
Group Invariant Convolutional
Boltzmann Machines

Master’s thesis in Mathematics

Maria Lindström

Department of Mathematical Sciences
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2020

Thesis for the degree of Master of Science

Group Invariant Convolutional
Boltzmann Machines

MARIA LINDSTRÖM

Department of Mathematical Sciences
CHALMERS UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2020

MARIA LINDSTRÖM

c© MARIA LINDSTRÖM, 2020.

Supervisor: Daniel Persson, Department of Mathematical Sciences
Examiner: Klas Modin, Department of Mathematical Sciences

Master’s Thesis 2020
Department of Mathematical Sciences
Chalmers University of Technology
University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2020

i

Abstract

We investigate group invariance in unsupervised learning in the context of certain generative net-
works based on Boltzmann machines. Specifically, we introduce a generalization of restricted
Boltzmann machines which is adapted to input data that is acted upon by any compact group G.
This is done by using certain G-equivariant convolutions between layers. We prove that the deep
belief networks constructed from such Boltzmann machines define probability distributions that
are invariant with respect to the action of G.

Acknowledgements

I would like to take the opportunity to thank all of the people that have helped me complete this
thesis. First of all I would like to thank my supervisor Daniel Persson who has guided me through
this work and pointed me in the right direction whenever I needed. I would also like to thank my
family and friends who has supported me during the process of writing this thesis.

Contents

1 Introduction 1

1.1 Machine Learning . 1

1.2 Convolutional Neural Networks . 2

1.3 Supervised vs. Unsupervised Learning . 2

1.4 Boltzmann Machines . 3

1.5 Main Result . 4

1.6 Layout of Thesis . 4

2 Basics of Neural Networks 4

2.1 Neural networks . 5

2.1.1 Parameters of a neural network . 6

2.2 Training a neural network. 7

2.3 Backpropagation . 7

3 Convolutional Neural Networks 8

3.1 Convolution and equivariance . 9

3.2 Group Theory . 9

3.3 Generalizing Neural Networks . 11

3.3.1 Generalize convolution . 12

3.4 Equivariance of convolutional neural networks . 14

4 Restricted Boltzmann Machines 15

4.1 Ising model . 16

4.2 Restricted Boltzmann Machines . 16

4.3 Gaussian Bernoulli Restricted Boltzmann Machines 18

4.4 Deep Learning Based on Boltzmann Machines . 18

iii

4.4.1 Deep Boltzmann machines . 18

4.4.2 Deep Belief Nets . 19

5 Convolutional Boltzmann machines 20

5.1 Generalizing Boltzmann machines . 21

5.2 Convolution in Boltzmann machines . 21

5.3 Properties of Convolutional Boltzmann machines 21

5.4 Generalizing Deep Boltzmann machines and deep belief nets. 23

5.4.1 Deep Boltzmann Machine . 24

5.4.2 Deep Belief Net . 24

5.5 Properties of deep structures based on RBM’s . 25

5.5.1 Invariance of Convolutional Deep Boltzmann Machines 25

5.5.2 Invariance of convolutional deep belief nets 26

6 Discussion 28

iv

1 Introduction

1.1 Machine Learning

Computers are great at solving problems involving complicated calculations. Some tasks that
would be impossible for human brains to solve, the computer can solve easily. However, some
tasks that would be useful to automize are almost impossible to tell a computer how to solve. For
example, when you see a picture of a cat, you can recognize this cat immediately. If we tried to tell
a computer how to recognize a cat in a picture, this would get complicated. We would need to tell
the computer which pixel combinations represents a cat and which does not. We would have to
consider all of the different angles the picture could be taken from, all of the different positions the
cat could be in and so on. With classical programming techniques this task becomes impossible to
solve.

So why is it that the human brain can solve this task easily, while the computer can not? The
answer to this question is that the brain is an expert on finding patterns and learning from previous
experiences. We learn to recognize things by being exposed to examples. Machine learning is a
collective name for different algorithms that mimics this learning procedure.

If we want the computer to learn to recognize cats in images, using a machine learning algorithm
would look something like this:

1. Collect a set of pictures, some with a cat in them and some without. For every picture, we
also provide the right label, that is we give the image the label cat if it is present and the
label no cat if there is no cat in the picture.

2. Define a function that takes the images as input and outputs a binary value representing the
label cat or no cat.

3. For each picture, calculate the output of the function and compare the results with the true
labels.

4. Evaluate how good the function is at predicting the true labels, and adjust it so that it will
perform better.

5. Repeat step 3 and 4 until you find the optimal function.

6. Evaluate the function on pictures that have not been used in the training process to see if it
actually performs well on new data.

The steps above are just a rough sketch of how a machine learning algorithm could work. It can
look different depending on which task we want to solve, and each step is implemented differently
depending on which algorithm we use. What all algorithms have in common is that a lot of training
data is needed for the learning process. In the above example, the training data consists of the
pictures together with the labels.

The field of machine learning has become more useful the last decades, since the amount of available
data has exploded. This has lead to an increasing number of algorithms and more effective ways to
train the models. Since new algorithms has developed so quickly, the mathematical understanding
of the field has fallen behind. Hence it is now important to look at these new algorithms from a
mathematical perspective. If we are able to develop a mathematical theory for machine learning,
it will be easier to analyze new methods.

1

In this thesis we will explore a small part of the machine learning field from a mathematical
perspective. The focus will be on deep learning algorithms. Deep learning is a collective name for
machine learning algorithms that uses deep structures built up of layers. Specifically we will look
at convolutional neural networks and deep restricted Boltzmann machines.

1.2 Convolutional Neural Networks

Neural networks are a branch of machine learning that is slightly inspired by how neurons are
connected in the brain. It is built up by layers of so called neurons. Each of the neurons in
the first layer, which represents the input, is connected to neurons in the next layer and so on.
When a neuron is activated, it sends a signal through its connections to activate new neurons.
These neurons will in their turn send a new signal through all their connections, this process will
continue until we reach the last layer, which represents the output. A subgroup of neural networks
is convolutional neural networks. In these networks, the connections between one layer of neurons
and the next follow a certain pattern. The restrictions on the connections in convolutional neural
networks forces them to account for the symmetry in the input data. Whenever the network has
learned to find a feature in the input, it will find it no matter where in the input it lies. Once again
think of the example of deciding if there is a cat in a picture. If the network has learned how to
find a cat, convolution assures that it will find it no matter where in the picture the cat is. This
property is in mathematical terms called equivariance.

The input in classical neural networks is often real values arranged in a grid, such as images. In this
case the property of convolutional neural networks is called translation equivariance. This means
that when the picture is moved, that is translated, the output is translated in the same way. This
type of neural networks have been commonly used in for example object detection in images. When
we have more complicated inputs, such a spherical images, it is not as straigtht forward to imple-
ment convolution. A lot of articles addressing the problem of implementing convolution in spher-
ical neural networks have been published, for example [Cohen et al., 2018] [Esteves et al., 2018]
[Kondor et al., 2018] [Coors et al., 2018]. For spherical neural networks, the movement of the in-
put is no longer translations, but rotations instead. Both rotations and translations are special
cases of group actions. For this reason, there have been some recent attempts to generalize the con-
cept of neural networks to allow input acted on by a general group G [Kondor and Trivedi, 2018]
[Cohen and Welling, 2016]. Using convolutional connections in such networks guarantees that the
network is equivariant to actions of the group G.

1.3 Supervised vs. Unsupervised Learning

The algorithms used in machine learning can roughly be divided into two groups: supervised and
unsupervised learning. The above example of finding cats in images is a supervised problem. In
supervised learning we are interested in finding a mapping from input to output. In this setting,
we have a set of data {xi}Ni=1 as input, and for each xi we are given a label yi. The goal is to find
a function that models the relationship between xi and yi. Examples of problems we can solve
using supervised learning algorithms are

• Spam filtering. The input is the received mail and the output is binary spam/no spam.

• Object detection in images. The input is an image and the output is yes/no depending on if
a certain object is present in the image or not.

• Regression, for example the input is a list containing information of a house and the output
is the price for the house.

2

To describe what unsupervised learning can mean, let’s consider another task. Imagine that you
want the computer to be able to generate a new picture of a cat. An algorithm for this task could
look something like:

1. Collect a set of pictures, all representing a cat.

2. Define a probability distribution over the space of pictures.

3. Evaluate, given the probability distribution defined in step 2, the probability of drawing the
set of pictures collected in step 1.

4. Adjust the probability distribution so that the probability in step 3 is maximized.

5. Use some sampling algorithm to draw new samples from the resulting probability distribution.
If the learning algorithm performs well, the samples should look like pictures of cats.

As with supervised learning, these steps could look different depending on which algorithm we use,
and different types of tasks need different steps. Unsupervised learning is often a less well-defined
problem compared to supervised learning. There is no correct output for each input, instead we
want the model to describe the input data in some way. For example you might want to find
clusters in the data, or you want to know which distribution the samples were drawn from. Often,
the goal is in some sense to find the probability distribution that generated the training examples
[Goodfellow et al., 2016]. Examples of what we can use unsupervised learning for is

• Clustering: Given a set of input data, we want to cluster the data to find out what different
groups there are in it.

• Generating images/ image inpainting. Here the goal is to find patterns in the input images
to be able to construct new images of the same type. When inpainting, we are given a image
where some values are missing, for example the image might be blurry, and we want to fill
in the missing data.

It is often easier to evaluate the performance of supervised algorithms. Since we are given the right
label for each example, the output from the algorithm can be compared to the right output, which
makes it quite easy to formulate a goal for the algorithm. We simply want to fit the parameters
describing our function so that we minimize the error of the output. We can also divide the data
we have into what is called train and test set. The training set is used during training, and the
learned function can then be evaluated on the test set to see how well it performs on data not used
during training.

