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Abstract 

Liquid biopsies are minimally invasive and allow repetitive sampling of body 
fluids. Analysis of cell-free tumor DNA in liquid biopsies can be used as a 
biomarker for cancer. However, in most clinically relevant liquid biopsies, 
cell-free DNA is present at low concentrations, contains minute tumor allele 
frequencies, and is highly fragmented. Analysis of immune cell DNA in liquid 
biopsies can be profiled to examine the immune cell repertoire. However, this 
application requires unbiased quantification and accurate sequencing in an 
incredibly diverse DNA background. The overall aim of this thesis was to 
develop ultrasensitive sequencing approaches that enable the detection and 
quantification of individual molecules and single cells in these applications. 
We applied SiMSen-Seq, an ultrasensitive sequencing strategy based on 
unique molecular identifiers that enables error-free and quantitative 
sequencing. First, we showed that the amounts of plasma and DNA, number 
of targeted somatic variants, assay length, and target sequences affect the 
sensitivity of ctDNA analysis. We developed multiple quality control steps to 
evaluate a preanalytical workflow to analyze the amount of amplifiable DNA, 
degree of cellular contamination, and enzymatic inhibition. In patients with 
gastrointestinal stromal tumors, cell-free tumor DNA correlated with risk 
classification, treatment response, tumor size, and cell proliferation. Our data 
indicate that our method can be applied to monitoring treatment efficacy and 
identifying relapse early, especially in high-risk patients. Finally, we 
developed a targeted and ultrasensitive immune repertoire sequencing method 
to profile T-cell clonality. By studying the DNA of γδ T cells, we demonstrated 
that our approach is characterized by a wide dynamic range and high 
reproducibility and can be applied to enriched and non-enriched cells. In 
conclusion, we developed two flexible and simple liquid-biopsy applications 
that use ultrasensitive DNA sequencing to monitor cancer in patients with 
gastrointestinal stromal tumors and profile the immune repertoire of γδ T cells, 
respectively. We expect that several diagnostic applications that utilize liquid 
biopsies will be implemented in clinical routines in the future. Further 
technology development and the use of diverse types of analytes will advance 
this field of research. Ultimately, the development and implementation of 
ultrasensitive liquid biopsy-based analysis will facilitate precision medicine 
for more patients and improve their survival and quality of life. 

Keywords: Liquid biopsy, cell-free DNA, immune repertoire, next-generation 
sequencing, unique molecule identifier, GIST, γδ T cell 
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Populärvetenskaplig 
sammanfattning 

Med hjälp av ett blodprov, eller andra lättåtkomliga kroppsvätskor, går det att 
på ett icke-invasivt vis följa cellspecifika förändringar i arvsmassan som skett 
under en individs livstid. Vissa av dessa förändringar är fördelaktiga, så som 
när immunceller utvecklar förmågan att känna igen en enorm mängd olika 
virus och bakterier. Andra förändringar är kopplade till sjukdomar så som 
cancer. När celler dör läcker cellfritt DNA (cfDNA) ut i bland annat 
blodomloppet.  Detektion av cellfritt tumör-DNA (ctDNA) möjliggör 
screening, diagnostisering, tidig upptäckt av återfall samt behandlingssvar. Tre 
utmaningar är kopplade till dessa typer av mätningar. För det första är mängden 
cfDNA i blodet lågt, för det andra är det kraftigt fragmenterat och för det tredje 
är andelen ctDNA låg. Sammantaget kräver detta metoder som kan upptäcka 
enskilda molekyler. I denna avhandling har vi utvecklat kvalitetskontroller och 
strategier som kan förenkla och optimera arbetsflödet inom ctDNA-analys. Vi 
har därefter studerat mängden ctDNA i patienter med gastrointestinal 
stromacellstumör över tid med hjälp av en extremt känslig 
sekvenseringsmetod. Tekniken baseras på att varje molekyl ges en unik markör 
vilket möjliggör att antalet tekniska fel kan minimeras. Våra resultat visar att 
ctDNA framförallt förekommer i högriskpatienter samt att positivt prov 
korrelerar med bland annat tumörstorlek, hur snabbt tumören delar sig, och 
svar mot behandling. Slutligen har vi vidareutvecklat samma 
sekvenseringsmetod för att följa enskilda immuncellers expansion med extrem 
noggrannhet.  Vi visar att vår metod ger mellan tio och hundra gånger bättre 
uppskattning av antalet celler jämfört med om man inte använder sig av unika 
markörer för sekvensering. Vi visar också att metoden inte leder till en 
snedfördelad kvantifiering av olika immunceller. Att kunna detektera 
förändringar i DNA med minimalt invasiva metoder skapar möjligheter som 
kan leda till effektivare sjukvård och förbättrad hälsa. Framtida tillämpningar 
kommer sannolikt ta vara på flera olika komponenter av kroppsvätskor samt 
mäta ett större antal förändringar vilket kommer att öka mängden information 
som går att få ut från ett enstaka patientprov. Med ökad känslighet och fler 
användningsområden kommer också nya utmaningar i att avgöra när testning 
är lämpligt och kan leda till förbättrad hälsa och överlevnad. 

 

 



 

vii 

List of papers 

�is thesis is based on the following studies, referred to in the text by their roman 

numerals. 

I .  Johansson, G., Andersson, D., Filges, S., Li, J., Muth, A., Godfrey, T.E. and 
Ståhlberg, A. Considerations and quality controls when analyzing cell-free 
tumor DNA. Biomolecular detection and quantification, 2019; 17: 100078. 

II .  Johansson, G., Kaltak, M., Rîmniceanu, C., Singh, A.K., Lycke, J., 
Malmeström, C., Hühn, M., Vaarala, O., Cardell, S. and Ståhlberg, A. 
Ultrasensitive DNA Immune Repertoire Sequencing Using Unique Molecular 
Identifiers. Clinical Chemistry, 2020; 10: 1-10. 

I II .  Johansson, G., Berndsen, M., Lindskog, S., Österlund, T., Fagman, H., Muth, 
A. and Ståhlberg, A. Patient specific monitoring of cell-free tumor DNA in the 
surgical treatment of patients with gastrointestinal stromal tumors. 
(Manuscript), 2021.  



 

viii 

Content 

 

INTRODUCTION ................................................................................................ 1 

Liquid biopsy ................................................................................................ 1 

Cell-free DNA .............................................................................................. 3 

Cellular DNA ................................................................................................ 4 

Detection of somatic variants using molecular analysis ............................... 5 

Error-correction in sequencing ..................................................................... 6 

Molecular barcoding ..................................................................................... 7 

SiMSen-Seq ........................................................................................... 10 

Circulating tumor DNA .............................................................................. 12 

Precision medicine ................................................................................. 13 

Immune repertoire sequencing.................................................................... 15 

AIMS .............................................................................................................. 17 

RESULTS AND DISCUSSION ............................................................................ 18 

Considerations and quality controls when detecting ctDNA. ..................... 18 

Increasing sensitivity to detect ctDNA in liquid biopsy. ....................... 18 

Quality controls of cfDNA .................................................................... 19 

Precision medicine in gastrointestinal stromal tumor ................................. 22 

Calling variants in cancer applications .................................................. 23 

Future of liquid biopsy in GIST ............................................................ 24 

Ultrasensitive immune repertoire sequencing ............................................. 25 

Applications of ultrasensitive immune repertoire sequencing ............... 28 

CONCLUSION ................................................................................................. 31 

FUTURE PERSPECTIVE ................................................................................... 32 

Emerging clinical adaptations ..................................................................... 32 

Novel biomarkers and diagnostics .............................................................. 33 

Personalized biomarkers ............................................................................. 35 

ACKNOWLEDGMENT ...................................................................................... 37 

REFERENCES .................................................................................................. 39 

 

  



 

ix 

Abbreviations 

 

CDR3 Complementarity-determining region 3 

cfDNA Cell-free DNA 

ctDNA Cell-free tumor DNA 

GIST Gastrointestinal stromal tumor 

MRD Minimal residual disease 

NGS Next-generation sequencing 

qPCR Quantitative polymerase chain reaction 

SiMSen-Seq Simple multiplexed PCR-based barcoding of DNA for 

ultrasensitive mutation detection by next-generation 

sequencing 

TCR T-cell receptor 

TKI Tyrosine kinase inhibitors 

UMI Unique Molecule Identifier 

V, D, J Variable, Diversity, Joining 

 

  



 

x 

 



 

1 

Introduction 

The human genome project began on October 1st, 1990, aiming to sequence the 

human genome. It took thirteen years and cost 2.7 billion dollars [1]. Today 

the same analysis costs less than $1000 and takes a few days to complete. This 

development has provided us with the ability to detect genomic changes 

between individuals and helped us to, among other things, understand drug 

efficiency and the origin of genetic diseases [2]. Further advancements have 

allowed us to detect genetic changes that occur in individual cells during our 

lifetime. These changes to our cells’ DNA are called somatic variations and 

are defined as any change that affects cells other than a gamete, germ cell, or 

gametocyte. Somatic variation has multiple implications in health and disease. 

For example, cancer occurs as a consequence of accumulated somatic 

mutations transforming normal cells into malignant cells that divide 

uncontrollably. Somatic mutations have also been implicated as having a role 

in aging and neurodegenerative diseases [3,4]. Another case of somatic 

variation is our immune system that undergoes genomic scrambling to generate 

a highly diverse defense system. Studying somatic variation demands an ability 

to detect extremely low-frequency variations different from the average cell.  

