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Abstract
In this thesis we aim to provide a fully data driven approach for modelling financial

derivatives, exclusively using deep learning. In order for a derivatives model to be plausible,
it should adhere to the principle of no-arbitrage which has profound consequences on both
pricing and risk management. As a consequence of the Black-Scholes model in Black &
Scholes (1973), arbitrage theory was born. Arbitrage theory provides the necessary and
sufficient formal conditions for a model to be free of arbitrage and the two most important
results are the first and second fundamental theorems of arbitrage. Intuitively, under so called
market completeness, the current price of any derivative/contingent claim in the model must
reflect all available information and the price is unique, irrespective of risk-preferences. In
order to arrive at an explicit arbitrage free price of any contingent claim, a choice must be
made in order to simulate the distribution of the asset in the future. Traditionally this is
achieved by the theory of random processes and martingales. However, the choice of random
process introduces a type of model risk.

In Buehler et al. (2019), a formal theory was provided under which hedging and con-
secutively pricing can be achieved irrespective of choice of model through deep learning.
However, the challenge of choosing the right random process still remains. Recent develop-
ments in the area of generative modelling and in particular the successful implementation
of generative adversarial networks (GAN) in Goodfellow et al. (2014) may provide a so-
lution. Intuitively speaking, a GAN is a game theoretic learning based model in which
two components, called the generator and discriminator, competes. The objective being to
approximate the distribution of a given random variable.

The objective of this thesis is to extend the deep hedging algorithm in Buehler et al. (2019)
with a generative adversarial network. In particular we use the TimeGAN model developed
by Yoon et al. (2019). We illustrate model performance in a simulation environment using
geometric Brownian motion and Black-Scholes prices of options. Thus, the objective our
model is to approximate the theoretically optimal hedge using only sample paths of the
trained generator. Our results indicates that this objective is achieved, however in order to
generalise to real market data, some tweaks to the algorithm should be considered.
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Commonly used Mathematical Symbols

• Ω: Sample space. Non empty set on which random variables map into real numbers.

• T : Time index set. Defines a sequence, countable or uncountable depending on the count-
ability of T .

• F : σ-algebra. Defines which events that are measurable.

• F: Filtration of σ-algebras. Constitutes a sequence of σ−algebras and can intuitively be
thought of as the information available at each t ∈ T .

• P: Probability measure. Assigns the probability of a measurable event, i.e. a element of a
σ-algebra. In the context of financial modelling, often referred to as the physical/real-world
measure.

• Q: Equivalent martingale measure/pricing measure. Probability measure that shares the
same null sets as P. Used in the context of pricing derivatives.

• Random process: A function on the set Ω× T which is a random variable for each t ∈ T .

• W . Brownian motion. Specific type of random process that. Can be thought of as repre-
senting random noise.

• S: Market prices of underlying assets. A random process describing how asset prices in a
market of d+ 1 for d ≥ 0 assets evolves over time.

• T : Maturity of a specific derivative (depending on use case). t ≤ T ∈ T .

• X: Payoff/cash-flow of a given derivative on S1. Can be thought of as a generalization of
a call option.

• H: Portfolio process. Trading strategy on S describing how many units to hold in each
asset.

• V : Portfolio value process. The wealth of the portfolio H, sometimes for clarity denoted
V H .

• Self-financing portfolio. A portfolio is self-financing if one does not consume or add capital
beyond initial capital.

• (H · S)T : Stochastic integral. Gains of the trading strategy H up until time T ∈ T .

• V0: The amount of funding required for a trading strategy (wealth at time t = 0).

• Π: The arbitrage free price of a derivative with payoff X.

• Π0: Current market price of a derivative with payoff X at maturity. All current information
is embedded in price.

• G,D: Generator and Discriminator respectively. The essential components of a generative
adversarial network.

• θ. Parameter vector. Usage depends on context. θ ∈ Θ where Θ is referred to as parameter
space.
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1 Introduction

Risk management and pricing for portfolios of derivative contracts is of great importance to
academics and practitioners alike. The global derivatives market is very complex and can have
great societal impact, as seen in the 2008 financial crisis. New developments in technology has
enabled new numerical methods for addressing both pricing and risk management. In particular
the practical application of deep learning methods, which is a class of statistical algorithms with
computational procedures similar to biological neural networks, like our brain. In Buehler et al.
(2019) deep learning was successfully applied to hedging and pricing of simple derivatives. In
order for the model to be complete and risk management to be realistic, many researchers agree
that simulation should also be conducted by deep learning. Many solutions has been proposed,
see e.g. Kondratyev & Schwarz (2019), Wiese et al. (2020) and Buehler et al. (2020), all of which
use so called neural samplers for simulation. To our knowledge, no papers has been published
on how to combine neural samplers with the deep hedging algorithm in Buehler et al. (2019)
and its effect on hedging and pricing. Given the impressive performance and utility of the deep
hedging model, this is in our view, likely to be of fundamental importance in the general area of
derivative modelling in the future.

In this thesis we aim to shed some light on the combination of neural samplers with the deep
hedging algorithm, by combining a special type of neural sampler with the deep hedging model.
In order for a more precise understanding of our proposed model, further context is required.

Financial derivatives are contracts in a financial market that specifies an exchange of cash-flows
between the holder and the seller according to some agreed upon scheme. A subclass of financial
derivatives is that of (simple) contingent claims which are contracts where the payoff is specified
at a single point in time. One of the more liquidly traded examples of a contingent claim is that
of a European option. A European option is a bilateral agreement between two counter-parties
to bestow the owner of the contract with the right to purchase/sell an underlying asset at a
pre-specied time and price, called the maturity and strike respectively. As earlier mentioned, a
large part of financial mathematics research is devoted to the pricing and risk management for
portfolios of contingent claims. In arbitrage theory, the concept of arbitrage dictates the condi-
tions for suitable derivative pricing models. Economically, no arbitrage means that no risk-free
profits can be made above the risk-free rate. Arguably the most fundamental insight of the fa-
mous Black-Scholes in Black & Scholes (1973) was that the concept of hedging and arbitrage free
pricing are actually equivalent. If one can trade in all risks dictating the payoff of a claim, the
arbitrage free price of said claim is proportional to the funding required for a trading strategy to
achieve the same payoff. This portfolio H is called a hedging/replication strategy and is unique.
Using arbitrage theory, it is then easily shown that the price of the claim is also given by its
discounted expected payoff at maturity, which is known as the general pricing formula for simple
contingent claims.

However, suppose that not all risks are tradeable. Then the arbitrage free price of the claim
is no longer uniquely given since a claim may exhibit intrinsic risk affecting its payoff at matu-
rity. Hence, the concept of hedging/pricing is reduced from risk elimination to risk minimization.
A market in which not all risks are liquidly traded is more generally referred to as an incom-
plete market and its implications on hedging and pricing has been studied for a long time, see
e.g. Föllmer & Schweizer (1991), Schweizer (1995) and Föllmer & Leukert (1999). In Schweizer
(1995), the hedging problem is characterised as a minimization over the profit-loss of a hedged
position in the claim.
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Combining the universal approximation results in Hornik (1991) and the empirical successes
of artificial neural networks (ANN), the deep hedging framework was developed. In essence,
the deep hedging framework can be seen as a theoretical justification for the implementation
of ANN´s to hedging in incomplete markets. In Buehler et al. (2019) they reduce the infinite
dimensional problem of finding optimal hedging strategies, to a finite dimensional problem of
finding optimal parameters for a neural network. Intuitively, the procedure can be described
as predicting the hedging strategies such that the risk of the error in the hedged position is
minimized.