The disadvantage of supervised learning is that it requires a lot of labeled data. When collecting
data, it can sometimes be time-consuming to provide the right label for each example. Unsupervised
learning does not need these labels. Further there are some problems that cannot be formulated
so that we can use a supervised algorithm, while all supervised problems could be formulated as
unsupervised [Goodfellow et al., 2016].

1.4 Boltzmann Machines

Neural networks is a class of machine learning algorithms often used for supervised problems. They
can however be a tool for unsupervised learning as well. One example of an unsupervised algorithm
that uses neural networks is the restricted Boltzmann machine (RBM). It can solve tasks such as
image generation by modeling the distribution from which the training data was generated from.

3

RBMs only uses two layers of neurons, but there are ways one can connect them to create deeper
networks.

Since the Boltzmann machine uses neural networks, the equivariance property of convolutional neu-
ral networks will affect the properties of the Boltzmann machine. There have been a number of ar-
ticles that implement convolution in the RBM and the deep networks that can be built by RBM’s to
[Lei et al., 2014] [Lee et al., 2009a] [Lee et al., 2009b] [Wang, 2018] [Norouzi et al., 2009]. Hence it
is now interesting to see how the generalization of convolution and equivariance that was introduced
for neural networks transfers to the RBM.

1.5 Main Result

The purpose of this thesis is to explore how generalized convolution can be used in restricted
Boltzmann machines. The main result of this thesis is that we prove the following theorem:

Theorem 1. A G-convolutional restricted Boltzmann machine is invariant to actions of G.

Further we will prove that the same result holds for the deeper algorithms built on the RBM.

Theorem 2. Using G-convolution in all layers guarantees both the deep restricted Boltzmann
machine and the deep belief network to be G-invariant.

1.6 Layout of Thesis

The thesis will be structured in the following way:

• We will begin with a basic introduction of classical neural networks and how to train them.
Convolutional neural networks will be introduced.

• We present a generalization of neural networks and convolution that allows input data acted
on by any group G. We also show that these G-convolutional neural network are guaranteed
to be equivariant with respect to actions of G.

• The restricted Boltzmann machine is introduced, and we describe how the training for these
machines is done. We also discuss how these machines can be connected to create the deep
Boltzmann machine and the deep belief network.

• We generalize the restricted Boltzmann machine and prove that using convolution in such
machine guarantees invariance. We do the same for both the deep Boltzmann machine and
the deep belief network.

2 Basics of Neural Networks

In this chapter, we will introduce neural networks. To begin with, we will explain how a neural
network is built, and what parameters are used in it. Then we will discuss the training procedure
of these networks. An algorithm called backpropagation will also be described, this is often used
when tuning the parameters of the network in the training process.

4

Figure 1: One layer with input x(l−1) ∈ R3 and output x(l) ∈ R2

2.1 Neural networks

Neural networks are a class of machine learning algorithm that models a function by composing
many simple functions into a more complex one. Assume that our data set contains examples
{xi,yi} and we want to model the relationship between xi and yi. A simple way to model the
relationship between x and y is to use a linear model. This is however only useful when the
true relationship is approximately linear. When we have a more complex relationship, we have
to use more complex models, and a neural network is one way to do this. A neural network use
compositions of linear functions, together with non-linearities between these function. The more
such compositions we have in the network, the more complex function it can represent. This gives
a chain of mappings x(0) 7→ x(1) 7→ . . . 7→ x(L), and each of these x(l)’s is referred to as a layer.

Assume that the input x(l−1) to the layer is a vector over some field, for simplicity we can take
x(l−1) ∈ Rn for some n. A layer is a composition of two functions. The first function is linear,
so the output is x̂(l) ∈ Rm where x̂(l) = Wx(l−1) + b(l) for some matrix W ∈ Rn×m. The second
function is nonlinear, often referred to as an activation function. Since the composition of two
linear functions is still linear, the activation function is necessary to increase the complexity of the
network for each layer. This activation function, lets call it σl, has to be differentiable and will be
taken pointwise over the vector x̂(l). The resulting output is xl where xlj = σ(x̂lj). We will use
xl = σ(x̂l) for short. Summarizing this, we have that one layer is a function ψ : Rn → Rm defined
as

ψ(xl−1) = σl(W lxl−1 + bl) (1)

where W l ∈ Rn×m and bl ∈ Rm. Figure 1 shows how a layer could look. What we have described
here as a layer is the function that takes us from x(l−1) to x(l), sometimes we will instead refer to
the vector x(l) when we say layer l. Whether we mean the function or the vector when using the
term layer should be clear from the context.

In a neural network, layers are connected to create a deep structure. Assume that the input to
the network is x(0) ∈ Rn0 , then we first map it to another vector x(1) = ψ(x(0)) ∈ Rn1 , where ψ
is defined as in equation (1). After this, x(1) is mapped to another vector x(2) ∈ Rn2 in the same
way and so on. If we use L to denote the number of layers we continue until we reach x(L) ∈ RnL ,
which is the output of the network. The choice of dimension nl for each layer is part of the design
of the model, but n0 and nL must match the input and the output space respectively. This process
defines a function x(0) 7→ x(L), and this is what we call an artificial neural network. Figure 2 shows
how one can picture such a neural network.

The network described above is the simplest type of a neural network. It is called feed forward,
meaning that each layer gets its input only from the previous layer, and we have restricted the
input and output to be real valued vectors.

Definition 1 (Classical definition of feed forward neural network.). A real feed forward neural

5

Figure 2: A neural network with L layers. The dots represents an arbitrary number of neurons
and layers.

network is a function N : Rn0 → RnL ,N (x0) = xL. The mapping from x0 7→ xL is a composition
of mappings xl−1 7→ xl

xl = ψ(xl−1) = σl(W lxl−1 + bl)

where W l ∈ Rnl×nl−1 , bl ∈ Rnl and σl : R → R is a nonlinear differentiable function taken
pointwise over its input.

A remark on the definition above: Neural networks are often not vector shaped. In many cases
we have matrix or even tensors as the input and output of each layer. However, assume that the
input to the layer is a matrix X(l) ∈ Rml×nl , then this matrix can be flattened out to a vector
x(l) ∈ Rml·nl . So the definition above still holds.

2.1.1 Parameters of a neural network

We now have defined a class of functions, called neural networks. To specify such function, all of
its parameters have to be decided.

• L: We have to decide on the number of layers the network should have.

• nl: For each 0 ≤ l ≤ L we have to decide the size of layer l.

• σl: For each 0 < l ≤ L we have to decide which activation function to use.

• W l and bl: For each layer 0 < l ≤ L we have to decide the coefficients for the linear operator.

L determines the complexity of the functions the network will represent. We say that the network
gets deeper when L gets larger, and the deeper the network is, the more complex will the function
be. n0 and nL has to match the input and output space of the network, which should be clear
from the problem you want to solve. For 0 < l < L, nl plays a part in deciding the complexity
of the network, these parameters together with L will determine the whole size of the network. σl
can be any differentiable nonlinear function, one common choice is the sigmoid function σ = ex

ex+1 ,
but the choice of these functions is a part of designing the model. The activation function does
not need to be the same in every layer.

The parameters we have described so far is set during the design of the model. When these
parameters have been chosen, the only thing left to define the resulting model is W l and bl. These
parameters are found by training the model on a set of examples.

6

2.2 Training a neural network.

When training a neural network, we want to adjust the parameters W l and bl so that the function
that the model represents is as close to the function that want to approximate, as possible. How
this training should be done depends on what type of problem we want to solve, but in this section
we will describe one type of training algorithm. Assume that the data set contains one feature that
we want to be able to predict given the values of the other features, then we can pose the problem
as: given x, we want to be able to predict y. That is, we want N (xi) = yi. For example if the goal
is to determine if there is a cat in a set of pictures or not, we have x is an image and y ∈ {0, 1},
where 0 represents no cat and 1 represent cat. Then we want the network to output the true value
for as many pictures as possible. Since N depends on the parameters in θ = {W l, l, l = 1, . . . , L},
we can see θ as an argument to N as well as x.

To be able to adjust the parameters θ = {W 1,b1, . . . ,WL,bL} so that N (xi; θ) is close to yi for all
i, we have to define what close means. We have to define a function L which takes the network and
the training data as input and determines the quality of the predictions from the neural network.

The most straightforward way to define this function is to take the sum of squares of the distance
between the output of the network and the values of y:

L(N , θ, {xi,yi}) =

n∑
i=1

||N (xi, θ)− yi||2.

Since the function N depends on the parameters in θ, we can see them as an argument to N . The
values of xi and yi is fixed so the only thing varying is θ. Thus the problem is to minimize the
function L with respect to θ.

θ will usually contain to many variables to solve this optimization problem analytically. Instead
an algorithm based on gradient descent, called the backpropagation algorithm, will be used.

2.3 Backpropagation

For simplification, will assume that we train the model using only one example x during training.
When adjusting the parameters θ to minimize the loss function L(N (x, θ),y) stochastic gradient
decent is used. This means that the parameters are updated stepwise. In each step, θ is updated
with θ = θ − ∆θ where ∆θ = λ∇θL for some constant λ. This can be seen as θi = θi − λ ∂L∂θi .
To efficiently calculate ∂L

∂θi
, we use an algorithm called backpropagation [Goodfellow et al., 2016].

This algorithm uses that the network is a composition of simple functions, together with the chain
rule. The chain rule tells us that if z = f(y) and y = g(x), then derivative of z with respect to
the variable x can be calculated as ∂z

∂x = ∂z
∂y ·

∂y
∂x . To simplify notation, let ŷ = N (x, θ), then we

can write the loss function as L(ŷ,y). The derivative of the loss with respect to a variable θi can
then be written as ∂L

∂θi
= ∂L

∂ŷ ·
∂ŷ
∂θi
. This gives the idea to go backwards in the graph, calculating

the derivative of the current layer and then sending this function backwards.

