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Abstract
Molecular solar thermal storage materials are proposed as a clean, renewable en-
ergy solution for a world with ever increasing energy needs. Norbornadiene is an
organic compound suitable for molecular solar thermal storage systems. Computa-
tional methods such as density functional theory offer solutions for improvement of
norbornadiene-based molecular solar thermal storage systems via theoretical spec-
troscopy. Machine learning methods, such as artificial neural networks may offer
useful insights to improve theoretical spectroscopy methods.
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1
Introduction

The ever increasing need for energy is considered a major challenge for humanity
during this century. One of the problems that science and technology need to solve
within this scope is the demand for clean, renewable energy sources. Many proposed
solutions employ solar energy as a viable solution to replace fossil fuel consumption,
wherever it is possible to do so [6]. One solar energy-based renewable energy solution
is the utilization of MOST systems, in which the solar energy is stored and released
on demand as thermal energy [7]. The energy storage and conversion is achieved by
the photoisomerization of a compound to a strained isomer and the reverse exoergic
isomerization, usually by applying a heterogeneous catalyst. The final step in this
process releases thermal energy, which can be used for various applications, such as
heating water when not enough sunlight is available, heating houses, vehicles etc.
[8]
One organic compound suitable for this application is norbornadienne. The MOST
system based on the norbornadienne-quadricyclane photoisomerization cycle is widely
studied. In this system, norbornadiene, when irradiated turns into quadricyclane,
its strained isomer. Quadricyclane thus stores the irradiation energy and remains
kinetically stable. The stored energy can be released as thermal energy on de-
mand through the inverse reaction, usually by applying a catalyst or by electro-
chemical means. However, the incident light required to achieve the photoisomer-
ization of norbornadiene to quadricyclane must have a wavelength in general less
than 300 nm (about 4.1 eV), which renders it impractical since the spectral peak
of sunlight at sea level occurs around 500 nm (about 2.5 eV) [9]. Together with
the relatively low quantum yield of the absorption process, this makes the pure
norbornadiene-quadricyclane system an unsuitable thermal photoswitch candidate
to act as a MOST material.
This could lead the research to a conclusion that it is not possible for such a molec-
ular system to be a good MOST candidate, but ongoing research intends to counter
these problems. A practical photoswitch needs to be able to undergo the trans-
formation from the low to high strain energy compound by absorbing light in the
visible spectrum. The sunlight exhibits its spectral peak on the surface of the earth
in these wavelengths (500 nm or about 2.5 eV as mentioned). This means that the
onset of light absorption by a chemical compound should be at least in this region
instead of ultraviolet to achieve the efficiency required for MOST applications. This
issue is solved by substituted norbornadienne compounds [10]. Substitution and
addition of chemical groups to the original norbornadienne molecule can cause a red
shift of the onset of absorption, which enables the isomerization of norbornadiene
to quadricyclane when exposed to sunlight [10, 11].
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1. Introduction

Several substituted compounds in the family of norbornadienne have been investi-
gated, both experimentally and computationally. Substituted norbornadiene-based
MOST systems have been shown to perform better in visible wavelengths than un-
substituted norbornadiene [10, 11]. Ab initio computational methods reproduce
these results and also offer some insight to the quantum mechanical aspects of
light absorption [7]. Specifically, research can show which molecular side groups
and structures are more suitable. This can lead to better choices of substituted
molecules [12].
One challenge that ab initio calculations pose is the computational complexity which
makes them time and resource consuming. It has been noted [13] that molecules
that have similar features will show correlated results when quantum mechanical
computations are performed. This is the reason why ML has been proposed as an
alternative to computer time intensive computations such as DFT. Given enough
output, a ML model should be able to pick up these correlations and predict spec-
tral features of different molecules, thus accelerating the effort to engineer better
compounds with the desirable properties needed for a successful MOST system.
In the case of norbornadiene, ML models can be trained with already existing compu-
tational spectroscopy data from DFT/TDDFT calculations performed for different
molecular variants [3]. There are many publications by the Computational Materials
research group at Chalmers University of Technology which exhibit the results of
DFT/TDDFT calculations for the development of theoretical spectroscopic models
of norbornadiene variants, alongside experimental spectroscopy performed at the
Department of Applied Chemistry at Chalmers. The absorption spectra of various
substituted systems are well studied, providing us with insights about the choice of
donor/acceptor groups. Furthermore, different parameters have been used in DFT
calculations, such as exchange-correlation functionals and their results have been
studied in comparison to the experimental spectroscopy. The suitability of these
methods has been established, but increasing accuracy can be time demanding [7].
These studies have given a better understanding of the physical mechanisms and
properties that affect the absorption spectra of molecules in the norbornadiene fam-
ily. With the amount of computational data available, we can try to train ML models
to predict the spectral features, especially the red shift and correlate it with specific
molecular traits, such as the orientation of an aryl group etc. Instead of relying on
computationally expensive and time-consuming algorithms, a trained model could
be sufficiently accurate in guiding the research to the best possible optimizations
of the molecular systems studied here. If it can predict which substituted norbor-
nadiene variants exhibit the most desirable red shift and quantum yield, it can be
applied as a first test for new substituted molecules that are going to be tested in
the future.
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2
Background and motivation

In this chapter, the basic theory behind this thesis is discussed. Further information
on the norbornadiene-quadricyclane molecular solar thermal (MOST) systems is
presented. Theoretical spectroscopy with computational methods, specifically DFT
is described. Finally, the reasoning behind the use of ML and specifically artifi-
cial neural networks is discussed, alongside with background theory and previous
research of ML on quantum chemistry.

2.1 MOST systems

The ever increasing energy needs of our society have led to an increase in usage of
fossil fuels. By 2019, the amount of coal, gas and oil consumed as fuel reached a
rate of 11743 Mt/year. As time progresses, the need for energy production increases.
Today, it is obvious that the sustainable economic growth and prosperity of humanity
cannot be based on the combustion of fossil fuels because they are (1) a limited
resource and (2) CO2 production happens at a rate that results in its accumulation in
the Earth’s atmosphere. These are the main reasons behind the search for alternative
energy sources, especially those that are renewable, like solar energy.
Solar energy can be converted to electric energy, but it can also be stored as heat.
An important part of our everyday energy needs is dedicated to temperature reg-
ulation (in the E.U. countries for example, about half of the produced energy is
consumed for temperature regulation [14]). This is an important motivation behind
the development of MOST systems.
These systems act as molecular photoswitches by absorbing sunlight and can be
converted to their original form by emitting the stored energy as heat. This heat can
then be used for applications like heating the interior of buildings or heating water.
They can be irradiated by sunlight so that they undergo a reversible transformation
process and store the absorbed solar energy. Then, they can be stored in liquid form
inside a storage tank (Figure 2.1).
A typical chemical process in molecules that act as photoswitches is photoisomer-
ization. Examples of chemical compounds that can be used in MOST systems
are azobenzene, dihydroazulene/vinylheptafulvene and the norbornadiene/quadri-
cyclane system which is studied here. [15]
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2. Background and motivation

Figure 2.1: Application of a MOST system for domestic use (image taken from
Chalmers’ Chemistry and Chemical Engineering news [1]).

2.1.1 The norbornadiene–quadricyclane system and its vari-
ants

A well-studied example of a MOST system is the norbornadiene–quadricyclane sys-
tem (N-Q), with quadricyclane as the high energy isomer. The parent molecule
(norbornadiene) was named after the island of Borneo, because several compounds
that occur naturally there have similar structure as norbornadiene. Norbornadiene,
however, has not been found to occur in the natural environment but it was arti-
ficially synthesized for the first time in the early 1950s. Today, norbornadiene is
produced with the Diels-Alder reactions of acetylenes and cyclopentadienes. The
photoisomerization process (Figure 2.2) results in the highly strained molecule of
quadricyclane [16].