The clinical benefit of being able to follow somatic mutations cannot be 

understated. In cancer, it allows for screening, diagnosis, and prognosis. It can 

be used to monitor treatment efficiency, detect minimal residual disease and 

relapse. It can also be used to detect treatment resistance and guide the steps 

of patient management [5–8]. Studying the somatic variation in the immune 

system could detect current or past infections, identify disease-associated 

autoimmune lymphocytes, or be used to monitor the immune response 

interaction with a tumor.  

Liquid biopsy 

Tissue biopsy is a process of removing a small sample of tissue using surgery 

or small-needle aspiration to be analyzed in a laboratory. When performed 

correctly, a tissue biopsy is a precise and sensitive procedure to diagnose and 

confirm diseases such as cancer, infections, and organ rejection after 

transplantations. Unfortunately, attaining a tissue biopsy from many organs is 

sometimes a complicated and invasive procedure. Tissue biopsy is associated 
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with adverse side effects such as infections and bleeding. In rare cases, tissue 

biopsy has even been associated with the cancer spreading by disseminating 

the tumor [9,10]. It can also be difficult to localize the diseased tissue’s exact 

position, which may result in failed biopsy or a false negative result [11]. Still, 

tissue biopsy has had immense importance in managing cancer and improved 

the healthcare of millions. However, suppose the limitations could be avoided 

and, in some circumstances, replaced or complemented with a less invasive 

procedure. In that case, the information provided by a biopsy could benefit 

even more patients.   

A liquid biopsy is one such alternative approach; it denotes the sampling of 

any bodily fluid and includes blood, urine, cerebrospinal fluid, saliva, stool, 

and more [12]. Liquid biopsies are generally less invasive than their 

corresponding tissue biopsy. They contain residues from multiple tissues and 

allow for sampling when the diseased tissue is inaccessible, spread out, or in 

an unknown location. Therefore, liquid biopsy can potentially better capture 

the spatial and temporal heterogeneity associated both genetically and 

phenotypically with diseases such as cancer compared to a corresponding 

tissue biopsy [13,14]. There are also multiple occasions where tissue biopsy is 

not an available alternative, for example due to costs or if the patient’s general 

state is too weak to motivate the invasive procedure. The major drawback with 

liquid biopsy approaches is when the analytes of interest are low concentration 

and require ultrasensitive analysis to be detected, and that some biomarkers 

cannot be assessed in the liquid phase, such as a tumor’s morphology.  

A liquid biopsy contains multiple fractions that can be used in downstream 

analysis. In blood, the plasma fraction contains cell-free DNA and RNAs, 

extracellular vesicles, metabolites, and proteins. The cellular fractions 

comprise white and red blood cells, platelets, and potentially disease-

associated cells such as circulating tumor cells. Multiple analyses can be 

performed by utilizing both these fractions, increasing the diagnostic potential 

[12]. This thesis explores cell-free DNA (cfDNA) and immune repertoire of T-

cells extracted from the plasma and the cellular fraction of a blood sample, 

respectively.   
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Cell-free DNA 

DNA can be released from cells into the circulation through apoptosis, 

necrosis, and active cellular secretion [15]. The majority of cell-free DNA 

(cfDNA) in healthy individuals has a length of around 166 bp with 

characteristics reminiscent of DNA extracted from apoptotic cells [16,17]. The 

size corresponds to the DNA wrapped around a nucleosome twice plus a 20 bp 

linker attached to histone 1, as shown in figure 1. Cell-free DNA can 

sometimes be seen in a ladder pattern corresponding to the length of DNA 

wrapped around two or more nucleosomes [18–20]. Depending on the origin, 

release mechanism, and other unknown processes, cfDNA can be shorter and 

longer than 166 bp. For example, in some cancer patients, cfDNA might be 

several kilobase pairs, which indicates that the DNA came from necrotic cell 

death [16]. Also, cfDNA with origin from solid tissues is usually shorter than 

the majority of cfDNA derived from hematopoietic cells [21,22]. Therefore, 

size-based selection of cfDNA can increase the sensitivity of analysis in some 

circumstances [23]. When cfDNA is released, it is quickly degraded through 

nuclease activity [24] and cleared by the liver [25], spleen [26], and kidneys [27]. 

The half-life of cfDNA is short and reflects the current cellular degradation in 

the body. In blood, the half-life is estimated to be between ten minutes and two 

hours [28]. The level of cfDNA in the blood is a poor diagnostics biomarker as 

external factors such as exercise [29], surgery [30], age [31],  trauma injury [32], 

inflammation [33], and obesity [34] can influence the levels of cfDNA in a 

sample.  

Figure 1. Release and degradation of cell-free DNA. The left image shows three pathways 
for how DNA is released from cells into circulation. The right image shows how DNA is 
wrapped around nucleosomes (yellow), protecting the DNA, leading to DNA being cut into 
approximately 166 bp long segments. 

More success has been found in analyses that have investigated molecular 

markers in cfDNA specific to the tissue or disease of interest. In non-invasive 

prenatal screening, assays are specific for a fraction of cfDNA that comes from 

the fetus [35,36]. In transplantation, graft-versus-host reaction assays detect the 

fraction of DNA from the transplant (Y. M. Lo et al. 1998). In cancer, assays 
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target tumor-specific DNA mutations or alterations [37,38]. There are four 

main challenges with cfDNA analysis. First, the level of cfDNA in plasma is 

low and varies around 10 ng per ml in a healthy individual [39,40]. One average 

human diploid genome weighs approximately 6.46 pg, suggesting that each 

nanogram contains 310 haploid genome equivalents [41]. A milliliter of 

plasma, therefore, contains only a few thousand molecules upon which to base 

the analysis. Secondly, the analyte of interest, such as a somatic alteration, can 

be in concentrations lower than 1%, requiring the analysis to detect single 

molecules. Thirdly, cfDNA can contain background allele variants from clonal 

hematopoiesis and non-disease-associated mutations due to high age or benign 

neoplasm [42–44]. Lastly, cfDNA is highly fragmented and derived from a 

complex matrix such as plasma that can introduce issues in downstream 

analysis.  

To isolate cfDNA, whole blood is separated into either plasma or serum. After 

blood draw, it is essential to avoid cell lysis as it risks releasing unfragmented 

cellular DNA, diluting the original cfDNA. Therefore, plasma is preferred over 

serum due to a lower risk of contamination with cellular DNA [45]. To avoid 

cellular degradation, plasma should be isolated within two to six hours after 

collection [46,47]. A second centrifugation of the plasma at high speed can 

remove any remaining cellular debris [48]. Plasma is subsequently stored at –

80°C or directly used for cfDNA extraction. Freeze-thaw cycles of both plasma 

and extracted cfDNA should be avoided as it leads to DNA degradation [49]. 

In case plasma cannot be isolated soon after blood is drawn, preservative tubes 

can be used to inhibit cell lysis and nuclease activity in the sample, allowing 

the sample to be stored at room temperature for days [47,50]. Finally, cfDNA 

is extracted by methods either binding the DNA to magnetic beads or capturing 

it on silica-based membranes [51].  

Cellular DNA 

Many of the challenges of analyzing cfDNA are not present when analyzing 

DNA from the cellular fraction of a liquid biopsy. In contrast to cfDNA, 

extraction protocols are straightforward, cellular DNA is stable, and the risk of 

cellular DNA contamination does not exist. Sometimes there is even a 

possibility to sort the cells based on cell surface markers before DNA 

extraction. Still, in blood cancers and in applications such as circulating tumor 

cells, the fraction of tumor-specific cells can be extremely low. In applications 
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such as immune repertoire sequencing, the proportion of DNA from a specific 

subpopulation like γδ-T cells can be as low as 1–5 % [52]. Detection of low-

frequency clones (0.1–1 %) in these populations then requires substantial 

amounts of DNA, introducing a different set of technical challenges and 

considerations.  

Detection of somatic variants using molecular analysis 

Molecular analyses of nucleic acids can be used to detect specific DNA 

sequences. Polymerase chain reaction (PCR) uses oligonucleotide primers 

specific to the sequence of interest, DNA polymerase, deoxynucleoside 

triphosphate, and temperature cycling to copy a selected amplicon [53–55]. 

Quantitative PCR (qPCR) improves on PCR and can be used to quantify the 

amount of DNA in a sample relative to a standard or other sample. The qPCR 

reaction emits fluorescence at each cycle proportional to the amount of DNA 

in the sample [56]. By determining at which cycle the fluorescence reaches a 

defined threshold, it is possible to compare the amount of target DNA at the 

start of the reaction [57]. By designing two sets of assays, one specific for a 

somatic mutation and one for the wildtype sequence, it is possible to use qPCR 

to determine the frequency of a somatic mutation in a sample. The assay’s 

specificity can either be placed in the primers, using two sets of primers, or 

using a single set of primers and two molecular probes. 

Digital PCR is a technology that can increase sensitivity and quantification 

even further. The principle behind digital PCR is to compartmentalize the 

reaction such that each target DNA molecule is amplified in a unique partition. 

The reactions can occur in oil droplets or small compartments in a matrix 

containing all reagents needed for the PCR [58,59]. Using sequence-specific 

probes and counting the partitions in which a successful amplification has 

occurred, this strategy enables digital quantification of somatic mutation on a 

linear scale without a standard curve. A significant limitation with PCR,  

qPCR, and digital PCR is that only a few targets may be differentiated at once 

[60]. High-throughput DNA sequencing can be used to solve this limitation and 

identify a wide range of mutations in a single reaction. 

Sequencing can be applied to single amplicons, multiple genes, whole exomes, 

or even whole genomes. Multiple technologies can be used to sequence DNA. 

