus on evaluation of the
selected RangeFix implementation, and to do that, we are develop-
ing a secondary artefact. We are instrumenting the xconfig Linux
kernel configurator with a mechanism to introduce conflicts and
to apply fixes produced by the conflict-resolution algorithm. We
then use the internal dependency checking functionality of Kconfig
to validate the generated fixes. This artefact will be demonstrated
in section 4 of this report, and it will be evaluated by using it to
answer RQ2.

RQ2. After completion of the artefact development, we plan to
study the correctness of the RangeFix implementation by conduct-
ing an experiment. Since exhaustive testing of all possible Linux
configurations is not feasible, we plan to use one of the available
product sampling algorithms to generate a set of conflicting con-
figurations [5, 14]. During this step, we plan to collect quantitative
data about the correctness of the RangeFix implementation.

This data will be further analysed by calculating the conflict-
resolution accuracy of the implementation. Additionally, depending
on the initially discovered patterns, we may also employ some forms
of regression or correlation analysis — for example, to identify
trends in conflict-resolution depending on the characteristics of the
product samples.

4 TESTING TECHNIQUE

We propose a technique for quality assurance of conflict-resolution
algorithm implementations that target software configurators for
highly configurable systems. After giving a conceptual description
of the proposed technique we then instantiate it for a conflict-
resolution feature based on the RangeFix algorithm developed by
Xiong et al. [21]. Patrick Franz, Sarah Nadi, Thorsten Berger, and

A Testing Technique for Conflict-Resolution Facilities in Software Configurators

Ibrahim Fayaz adopted, implemented !, and integrated ? this algo-
rithm into one of the Linux kernel configurators, xconfig [10].

4.1 Conceptual Description

The proposed testing technique comprises the following distinct
steps.

(1) Sample configuration space. Thorough testing of a conflict-
resolution algorithm requires that we collect representative
real-life configurations, or generate random configurations,
where a configuration is a set of enabled features.

These configuration space samples should provide enough
coverage of the features contained therein. This implies that
all important variation points (such as hardware architecture)
in the configuration space must be considered.

Introduce conflicts. For every sample, a number of random
configuration conflicts must be generated. Configuration
conflicts are selections of candidate options together with
their wanted values, where a candidate is a option whose
value is locked by the current configuration. Changing the
value of such candidate may be non-trivial and require recon-
figuration, which involves other dependent options, — hence
the need for automatic conflict resolution.

Therefore, when selecting conflict candidates we must check
whether their values are locked. A reasonable way to in-
troduce conflicts is to iterate the configuration space and
randomly select a reasonable number of such candidates,
and to obtain their desired values by inverting their current
values.

Number of conflicts and their size can be adjusted based on
the initial performance measurements of the implementa-
tion in order to find a balance between test coverage and
feasibility.

Run the algorithm. For every conflict, run the algorithm. The
configuration sample and the conflict will be inputs to the
algorithm, which will either produce one or several configu-
ration fixes or report that the conflict cannot be resolved.
Validate fixes. A fix is a list of configuration options together
with their target values. Besides the conflicting options them-
selves, generated fixes will necessarily include some addi-
tional options whose values must be changed in order to
set the former to the new, desired state. These additional
options, which may be too hard to reconfigure manually,
constitute the very nature of a configuration conflict.

For every fix returned by the algorithm, this step involves
applying this fix to the sample configuration and verifying
whether that it at least satisfies the following properties:

(a) user needs shall be satisfied i.e. the conflicting options

selected in step 2 will have received their target value;

(b) product configuration after fix application shall be valid;

(c) no unnecessary changes shall be made to the product

configuration.

@

~

3

~

(4

~

These steps convey the general requirements for application of
the technique.

Lhttps://bitbucket.org/easelab/configfix
2 https://github.com/vaasu/linux/tree/satconfig_gui_rebased_against_patrick_code_
13jun2020

Evgeny Groshev

e A variability model of the configuration space, which will
also most likely be a prerequisite for any serious conflict-
resolution feature.

o A software configurator with reconfiguration support.

e An implementation of a conflict-resolution algorithm that is
integrated in the configurator.

The next section demonstrates a concrete implementation of the
proposed technique for a real-life software configurator.

4.2 Implementation for the Linux Kernel

We have used the approach described above to test an implemen-
tation of the RangeFix algorithm [10]. Below, we use the terms
algorithm and implementation interchangeably, and they both mean
the implementation in question. The steps taken to apply the testing
technique in practice were affected by the properties of the Kconfig
backend.