Figure 2.2: Photoisomerization of unsubstituted norbornadiene (left) to quadricy-
clane (right) [2].

Measurements have shown that such a system is able to store energy up to 1000 kJ
kg−1. This energy is a result of the high strain of quadricyclane [16]. For the re-
verse process of isomerization of quadricyclane to norbornadiene in the liquid state
in benzene solution, the enthalpy was measured to be ∼ −89 kJ mol−1 [17]. This
energy can be released not only via a catalyst, but electrochemically as well [18] [11].
The first step of this process is the [2+2] photocycloaddition of unsubstituted nor-
bornadiene to its valence isomer quadricyclane. The absorption edge of this process
lies at 267 nm (4.64 eV). Considering the applications for which MOST systems are
designed, norbornadiene is unsuitable since sunlight spectrum at sea level exhibits
very low intensity for wavelengths below 300 nm [19]. Substituted norbornadiene
derivatives exhibit a red-shift in the absorption onsets and maxima, which makes
them better candidates for a MOST system.
Considering the better response of the compound to the sunlight spectrum, many
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2. Background and motivation

different norbornadiene substitutes have been examined both experimentally and
with the aid of computational methods, in order to classify their physico-chemical
properties such as absorption spectra and find the compounds with the most desir-
able properties for application in MOST systems.

2.2 Theoretical spectroscopy
Improvements in MOST systems require means of improving the spectral features
of the substituted norbornadiene compounds used in them. For this reason, spec-
troscopy plays a central role in testing the performance of MOST systems. Spec-
troscopy can be performed both experimentally (via chromatography methods) [19]
or computationally, via methods described in this thesis which are time and re-
source intensive. Their analysis and improvement can lead to better understanding
of the factors that render some norbornadiene variants better suited than others as
photoswitches for MOST systems.
In particular, obtaining computational absorption spectra for these compounds is a
task which can be accomplished by means of TDDFT calculations (further details are
provided in Chapter 2 on Methodology). TDDFT is a method regularly employed
in computational quantum chemistry to determine the excitation energy spectra of
molecules and consequently the absorption spectra.
However, the determination of a realistic absorption spectrum of a chemical com-
pound is not a trivial task, for which a single determination of TDDFT roots (solu-
tions) would be adequate. As an example, the experimentally obtained absorption
spectrum of the norbornadiene variant N3 (Figure 2.3) is compared to the compu-
tationally obtained spectrum (Figure 2.7).

Figure 2.3: Experimentally derived spectra of 3 in various solvents. In toluene,
the onset of absorption is present around 370 nm (3.35 eV). [3]

Via the computational process, the TDDFT roots of a single molecular geometry
can be determined, which can provide information about the excited energy levels
for this particular geometry (Figure 2.4).

5



2. Background and motivation

Figure 2.4: TDDFT roots of a random configuration of 3 in MeCN solvent.

In order to obtain a realistic computational spectrum, molecular dynamics (MD)
simulations are performed, producing statistically decorrelated configurations of
each norbornadiene variant in each solvent. After obtaining several different con-
figurations, a large number of excitation energies computed by TDDFT is required
to obtain theoretical absorption spectra. The first root is shown to be of particular
importance, since it is correlated with the onset of absorption for each molecule
towards the red area of the spectrum. Several such energies are computed for each
configuration (Figure 2.5).

Figure 2.5: Computationally obtained roots of the HOMO-LUMO transitions of
3 in toluene, calculated by TDDFT (this sample contains 200 values in total).

The absorption spectrum is obtained by performing Gaussian broadening over the
entire array of computed energy values. This approximation assumes that the real
spectrum can be represented closely by a Gaussian interpolation over the absorp-
tion lines obtained by TDDFT, with the σ parameter of the Gaussian broadening
adjusted empirically to 0.15 eV (Figure 2.6).
Finally, a close approximation of the absorption spectrum requires also higher order
TDDFT roots, which can then give a complete theoretical spectrum (Figure 2.7)
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2. Background and motivation

Figure 2.6: The contribution of the first order HOMO-LUMO transitions to the
absorption spectrum of 3 in toluene. This transition determines the onset of ab-
sorption, which is present around 370 nm.

with some resemblance to the experimentally obtained absorption spectrum (Fig-
ure 2.3). When compared to the experimental spectrum, the computational spectra
usually exhibit additional features, which can be attributed to undersampling [3].
For example, this theoretical spectrum is derived from 200 random molecular con-
formations of 3 in toluene.

Figure 2.7: Computationally obtained spectrum of 3 in toluene.

This quick presentation of the computational procedure hopefully shows that this
task is, as mentioned, not trivial and requires both time and resources to reach the
final result.

2.2.1 ML for molecular quantum mechanics
It has been shown that the absorption spectra of norbornadienes can be obtained
as a result of quantum mechanical computations. The main question explored in
this thesis is if a ML model can be trained to predict these results with a small
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2. Background and motivation

error compared to the ones produced by the methods described above. The motiva-
tion behind the use of ML models here is the decrease of the computational effort
required. The accuracy trade-off of using ML methods is also discussed.
This trade-off is to be expected when one employs estimation methods. Approxima-
tion of solutions to quantum mechanical problems is a century-old concept [20] and
ML has already offered hope for new solutions to this problem. ML methods have
already exhibited some success in the prediction of atomization energies of organic
molecules [21]. For this purpose, multiple ML algorithms have been tried, among
them feedforward neural networks [22, 23] and convolutional neural networks [21, 24].
While the problem of predicting atomization energies from molecular geometries has
been explored by past research, the prediction of light absorption spectra has not
been explored to such an extent yet.

2.2.2 Past computational research on norbornadiene deriva-
tives

The computational procedure described in this chapter and the idea for the ML
model is a result of past research and experience on the norbornadiene - quadricy-
clane system and its variants. Current research is considering the improvement of
norbornadiene-quadricyclane by exploring the photochemical properties of a num-
ber of different variants for use in MOST systems [25]. Computational research
in particular focuses on this subject, with the Computational Materials Research
group at the Department of Physics at Chalmers University of Technology exhibit-
ing significant advancement in the understanding of the electronic structure and
photochemical properties of different norbornadiene variants.
A first insight in the computational methods and electronic structure has been pub-
lished in 2016 [7]. Electronic structure calculations offer significant information on
the mechanisms influencing the properties of the studied compounds. The relation-
ship between the light absorption and the geometric features of the molecules has
been established, especially the influence of the aryl group and the π orbital coupling
angles on the absorption profile of norbornadienes. Several DFT functionals have
been also assessed, documenting the effect of the underestimation of the calculated
energies which has been taken into account in this work.
At the same time, a first computational insight of the effect of donors and acceptors
on the absorption spectrum of norbornadiene derivatives was achieved. The advan-
tages of high solubility and large concentrations of specific norbornadiene derivatives
was also taken into account together with their molar attenuation coefficient, pro-
viding a guide to engineer improved MOST systems in the future. Also, the effect
of molecular mass on the light absorption capabilities of different compounds has
been shown to be of great importance [12]. These observations led to the investiga-
tion of norbornadiene derivatives with small molecular mass [19]. These compounds
can achieve a high energy storage density, unlike compounds with higher molecular
mass, leading to a trade-off between desirable light absorption capability and energy
storage density [12].
Further research has explored norbornadiene derivatives in liquid form [26] and
broadening the energy gap required for the back-conversion process of quadricyclane

8



2. Background and motivation

to norbornadiene to achieve higher stability required for prolonged energy storage
[11]. The addition of dithiafulvene as an improved electron donor group has also
been explored computationally in an effort to decrease the S0-S1 band gap [27].
Lastly, an important research for this thesis project was published in 2019 exploring
the effect of solvents and the effect of the linker type between aryl groups and
norbornadiene, how different configurations effect the excited state energies and the
absorption spectrum, the static zero-Kelvin configurations and their absorption lines
and the vibrational properties of several compounds [3].

