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Abstract

Deep learning is a subcategory of machine learning and artificial intelligence.
Instead of using explicit rules to perform a desired task as in standard
algorithmic approaches, machine-learning algorithms autonomously learn
from data to determine the rules for the task at hand. The idea of deep
learning has been around since the 1950s but was for a long time limited by
available computational power and amount of training data. Once overcome
these problems, in recent years, deep learning has made great advances in
solving various problems.
In this thesis, I show how deep learning can be applied in image analysis
and medical diagnosis, while outperforming standard algorithmic methods
and simpler machine-learning methods. I begin with showing that a
convolutional neural network trained with simulated particle images is able
to track experimental single particles, even in poor illumination conditions.
I then show how this inspired the development of an all-in-one software to
design, train and validate deep-learning solutions for digital microscopy, from
particle tracking and characterization in 2D and 3D to the segmentation,
characterization and counting of biological cells and image transformation.
I show that this software package can be further used to develop a
generative adversarial neural network to virtually stain brightfield images of
cells, replacing the traditional chemical staining for a downstream analysis
of biological features. I then move on from applications in microscopy
and image analysis to show the potential of deep learning in medical
diagnosis. I show that dense neural networks perform better than simpler
machine-learning algorithm and the clinical standard in the diagnosis of a
genetic disease and in the prediction of short- and long-term morbidity in
patients with congenital-heart-disease. At last, I have shown that a neural-
network-powered strategy for testing and isolating individuals adapts to the
parameters of a disease outbreak achieves an epidemic containment.
The interdisciplinary nature of the work in this thesis has allowed the
application of new technologies developed in the field of physics to solve
problems in the fields of biology and biomedicine, as well as overcoming
barriers for the continued revolutionization of deep learning in microscopy.

—————
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medical diagnosis
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CHAPTER 1

Introduction

Let’s start with the first day of my PhD. When I sat down with my supervisor
Giovanni Volpe, he said that it is not possible to plan my studies from
beginning to end, but that we would rather decide on a starting point and
see how things would evolve from there. We did just that and I started
my PhD as an experimentalist building a fluorescence microscope in the
lab to study the interplay between swimming bacteria and their complex
environments of passive Brownian microparticles. I even proceeded to extract
the best swimmers from the bacterial strain and genetically engineer them
to exhibit fluorescence. As you might notice, not exactly the topic of this
thesis. Looking back, I am very glad indeed that we did not waste time
trying to plan the coming years because I could not have imagined that I
would end up with a PhD thesis about the application of deep learning in
image analysis and medical diagnosis.

How did this topical shift happen? In order to study the interplay between
the bacteria and the Brownian particles (Figure 1.2a), I had to track both
types of objects. At that point I started having problems. Because of
the low intensity of the fluorescence emission from the bacteria and the
background light from the brightfield imaging of the Brownian particles,
the microscopic images became noisy with an illumination gradient across
images (Figure 1.2b) and changes in light intensity between frames based on
how fluorescent the bacteria were in each frame. All this combined made it
impossible to get a quality tracking using standard algorithmic approaches
(Figure 1.2c). I struggled for a while before we decided to try something new.
The hype of deep learning caught our attention and it didn’t hurt to try that
(Figure 1.2d). Spoiler alert: It worked, and solving previously unsolvable
problems and improving performances compared to standard algorithmic
methods with deep learning became the new passion of my PhD, to the
point that today I don’t even have access to the lab!

Let’s first dig deeper into the topic of deep learning. Deep learning is a
subcategory of machine learning and artificial intelligence, with artificial
intelligence being an umbrella term for algorithms for task automations
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Figure 1.1: The turning point of my PhD. a An example of frame from my
experiments with swimming fluorescence bacteria and passive Brownian particles.
b Zooming in shows how noisy the image is. c Tracking with algorithmic methods
results in multiple false positives in the top part and false negatives in the bottom
part because of the inhomogeneous illumination. d Deep learning algorithms
successfully track the Brownian particles and bacteria.

(Figure 1.2) [1]. The algorithms are either standard approaches that use
explicit rules hardcoded by the user to perform the desired task, or machine-
learning algorithms that autonomously learn from data to determine the
rules for the task at hand. That is, instead of processing the data according
to user-defined rules to find out the answer, the user inputs the data with
the expected answers (supervised learning) to the machine and the machine
is trained to learn the rules for this specific task. These rules can then be
used to find the answers to new data. Therefore, a machine-learning model
learns to transform its input data into more meaningful representations and
the “deep” in deep learning means that successive layers of the model output
increasingly meaningful representations of the input data, the number of
these layers being called the depth of the model.

The most common deep-learning models are artificial neural networks.
Artificial neural networks (ANNs) are inspired by the brain and it’s ability to
learn [2]. The layers in ANNs consist of interconnected artificial neurons that
receive one or more inputs, sum them up and transform this sum by a non-
linear activation function to produce an output. The connections between
neurons in di�erent layers have weights, which are (some of) the parameters
adjusted in the training of the network. The training process is based on
the error backpropagation algorithm [3], where the network first takes in
input data and calculates a predicted output using the current weights of the
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Figure 1.2: Artificial Intelligence (AI) as an umbrella term. AI simply
means making computers act intelligently. Machine learning is a subset of AI,
consisting of techniques that enable the computer to learn from data. Deep
learning is then a subset of machine learning for solving more complex problems.
Image by https://umbrellait.com/.

network. Next, the network compares the predicted output to the ground-
truth answer and calculates an error based on the chosen loss function. The
network then propagates the error backwards through the network and for
each weight calculates if it should be increased or decreased in order to
reduce the error. Finally, the network updates the weights in a way defined
by the chosen optimizer. As the network receives additional training data,
it gradually starts converging to an optimum weight configuration and the
network is able to correctly map input data to their corresponding targets.

The idea of neural networks has been around since the 1950s, however
the limiting factor was an e�cient way to train larger networks. This
changed partly in the 1980s when the error backpropagation algorithm was
rediscover and a neural network called LeNet was successfully used to classify
handwritten digits [4]. However it wasn’t until early 2000s that the increase
in available computational power and training data started the deep learning
revolution. The breakthrough came with a neural network called AlexNet [5]
placing top 5 in the well-known ImageNet challenge, where the task is to
classify images into over 1000 di�erent subcategories (http://image-net.org/
[6]). At the time, the ImageNet dataset contained over one million images
and over 1000 subcategories and today has grown to have over 14 million
images and over 20 thousand subcategories. The success of AlexNet resulted
in the challenge being dominated by neural networks over other machine-
learning techniques ever since and the image classification task considered a
solved problem since 2017 with accuracy surpassing human abilities.
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These first successful networks in computer vision were convolutional neural
networks (CNNs) that take images as input and output a predicted class of
the image [7]. CNNs are built on convolutional layers topped of with a few
relatively small dense layers. Each convolutional layer consists of a series
of 2D filters that scan an image to output a series of feature maps. The
resulting feature maps are then downsampled before being fed to the next
convolutional layer, where larger features can be detected. This is repeated
depending on how deep the CNN is. The final dense layers integrate the
information from the output feature maps before outputting the sought-after
result, in this case the image category. In theory, dense neural networks
(DNNs), consisting of a series of fully connected dense layers, could be used
on their own to process images. However, because each neuron in one layer
is connected to every neuron in the next layer, their size rapidly grows to
computationally unmanageable levels. Therefore, they are often used in
conjunction with convolutional layers or on their own for simpler problems
represented by less complex data.

Going beyond image classification, a new kind of neural network called a U-
Net was developed in 2015 for image segmentation [8]. The network gets
its name from its U-shaped architecture: after a series of convolutional
and downsampling layers that encode the information in the input image
by reducing its dimensionality, a series of deconvolutional and upsampling
layers follow in order to decode the image information. In addition, the
decoding part concatenates information from the encoding part permitting
the network to preserve spatial information to be able to reconstruct a
transformed version of the input image. Using a U-Net in the framework of
Generative Adversarial Networks (GANs) [9] allows it to be used to generate
new data. A GAN combines two networks that compete with each other: A
generator that receives images as input generates images in a di�erent sought-
after style, and a discriminator that tries to discriminate between real images
and images generated by the generator. For image transformation tasks, the
generator is typically a U-Net while the discriminator is a CNN classifying
the images as real or fake.