Assume that we have a network N with L hidden layers, let σ(l) be the activation at layer l. θ
then contains the parameters {W (l), b(l) : l = 1, . . . L}. Given a certain input x, we get a sequence
of layers h(1), . . . , h(L). For each layer denote a(l) = W (l)h(l−1) + b(l), so that h(l) = σ(l)(a(l)). At
last, let L be the loss function we want to minimize. To update the parameters through stochastic
gradient descent, we need to find ∇W (l)L and ∇b(l)L for all l. Then we update the parameters
W (l), b(l) with W (l) = W (l) − λ∇W (l)F and b(l) = b(l) − λ∇b(l)F . λ is a constant that decides how
large steps will be taken in each iteration of the gradient descent.

The backpropagation starts from the loss function and works backward through the network. The

7

first step is to calculate the gradient of the loss function with respect to the last layer in the
network: ∇h(L)F = ∇ŷF . Then for each l = L, . . . , 1 we can use the gradient ∇h(l)F to calculate
the gradients ∇W (l)F ,∇b(l)F and ∇h(l−1)F . Then we can use ∇h(l−1)F to calculate the gradients
of the previous layer and can thus work our way back to the first layer. Next, we will explain how
these gradients are calculated.

First, we will have to use that each layer is a composition of two functions: h(l) = σ(l)(a(l)), where
a(l) = W (l)h(l−1) + b(l). a(l) can thus be seen as a function of both W (l), b(l) and h(l−1). Using the
chain rule for calculating any of the gradients we want, we will need the gradient ∇a(l)F . Since
σ(l) is taken pointwise, we get that

∂F
∂a

(l)
i

=

nl∑
j=1

∂F
∂h

(l)
j

∂h
(l)
j

∂a
(l)
i

=
∂F
∂h

(l)
i

σ(l)′(a
(l)
i). (2)

If we let σ(l)′(a(l)) be the vector containing all the derivatives σ(l)′(a
(l)
i), we can rewrite equation

2 as
∇a(l)F = ∇h(l)Fσ(l)′(a(l)).

Now that we have ∇a(l)F , we can continue to calculate ∇W (l)F . Using the chain rule once again,
and that a(l)

i =
∑nl−1

j=1 W
(l)
i,j h

(l−1)
j + b

(l)
i gives

∂F
∂W

(l)
i,j

=

nl∑
k=1

∂F
∂a

(l)
k

∂a
(l)
k

∂W
(l)
i,j

=
∂F
∂a

(l)
i

∂a
(l)
i

∂W
(l)
i,j

=
∂F
∂a

(l)
i

h
(l−1)
j .

Hence the parameters W (l) can be updated with

∇W (l)F = ∇a(l)Fh(l−1)T .

It is also easy to see that
∇b(l)F = ∇a(l)F .

Now, to go back in the network and calculate the gradients of the previous layer, we have to be
able to calculate ∇h(l−1)F . Since

∂F
∂h

(l−1)
j

=
n(l)∑
i=1

∂F
∂a

(l)
i

∂a
(l)
i

∂h
(l−1)
j

=
nl∑
i=1

∂F
∂a

(l)
i

W
(l)
i,j ,

we have that
∇h(l−1)F = ∇a(l)FW (l).

We can continue to calculate the gradients with respect to the parameters in the previous layer
and so on until we reach layer 1. After all parameters have been updated, one step of the gradient
descent is done. Then we use the updated parameters to once again go forward in the network to
calculate the loss function, which in turn will be used to calculate the gradients of all parameters.
This process continues until we reach some stopping criteria.

3 Convolutional Neural Networks

The neural networks that will be of interest in this thesis are convolutional neural networks. In this
chapter we will first describe classical convolutional networks and translation equivariance. Then
we will generalize convolution and neural networks to create networks that can be equivariant to
actions of an arbitrary compact group.

8

3.1 Convolution and equivariance

A classical neural network is said to be convolutionan if it has at least one convolutional layer:

Definition 2 (Convolutional layer). A convolutional layer is a layer in a neural network with the
special form

x
(l)
j = σ(

k∑
i=1

x
(l−1)
i+j−1c

(l)
i)for j ∈ {1, 2, . . . , n− k + 1} (3)

for some constants c(l)1 , . . . , c
(l)
k and activation function σ.

This operator requires less parameters than the ordinary matrix multiplication used in a layer.
The number of parameters in an ordinary layer is (m + 1) · n, where m is the size of the input
vector and n the size of the output vector. In a convolutional layer, all elements in the output
vector shares the same weights {ci}ki=1, and they are not connected to every input element. Thus,
there are only k parameters to optimize, which makes convolutional neural networks more efficient
to train.

Except for the reduction of computation time, convolutional layers has another important property.
This property is called translation equivariance and can be beneficial for many tasks. For example,
the goal of the network could be to decide if a certain object is present in a picture. In this case it
does not matter where in this picture the object might be, so you want the network to treat every
part of the picture in the same way. If the network treats every part of the picture in the same way,
then the network can detect the object no matter where it is positioned. It can be shown that, if
each layer in a neural network is convolutional, then the whole network is translation equivariant.
This is the main reason why convolutional neural networks have become so popular for solving
certain problems.

Translations are an example of so called group actions. This leads us to the question if it is possible
to build networks that are equivariant to other types of group actions. The networks described so
far have been restricted to take input in Rn, and we have only discussed translations acting on this
space. For some applications, we want to draw conclutions from data formed in another way than
a euclidean space, and in these case the actions can be of other forms. One example is when we
have spherical input, for example spherical images. When talking about movement on the sphere,
this is called rotations. Rotations are another kind of group actions, and recently there have been
attempts of building networks that are equivariant to rotations of the input[Cohen et al., 2018].
We will give a summary of how they used convolutional neural networks on this type of inpu. First,
we will give a more formal definition of group actions and equivariance.

3.2 Group Theory

Before explaining what group actions is, we have to define what is meant by a compact group.

Definition 3 (Group). A group (G, ∗) is a set G equipped with an operator ∗ that satisfies the
following conditions:

• a, b ∈ G =⇒ a ∗ b ∈ G.

• (a ∗ b) ∗ c = a ∗ (b ∗ c).

• There exist e ∈ G such that e ∗ a = a ∗ e = a for all a ∈ G. e is called the identity element.

9

• For every a ∈ G there exists b ∈ G such that a ∗ b = e, this is denoted as a−1 = b and is
called the inverse of a.

Definition 4 (Topological group). Let (G, ∗) be a group. If G is a topological space such that the
group operator ∗ is continuous, we call G a topological group.

Definition 5 (Compact group). A topological group (G, ∗) is compact if the topological space G
is compact.

It is often understood from the context what the operator ∗ is, and in this case we refer to the
group (G, ∗) only by G without mentioning which operator the set is equipped with. We also write
ab instead of a ∗ b to simplify the notation.

Now if we look at the group G and pick some element g ∈ G, then the group action together with
this g induces a function Tg : G→ G by Tg(h) = gh. In this way we can identify the group G with
the set of such functions {Tg : g ∈ G}, often we simplify the notation and just write g(h) instead
of Tg(h). We say that the group G acts on the set G.

In the same way, we can have a group action of G on another set χ, such that for any g ∈ G, there
is a function Tg : χ→ χ. This must satisfy the following two axioms

• Tg ◦ Th = Tgh.

• Te(x) = x for all x ∈ χ, where e is the identity element in G.

If we have a group G, each element g ∈ G defines a function Tg : G → G, where Tg(x) = gx. We
say that the group G acts on the set G. We can in the same way let G act on other sets.

Definition 6. Let G be a group and χ a set. If, for all g ∈ G there exists a function Tg : χ → χ
that satisfies

• Tg ◦ Th = Tgh, and

• Te(x) = x for all x ∈ χ, where e is the identity element in G,

we say that G acts on χ by {Tg}g∈G.
Definition 7. Whenever a group G acts on a set X , this induces an action of G on the space
LV(X) = {f : χ → V}, where V is an arbitrary vector space. This induced action is defined as
{Tg}g∈G where Tg(f)(x) = f(T−1

g (x)).

One of the main benefits of using convolution in neural networks is that it guarantees that the
network is equivariant to group actions. We are now ready to give a formal definition of what is
meant by equivariance

Definition 8 (Equivariance). Let G be a group that acts on the sets X1 and X2 with the actions
{T 1

g }, {T 2
g } respectively. We say that a function f : X1 → X2 is equivariant to the action of G if

f(T 1
g (x)) = T 2

g (f(x)) for all g ∈ G, x ∈ X1

We will need one last definition before introducing the new neural networks.

Definition 9. A group G is said to act transitively on the set X if, for any x0, x ∈ X there exists
g ∈ G such that x = Tgx0. If G acts transitively on the space X we say that X is a homogeneous
space of G.

Remark. If X is a homogeneous space of G, then X ∼= G/H for some subgroup H of G.

10

3.3 Generalizing Neural Networks

The rest of this chapter will be devoted to building up the theory for convolutional neural networks
that are equivariant with respect to actions of any compact group. We will follow the reasoning
of [Kondor and Trivedi, 2018].

To begin with, we will look at the neural networks we have already defined from a new perspective.

A vector x = (x1, x2, . . . , xn) ∈ Rn, can be seen as a function f : Z→ R where

f(i) =

{
xi if i ∈ {1, . . . , n}
0 otherviwe.

In the same way a matrix W ∈ Rn×m can be viewed as a function Φ : Z2 → R

Φ(i, j) =

{
Wi,j if i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}
0 otherwise.

Define the operator · between functions f, g : Z→ R as

g · f =
∑
i∈Z

g(i)f(i).

If g and f are functions representing vectors, the value of this operator will be the same as the
value when taking the dot product between the two corresponding vectors.

We also want the analogue of matrix multiplication, thus define · between a function Φ : Z2 → R
and f as above as f · Φ : Z→ R

(f · Φ)(j) =
∑
i∈Z

f(i)Φ(i, j). (4)

If f represents a vector in Rm we have (Φ · f)(i) =
∑
j∈Z(Φ(i, j)f(j). Let LV (X) denote the space

of functions {f : X → V }. Then the following definition is equivalent to definition 1:

Definition 10 (Feed Forward Neural Network.). A real feed forward neural network is a function
N : LR(Z)→ LR(Z),N (f0) = fL where the mapping from f0 7→ fL is a composite of mappings

f0 7→ f1 7→ . . . 7→ fL.