Due to the inherent properties of these technologies, not all are suitable for 
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detecting low-frequency somatic variants. For example, Sanger sequencing, a 

first-generation sequencing technology, performs a bulk analysis of all 

molecules in the sample using gel electrophoresis. The approach has high 

fidelity and makes Sanger sequencing the gold standard of sequencing. 

However, the method has low throughput and struggles to identify 

subpopulations of molecules, with a frequency below 15 to 20 %. The low 

sensitivity made it impractical for the detection of somatic mutations [61].  

Next-generation sequencing (NGS) platforms such as Illumina, Ion Torrent, 

and formerly also 454 and Solid, use parallel short-read sequencing of millions 

of DNA molecules. This approach is better suited to separate low-frequency 

somatic mutations as molecules are sequenced individually instead of in bulk. 

In practice, NGS can reliably detect somatic mutations with allele frequencies 

down to approximately 1 % [62] and is limited primarily due to errors from 

library preparation [63], enrichment PCR, and sequencing [64]. Several 

ultrasensitive sequencing technologies have been developed to increase 

sensitivity by several orders of magnitude, as discussed in detail below. 

Error-correction in sequencing 

Each region of DNA must be sequenced thousands of times to detect low-

frequency mutation, a process known as deep sequencing. For example, if the 

variant allele frequency is 1%, only 10 out of 1000 reads will contain the 

mutation. However, like most scientific analyses, NGS is also limited by the 

signal-to-noise ratio, e.g., sequence errors (noise) will hide the true mutation 

(the signal). Computational and biochemical strategies can be used to reduce 

the number of errors in NGS. Briefly, computational methods involve filtering 

of data based on read-quality scores [65], analyzing the position of the error 

inside the read [66], and confirming the error using both read orientations [67]. 

Other computational methods efficiently remove adapter and primer regions, 

which reduce errors caused by improper alignment [68]. Furthermore, 

modeling the error profiles can be used [69,70] to identify particular erroneous 

mutation patterns, such as oxidative damage and polymerase-specific patterns 

[71,72], to increase confidence before calling variants.  

Biochemical strategies to suppress errors involve utilizing high-fidelity 

polymerases in library construction. It is also important to reduce DNA 

damage during sample handling, as polymerases are more likely to incorporate 
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erroneous bases when encountering damaged DNA [73,74]. Extensive heating, 

ultrasonic shearing, and formalin fixation should also be avoided [75,76]. 

However, not all errors can be prevented or corrected. Even with the described 

strategies, standard NGS fails to universally call somatic mutations below 1 % 

[77]. In order to decrease errors even further, a new strategy was needed. 

Molecular barcoding introduced a simple approach to form a consensus out of 

a group of sequencing reads traceable back to an original molecule, discussed 

in greater detail below. The strategy reduces the number of errors by several 

orders of magnitude and could be preferably used in combination with other 

error reduction techniques discussed above.   

Molecular barcoding 

Digital sequencing, single-molecule consensus sequencing, tag-based error 

correction, or molecular barcoding are all different names for similar 

approaches (Figure 2). By tracing and comparing ‘daughter’ molecules to the 

original ’mother’ molecules, all sharing the same barcode, polymerase-induced 

errors that occurred during amplification and sequencing can be 

bioinformatically removed [64]. Detecting low-frequency mutations requires 

thousands of molecules to be sequenced. In molecular barcoding methods, 

even deeper sequencing is needed as multiple copies of each original molecule 

need to be sequenced to enable error correction. 

Figure 2. Principle of molecular barcoding. Original DNA molecules, one with a mutation 
(red star), are tagged with a unique molecular identifier (colored dots). In library 
construction, reads are amplified. Errors are introduced both during amplification and 
when the molecule is sequenced (yellow star). Errors are distinguished from mutations as 
errors are only present in a subset of the molecules tagged with the same unique molecular 
identifier.  

There are multiple different molecular barcoding protocols; a few of them have 

been summarized in Table 1. These methods differ in how the barcode is 

attached, the barcode’s structure, and how target-enrichment is performed, if 

needed. The barcode design can be endogenous, meaning that it is inferred 
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from the fragmentation or the random initiation of amplification. It can also be 

exogenous, meaning that it was added to the original molecules. An exogenous 

barcode is often a random or semi-random sequence of nucleotides called a 

Unique Molecule Identifier (UMI) [64]. If there are four possible bases at each 

position in a UMI, the number of potentially unique barcodes are four to the 

power of the length of the barcode. Therefore, a twelve-nucleotides-long 

barcode generates about 16.7 million combinations. For both endogenous and 

exogenous barcodes, the number of available random sequences must exceed 

the number of starting molecules by a few orders of magnitude. Some methods 

therefore utilize a combination of endogenous and exogenous barcodes to 

maximize the diversity. If the diversity is too low, two or more original DNA 

molecules may receive the same barcode and be misclassified as having a 

common origin. This misclassification impairs quantification and risks to 

falsely remove true mutations as sequencing errors  [78,79]. 

Barcoding methods also differ in their ability to utilize one or both strands of 

the DNA for error correction. DNA is a double-stranded molecule and true 

somatic mutations, especially those with biological relevance, should be 

present on both strands. If a mutation is only detected on one strand, it is likely 

an error from sequencing or sample preparation. In methods such as duplex 

sequencing, each strand receives the same barcode but is error corrected 

independently. This approach decreases sequencing errors further, with the 

drawback of requiring increased sequencing depth and a complex protocol. 

Table 1 Molecular barcoding methods 

Method 
UMI 
attachment 

Target  
selection 

UMI structure Reference 

Safe-Seq (endo), 
UMI-tailed Seq  

Ligation Capture Endogenous and exogenous 
[80,81] 

Duplex-Seq Ligation Capture Endogenous and exogenous dual 12nt barcode [82] 
INC-Seq,  
Circle-Seq  

None PCR Endogenous in vector 
[83,84] 

Cypher-Seq In vector PCR Exogenous 7nt barcode [85] 
Safe-seq (exo), 
SiMSen-Seq, 
UMI-Seq, 
CleanPlex 

PCR PCR Exogenous 12-14nt barcode 

[80,86,87,87,88] 

A barcode can be added through ligation- or PCR-based strategies. A PCR-

based strategy is often more efficient and may also provide target enrichment 

in the same step, making the preparation simpler. A ligation-based protocol is 

often time-consuming, might involve complicated cleaning steps, and could 
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lead to material losses. A ligation-based protocol requires capture-based 

enrichment strategies applied either before or after amplification, such as solid-

phase arrays  [89], RNA baits [90,91], or DNA probes [92]. However, an 

advantage is that it allows for broad coverage of uninterrupted DNA stretches, 

while PCR can struggle with regions where primers are forced to overlap [93]. 

PCR-based strategies may require more optimization than ligation-based 

approaches as primer-dimer, and non-specific amplification needs to be 

avoided. Also, in applications such as cfDNA where the DNA is fragmented, 

if the PCR amplicon cannot be kept short, ligation efficiency might be higher 

than for targeted PCR [94].  In other applications, such as immune repertoire 

sequencing where the DNA is intact from the start, ligation that requires the 

DNA to be fragmented should be avoided as it risks introducing unnecessary 

breakpoints in the region of interest and decreasing sample diversity.   

One of the main challenges with ultrasensitive sequencing methods is 

expensive and complicated library construction protocols. In applications 

utilizing targeted PCR, the random sequence in the UMI contributes to primer-

dimer formation and generation of unspecific PCR products. Ligation-based 

methods have other challenges, including time-consuming and complex library 

construction and low efficiencies in ligation and target DNA capture. In 

summary, qPCR, digital PCR, sequencing, and ultrasensitive sequencing have 

different advantages and disadvantages regarding sensitivity, target coverage, 

cost, and simplicity (Figure 3). Quantitative PCR is the most straightforward, 

least expensive technology. Digital PCR has increased sensitivity but is more 

complicated and costly. Sequencing has higher coverage and cost but lower 

sensitivity, and ultrasensitive sequencing has high sensitivity but can be 

expensive and complicated. Coverage of ultrasensitive sequencing is 

dependent on budget, as it requires ten to hundreds of times more sequencing 

capacity than traditional sequencing.  

This thesis utilizes the ultrasensitive sequencing method named Simple 

multiplexed PCR-based barcoding of DNA for ultrasensitive mutation 

detection by next-generation sequencing (SiMSen-Seq) [86]. As shown in 

Figure 3, the SiMSen-Seq aims to make ultrasensitive sequencing simple and 

cost-efficient, reducing the drawbacks with current ultrasensitive solutions. 
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Figure 3. Radar diagram of the performance of different molecular techniques detecting 
somatic variants. Sensitivity refers to analytical sensitivity. Coverage refers to the number 
of variants possible to cover in a single reaction. Simplicity is a combination of time, 
number of steps, and knowledge, required to complete the analysis. Low-cost is the 
combined cost of reagents, time, and necessary steps such as sequencing. A higher cost has 
a lower value on the low-cost axis. 

SiMSen-Seq 

The SiMSen-Seq method consists of two rounds of targeted PCR (Figure 4A). 

In the first round, all targeted DNA is barcoded, and in the second round, the 

product is amplified with sample-specific indexes to generate Illumina-

compatible sequencing libraries. 

The barcoding step includes three cycles of amplification where three 

strategies are utilized to reduce the amount of non-specific product formation. 

Firstly, the method uses a unique temperature-dependent hairpin loop to shield 

the 12-nucleotide-long UMI (Figure 4A). Secondly, a low primer 

concentration is used, which is compensated by extended annealing time. 