In the recent years, deep learning has made great advances in solving various
problems. In microscopy, deep learning has improved techniques for particle
tracking [10–13] and characterization [14], depth-of-field extension [15, 16],
image resolution [17, 18], image denoising [19, 20], and to translate the output
of a certain optical device to that of another [21]. Apart from biological and
medical image analysis [22, 23], where deep learning has been used for cell
segmentation, classification and counting [8, 24–26], to classify pathological
tissue samples [27–29] and to virtually stain cellular images [30–36], a vast
amount of clinical, biochemical and administrative data is available to clinical
specialist. Deep learning has utilized this data in healthcare for example for
predictive modelling and aiding in disease diagnosis [37–41].
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After this brief introduction into the history and research topics of neural
networks concerning this thesis, I will present the challenges of using
standard algorithmic methods for di�erent problems and demonstrate how
I solved them in my research by applying various types of neural network
architectures. I found that deep-learning-powered solutions consistently have
an increased performance compared to standard algorithmic methods and
even simpler machine-learning methods. In particular, I show how deep
learning makes novel tasks in image analysis possible and is useful in aiding
in the diagnosis of diseases, the prediction of morbidity risks for patients,
and in the construction of epidemic strategies. The increase in performance
of the solutions presented in this thesis are especially important considering
the relevance of the application fields to the real world, in particular the
usefulness of the solutions in healthcare which has driven many of my projects
that have been done in close collaborations with medical doctors specified
in the field. In the following I will present for each study performed during
my PhD: a short motivation and the aim of the study as well as the main
results found.

1.1 Particle tracking with deep learning

Particle tracking has come a long way since Jean Perrin in 1910 manually
tracked the positions of microscopic colloidal particles in a solution by
projecting their image on a sheet of paper, thereby proving the physical
existence of atoms [42]. Since the introduction of the technique generally
referred to as “digital video microscopy” over 20 years ago [43], particle
tracking has been dominated by algorithmic approaches. In digital video
microscopy, a video of a particle is acquired and then the particle position
in each frame is determined employing computer algorithms. Some of the
most common standard algorithms are based on calculating the centroid
of the particle in a black-and-white thresholded version of the image [43]
or on calculating the radial symmetry center of the particle [44]. These
methods can achieve subpixel resolution when the experimental conditions
are ideal, with a spherically-symmetric particle that remains in the same focal
plane during the experiment and with a constant homogeneous illumination.
However, their performances decrease at low signal-to-noise ratios or under
inhomogeneous illumination. This has led to the development of alternative
deep-learning algorithms for particle tracking [10, 11].

The aim of this work was to develop a fully automated deep-learning
technique that achieves subpixel resolution for a broad range of particle
kinds, especially in poor, unsteady illumination conditions that result in
noisy images. In Paper I [12], I report on a CNN network design trained
with simulated images, that we call DeepTrack, that detects a single particle
in microscopy images. We showed that DeepTrack outperforms standard
methods when tested on simulated images with a range of signal-to-noise
ratios and illumination gradients. We demonstrated this approach on
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optically trapped particle under noisy and unsteady illumination conditions,
where standard algorithmic approaches fail. We then proceeded to show how
DeepTrack can track multiple colloidal particles as well as bacteria. In order
to make DeepTrack readily available for other users, we provided a Python
software package, which can be easily personalized and optimized for specific
applications. These results are presented in section 2.1 and in Paper I [12].

1.2 Digital microscopy with deep learning

The success of DeepTrack and other deep-learning-based image analysis
methods has also shed light on key limiting factors for the future development
and deployment of deep-learning solutions to microscopy, that is the
availability of high-quality training data. In many cases, training data
has needed to be experimentally acquired and manually annotated for each
specific application, limiting the quantity and quality of data available to
train the network [45]. Synthetically generated data bypasses these issues
because the ground truth can be known exactly, and the networks can be
trained with parameters that exactly match each user’s setup.

In Paper II [13], I report on a comprehensive software, DeepTrack 2.0
which greatly expands the functionalities of DeepTrack described in Paper

I [12], to design, train and validate deep-learning solutions for digital
microscopy. DeepTrack 2.0 goes beyond particle tracking towards a whole
new range of quantitative microscopy applications, such as classification,
segmentation, and cell counting. We briefly reviewed the main applications
of deep learning to microscopy, with a special focus on image segmentation,
image enhancement, and particle tracking, and the most frequently employed
neural network architectures. Then, we demonstrated the versatility and
power of deep learning and DeepTrack 2.0 by using it to tackle a variety
of physical and biological quantitative digital microscopy challenges, from
particle localization, tracking and characterization to cell counting and
classification. For many of the tasks, we showed that DeepTrack 2.0 is
capable of training neural networks using purely synthetic training data that
are physically simulated using the nominal experimental settings. For tasks
where it is infeasible to simulate the training set, DeepTrack 2.0 can augment
experimentally-generated images on the fly to expand the available training
set. We provided access to the software through three channels based on the
user’s level of expertise: from a graphical user interface, to scripts that can
be adapted for specific applications, to a low-level set of abstract classes to
implement new functionalities. In addition, we provided various tutorials to
use the software at each level of complexity, including several video tutorials
to guide the user through each step of a deep-learning analysis for microscopy.
These results are also presented in section 2.2 and in Paper II [13].
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1.3 Virtual staining with deep learning

With DeepTrack 2.0 we saw how the adoption of new deep-learning methods
for the analysis of microscopy data is extremely promising. One of the areas
of high interest today is using deep learning to create images of virtually-
stained cell structures, thus bypassing the problems of conventional chemical
staining. Traditionally, the cell structures of interest are chemically stained
using fluorescence staining techniques and imaged with the appropriate light
wavelength. Thanks to this, it is possible to highlight di�erent cell structures
in the same sample, given the appropriate combination of chemical dyes and
light filters. This, however, is also one of the main drawbacks of the chemical
staining: Only one cell structure can be stained with a dye emitting at a
certain light wavelength at the same time as there is a limited number of
light wavelengths and filters in the microscope, thus limiting the number
of cell structures to be observed in the same sample. Other drawbacks
of the chemical staining procedure are: First, adding a chemical dye to
cells is an invasive and even toxic process [46, 47], second, phototoxicity
and photobleaching can occur, resulting in a trade-o� between data quality
and time scales available for imaging of live cells, and third, chemical
staining techniques are time-consuming and labor-intensive. Therefore, it
would be optimal to be able to replace chemically-stained fluorescence
images with other more easily acquirable images. In the recent years,
virtually stained images have been created using various imaging modalities
such as quantitative phase imaging [31, 48], autofluorescence imaging [32],
holographic microscopy [49], and even with brightfield imaging [50–52].

In Paper III [30], I report on a deep-learning based approach to virtually
stain brightfield images. In particular, we trained a conditional GAN (cGAN)
using the DeepTrack 2.0 framework presented in Paper II [13] that receives
as input a stack of brightfield images of human stem-cell-derived adipocytes
and generates virtual fluorescence-stained images of their lipid droplets,
cytoplasm, and nuclei. In order to demonstrate the quality of the virtually
stained images beyond pixel error comparison, we used the images to extract
a series of quantitative biologically-relevant measures in a downstream cell-
profiling analysis [53]. With the lipid droplets having more prominence in
the brightfield images than the cytoplasm, that, in turn, is more clearly
visible than the nuclei, it is not surprising that the performance of the
network follows the same trend. In addition, we showed that the cGAN
is robust and fast-converging in terms of the extracted measures compared
to a U-Net. In order to make this deep-learning-powered approach readily
available for other users, we provided a Python software package, which
can be easily personalized and optimized for specific virtual-staining and
cell-profiling applications. These results are presented in section 2.3 and in
Paper III [30].
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1.4 Virtual genetic diagnosis with deep learning

Deep learning has not only been successful in image-analysis applications,
it has also gained popularity in the field of medical diagnostics to process
clinical and biochemical data [37–39, 41]. However, as deep-learning
algorithms operate as “black boxes”, their diagnoses cannot easily be
interpreted or explained, which is an important aspect of the high-stake task
being medical diagnosis [54]. In order to motivate the use of such black-box
methods, there needs to be a clear advantage of using them over simpler
machine-learning algorithms or other clinical methods.