Each of the f (l)’s lies in LR(Z) and f (l)(i) = 0 unless i ∈ {1, . . . , nl} for some finite nl. Each of
the mappings f l−1 7→ f l has the form:

f l = σl(Φl · f l−1 + hl)

where Φl ∈ LR(Z2), hl ∈ LR(Z) and σl : R→ R is a nonlinear differentiable pointwise function.

So far, the only thing that has changed is notation. From this new point of view, we can see this
definition as a special case of a more general definition. The input to our network is a function
f (0) ∈ LV(X) for some space X, which will be referred to as an index set, and a vector space V.
This function is mapped to a function f (1) in the same space and so on, in the above definition
X = Z and V = R, but in our general definition of a neural network they will be arbitrary. In this
example all layers are functions over the same space Z, but for some applications we will need to
allow this space to vary between the layers. To further see how we should generalize our networks
in a proper way, let us look at one example.

11

Example. In [Cohen et al., 2018] a convolutional network with spherical input was built. Here the
input to the network is a function f : S2 → R. The group that can act on the sphere is the
rotation group SO(3). There are two main issues when dealing with rotations on the sphere that
differs from translations on the plane. First, even though the plane itself is a continuous group,
we can easily approximate it with a discrete group by using a grid, keeping the symmetry of the
translations. In this way, both the index set and the translations are isomorphic to Z2. When
dealing with the sphere, there is no good way to approximate it in a discrete way that keeps the
symmetry of rotations. The second issue is that in contrast to planar pictures, where the group
actions and the index set is the same, the group of rotations on the sphere is not isomorphic to
the sphere itself.

From this example we can see that we have to account for cases where the group acting on the index
set is not isomorphic to the index set. However we will restrict the set X to be a homogeneous
space of G. Whenever X is a homogeneous space of G, we can view X as a quotient space of
G, so X = G/H for some subgroup H ∈ G. For the space S2 and SO(3) we have the relation
S2 = SO(3)/SO(2) where SO(2) is the group of rotations in two dimensions.

Since the index set X will be a homogeneous space of G, we have that X ∼= G/H for some subgroup
H of G. X can thus, for a fixed G, be defined by choosing the subgroup H instead. When we want
to put the emphasis on the subgroup H, X will be replaced with G/H. Another change we will
do in our new definition is that the mapping f l−1 7→ Φl · f l−1 + hl, is exchanged for an arbitrary
linear function φl : LV (X l−1)→ LV (X l).

Now we could formulate the definition of a neural network in a more generalized way:

Definition 11 (Feed forward neural network.). A neural network is a function N : LV(G/H0)→
LV(G/HL), where G is a compact group, H a subgroup of G and V a vector space. N is a
composition of functions φl : LV(G/H l−1) → LV(G/HL) such that φl(f l−1)(g) = σl(ρl(f l−1) for
some linear function ρl and a pointwise nonlinearity σl.

Since these networks are only defined for compact groups G, we will in the following always assume,
when referring to a group G, that it is compact.

3.3.1 Generalize convolution

Since our interest lies in the properties of convolutional neural networks, we need to define what
is meant by a convolutional layer in these new networks.

To begin with, the mathematical definition of convolution is the following:

Definition 12. Let G be a compact group and V a vector space. The convolution of two functions
f, g : G→ V is (f ∗ g) : G→ V where

(f ∗ g)(u) =

{∑
v∈G f(uv−1)g(v) if G is finite or countable∫

v∈G f(uv−1)g(v)dµ(g) if G is uncountable.

If we look at how a convolutional neural network first was defined, we had that the linear operator
in the network was of the form x 7→ y where yj =

∑k
i=1 xi+j−1ci for some vector c ∈ Ck, yj is

12

only defined for j ∈ {1, 2 . . . , n− k + 1}. If we look at x,y and w as functions f, g, h we get:

yj =

k∑
i=1

xi+j−1ci ⇔ g(j) =

k∑
i=1

f(i+ j − 1)h(i) (let l = 1− i)

=

0∑
l=1−k

f(j − l)h(1− l) (let h′(x) = h(1− x))

=

0∑
l=1−k

f(j − l)h′(l). (5)

Since h(i) = 0 whenever j /∈ {1, 2, . . . , k}, we get h′(i) = 0 whenever i /∈ {1 − k, 2 − n, . . . , 0}.
Hence the convolution between f and h′ becomes:

(f ∗ h′)(j) =
∑
i∈Z

f(j − i)h′(i) h′ = 0 outside {1− k, . . . 0}

=

0∑
i=1−k

f(j − i)h′(i). (6)

Comparing the function g in equation (5) and the convolution in equation (6), we see that for each
j where g(j) corresponds to an element yj , it is the same as the convolution (f ∗h′)(j). Remember
that g(j) = yj whenever j ∈ {1, . . . , n−k+ 1}, but g(j) = 0 otherwise. The convolution (f ∗h′)(j)
can however be nonzero for j outside this range. This means that the vector that corresponds
to the function f ∗ h′ will be longer than the vector y which we get as output from a so called
convolutional layer. Thus the operation used in a convolutional layers is not exactly convolution
in the mathematical sense. It is however close, since for every element in the vector yj we have
that it is the same as (f ∗ h′)(j), so it is only at the edges of the vector we get a difference.

Thus the results we show about convolution will hold approximately for convolution in classical
neural networks. Hence we ignore this issue and work from the view that the operator used in con-
volutional neural networks is the same as the operation defined as convolution in the mathematical
context.

So far, we have defined convolution to be a operator ∗ : LV(G) × LV(G) → LV(G) for a group
G. That is the input is two functions in the same space and the output is a function in the same
space. Following definition 11, we want the linear operator in a layer to be a function from one
space LV(G/Hl) to another space LV(G/Hl+1). Thus we want to define convolution that allows
us to go from one quotient space of G to another.

Whenever we have a function f on a quotient space G/H, there is a corresponding function on G.
This function is called the lifting of f to G.

Definition 13. Let G be a group and H a subgroup of G. The lifting of f : G/H → V to G is
the function

f↑G(u) = f([u]G/H)

where [u]G/H is the element uH in G/H.

If f : H\G→ V or f : H1\G/H2 → V the lifting of f to G is defined similarly. Using this lifting,
convolution can be defined between two functions over different quotient spaces of the same group
G.

Definition 14 (Generalized Convolution). Assume that X1,X2 are (right, left or double) quotient
spaces of a compact group G, f ∈ LV(X1),Ψ ∈ LV(X2), then the convolution of f and Ψ is defined
in the following way:

(f ∗Ψ)(u) =
∑
v∈G

f↑G(uv−1)Ψ↑G(v).

13

As usual, the summation is exchanged to an integral whenever G is an uncountable group. Since
we want the linear operator to take us from functions in LV(G/Hl) to functions in LV(G/Hl+1) in
our convolutional layer, we want to know which sort of functions Ψ to choose from.

Lemma 1. If f : G/H1 → V,Ψ : H1\G/H2 → V then

f ∗Ψ : G/H2 → V.

The proof of this lemma can be found in [Kondor and Trivedi, 2018].

We are now ready to define a convolutional layer in a neural network:

Definition 15 (Convolutional layer). A convolutional layer in a neural network is a layer which
sends fl−1 : G/Hl−1 → V to fl : G/Hl → V where

fl = σl(fl−1 ∗Ψl)

for some function Ψl : Hl−1\G/Hl → V, and some activation function σl.

Definition 16. Convolutional Neural Network. Let G be a compact group and N an L + 1
layer feed-forward neural network in which the i:th index set is G/Hi for some subgroup Hi of
G. We say that N is a G-convolutional neural network (G-CNN), if each of the linear maps
φ1, . . . , φL in N is a generalized convolution of the form φl(fl−1) = fl−1 ∗ χl, with some filter
χl ∈ LVl−1×Vl(Hl−1\G/Hl).

3.4 Equivariance of convolutional neural networks

Now, we are interested in if the equivariance property of classical convolutional neural networks is
preserved in these more general CNN’s. To simplify notation, convolution will be written as a sum
over the elements of G, thus assuming that G is finite. All of the results still holds as long as G is
compact, the sums are in this case exchanged for an integral over the group.

Definition 17 (Equivariant neural network). Let N be a feed-forward neural network, and G be
a group that acts on each index set X0, . . . ,XL. Let T0, . . . ,TL be the corresponding actions on
LV0

(X0), . . . , LVL(XL) defined by Tlg(fl)(x) := fl(g
−1(x)), g ∈ G. We say that N is a G-equivariant

feed-forward neural network if, when the inputs are transwormed f0 7→ T0
g(f0) (for any g ∈ G),

the activations of the other layers transform as fl 7→ Tlg(fl).

The first step to show that G-convolutional neural networks are guaranteed to be equivariant to
actions of G, is to show the equivariance of one convolutional layer.

Lemma 2. Let f ∈ LV(X1) and Ψ ∈ LV(X2). Where Xi is (left/right or double) quotient spaces
of a group G. Let {Tg} be the corresponding induced group actions. Then

Tgf ∗Ψ = Tg(f ∗Ψ).

Proof. We have that

(Tgf) ↑G (u) = (Tgf)([u]X1) = f(g−1[u]X1) = f([g−1u]X1) = f ↑G (g−1u).

Using this equality, we get

(Tgf ∗Ψ)(u) =
∑
v∈G

(Tgf) ↑G (uv−1)Ψ(v)

=
∑
v∈G

f ↑G (g−1uv−1)Ψ(v).