Thirdly, after the preamplification, the PCR is quickly attenuated and diluted 

by adding a TE buffer supplemented with protease. Each original DNA 

molecule produces, on average, six uniquely barcoded and amplifiable copies 

(Figure 4B). In the second step, a third of the reaction, on average two barcoded 

molecules per original molecule, is amplified using Illumina sequencer 

adapters, constructing a sequencing library. 

The multiple steps undertaken to avoid non-specific product formation 

eliminate the need for intermediate purification between UMI tagging and 

library amplification [95]. As discussed above, sufficient sequencing depth 

must be used so that each barcode is sequenced multiple times. Sequencer data 

are processed through a bioinformatical pipeline. Briefly, the sequencing reads 

are aligned to the human genome. The reads aligning to the same location are 

grouped into families based on the barcode sequence. The reads within a 

barcode family form a consensus sequence. Due to the few cycles of 
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preamplification in the first round of PCR, it is also possible to accurately 

estimate the number of DNA molecules used to construct the sequencing 

library.  

All barcoding methods are limited in their ability to correct errors occurring 

before or in the process of adding barcodes, and in that errors arising in the 

barcode may falsely categorize reads as novel families and therefore count 

them as new molecules. Bioinformatical pipelines can adjust for the second 

error by merging barcode families with less than one mismatch in the barcode 

sequence and where one of the families is considerably smaller than the other. 

A family size cut-off, such as three or ten reads, can be used to ensure that each 

molecule has been error corrected [95].  

Figure 4. Overview of the SiMSen-Seq reaction. (A) From barcoding to sequencing 
SiMSen-Seq consists of five steps: Barcoding PCR, Adapter PCR, product purification, 
Fragment Analyzer analysis, and sequencing. Target specific primers (blue), adaptor 
sequences (orange), SiMSen-Seq stem (grey), unique molecular identifiers (UMI, dashed 
line), Illumina adaptors with P5, P7, and index (turquoise). (B) A detailed schematic of the 
three cycles of amplification in the barcoding step. Amplification starts from a targeted 
primer tagged with a unique molecule identifier (coloreds ends) and a targeted primer 
containing only the adapter sequence (red end). DNA synthesized in the 1st, 2nd, or 3rd 
cycle is indicated as translucent. The final barcoded product will consist of six uniquely 
barcoded molecules. Molecules marked with A and E in two copies, and molecules marked 
with B, C, D, F in one copy 

The SiMSen-Seq method has been used to detect ctDNA in esophageal cancer 

[96], melanoma [97,98], colorectal cancer [99,100], and head and neck cancer 

[101]. It has been used to detect mutations in the cellular fraction of bone 

marrow and PBMC when monitoring hematological malignancies in humans 

[102,103] and in mice [104]. It has also been used for basic research to study 

polymerase fidelity [105], UV-induced damages [106], and genetically 
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modified plants [107]. A multilaboratory assessment showed that SiMSen-Seq, 

in contrast to other comparable methods, reliably detected samples with 

0.125 % variant allele frequency. [108]. In conclusion, multiple research 

groups have demonstrated SiMSen-Seq as a flexible and easy-to-use 

ultrasensitive sequencing method.  

Circulating tumor DNA  

As discussed earlier, liquid biopsy can be used in cancer management to detect 

circulating tumor DNA (ctDNA) and has become a powerful biomarker 

predicting poor patient outcomes and has supported personalized medicine 

[7,20,109]. Levels of ctDNA correlate with tumor volume, stage, and disease 

burden [110–112].  

Detection of ctDNA has different strengths and weaknesses in the various 

stages of cancer management. Screening based on ctDNA has the advantage 

that it does not expose the patient to radiation such as computed tomography, 

is a minimally invasive procedure, and allows sample collection at primary 

care. As a screening test, the sensitivity on a population level is dependent on 

how often the test is performed. It is therefore essential that cost is kept low. 

Larger panels are costly, whereas narrow panels will only capture a subset of 

all cancers. Notably, if the sequencing panel does not cover cancer-specific 

mutations or alterations, even a patient with a high disease burden will receive 

a false negative diagnosis. A negative ctDNA analysis should, therefore, never 

be used to rule out cancer; however, for several cancers that currently have no 

screening option, using ctDNA to capture some patients before clinical onset 

could have clinical value. Especially in specific risk populations, such as older 

heavy smokers, lung cancer screening with narrow panels might be a feasible 

approach [113].  

Increased screening and sensitive analyses may lead to overdiagnosis and 

overtreatment [114]. Of all mutations in cfDNA found in healthy controls and 

cancer patients, about 80% and 50%, respectively, likely arrived from clonal 

hematopoiesis [42] and not from any malignancy. There is also a risk of 

identifying cancers that do not motivate treatment and, if detected, would only 

increase anxiety. The challenges with benign somatic alterations and tumors 

that do not require management in cfDNA analysis will also increase with 

age [44].   
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When cancer is detected, ctDNA can be used as a prognostic and predictive 

biomarker, comparable to tissue biopsy, for genomic characterization of the 

tumor [7]. As previously discussed, a liquid biopsy is less invasive, quicker, 

and more cost-effective than a tissue biopsy [115]. Liquid biopsy is also 

potentially better at capturing the spatial and temporal heterogeneity of the 

tumor. However, tissue biopsy still has higher clinical sensitivity, especially 

for small tumors [116], and might also add other biomarkers beyond genomic 

characterization, such as histology. In applications such as managing EGFR-

positive lung cancer, ctDNA analysis is therefore only offered as an alternative 

when a tissue biopsy is not achievable or as a complementary analysis [117].  

Before, during, and after treatment of confirmed malignancy, routine ctDNA 

analysis allows for monitoring treatment efficiency and detecting minimal 

residual disease and relapse [117–120]. It could also enable early detection of 

mutations associated with treatment resistance allowing the physician to 

change therapeutic strategy.  

Precision medicine  

Precision medicine, sometimes referred to as personalized medicine, is 

commonly used to tailor medical treatment to a subset of patients, often 

carrying specific genetic markers.  Precision medicine enables interventions to 

be focused on the patients who will benefit, avoiding side effects and costs for 

those who will not [121]. During the recent decade, genetic alterations in tumor 

DNA have been increasingly used to guide treatment in cancer patients. 

Mutation analysis in tissue biopsy is currently the gold standard to detect these 

genetic markers, but liquid biopsy could increase the number of available 

patients for personalized medicine approaches as test can be performed at more 

circumstances. Liquid biopsy-based precision medicine has found most 

application in cancers such as lung, melanoma, colon, breast, and prostate 

cancer where there is a strong correlation between genetic markers and 

treatment efficiency [122].  

In managing metastatic non-small-cell lung cancer, the National 

Comprehensive Cancer Network recommends measurements of a minimum of 

nine biomarkers in the genes EGFR, ALK, ROS1, BRAF, RET, MET, HER2, 

and NTRK. For example, mutations in EGFR make this type of lung cancer 

sensitive to EGFR tyrosine kinase inhibitors and occur in around 10% of all 
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cases [123]. Unfortunately, 60% of patients acquire resistance towards first line 

of treatment within 9 to 10 months due to a T790M mutation in EGFR. 

Subsequently, these patients are currently treated with osimertinib, which 

irreversibly inhibits the EGFR despite the T790M mutation [124]. In 

melanoma, mutations in BRAF are required for treatment with BRAF and 

MEK inhibitors [125], and NRAS mutations are associated with resistance to 

multiple drugs [126]. In metastatic castration-resistant prostate cancer, 

mutations and amplifications of the AR gene are associated with treatment 

resistance and could help with patient stratification [127]. In metastatic 

hormone-positive breast cancer, mutations in ESR1 and PIK3CA could predict 

responsiveness to aromatase inhibitor and PI3Kα-selective inhibitor, 

respectively [128,129]. Lastly, in colon cancer, mutations in KRAS, NRAS, and 

BRAF indicate resistance to anti-EGFR treatment [130].  

Still, there are only four FDA-approved companion diagnostics for ctDNA on 

the market to date: FoundationOne Liquid CDx [131], Guardant360 CDx 

assays [132], Cobas EGFR Mutation Test v2 [133], and PIK3CA RGQ PCR Kit 

[134]. The first two are based on an NGS panel for comprehensive genomic 

profiling detecting mutation in multiple genes, and the last two are based on 

qPCR and measure a selection of mutations in each indicated gene.  

In this thesis, we study patients diagnosed with gastrointestinal stromal tumor 

(GIST). This cancer type is the most common abdominal sarcoma with a yearly 

incidence of 15 cases per million inhabitants [135–137], and was one of the first 

cancers where treatment benefited from a personalized medicine approach 

[138]. More than 90% of GIST tumors harbor a mutation in KIT or PDGFRA 

that sensitizes them to tyrosine kinase inhibitors (TKI) [139,140]. Therefore, 

mutation analysis became the standard of care for these patients [138]. Surgery 

is often curative for low- and intermediate-risk group patients, while high-risk 

tumors are treated with TKI both before and after surgery if a sensitizing 

mutation is detected [141]. The personalized medicine approach of high-risk 

GIST patients has resulted in a significant increase in disease-free and overall 

survival [142]. However, despite the absence of detectable tumor after surgery, 

most high-risk patients experience recurrence and primary or secondary TKI 

resistance after five years [143]. The connection between tumor genomics and 

available precision medicine argues for the potential of utilizing ctDNA as a 
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biomarker to monitor treatment efficiency, recurrence, and the development of 

resistance mutation in GIST [144–147].  