The aim of the study in Paper IV [40] was to assess the use of machine-
learning algorithms to implement a virtual genetic test for the genetic
disease familial hypercholesterolemia (FH). FH is the most common genetic
disorder of lipid metabolism, characterized by elevated LDL cholesterol levels
resulting in premature cardiovascular diseases [55, 56]. The gold standard for
FH diagnosis is genetic diagnosis, which is expensive, time-consuming, and
only available at specialized lipid clinics and selected university hospitals [57,
58]. Clinical scores, like the Dutch Lipid Score [59, 60], are often employed
as less expensive, but also less accurate, alternatives to genetic diagnosis
[61]. We tested three machine-learning algorithms, namely, a classification
tree (CT), a gradient boosting machine (GBM), and a dense neural network
(DNN), and we showed that all three algorithms outperform the Dutch Lipid
Score (the clinical standard) in detecting known FH genetic mutations. In
addition, we showed that the more complex black-box methods GBM and
DNN perform similarly between each other but had higher performances
compared to the much simpler CT algorithm. These results are presented in
section 2.4 and in Paper IV [40].

1.5 Prediction of morbidity with deep learning

Moving on from the genetic disease FH to congenital heart disease (CHD),
the most common congenital malformation a�ecting almost 1% of all live-
births worldwide [62, 63]. The severity of the condition varies depending on
the congenital malformation specifics and the patients are often grouped into
six groups based on the lesion severity [64, 65], with each group having its
own probability of increased risk of cardiovascular diseases compared with
a general population without CHD. The ability to predict morbidity such
as atrial fibrillation (AF) and mortality can improve the use and timing of
preventive medical treatments as well as the planning of lifetime management.
However, few studies have reported on the long-term predictability of
mortality and AF amongst patients with CHD.

In Paper V, I report on the prediction of short- and long-term mortality and
AF from birth throughout the patients’ lifetime using a DNN. We found that
DNNs can be used to predict mortality and AF in a population of patients

8



with CHD in Sweden. When compared with a simpler logistic regression
model, the DNN showed an overall higher predictive performance over time,
most notably in mortality. When analysing the result for each lesion group,
patients’ birth decade, and patients that had undergone congenital cardiac
interventions, we observed that the two methods have similar trends with the
exception of the consistently higher performance of the DNN. These results
are presented in section 2.5 and in Paper V.

1.6 Epidemic containment strategies with deep learning

Now, this wouldn’t be a true “pandemic”-time thesis if it didn’t include a
Covid-19-related work. In the past year, we have seen the importance of im-
plementing e�cient strategies to contain a disease outbreak. Characteristics
of a disease have to be taken into account in e�orts of containment [66]. How-
ever, these characteristics are often di�cult to measure or model precisely,
especially during first outbreaks of novel diseases [67]. The most e�ective
measure to limit the spread of an infection is in particular the isolation of
potentially infected individuals. However, it is unreasonable to be able to
test a whole population [68, 69]. Machine-learning algorithms, including
neural networks, have, in the last years, been proposed for the management
of infectious diseases [70–73].

In Paper VI [74], I report on a neural-network-informed strategy for the
improvement of epidemic containment. We demonstrated how the DNN
informs on which individuals should be tested and isolated for a disease
outbreak modelled with the susceptible-infectious-recovered (SIR) model [75,
76]. The DNN manages to contain the outbreak more e�ectively than
alternative standard contact-tracing strategies, while simultaneously and
autonomously adapting to the specific characteristics of the outbreak. These
results are presented in section 2.6 and in Paper VI [74].

Outline

This thesis is structured as followed:

Chapter 2 gives a summary of the research conducted during this PhD and
specifies my contributions to each project.

Chapter 3 gives a general conclusion and an outlook into the future of this
area of research.

Chapter 4 compiles all published articles.
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CHAPTER 2

Research results

2.1 Particle tracking with deep learning

When we started the work for Paper I [12] in 2018, there were not many
previous publications about deep-learning algorithms for the tracking of
particles in microscopy images. Instead, the focus was on image classification
and segmentation for object detection [77]. For precise particle localization,
the most notable works were the use of CNNs, either trained on simulated
fluorescence particles to output the probability of each pixel in a simulated or
experimental image belonging to a particle or the background [11], or trained
on synthetic holograms to localize holographic features in experimental
holograms [10].

The problem that inspired the work in Paper I [12] had images with two
kinds of particles, fluorescence bacteria (B. subtilis) and silica microspheres,
which I wanted to track separately and ideally with the same technique
and with minimum image preprocessing (Figure 1.1). In order to do so, we
proposed a deep-learning approach based on a CNN with a DNN top, which
we called DeepTrack (Figure 2.1a). Given an input image, DeepTrack returns
the x and y coordinates of the particle, and the radial distance of the particle
from the center of the image, r, which is used mainly to indicate whether
there is no particle in the image. To have enough images with accurate
ground-truth particle coordinates to train DeepTrack, we simulated particle
images using Bessel functions of di�erent orders. By setting the parameters of
the image generation function, we were able to generate images representing
fluorescence particles, biological vesicles and bacteria, and colloidal particles
at di�erent focal planes, with varying backgrounds, signal-to-noise ratios
(SNRs) and illumination gradients (examples can be seen in the insets in
Figure 2.1b).

First, we tested the performance of DeepTrack on simulated single particle
images of various particle types with a range of SNR values and illumination
gradients by comparing its localization accuracy with the standard centroid
[43] and radial symmetry [44] algorithms (Figure 2.1b). We showed that
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DeepTrack outperforms both standard algorithms over the whole range of
illumination gradients and almost the whole range of SNRs, with the only
exception of near-perfect images where the radial symmetry method achieves
higher accuracy. However, neural networks can have a high variance as they
are trained via a stochastic training algorithm, making them sensitive to the
initial conditions of their weights and the specifics of the training data, which
in turn leads to a di�erent set of final weights each time they are trained and
therefore di�erent predictions. To reduce the variance of neural networks,
multiple models are trained and their predictions combined, a technique
called ensemble learning [78]. By training 100 neural networks with the
DeepTrack architecture and the same data and average their prediction, we
showed that with Deeptrack we are able to outperform both the standard
algorithms over the whole range of images.

We next tested the performance of DeepTrack on experimental images of
an optically trapped particle in ideal and poor illumination conditions, and
again compared to the radial symmetry method (Figure 2.1c). We trained
DeepTrack with simulated images similar to the experimental images, using
the sum of Bessel functions of the first and second order with opposing
intensities to represent the particle (a bright spot with a dark ring), and
varying SNRs and illumination gradients for each image. As expected, both
algorithms were able to track the particle in the ideal conditions. However,
when the conditions become challenging with high level of noise and flickering
of the illumination light, the radial symmetry method was not able to capture
the particle position at all (capturing only white noise and oscillations of the
illumination), while DeepTrack still managed to accurately track the particle
position.

Now that we had demonstrated the performance of DeepTrack for single
particle images, we moved on to multi-particle tracking. Since the architec-
ture of DeepTrack has a fixed output of three values (x, y, and r coordinates
for a single particle) we used a sliding window method where a box of a cer-
tain size (in relation to the particle diameter) is moved over the whole image
with a certain step size. In each window, the neural network makes a predic-
tion. In case there are more than one particles in the window, the network
is trained to detect the most central particle. For an empty window where
no particle is present, the network is trained to return a large radial distance
(r). After DeepTrack has scanned over the whole image, the predictions from
each window are further processed. First, coordinates from empty windows
are discarded by their large radial distance parameter. Second, since the
same particle can be detected in multiple windows (depending on window
size and particle separation), all detections with an inter-distance smaller
than a certain threshold are assigned to the same particle and their centroid
is calculated to determine the particle position. Depending on the purpose
of the tracking and the density of the particles in the image, the detection
accuracy can be increased by decreasing the step size of the sliding window.
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This, however, also becomes more computationally heavy.