Given the intuition presented above, it becomes apparent that a reasonable derivative pricing
system should to be able to simulate the distribution of asset prices on which the hedging strate-
gies are formed. Traditionally, this is achieved by specifying random processes which dictates
how asset prices are allowed to evolve in the future. Furthermore, the deep hedging framework
provides a formal theory in which optimal hedging strategies can be derived from any a given
asset price process using machine learning. A natural consequence of this fact is the need for
a more naturalistic approach to financial time-series generation. Otherwise, the deep hedging
algorithm is not able to completely transcend traditional pricing and hedging models and is thus
still naturally constrained by the insufficiency of traditional random processes. Recent research,
see e.g. Kondratyev & Schwarz (2019), Wiese et al. (2020) and Buehler et al. (2020), suggests
that such naturalistic cross asset simulation can be achieved by learning based generative models,
called neural samplers.

As mentioned in the beginning of the introduction, this thesis explores the possibility of extend-
ing the deep hedging algorithm by a subclass of neural samplers, called generative adversarial
networks (GAN), originally introduced by Goodfellow et al. (2014). In particular, the TimeGAN
architecture proposed by Yoon et al. (2019) is used for time-series generation and recurrent neural
networks (RNN) for the implementation of the deep hedging algorithm. Conceptually, one can
think of the proposed model as an iterative process where the financial time-series is first being
embedded in a lower dimensional latent space representation. Then if random noise is mapped
by a function such that the mapped noise is in some sense ”dense” in the latent space, classifi-
cation into fake and real samples is futile. By finding the inverse embedding map on the latent
space representation of the noise process, the marginal distributions of the original time-series
are approximated. We then use this distributional approximation to predict hedging strategies,
with the objective being to minimize the error associated to a hedged portfolio formed by trading
in the derivative and underlying market.

We test our proposed model in a simulation environment using the Black-Scholes model where
the theoretically optimal hedge and arbitrage free price is known and has a analytical solution.
Therefore, the objective of the model is to replicate the performance of the Black-Scholes model.
Our results indicates that this objective is achieved by our model. However from a modelling
perspective, the more interesting question of using real asset price time-series to infer their dis-
tribution and hedges was unattainable in our current model. We found that the TimeGAN
algorithm could not sufficiently well learn the distribution of the underlying asset price processes
to a satisfactory extent. However, this could be attributable to insufficient attention placed on
the pre-processing of the data to suit the specific application of random process approximation.
Therefore we suggest potential future researchers to pay closer attention to the pre-processing.
Especially through signature transforms, such as Ni et al. (2020), Kidger et al. (2019) and Buehler
et al. (2020), since they will also accelerate learning.
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Outline. The thesis starts with a literature review in Section 2 which covers previous conducted
research in the areas directly related to the objective of the thesis. Section3 extends the basic
probability theory presented in Appendix A.2 by developing the mathematics required for the
Arbitrage theory and portfolio dynamics covered in Section 4. Hence, the objective of Section 3
is mainly to fix notation, therefore the mathematically familiar reader can skip the first section.
However, the unfamiliar reader is also recommended to read Appendix A, which develops the
mathematical prerequisites for this thesis. As alluded to above, Section 4 formalises the concept of
arbitrage free markets and its impact on pricing. Furthermore,Section 4 also show how arbitrage
theory is effected by market imperfections. Therefore, the objective of Section 4 is to provide
the formal theory required by the reader to intuit the objective of the thesis. In Section 5 the
notions of artificial neural networks (ANN) as universal approximators is developed. Furthermore
Section 5 introduces neural networks, adapted to sequential data and the approximation of
probability distributions through recurrent neural networks (RNN) and generative adversarial
networks (GAN) respectively. Hence, Section 5 develops the theoretical background to the
proposed methodology, presented in Section 6. Lastly, we provide some experimental results in
Section 7, which illustrates the performance of the proposed model and concluding remarks in
Section 8.

2 Literature Review

As alluded to in the introduction, this thesis aims to extend the deep hedging algorithm, pre-
sented in Buehler et al. (2019) by a deep generative model. The intuition behind deep hedging,
detailed formally in Section 6, is that one can hedge, i.e. reduce the risk, associated to a position
in a derivative, by minimising the induced risk for the profit-and-loss of a portfolio. This portfolio
is formed by trading on the general market and the units to be held in each asset is predicted by a
artificial neural network. The deep hedging framework provides the formal justification to apply
artificial neural networks for addressing the problem of hedging in incomplete markets. However,
as discussed in the introduction, researchers in mathematical finance has long sought to address
incomplete market pricing/hedging and as such there exists quite a large amount of literature
on the topic. In Föllmer & Schweizer (1991), hedging in incomplete markets is characterised
by a terminal condition placed on the formation of portfolios. In essence, the idea is that the
objective of hedging corresponds to choosing the units held in each asset such that the risk of
the profit-and-loss distribution is minimized. Formally, this means that a hedged portfolio will
still contain risk, which is naturally referred to as unhedgeable/intrinsic risk, characterised by a
orthogonal error in the profit-and-loss distribution of the hedged position. This idea was later
extended to discrete-time in Schweizer (1995), in which it is shown that the variance optimal
hedging position is derived from minimizing the squared length of the terminal hedging error
vector in L2. Furthermore, one popular area of research is what is called super-replication which
attempts to address the problem of hedging derivatives in incomplete markets, see e.g. Föllmer &
Leukert (1999) and Delbaen & Schachermayer (2006) theorem 2.4.2 for further details. However
this thesis focuses more explicitly on the characterisation in Schweizer (1995) since the problem
is clearly formulated in terms of a optimization that is attainable by a learning based model,
such as the deep hedging algorithm.

Any reasonable derivative pricing model should have the ability of both pricing through hedging
and asset price simulation. Inevitably, derivative prices will be a function of the future state
of the simulated asset prices. Given the intuition gained above, any hedging portfolio will be
formed by trading in the market and thus, one naturally needs to prescribe a model for the
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market. For example, the Black-Scholes model, proposed by Black & Scholes (1973), uses so
called geometric Brownian motion, which is a continuous random process which allows for the
closed form nature of the Black-Scholes model. See e.g. Delbaen & Schachermayer (2006) ch.
4.4 for further analysis. In Buehler et al. (2019), the deep hedging model still rely on the speci-
fication of such a classical model which describes the possible states of the world by a, arguably
simplistic, equation. Hence, extending the deep hedging framework by a generative model that
is not limited by a parametric description is very natural and is a relatively active current area of
research Vittori et al. (2020). To our understanding, there exists three main candidates in deep
generative modelling of financial time-series, restricted Boltzmann machines (RBM), variational
auto-encoders (VAE) and the latest addition generative adversarial networks (GAN) invented by
Goodfellow et al. (2014). In Kondratyev & Schwarz (2019) and Buehler et al. (2020), they apply
restricted RBM and VAE respectively to define a market generator, which aims to preserve the
multivariate dependency structure of asset price processes. Furthermore, Wiese et al. (2020) uses
GAN to define so called neural processes with similar objective. Lastly, Ni et al. (2020) also uses
generative adversarial networks in the context of financial time-series modelling. The central
distinction of Buehler et al. (2020) and Ni et al. (2020) is that they utilise so called signature
transforms to describe the closeness in distribution random processes. Furthermore, Kondratyev
& Schwarz (2019) shows that the multivariate dependency structure can be preserved and es-
pecially non-linear correlations and auto-correlation. Recall that the objective of this thesis is
to extend the deep hedging algorithm by a generative model, the results in Ni et al. (2020)
and Buehler et al. (2020) are more relevant to this thesis. However, we consider a alternative
architecture called TimeGAN proposed by Yoon et al. (2019) to approximate random processes
describing market dynamics.