14

This expression is the same as the convolution of f and Ψ evaluated at g−1u, so we get

(Tgf ∗Ψ)(u) = (f ∗Ψ)(g−1u) = Tg(f ∗Ψ)(u)

for all u ∈ G, as required.

Lemma 3. If a layer φ in a neural network is convolutional, then φ(Tgf) = Tgφ(f).

Proof. Since a convolutional layer is of the form φ(f) = σ(f ∗Ψ) where σ is a pointwise function,
we have for all u ∈ G

φ(Tgf)(u) = σ(Tgf ∗Ψ)(u) = σ((Tgf ∗Ψ)(u)).

Since convolution is equivariant with respect to the first argument, this equals

σ(Tg(f ∗Ψ)(u)) = σ((f ∗Ψ)(g−1u)).

Using that σ is taken pointwise, the right hand side equals

σ(f ∗Ψ)(g−1u) = φ(f)(g−1u) = Tgφ(f)(u).

Hence we have that φ(Tgf)(u) = Tgφ(f)(u) for all u ∈ G, as required.

Lemma 4. If φ1 and φ2 are both equivariant with respect to the action {Tg} of a group G, then
φ2 ◦ φ1 is also equivariant with respect to this action.

Proof.

(φ2 ◦ φ1)(Tgf) = φ2(φ2(Tgf)) = φ2(Tgφ1(f)) = Tgφ2(φ1(f)) = Tg(φ2 ◦ φ1)(f).

Theorem 3. Let G be a compact group, H0, H1, . . . ,HL be subgroups and N a feed forward
network with L layers in which the l:th layers is a mapping φ : LV(G/Hl−1) → LV(G/Hl). Then
N is an equivariant neural network if all layers are convolutional.

Proof. Using lemmas 3 and 4 and induction over l we get the desired result.

4 Restricted Boltzmann Machines

One algorithm that uses neural networks is the so called restricted Boltzmann machine (RBM).
It is used to model probability distribution over the input space, and is hence an example of
unsupervised learning. Since we have generalized neural networks and shown how convolution
guarantees equivariance, it is now interesting to see how these results transfer to the RBM. In this
chapter we will present the classical RBM and two deep learning algorithms built by connecting
RBM’s. In chapter 5 we will transfer the results from chapter 3 to these learning algorithms.

15

4.1 Ising model

One way to model a distribution over vectors x = (x1, . . . , xn) of binary random variables, is by a
graph with undirected edges. Each node, i, in the graph corresponds to a random variable xi and
each edge {i, j} defines an interaction strength Wij between the random variables xi and xj . We
also have some constant bi at each node that defines the strenght of the node itself. This graph
represents that given an random vector xi, in which we let all the random variables be fixed, except
the i’th one, we have that p(xi = 1|(xj)j 6=i) =

∑
j xjWij + bi. Here we let Wij = 0 if the edge

{i, j} is not in the graph.

Given such graph representing our random vector, the energy of a given vector is the function
E(x) = −[

∑
ij xixjWij +

∑
i bixi]. The probability of a vector x is given by p(x) = 1

Z e
−E(x),

where Z is a normalizing constant, making sure that p is a probability distribution. This way to
model the random variables xi is called an Ising model.

4.2 Restricted Boltzmann Machines

The RBM is an algorithm used to model the probability distribution over the input space. Why
we are interested in this algorithm is because it is built up in a similar way as a neural network.
Since we have proved that a convolutional neural network is equivariant to group actions, it is
interesting to explore the properties of restricted Boltzmann machines when using convolution.

In a restricted Boltzmann machine, the Ising model is used to model the probability distribution
over binary vectors v ∈ {0, 1}n. However, we do not use the Ising model directly on the vector
v = (v1, . . . , vn). To capture deeper relations between the nodes in the input, we extend v with a
so called hidden vector h = (h1, . . . hm) ∈ {0, 1}m. The weights between nodes in v, and between
nodes in h will be set to zero. Hence there will only be nonzero weights wi,j between nodes vi and
hj for i = 1, . . . , n and j = 1, . . . ,m.

Remark. The word restricted in RBM refers to restricting the weights between nodes in the
same layer being set to zero. There are Boltzmann machines that does not use this restriction
[Montúfar, 2018].

The weights wi,j and the biases ai, bj are the parameters we want to optimize during training.

So in a restricted Boltzmann machine we have a layer of visible units v, and one layer of hidden
units h. Let θ = {wi,j , ai, bj |i = 1, . . . , n, j = 1, . . . ,m}. We define the energy of a given vector
x = (v,h) as

Eθ(v,h) = −[
∑
i,j

hjviWij +
∑
i

aivi +
∑
j

bjhj]

and the joint probability is the Boltzmann distribution, defined by this energy function [Hinton, 2012]:

pθ(v,h) =
1

Z
e−Eθ(v,h) =

1

Z
e[
∑
i,j ,hjviWij+

∑
i aivi+

∑
j bjhj].

Summing over all possible hidden vectors h we get the probability distribution over the input
space:

pθ(v) =
1

Z

∑
h

e[
∑
i,j hjviWi,j+

∑
i aivi+

∑
j bjhj] (7)

16

We also have the following:

pθ(h|v) =
∏
j

p(hj |v) where pθ(hj = 1|v) = σ(
∑
i

Wi,jvi + aj), (8)

pθ(v|h) =
∏
i

p(vi|h) where pθ(vi = 1|h) = σ(
∑
j

Wi,jhj + bi). (9)

The function σ is the sigmoid function σ(x) = 1
1+e−x .

Here we can se the similarity between Boltzmann machines and neural networks, the function
pθ(hj = 1|v) in equation (8) is defined exactly as one layer in a neural network. The difference is
that we do not use this vector as an output. Instead, what we are interested in is the probability
distribution over the input space defined in equation (7).

The goal when training a Boltzmann machine is that given a set of input examples {vn}Nn=1 we
adjust the parameters θ so that the probability of drawing these samples given that they came
from the distribution in equation (7) is maximized.

Let v be one example. To maximize the probability of drawing this vector, we can as well maximize
the log-probability which is easier to calculate the derivative of. It can be shown that [Hinton, 2012]

∂ log pθ(v)

∂wi,j
= 〈vihj〉data − 〈vihj〉model.

Where 〈∗〉data denotes the expected value with respect to the data distribution and 〈∗〉model is the
expected value with respect to the model distribution.

〈vihj〉data can be estimated in the following way: First draw one of training examples randomly,
then set hj to 1 with probability pθ(hj = 1|v).

Unfortunately it is time consuming to obtain an estimation of〈vihj〉model. This is solved by ap-
proximating this term with another term 〈vihj〉recon, obtained in the following way:

1. Set state of visible units to a random training example v.

2. Compute states of hidden units h, conditioned on v by equation (8).

3. Compute a reconstruction v′ of the input v, conditioned on the vector h, acquired in step 2,
with equation (9).

4. Now we estimate 〈vihj〉recon as we did 〈vihj〉data but use v′ as the sampled vector instead of
v.

The updating rule for the parameters wi,j is then

∆wi,j = ε(〈vihj〉data − 〈vihj〉recon).

The update rule for the biases ai, bj works similarly.

Now wi,j is updated by wi,j = wi,j + ∆wi,j and then repeat the process until we reach some
stopping criteria. Using this updating rule is actually closer to minimizing another function than
the log-likelihood, called the Kullback-Leibler divergence. This function measures the distance
between two distributions. However, using this updating rule has shown to work quite well in
practice. [Hinton, 2002]

17

4.3 Gaussian Bernoulli Restricted Boltzmann Machines

If the input we want to analyze is real valued instead of binary, then we have to use another
distribution to model the input space. The corresponding algorithm is called a Gaussian-Bernoulli
RBM. As before, we use a binary hidden layer h ∈ {0, 1}m.

The energy function of such a model is

Eθ(v,h) =

n∑
i=1

(vi − bi)2

2σ2
i

−
n∑
i=1

m∑
j=1

Wi,jhj
vi
σi
−

m∑
j=1

ajhj .

The probability distribution is still p(v,h) = 1
Z e
−Eθ(v,h) but with the above energy instead. The

distribution over the input space is then

pθ(v) =
1

Z

∑
h

e−Eθ(v,h). (10)

The conditional distribution over each input unit is

pθ(vi = x|h) =
1√
2πσ

exp−
(x− bi − σi

∑m
j=1 hjWi,j)

2

2σ2
i

and the conditional distribution over the hidden units is

p(hj = 1|v) = g(bj +

n∑
i=1

Wi,j
vi
σi

).

Even though the Gaussian Bernoulli RBM is relevant for our work, we will for simplicity restrict
our focus in the rest of the the chapters to binary RBM’s.

4.4 Deep Learning Based on Boltzmann Machines

Restricted Boltzmann machines is only built up of two layers, which limits its capacity to repre-
sent more complex probability distributions. In the same way we build deep neural networks by
connecting many layers, we can connect restricted Boltzmann machines together to create deeper
structures. This section will introduce two different ways to connect restricted boltzmnn machines
to create such deeper structures. The first algorithm is called a deep Boltzmann machine, and the
second is called deep belief network. These algorithms was presented in [Salakhutdinov, 2015] .

4.4.1 Deep Boltzmann machines

Recall that, in a RBM the input vector v is extended with a hidden vector h. Then the distribution
over vectors x = (v,h) is modeled with an Ising model. A straightforward way to introduce new
hidden layers to the restricted Boltzmann machine would be to extend the vector v with not only
one vector h of hidden variables, instead one could extend it with L vectors h(1), . . . ,h(L). This is
how we construct a deep Boltzmann Machine (DBM), with the restriction that all edges between
units will have zero weight except when the units lies in adjacent layers. Thus we will only have
weights wli,j between units h(l−1)

i and h(l)
j . Given this construction, using the Ising model we get

the energy

E(v,h(1), . . . ,h(L)) = −vTW (1)h1 −
L∑
l=2

h(l−1)TW (l)h(l)

18

and probability distribution over all layers.

pθ(v,h
(1), . . . ,h(L)) =

1

Z
e−Eθ(v,h(1),...,h(L)).