At last, we were ready to tackle the problem that inspired the whole work,
the tracking of noisy images of fluorescence bacteria and dense Brownian
particles (Figure 2.1d). We trained two separate networks for each particle
type. We simulated images of multiple particles of both kinds, using a second-
order Bessel function to represent the Brownian particles (a dark ring) and a
first-order elongated Bessel function to represent the bacteria (bright spots).
For the network detecting Brownian particles, the most central particle is
always set to be a Brownian particle, and the other way around for the
network detecting bacteria. In this way, we showed that DeepTrack can
be trained to selectively track either Brownian particles while ignoring the
bacteria or bacteria while ignoring the Brownian particles.�

We further demonstrated the versatility of DeepTrack by tracking particles
at di�erent focal planes (Figure 2.1d). In this case, we trained DeepTrack
with simulated images of multiple particles represented by combinations of
Bessel functions of orders 1-4 (multiple dark rings) and successfully tracked
an experimental video of polystyrene particles di�using above the surface of
a coverslip.

Finally, we benchmarked DeepTrack against a known objective comparison of
particle tracking methods (all were based on standard algorithmic techniques)
[79] (Figure 2.1e). We generated the test images representing fluorescent
biological vesicles for di�erent particle densities and SNRs in the same
way as in the competitions. We trained DeepTrack with simulated images
of multiple particles represented with a first-order Bessel function (bright
spots) with varying SNRs. We showed that DeepTrack outperforms all other
methods for all particle densities and SNRs when comparing the root-mean-
square error (RMSE) for matching points in each frame, as was done in one
part of the competition. We made DeepTrack readily available for other users
by providing a Python software package, including Jupyter Notebooks for
each example in the paper, which can be further personalized and optimized
for specific applications [80].

The results of Paper I [12] clearly show the advances deep-learning methods
have over standard tracking methods, and the advantages of being able to
simulate accurate training data for diverse problems. DeepTrack proved to be
a very accurate and e�cient method for tracking single particles. However,
sliding a window over an image to detect multiple particles becomes very
time consuming for larger sets of data, as it requires the network to be
called numerous times per frame. At the time of the writing of this thesis,
Paper I [12] has been cited over 30 times, and a handful of new methods for
multiple particle tracking have emerged. These include a CNN single-shot

�The work on the interplay of bacteria and Brownian particles is still in progress and a
paper will sooner or later be published
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Figure 2.1: DeepTrack neural-network architecture and performances.

a DeepTrack architecture consists of a convolutional base followed by a dense
top to predict the values of the x, y, and r coordinates of the particle. b Mean
absolute error of the position detection in simulated images as a function of
signal-to-noise ratios and gradient intensity for DeepTrack (orange), standard
algorithms (gray), and average of 100 DeepTrack networks (bordeaux). c

DeepTrack (orange) and standard algorithm (gray) lead to the same results
when tracking and analyzing the trajectory of an optically trapped particle
under optimal illumination conditions but DeepTrack outperforms the standard
algorithm in less-than-optimal illumination conditions. d DeepTrack can be
trained to selectively track fluorescent bacteria or Brownian particles in poor
illumination conditions as well as Brownian particles in di�erent focal planes. e

DeepTrack (orange) outperforms all other methods from an objective comparison
on simulated data [79].
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detector trained on synthetic images for the localization and classification of
multiple microscopic objects in real time [81], a combination of a CNN and
long short-term memory (LSTM) network trained on semi-synthetic images
to detect overlapping traces particles in 3D [82], a multiple output CNN
for the simultaneous detection characterization of nanoparticles [14, 83], and
finally DeepTrack 2.0 (in Paper II [13]) which includes a U-Net trained
on simulated images that transforms multiparticle images into binarized
representations that can then easily be localized with standard methods [13].
Finally, Paper I [12] was highlighted in the end-of-year special issue of Optics
& Photonics News, “Optics in 2019”, for being one of the emerging research
the past year that communicated breakthroughs of particular interest to the
broad optics community [84].

My contributions

Paper I [12] is a result of exceptional teamwork with my colleague Aykut
Argun and supervisor Giovanni Volpe. I contributed to the conceptualization
of the work, the design and development of the neural network, the simulation
of the training images, acquisition of experimental data, analysis of the data,
preparation of the figures and manuscript for publishing, and preparation
of the free Python software package [80]. In particular, I conducted the
simulations for all cases of the experimental particle images (in figures 2,
3 and 4) as well as the training of the network, analysis of its results,
compilation of the corresponding Jupyter Notebooks (available on GitHub
[80]), and figure preparation for the cases of multiple particles (figures 3
and 4). I drafted the original manuscript and was involved in the reviewing
and editing until it was ready for publishing. In addition, I acquired the
experimental data of colloidal particles and fluorescence bacteria used to
demonstrate how DeepTrack can di�erentiate between two types of particles
(in figure 4) using the homemade fluorescence microscope setup I had built
and the bacteria I had engineered.

2.2 Quantitative digital microscopy with deep learning

Deep-learning approaches have greatly improved digital microscopy, because
they potentially o�er automatized, accurate, and fast image analysis.
However, the need for the development of custom deep-learning solutions
for each problem, like we’ve seen from the examples in the previous section
(for Paper I [12]), introduces a steep learning curve and leaves the power
of deep-learning for video microscopy underutilized. In Paper II [13] , we
aimed to provide a solution to this issue in the form of a comprehensive
software, called DeepTrack 2.0, which greatly expands the functionalities of
the original DeepTrack from Paper I [12]. In DeepTrack 2.0, users can
develop, train and validate neural networks for a broad range of tasks, using
purely synthetic data generated within the software itself using physical
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simulations or data augmentation on the fly to expand experimental datasets.
In order to accommodate users with any level of expertise, we have made
DeepTrack 2.0 available as a high-level graphical user interface and as scripts
that can be adapted for specific applications.

In Paper II [13], we first provided a review of the history of quantitative
analysis of microscopy images, from the manual tracking of Jean Perrin in
1910 [Perrin1910MouvementMolecules], to the automation of tracking
in the 1980s [43, 87], and finally to image analysis with deep learning [8,
12]. Next, we gave an overview of the di�erent deep-learning models that
are most commonly employed in microscopy as well as reviewing the key
applications of deep learning in microscopy, namely image segmentation,
image enhancement, and particle tracking. We then proceeded to introduce
DeepTrack 2.0. We described the di�erent channels of access to the software,
that is the graphical user interface, the Jupyter Notebooks, and the main
components that the code for the software is built on and how these
components interact. For the Jupyter Notebooks and the code components,
we also provided several video tutorials [88]. Finally, we moved onto case
studies that exemplify how DeepTrack 2.0 can be used for a broad range of
microscopy applications (Figure 2.2). All these examples are available both
as project files for DeepTrack 2.0 graphical user interface [89] and as Jupyter
Notebooks [88], and they are complemented by video tutorials [88].

We started by showing that we can use DeepTrack 2.0 to employ a DNN
to recognize hand-written digits of the MNIST dataset, which is a relatively
simple yet a classical benchmark for machine learning [85]. We used the data
augmentation of the software to train the network to achieve an accuracy
which is comparable to the best performance using a DNN on the MNIST
digit recognition task (Figure 2.2a). We then implemented in DeepTrack
2.0 the example of a single optically trapped particle in good and poor
illumination conditions from Paper I [12]. The only di�erence was that
that DeepTrack 2.0 allows the generation of the training data using the
properties of the microscope used to capture the data and the properties
of the microscopic particle such that the synthetic data closely matches the
experimental image (Figure 2.2b). In the next example, we used DeepTrack
2.0 to develop a model based on a combination of a CNN and a DNN trained
on synthetic images (based on the experimental conditions) to quantify the
radius and refractive index of particles based on their experimental complex-
valued scattering patterns from an o�-axis holographic microscope [14]. We
showed that we are able to clearly distinguish two particle populations,
closely matching the modal characteristics of the particles (Figure 2.2c).