To our knowledge, no other articles has specifically applied a deep generative model to ex-
tend the deep hedging framework and thesis aims to provide insights to their joint applicability.
Furthermore, this thesis also trivially differ from the theory proposed in Buehler et al. (2019) by
considering fully recurrent neural networks (RNN) as opposed to semi-recurrent networks.

3 Stochastic Integration & Martingales

This section shows the minimum necessary mathematics required for arbitrage theory used in
Section 4. Hence, this section is the natural extension of the probability theory covered in Ap-
pendix A to sequential dynamics. We strongly advise readers that are unfamiliar with probability
theory to read Appendix A. Furthermore, for the mathematically initiated reader, this section
will mainly fix notation and serve as an introduction to the subject.

Outline. The main objective of this section is to define the notions of semi-martingales and
stochastic integration, which are essential for arbitrage theory. We start by a formal definition of
random processes and in particular, adapted and predictable random processes from a filtration of
σ-algebras. Then we proceed by defining so called martingales as a subclass of adapted processes.
Lastly, the necessary definitions required for the formal understanding of a semi-martingale and
stochastic integration are provided, both in continuous and discrete time.

The basic and most relevant objects of study are random processes. Before a random process
can be defined it (trivially) has to be noted that for any index set T , (Ω× T ,F ,P) constitutes
a probability space, see Definition A.8.

Definition 3.1. Let (Ω×T ,F ,P) be a probability space and (E, E) a measurable space, as per
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Definition A.6. Then a random process X = (Xt)t∈T is a map

X : Ω× T −→ E

such that for all t ∈ T , Xt is a (F , E)-measurable random variable, see Definition A.9.

Example. A random process with many good analytical properties, as shall be seen later, is
that of a Brownian motion/Weiner process.

Definition 3.2. A Brownian motion W : Ω× R+ −→ R is a random process satisfying

i . W0 = 0.

ii . Wt+u −Wt is independent of Ws for any 0 < s ≤ t and u ≥ 0.

iii . Wt+u −Wt ∼ N (0, u).

iv . W·(ω) is a continuous function of t.

0 100 200 300 400 500 600 700
2.0

1.5

1.0

0.5

0.0

Wt( )

Figure 1: Values of a Wiener process/Brownian motion W for a fixed ω ∈ Ω as a function of
time. T is set to a countable index set of length 730 constituting 2 years of daily datapoints.
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A sample path of Brownian motion is visualised in Figure 1. Brownian motion is a special
case of a so called martingale.In order to develop the notion of a martingale, the notion of a
σ-algebra, see Definition A.3, have to be extended tosequences of σ-algebras indexed by time, as
a model for information-flows.

Definition 3.3. Let (Ω×T ,F ,P) be a probability space. A filtration F = (Ft)t∈T is a monotonic
sequence of σ-algebras, i.e.

Fs ⊂ Ft ⊂ F

where Ft is a σ-algebra on Ω for all s ≤ t ∈ T .

Terminology. The quadruple (Ω× T ,F ,F,P) is called a filtered probability space.

The concept of generated σ-algebras in Definition A.4 is easily extendable to the theory of
random processes.

Definition 3.4. Let (Ω × T ,F ,P) be a probability space and (E, E) a measurable space such
that there exists a (F , E)-measurable random process X : Ω×T −→ E. The generated filtration
FX = (FXt )t∈T of X is given by

FXt = σ(Xs : s ≤ t), ∀ t ∈ T .

Recall that σ(Xs : s ≤ t) := X−1
s (E).

Terminology. Let (Ω× T ,F ,F,P) be a filtered probability space and X : Ω× T −→ E.

i . A random process X is called adapted to the filtration F if Xt is Ft-measurable for all
t ∈ T .

ii . A random process X is called predictable from the filtration F if Xt is Ft− measurable
for all t ∈ T , where Ft− is the left limit of Ft, see e.g. Rudin et al. (1964) for details.

All results and definitions have now been stated to allow for the definition of a Rn valued
martingale.

Definition 3.5. An F-adapted random process X : Ω×T −→ Rn is called a F - martingale (or
just martingale for short) if it satisfies the so called martingale identity

Xs = E(Xt|Fs), ∀s ≤ t ∈ T .

Until further notice, let (Ω×T ,F ,F,P) be a fixed filtered probability space to prevent clutter.

A class of martingales that are very important in arbitrage theory, since they prove to be so
called good integrators, are semi-martingales. Therefore, the following sequence of definitions
provide the prerequisites for their introduction. We begin by recollecting what a cádlág or right
continuous with left limits-real valued function is.

Definition 3.6. Let E ⊂ R and M be a set. A map f : E −→M is called a cádlág function if
for every x ∈ E it is true that

i . the left limit f(x−) exists and

ii . the right limit f(x+) esits and equals f(x).

Terminology. The set of all cádlág functions between two metric spaces is called a skorokhod
space.
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Definition 3.7. The total variation of a continuous real valued function on a interval [0, T ] ⊂ R
is the real number

V : R× C −→ R̄+

([0, T ], f) 7−→ V T0 (f) := sup
πn

∑
[ti,ti+1]∈πn

|f(ti+1)− f(ti)|

where (πn)n∈N is a sequence of partitions of [0, T ], i.e. πn = {0 = t0 < t1 < . . . < tn = T}.

Intuition. In terms of random processes defined on an abstract sample space Ω, it only makes
sense to talk about bounded variation in the time component. The total variation of a random
process is the largest sum of the euclidean distance two points on the trajectory of the random
process.

Terminology. A random process X is of finite variation/locally bounded if its total variation
is finite over a fixed time interval [0, T ], i.e. V T0 (X(ω)) <∞.

Definition 3.8. Let τ : Ω −→ R̄+ be a F-measurable random variable. Then we call τ a
F−stopping time if τ is F-adapted.

Remarks. If the target is equipped with with the Borel σ-algebra B the following observations
can be made.

i .B = {(0, t) : t ∈ [0, T ]}, B ∈ B hence

τ−1(B) = {ω ∈ Ω : τ(ω) ≤ t} .

ii . Let τ : Ω −→ T . Then τ is a stopping time if and only if the random process

X : Ω× T −→ R

(ω, t) 7−→ Xt(ω) :=

{
1 t ≤ τ(ω)

0 t > τ(ω)

is F-adapted.

Definition 3.9. Let X : Ω × T −→ R be an F-adapted process. Then X is called a F-local
martingale if there exists a countable sequence of almost surely divergent and almost surely
monotonic F-stopping times (τk)k∈N such that

Xτk
t := Xmin{t,τk}

is a F-martingale, i.e.
Xτk
t = E(Xm|Fτkt ), ∀ m > min{t, τk}.

The concept of a semi-martingale is now easily defined:

Definition 3.10. Let X : Ω × T −→ Rn be a F-adapted random process. X is called a semi-
martingale if it adheres to the decomposition

X = M +A

where M is a F-local martingale and A is an F-adapted, cádlág process of local bounded variation.
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We can now give a definition of stochastic (Itô) integrals, which is one of the main notions of
integration of stochastic processes and will be used throughout the thesis.