The probability of a certain unit being on given the previous and next layer is:

pθ(h
(l)
j = 1|h(l−1),h(l+1)) = σ(

∑
i

w
(l)
i,jh

(l−1)
i +

∑
m

w
(l+1)
j,m h(l+1)

m) (l = 1, . . . L− 1)

pθ(vi = 1|h(1)) = σ(
∑
j

w
(1)
i,j h

(1)
j)

pθ(h
(L) = 1|h(L−1)) = σ(

∑
i

w
(L)
i,j h

(l−1)
i).

The probability of a given visible vector is

p(v) =
1

Z

∑
h(1),...,h(L)

e−E(v,h(1),...,h(L)).

There are different ways to train deep Boltzmann machines. Many of the algorithms are time-
consuming and complicated, so developing a training algorithms is still a field of research [Desjardins et al., 2012].

4.4.2 Deep Belief Nets

Another deep learning algorithm based on a RBM is the deep belief network (DBN). A deep belief
net is a combination of a restricted Boltzmann machine and a similar network, called a deep sigmoid
belief network.

A sigmoid belief network is closely related to a Boltzmann machine. It uses a model that resembles
the Ising model, but differs in the way that the edges in the graph are directed. Let x ∈ {0, 1}N
be the vector we want to model and wi,j be the interaction strength from xj to xi. In this new
model we can model the probability over one unit conditional on the values of the units preceeding
it [Neal, 1992]:

pθ(xi = 1|xj : j < i) = σ(
∑
j<i

wi,jxj + ai), (11)

p(x1 = 1) = σ(a1). (12)

Here, as usual θ = {wi,j , ai} are the parameters defining the distribution.
Now, in a similar way as with the Boltzmann machine, if we want to model a vector v of visible
units, we can extend it with a layer of hidden binary units h. To get a sigmoid belief network the
model described above is used on the vector x = (h,v), where we let wi,j = 0 whenever both units
i and j lies in the visible layer, or both lies in the hidden layer. It is important that the hidden
units have lower index than the visible units. In this setting equations (11) and (12) becomes:

p(vi = 1|h) = σ(
∑
j

wi,jhj + bi)

p(hj = 1) = σ(cj).

The probability of the vector x = (h,v) is defined as

p(h,v) = p(x1)
∏
i

p(xi|xj : j < i) =
∏
i

p(vi|h)
∏
j

p(hj) = p(v|h)p(h).

19

We can stack multiple sigmoid belief nets to get a deep structure called a deep sigmoid belief net.
Assume that we have L binary hidden layers {h(l)}Ll=1. Let v=h(0), then we have the conditional
probabilities

p(h(l−1)|h(l)) =
∏
i

p(h
(l−1)
i |h(l)) (13)

where p(h(l−1)
i = 1|h(l)) = σ(

∑
j

wi,jh
(l)
j + c

(l)
j) (14)

The probability over the last layer is

p(h(L)) =
∏
i

p(h
(L)
i)

where p(h(L)
i = 1) = σ(c

(L)
i).

The model of the deep sigmoid network is:

p(h(0),h(1), . . . ,h(L)) = p(h(L))

L−1∏
l=0

p(hl|hl+1).

A deep belief net is closely related to both deep sigmoid belief networks and Boltzmann machines.
If we have L hidden layers, the first L− 1 are connected as a deep sigmoid network, with directed
edges. The layer L − 1 and L are connected as a restricted Boltzmann machine, so the edges
connecting the units in these layers go both ways. The probability distribution over all layers is

p(h(0),h(1), . . . ,h(L)) = p(h(L−1),h(L)
l−2∏
l=0

p(hl|h(l+1)).

The conditional probabilites is defined as in a sigmoid network and the probability p(h
(L−1),h(L))

is defined as in a restricted Boltzmann machine.

In the deep belief network, the training is done layerwise. Where we train the connections between
layer l − 1 and l as a restricted Boltzmann machine.

5 Convolutional Boltzmann machines

In previous chapters we have shown the benefits of using convolution in neural networks. Convo-
lutional neural networks have been successful in practice, and there is a large amount of previous
work exploring these networks and how to interpret convolution when we have a general group
acting on the input. Most of this work is focused on supervised learning problems. In the following
we want to explore what happens if we use convolutional connections in unsupervised learning
algorithms. Since the Boltzmann machine is such an unsupervised algorithm, and it uses the same
structure as neural networks, it would be interesting to study what happens when we restrict the
connections between hidden and visible layers to be convolutional.

In this chapter we will introduce convolutional Boltzmann machines and explore their properties.
As with neural networks, we first have to generalize the notation for Boltzmann machines, so that
we can allow the input to be acted on by a general group.

20

5.1 Generalizing Boltzmann machines

In the following we want to define more general types of Boltzmann machines, allowing other types
of inputs than vectors. This will be done using the generalization introduced in section 3. As
far as we are aware of, this is the first attempt to generalize restricted Boltzmann machines to
allow input acted on by any compact group G. For simplicity, we will focus on binary Boltzmann
machines.

Using the notation introduced in chapter 3 we can see the input v ∈ {0, 1}n as a function f (0) ∈
L{0,1}(Z), f(i) = 0 when i /∈ {1, . . . , n}. In the more general definition of the Boltzman machine,
we let the input be a function f (0) ∈ L{0,1}(X(0)) where X is a homogeneous space of a group G.
The hidden layer will be another function f (1) ∈ L{0,1}(X(1)), where X(1) also is a homogeneous
space of G. The energy function will be defined as

Eθ(f
(0), f (1)) = f (1) · (f (0) · Φ) + f (0) · α+ f (1) · β. (15)

Where Φ ∈ LR(X(0) × X(1)), α ∈ LR(X(0)) and β ∈ LR(X(1)) are the functions we want to find
during training.

The distribution over the input space given the parameters θ = {Φ, α, β} is

pθ(f
(0)) =

1

Z

∑
f(1)∈L{0,1}(X(1))

e−Eθ(f(0),f(1)) (16)

with Eθ as in equation (15).

Definition 18 (Restricted Boltzmann Machine). Let G be a group and X(0), X(1) homogeneous
spaces of G. A restricted Boltzmann machine is a model of a distribution over the space {f :
X(0) → {0, 1}}. This model is defined as in equation (16).

5.2 Convolution in Boltzmann machines

As with neural networks, under certain restrictions of Φ, the linear operation f · Φ can be seen
as a convolution f ∗ Ψ, defined as in chapter 3.3.1. The same restrictions can be done in a
Boltzmann machine. Since the index sets are restricted to be homogeneous spaces of G, we can
have X(0) ∼= G/H(0), X(1) ∼= G/H(1) for some subgroups H(0) and H(1) of G. The energy function
of a Convolutional Boltzmann is then defined as:

Eθ(f
(0), f (1)) = −f (1) · (f (0) ∗Ψ). (17)

where Ψ ∈ LR(H(0)\G/H(1)) is the learnable parameter. When the learnable parameters in a
Boltzmann machine are restricted to be of this form, then the model is called a convolutional
Boltzmann Machine.

Definition 19. A convolutional restricted Boltzmann machine is a restricted Boltzmann machine
in which the energy function is restricted to be of the form in equation (17).

Since in a convolutional RBM, θ contains less parameters than for an ordinary RBM, and these
are restricted to be of a special form, we sometimes refer to this as θ being of convolutional form.

5.3 Properties of Convolutional Boltzmann machines

In neural networks, convolutional layers guarantee that the output of the network is equivariant to
group actions on the input. In this section we will show a property for convolutional Boltzmann

21

machines which is called invariance. Invariance is a special case of equivariance.

Definition 20 (Invariance). Let X(1) and X(2) be two sets acted on by a group G. A function
φ : X(1) → X(2) is called G-invariant, or invariant if the group is understood by context, if

φ(Tgx) = φ(x) for all g ∈ G (18)

This means that a function that is G-invariant is not affected in any way by actions of G on the
input.

For the Boltzmann machine there is not an output for each input, instead we end up with a
probability distribution over the input space based on all examples. Thus if we want to explore
properties about the Boltzmann machine, we have to look at the probability distribution it defines,
that is pθ : L{0,1}(G/H

(0))→ [0, 1] defined as in equation (16). To talk about equivariance for such
a probability distribution would not make sense, since G is arbitrary and there is no guarantee
that it can even act on the output space [0, 1]. However, we are still interested in exploring what
happens if the input is acted on by the group G, given that θ is of convolutional form.

As it turns out the probability distribution defined by a convolutional Boltzmann machine is
invariant to group actions:

Theorem 4. Let X(0) be a homogeneous space of a group G. Then a convolutional Boltzmann
machine with input in L{0,1}(X0) is G-invariant. That is

pθ(Tgf (0)) = pθ(f
(0)).

for any g ∈ G.

To prove this we first need two simple lemmas.

Lemma 5. If f, f ′ ∈ LV(X) for some space X acted on by G and field V, then f ·Tgf ′ = Tg−1f ·f ′.

Proof.
f · Tgf ′ =

∑
u∈X

f(u)f ′(g−1u) (19)

Since the sum is taken over all elements u ∈ X, it can as well be taken over v = g−1u ∈ X. With
this variable substitution, equation (19) becomes∑

v∈X
f(gv)f ′(v) = Tg−1f · f ′.

This lemma together with the equivariance of convolution shows that the energy function in a
convolutional Boltzmann machine is invariant to group actions of both inputs:

Corollary 1. If θ is of G-convolutional form, then

Eθ(Tgf (0),Tgf (1)) = Eθ(f
(0), f (1)) for all g ∈ G.