4.2.1 Sample configuration space. The Linux kernel configuration
space is represented by Kconfig files in its source tree, and a concrete
configuration can be created using some of the kernel configurators
(see Section 2.3). Such configuration can be saved in a . config file
and later re-used, which is exactly what we need for testing the
algorithm. Obtaining representative real-life . config files is not
feasible due to the large variability of target architectures, hardware
platforms and components that must be covered. Instead, we obtain
.config samples by using the randconfig configurator. We consider
these samples representative, because randconfig is one of the offi-
cially supported configuration tools, and as such, we expect it to
have some real-life usage together with other kernel configurators.

However, some kernel options depend on the target hardware
architecture. By default kernel configurators use the architecture of
a host computer, but the Linux kernel supports cross-compilation
(on a host computer with architecture X for target architecture
Y) by setting the ARCH environment variable . In order to achieve
proper test coverage, we utilise this feature to generate configura-
tion samples for every supported architecture by the kernel. We
set the ARCH to each of the 20+ supported architectures * before we
run make randconfig, and we use a shell script to automate this
process°.

Table 1 shows the list of architectures for which we generated
configuration samples, together with the number of options avail-
able in the corresponding configuration space. It is clear that the
kernel has a separate configuration space for every supported ar-
chitecture.

4.2.2 Introduce conflicts. Our initial idea was to introduce configu-
ration conflicts by generating random . config files with conflicting
options, and by using the Kconfig backend to parse these files, —
in other words, generate both the configuration sample and the
conflict therein at the same time. We were then going to apply
the RangeFix algorithm to such invalid in-memory configuration.
However, the properties of the Kconfig backend mentioned in Sec-
tion 2.4 make it impossible to add conflicts in this manner without

3 https://www.kernel.org/doc/html/latest/kbuild/kbuild html#arch

4 https://git kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/arch?h=v5.3
5 https://bitbucket.org/easelab/configfix/src/cftestconfig/code/scripts/kconfig/gen
config.sh

https://bitbucket.org/easelab/configfix
https://github.com/vaasu/linux/tree/satconfig_gui_rebased_against_patrick_code_13jun2020
https://github.com/vaasu/linux/tree/satconfig_gui_rebased_against_patrick_code_13jun2020
https://www.kernel.org/doc/html/latest/kbuild/kbuild.html#arch
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/arch?h=v5.3
https://bitbucket.org/easelab/configfix/src/cftestconfig/code/scripts/kconfig/gen_config.sh
https://bitbucket.org/easelab/configfix/src/cftestconfig/code/scripts/kconfig/gen_config.sh

A Testing Technique for Conflict-Resolution Facilities in Software Configurators

Table 1: Number of the kernel options depending on the tar-
get architecture

Architecture ARCH value No. options
Alpha alpha 14425
ARC arc 14450
ARM 32-bit arm 15871
ARM 64-bit armé64 14825
TI TMS320C6x cbx 14375
C-SKY csky 14397
H8/300 h8300 14386
Qualcomm Hexagon hexagon 14371
Intel Ttanium (IA-64) ia64 14664
Motorola 63000 m68k 14491
MicroBlaze microblaze 14398
MIPS mips 15117
NDS32 nds32 14423
Nios I nios?2 14409
OpenRISC openrisc 14374
PA-RISC parisc 14392
PowerPC powerpc 15050
RISC-V riscv 14416
IBM System/390

and z/Architecture $390 14510
SuperH 32-bit, 64-bit sh, sh64 14741

SPARC 32-bit, 64-bit sparc32, sparc64 14546, 14545
User-Mode Linux um 14446
x86 32-bit, 64-bit i386, x86_64 14960, 14961
Xtensa xtensa 14444

circumventing the dependency checker, which may be risky from
the correctness point of view.

Instead, we opted for an alternative idea of introducing conflicts
by imitating user actions. To do that, we need a configurator that
allows the user to identify a currently unavailable option and in-
voke the RangeFix algorithm to get a conflict resolution suggestion.
To that end, we use Ibrahim Fayaz’s integration of the target imple-
mentation into xconfig® (Figure 3), and we additionally extend it
with functionality to programmatically select features that conflict
with the current configuration.