Definition 3.11. Let H : Ω × T −→ Rn be a locally finite variation (FV) F-adapted random
process. Furthermore, let X : Ω × T −→ Rn be a semi-martingale and (πn)n∈N a sequence of
partitions of [0, t]. Then there exists a unique semi-martingale Z : Ω× T −→ Rn such that

lim
n→∞

P

ω ∈ Ω :

∣∣∣∣∣∣Zt(ω)−
∑

[ti−1,ti]∈πn

Hti−1
(ω)

(
Xti(ω)−Xti−1

(ω)
)∣∣∣∣∣∣ > ε

 = 0

for any ε > 0. We call Z the Itô integral of H with respect to X and denote by

Zt = (H ·X)t =

∫ t

0

HsdXs.

To prevent clutter we drop the time indexing in the integral, i.e.

(H ·X)t =

∫ t

0

HdX.

Remark. Actually, in accordance with Protter (2005) the proper notation for the integral is

(H ·X)t =

∫ t

0+

HdX.

where 0+ is the right limit of 0. However, to prevent clutter we always suppress the ”+” in the
lower bound of the integral. However the above statements has to be said at least once in order
to prevent confusion.

Recall that, embedded in the objective of this thesis is to utilise machine learning for the
construction of hedging portfolios and since a computer naturally operates on countable sets,
one needs to extend Definition 3.11 of the stochastic integral to countable index sets.

Definition 3.12. Let (Ω,F ,F,P) be a filtered probability space. Furthermore, let (πn)n∈N be
a sequence of partitions of the interval finite interval [0, t] ⊆ T such that the discretized interval
is the set

πn = {0 = t0 < . . . < tn = t <∞} .
In addition let H : Ω × T −→ Rn be a left continuous, locally bounded, F-adapted random
process and X : Ω × T −→ Rn be a semi-martingale. Then for any t ∈ T , the discrete Itô
integral of H with respect to X is the unique semi-martingale

[H ·X]t =

n−1∑
i=0

Hti(Xti+1
−Xti).

Notation. From now on we identify

[H ·X]t = (H ·X)t

since we only operate in discrete time, unless explicitly stated otherwise.

Sufficient definitions and results has now been established in order to properly introduce the
field of Arbitrage theory which provides the necessary and sufficient conditions for a model of a
market to be free of arbitrage.
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4 Arbitrage Theory

In this section we aim to provide an acceptable mathematical foundation to the theory regarding
the pricing of derivatives, equivalently called contingent claims. Therefore, this section contains
both the formal and financial theory required to intuit the objective of the thesis.

Outline. In Subsection 4.1 the notion of self-financing portfolios is developed utilising the theory
of martingales from Section 3. Furthermore Subsection 4.1 provide the definition of arbitrage in
terms of self-financing portfolios. Subsection 4.1 also contains the pivotal definition of equivalent
martingale measures, the importance of which is illustrated by the first (fundamental) theorem
of asset pricing.

We then proceed by extending the implications of the first theorem of asset pricing on arbi-
trage free pricing of contingent claims in Subsection 4.2. Here the previously developed theory
of portfolio dynamics is used to define replication/hedging strategies and show its implications
on arbitrage free pricing. Furthermore, we derive the general pricing formula for contingent
claims and provide the familiar risk-neutral pricing formula as a corollary. We conclude Subsec-
tion 4.2 with the uniqueness conditions for the above mentioned equivalent martingale measure,
characterised by so called market completeness, which are collected in the second (fundamental)
theorem of asset pricing.

Lastly, in Subsection 4.3 the theoretical implications on pricing and hedging of moving into
a more general market environment is discussed.

4.1 Portfolio Dynamics

When modelling financial markets, the following definition of a financial market is used.

Notation. A financial market is a collection of d+ 1 F-adapted asset price processes defined on
a filtered probability space (Ω,F ,F,P) such that

S : Ω× T −→ Rd+1

(ω, t) 7−→ St(ω) := (S0
t (ω), S1

t (ω), . . . , Sdt (ω)).
(1)

In this section arbitrage theory in discrete time is developed, hence T ⊆ N0. Let F0 be a
non-trivial σ-algebra and for a fixed T ∈ T , FT = F as in Delbaen & Schachermayer (2006).
Furthermore, the asset S0 is characterized by

S0
t >
a.s.

0, ∀t ∈ [0, T ]

which is commonly referred to as the numerâıre asset. Furthermore, S0 is required to be F-
adapted.

Definition 4.1. A portfolio strategy H : Ω×T −→ Rd+1 is a F-predictable process of the units
held in a collection of d+ 1 assets.

Remark. The value process induced by a portfolio strategy H is an F-adapted random process
V H satisfying

V H : Ω× T −→ R

(ω, t) 7−→ V Ht (ω) :=

d∑
i=0

Hi
t(ω)Sit(ω)

(2)
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subject to the linear constraint

V H0 =

d∑
i=0

Hi
1S

i
0

since H is predictable and V H0 ∈ L∞(Ω,F0,P) For further information on , see e.g. Delbaen &
Schachermayer (2006) ch 2.

Notation. From now on, the superscript H for V is suppressed in order to prevent clutter.

The pivotal concept in portfolio dynamics is that of a self-financing portfolio.

Definition 4.2. A portfolio strategy process H is called self-financing if

Vt = V0 +

d∑
i=0

(Hi · Si)t, ∀ t ∈ T (3)

where (Hi · Sit) is the discrete stochastic integral as developed in Definition 3.12.

Proposition 1. Let H be a portfolio strategy and V the associated value process. Then a portfolio
satisfies the self-financing condition in Equation (3) if and only if the following re-balancing
condition holds for all t ≤ T − 1:

d∑
i=0

Hi
t+1S

i
t =

d∑
i=0

Hi
tS

i
t

Proof. See e.g. Delbaen & Schachermayer (2006).

We now use a change of coordinate system for reasons that will soon become very clear.

Definition 4.3. Let S = (S0, S1, . . . , Sd) be a market as in Equation (1), where S0 is the
numeraire asset satisfying Equation (4.1). Then the normalized market is defined as

S̃ : Ω× T −→ Rd+1

(ω, t) 7−→ S̃t(ω) :=
St(ω)

S0
t (ω)

=

(
1,
S1
t

S0
t

(ω), . . . ,
Sdt
S0
t

(ω)

)
.

Lemma 1 (Price System Invariance). Let H be an F-predictable portfolio process. Then H is
self-financing in the S-market if and only if H is self-financing in the S̃-market.

Proof. See e.g. Björk (2009).

Implications. By Definition 4.3 and Lemma 1 we see that normalizing prices to units of the
numeraire asset removes the linear constraint of V0 in the self-financing condition for the portfolio
strategy H. If we express the value process in the normalized price system, i.e.

Ṽ : Ω× T −→ R

(ω, t) 7−→ Ṽt(ω) :=
Vt
S0
t

(ω) =

∑d
i=0H

i
tS

i
t

S0
t

(ω)

= H0
t (ω) +

∑d
i=1H

i
tS

i
t

S0
t

(ω)

(4)
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and recall the self-financing condition in Equation (3) one can immediately conclude that

Ṽt = Ṽ0 +

d∑
i=0

(Hi · S̃i)t = Ṽ0 +

d∑
i=1

(Hi · S̃i)t (5)

since dS̃0 = 0. Furthermore Ṽ0 is a F0-measurable random variable. From Equations (4) and
(5) one can conclude that there exists a unique H0 defined by

H0
t = Ṽ0 + (H · S̃)t −

d∑
i=1

Hi
t S̃

i
t (6)

which is a F-predictable process since
(
H1, . . . ,Hd

)
if F-predictable.

The above implications are now summarised in the form of a proposition.