Proof. When θ is of G-convolutional form, it holds that

Eθ(Tgf (0),Tgf (1)) = −Tgf (1) · (Tgf (0) ∗Ψ). (20)

22

Using lemma 5 and equivariance of convolution, equation (20) can be rewritten as −Tg−1Tgf (1) ·
(f (0)∗Ψ). Now group actions has the property that Tg−1Tg = Id, where Id is the identity function.
Thus

−Tg−1Tgf (1) · (f (0) ∗Ψ) = −f (1) · (f (0) ∗Ψ) = Eθ(f
(0), f (1)).

This corollary can be reformulated in the following way.

Corollary 2. If θ is of convolutional form, then

Eθ(Tgf (0), f (1)) = Eθ(f
(0),Tg−1f (1)) (21)

Proof. This follows directly from corollary 1.

Now we are ready to prove theorem 4.

Proof of theorem 4. We have that

pθ(Tgf (0)) =
1

Z

∑
f(1)∈L{0,1}(X(1))

e−Eθ(Tgf(0),f(1)) (22)

Using corollary 2 together with a variable substitution Tg−1f (1) = h(1), we can rewrite equation
(22) as

1

Z

∑
f(1)∈L{0,1}(X(1))

e−Eθ(f(0),Tg−1f
(1)) =

1

Z

∑
h
(1)∈L{0,1}(X

(1))

e−Eθ(f(0),h(1)) = pθ(f
(0))

as desired.

That the probability distribution defined by a convolutional Boltzmann machine is invariant to
group actions means that the probability of drawing a certain example from this distribution is
equal to the probability of drawing the same example, acted on by a group element from G. If
we consider the case where we have a spherical image, this means that rotating the picture does
not change the probability of it being drawn. In some applications of spherical images, the image
represent a surrounding, with the viewer in the middle. In such a scenario, rotation invariance
would mean that given a certain surrounding, the viewer turning around or looking up and down,
does not change the probability of this surrounding. Given this perspective, there are certainly
scenarios when the property of being invariant is beneficial.

In the upcoming sections we show that this property holds for the deeper structures based on
Boltzmann machines presented in section 4.4.

5.4 Generalizing Deep Boltzmann machines and deep belief nets.

The invariance property for convolutional restricted Boltzmann machines can be shown to hold
for the deeper structures built up from Boltzmann machines. This will be proved in the next
section. First, we will show the probability distributions for deep Boltzmann machines and deep
belief networks when using more general notation.

23

The input to both of these structures will be functions f (0) ∈ L{0,1}(X(0)). There will be L hidden
layers {f (l)}Ll=1 where f (l) ∈ L{0,1}(X(l)). Each X l is a homogeneous space of a group G. In both
DBM’s and DBN’s the output will be a probability distribution over the input space L{0,1}(X(0)).

5.4.1 Deep Boltzmann Machine

The energy function of a Deep Boltzmann machine is

Eθ(f
(0), f (1), . . . , f (L)) = −

L∑
l=1

f (l) · (f l−1 · Φ(l)). (23)

And the probability distribution over all layers are

pθ(f
(0), f (1), . . . , f (L)) =

1

Z
e−Eθ(f(0),f(1),...,f(L))

with Eθ as in 23. The probability distribution over the input space is found by summing over all
possible hidden functions

pθ(f
(0)) =

1

Z

∑
f(1)∈X(1)

. . .
∑

f(L)∈X(L)

e−Eθ(f(0),f(1),...,f(L)). (24)

Definition 21. Let G be a group and X(0), X(1), . . . X(L) be homogeneous spaces of G. A deep
Boltzmann machine is a model of a distribution over the space L{0,1}(X(0)), defined as in equation
(24).

Let H(0), . . . ,H(L) be subgroups of G such that X(l) = G/H(l). In a convolutional deep Boltzmann
machine, each dot product f (l−1) ·Φ in the energy function is exchanged to a convolution f (l−1) ∗Ψ
with a function Ψ ∈ LR(H(L−1)\G/H(l)).

5.4.2 Deep Belief Net

In a deep belief network with L hidden layers, we have the probability distribution

pθ(f
(0), f (1), . . . f (L)) = p(f (L−1), f (L))

L−2∏
l=0

p(f (l)|f (l+1)), (25)

where f l ∈ G/H l. The probability p(f (L−1), f (L)) is defined as in a restricted Boltzmann machine:

pθ(f
(L−1), f (L)) =

1

Z
e−Eθ(f(L−1),f(L)) (26)

where Eθ is defined as in equation (15).

The conditional probabilities p(f (l−1)|f (l)) are the generalization of 13:

p(f (l−1)|f (l)) =
∏

i∈G/Hl−1

p(f (l−1)(i)|f (l)) (27)

where p(f (l−1)(i) = 1|f (l)) = σ((f (l) · Φ(l))(i) + β(l−1)(i)).

24

Definition 22. Let X(0), X(1), . . . , X(L) be homogeneous spaces of some group G. A deep belief
net is a model of a probability distribution over the space L{0,1}(X(0) defined as

pθ(f
(0)) =

∑
f(1)∈L{0,1}(X(1))

. . .
∑

f(L)∈L{0,1}(X(L))

pθ(f
(0), f (1), . . . , f (L))

where pθ(f (0), f (1), . . . , f (L)) is defined as in equation (25).

When θ is of convolutional form, we restrict all products f (l) · Φ(l) to be a convolution f (l) ∗Ψ(l).
For l < L, Ψ(l) ∈ LR(H(l)\G/H(l−1)), and for the last layer we have Ψ(L) ∈ LR(H(l−1)\G/H(l)).

5.5 Properties of deep structures based on RBM’s

5.5.1 Invariance of Convolutional Deep Boltzmann Machines

We will now show that the property of being invariant to group actions, which we showed for
RBM’s, extends to deep Boltzmann machines. This will be done by first showing that the energy
function that defines the probability distribution for the DBM is invariant to having the same
group element acting on all the inputs. The proof will follow the same steps as for the RBM.

Lemma 6. Let X(0), . . . X(L) be homogeneous spaces of a group G. Let B be a deep Boltzmann
machine with L layers where the l’th layer lies in in L{0,1}(X(l)). If B is convolutional then the
energy function it defines has the following property

E(Tgf (0), . . . ,Tgf (L)) = E(f (0), . . . f (L)).

Proof. Corollary 1 tells us that

Tgf (l−1) · (Tgf (l) ∗Ψ) = f (l−1) · (f (l) ∗Ψ)

Hence

E(Tgf (0), . . . ,Tgf (L)) = −
L∑
l=1

Tgf (l−1) · (Tgf (l) ∗Ψ)

= −
L∑
l=1

f (l−1) · (f l ∗Ψ)

= E(f (0), . . . , f (L)).

From this lemma, the following result one can easily prove the following corollary.

Corollary 3. The energy function for a convolutional deep Boltzmann machine has the following
property:

E(Tgf (0), f (1), . . . , f (L)) = E(f (0),Tg−1f (1), . . . ,Tg−1f (L)).

Now, we are ready to prove that the probability distribution defined by a convolutional deep
Boltzmann machine is invariant to group actions of the input.

Theorem 5. If all layers in a deep Boltzmann machine are convolutional, then

pθ(Tgf (0)) = p(f (0)).

25

Proof. In a deep Boltzmann machine, pθ is defined as

pθ(Tgf (0)) =
1

Z

∑
f(1)...f(L)

e−Eθ(Tgf(0),f(1),...,f(L)) (28)

Corollary 3 tells us that equation (28) can be written as

1

Z

∑
f(1)...f(L)

e−Eθ(f(0),Tg−1f
(1),...,Tg−1f

(L)). (29)

Now let h(l) = Tg−1f (l) for l = 1, . . . , L. Then we can sum over the functions h(l) instead, which
yields the equality

pθ(Tgf (0)) =
1

Z

∑
h(1)...h(L)

e−Eθ(f(0),h(1),...,h(L)) = pθ(f
(0)) (30)

as desired.

5.5.2 Invariance of convolutional deep belief nets

So far we have shown that using convolutional layers guarantees both RBM’s and DBM’s to be
invariant to group translations. Now we want to prove that DBN’s holds the same property.

Theorem 6. If all layers in a deep belief network are convolutional, then p(Tgf (0)) = p(f (0)).

This proof will need a bit more care than the previous ones for the Boltsmann machines, so we
will first present a series of lemmas from which the theorem will follow easily.

Lemma 7. If θ is of convolutional form then the probability in equation (26) has the following
property.

pθ(Tgf (L−1), f (L)) = pθ(f
(L−1),Tg−1f (L))

Proof. This probability is defined as

pθ(Tgf (L−1), f (L)) =
1

Z
e−E(Tgf(L−1),f(L)) (31)

with the same energy as for a restricted Boltzmann machine. Corollary 2 tells us that since θ
is of convolutional form, Eθ(Tgf (L−1), f (L)) = Eθ(f

(L−1),Tg−1f (L)). Hence we get can rewrite
equation (31) as

1

Z
e−E(f(L−1),Tg−1f

(L)) = pθ(f
(L−1),Tg−1f (L)). (32)

Lemma 8. If θ is of convolutional form, then the probability distribution in equation (27) satisfies

pθ(Tgf (l−1)|f (l)) = pθ(f
(l−1)|Tg−1f

(l)). (33)

Proof. To be able to prove this, we have to be a bit more careful with notation than we have been
so far. When we write p(f) for a certain f , what is really mean is p(f̂ = f) where f̂ is a random
variable. So the probability on the left hand side in equation (33) becomes pθ(ˆf l−1 = Tgf l−1|f (l)).
With this notation, we get

pθ(f̂ (l−1) = Tgf (l−1)|f (l))=

∏
i

p(f̂ l−1(i) = Tgf (l−1)(i)|f (l)) (34)

26

Now if f : X → {0, 1}, let If = {i ∈: f(i) = 1} and Of = {i ∈ χ : f(i) = 0}. Then X = If ∪ Of ,
with If and Of disjoint. Thus we can divide the product in equation (34) into two products.∏

i∈ITgf(l−1)

p(̂f (l−1)(i) = 1|f (l))
∏

i∈OTgf(l−1)

(1− p(̂f (l−1)(i) = 1|f (l)))

=
∏

i∈ITgf(l−1)

e(f(l)∗Ψ)(i)

1 + e(f(l)∗Ψ)(i)

∏
i∈OTgf(l−1)

1

1 + e(f(l)∗Ψ)(i)
(35)

Now, let j = g−1i. Since Tgf(i) = 1 ⇐⇒ f(g−1i) = 1 ⇐⇒ f(j) = 1, it follows that

i ∈ ITgf ⇐⇒ j ∈ If .