Immune repertoire sequencing  

Another biomarker with potential in cancer management and other diseases is 

monitoring T and B cells’ immune repertoire. These cells undergo a 

remarkable alteration of their DNA during cell maturation, generating the 

diversity found in our immune systems to detect and react to all available 

antigens [148,149]. The T-cell receptor (TCR) can either be αβ encoded by the 

TRA and TRB locus or γδ encoded by TRD and TRG locus. The B cell receptor 

is produced similarly but is formed from a heavy chain locus (IGH) and two 

light chains loci (IGK and IGL). Each locus contains numerous variable (V) 

genes and joining (J) genes, and some loci also contain diversity (D) genes 

[149]. The TRD locus is studied in this thesis due to its implicated role in 

multiple sclerosis [150,151], is located on chromosome 14, and contains eight 

V-, four J-, and three D-genes (Figure 5). Immune recombination is a complex 

process. Briefly, during maturation of the immune cell, the RAG1 and RAG2 

proteins bind and cleave the DNA to select and join one V-, D -, and J-segment 

semi-randomly. [152]. In addition to this selection of gene segments, terminal 

deoxynucleotidyl transferase is used to delete and add random nucleotides 

between the joined pieces [153]. Combining these two processes creates an 

enormous diversity in the complementarity-determining region 3 (CDR3), 

which is the critical part of the δ chain that makes the receptor specific for 

antigens. 

Figure 5. Overview of VDJ recombination. The TRD locus contains V genes (blue), D genes 
(red), and J genes (green). Arrows show transcription direction. In multiple intermediate 
steps (not shown), the DNA is recombined to join a random V, D, and J segments. The 
transcribed product is spliced to join a constant region (light yellow) used in some RNA-
based immune repertoire sequencing applications.  
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The CDR3 sequence is inherited when a T or B cell divides, so by sequencing 

the CDR3 region, the clonal expansion of specific T and B cells can be 

monitored. Immune repertoire sequencing has been used to study the immune 

system in multiple applications, such as vaccine development [154], 

autoimmune disorders [155], and cancer [156]. It can be used in cancer 

management to monitor minimal residual disease in lymphoma and leukemia 

[157] and predict prognosis by characterizing tumor-infiltrating lymphocytes 

[158]. Immune repertoire sequencing could also monitor the direct effect of 

immune checkpoint therapy by detecting changes in the repertoire diversity 

[159] and tracking the development of adverse advent associated with these 

therapies [160]. ClonoSEQ, a targeted NGS assays for immune repertoire 

sequencing, recently became the first FDA-approved NGS assay for minimal 

residual disease in chronic and acute lymphocytic leukemia and multiple 

myeloma [161].  

Sequencing error, biased amplification, and quantifying the number of ana-

lyzed cells are three significant challenges in immune repertoire sequencing  

[156]. Sequencing errors make it difficult to separate low-frequency sequence-

similar clones from erroneous base calls and lead to an inflated diversity 

[162,163]. Unbiased amplification leads to biases in quantifying clones’ sub-

types and the number of cells included in the analysis. The aforementioned 

strategy to correct these types of errors is to use UMI. So far, UMI in immune 

repertoire sequencing has mainly been used on mRNA [162–164]. However, 

RNA transcription levels vary per cell [165,166], and reverse polymerases are 

more prone to errors [167,168] and have variable efficiency depending on se-

quence [169]. The advantage of mRNA-based approaches is that primers can 

amplify from the so-called “constant” region joined after splicing downstream 

of the CDR3 in the mRNA transcript (Figure 5). This strategy reduces ampli-

fication bias as one constant primer can be used instead of a set of different J-

primers [170]. Still, DNA-based methods are preferable if accurate quantifica-

tion of cells is the experiment's main objective. As discussed earlier, UMI can 

be added either through ligation- or PCR-based approaches. After UMI attach-

ment, all fragments are amplified using the same universal adapter primers. In 

this thesis, we developed the first PCR-based ultrasensitive sequencing ap-

proach for immune repertoire sequencing. Previously only ligation-dependent 

approaches were available [171]. Recently, additional PCR-based methods uti-

lizing UMI for immune repertoire sequencing have been published [88]. 
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Aims 

 of liquid biopsies using ultrasensitive sequencing. Blood consists of a cellular 

fraction and a non-cellular plasma fraction that can be used for biomarker 

analysis. Here, we studied somatic variations in cfDNA and T cells. In both 

applications, detection and quantification of individual DNA molecules with 

single nucleotide resolutions are needed. To enable reliable DNA analyses, the 

entire workflow from sampling, via extraction and sequencing, to data analysis 

needs to be carefully optimized. This thesis focuses on the potentials and 

challenges of ultrasensitive DNA analysis using liquid biopsy. 

Specific aims: 

Paper I: To develop quality controls for the analysis of cfDNA, including 

ctDNA, in blood plasma. We also aimed to develop a framework to increase 

sensitivity, including sample volume, multiplexing, and assay length. 

Paper 2: To develop and apply a personalized and ultrasensitive ctDNA 

sequencing approach to monitoring patient-specific mutations and TKI 

resistance in liquid biopsies from patients diagnosed with gastrointestinal 

stromal tumor undergoing surgery. 

Paper 3: To develop an ultrasensitive immune repertoire sequencing strategy 

for analyzing γδ T-cell receptor clonality in healthy individuals. 
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Results and discussion 

Considerations and quality controls when detecting ctDNA.  

There are three major challenges when detecting ctDNA. Firstly, there is a low 

amount of cfDNA in plasma. Secondly, the cfDNA is highly fragmented, and 

thirdly, in early-stage cancer patients, the tumor allele fraction is low. 

Altogether, this led to few ctDNA-molecules in a sample containing a 

particular mutation. Therefore, ultrasensitive ctDNA analysis requires 

sensitive analytical techniques, such as SiMSen-Seq, but also an optimized 

workflow from sampling to data analysis in order to enable accurate and 

reliable liquid biopsy assessment. In Paper I, we explore experimental 

considerations and quality controls useful when performing ctDNA analysis 

(Figure 6). 

Figure 6. The general workflow of ctDNA analysis utilizing SiMSen-Seq, including 
recommended quality controls.  

Increasing sensitivity to detect ctDNA in liquid biopsy. 

The sensitivity of mutation analysis using liquid biopsy is limited by the 

number of mutated tumor-specific molecules in a sample. A sample with a low-

frequency mutation at 0.1 % requires 3.6 ng DNA to, on average, contain one 

ctDNA molecule with the mutation (Figure 7A). However, due to the Poisson 

distribution, such a test's sensitivity—assuming that it is possible to detect a 

single mutation—will be only 63 %. To be 95 % confident that the sample 

always contains at least one such ctDNA molecule, it needs to contain, on 

average, 4.7 molecules. Furthermore, in most applications, even using 

molecular barcoding methods, more than one mutated molecule needs to be 

detected to be confident enough to call the variation. There are two strategies 

to increase the number of tumor DNA molecules that can be analyzed in a 

sample. First, it is possible to increase the number of assays. Second, it is 

possible to increase the amount of DNA by increasing the volume of plasma. 



 

19 

If two independent assays monitor two different tumor-specific mutations, 

twice as many mutations can be detected, and this increases the assay's 

sensitivity (Figure 7B). The approach has successfully been used for detecting 

minimal residual disease by detecting multiple mutations confirmed from the 

tumor biopsy [172,173]. Notably, the approach is not applicable when a single 

mutation is of interest, for example, development of resistance to a particular 

drug. The second approach is to increase the volume of plasma extracted from 

the patient. Doubled plasma volume theoretically doubles the number of 

ctDNA molecules in the sample. Both these strategies can be used in 

combination. However, it will increase required sequencing and therefore cost.  

Figure 7. Analysis of theoretical numbers of ctDNA molecules (A) Number of ctDNA 
molecules with the specific mutation is dependent on the amount of DNA and the frequency 
of the mutation. (B) The probability of detecting at least 1 molecule depends on the number 
of ctDNA molecules per assay and the number of independent assays. Adapted from [174]. 

Quality controls of cfDNA  

As previously discussed, all experimental steps, such as selecting blood-

collection tubes, plasma preparation, plasma logistics, and extraction method, 

affect cfDNA analysis. These preanalytical factors impact the yield of cfDNA, 

the risk of contaminating the cfDNA with DNA from post-withdrawal 

apoptotic or necrotic cells, and may also introduce or enrich analytical 

inhibitors. Yield and inhibitors affect the number of amplifiable molecules in 

the sample and directly impact sensitivity. Contamination of cellular DNA 

dilutes the ctDNA and will cause errors in estimating the mutant allele 

frequency.  

The first quality control used in paper I was the measurement of yield after 

extracting cfDNA. A simple analysis can be performed using a device such as 

nanodrop. However, the method is sensitive to contaminants and may 

overestimate the concentration. In paper I, we used fluorometers as an 

alternative and more accurate approach [45]. Both these methods detect the 
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total amount of DNA in the sample. However, in targeted sequencing, not all 

DNA will be available for amplification as the primer's binding regions may 

fall outside the DNA fragments (Figure 8). The theoretical percentage of 

cfDNA molecules that can be amplified in targeted PCR, assuming an average 

fragment length of 166 bp, can be calculated as 1 − (n/166), where n is the 

amplicon’s length [94]. This formula suggests that a 100-base-pair-long assay 

can amplify 40 % of the total DNA and assumes that the cfDNA is randomly 

fragmented. However, epigenetic factors such as nucleosome positioning have 

a considerable influence on cfDNA degradation. Therefore, some loci will be 

more degraded than others, leading to fewer amplifiable molecules [175]. In 

paper I, we show experimentally that amplicon length correlates with 

amplifiable DNA for randomly fragmented DNA but less for cfDNA (Figure 

9). Therefore, qPCR utilizing the same target primers as sequencing primer 

will provide more accurate quantification of the number of the sequenceable 

molecules in the sample. Quantifying the amount of cfDNA first using 

fluorometers and then with qPCR using our assay of interest showed that only 

49% of the cfDNA was amplifiable. It also concludes that it is essential to 

design short assays when analyzing cfDNA and, if possible, avoid regions 

prone to degradation.  