Proposition 2. For every F-predictable process
(
H1, . . . ,Hd

)
there exists a unique H0 : Ω ×

T −→ R such that

i . For all t ∈ T it is true that

Ṽt =

d∑
i=0

Hi
t S̃

i
t = Ṽ0 +

d∑
i=1

(Hi · S̃i)t.

ii .
(
H1, . . . ,Hd

)
is self-financing.

Proof. The uniqueness follows from Equation (6) and i-ii follows from Equation (4).

Example. If S0 is chosen as a risk free bond with starting value 1, then

S0
t = e

∑t
k=0 rk , ∀ t ∈ T

hence the normalized price system S̃ is nothing but the discounted prices of assets since

S̃t =
St
S0
t

= e−
∑t
k=0 rkSt.

Therefore, not only does discounting have an economic meaning, it also provides a change of
coordinate system such that the initial, linear constraint on self-financing portfolios disappear.

One can now provide a simple characterisation of arbitrage opportunities in terms of self-
financing portfolios.

Definition 4.4. Fix a positive T ∈ T . A market model admits an arbitrage opportunity if there
exists a self financing portfolio H, and an associated value process V , such that

i . V0 ≤ 0.

ii . VT ≥
a.s.

0.

iii . P(ω ∈ Ω : VT (ω) > 0) > 0.

A market model is called free of arbitrage if no arbitrage opportunities exists.
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Notice that in Definition 4.4, we do not explicitly impose any conditions on the dynamics
of the underlying market price process in order for the model to adhere to the no arbitrage
principle. For example, one might expect the price process S to satisfy the martingale identity in
Definition 3.5 or some variant thereof. However, as it turns out this is overly restrictive. Before
stating the relevant theorem, equivalence of probability measures needs to be defined.

Definition 4.5. Let (Ω,F ,P) be a probability space. Then a probability measure on (Ω,F),
Q : F −→ [0, 1] is called equivalent to P if

P(A) = 0 ⇐⇒ Q(A) = 0

for some A ∈ F . Furthermore, notice that Q >> P and P >> Q (absolute continuity of measures)
as in Theorem 9. If P and Q are equivalent we write Q ∼ P.

Definition 4.6. Let X : Ω × T −→ R be a random process, then a measure is an equivalent
martingale measure if

i . Q ∼ P and

ii . Xs = EQ(Xt|Fs).

Notation. Note that Q is not necessarily unique since it will depend on S0, which will be
central to the discussion in Subsection 4.3. For now, letM denote the set of martingale measures
equivalent to P, i.e.

M :=

{
Q : F −→ [0, 1]

∣∣∣∣ Q∼P
Q Martingale measure

}
(7)

We now provide a version of the first fundamental theorem of asset pricing in terms of
arbitrage and martingales.

Theorem 1. (First theorem of asset pricing) The model is free of arbitrage if and only if there
exists an equivalent martingale measure Q ∼ P such that S is a F−martingale under Q.

Proof. See e.g. Föllmer & Schied (2011).

4.2 Pricing of Contingent Claims

Arbitrage consistent pricing of derivatives is one of the main practical implications of arbitrage
theory. In this subsection, only so called simple contingent claims with a fixed maturity T ∈ T
are considered.

Definition 4.7. Let (Ω × T ,F ,F,P) be a filtered probability space. Then a contingent claim
X : Ω −→ R with maturity T <∞ is an FT -measurable random variable.

Remark. For some applications we need to impose integrability conditions on the claim, we
follow Föllmer & Schied (2011) and Delbaen & Schachermayer (2006) and hence restrict ourselves
to essentially bounded claims.

Example. In this thesis, we consider European call options. Let the claim X be an essentially
bounded FT -measurable real valued random variable, i.e. X ∈ L∞(Ω,FT ,P). Furthermore,
following standard convention, the call option is considered a claim on the first component in the
market S1. If we represent the claim X by its payoff /contract-function Φ : L∞×R −→ L∞(Ω, R)
then

X = ΦK(ST ) = max
{
S1
T −K, 0

}
=: (ST −K)+ (8)
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which encodes the fact that a European call option represents the right to purchase the underlying
asset at maturity T for the pre-specified strike priceK. Therefore, at maturity the contract holder
will pocket the difference between the terminal price and the strike S1

T −K or face a zero payoff,
since the holder will not exercise the option.

Conditions 1. To produce arbitrage consistent prices, in light of Subsection 4.1, the following
conditions must be imposed on the model:

i . The model for the market S is free of arbitrage.

ii . All simple contingent claims maturing at time T is a claim on the market S and are
bounded FT -measurable random variables.

Definition 4.8. A F-adapted random process Π = (Πt)t≤T is the price process for the claim X
if ΠT = X and is called the arbitrage free price process for X if the extended market(

S0, S1, . . . , Sd,Π
)

is arbitrage free for all t ≤ T .

This provides a very natural theorem.

Theorem 2. Let M denote the set of martingale measures, see Equation (7). Then Π is the
arbitrage free price for X if and only if there exists a martingale measure Q ∈ M such that the
extended market in the normalized/discounted price system(

S̃0, S̃1, . . . , S̃d, Π̃
)

(9)

is an F-martingale under Q.

Proof. See e.g. Föllmer & Schied (2011).

Remark. By Definition 4.4 and Equation (4.8) if there exists a portfolio strategy H satisfying

ṼT =
P−a.s.

X̃ (10)

which is called a replication strategy, then in order to preserve the no arbitrage condition in the
normalized extended market (

S̃0, S̃1, . . . , S̃d, Π̃
)

(11)

must be free of arbitrage. Therefore, by Theorem 2 Equation (11) needs to be extended to cover
the addition of Ṽ such that (

S̃0, S̃1, . . . , S̃d, Π̃, Ṽ
)

(12)

is a F-martingale under Q. Therefore the following identity holds

Π̃t = EQ
(

Π̃T

∣∣∣Ft)
Ṽt = EQ

(
ṼT

∣∣∣Ft) .
But both Π̃T = X̃ and ṼT = X̃ which means that

Ṽt = Π̃t = EQ
(

Π̃T

∣∣∣Ft) . (13)

In other words, if a market is free of arbitrage, the price of any contingent claim is the value
of a replication strategy that, almost surely, shares the same payoff. Hence one arrives at the
following general pricing formula for simple contingent claims.
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Theorem 3 (General Pricing Formula). The arbitrage free price process of a contingent claim
X with maturity T is given by

Πt = S0
t EQ

(
X

S0
T

∣∣∣∣Ft) ,
where Q is a equivalent martingale measure for the market S.

Proof. Follows trivially from Equation (13) and can bee seen in e.g. Björk (2009) for the contin-
uous time analogue.

Remark. In particular if S0 is a risk-free bond with and let S0
0 = 1 we get

S0
t = e

∑t
k=0 rk

where r represents the short rate, Equation (3) becomes the risk-neutral formula.

Corollary 1 (Risk Neutral Pricing Formula). Choosing the numeraire as the risk free bond, the
General Pricing Formula in Theorem 3 takes the form

Πt = e−
∑T
k=t rk EQ (X | Ft) .

In order for the above results to be applicable one needs to establish uniqueness conditions
for the martingale pricing measure Q.

As shown below, the condition needed to impose for the uniqueness of the martingale mea-
sure Q is called market completeness. Consider, as in Subsection 4.2, the nominal market S
defined on the filtered probability space (Ω × T ,F ,F,P). Implicit in this statement is that S
is considered in its P dynamics. The statement in Equation (10) means that that there exists
hedging/replication strategy H such that the value of the hedging portfolio at maturity T of a
given contract X, is the same as the terminal payoff X. This intuition can be summarised by
the following definition

Definition 4.9. A claim X maturing at time T is called admissible, if there exists a self-financing
portfolio H such that

VT =
P−a.s.