After these initial examples for analysing single particles, we moved on to
more complex tasks involving the analysis of multiple particles. We began
by demonstrating the tracking of multiple particles in 2D (Figure 2.2d). We
trained a U-Net with synthetic data simulating the appearance of quantum
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Figure 2.2: Case studies that exemplify how DeepTrack 2.0 can be

used for a broad range of microscopy applications. a A dense neural
network (DNN) to classify handwritten digits from the MNIST dataset [85]. b A
convolutional neural network (CNN) to track single particles in brightfield images.
c A convolutional neural network (CNN) to measure the radius and refractive
index of single holographic nanoparticles. d A U-Net to detect quantum dots
in fluorescence images. e A U-Net to track holographic spherical particles in
3D. f A U-Net to count cells in a fluorescence image. g A generative adversarial
neural network (GAN) to create cell images from a semantic mask from the
ssTEM dataset [86].
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dots† to transform the input into a binarized representation of white circles
on a black background that can then easily be tracked using standard
algorithmic methods. Qualitatively, as we did not have a ground truth
for this problem, the model detects all obvious particles, as well as a few
that are hard to verify as real or false observations. We then showed that 2D
multi-particle analysis can be extended to 3D in DeepTrack 2.0 (Figure 2.2e).
Similarly, we used a U-Net to represent each particle as a white sphere
in a black volume, as well as outputting the out-of-plane position of the
particle. Training the network using synthetic data representing holographic
nanoparticles resulted in predictions of the 3D locations of the particles
overlapping almost exactly with the ground truth experimental data using
o�-axis holographic microscope.

Finally, we expanded DeepTrack 2.0 outside of particle analysis to the
analysis of biological cells. We again used a U-Net, but now representing
cells by a Gaussian distribution whose intensity values integrate to one,
making the integral of the output intensity correspond to the number of
cells in the image (Figure 2.2f). The model is trained using synthetic
images of fluorescence cell-like objects and successfully counts the number
of bone tissue cells in fluorescence images within just a few percent. As
a final example, we demonstrated how DeepTrack 2.0 can be used to
generate data (Figure 2.2g). We employed a GAN to create images of
the drosophila melanogaster third instar larva ventral nerve cord from a
semantic representation of background, membrane, and mitochondria from
the anisotropic ssTEM dataset [86]. Since the training data consists of
experimental data, DeepTrack 2.0 was used to preprocess and augment the
training images. The resulting model was able to create new images from
masks it has never seen before. The generated images are qualitatively
similar to the experimental images, although not identical in terms of texture
and appearance, since the masks only contain spatial information about the
cells’ structures.

In Paper II [13], we have shown that DeepTrack 2.0 has the potential
to be an all-in-one framework for deep learning in microscopy. The image
generation pipeline included in DeepTrack 2.0 allows for physically accurate
synthetic training images based on parameters that exactly match each
user’s real experimental conditions, thus bypassing the issues of manually
annotated experimental data alongside its limits of human-level accuracy and
biases. For most applications, DeepTrack 2.0 already includes all necessary
components for simulation of training images and development of neural
network models. However, for the more advanced users, DeepTrack 2.0 is
built to be easily extendable and, in fact, as we envision DeepTrack 2.0 as a
open-source project, we hope and expect users to expand its functionalities
according to their needs. We are now planning to provide tools to integrate

†Data kindly provided by Carlo Manzo
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DeepTrack 2.0 with the popular (especially amongst biologists and medical
researchers) image processing package Fiji [90], making image analysis
with deep learning readily available for people in the fields of biology and
medicine. Since its very recent publication, we have already assisted other
researchers in using DeepTrack 2.0 in their projects, including 3D tracking
and classification of holographic micro planktons, aberration correction in
light-sheet microscopy and 3D super-resolution fluorescence microscopy from
1D time responses. We have also published a summary of the work in Swedish
in Fysikaktuellt, the magazine of the Swedish Physical Society [91].

My contributions

Paper II [13] is a work of art developed mainly by my colleague Benjamin
Midtvedt that I am grateful I got to be a part of. In this work, I wrote the
draft of the review of the history of quantitative microscopy and particle
tracking for the manuscript’s introduction as well as contributed to the
reviewing and editing of the whole manuscript for publication. I contributed
to the development of the software with a series of testing and feedback as
well as making the video tutorials for two of the examples presented [88].
In addition, I proposed the description of the interaction between the main
component objects DeepTrack 2.0 solutions depend on (part III-C and figure
6). Finally, the case study for particle localization is from DeepTrack in
Paper I (part IV-B and figure 8)[12].

2.3 Virtual staining with deep learning

As we have seen in Paper II [13], deep learning, in particular GANs, can be
used to generate never-before-seen images. In microscopy, GANs have been
used to improve the resolution of fluorescence images [18], in image denoising
[20, 34], and to create images of virtually-stained cell structures from images
acquired with various imaging modalities. Examples of virtual stainings
include histologically stained brightfield images generated from quantitative
phase image [31], autofluorescence images [32, 48] and brightfield images [51],
and fluorescently stained images generated from holographic microscopy [49]
as well as brightfield images [50]. Using deep learning to generate virtually
stained images bypasses the significant drawbacks of chemical staining: First,
the need for a fluorescence microscope with the appropriate filters, second,
that only one dye can be imaged at a specific wavelength, third, that chemical
dyes can be toxic to the cells (we have seen preliminary evidence of this in
a follow-up work not included in this thesis), fourth, that phototoxicity and
photobleaching prohibit longer time scales for live-cell imaging, and fifth,
that chemical staining techniques are expensive, time-consuming and labor-
intensive.

In Paper III [30], we proposed a deep-learning-based approach to virtually
stain brightfield cell images demonstrating that we could extract quantitative
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biological information from the virtually stained images, going beyond only
using mean absolute error (MAE) for the quantitative comparison with the
ground-truth chemically-stained images (Figure 2.3a shows an overview of
the study). In particular, we developed a conditional GAN (cGAN) using the
DeepTrack 2.0 framework from Paper II [13] to receive a stack of brightfield
images of an adipocyte cell culture at di�erent z-positions and generate
virtually-stained fluorescence images of the cells’ lipid droplets, cytoplasm,
and nuclei. The conditional aspect of the cGAN refers to the fact that the
task of the discriminator is conditioned on the brightfield images, i.e., instead
of answering “is this a real staining?”, the discriminator answers “is this a
real staining for this stack of brightfield images?”

The cell culture was imaged at three magnifications (20◊, 40◊ and 60◊)
and we trained one cGAN for each of the datasets. Qualitatively, the
networks were able to generate realistic virtually-stained fluorescence images
of lipid droplets, cytoplasm and nuclei for all magnifications (Figure 2.3
shows an example for 60◊ magnification). The lipid droplets were virtually
stained with great detail, as would be expected since lipids have a higher
refractive index than most other intracellular objects [92], making them
clearly visible in the brightfield images. The cytoplasm also has quite
good contrast in the brightfield images, resulting in high-quality virtual
staining. The cGAN also managed to identify the nuclei, even though it
seems to extract information about their shape based on the surrounding
cell structures. This is evident from the fact that the cGAN often missed
nuclei that are not surrounded by lipids and is not able to resolve the
details of their internal structure. This is not surprising since the nuclei
have a very similar refractive index to the surrounding cytoplasm [93]
and sometimes seemed partly hidden behind the lipid droplets. For the
quantitative analysis, we compared both the normalized mean absolute
error (nMAE), structural similarity index measure (SSIM), and the peak
signal-to-noise ratio (PSNR), and the extracted biologically-relevant features
from a downstream cell-profiling analysis, between the target fluorescence
images and the virtually-stained fluorescence images. We used a custom-
made feature-extraction pipeline (available in [94]) in the open-source image
analysis software CellProfiler (https://cellprofiler.org, version 4.07 [53]) to
calculate the number of cell structures in each image, their mean area in
pixels, their integrated intensity, their mean intensity, and the standard
deviation of their mean intensity. We have demonstrated that there is a high
correlation between all metrics obtained with the target fluorescence images
and the virtually-stained fluorescence images, indicating that any deviation
between the images is systematic and consistent, which is highly relevant for
biological experiments where the comparison between di�erent samples is
often more important than absolute values. We also showed that the cGAN
is robust and fast-converging in terms of the extracted measures compared
to a U-Net previously used for virtual staining [50], with a marginal increase
in quantitative performance after only a short training.
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Figure 2.3: a From cell cultures to quantitative biological information.