 

Figure 8. Amplicon length influences the number of amplifiable molecules. When the primer 
binding region is outside the DNA template, the assay will not amplify.  

The second quality control used qPCR to quantitatively assess the amount of 

contaminating cellular DNA in a liquid biopsy. We did this by utilizing a long 

and a short qPCR assay. The shorter assay amplified all DNA, while the longer 

assay only amplified DNA that is longer than typical cfDNA and, therefore, 

likely contamination. The difference between these two assays provides the 

degree of contamination. This test can be beneficial to perform when 

evaluating a new workflow or testing a sample that has been stored sub-

optimally and could have been contaminated with cellular DNA. In our 

workflow, where the plasma was collected in Norgen cfDNA preservative 
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tubes and then extracted using a Magmax cell-free DNA isolation kit, we 

detected cellular DNA in 12.5 % of all samples. Only one sample had high 

enough contamination to significantly impact the mutation allele frequency if 

a mutation were to be detected.  

Figure 9. Assay amplifiability depend on amplicon length. The position of each colored 
circle indicates the mean difference in cycle of quantification (Cq) value comparing 
sonicated DNA (A) and cfDNA (B) with genomic DNA (gDNA) for nineteen independent 
assays (n = 3). Adapted from [174].  

The third quality control was done after the sample had been concentrated. The 

concentration is necessary to maximize the amount of DNA loaded into the 

sequencing reaction but may also result in losses and concentrate inhibitors. 

Using qPCR, we showed that it is possible to assess sample inhibition by 

inspecting the amplification curve. It was possible to rescue single samples by 

either diluting or re-extracting the sample. If many samples are inhibited, it 

suggests that something is wrong with the current workflow. In paper I we 

showed that changing the extraction method could remove inhibition. Such 

issues could, for example, be due to incompatible collection tubes and 

extraction methods. As long as the sample is uninhibited, this final qPCR also 

provides accurate quantification before the sample is loaded into the 

sequencing reaction and could be used to calculate the required sequencing 

depth. We show a strong correlation between the amount of DNA loaded into 

the sequencing reaction based on our qPCR data and the number of barcoded 

molecules detected after sequencing.  

In summary, the number of amplifiable molecules will be dependent on the 

total amount of cfDNA in the sample, the degree of fragmentation, the degree 

of PCR inhibition, and the degree of losses in preparing the material before 

construction of the sequencing library. These losses could be monitored and 
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hopefully minimized using quality controls through the preanalytical steps, 

increasing the sensitivity of the final analysis.  

Precision medicine in gastrointestinal stromal tumor 

Management of patients with gastrointestinal stromal tumors (GIST) is one of 

the earliest examples of personalized medicine and has significantly improved 

overall survival [142]. In Paper II, we applied the experimental workflow and 

quality controls developed in Paper I and developed patient-specific SiMSen-

Seq panels to monitor ctDNA. Blood plasma samples were collected during 

routine controls both before and after surgery. Three samples were also 

collected in connection to surgery at the start, during mobilization of the tumor, 

and at wound closure. Patients from all risk groups were included in the study. 

The personalized panels targeted the tumor-specific mutation, identified from 

routine sequencing of tissue biopsy and the most common loci for TKI 

resistance mutations.  

This exploratory study aimed to determine how ctDNA correlated with clinical 

parameters, including disease risk status, tumor size, and treatment response. 

The study included 32 patients and analyzed 161 plasma samples. We detected 

ctDNA in 9 out of 32 patients; all but one were high-risk. Patients positive for 

ctDNA had significantly larger tumors and higher cell proliferation as analyzed 

with protein marker Ki-67. Interestingly, all ctDNA-positive patients had 

either KIT or PDGFRA insertion or deletion, and none had single nucleotide 

variants. The detection of ctDNA was associated with treatment response. All 

patients positive during surgery became negative in the sample following 

surgery. The study included seven patients with metastatic disease. Three were 

ctDNA-positive at any point in time and the detection was associated with 

disease progression. Of the four negative metastatic patients, three were 

included after TKI treatment initiation.  

Only 50 % of treatment-naïve high-risk patients had detectable ctDNA, which 

is comparable to other studies. These results suggests that GIST is a low-

shredding tumor type and that tumor-specific mutation in ctDNA analysis is 

not a sensitive biomarker at the diagnosis of GIST. Still, ctDNA was associated 

with active disease in high-risk patients. In two patients, we detected resistance 

mutations, in both cases this could have an impact on treatment decision. In 

one patient, the treatment resistance mutation was detected before surgery, 
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showing that monitoring could be beneficial both before and after surgery. A 

conclusion is that monitoring ctDNA in high-risk patients may facilitate 

management and has the potential to improve patient outcomes, but that a 

larger cohort is needed to identify the true clinical utility. 

Our patient-specific ultrasensitive assays could detect variants at an allele 

frequency between 0.04 and 93 %. The unique molecular identifier in the 

SiMSen-Seq assays enables demultiplexing and error correction, as previously 

discussed. Figure 10A shows an example of a palliative GIST patient not 

included in the study as the patient did not undergo surgery. By analyzing the 

raw data without considering the UMI, the background was too high to call the 

patient-specific variation from sequencing errors. Using SiMSen-Seq error 

correction, only the variant consistent with the known patient-specific 

mutation is left, and it is possible to call the variation confidently. The example 

is even more extreme in Figure 10B from the same patient. Using SiMSen-

Seq, it is possible to call a variation known to be associated with treatment 

resistance. Here the position is unknown, and it would be impossible to detect 

without error correction due to the high background. 

Figure 10. Error correction using SiMSen-Seq in clinical samples. (A) Tumor-specific 
mutation is detected (arrow) slightly above background (black bars) when utilizing error 
correction (red bars). (B) In the same patient a treatment resistance mutation is detected 
(arrow) that would be impossible to call without error correction. 

Calling variants in cancer applications 

In paper II, a patient-specific single nucleotide variant was called if the sample 

contained more than six error-corrected consensus reads with the mutation. If 

a mutation were called with this criterion, we only required a single consensus 

read containing the variant for the other samples from the same patients, as the 

mutation could be suspected. If the mutation was an insertion or deletion of 

nucleotide, we also only required one single molecule to call the variant as 

insertions and deletions are uncommon sequencing artifacts for Illumina 

sequencing. Six molecules were used as a cut-off for single nucleotide 

variations because errors occurring in sample preparation and the first stage of 
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barcoding could at most give rise to six barcoded molecules. The SiMSen-Seq 

bioinformatical workflow corrects errors arising after barcoding. The exact 

cut-off had little influence on the overall results; however, this manual 

approach to variant calling is a weakness of paper II.  

Variant calling software with more sophisticated approaches adapted for 

barcoded sequencing are available [176–178], but none of these methods has 

been validated for SiMSen-Seq datasets and was therefore not used. More 

generic approaches utilize tools like fgbio [179] to construct error-corrected 

consensus reads combined with traditional variant callers like Mutect [66] and 

VarDict [180]. However, these variant callers fail to detect low-frequency 

variants as they are adapted to deal with data containing background noise 

corresponding to standard NGS [178]. Interestingly, no approach to our 

knowledge takes user-guided information about patient-specific mutation or 

the common treatment resistance mutation as input to adjust the variant calling 

software's sensitivity and specificity.  

Future of liquid biopsy in GIST  

One of the main clinical benefits of monitoring high-risk GIST patients using 

ctDNA is the early detection of resistance mechanisms. Patients who 

experience tumor-progress on imatinib can benefit from second and third-line 

TKIs, such as sunitinib and regorafenib, respectively [139,181,182]. At least 

seven different TKIs are available, and more are in development. [182]. A 

fascinating development are drugs that target variants of KIT and PDGFRA 

with already acquired therapy resistance [183]. In the future, this will provide 

physicians with an arsenal of therapeutics for different tumor mutations. The 

development is similar to the management of ALK-driven neuroblastoma, 

where multiple tyrosine kinase inhibitors exist for different ALK point 

mutations [184]. A hopeful clinical case in neuroblastoma suggests that a 

patient could rotate between all available ALK-specific treatments, eventually 

return to and respond to the initial first-line treatment and later become disease-

free [185]. It is also essential to understand other escape mechanisms of the 

tumor besides those reducing specific TKI inhibitors' efficiency. Exploratory 

GIST studies propose new druggable targets for patients progressing after first 

and second-line TKI inhibitors [186] involving genes other than KIT and 

PDGFRA. Therefore, the number of assays required to monitor TKI resistance 

mechanisms will likely grow in the future.  
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Ultrasensitive immune repertoire sequencing 

The benefit of monitoring will only increase the more we learn about tumor 

development. The tumor's ability to evade our immune system is another 

hallmark of cancer [187]. So far, there is a lack of useful liquid biomarkers to 

monitor immune tolerance or predict immunotherapies’ efficiencies. In the 

third paper, we developed an ultrasensitive method for immune repertoire 

sequencing that could find potential use in the monitoring of cancer and other 

diseases in the future.  