X. (14)

In this case H is called the hedge for X or equivalently H can be called the replication strategy
for X.

Before proceeding with the analysis, an economic intuition for market completeness is pro-
vided. The following statement originates from Björk (2009).

Intuition. Let M denote the number of underlying traded assets in the market excluding the risk
free asset. Furthermore, let R denote the number of sources of risk. Generically, the following
relations hold

i . Absence of arbitrage is equivalent to M ≤ R.

ii . Market completeness is equivalent to M ≥ R.

iii . Market completeness and absence of arbitrage is equivalent to M = R.
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If a new asset Sd+1 is being added to the market, one can construct a new hedging strategy for
a claim X provided that Sd+1 is a source of risk. Therefore, completeness requires the number
of risky assets, here d + 1, to be greater than the number of risk-sources. On the other hand,
if a market is complete with absence of arbitrage then every new asset in the market that does
provide a source of risk will also provide a potential arbitrage opportunity.

The following economic intuition to Definition 4.9 can be constructed; If a market is free of
arbitrage M ≤ R and there exists at least one claim which is not admissible. Then there must
exist some risk factor which cannot be accounted for by the hedging strategy which implies that
M ≥ R cannot be true. Therefore we arrive at the following definition.

Definition 4.10. A market is complete if every claim is admissible as in Definition 4.9.

Economically, this means that market completeness is equivalent to; every claim has a unique
arbitrage free price, which from our discussion in Subsection 4.2, must imply the uniqueness of
the martingale measure Q.

For a fixed martingale measure Q and if the normalized claim X̃ is integrable. Then, if Ṽ = Π̃,
X can be hedged by V because of Lemma 1 and there exists a unique H0 given by Equation (6).
Therefore, the concept of completeness is equivalent to the existence of a martingale representa-
tion given by Ṽ in Equation (5). Therefore the following theorem can be used.

Theorem 4 (Jacod & Shiryaev (1998)). Let M be the set of equivalent martingale measures.
Then for any fixed Q ∈M the following statements are equivalent:

i . Every martingale M under Q has dynamics of the form

Mt = M0 +

d∑
i=1

(Hi · S̃i)t.

ii . Q is an extremal point of M.

Which naturally brings us to the second theorem of asset pricing.

Theorem 5 (Second Theorem of Asset Pricing). Assume that the market is free of arbitrage and
consider a fixed numeraire asset S0. Then the market is complete if and only if the martingale
measure Q, corresponding to S0 is unique.

Proof. See e.g. Björk (2009).

In conclusion, arbitrage pricing corresponds to choosing a numeraire for the market and if
the market is complete, this choice induces a unique martingale measure under which pricing is
performed. However, is the condition of market completeness a plausible one? If not, then that
would imply that some claims exists which carry unhedgeable/intrinsic risk. Furthermore, in
order for investors to agree on one unique arbitrage free price, when choosing the numeraire, or
discount process, which measure should one choose. These questions are non-trivial and is one
of the central concepts of incomplete market hedging, which will be the subject of Subsection
4.3.
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4.3 Hedging in Incomplete Markets

In this Subsection, we consider hedging and pricing for incomplete markets, which we later will
show is a more general market setting and thereby more realistic. Following Theorem 5, if
complete markets are transcended, the martingale measure is no longer unique, which makes
the objective of pricing more complicated. Hence, we focus on the impact on hedging strategies
for the claim. We start by providing a definition of incomplete markets and provide subsequent
intuition.

Definition 4.11. A market is called incomplete if there there exists at least one claim which is
not admissible by a self-financing hedging strategy H on either S or S̃.

Intuition. As seen in Subsection 4.2, a complete market is free of arbitrage if the number of
claims is equal to the number of states of the world. Market incompleteness means therefore
that the number of claims is less than the number of states. In other words, some claims will
remain unhedgeable by any dynamic strategy, since there does not exist claims on some state of
nature which acts like a source of risk. Therefore, in incomplete markets, perfect hedging is no
longer feasible for any contingent claim since all claims carry intrinsic risk. Hence, the task of
hedging now becomes risk-minimization, as in Föllmer & Schweizer (1991).

With this intuition in mind, we now provide a formal analysis of the impact on hedging and
thereby pricing of contingent claims. Firstly, by Theorem 5 for incomplete markets the equivalent
martingale measure is not unique. Hence, we fix a martingale measure Q̃ induced by the choice
of a fixed numeraire S0. Below we follow the same line of thought as Föllmer & Schweizer (1991)
but adapted to suit our notation and applications. As alluded to above, any claim will carry
intrinsic risk, therefore it is reasonable to modify the replication condition in Equation (14) such
that

X̃ =
P−a.s.

ṼT + Z̃T (15)

where Z̃ : Ω × [0, T ] −→ R is a normalized F-martingale under the fixed equivalent martingale
measure Q̃. The essential idea of Föllmer & Schweizer (1991) is that Z̃ is orthogonal to S̃,
hence one needs an inner product space. Therefore consider ST , ZT , VT as square integrable FT -
measurable random variables and equip (L2(Ω,FT , Q̃),+, ·) with the inner product 〈X,Y 〉 :=
EQ̃(XY ) for all X,Y ∈ L2(Ω,FT , Q̃). Since only self financing strategies H are admitted, the
normalized hedging profit and loss or replication error is

Z̃T = X̃ − Ṽ0 −
d∑
i=1

(Hi · S̃i)T . (16)

Since any claim will carry intrinsic risk, any hedging strategy will fail to perfectly replicate
the payoff of the claim at maturity. Therefore, the task of pricing and hedging is reduced to
minimizing a replication error. The question of which loss function to choose for evaluation of
the error in Equation (16) was addressed in Buehler et al. (2019) in their development of the
deep hedging algorithm.

5 Artificial Neural Networks

This section provides the theoretical analysis of artificial neural networks (ANN). Here we show
sufficient theoretical results for the application of ANN´s to the stated objective of the thesis. In
light of the intuition gained from the theory introduced in Section 4, we can provide a more precise
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definition of the problem addressed in this thesis; Our aim is to construct a data driven model
that can both approximate the conditional distribution of asset prices over time and statistically
replicate the payoff of options appearing in the market. In particular recurrent neural networks
(RNN) are utilized to model sequential data and generative adversarial networks (GAN) to
approximate the distribution of a bounded random process. To that end, this section provides
the necessary theory from machine learning in order to justify our method and implement the
stated objective of the thesis.

Outline. In Subsection 5.1, we introduce the reader to the most simple type of neural net-
works, namely that of a feed forward neural network (FNN)/multilayered perceptron. We start
by providing the definition of a feed forward network through the forward pass of information by
concatenation of affine functions. Furthermore, we state the pivotal result of universal approxi-
mation for feed forward nets, which provides the theoretical justification for the usage of artificial
neural networks to approximate functions. Lastly, we conclude the subsection by a short discus-
sion on the process of training a neural network through gradient descent and backpropagation
of error.

The notion of artificial neural networks can be extended to dynamical systems, thereby defin-
ing so called recurrent neural networks (RNN) which will be the subject of Subsection 5.2.
Combining the result of universal approximation for RNN as proved by Schäfer & Zimmermann
(2006) and backpropagation of error RNN´s constitutes natural candidates for the modelling of
sequential data. Lastly we provide a toy example of how one can apply recurrent neural nets
to model the dependence between two random processes, the aim is to provide the reader with
some intuition of their practical applicability.