The generative adversarial neural network (cGAN) replaces the chemical-staining
and fluorescence microscopy (multiple channels) by using brightfield images to
generate virtual fluorescence-stained images. b Visualization of virtually-stained
fluorescence images. A brightfield image and corresponding merged virtually-
stained and chemically-stained fluorescence images for lipid droplets, cytoplasm
and nuclei and their individual enlarged crops (green, red and blue, respectively).
The chemical staining of lipid droplets and cytoplasm is accurately predicted by
the virtual staining, even reproducing some detailed inner structures (indicated
by the arrows). The virtually-stained nuclei deviate more prominently from the
chemically-stained ones, especially in the details of both their shape and texture.
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Virtual staining techniques have the ability to be a more robust than the
conventional chemical staining techniques. They are less labor-intensive and
independent of carefully optimized staining procedures, making possible the
comparison of stained images across experiments and labs. As always, we
made this deep-learning-powered approach readily available for other users
by providing a Python software package, which can be easily personalized
and optimized for specific virtual-staining and cell-profiling applications [94].
We are now using the same network for two di�erent datasets in follow-up
works that are not included in this thesis (cell viability in human endothelial
cells and fat reduction in human hepatocytes) and we have helped researchers
outside our group getting it working on their dataset.

My contributions

The work for Paper III [30] started with The Adipocyte Cell Imaging
Challenge, a two week intense challenge organized by AI Sweden and
AstraZeneca, and was ready for submission in less than two months. Paper

III [30] is thus another great example of teamwork where my colleagues Jesús
Pineda and Benjamin Midtvedt and I worked day and night to be able to
submit the manuscript before Christmas (making it on Arxiv December 25,
2020), hence the shared first authorship. The idea for this work was inspired
by the challenge and the data was provided by one of the challenge organiser
and our collaborator Alan Sabirsh from AstraZeneca. I contributed to the
conceptualization of the solution we developed for the challenge. The neural
network we used is based on DeepTrack 2.0 from Paper II [13] and was
optimized for this dataset by Benjamin and Jesús, who were also in charge
of the training of the network. I was in charge of the evaluation and analysis
of the network output that was based on the comparison to the ground truth
images, using both the pixel measures and the downstream cell-profiling
analysis. I contributed to the preparation of the manuscript and the figures
(especially figures 2, 3 and 4) and the corresponding text in the manuscript.
The biological relevance of the work was provided by our close collaborators
Caroline B. Adiels from our neighboring research group at the department
of physics and Stefano Romeo from Sahlgrenska Academy at the University
of Gothenburg.

2.4 Virtual genetic diagnosis with deep learning

Even though deep learning is more flexible than other machine-learning
approaches, deep neural networks generally require larger sets of training
data, as a consequence of their depth and large number of trainable
parameters. Given the increase in available data in biomedical fields, it
is not surprising that more studies using deep learning for medical diagnosis
are emerging [37]. One of the main limitations for the adaptation of deep-
learning solutions in biomedicine is the need for model interpretability,
because understanding the model’s predictions is often just as important as
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achieving accurate results. In a high-stakes task such as medical diagnosis,
simpler transparent machine-learning approach could thus be preferred over
a more complex deep-learning algorithm [54]. When it comes to familial
hypercholesterolemia (FH), machine learning has been used to screen a
general population using number of features from electronic health records
[95], and in order to aid physicians in selecting people that have increased
LDL cholesterol from a general population for genetic testing [96].

In Paper IV [40], we used three machine-learning algorithms (CT, GBM
and DNN) to predict the presence of FH-causative genetic mutations in
patients from lipid clinics in Gothenburg, Sweden, and in Milan, Italy. We
trained all the algorithms using the subjects’ LDL and HDL cholesterol levels,
triglyceride levels, and age, which are all clinically relevant traits measured
in every lipid clinic, as input variables. 70% of the Gothenburg dataset was
used for training and the algorithms were tested internally on the remaining
30% of the Gothenburg dataset and externally on the Milan dataset. As
machine-learning algorithms are prone to variance in their training [78]
and both the Gothenburg and Milan datasets were relatively small (N=248
and N=364, respectively), in order to make the results more reliable, we
trained each algorithm 100 times (with random splits of the Gothenburg
dataset), resulting in 100 classifiers for each machine-learning algorithm.
We evaluated the algorithms’ performances by calculating their area under
the receiver operating characteristic (AUROC) curves and showed that all
machine-learning algorithms performed better than the Dutch Lipid Score,
which is the commonly employed clinical alternative to the gold standard
genetic testing, taking into account patient’s clinical and family history, their
LDL cholesterol, and physical examination. This is interesting considering
that while FH is a genetic disease, the machine learning only use personal
information, not depending on family history awareness. Furthermore,
we showed that there is a trade-o� between having a transparent and
interpretable algorithm and higher performance as the black-box models
GBM and DNN performed better than the simpler CT. An overview of the
study is shown in Figure 2.4.

The main limitation of the work in Paper IV [40] is the low number of
subjects in the datasets. After the publication, we have gotten access to
additional data from the lipid clinic in Milan and, with some tweaks to the
DNN, I have managed to further increase its performance when training
using the Gothenburg dataset and testing externally on the Milan dataset
and vise versa. We also speculate that the performances of the scalable
DNN and GBM would increase with the addition of other clinically relevant
biochemical features as input variables. Finally, we have found that there
is a great interest among specialists in an alternative tool for the aid of
FH diagnosis. I have therefore built a prototype application using the DNN
algorithm developed in Paper IV [40]. By determining certain cut-o� points
with a specific sensitivity and specificity, the application can be used to
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Figure 2.4: Virtual genetic diagnosis. All three machine-learning algorithms
(classification tree (CT), gradient boosting machine (GBM), and neural network
(NN)) performed better than the clinical Dutch Lipid Score in predicting carriers
of FH-causative mutations in two independent FH cohorts (from Gothenburg
and Milan)

decide if a genetic test for determining if the patient has FH is necessary.
The application can with certainty predict the patients that definitely have
or do not have FH, thus reducing the amount of genetic tests performed. At
the time of the writing of this thesis, we are preparing a trial to use this
application in Gothenburg. We have also published a summary of the work
in Swedish in Fysikaktuellt, the magazine of the Swedish Physical Society
[97].

My contributions

Paper IV [40] is the result of interdisciplinary and international collabora-
tion. I developed the neural network and analysed its results. I drafted the
manuscript and contributed to the preparation of the figures and the final
manuscript. The two other machine-learning algorithms were developed by
Ana Pina from Nova University of Lisbon. Before I became a part of the
project, it had already been decided that Ana would have first authorship,
however, as I came in and continued to drive the project we agreed to share
the first authorship. The data was gathered by Rosellina M. Mancina from
Sahlgrenska Academy at the University of Gothenburg, Carlo Pirazzi from
Sahlgrenska University Hospital, and Chiara Pavanello from the University
of Milan.
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2.5 Prediction of morbidity with deep learning

Managing diseases after they have been diagnosed is just as important as
the diagnosis itself. In disease diagnosis and prognosis, machine learning
and deep learning has been used to analyse clinical and biochemical data
[37]. Congenital heart disease (CHD) is the most common congenital
malformation, a�ecting almost 1% of all live-births and often leading to
lifelong medical conditions [62, 63]. The severity of CHD varies depending on
the congenital malfunction, with patients often being grouped into six lesion
groups based on the lesion severity, and along with the varying severity comes
the increased risk of cardiovascular diseases and reduced life expectancy [98–
100]. Prediction of morbidity (such as mortality and atrial fibrillation (AF))
is important as it can influence how and when to use preventive medical
treatments. In a previous work, multiple deep learning algorithms were
used to analyse complex data from an adult population including clinical
and demographic data, ECG parameters, exercise, and selected laboratory
markers to categorize diagnostic group, disease complexity, estimate its
prognosis and guide the patient therapy [101]. However, such data may
not be routinely available for the regular clinician.