Immune repertoire sequencing identifies and quantifies the number of T- or B-

cell clones in a sample using sequencing. In Paper III, we developed a method 

for immune repertoire sequencing based on targeted amplification of DNA 

utilizing UMI to reduce sequencing errors and enable digital quantification 

(Figure 11). As previously discussed, the advantage of applying UMI for 

immune repertoire sequencing is to improve error correction and digital 

quantification of the number of cells analyzed, increasing confidence when 

detecting and quantifying low-frequency clones. We developed a proof of 

principle to study the rearranged TRD locus in γδ T cells. Target-specific 

forward and reverse primers were designed for each TRDV and TRDJ gene, 

respectively. In total, eight TRDV primers and four TRDJ primers were 

designed and used to capture the full diversity of the TRD locus. To determine 

each TRDV and TRDJ primer combination's efficiency, we designed 32 

synthetic molecules containing the target sequence of respective TRDV and 

TRDJ genes and a template-specific sequence. We then used a standard curve 

of the synthetic molecules and performed qPCR on each of the 32 assays to 

measure the efficiency. All assays performed close to 100% efficiency.  

Figure 11. Workflow for ultrasensitive immune repertoire sequencing. Blood is collected, 
white blood cells are isolated. An optional enrichment step can be used to purify cells of 
interest such as γδ T cells. A SiMSen-Seq reaction with immune repertoire primers are used 
to create sequencing library. Sample is sequenced, data are run through bioinformatical 
pipeline and clonal analysis can be performed. 
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To enable ultrasensitive sequencing using SiMSen-Seq, we incorporated a 

12 bp long UMI between the adaptor sequence and the 5' end of each forward 

primer. Our sequencing approach contained two rounds of PCR. In the first, 

all DNA was barcoded, and in the second, the library was amplified with 

Illumina index primers, like normal SiMSen-Seq. The number of barcoded 

molecules generated from the first round of PCR was validated using qPCR 

and a standard curve of synthetic molecules. Each assay provided a specific 

product in the dynamic range between 10 and 10 000 molecules. The 

specificity of the amplified product was evaluated using electronic parallel gel 

electrophoresis. We then assessed the final 32-plex using the same approach 

with a pool of the 32 different synthetic molecules. The multiplex showed a 

dynamic range from 20 to 20 million molecules with a PCR efficiency of 

101 %. We then sequenced the libraries generated from 20, 200, and 2000 

molecules to evaluate each primer-combination performance individually. 

Each assay had close to 100 % efficiency when analyzed by sequencing 

(Figure 12A). We evaluated each assay's sensitivity by reducing the synthetic 

molecules' concentration to approximately 10 molecules per reaction. The 

result indicated that each assay could detect this low concentration of target 

molecules in a diverse background of synthetic molecules. 

Figure 12. Unbiased amplification and improved quantification of immune repertoire 
assays. (A) Individual efficiency of 32 assay combinations using a standard curve based on 
synthetic molecules. Values are normalized n = 3. (B) Improved quantification using UMIs. 
The relative frequencies of clonotypes using UMI (x-axis) versus raw sequencing reads (y-
axis). Values are converted to absolute molecules count on top x-axis. Adapted from [188]. 

The 32-plex were then validated on DNA extracted from enriched γδ T cells 

from human buffy coats. A similar level of efficiency was achieved when using 

a standard curve of extracted human DNA. However, some assays targeting 

rare combinations could not detect any molecules at low DNA concentration 

making efficiency calculation impossible. We utilized a bioinformatical tool 

called Molecular Identifier Guided Error Correction pipeline (MIGEC) for 

analyzing the data [162]. Briefly, the tool processes the raw sequencing reads 
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and groups together reads with identical UMI. An error-corrected consensus 

sequence is formed from each UMI family, reducing the challenge in immune 

repertoire sequencing of separating real clones from sequence errors. The 

process also removes the amplification bias introduced during library 

amplification and enables digital quantification of the number of molecules 

analyzed. We showed that the use of UMI reduced amplification biases 

between 10 to 100 times for low frequency clones (Figure 12B). 

We further validated our sequencing method on isolated γδ T cells from 10 

human blood samples. We show a strong correlation of the frequency of the 

two subfamilies Vd1 and Vd2, determined by fluorescent activated cell sorting 

and our sequencing protocol. We detect an oligoclonal expansion of clones 

from a healthy individual and a predominance of TRDV2 and TRDJ1 gene 

usage (Figure 13). This oligoclonality is found in most adults and is associated 

with cytomegalovirus infection and age; the expansion indicates an adaptive 

role of γδ T cells [189]. 

Figure 13. Clonal distribution in ten healthy individuals. Each square represents a unique 
clonotype. The square area shows the clonotype frequency and the color which V and J 
genes were used. Adapted from [188]. 

In blood samples, γδ T cells are in a low frequency, and it is not always possible 

to enrich before analysis. Unsorted samples result in a low proportion of 

amplifiable DNA and could increase non-specific binding and interfere with 

the PCR. To evaluate this risk, we divided the white blood cells from a blood 

sample in two; one part was enriched for γδ T cells, and the other was left 

untreated. DNA from both samples was analyzed, and the frequency of 

clonotypes was compared. As predicted, the non-enriched sample contained 

more non-specific products assessed both on parallel capillary electrophoresis 

and sequencing. However, both samples showed a considerable overlap of 
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clonotypes and a strong correlation of frequencies suggesting that the method 

works on enriched and non-enriched samples (Figure 14).  

Figure 14. Correlation of clonotypes from enriched and non-enriched γδ T-cells. White 
blood cells were split into two samples, and one was enriched for γδ T-cells. The frequency 
of all clonotypes found in both samples is shown. Adapted from [188]. 

Targeted immune repertoire amplification introduces a novel set of challenges. 

To include coverage of rare recombination, an increasingly large primer pool 

needs to be designed. The inclusion of more primers increases the risk of 

primer-dimers without a proportional increase in target DNA. Careful 

optimization has previously been performed in targeted PCR approaches to 

perform these multiplex reactions without introducing unacceptable levels of 

bias or non-specific primer formation [190]. Introducing a random nucleotide 

sequence as a UMI increases complexity of the primer pool even further. This 

challenge will be more prominent when ultrasensitive immune repertoire 

sequencing is developed for other more complex loci. The IGH locus used in 

B cells, for example, contains about 50 functional V segments and six J 

segments [149]. SiMSen-Seq has the advantage of shielding the UMI, reducing 

primer-dimers, which could make these larger multiplexes feasible. 

Applications of ultrasensitive immune repertoire sequencing  

One of the potential applications of immune repertoire sequencing is antibody 

discovery. High-affinity antibodies can be detected by sequencing the 

complete immune receptor with matched protein profiling. The traditional 

RNA and DNA-based immune repertoire sequencing solutions are limited here 

as they sequence each chain independently and often only part of the chain. It 

is possible to solve this problem, at least partly, using subsampling of cells 

[191]. Other approaches utilize single-cell emulsions with linkage PCR or 
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single-cell sequencing to match chains and construct a complete TCR or BCR 

sequence [192]. Single-cell sequencing can in addition also capture the cell’s 

transcriptome to describe the cell phenotypically. These approaches require 

single-cell suspension and can be complicated and costly. However, possibly 

single-cell techniques can be complemented with ultrasensitive sequencing of 

bulk material when this is sufficient. 

Using only the CDR3 sequence of one chain, it can be possible to predict past 

inflammatory responses. Recently, databases for TCR and BCR sequences 

with matched HLA and antigen have been created to facilitate annotation of 

CDR3 sequences [193–195]. From these databases, it is possible to see if 

patients have a CDR3 sequence associated with previous infection. 

Unfortunately for the γδ T cells field, only the Pan Immune Repertoire 

Database contains information related to γδ T cells and have considerably 

fewer entries for γδ T cells than for αβ T cells and B cells [195]. However, the 

immune repertoire is highly private, suggesting that even if two individuals 

react to the same antigen, the CDR3 sequences may be significantly different 

from each other. The “exactness-requirement” can be problematic for 

databases. To solve this, novel computation approaches and machine learning 

allow the clustering of sequences that share similar features to predict the 

function of specific CDR3 sequences and immune repertoires without 

requiring an exact match [196,197].  

Immune repertoire sequencing has demonstrated superior sensitivity in 

detecting minimal residual disease (MRD) from bone marrow transplants in 

lymphoma and leukemia compared to flow cytometry and allele-specific PCR 

[198]. A malignant clone's CDR3 sequence is a tumor-specific sequence that 

can be monitored in MRD. However, in MRD application, clones’ sequences 

are diverse enough that if one or two errors occur, a bioinformatical pipeline 

can correctly remove these errors. This error redundancy makes immune 

repertoire sequencing different from ctDNA mutation, and in concordance 

with the previous discussion from paper I, the sensitivity will primarily be 

dependent on the number of amplifiable molecules. Therefore, in MRD 

applications, in particular, it is pivotal that primers have high efficiency for all 

gene variants, capturing all available DNA. In summary, primer efficiency and 

complete coverage are more critical than ultrasensitive sequencing for 

ultrasensitive detection in MRD applications. However, as long as the 
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increased cost of redundant sequencing does not lead to a lower amount of 

DNA being used in the analysis, UMI provides improvements, such as accurate 

quantification. 

Another immune repertoire sequencing application is vaccine development. 