The concluding Subsection 5.3 defines generative adversarial networks (GAN) as tools for
modelling distributions of random variables through so called adversarial learning. Furthermore,
we provide the necessary theoretical results needed for the justification of using GAN´s to esti-
mate the probability distribution of a random variable from given samples. Lastly we provide
a slight extension of GAN´s to handle random processes, since we are interested in generating
financial time series of prices.

5.1 Feed Forward Neural Networks

Artificial neural networks (ANN) is essentially a class of statistical algorithms, where the com-
putational procedure is inspired by our current conception of biological neural nets and how they
learn from sensory data. Biological neural networks, like our brain, learn from interacting with
elements of the environment to collect sensory data which we then directly tie to some action
to learn how the elements of the environment responds. For example, humans learn how to
open bottles by attempting to open the bottle. After enough ”training” the ”prediction” will
finally converge towards an action that is effective in opening the bottle. That is, conceptually,
biological neural networks aim to maximise some sort of reward function associated to some
action which corresponds to firing different neurons. By choosing an action which maximises the
reward, biological neural networks learns how to perform a task. Artificial neural networks are
conceptually no different and so called feed forward neural networks (FNN) formalises this very
simple concept. A feed forward net uses interconnected layers of units, called neurons, where the
data is being passed from the input layer to the output layer, which represents the predictions.
Then, the neural network updates the connections between neurons such that it minimizes the
difference between the predicted value and the actual real world value. The following definition
is from Buehler et al. (2019).
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Definition 5.1. Let L,N0, N1, · · · , NL ∈ N and σ : R −→ R be differentiable and let
{

(RN` .+, ·)
}
`=1,...,L

be a finite countable sequence of R-vector spaces. For any ` = 1, . . . L let

W` : RN`−1 −→ RN`

x 7−→W`(x) := A` ⊗ x+ b`

be an affine function where ⊗ denotes the Kronecker product operator/ matrix-vector multipli-
cation and A` ∈ RN`×N`−1 and b` ∈ RN` . The map F is called a feed forward neural network
(FNN) if

F : RN0 −→ RNL

x 7−→ F (X) := (WL ◦ FL−1 ◦ . . . ◦W2 ◦ F1)(x)

where F` = σ ◦W` for ` = 1, . . . , L− 1.

Terminology. Below we summarise and provide some terminology and intuition for the defini-
tion of a feed forward neural network.

i . L ∈ N is the number of layers of the network where 1, . . . , L− 1 are the hidden layers.

ii . (N`)`=1...,L−1 is a sequence such that N` ∈ N denotes the number of neurons for layer `.

iii . (N0, NL) denotes the dimensions of the input and output layers respectively.

iv . A` and b` are called the weights and biases for layer ` such that A`ij ∈ R denotes the
weights connected to the map from neuron i of layer `− 1 to neuron j in layer `.

v . σ is called the activation function.

vi . F` is the activations at layer `.

Hence according to the definition, a feed forward neural network is nothing more than a
concatenation of affine functions, weighted by differentiable functions σ. We illustrate the archi-
tecture also called the computational graph of a feed forward neural network in Figure 2.
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Figure 2: Deep feed forward neural network with 2 hidden layers. The computational graph
illustrates a sequence of mathematical operations that are being performed on the object. Each
arrow/connection represents the weights and bias being contributed to the rightward neuron.
Each activation unit F is a composition of affine functions weighted by a differentiable function
σ, see Definition 5.1.

Terminology. A neural network is called deep, if it has more than one hidden layer.

As one can see in Figure 2, a deep feed forward neural network has quite a lot of parameters.
The result of this is that neural networks are very flexible, therefore they have the potential to
approximate functions. As it turns out, deep feed forward neural networks are universal approx-
imators under some conditions, meaning that some functions can be approximated arbitrarily
well by a deep feed forward network. The original result was proved by Hornik (1991) for contin-
uous real vector valued functions defined on a compact subset of Rd. Note that the thesis does
not provide a definition of compactness therefore the reader is referred to Rudin et al. (1964) for
definition. Many have extended the so called universal approximation theorem in Hornik (1991),
to bounded width, arbitrary depth and lebesgue intetrable functions, see Definition A.15. Before
stating the extended theorem in Kidger & Lyons (2020), a definition of the space of deep feed
forward neural networks is required.

Definition 5.2. Let σ : R −→ R be an activation function, n,m, k ∈ N. Then let NN σ
n,m,k

represent the class of functions Rn f−→ Rm ,for f ∈ NN σ
n,m,k, described by feed forward neural

networks with n neurons in the input layer, m neurons in the output layer and an arbitrary
number of hidden layers, each with k neuron with activation function σ. Every neuron in the
output layer has the identity function as activation.

Theorem 6 (Universal Approximation). Let σ : R −→ R be any non-affine continuous function
which is continuously differentiable at at-least one point, with non-zero derivative at that point.
Let K ⊆ Rn be compact. Then NN σ

n,m,n+m+2 is dense in C0(K,Rm) with respect to the uniform
norm.

Proof. See Kidger & Lyons (2020).
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Intuition. What this essentially means is that any function that is continuously differentiable
at some point x ∈ K can be approximated arbitrarily well by a feed forward neural network, i.e.

∀ ε > 0, f ∈ C0(K,Rm) ∃ F ∈ NN σ
n,m,n+m+2 : sup

x∈K
|f(x)− F (x)| < ε.

This theorem provides us with a solid mathematical foundation for statistical modelling with
deep feed forward neural nets, as long as the random variables that we are modelling maps into
some compact subset of Rm.

In order to discuss the concept of learning for a neural network, one first needs a so called
loss function for the network. Consider the universal approximation Theorem 6, the evaluation
of the length between the observations, f(x) and the neural network output F (x) is evaluated
by the uniform norm, also called supremum norm on a function space. For example, consider
the set of continuous functions defined on a compact real subset that maps into Rm, inheriting
addition and multiplication point-wise on the target. Then the map

‖·‖∞ : C0(K,Rm) −→ R
f 7−→ ‖f‖∞ := sup

x∈K
|f(x)|

is called a uniform norm and satisfies the axioms required, see e.g. Rudin et al. (1964). The
uniform norm is a prototypical example of a loss function that measures the distance between
predictions and observations. Hence, the objective of training a neural network is to choose a
optimal set of parameters that minimizes a given loss function. Learning is achieved through
so called (stochastic) gradient descent and backpropagation of error. Gradient descent describes
the simple traditional concept of minimizing a function. In particular, we want to evaluate the
gradient with respect to model parameters and step down the gradient until the function reaches
local minimum. Hence, the gradient update step is simply

θj+1 = θj − λ∇θJ (θj)

and backpropagation is the method used to compute the gradient, for a arbitrary loss function
J . For further details see e.g. Goodfellow et al. (2016) ch. 6 and in particular page 213 for a
the general backpropagation algorithm.

5.2 Recurrent Neural Networks

In this Subsection, the reader is provided with some intuition as to how the concept of artifi-
cial neural network extends to sequential data. We start by introducing the notion of recurrent
neural networks through the study of dynamical systems as maps between the hidden states
of the network. In particular, we follow the intuition provided in Goodfellow et al. (2016) and
characterise the forward pass of a prototypical recurrent neural network as the composition of
state transition maps. We then collect the results by a definition and lastly provide an example
of how recurrent neural networks can be applied to study dependence structures between random
processes.