In Paper V, we proposed a DNN (Figure 2.5a), trained on few easily
obtainable variables from administrative data available in medical records, to
predict short- and long-term (1-, 3-, 5-, 10-, 20-, and 30-year) mortality and
AF from birth in a total of 71,941 CHD patients born between 1970 and 2017
from a nationwide population obtained from the Swedish National Patient
Register. We further used a logistic regression (LR) based on the same data
as a baseline comparison. The input variables used to predict mortality of
CHD patients included the age of onset of the common comorbidities AF,
heart failure, hypertension, diabetes, myocardial infarction, as well as the
age of congenital cardiac intervention, the patients’ age, decade of birth,
sex, and lesion group. To predict the development of AF, we used the
same input variables only excluding information about AF. To account for
patient development, a cross-section over each patient’s lifetime (until AF
event for the case of predicting AF) was constructed, expanding the dataset
to 1,214,121 data points for the prediction of mortality and 1,205,180 data
points for the prediction of AF. For each case of 1-, 3-, 5-, 10-, 20-, and
30-year predictions for mortality on one hand and AF on the other, 10
DNNs were trained with random splitting of the datasets into training (70%)
and testing (30%) sets. The performance of each of the DNNs and their
average was evaluated using AUROC curves similarly to Paper IV [40].
Overall, the DNNs were successful in predicting the mortality and AF among
CHD patients with an average performance higher than LR from the first
to the last year (examples are shown in Figure 2.5b). We also broke down
the performance dependencies on the patients’ lesion group, birth decade
and surgical intervention, and we showed that even though the average
performance of the DNNs is stable and independent of the specific input
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Figure 2.5: Prediction of atrial fibrillation and mortality among

patients with congenital heart disease using. a The neural network
uses easily attainable patient variables to predict b the short- and long-term
mortality and atrial fibrillation more accurately than a simpler logistic regression
model.

variables there is a higher variance in the models’ output for more complex
lesion groups especially. In comparison, the average performance of the LR
models is lower with a higher internal variance in general.

In contrast to Paper IV [40], here we had a large nationwide dataset,
including also patient development from birth which is especially important
as the highest relative mortality occurs during the first five years of a patient’s
lifetime [102]. As in Paper IV [40], we also supported the predictions of
a black-box model with a more simple, albeit less stable, machine-learning
model. We have again prioritised using few, easily-attainable input variables,
however, it could also be promising to combine the administrative data
used here with clinical and socio-economical data, to further increase the
usefulness of deep learning in this complex, heterogeneous, and vulnerable
patient group.
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My contributions

The work for Paper V was done in collaboration with Kok Wai Giang,
Mikael Dellborg and Zacharias Mandalenakis from Sahlgrenska Academy at
the University of Gothenburg and Sahlgrenska University Hospital (Östra
sjukhuset). I preprocessed and constructed a cross-section of the data,
developed the neural network and logistic regression used to analyse the
data, prepared all the figures, wrote the methodology of the manuscript, and
contributed to reviewing and editing of the manuscript. My collaborators
gathered the data, put the results in medical context, and contributed to
preparing the manuscript, resulting in a shared first authorship.

2.6 Epidemic containment strategies with deep learning

In addition to aiding in disease diagnosis and prognosis, deep-learning
approaches can be used for infectious disease management [70, 103, 104].
Containment of disease outbreaks are of specific interests in the current times
and neural networks have already been suggested as potential candidates for
the detection and prediction of Covid-19 [71–73, 105]. Di�erent containment
strategies taking di�erent constrains into account have been employed around
the world in the past year. As is is not feasible to test all individuals of a
population and only isolate the infectious ones [69, 106, 107], measures, such
as partial or complete lockdown of a society, a�ecting also healthy individuals
are taken. In order to minimize the societal and economic costs of such
measures, it is important to identify an optimized test strategy.

In Paper VI [74], we proposed a neural-network-powered strategy based
on DNNs for testing and isolating individuals that adapts to the parameters
of a disease outbreak. We first modeled an epidemic outbreak using an
agent-based SIR model (Figure 2.6a) [108, 109], where individuals move
as random walkers on a square lattice. Individuals were characterized by
their “temperature” (Figure 2.6b) and at the beginning of the simulation
a number of individuals were randomly made infectious (I) and the rest
are susceptible (S). As the disease outbreak evolves, susceptible individuals
that get into contact with infectious ones can get infected, and, with time,
infected individuals recover (R). We then demonstrated that our neural-
network-informed strategy, taking in information about individuals’ number
of infectious and total contacts and the number of individuals that have
tested positive within a certain radius, achieves an epidemic containment
similar to the unrealistic total lockdown policy, while performing the same
number of tests, only isolating 25% of the population and with a much lower
number of total infected individuals compared to the standard contact tracing
strategy [106, 107, 110, 111] (6-14% to 30-89%, respectively (Figure 2.6c).
The same was true when we considered the case when immunity against the
disease is not permanent, that is when recovered individuals can become
susceptible again (SIRS model) [112–114]. In addition, we showed that the
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Figure 2.6: SIR model and containment strategies. a Each individual is
either susceptible (S, grey), infectious (I, orange), or recovered (R, black). b

Individuals are characterized by their “temperature”. c The neural network’s
input consists of contact-tracing information for a given individual n for the
last 10 time steps. The network outputs a value p between 0 (healthy) and 1
(infectious), representing the risk of being infectious at the current time step.
d Disease evolution when testing and isolation strategy is determined based
on the output from a neural network compared to standard contact-tracing
strategy is shown as snapshots at time steps. The two limiting cases of free
evolution (dotted orange line) and full lockdown (dashed orange line) are shown
for comparison.
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neural network automatically and dynamically adapts itself to the underlying
characteristics of the outbreak as well as its evolution patterns by taking
into account the e�ects of the containment measures that have been taken.
The network could thus be used on more complex epidemiological models
including for example the disease incubation time [67], delays in the testing
process [107], and di�erent individual movement patterns [115]. Additional
input variables such as demographic information, such as age, employment
and pre-existing conditions could also be used to potentially increase the
network performance.

My contributions

Paper VI [74] is a beautiful work done mostly by my colleague Laura
Natali. In this work I used the experience I had gained to assist Laura
in the development of the neural network and the analysis of its results. I
also contributed to the reviewing and editing of the manuscript.
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CHAPTER 3

Conclusions and outlook

The idea of deep learning has been around since the 1950s [1]. However,
until recently, it was limited by available computational power and amount
of training data. The deep-learning revolution started with neural networks
dominating in image classification challenges [6], and with the development
of the U-net [8], introducing a wave of novel methods for image analysis and
image transformation, outperforming standard methods in all disciplines.

In the beginning of my studies, I stumbled upon a problem when analyzing
experimental microscopy data that I solved by developing a convolutional
neural network (CNN) trained with simulated particle images to track
di�erent kinds of experimental single particle images (DeepTrack in Paper

I [12]). This shifted the focus of my research and the work in Paper I

[12] inspired the development of an all-in-one software to design, train and
validate deep-learning solutions for digital microscopy (DeepTrack 2.0 in
Paper II [13]). One of these solutions is a virtual fluorescence staining of
brightfield images using a conditional generative adversarial network (cGAN)
that can replace a chemical staining of intracellular structures of human
adipocyte cells, where the cGAN is very robust and fast-converging in terms
of biologically-relevant features extracted from the stained images (Paper

III [30]). Besides deep-learning applications in microscopy and image
analysis, it also has potential in medical diagnosis. This is evident in dense
neural networks (DNNs) performing better than simpler machine-learning
algorithm and the clinical standard in the diagnosis of a genetic disease
(Paper IV [40]) and in the prediction of short- and long-term morbidity in
patients with congenital-heart-disease (Paper V). At last, a neural-network-
powered strategy for testing and isolating individuals is able to adapt to the
parameters of a disease outbreak achieving an epidemic containment similar
to the unrealistic total lockdown policy (Paper VI [74]).