Conflict candidates considered by our implementation are limited
to the menu entries that contain prompt text i.e. those for which
xconfig will provide some guidance to the user. This is reasonable,
since prompt-less options are often automatically activated by the
prompt options using forward (depends on) and reverse (select)
dependencies. Among such menu entries, conflict candidates are
the options that cannot be currently changed (enabled or disabled).
Configuration conflicts modelled in this way clearly correspond
to user intent during kernel configuration — adding missing and
removing unnecessary options — which might be blocked due to
the dependencies between options.

© https://github.com/vaasu/linux/tree/satconfig_gui_rebased_against_patrick_code_
13jun2020

Evgeny Groshev

4.2.3 Run the algorithm. After generating a conflict we simply re-
use the available RangeFix integration programmatically. It invokes
the algorithm in order to obtain configuration fixes.

= Linux/x86 5.3.0 Kernel Configuration (configFix testing)
File Edit Option Help

9 = I Il E
Option Name N M Y Value
> @ Google Firmware Drivers GOOGLE_FIRMWARE _ v Y
v EFI (Extensible Firmware Interface) Support
0 EFI Variable Support via sysfs EFI_VARS N N
>-O Register efivars backend for pstore EFI_VARS_PSTORE N N
O Export efi runtime maps to sysfs EFI_RUNTIME_MAP N N
;

Enable EFI Fake memory map (EFI_FAKE MEMMAP)

type: bool
unknown property: symbol
dep: EFI && X86
prompt: Enable EFI fake memory map
dep: EFI && X86
default:n
dep: EFI && X86

Solutions:

Add Symbol N Y Calculate Fixes Remove Symbol Test Random Conflict

Option Wanted value ~ Current value

1 EFI_FAKE_MEMMAP YES NO Symbol New Value

Figure 3: xconfig instrumented with interactive conflict-
resolution and randomised testing

4.2.4 Validate fixes. Any configuration fix that the algorithm re-
turns must be applied — all options included in it must receive the
proposed target value. The resulting configuration must be then
checked in order to verify that these fixes indeed resolve the conflict.
Again, we simulate user actions by programmatically triggering
GUI events that correspond to option selection and value change.

By nature of configuration conflicts any fixes that resolve them
will contain additional options, besides the ones included the con-
flicts. One particular challenge related to such multi-option fixes is
application order. Since fixes to Kconfig configurations cannot be
applied as atomic transactions, they must be applied one option at a
time. The RangeFix implementation under test produces fixes that
include options in an arbitrary order, and, because Kconfig backend
prevents illegal configuration states, a particular application path
may result in new intermediate configuration conflicts [10].

We cope with such potential deadlocks, we do the following:

(1) Generate the permutations of the obtained fixes by enumer-

ating the included options and using the function

std: :next_iteration() from the C++ standard library to

permutate the option indices. We then rearrange the options

in the fixes according to the index permutations.

Tterate and attempt applying the fix permutations’, and

abandon those that result in new conflicts.

(3) To be able to safely reset the configuration to its initial
(conflict-free) state, we implement a way to create its in-
memory backup. After every unsuccessful application at-
tempt we reload the configuration sample using the conf_read()
function in the Kconfig backend. After that we compare the
reloaded configuration with the backup to verify the success-
ful reset.

—
)
~

7 See the function apply_fix_bool() in https://bitbucket.org/easelab/configfix/src/
cftestconfig/code/scripts/kconfig/kconfig-sat/rangefix.c

https://github.com/vaasu/linux/tree/satconfig_gui_rebased_against_patrick_code_13jun2020
https://github.com/vaasu/linux/tree/satconfig_gui_rebased_against_patrick_code_13jun2020
https://bitbucket.org/easelab/configfix/src/cftestconfig/code/scripts/kconfig/kconfig-sat/rangefix.c
https://bitbucket.org/easelab/configfix/src/cftestconfig/code/scripts/kconfig/kconfig-sat/rangefix.c

A Testing Technique for Conflict-Resolution Facilities in Software Configurators

A fix is considered valid if it can be fully applied in an order
provided by some of its permutations. When all permutations have
been tested and rejected, the fix is deemed invalid.

Figure 3 displays the xconfig configurator with integrated Range-
Fix implementation and user interface elements that allow users
to create conflicts by adding and removing options, and setting
their target values. In the example, the currently inactive option
EFI_FAKE_MEMMAP is selected, and it is marked to be enabled. By
clicking the Calculate Fixes button, the user is able to run the conflict-
resolution algorithm and obtain configuration fixes.