9



2. Background and motivation
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3
Methodology

The implementation of the theory presented in the previous chapter in ML-based
estimation of absorption spectra of norbornadiene variants is discussed in this chap-
ter. The data is presented alongside the methods that produced it and the ML
algorithms.
There is geometrical and spectral information regarding four different norbornadiene
variants in the data base, each one simulated in four different solvents. The goal
of the neural network is to find correlations between the geometrical data and the
spectra, in order to be able to predict them with the minimum error possible.

3.1 Computational methods for theoretical spec-
troscopy

In this section, the standard computational methods for theoretical spectroscopy
are presented and discussed. These methods include: Density Functional Theory
(DFT), Time-Dependent Density Functional Theory (TD-DFT) and Molecular Dy-
namics (MD), which is an auxiliary method in theoretical and computational spec-
troscopy, required in generating a realistic spectrum.

3.1.1 Density Functional Theory (DFT) and Time-Dependent
Density Functional Theory (TD-DFT)

Density functional theory is an approach to determining the correlations of many-
body systems. As such, it is particularly useful in the study of molecules and other
quantum mechanical systems consisting of many particles. DFT can be used to
determine molecular properties and behaviors such as the electronic structure of the
molecule, perform geometry optimization or calculate the normal mode vibrational
frequencies of a molecule.
The main ansatz of DFT is the assumption that the aforementioned correlations
(and any other property) can be represented by functionals of the ground state of
the system no(r), which is a function of particle position r. DFT calculations become
an optimization problem of minimizing the energy functional E(n) of a system of
N particles, with the constraint: ∫

d3rn(r) = N (3.1)

In this context, an additional proposition, the Kohn-Sahm ansatz, can replace the
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problem of interacting particles with a one-particle system described by an exchange-
correlation functional. The computation then employs a suitable basis set which
describes the pseudopotentials of the particles. In computational quantum chemistry
and physics problems, the Kohn-Sahm approach successfully incorporates the kinetic
energy of electrons and the interaction terms as functionals of density (Hohenberg-
Kohn theorems). It has enjoyed success in this field of research and has led to a
large number of related publications.
Time-Dependent Density Functional Theory (TD-DFT) is an extension of DFT by
adding a time parameter to the Hohenberg-Kohn theorems. This theory is applicable
in electronic excitations. Calculations of electronic excitations need to be performed
in order to derive information relevant to the absorption and emission spectra of
chemical compounds. Especially when studying molecules in dielectric environments
(e.g. in solvents), the time evolution of the system leads to interactions between
electrons which alter the bound states of the system and the excited state energies.
Experimental research provides proofs of these interactions, and TD-DFT offers
insights to the mechanisms and calculations, a problem which has also been studied
in norbornadienes [3].[28][29]

3.1.1.1 Functionals and basis sets

There are many options among different functionals and basis sets in DFT/TD-
DFT. The correct choice depends on the desired accuracy, the problem and the
system studied.
Functionals can be categorized according to their degree of physical approxima-
tion, with the Kohn-Sham exchange-correlation functional EXC({ψi}), being on the
highest order of physical approximation. On the lowest order, the Local Density
Approximation (LDA) functional approximates a local electron density (e.g. in a
molecular bond) as having the same density with a spatially uniform electron cloud.
Above the Local Density Approximation on the scale of accuracy and cost in com-
putational resources comes the Generalized Gradient Approximation (GGA), which
does not treat the electron cloud density as approximately uniform. In GGA func-
tionals, both the local electron density n(~r) and the density gradient∇n(~r) are taken
into account. Two common examples of GGA functionals are the PW91 and the
PBE functionals. Higher in order of accuracy, meta-GGA functionals also include
the divergence of the gradient of the electron density ∇2n(~r). TPSS is an example
of a functional belonging in this category. Finally, hyper-GGA functionals are more
commonly used and make use of the Kohn-Sham orbitals, which are a part of the
Kohn-Sham theory and contain information of the interaction between particles.
The functional used in the research relevant to this work is the B3LYP exchange-
correlation functional, which is a hybrid functional (contains the exact exchange
energy Eexchange derived from the Kohn-Sham orbitals). B3LYP combines other
functionals as well, according to the formula:

V B3LYP
XC = V LDA

XC + α1(EexchangeV LDA
X ) + α2(V GGA

X V LDA
X ) + α3(V GGA

C V LDA
C ) (3.2)

V GGA
X is the Becke 88 exchange functional, V GGA

C is the Lee-Yang-Parr correlation
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functional and the α parameters are empirically chosen for performance optimiza-
tion.
B3LYP has been very successful and is widely used in research involving DFT cal-
culations. It must be noted that all functionals produce systemic errors when com-
pared to the experiment. B3LYP alongside other functionals has been benchmarked
in calculations on norbornadiene also [7].
Hybrid functionals, such as B3LYP, are not used in delocalized systems due to
difficulties in numerical calculations, a problem which is solved by using localized
basis sets.
The choice of a basis set is another important topic in computational chemistry.
The electronic wave functions are represented as an expansion of basis set func-
tions φi, with larger basis sets containing more φ functions, resulting also in higher
accuracy but requiring more computational resources. Basis set functions contain
electronic structure information which can be specific to different kind of problems,
with localized basis set being more efficient in molecular calculations rather than
bulk materials.[28][29]

3.1.2 Molecular Dynamics (MD)
The derivation of realistic theoretical absorption spectra requires TD-DFT calcula-
tions for a wide array of different molecular configurations in order to simulate the
material under investigation at a temperature other than 0 oK. The production of
decorrelated molecular configurations requires simulation of trajectories of moving
atoms, a task performed by Molecular Dynamics (MD) simulations.[28]
In MD simulations, a system of N particles (atoms) is represented by 3N positions
and velocities. The particles are subjected to forces and obey Newton’s laws of
motion. Then, a system of 6N first order differential equations are solved, offering
information on the evolution of the system over time and additional information,
such as the temperature of the system, can be calculated

1
2mū

2 = 3kbT

2 (3.3)

where 1
2mū

2 is the average kinetic energy of each degree of freedom, kb is the Boltz-
mann constant and T is the temperature of the system.

3.1.3 DFT for normal mode analysis
An important application of DFT is normal mode analysis. The specifics of how the
results of this analysis are important in the work of this thesis are described later
in the Methodology chapter. It is noted that norbornadiene variants are molecules
studied in a non-zero temperature environment, thus their vibrational properties
affect the geometries and the related excited state energies of the molecular config-
urations.
In general, DFT for vibrating molecules that interact with other atoms (solvents in
the context of norbornadiene variants) involves the location of a point ~r0 where the
energy is minimum, the atomic energy can be written as a Taylor expansion with
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second order terms ∂2E. The Hessian matrix of this second-order partial derivatives
can be written according to the new coordinate system ~x with ~x0 as origin:

Hij =
[
∂2E

xixj

]
(3.4)

By calculating the force related to the i-th coordinate, Fi, a classical equation of
motion can be written for this coordinate. It is related to an acceleration by the
equality Fi = mi(d2xi/dt

2) and to the energy of the system of atoms Fi = ∂E/∂xi,
and in matrix form the equation of motion of the system becomes

d2x

dt2
= Ax (3.5)

A is the mass-weighted Hessian matrix Aij = Hij/mi.
The eigenvectors of the mass-weighted Hessian matrix lead to a special set of so-
lutions of these equations for which the displacements point along the eigenvectors
and the amplitude shows a harmonic oscillation, defined by the related eigenvalue
of the Hessian. These special solutions are the normal modes [28].