Thus, we can rewrite equation (35) as

∏
j∈I

f(l−1)

e(f(l)∗Ψ)(gj)

1 + e(f(l)∗Ψ)(gj)

∏
j∈O

f(l−1)

1

1 + e(f(l)∗Ψ)(gj)
.

The equivariance of convolution gives that this product equals

∏
j∈I

f(l−1)

e(Tg−1f
(l)∗Ψ)(j)

1 + e(Tg−1f(l)∗Ψ)(j)

∏
j∈O

f(l−1)

1

1 + e(Tg−1f(l)∗Ψ)(j)

=pθ(f̂ (l−1) = f (l−1)|Tg−1f (l))

as required.

Corollary 4. If θ is convlutional then

p(Tgf (L−1),Tgf (L)) = p(f (L−1), f (L)), and

p(Tgf (l−1)|Tgf (l)) = p(f (l−1)|f (l)).

Proof. This follows directly from lemma 7 and 8.

Lemma 9. If all layers in a deep belief network are convolutional, then

p(Tgf (0),Tgf (1), . . .Tgf (L)) = p(f (0), f (1), . . . , f (L)).

Proof. We have that

p(Tgf (0),Tgf (1), . . . ,Tgf (L)) = p(Tgf (L−1),Tgf (L))

L−2∏
l=0

p(Tgf (l)|Tgf (l+1)).

Using corollary 4, the right hand side equals

p(f (L−1), f (L))

(L−2)∏
l=0

p(f (l)|f (l+1)) = p(f (0), f (1), . . . , f (L)).

27

Proof of theorem 6. Now the theorem follows easily from lemma 9:

p(Tgf (0)) =
∑

f(1)···f(L)

p(Tgf (0), f (1), . . . , f (L))

=
∑

f(1)···f(L)

p(f (0),Tg−1f (1), . . . ,Tg−1f (L)) (h(l) = Tg−1f (l))

=
∑

h(1)···h(L)

p(f (0), h(1), . . . , h(L))

= p(f (0)).

6 Discussion

In chapter 5, we use the theory already developed for generalizing neural networks to generalize
the restricted Boltzmann machine. These new restricted Boltzmann machines thus allow input
that is not restricted to lie in an Euclidean space, but in any space that can be acted on by
some compact group. Further, we have shown that the equivariance property for convolutional
neural networks leads to invariance of the restricted Boltzmann machine, when using convolutional
connections between the visible and hidden layer. We have also shown that connecting such
Boltzmann machines into deeper structures such as the deep Boltzmann machines, or deep belief
networks preserves the invariance property as long as the connectons between each layer is of
convolutional form. However, we have only covered the case when the input is binary. As we
described there exist Gaussian Bernoully restricted Boltzmann machines, which allows real-valued
functions as input instead of binary valued. For further work, it would be interesting to develop a
corresponding generalization for these machines. If this was accomplished one could explore if the
property of invariance would be kept when using convolutional connections.

As we have seen even with ordinary neural networks, when implementing the theory one often have
to make some approximations. For example, when we have a function over the sphere as input,
we have to use a discrete version of the sphere. There is however no way to do this while keeping
the symmetry of the sphere exactly. The loss of symmetry makes the equivariance property of
convolution a bit less exact. Because of this the theory developed for invariant Boltzmann machine
should be tested by implementing such a convolutional Boltzmann machine before we could draw
any conclusions about how useful the theory actually is in practice.

28

References

[UR,] Utformning av rapporter och kandidatarbetens skriftliga presentation för Civilingenjörspro-
grammen vid Chalmers tekniska högskola. 2008. Göteborg: Chalmers Tekniska Högskola.

[Cohen and Welling, 2016] Cohen, T. and Welling, M. (2016). Group equivariant convolutional
networks. In Balcan, M. F. and Weinberger, K. Q., editors, Proceedings of The 33rd International
Conference on Machine Learning, volume 48 of Proceedings of Machine Learning Research, pages
2990–2999, New York, New York, USA. PMLR.

[Cohen et al., 2018] Cohen, T. S., Geiger, M., Köhler, J., and Welling, M. (2018). Spherical CNNs.
In International Conference on Learning Representations.

[Coors et al., 2018] Coors, B., Condurache, A. P., and Geiger, A. (2018). Spherenet: Learning
spherical representations for detection and classification in omnidirectional images. In Ferrari,
V., Hebert, M., Sminchisescu, C., and Weiss, Y., editors, Computer Vision – ECCV 2018, pages
525–541, Cham. Springer International Publishing.

[Desjardins et al., 2012] Desjardins, G., Courville, A., and Bengio, Y. (2012). On training deep
Boltzmann machines. arXiv preprint arXiv:1203.4416.

[Esteves et al., 2018] Esteves, C., Allen-Blanchette, C., Makadia, A., and Daniilidis, K. (2018).
Learning so(3) equivariant representations with spherical cnns. In Ferrari, V., Hebert, M.,
Sminchisescu, C., and Weiss, Y., editors, Computer Vision – ECCV 2018, pages 54–70, Cham.
Springer International Publishing.

[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT
Press, Cambridge, MA.

[Hinton, 2002] Hinton, G. (2002). Training products of experts by minimizing contrastive diver-
gence. Neural Computation, 14(8):1771–1800.

[Hinton, 2012] Hinton, G. E. (2012). A Practical Guide to Training Restricted Boltzmann Ma-
chines, pages 599–619. Springer Berlin Heidelberg, Berlin, Heidelberg.

[Kondor et al., 2018] Kondor, R., Lin, Z., and Trivedi, S. (2018). Clebsch–gordan nets: a fully
fourier space spherical convolutional neural network. In Bengio, S., Wallach, H., Larochelle,
H., Grauman, K., Cesa-Bianchi, N., and Garnett, R., editors, Advances in Neural Information
Processing Systems 31, pages 10117–10126. Curran Associates, Inc.

[Kondor and Trivedi, 2018] Kondor, R. and Trivedi, S. (2018). On the generalization of equivari-
ance and convolution in neural networks to the action of compact groups. In Dy, J. and Krause,
A., editors, Proceedings of the 35th International Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pages 2747–2755, Stockholmsmässan, Stockholm
Sweden. PMLR.

[Lee et al., 2009a] Lee, H., Grosse, R., Ranganath, R., and Ng, A. Y. (2009a). Convolutional deep
belief networks for scalable unsupervised learning of hierarchical representations. In Proceedings
of the 26th Annual International Conference on Machine Learning, ICML 09, pages 609–616,
New York, NY, USA. Association for Computing Machinery.

[Lee et al., 2009b] Lee, H., Pham, P., Largman, Y., and Ng, A. Y. (2009b). Unsupervised feature
learning for audio classification using convolutional deep belief networks. In Bengio, Y., Schu-
urmans, D., Lafferty, J. D., Williams, C. K. I., and Culotta, A., editors, Advances in neural
information processing systems, pages 1096–1104. Curran Associates, Inc.

[Lei et al., 2014] Lei, J., Li, G., Tu, D., and Guo, Q. (2014). Convolutional restricted Boltzmann
machines learning for robust visual tracking. Neural Computing and Applications, 25(6):1383–
1391.

29

[Montúfar, 2018] Montúfar, G. (2018). Restricted Boltzmann machines: Introduction and review.
In Ay, N., Gibilisco, P., and Matúš, F., editors, Information Geometry and Its Applications,
volume 252 of Springer Proceedings in Mathematics Statistics, pages 75–115, Cham. Springer
International Publishing.

[Neal, 1992] Neal, R. M. (1992). Connectionist learning of belief networks. Artificial Intelligence,
56(1):71–113.

[Norouzi et al., 2009] Norouzi, M., Ranjbar, M., and Mori, G. (2009). Stacks of convolutional
restricted Boltzmann machines for shift-invariant feature learning. In 2009 IEEE Conference on
Computer Vision and Pattern Recognition, pages 2735–2742. IEEE.

[Salakhutdinov, 2015] Salakhutdinov, R. (2015). Learning deep generative models. Annual Review
of Statistics and Its Application, 2(1):361–385.

[Wang, 2018] Wang, L. (2018). Three-dimensional convolutional restricted Boltzmann machine
for human behavior recognition from RGB-d video. EURASIP Journal on Image and Video
Processing, 120(2018).

30

	Introduction
	Machine Learning
	Convolutional Neural Networks
	Supervised vs. Unsupervised Learning
	Boltzmann Machines
	Main Result
	Layout of Thesis

	Basics of Neural Networks
	Neural networks
	Parameters of a neural network

	Training a neural network.
	Backpropagation

	Convolutional Neural Networks
	Convolution and equivariance
	Group Theory
	Generalizing Neural Networks
	Generalize convolution

	Equivariance of convolutional neural networks

	Restricted Boltzmann Machines
	Ising model
	Restricted Boltzmann Machines
	Gaussian Bernoulli Restricted Boltzmann Machines
	Deep Learning Based on Boltzmann Machines
	Deep Boltzmann machines
	Deep Belief Nets

	Convolutional Boltzmann machines
	Generalizing Boltzmann machines
	Convolution in Boltzmann machines
	Properties of Convolutional Boltzmann machines
	Generalizing Deep Boltzmann machines and deep belief nets.
	Deep Boltzmann Machine
	Deep Belief Net

	Properties of deep structures based on RBM's
	Invariance of Convolutional Deep Boltzmann Machines
	Invariance of convolutional deep belief nets

	Discussion