We added to this implementation the Test Random Conflict button,
which streamlines the testing process. After loading a previously
generated configuration sample into xconfig, it allows to perform
steps (2)-(4) of our technique (Section 4.1) with a single click.

The source code of our implementation of the proposed testing
technique is avaiable online 2.

5 EVALUATION RESULTS

The purpose of evaluation in design science research is to confirm
whether the developed artefact can resolve or mitigate the practical
problem at hand [13].

To evaluate our technique we performed limited testing of the
RangeFix implementation. Due to time constraints we could only
test a limited number of single-option conflicts for a selection of
the architectures supported by the Linux kernel.

The tests were performed on a Lubuntu 19.10 virtual machine
in a VirtualBox 6.1.12 hypervisor running on a MacBook Pro 11,3
host with 2.3 GHz Intel Core i7 quad-core CPU and 16 Gb RAM.
The guest machine was allocated with 2 host CPU cores and 10 Gb
RAM.

Table 2 presents a summary of the test results. The full set of
test data and the test results are available online °.

The main obstacle faced during our testing effort was resetting
the configuration to its initial status between testing of different
fix permutations. Although it worked well during initial testing of
our implementation, it did not perform well during volume testing.
In most cases, we could not reset the configuration, which made
thorough validation of fixes impossible. Only 14 of the 177 solutions
(7.9%) could be validated — and only because the first application
attempt succeeded.

This stresses the importance of studying the internal state of the
configurators not only for those working with evaluation of conflict-
resolution features, but also for the developers of such facilities,
since configuration rollback is likely to be a critical requirement
prior to mass adoption of any such feature.

Even though we could not fully validate the fixes found by the
algorithm, we did, however, find 14 conflicts for which the algorithm
did not find any fixes. We additionally discovered an odd fix that
consisted of a single option — the conflict itself! — which is clearly
a bug. All this provides valuable input to the developers of the
conflict-resolution feature that we tested.

In general, despite the current implementation shortcomings for
the chosen system and algorithm, our technique looks promising
for anyone who wants to get a quick feedback on the quality of the

8 https://bitbucket.org/easelab/configfix/src/cftestconfig
® https://github.com/izimbra/configfix_test

Evgeny Groshev

Table 2: RangeFix Testing Statistics

Metric Value

OpenRISC, PA-RISC, RISC-V
SPARC 32-bit, SPARC 64-bit
x86 32-bit, x86 64-bit
System/390, Xtensa

Architectures

No. configuration samples 15
Conflict size 1
No. conflicts 75
Min. resolution time 1.3 sec
Max. resolution time 304.3 sec
Mean resolution time 47.2 sec
No. resolved conflicts 61
Efficiency

(% resolved conflicts) 81.3%

conflict-resolution implementations, and do not have the time or
the resources to invest in more expensive verification efforts (for
example, using formal methods). As such, we believe this technique
to promise a good return on investment.

6 LIMITATIONS AND FUTURE WORK

We see two main threats to the validity of this study.

Its external validity might be affected by the fact that we con-
centrate on a single feature modeling language (Kconfig) and its
use within a single project in a single domain (Linux kernel, oper-
ating systems). However, we do not consider this risk as high — in
fact, previous studies have often concentrated on the Linux kernel
because its feature model makes it somewhat more representative
than the purely academic models [8]. Moreover, since Kconfig is not
used exclusively in Linux, other practice and research communities
might benefit from our findings.

Due to the lack of knowledge about the Linux kernel, we gen-
erated its test samples purely algorithmically, without using ad-
ditional inputs such as information about the feature distribution
among Linux variants, or expert knowledge. This might affect the
internal validity of the study.

A recent study reports that scaling of product sampling algo-
rithms to large real-world product lines is a challenge [17]. Since
Linux kernel, with its thousands of features, is definitely a large-
scale product line, this may affect the outcome of our study. One
possible way to address this would be to evaluate the RangeFix
implementation using an earlier version of the kernel with fewer
features. While this would definitely call for additional evaluation
with a more recent version, this still may be enough to answer the
research questions posed here.