3.2 ML examination for norbornadiene variants
absorption spectra

3.2.1 Vibrational modes, side-group rotations and excita-
tion energies: the choice of molecular descriptors

The correlation between vibrational modes, side-group rotations and electronic ex-
citation energies is a central part of this thesis. In principle, a ML mode can pick up
these correlations and “learn” how to predict them on its own in various scenarios.
In order to investigate this idea, an investigation beyond simple molecular geometry
correlations is performed. In this investigation, the fact that specific bond angles
play an important role in the electronic properties of the molecules is taken into
account.
Therefore, there is a need to represent the molecular configurations in a meaningful
way for a ML model. For this purpose, one must choose the correct molecular
representation, also known as molecular descriptor, which acts as a mathematical
representation of molecular features for the model.
Two common molecular descriptors are the Cartesian matrix and the Z-matrix of
internal coordinates. The Cartesian matrix consists of four columns and as many
rows as the number of atoms of the represented molecule. The first column contains
the symbols of each atom and the other three columns contain its three spacial
coordinates. In total, it contains 3n coordinates for a molecule with n atoms. The
Z-matrix has the same first column as the Cartesian matrix. The second column in
a Z-matrix contains the distance between the atom of each row to the atom of the
previous row (n − 1 distances in total). The third column contains n − 2 torsion
angles between triplets of atoms and the fourth column contains n − 3 dihedral
angles between planes of atoms [30]. This representation offers some advantages over
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the Cartesian matrix: it is a reduced coordinate system invariant to rotations and
translations, it contains 3n−6 instead of 3n coordinates, and it contains information
on angles between atoms, which are related to the problem investigated in this thesis.
The dimensionality reduction that it offers is expected to lead to better training and
better predictions in machine learning models, compared to the Cartesian matrix.
Both of these descriptors incorporate geometrical information of the molecular con-
figurations in a straightforward way. The Cartesian matrix and the Z-matrix can be
thought of as simple molecular descriptors and the neural network as a complex sys-
tem with a behavior which can converge in such a way that complex correlations can
arise out of data, even though the descriptor is “simple”. By adding more specific
geometrical information, the data is engineered in such a way that it encompasses
higher complexity.
Before the performance of frequency analysis, DFT geometry optimization is per-
formed via NWChem, with the option of tight convergence. Then, frequency anal-
ysis is performed but with the option of more accurate convergence of the positions,
requiring the maximum not to exceed 10−8 eV/Å. Finally, TDDFT calculations are
carried out for the singlet and triplet excited state energies and oscillator strengths.
The correlation between vibrational modes and excited state energies can be studied
as a model of more complex molecular descriptors with a linear correlation with the
energies.
The study of these correlations is first performed by DFT frequency analysis and
then the neural networks are assessed versus a linear model, regarding their efficiency
to pick up these correlations.

3.2.2 Linear regression with SOAP and MBTR molecular
descriptors

SOAP and MBTR are two molecular descriptors involved in the ML analysis of
the correlation between normal modes and excited energy levels in the context of
this thesis work. In general, they are more complex descriptors than the Cartesian
matrix or the Z-matrix and their generation from molecular configurations is a more
involved process. Their implementation is done via the DScribe Python package
of molecular descriptors [31].
The SOAP descriptor is formed by implementing information about the position r of
atoms, the Gaussian smoothed atomic density ρZ(r), spherical harmonics Ylm(θ, φ)
and the radial basis function gn(r) in the coefficients cZ

nlm(r):

cZ
nlm(r) =

∫∫∫
R3
dV gn(r)Ylm(θ, φ)ρZ(r) (3.6)

Then, the final output is the partial power spectrum vector p(r) with elements that
are defined as:

p(r)Z1Z2
nn′l = π

√
8

2l + 1
∑
m

cZ1
nlm(r)∗cZ2

n′lm(r) (3.7)

The MBTR is a descriptor that is suitable both for molecules and periodic repre-
sentations and encodes structural motifs. Structural patterns are transformed into
scalars by taking into account some or all of the following properties: atomic species,
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distances and angles. These functions can be then weighted or left as they are and
transformed into a distribution with kernel density estimation.[31, 32]

3.2.3 Data preparation for the neural network-based inves-
tigation

The training and assessment of the neural networks is based on results of a se-
ries of computational simulations performed in order to extract molecular geometry
configurations (Figure 3.1) and averaged absorption spectra of the norbornadiene
compounds over these geometries [3].

Figure 3.1: Two different configurations out of the 200 of the same compound
(3) in MeCN solvent. The configurations are the result of Molecular Dynamics
simulations. (Image produced by the Atomic Simulation Environment software [4].)

The first step for the production of these calculations was a series of molecular dy-
namics (MD) simulations with the GROMACS software [33]. The molecules were
simulated inside a box of dimensions 5x5x5 nm. Solvent molecules were also inserted
in the simulation. Then, the simulation was performed for a temperature of 300 oK
and pressure 1000 ps. The MD simulations produced in total 800 different configu-
rations for each molecule, with 200 configurations per solvent (Figure 3.2). The four
compounds included are: N3 (C16H11N), N4 (C18H16N2), N5 (C19H16) and N6
(C14H11N). The solvents are: MeCN, toluene, tetrahydrofurane and hexane.

Figure 3.2: Examples of configurations of the four different norbornadiene variants
included in the data base (from left to right: N3, N4, N5 and N6). The random
configurations were produced by MD simulations. (Image produced by the Atomic
Simulation Environment software [4].)
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Quantum calculations were performed on the results of the MD simulations in order
to determine their excitation energies. Time-Dependent Density Functional Theory
(TDDFT) was performed for the molecular configurations with the NWCHEM soft-
ware [34], in order to determine the excitation energies and the dipole strengths of
the transitions. Then, after the excitation energies were calculated, they underwent
Gaussian broadening and the absorption spectra were plotted.
In these calculations, the coordinate system which describes the geometries of the
atomic configurations is the Cartesian matrix. The Cartesian matrix contains the
positions of all atoms in the Cartesian coordinate system, according to the origin of
the coordinate system as it was set in the MD simulation.
For the purpose of the work presented in this thesis, every matrix was converted to
the Z-matrix reduced coordinate system. A Python script accomplishes this purpose,
with the following rules: the first column contains information on the atomic species,
then the distance of each atom is calculated and the second column is filled with the
distances of consecutive atoms. The third column of the matrix contains the torsion
and the fourth column contains the dihedral angles.

3.2.4 Neural network - based method
The central problem discussed in this thesis is the efficacy of Artificial Neural Net-
works (ANNs) as a regressor capable of predicting features of absorption spectra
of chemical compounds that belong in the same family of molecules, in particular
norbornadiene variants. Here, a brief description of ANNs and their application is
presented.