Processes, like affinity maturation—exclusive to B cells—introduce small 

nucleotide variants to increase the antibody's affinity and can be challenging 

to separate from sequence errors. Accurate quantification of both primary and 

secondary responses from effector and memory T cells is also necessary to 

monitor in vaccine development [199]. Both these challenges benefit from the 

increased sequencing accuracy and improved quantification offered by UMI-

based immune repertoire sequencing. 
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Conclusion 

Liquid biopsies are minimally invasive and enable repetitive monitoring of 

patients. Sequencing of DNA in both the cellular and non-cellular fraction can 

be used to study somatic variations, including ctDNA and the immune 

repertoire. The sensitivity for detecting somatic variations requires both an 

optimized workflow that minimizes material losses and an ultrasensitive 

analytical approach. Ultrasensitive sequencing methods, such as SiMSen-Seq, 

enable single-molecule detection by utilizing unique molecular identifiers. We 

demonstrate two applications of ultrasensitive sequencing in liquid biopsy. In 

the first approach, we analyzed ctDNA as a biomarker in patients diagnosed 

with GIST. In the second approach, we profiled the immune repertoire of γδ 

T-cells in healthy individuals.  

Our specific conclusions are: 

Paper I: We established quality controls to analyze the amount of amplifiable 

DNA, degree of cellular contamination, and PCR inhibition. We show 

theoretically that the amount of plasma, DNA, and number of somatic variants 

monitored affect the sensitivity of ctDNA analysis. We also show that assay 

performance depends on both amplicon length and target sequence.  

Paper II: We developed a patient-specific SiMSen-Seq panel to analyze ctDNA 

in patients diagnosed with GIST. Data showed that ctDNA analysis using 

patient-specific SiMSen-Seq panels can be applied to monitoring treatment 

efficacy and identifying relapse early, especially among high-risk patients. 

Paper III: We developed the first targeted ultrasensitive immune repertoire 

sequencing approach to profile γδ T-cell clonality at DNA level. We showed 

that our approach could be applied to both enriched and non-enriched material, 

providing accurate quantification and minimizing sequencing errors.   

  



 

32 

Future Perspective 

Liquid biopsy analyses and precision medicine are driving a paradigm shift in 

both cancer management and other diseases. Adoption will be driven by 

demonstrating utility in health care as well as more simplified and cost-

efficient workflows. In parallel, more complex biomarkers will be discovered, 

potentially with both increased sensitivity and specificity.  

Emerging clinical adaptations  

While the field of ctDNA analysis has been developing for years and the 

technology's potential has been proven multiple times in proof-of-concept 

studies [20], demonstrating real clinical utility is still a challenge that needs 

attention and future studies [200]. Few studies utilizing ctDNA as a biomarker 

have proven clinical benefit over current practices to detect cancer early [201]. 

Studies are either too small or lack appropriate controls or comparison between 

methods. The number of FDA-approved diagnostics based on ctDNA are still 

few, and approvals are limited to use when a tissue biopsy is not applicable 

and complemented with tissue biopsy if negative [133,134]. More extensive 

studies are costly, delaying clinical implementation. Similar to the 

development of new drugs, one cannot expect academic researchers or 

government-supported organizations alone to conduct the necessary trials to 

implement ctDNA analysis in clinical routine broadly. Interventional studies 

need to be run with arms comparing patients monitored with liquid biopsy to 

conventional methods. Examples of such clinical trials are NCT03748680 and 

NCT04501523, which test if an adjuvant treatment given to ctDNA-positive 

patients is beneficial to the standard of care in colon and breast cancer 

respectively [202,203]. These studies take time to design, recruit, and evaluate, 

so clinical implementation will always lag behind cutting-edge development 

(Figure 15). Guardant 360 and FoundationOne, both based on molecular 

barcoding and targeted sequencing, were FDA approved for clinical use in 

2020, almost a decade after similar techniques were first used to detect ctDNA 

in cancer [80,204,205]. Global adaptation of these technologies will take a much 

longer time. 
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Figure 15. Cutting-edge liquid biopsy technologies develop quickly. Clinical 
implementation takes time but is it the end what is contributing to patients' health. 

Novel biomarkers and diagnostics 

Liquid biopsy biomarkers and diagnostics are also becoming more complex. 

Today most common diagnostics evaluate a single biomarker using a single 

analyte, e.g., one protein, one mutation. Novel diagnostics can measure 

multiple biomarkers or report hundreds of analytes as a composite score. One 

such approach is CancerSEEK [206], which utilizes a combination of proteins 

and ctDNA and a novel machine-learning algorithm to detect nonmetastatic 

clinical detectable cancers with 70 % sensitivity, more than 99 % specificity, 

and the ability to predict the tumor location. When evaluated in a large 

screening-study enrolling more than 10 000 women with no prior history of 

cancer, the study almost doubled the number of patients identified by screening 

compared to the traditional program, maintaining a high specificity of 99.6 % 

[207]. These types of more complex tests present three challenges. First, it 

could increase the number of non-specific diagnoses that motivate 

investigation but do not lead to a cancer diagnosis. Second, a diagnostic may 

provide more information than the test was intended to generate, resulting in 

the need for additional investigations and negatively affect the quality of life 

of these patients. Third, more advanced algorithms using machine learning 

may generate a ‘black box’ issue, where it is difficult to understand why a test 

became positive or negative. 

Besides ctDNA, analytes such as proteins, different RNA such as miRNA and 

lncRNA, as well as DNA methylation are promising biomarkers in next-

generation liquid biopsies [208,209]. For example, one of the most promising 

biomarkers in pancreatic cancer is a multiparametric signature of 29 proteins 

[210]. Most emerging biomarker solutions have in common that they assess 

multiple markers, since individual biomarkers, such as a specific protein, 

miRNA, or methylation site, cannot provide a specific and sensitive answer on 
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its own. Detecting an array of proteins, miRNA or methylation sites result in 

increased specificity and sensitivity. 

All strategies to detect cancer in a liquid biopsy are dependent on the amount 

of signal from tumor cells versus the amount of background from non-tumor 

cells. The biological processes of releasing the biomarker into the blood can 

be due to apoptosis, necrosis, cell growth, location, cell-to-cell 

communication, and several other biological processes affecting the signal-to-

background relation. Figure 16 illustrates the pros and cons of using three types 

of analytes, including mutations in cfDNA, methylated sites in cfDNA, and 

proteins. Each analyte has a different signal-to-background ratio that is 

generated from tumor and non-tumor cells, respectively. Several factors 

influence this ratio. For example, cfDNA is mainly released into the 

bloodstream when cells die. In contrast, many proteins are predominantly 

secreted by active cells. Proteins and methylation markers usually have a high 

background from non-tumor cells, while mutations are more frequently unique 

to the tumor. These considerations are similar for all analytes and useful to 

consider when constructing a sensitive and specific test. Interestingly, 

prominent companies in liquid biopsy-based cancer screening, such as GRAIL, 

have moved away from mutations in favor of epigenetic-based approaches, 

anticipating that the high number of differentially methylated sites over 

somatic variants will provide increased sensitivity [211]. A potential 

disadvantage with this approach is that these epigenetic markers are primarily 

cell-of-origin patterns that are complicated to separate from other tissue 

damage [212].  

A significant challenge associated with testing and screening can be the anxiety 

associated with the disease. More research is needed to understand the impact 

on quality of life when a patient receives a test result and how to communicate 

these results in the best possible way [213]. Importantly, anxiety is far from the 

only negative associated with false-positive and inconclusive results. A follow-

up test may also result in physical harm, such as radiation exposure [214] or 

complications from invasive biopsy [215]. Decreasing these negative 

consequences would also enable more testing. Notably, liquid biopsy analysis 

plays an essential role in this emerging area as it needs to be as minimally 

invasive as possible. 
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Figure 16. Overview of analytes in liquid biopsies. Analytes can be released from tumor 
and non-tumor cells by several biological processes. Analytes from tumor cells are the 
biomarkers intended to be detected, while identical analytes from all other non-tumor cells 
generate the background. Each analyte has few or many cancer-associated biomarkers, 
each with a different signal-to-background ratio. The number of biomarkers released from 
a single cell is also different between analytes. For example, each cell contains only one 
genome but thousands of molecules for a given protein.   

Data availability on the performance of diagnostics tests based on real-world 

clinical data is another significant driver for developing new diagnostics. For 

therapeutic drugs, physicians are supposed to report adverse events associated 

with use. A similar system could be used for diagnostics to report false 

positives and negatives. Resources must also be provided to include 

exploratory biomarkers parallel to clinical use, enabling tighter integration 

between research and clinic. In these days of privacy concerns and legislation, 

it is essential to enable professional solutions with respect to privacy and 

integrity—solutions that allow us to share more data in the future, not less.  

Personalized biomarkers 

Finally, the idea that a single biomarker could detect all cancer with high 

specificity is as likely to become reality as there being a single drug to cure all 

cancer. Much like personalized medicine describes when to use specific 

treatments, a similar term is lacking to describe a selection of highly specific 

and sensitive “personalized biomarkers.” For example, not all women will 

benefit from early mammography. Before the age of 50, screening decreases 

the risk of mortality equivalent to the increased risk of a fifteen-hour bike ride 

without a helmet [216]. In Sweden, screening starts at the age of 40 [217]. 

However, for specific risk populations, such as women who carry genes for 
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hereditary cancers, screening should be performed at a younger age and a 

higher frequency. Such mammography could be seen as a personalized 

biomarker. Our GIST study is also an example of a personalized biomarker, as 

the test was adopted to follow a patient-specific tumor mutation. An extreme 

form of a personalized biomarker is phylogenetic ctDNA tracking, in which 

multiple personalized assays based on patient tumor biopsies are developed to 

track minimal residual disease [172]. All these personalized biomarkers strive 

to increase sensitivity, specificity, and clinical utility for a selected patient 

population and point to an exciting future for biomarkers and diagnostics. 
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