I have shown that a data-driven neural-network approach, that we call
DeepTrack, enhances digital video microscopy going beyond the state
of the art available through standard algorithmic approaches to particle
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tracking (Paper I [12]). DeepTrack can be trained with simulated
images closely resembling a variety of experimentally relevant images and
outperforms traditional algorithms, especially when image conditions become
non-ideal due to low or non-uniform illumination, allowing the tracking
of particles from videos acquired in conditions currently not trackable
with alternative methods. I have then shown that DeepTrack can be
expanded to a comprehensive software environment for the development
of neural-network models for quantitative digital microscopy, from the
generation of training datasets to the deployment of personalized deep-
learning solutions (DeepTrack 2.0 in Paper II). With DeepTrack 2.0 it is
possible to train neural networks that perform a broad range of tasks, from
tracking and characterization of particles in 2D and 3D to cell segmentation,
characterization and counting, either using purely simulated training data or
by augmenting images on the fly to expand the available training set.

I have also shown that a cGAN developed with DeepTrack 2.0 can virtually
stain brightfield images of human adipocytes to generate fluorescence images
of the cells’ lipid droplets, cytoplasm and nuclei, that can subsequently be
used for quantitative analysis of the intracellular structures in terms of their
size, morphology and content (Paper III [30]). The adversarial aspect of the
cGAN makes it fast convergent compared to using a U-Net only minimizing
the pixel loss. The resulting excellent style transfer and the conditionality
of the cGAN becomes evident in the accurate extraction of biologically-
relevant features from the reconstructed images. The proposed approach
is not limited to the imaging modality, type of staining, the cellular culture,
or the structures quantified in Paper III [30], but can be applied to virtually
stain and quantify any cellular and intracellular objects with unique optical
characteristics. In addition, using virtual staining liberates the fluorescence
channels in the microscope so that additional information, that perhaps is
not optically visible, can be obtained using chemical staining.

An important aspect of Papers I-III [12, 13, 30] is that the corresponding
code is available as a open-source Python software package on Github. There
the hope is that other researchers personalize and optimize the code for
their specific applications. It is especially encouraged that people contribute
objects and models in their area of expertise in order to continuously
build DeepTrack 2.0 as an open-source software package to revolutionize
microscopy with deep learning. This along with DeepTrack’s graphical user
interface and addition to ImageJ will hopefully allow users from all fields
and minimal programming experience to take advantage of deep learning in
their research. In my experience, I have seen that the availability of quality
representative data (experimental or simulated) is the single most important
factor for successful deep-learning solutions. Increased availability of physical
simulations of in-sample structures (especially biological specimens) and
optical setups plays a crucial role for the expansion of deep learning in
microscopy. In Papers I-II [12, 13] I had the luxury that the experimental
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data to be analysed were easily simulated, creating enough training data
with accurate ground truth information. The dataset for the virtual staining
in Paper III [30] was, while complex in its nature, also of high quality.
However, when applying the cGAN on other datasets, I have seen the
importance of the number of uncorrelated images in the dataset, the number
of cells in each image, and the consistency of the ground truth chemical
staining.

Machine learning and deep learning can also be used to aid in medical
diagnosis. I have shown that machine-learning algorithms (namely, a
classification tree (CT), a gradient boosting machine (GBM) and a dense
neural network (DNN)), using only a few clinically relevant parameters,
outperform the clinical standard in detecting carriers of gene mutations in
patients from two independent familial hypercholesterolemia (FH) cohorts
from Gothenburg and Milan (Paper IV [40]). The more complex models,
DNN and GBM, performed better than the simpler CT. This is an
especially important insight when it comes to medical diagnosis, creating
a trade-o� between higher performance of so-called “black-box” models and
interpretability of transparent models. The machine-learning algorithms only
make use of personal information (age and the widely assessed lipoprotein
profile), not depending on family history and physical examination like in
the clinical score. It is highly likely that the performance of the algorithms
would increase with a higher number of patients in the training cohort and
using additional relevant biochemical features. These features and numerous
patients were not included in the datasets in Paper IV [40] because of the
problem of missing data, which could be improved with new and reliable
ways of training neural networks in the presence of missing data.

I have also shown that deep learning, in particular a DNN can be used
to predict short- and long-term mortality and atrial fibrillation in people
with congenital heart disease (CHD) on a nationwide scale using data that
are easily obtainable by clinicians, outperforming in most cases the more
traditional logistic regression (Paper V). A reliable prediction of morbidity
is important to focus preventive action and treatments for CHD patients,
whether it is to not intervene too early or too late. While administrative
data like the data used in Paper V are easily attainable, a combination of
administrative, clinical, and even socio-economical data could be promising
for future use in DNNs in this complex, heterogeneous, and vulnerable patient
group. Finally, I have shown that a neural-network-informed strategy is
able to improve the containment of an epidemic (Paper VI [74]). The
neural network improves the performance of contact tracing (to the level
of the unrealistic a total lockdown) while performing the same number of
tests and isolating the same fraction of the population. The neural network
autonomously tunes its weights to the ongoing outbreak without needing to
know the disease outbreak parameters and, since it is regularly retrained as
new data become available, it will automatically adapt itself to the evolution
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of the outbreak. As always, there is a possibility for improvement in the
performance of the network, by providing it, for example, demographic and
spatial information of the individuals.

Throughout my PhD studies, my research has been interdisciplinary in
nature and has allowed me to apply new technologies developed in the field
of physics to solve problems in the fields of biology and biomedicine. This
kind of transfer of technology is something that I believe to be critical for
the advancement of science in general. In order to lower the barrier for the
uptake of new technologies in other fields it is important to work closely with
the potential users to understand the challenges they face, something I feel
like I have been lucky enough to do when collaborating with medical doctors
and clinical specialists.
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CHAPTER 4

Compilation of papers

4.1 Paper I: Digital video microscopy enhanced by deep
learning

Attached is the full paper as published in Optica as well as its accompanying
Supplementary Material that provides more details on the neural network
architecture, training and inference, the training image generation, the
experimental setups and bacteria preparation, the standard algorithms, the
analysis methods, and the performance of DeepTrack for small close particles
and the description of the codes provided.
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4.2 Paper II: Quantitative digital microscopy with deep
learning

Attached is the full paper as published in Applied Physics Reviews.
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4.3 Paper III: Extracting quantitative biological information
from brightfield cell images using deep learning

Attached is the preprint version of the paper as found on arXiv and its
accompanying Supplementary material that provides more details on the
results for 40◊ and 20◊ magnifications.
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4.4 Paper IV: Virtual genetic diagnosis for familial
hypercholesterolemia powered by machine learning

Attached is the full paper as published in the European Journal of Preventive
Cardiology as well as its accompanying Supplementary material that provides
more details on the study cohorts, the calculation of the clinical score, the
preprocessing of the data, and the machine learning algorithms and their
training, testing and evaluation.
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4.5 Paper V: Enhanced prediction of atrial fibrillation and
mortality among patients with congenital heart disease
using big data and deep learning

Attached is the full manuscript that is under review in the European Heart
Journal – Digital Health as well as its accompanying Supplementary material
that provides more details on the data preprocessing, the neural network
training, testing and evaluation, the congenital heart disease lesion groups
and baseline characteristics of the patients, and the full breakdown of the
results.
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4.6 Paper VI: Improving epidemic testing and containment
strategies using machine learning

Attached is the full manuscript accepted for publication Machine Learning:
Science and Technology as well as its accompanying Supplementary Material
that provides more details on the motivation for the parameters of the SIR
model employed, the quality of the neural network as a binary classification
problem, and three additional examples of testing strategies alternative to
the standard contact-tracing strategy.
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