3.2.5 Feedforward neural networks
Feedforward neural networks, also known as multi-layer perceptrons, are a class
of algorithms that perform logistic regression and are stacked in layers, forming a
network, with the final layer serving the purpose of producing the output values. The
building block of this network is the McCulloch-Pitts neuron, which was invented
as a model of the function of an actual biological neuron. The actual biological
brain is a network of neurons, similarly an appropriately structured network of
McCulloch-Pitts neurons should be able to be "trained" and "learn", so that it can
infer deductions in complex classification and regression problems.
For this purpose, each neuron is connected to some inputs, which can be the input
values or the output of other neurons and produces output according to the following
rule:

ni(t+ 1) = θ

∑
j

wijnj(t)− µi

 , (3.8)

where the neuron updates its output in discrete i time steps and adds input values
from j inputs or neurons weighted by the synaptic weight wij. The calculation of
the output value may also include a threshold value µi and an activation function
θ [5]. In the context of this work, the Rectified Linear Unit activation function is
chosen (ReLU):
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θ(x) = max(0, x) (3.9)

Figure 3.3: The McCuloch-Pitts neuron (image taken from Artificial Neural Net-
works lecture notes by B. Mehlig, University of Gothenburg [5]). in this example,
the Heaviside function θH is used as an activation function.

3.2.6 Neural network methodology
The first category of models to study is the neural networks, in particular multi-
layer perceptrons. The descriptors mentioned above, Cartesian matrices and Z-
matrices, are fed as input in the neural networks, which are capable of working
out the complexity of the system and correlate the geometries to the excited state
energies of the molecules.
First, the matrices are turned into vectors which are fed into the input layer of the
neural networks. This process is known as "flattening" of the input data and it is
a necessary step in the training of the multi - layer perceptrons. For example, a
Cartesian matrix of a molecule with 28 atoms (such as 3) has a shape of 28 rows
and 3 columns, for each atom and each coordinate respectively.
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side-group rotations

This chapter discusses the correlation between vibrational normal modes of the
molecules and their spectral features. In specific, the two molecules compared here
are the molecules of the norbornadiene variants N3 (C16H11N) and N5 (C14H11N),
also known in literature as NBD3 and NBD2 respectively [11]. In both cases, a
similar structure can be noticed: the norbornadiene part of the molecule is connected
to an aromatic ring. The special feature in N3 is the presence of an ethyl linker
between the two parts (Figure 4.1), whereas in N5 this feature is missing. The
mobility of these two types of link is presented in existing literature [11], where it
is shown that the presence of the ethyl linker offers rotational mobility between the
two groups.
Consequently, the N3 molecule can obtain configurations far from the equilibrium
point easier at lower temperatures than N5. Rotations away from the equilibrium
position can change the interaction between the π molecular orbitals and influence
the energy landscape of the S0-S1 coupling (S0 is the ground state and S1 is the
first electronically excited state of the molecule) [11]. This is the reason why the
absorption spectrum of the two compounds differs, with the onset of absorption for
N3 exhibiting a red shift, when compared to N5. The correlation between side-group
rotations and the S1 energy is studied here, which plays an important role in the
onset of absorption.

Figure 4.1: The N3 molecule features an ethyl linker between the norbornadiene
part and the aromatic ring, in contrast to the N5 molecule (image produced by
Chemcraft - graphical software for visualization of quantum chemistry computations.
https://www.chemcraftprog.com).
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4.1 Normal modes and side-group rotation
The first step towards the study of the normal molecular modes and the side-group
rotations is the determination of the equilibrium geometries of both molecules (de-
picted in Figure 4.1).
Geometry optimization was achieved by means of Density Functional Theory, as it
is implemented by the NWChem computational chemistry software. The functional
of choice is the exchange-correlation B3LYP. After the completion of this task, N3
and N5 molecules are relaxed S0 ground energy level.
After the geometry optimization, frequency analysis was performed by DFT with
the NWChem software. DFT frequency analysis calculated the frequencies of the
normal vibrational modes of the molecules. Each molecule exhibits 3n − 3 normal
modes of vibration, where n is the number of atoms for each molecule. In the case
of N3 (C16H11N) n=26, which means that there are 75 normal modes. For N5
(C14H11N) n=28, which means that there are 81 normal modes. Singlet and triplet
excited state energies and oscillator strengths were then calculated with TDDFT,
with XC-B3LYP exchange-correlation functional again.

4.1.1 The normal modes and the S1 excitation
The following two plots show the relation between S1 excitation energy spectrum
(golden line) with some of the normal mode coordinates (blue line) for (3) Figure 4.2
(on the left). It can be compared to the S1 energy variance in relation to the
oscillation energy (on the right).

Figure 4.2: Left: N3 S1 excitation energy (in gold) and oscillator strength (in
blue). Right: S1 energy variance.

An important observation is that for some normal modes, the effect of the oscillations
of the molecule is not very influential on the S1 excitation energy but in other cases
the difference in the oscillation direction has a dramatic impact in the S1 excitation
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energy. This is more obvious in 5, with normal modes which are related to more
extreme variations in the excitation energy Figure 4.3.

Figure 4.3: Comparison of S1 excitations and their variance along several modes
for 3 and 5. Some modes are not related to large variance of the S1 excitation
energy (shown with yellow color), while others are related to greater variance (shown
with light red color), thus are more important for absorption of light with larger
wave length. 5 facilitates normal modes that exhibit more extreme variance of S1
excitation energy, resulting in a red shift.

Obviously, these normal modes play an important role in shaping the absorption
spectrum of each molecule. A further investigation of these two categories of normal
modes shows some important differences between them.
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Figure 4.4: Normal modes with symmetric (first row) and asymmetric (second
row) influence on the S1 excitation energy.

Examples (Figure 4.4) show that modes which affect mostly the changes in the
excitation energy are the ones that break symmetries and move atoms closer and
further away to one another. In 3 and 5, the first row in Figure 4.4 shows two modes
that produce a symmetric wave-like motion, where the side groups move "up" and
"down". This motion does not result in a big change in the S1 excitation energy
level.

The second row of Figure 4.4 shows atomic motions that deform the side group and
the norbornadiene part, resulting in atoms in the norbornadiene part moving close
and further away from each other. These deformations have more profound and
asymmetric effect on the change of the excitation energy.

This shows how different normal modes have a different effect on the spectrum.
The following plot Figure 4.5 shows the correlation between the spectral shift and
broadening and the normal modes for the two molecules. The modes tend to cluster,
with some outliers having a greater effect.
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Figure 4.5: Spectral shift and broadening.

Then, we can look into specific modes and which elements of the z-matrix are mostly
correlated with the most important normal modes. Defining which geometry fea-
tures affect the S1 excitation energy the most can lead to development of more
functional molecular descriptors. Figure 4.6 shows two "important" modes and their
corresponding frequencies for 3 and 5 respectively.

Figure 4.6: Normal modes that affect S1 excitation energy the most are related to
deformations of the norbornadiene part of each compound. The highlighted atoms
are the ones mostly involved in these modes.

The norbornadiene atoms are the ones that play the most important role in the onset
of absorption. After all, this is the compound that research focuses on improving.
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However, it has been shown that different groups and linkers between them and
norbornadiene affect the absorption of light. In 3 and 5, the difference is in the
ethynyl linker. Different linkers affect the rotation of the sidegroup relative to the
norbornadiene differently.