One possible future study direction is related to integration of
the RangeFix algorithm into the Kconfig backend, and using the
algorithm during dependency checking. This will allow to evaluate
the algorithm in context of all available kernel configurators, and
might shed new light upon both the correctness and the usability
perspectives.

https://bitbucket.org/easelab/configfix/src/cftestconfig
https://github.com/izimbra/configfix_test

A Testing Technique for Conflict-Resolution Facilities in Software Configurators

7 CONCLUSION

Our study demonstrates that evaluation of conflict-resolution fea-
tures in software configuration tools is indeed a complex prob-
lem. The proposed testing technique allowed us to gain insights
into the workings of a black-box conflict-resolution algorithm, and
gather some statistics about its effectiveness, correctness, and per-
formance.

However, more often than not our testing efforts faced imped-
iments related to technique implementation for the chosen mod-
elling language and configurator (Kconfig and xconfig). Though
specific to the Linux kernel, these obstacles shed some light on the
areas that require additional attention by the researchers who study
software configuration.

Together with the research directions identified in Section 6, we
believe that these results will be of general interest to both the
researchers and the practitioners.

STATEMENT OF COLLABORATION

This study would not be possible without the work previously con-
ducted by Patrick Franz, who implemented the RangeFix algorithm
in the C programming language, and Ibrahim Fayaz, who integrated
this implementation into xconfig configurator.

REFERENCES

[1] [n.d.]. Kconfig language. Retrieved May 30, 2020 from https://www.kernel.org/
doc/html/latest/kbuild/kconfig-language html

[2] [n.d.]. Kconfig make config. Retrieved May 30, 2020 from https://www.kernel.

org/doc/html/latest/kbuild/kconfig.html

] [n.d.]. LWN Distribution List. https://lwn.net/Distributions/

[4] 2017. About Linux Kernel. Retrieved May 30, 2020 from https://www.kernel.org/
linux.html

[5] Mustafa Al-Hajjaji, Sebastian Krieter, Thomas Thiim, Malte Lochau, and Gunter
Saake. 2016. IncLing: efficient product-line testing using incremental pairwise
sampling. In Proceedings of the 2016 ACM SIGPLAN International Conference on
Generative Programming: Concepts and Experiences - GPCE 2016. ACM Press, New
York, New York, USA, 144-155. https://doi.org/10.1145/2993236.2993253

[6] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. 2010. Automated
analysis of feature models 20 years later: A literature review. Information Systems
35, 6 (9 2010), 615-636. https://doi.org/10.1016/.i5.2010.01.001

[7] Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wasowski, and Krzysztof
Czarnecki. 2010. Variability modeling in the real. In Proceedings of the [IEEE/ACM
international conference on Automated software engineering - ASE ’10. ACM Press,
New York, New York, USA, 73. https://doi.org/10.1145/1858996.1859010

[8] Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wasowski, and Krzysztof
Czarnecki. 2013. A Study of Variability Models and Languages in the Systems
Software Domain. IEEE Transactions on Software Engineering 39, 12 (12 2013),
1611-1640. https://doi.org/10.1109/TSE.2013.34

[9] David Fernandez-Amoros, Ruben Heradio, Christoph Mayr-Dorn, and Alexander

Egyed. 2019. A kconfig translation to logic with one-way validation system. In

Proceedings of the 23rd International Systems and Software Product Line Conference

- volume A - SPLC ’19. ACM Press, New York, New York, USA, 1-6. https:

//doi.org/10.1145/3336294.3336313

Patrick Franz. 2020. Realising Configuration Conflict-Resolution for the Linux

Kernel Configurator. Master’s thesis. Chalmers University of Technology and

University of Gothenburg.

Stefan Hengelein. 2015. Analyzing the Internal Consistency of the Linux KCon-

fig Model. Master’s thesis. University of Erlangen. https://www4.cs.fau.de/

Ausarbeitung/MA-14-2015-04-Hengelein.pdf

Arnaud Hubaux, Yingfei Xiong, and Krzysztof Czarnecki. 2012. A user survey of

configuration challenges in Linux and eCos. In Proceedings of the Sixth Interna-

tional Workshop on Variability Modeling of Software-Intensive Systems - VaMoS

’12. ACM Press, New York, New York, USA, 149-155. https://doi.org/10.1145/

2110147.2110164

Paul Johannesson and Erik Perjons. 2014. An Introduction to Design Science.

Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-

10632-8

Martin Fagereng Johansen, @ystein Haugen, and Franck Fleurey. 2011. Properties

of Realistic Feature Models Make Combinatorial Testing of Product Lines Feasible.