4.2 Side-group rotation and the S1 energy spec-
trum

The side group rotations of 3 and 5 (Figure 4.7) have been shown to effect the S1 ex-
citation energy [3]. This phenomenon has been studied because the two compounds
are very similar, but 3 features a triple bond as a linker between the norborna-
diene and the aryl group (ethynyl linker), whereas 5 does not have this feature.
This difference makes it easier to understand what kind of functionality the aryl
side group offers to each molecule. It has been shown that rotations of the aryl
side group away from the optimal geometry of each compound reduce the alignment
between the highest occupied and the lowest unoccupied molecular orbitals. Side
group rotations are more accessible on N3 and the distance between the two parts
of the molecule is greater [3]. Despite having very similar geometries, this feature
can make two molecules have different first order excitation energies. Normal mode
analysis performed by DFT expands on this observation and shows how rotations
and deformations influence the first excitation energy, which is a key feature in pre-
dicting the spectrum of a compound. Rotations of the side group have been linked
with the onset of absorption of each compound, which is desired to be shifted to
the red part of the spectrum. Consequently, it is expected that the Z-matrix, which
contains information on intramolecular angles, will perform better than the Carte-
sian matrix and prove to be a suitable molecular descriptor. In the work for this
thesis, the effect of the side-group rotations is presented in the following plots in
Figure 4.8:

Figure 4.7: Visualization of side-group rotation by 90o (image produced by Chem-
craft - graphical software for visualization of quantum chemistry computations.
https://www.chemcraftprog.com).
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Figure 4.8: The effect of the side-group rotation on the S1 excitation energy and
transition dipole strength.

4.3 Normal modes classification

The frequency distribution of the four different norbornadiene variants is presented
here.

Figure 4.9: Distributions of normal modes along the frequency spectrum (in cm−1).

Qualitatively, the spectrum of the normal modes shows an interesting "partitioning"
of the frequency distribution, with modes that tend to cluster in separate groups
according to the characteristics of the vibrations (Figure 4.10).
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Figure 4.10: Four distinct clusters of normal modes tend to form in the N3 normal
mode frequency spectrum.

The lower modes are the ones that affect mostly the excited energy levels of each
molecule. These modes tend to cluster in the first group of lower frequencies and are
related to the side-group rotation about the axis of the ethynyl linker (Figure 4.11):

Figure 4.11: Atomic displacements when following the softest mode (9 cm−1) in
the frequency spectrum for 3. This mode primarily involves a rotational motion of
the side group about the axis of the ethynyl linker.

A look into the second cluster of modes that tend to group together shows that they
are mostly related to group deformations (Figure 4.12):
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Figure 4.12: Atomic displacements exhibited in the normal mode with frequency
1015 cm−1 (for 3). This mode primarily involves a deformation (stretching) of the
side ring group.

A small cluster which involves only 2 modes is related to harmonic oscillation of
atoms involved in the ethynyl linker (Figure 4.13):

Figure 4.13: Atomic displacements exhibited in the normal mode with frequency
2275 cm−1 (for 3). This mode primarily involves oscillations of the atoms along the
ethynyl linker.
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This small cluster of modes related to atomic displacements of ethynyl linkers is not
present in 6, which has no single linker. In 5, where the linker is not ethynyl, only
one mode is present in this category (Figure 4.9).
Finally, a look into the 4th cluster of modes of 3 shows that they are related to
displacements of hydrogen atoms (Figure 4.14). These are the stiffest modes ex-
plored by DFT, and they do not affect the excited energy spectrum of the molecule
as much as the softest normal modes.

Figure 4.14: Atomic displacements exhibited in the normal mode with frequency
3199 cm−1 (for 3). This mode primarily involves displacements of hydrogen atoms.

4.4 Comments
The plots presented in this chapter show generally greater S1 energy gaps for N5
in comparison to N3, both for modes with higher and lower frequencies. For N5,
S1 excitation energy can rise or decline steeply along the normal mode coordinates.
This can be attributed to the overlapping of orbitals, which can reduce the HOMO-
LUMO gap [19].
In N5, the S1 excitation energy gap can become large for most vibration modes.
This is attributed to the stronger interaction between the norbornadiene group and
the aryl side group in N5, which results in more resistance to rotation.
N3 exhibits more broadening and shift in lower frequencies. Since we examine the
first singlet excitation, we can derive some conclusions about the HOMO-LUMO
gap. In the case of N3 it seems to be smaller. There is an explanation which can
be found in literature [3]: rotations in N3 are seamless when compared to N5, due
to the presence of the ethynyl linker. Apart from the S1 transition energy, this is
expected to also have an effect on the dipole strength, in particular the HOMO-

28



4. Normal mode analysis and side-group rotations

LUMO transition in N5 is expected to have a smaller dipole strength.
An interesting feature of these plots is the asymmetry in the spectral peaks, which
can be attributed to the asymmetry of the molecular orbitals that overlap as the
side groups rotate. This feature can be picked by a machine learning model. In the
next section, it is shown that a linear model based on ridge regression and molecular
descriptors of higher complexity than the Z-matrix can be trained more successfully
to predict the S1 energy gap than the neural network - based models explored in
the next chapter.
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5
Artificial Neural network-based

analysis

A review of the results of the neural network-based approach is included in this
chapter. Assessments of the following parameters is presented: the choice of the
z-matrix as the descriptor over the xyz representation and the Coulomb matrix, the
optimization algorithm, the neural network hyper-parameters, its performance in
different norbornadiene variants and finally a comparison between the multi-layer
perceptron-based approach and other machine learning algorithms in the scope of
this thesis.
Each model is evaluated by the mean squared error acting as the loss function. The
optimization algorithm used is the stochastic gradient descent, as implemented in
the keras.optimizers python library with a TensorFlow 1.12.0 backend. A plot of the
predicted versus true values is presented with the R2 coefficient and the slope of the
linear regression of the predicted vs true values. Ideally, if every predicted value was
correct, the R2 coefficient would be equal to unity and the slope of the regression
line would be equal to unity as well, so a major criterion of the performance of the
machine learning models presented here is how close these values are to the ideal.
An important issue regarding the evaluation of each neural network is the train-
ing time. The mean squared errors exhibit some variance, which means that every
training session is unique and if the model actually approaches the desirable global
minimum, the approximation is not always the same for each training session. For
each model, an average of the mean squared error of ten unique training sessions is
evaluated in order to acquire a clear picture of the model’s performance. Each train-
ing session is performed with a different random split between train, test (validation)
and hold-out data sets. This was necessary because the data set for each norbor-
nadiene variant is small, with a size of only 200 data points for every compound in
each solvent. A 5% split is done, producing a hold-out and a test (validation) data
set of 10 data points each, so after 10 different training sessions, the plot contains
10 predictions for each one of the 10 hold-out data sets, in total 100 predictions
in every plot. The test data set is used by the optimization algorithm. Generally,
the training of each neural network can be time-consuming even for such small data
sets, especially if the neural network contains many hidden layers (more than two).
The output value of the neural network is the first root energy (in eV) produced by
TDDFT calculations. An assumption is that if a neural network can be optimized
to predict this root as accurately as possible, it can perform similarly for the other
roots as well (in total there are 15 roots included in the database).
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5.1 Assessment of the z-matrix molecular descrip-
tor

An important issue investigated in this thesis is the superiority of the z-matrix molec-
ular descriptor for the study of the correlation of molecular geometries to absorption
spectra over the Cartesian matrix. The neural network used here (Table 5.1) con-
sists of one input layer with as many neurons as the z-matrix input for the molecule
3. Then, two hidden layers which operate with the Rectified Linear Unit (ReLU)
activation function and finally an output layer which consists of one neuron with no
activation function, because the requested output is only the first root.

Table 5.1: The summary of the neural network model (output of Keras
model.summary() command).