[10

[11

[12]

[13]

[14

[15

[16

(17

(18

[19

[20

[21

Evgeny Groshev

In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics). 638—-652. https://doi.org/10.
1007/978-3-642-24485-8_47

Daniel Jonsson. 2016. A Case Study of Interactive Conflict-Resolution Support in
Software Configuration. Master’s thesis. Chalmers University of Technology and
University of Gothenburg. https://hdlhandle.net/20.500.12380/238168

Jens Meinicke, Thomas Thiim, Reimar Schroter, Fabian Benduhn, Thomas Leich,
and Gunter Saake. 2017. Mastering Software Variability with FeatureIDE. Springer
International Publishing, Cham. https://doi.org/10.1007/978-3-319-61443-4
Tobias Pett, Thomas Thiim, Tobias Runge, Sebastian Krieter, Malte Lochau, and
Ina Schaefer. 2019. Product sampling for product lines. In Proceedings of the 23rd
International Systems and Software Product Line Conference - volume A - SPLC ’19.
ACM Press, New York, New York, USA, 1-6. https://doi.org/10.1145/3336294.
3336322

Steven She and Thorsten Berger. 2010. Formal Semantics of the Kconfig Language.
Technical Note. http://www.eng.uwaterloo.ca/~shshe/kconfig_semantics.pdf
Julio Sincero, Horst Schirmeier, Wolfgang Schroder-Preikschat, Olaf Spinczyk,
and Friedrich-Alexander. 2007. Is The Linux Kernel a Software Product Line?. In
Proc. SPLC Workshop on Open Source Software and Product Lines.

Julio Sincero and Wolfgang Schrider-Preikschat. 2008. The Linux Kernel Config-
urator as a Feature Modeling Tool. In First International Workshop on Analysis of
Software Product Lines (ASPL’08).

Yingfei Xiong, Hansheng Zhang, Arnaud Hubaux, Steven She, Jie Wang, and
Krzysztof Czarnecki. 2015. Range Fixes: Interactive Error Resolution for Software
Configuration. IEEE Transactions on Software Engineering 41, 6 (6 2015), 603-619.
https://doi.org/10.1109/TSE.2014.2383381

https://www.kernel.org/doc/html/latest/kbuild/kconfig-language.html
https://www.kernel.org/doc/html/latest/kbuild/kconfig-language.html
https://www.kernel.org/doc/html/latest/kbuild/kconfig.html
https://www.kernel.org/doc/html/latest/kbuild/kconfig.html
https://lwn.net/Distributions/
https://www.kernel.org/linux.html
https://www.kernel.org/linux.html
https://doi.org/10.1145/2993236.2993253
https://doi.org/10.1016/j.is.2010.01.001
https://doi.org/10.1145/1858996.1859010
https://doi.org/10.1109/TSE.2013.34
https://doi.org/10.1145/3336294.3336313
https://doi.org/10.1145/3336294.3336313
https://www4.cs.fau.de/Ausarbeitung/MA-I4-2015-04-Hengelein.pdf
https://www4.cs.fau.de/Ausarbeitung/MA-I4-2015-04-Hengelein.pdf
https://doi.org/10.1145/2110147.2110164
https://doi.org/10.1145/2110147.2110164
https://doi.org/10.1007/978-3-319-10632-8
https://doi.org/10.1007/978-3-319-10632-8
https://doi.org/10.1007/978-3-642-24485-8_47
https://doi.org/10.1007/978-3-642-24485-8_47
https://hdl.handle.net/20.500.12380/238168
https://doi.org/10.1007/978-3-319-61443-4
https://doi.org/10.1145/3336294.3336322
https://doi.org/10.1145/3336294.3336322
http://www.eng.uwaterloo.ca/~shshe/kconfig_semantics.pdf
https://doi.org/10.1109/TSE.2014.2383381

	Cover Page
	A Testing Technique for Conflict-Resolution Facilities in Software Configurators
	1 Introduction
	2 Background
	2.1 Variability modeling
	2.2 Kconfig
	2.3 Kernel Configuration
	2.4 Conflict resolution
	2.5 RangeFix

	3 Methodology
	4 Testing Technique
	4.1 Conceptual Description
	4.2 Implementation for the Linux Kernel

	5 Evaluation results
	6 Limitations and Future Work
	7 Conclusion
	References