Layer (type) Output shape Number of weights
Flatten 84 0
Dense 84 7140
Dense 84 7140
Dense 1 85
Trainable parameters: 14365

The output value is the energy of the first root (in eV). Plots of the mean squared
error evaluated for the test data set over the training epochs is presented (Figure 5.1),
as well as prediction plots for the training and hold-out data sets. A minimum can
be seen close to 4000 epochs. In most cases the minimum appeared there, and after
the 4000 epochs mark the error increased. This increase is caused by overfitting of
the regression model to the training data set.

Figure 5.1: The mean squared error of the model on the test data set over the
training epochs plot, with the z-matrix descriptor as input. This is a sample training
session output.
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Finally, the plots of predicted over true values are presented (Figure 5.2), both for
the training and the holdout data set after 4000 training epochs. It is important to
note that when the neural network is trained for more epochs, the mean squared error
in the predictions of the training data set decreased, while the mean squared error
in the predictions of the holdout data set increased, which is a sign of overfitting.

Figure 5.2: The fit of the predictions for the training data set is better than the
predictions in the hold-out data set.

The average mean squared error after 10 training sessions, the slope of the line fit
in the predicted over true values of the hold-out data set and the R2 coefficient of
the fit is also calculated, in order to assess the performance of the neural network.

Table 5.2: Neural network model predictive performance with z-matrix descriptor
as input.

Quantity Value
mean squared error (MSE) (eV2) 0.000650
Slope 0.411291
Coefficient of determination R2 0.267261

5.1.1 Comparison with the Cartesian coordinates descriptor

The same procedure was followed with the Cartesian coordinates as input. The
same plots as in the z-matrix assessment are presented here (Figure 5.3, Figure 5.4).

33



5. Artificial Neural network-based analysis

Figure 5.3: The mean squared error of the model on the test data set over the
training epochs plot, with the Cartesian-matrix descriptor as input. The best pos-
sible results seem to occur after 400 epochs, a sign of underfitting with no effective
training afterwards. This is a sample training session output.

Figure 5.4: The fit of the predictions for the training data set is successful, but
the predictions fail in the hold-out data set.

Table 5.3: Neural network model predictive performance with Cartesian descriptor
as input.

Quantity Value
MSE (eV2) 0.001245
Slope −0.021606
Coefficient of determination R2 0.000684

The mean squared error is large compared to the z-matrix results, the regression
line slope should have been close to 0.5 and the R2 coefficient is close to zero. The
results show that z-matrix is preferable over the Cartesian coordinates molecular
descriptor.
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5.2 Multi-layer perceptron hyperparameter opti-
mization

In this section, the hyperparameter optimization is discussed. The neural network
can consist of at least two layers, one input and one output layer. However, in order
to solve any problem the addition of one hidden layer with many hidden neurons
(sufficiently wide) is preferred[35]. Generally the presence of more than two hidden
layers is not necessary and it can make the training sessions more time consuming.
The effects of adding hidden layers is studied here.

5.2.1 1 wide hidden layer

With z-matrix molecular descriptor as input and one hidden layer which is wide (2x
the neurons of the input layer) the results are comparable to the neural network
model with two hidden layers which is already studied in section 4.1.

Table 5.4: Neural network model predictive performance with one wide hidden
layer.

Quantity Value
MSE (eV2) 0.000661
Slope 0.333309
Coefficient of determination R2 0.227982

However, the number of epochs needed to reach a local minimun in the mean squared
error is now around 6000 epochs instead of 4000 (Figure 5.5).

Figure 5.5: The mean squared error over the training epochs plot (model with 1
wide hidden layer, trained with the Z-matrix molecular descriptor).
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5.2.2 3 and 4 hidden layers
With more than 2 hidden layers, the neural network model appears to perform
slightly worse. This can be attributed to overfitting due to the large number of
trainable parameters. Local minima of the mean squared error appear in the 3000-
4000 epochs region. A comparison with the performance of the 2 hidden layer model
is presented in the following table.

Table 5.5: Comparison of models with 2, 3 and 4 hidden layers.

2 hidden layers 3 hidden layers 4 hidden layers
MSE (eV2) 0.000650 0.000673 0.000722
Slope 0.411291 0.330017 0.319726
R2 0.267261 0.234537 0.212121

5.3 Predictions in different norbornadiene vari-
ants

The number of atoms of the molecule for which the neural network model is trained
can influence the prediction quality of the model. If, for example, a molecule consists
of 26 atoms, the trainable parameters of the densely connected multi-layer percep-
tron are drastically reduced when compared to a molecule with 35 atoms, like 4.
The reason is that a smaller z-matrix requires also a neural network with narrower
layers, since the dimensionality of the input vector depends on the number of atoms.
The neural network for the prediction of the first energy root of N5 has the following
structure (Table 5.6):

Table 5.6: The summary of the neural network model for 5 (output of Keras
model.summary() command).

Layer (type) Output shape Number of weights
Flatten 78 0
Dense 78 6162
Dense 78 6162
Dense 1 79
Trainable parameters: 12403

This is obviously easier to train than the neural network for 3, the compound that
has been used as a benchmark in the previous sections. The neural network for 3
contains 14365 trainable parameters (Table 5.1), whereas the model for 5 contains
12405 trainable parameters. The training sessions also produce improved predic-
tions, with better metrics, such as smaller mean squared error. Interestingly, the
minimum mean squared error in the predictions of the hold-out data set appears in
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the region of 12000-13000 epochs instead of 4000 epochs (Figure 5.6), which was the
case for 5. More trainable parameters (e.g. with more hidden layers) can lower the
optimal number of training epochs where the minimum mean squared error appears,
however they are not always desirable because they result in worse overall metrics
and more overfitting.

Figure 5.6: The mean squared error over the training epochs plot for 5 (two hidden
layers, Z-matrix descriptor).

The 5 norbornadiene variant is molecule with the fewer atoms in the database
(26 atoms). The other extreme is the 4 variant, with 35 atoms. The neural net-
work consists of more trainable parameters (Table 5.8) and training becomes much
harder(Figure 5.7), to the point that it practically fails for this compound and there
are no useful predictions.

Table 5.7: Comparison of model predictions for 4 and 5.

N4 N5
atoms 35 26
MSE 0.001466 0.000663
Slope -0.057614 0.558538
Coefficient of determination R2 0.008038 0.469450
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Table 5.8: The summary of the neural network model for 4 (output of Keras
model.summary() command).

Layer (type) Output shape Number of weights
Flatten 105 0
Dense 105 11130
Dense 105 11130
Dense 1 106
Trainable parameters: 22366

Figure 5.7: The mean squared error over the training epochs plot for 4 (2 hidden
layers, Z-matrix descriptor).

5.4 Performance of other regression models
The performance of a few other machine learning algorithms and regression models
has been tested. The mean squared error is smaller for the multi-layer perceptron
presented in the previous section. This can be attributed to the fact that a neural
network has a structure that can be optimized for every specific problem. This
can be both an advantage and a disadvantage, since it can pick up more nuanced
correlations and perform better, however the experience in the context of this thesis
shows that it can be by far the most consuming method, both in hyperparameter
optimization and training.

5.4.1 Scikit-learn machine learning library models.
The following table (Table 5.9) shows the performance of several regression machine
learning models implemented in the scikit-learn machine learning library.
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Table 5.9: Comparison of different algorithms.

algorithm MSE
linear regression 0.019394
random forest 0.000931
kernel ridge 0.001095
neural network 0.000650

5.4.2 Ridge regression with Many-body Tensor Representa-
tion and Smooth Overlap of Atomic Positions molec-
ular descriptors

In contrast to the neural network - based models where the Z-matrix, a simple
molecular descriptor of a reduced coordinate system, produced better results, a
linear model with molecular descriptors of higher complexity can be shown to have
even better performance.

The S1 excitation energy distribution plots exhibit several linear relations between
the normal mode space and the S1 energy spectrum. In such a case, ridge regression
is expected to perform well.

The information of the normal mode distribution is then fed as input to the Many-
body Tensor Representation (MBTR) and Smooth Overlap of Atomic Positions
(SOAP) molecular descriptors, as implemented in the DScribe Python package im-
plementation of molecular descriptors [31]. In the case of MBTR, the descriptor
contains information on the inverse square and cosine of the normal mode of vibra-
tion, and in the case of SOAP geometrical information of the molecules. The data
points for each molecule, N4a and N4d are 200, with the training data set contain-
ing 190 and the test data sets 10 molecular data entries. The parameters chosen for
the MBTR model were: term k = 2 with inverse distance geometry function, grid
parameters min = 0, max = 1, n = 10, sigma = 0.1, weighting with exponential
function, scale 0.5 and cutoff 1e− 3, term k = 3 with cosine geometry function, grid
parameters min = −1, max = 1, n = 100, sigma = 0.1, weighting with exponential
function, scale 0.5 and cutoff 1e− 3. The SOAP model was tested with the param-
eters: inner averaging, rcut 8, nmax for integer values in the range between 2 and 8
and lmax in the range between 2 and each value of nmax.

The comparison between the two methods and the neural network trained with a
Z-matrix descriptor gives the following results in the test data set (Table 5.10):
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Table 5.10: Many-body tensor representation and smooth overlap of atomic posi-
tions model performance with the mean squared error values and the coefficient of
determination (R2).

N3 N6
atoms 28 36
MBTR/Ridge MSE 0,00908 0,01191
MBTR/Ridge coefficient of determination 0.3080 -0.0985
SOAP/Ridge MSE 0,00706 0,00849
SOAP/Ridge coefficient of determination 0.4622 0.2170
Z-Matrix/NN MSE 0,000650 0,000933
Z-Matrix/NN coefficient of determination 0.2673 0.0806

Although the neural network trained with a Z-matrix descriptor exhibits smaller
mean squared error, the R2 value is arguably better in the case of the ridge regression
model trained with the SOAP molecular descriptor. As it was shown in the previous
chapter, the R2 value can be a better criterion of a well-trained model than the mean
squared error, because it shows that the model has actually "learned" the correlation
between the molecular descriptor and the spectral features of the studied molecule

Especially for the N4d molecule, the ridge regression/SOAP descriptro combination
shows the best R2 value. The neural networks were failing to train properly for large
molecules, as it was shown in the previous chapter. The MBTR descriptor failed
as well, while the SOAP consistently produces better R2 values, even in the case of
N4d, showing a better way to train a machine learning model than neural networks.

It also has to be noted that although the generation of the SOAP descriptor requires
some parametrization and arguably more complex calculations than the Z-matrix,
the overall training time of the ridge regression model is way smaller than the neural
network model, rendering this model more practical.

5.5 The effect of the size of the data set

Neural networks are data-hungry algorithms. With a 5% hold-out dataset split, from
200 molecules of N4a in toluene solvent, the model is left with 190 molecules/data
points to train. Larger splits can have a significant impact on the accuracy of the
model and its prediction capabilities.

An interesting phenomenon is that with fewer data points in the training set, the
mean squared error does not increase significantly.

40



5. Artificial Neural network-based analysis

Table 5.11: Comparison of different training data set sizes.

dataset size MSE
190 0.000650
180 0.000686
170 0.000732
160 0.000719
150 0.000692
100 0.000671

However, other metrics that determine the quality of the predictions worsen. The
R2 coefficient drops closer to 0 and the slope of the regression line in the predicted
vs. true values plot is not close to 0.5. For example, with 100 data points in the
training data set (Figure 5.8):

Figure 5.8: The quality of predictions of a neural network trained with just 100
molecular configurations.

Table 5.12: Neural network model predictive performance with a small training
dataset.

Quantity Value
MSE (eV2) 0.000720
Slope 0.192421
Coefficient of determination R2 0.111544

These results show that the mean squared error can be low, because the points in
the plot above tend to cluster close to the line of predicted=true values, however the
other metrics show that the neural network was hardly able to pick up any correla-
tions between the atomic geometries and the first root energy. In an extreme case
of underfitting, the neural network would be unable to learn these correlations and
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would just produce wrong predictions which would be dispersed (low R2 coefficient)
with a mean value close to the mean value of the actual energy of the first root.
In this case, the regression line slope would be equal to zero. With a data set of
size 190, R2 was equal to 0.267261 and the regression line slope was 0.411291. With
even larger data sets, we can assume that the R2 coefficient would be closer to 1
and the regression line slope would closer to the ideal 0.5, indicating that the model
is able to make more accurate predictions close to the true values. The size of the
data set was a limiting factor, however the neural network was able to learn the
correlation between molecular geometries and root energies efficiently for the two
smaller molecules (3 and 5).
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Conclusion

Overall, the goal of the thesis project to show that a molecular descriptor with
a reduced coordinate system, the Z-matrix, can perform better than the Cartesian
matrix descriptor. In this case, the Z-matrix encompasses the molecular geometry in
a simple way, while the neural network is capable of resolving the complex correlation
between the geometry and the spectral features of the compound. These correlations
have been exhibited by analyzing the normal modes and how they are related to
specific Z-matrix elements. Even though no method resulted in an acceptable R2

coefficient value with a practical functionality (R2 should be at least equal to 0.8),
there are differences which indicate which model is the most successful in picking
up these correlations.
However, this approach fails in two areas:

• The neural networks need a lot of time to train when compared to linear
regression models.

• They fail in larger molecules. They increase the dimensionality of the problem
and a possible solution is a larger data set.

Interestingly, a linear model approach seems to be able to work out complex corre-
lations, but a new molecular descriptor (SOAP) has to be produced which is more
complex, is not physically intuitive but it is a mathematical construct, and some
parametrization is also needed. The overall process is more efficient however, espe-
cially when taking into account the almost instant training time when compared to
the neural network’s training time. The R2 value for the linear model is arguably
better than the neural network’s output. The mean squared error may not always
be the best parameter to determine the quality of the output, although it is a com-
mon choice for the loss function in the optimization algorithm during the training
process of the machine learning model. The R2 coefficient needs to be taken into
account to assess the predictive capabilities of each model.
In every case, many data points must be produced first by time consuming compu-
tational methods (DFT and TDDFT). There is no evidence that these models can
be trained to predict spectral features in new compounds for the moment. This has
worked in previous research for the case of atomization energy, which is already a
well researched topic in the field of machine learning for computational quantum
chemistry. The complex correlations between molecular geometries and absorption
spectra/excited energy levels have not yet produced such successful results. Ma-
chine learning application in computational quantum chemistry is an ongoing field
of research and more relevant studies may be published in the future.
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Appendix 1

A.1 Density Functional Theory calculations in
NWChem

The following input scripts were used in NWChem to initiate DFT calculations.
DFT geometry optimization was performed via NWChem, with the option of tight
convergence:
d f t

xc b3lyp
mult 1
convergence g rad i en t 1e−6

end

d r i v e r
maxiter 200
t i g h t

end

task d f t opt imize

Then, frequency analysis was performed but with the option of more accurate con-
vergence, with a gradient 1e− 8.
d f t

xc b3lyp
mult 1
convergence g rad i en t 1e−8

end

task d f t f r e q
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