Recurrent neural networks are able to learn sequential data by incorporating the context of
previous known information and states. RNN´s can simply be seen as feed forward neural net-
works with cyclical connections. These recurrent connections allows the output in each node of
the network to be dependent on its previous activation. Consider the dynamical system

s(t) = f(s(t−1); θ) (17)

23



where t ∈ N is time and s : N −→ R is called the state of the system. Furthermore, f is called
the state-transition map, parameterized by an arbitrary parameter θ. Because the state of the
system is only a function of the previous state, Equation (17) can be rewritten as

s(t) = (f ◦ f ◦ . . . ◦ f)(s(1); θ). (18)

The expansion in Equation (18) highlights two important factors; First, the state of the system is
a consecutive application of the state transition map from the initial state. Second, the parameter
vector is the same for each state, so the state transition map is the same for each state. The
representation in Equation (18) is called unrolling of the dynamical system and provides a simple
characterisation of recurrent neural networks, for further details on unrolling see e.g. Goodfellow
et al. (2016). Consider now the additional dependence of the state on some signal x : N −→ R,
then one obtains the dynamical system

s(t) = f(s(t−1), x(t); θ). (19)

If one lets s represent the hidden states of a neural network one can view Equation (19) as a
recurrent neural network with no output layer Goodfellow et al. (2016). Furthermore, if one
allows for cyclical connections between states, the hidden state in a arbitrary layer of an RNN
is defined by the functional mapping

(h`t−1, xt) 7−→ h`t = f(h`t−1, xt; θ)

where (h`t)
`=1,...LN−1

t∈N , h`t ∈ R is the hidden state at time t and layer ` of the network. We now
collect this result and provide the set of all recurrent neural networks of a fixed sequence length.

Definition 5.3. Let T ⊂ N be a finite index set. Furthermore, let x : T −→ Rd and y :
T −→ Rm be sequences. A prototypical (sequence to sequence) recurrent neural network is the
functional mapping x 7−→ ŷ with a forward pass defined by the system

a1
t = A1h1

t−1 + b1 + U1xt

a`t = A`h`t−1 + b`

h`t = α(a`t)

hLNt = cLN−1 +BhLNt−1

ŷt = β(hLNt )

(20)

where α, β : R −→ R are activation functions, ` = 2, . . . , LN−1 denotes the layer and t ∈ T
the sequential order. Fix a loss function J : `∞(T )× `∞(T ) −→ R to evaluate the error of the
predictions based on labelled examples y, where `∞(T ) are the bounded sequences with domain
T . The parameter space Θ is the collection of components for the respective matrices in Equation
(20). The set of recurrent neural network is defined by its forward pass on bounded sequences

RNNm,d,T :=
{
F : `∞(T )×Θ −→ `∞(T )|Ft = (β ◦ hLNt ◦ . . . ◦ α ◦ a1

t )(xt; θ), F ∈ C0(θ)
}
.

Training of recurrent neural networks is no different than that of feed forward neural networks
covered in Subsection 5.1. One seeks to find a optimal parameter θ ∈ Θ of a given recurrent
neural network by minimizing the loss function J trough gradient descent. In particular, the
gradient ∇θJ is computed by the backpropagation algorithm, which in essence recursively (start-
ing from loss) applies the chain-rule for derivatives. For further details on backpropagation and
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recurrent neural networks in general, see Goodfellow et al. (2016) page 213 for the general back-
propagation algorithm. As we discussed in Subsection 5.1, the concept of learning for a artificial
neural network relies on the theoretical results of universal approximation. Luckily, RNN´s also
have this property, see Schäfer & Zimmermann (2006) for proof.

In practice, other types of recurrent neural network architectures are applied in order to be
trained more efficiently and/or have memorizing properties. Arguably, the two most popular
architectures are recurrent neural networks with long-short-term-memory (LSTM) layers and
gated-recurrent-units (GRU). The reader is referred to Goodfellow et al. (2016) for further de-
tails. We now conclude the subsection by providing a theoretical example of how to apply
recurrent neural networks to learn the dependence structure between two processes.

Application. Let (Ω × T ,F ,P) be a probability space and take T ⊂ N to be a finite set.
Consider two bounded random processes Y,X ∈ L∞(Ω × T ,F ,P) and suppose Y = f(X)
for some deterministic function f . Suppose that, theoretically, the parameters θ are learnable
by backpropagation. Using the universal approximation results for recurrent neural networks in
Schäfer & Zimmermann (2006), one can train a recurrent neural network to learn the dependence
structure between X and Y using labelled data. That is, one can approximate the functional
mapping X 7−→ f(X), using labelled examples of Y by a recurrent neural network. For example,
consider the forward pass

ht = fh(ht−1, Xt(ω); θ)

Ŷt = fo(ht) ∀ t ∈ T .

where fh : R × Rd ←− R is a state transition map and fo : R −→ R is some output function,
producing the predictions of the RNN. Now choose a loss function J : L∞(Ω × T ,F ,P) ×
L∞(Ω × T ,F ,P) −→ R encoding the distance between Ŷ (Ω × T ) and Y (Ω × T ) and minimize
J (Ŷ , Y ; θ) by gradient descent and backpropagation. Suppose a arbitrarily small error is reached

ε = J (Ŷt(ω), Yt(ω); θ̂) >
P−a.s.

0, then Ŷ converges almost surely to Y , as measured by the distance

function J and thereby implicitly learned the dependence structure given by f(X).

5.3 Generative Adversarial Networks

In this Subsection we develop the theoretical technology of distributional approximation for ran-
dom variables and processes, using machine learning. Recall that, embedded in the objective of
the thesis, is the model independent asset simulation to extend the deep hedging algorithm from
Buehler et al. (2019). Hence the thesis objective requires the ability of reconstructing probability
distributions of asset prices using deep learning, which is the subject of this subsection.

Generative adversarial networks (GAN) are a class of deep learning techniques which aim to
model high dimensional distributions of random variables and as we shall see later, random pro-
cesses. The technique was proposed by Goodfellow et al. (2014) and can be characterised by so
called adversarial learning, which is a game theoretic approach to learning. Conceptually, one
can think of a prototypical GAN as two separate neural networks, one is called a generator G
and the other is called a discriminator D trained in the same loop with adversarial objectives.
The objective of the generator is to generate samples that ”fools” the discriminator and the
discriminator objective is to detect weather or not the generated samples are real or fake. As-
suming the GAN converges, the loss of the discriminator grows until the discriminator can only
produce random guesses of weather or not the generated samples are real or fake, constituting
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aa nash-equilibrium. If this is the case, we have learned to sample from the, potentially high di-
mensional, marginal distribution of a random variable. In the case of convergence, the generator
implicitly learns the distribution of the data through its interaction with the discriminator. The
discriminator has access to both real and fake samples, without knowing a priori which are real
and which are fake, but is trained on real samples Creswell et al. (2018).

In the following construction we fix a probability space (Ω,F ,P) and consider bounded random
variables X,Z ∈ L∞(Ω,F ,P). Furthermore, we take (Rd,B) to be a Borel measurable space,
see Definition A.5 and let X∗P be the distribution measure of the (F ,B)-measurable random
variable X : Ω −→ Rd. See Definitions A.9 and A.10 for further details regarding distributions
and random variables.

We start by providing the definition of a generator.

Definition 5.4 (Generator). Let (Ω,F ,P) be a probability space and let Z ∈ L∞(Ω,F ,P).
Then the map

G : L∞ ×Θg −→ L∞

(Z, θg) 7−→ G(Z, θg)

is called a generator if G is a artificial neural network, differentiable w.r.t θg.

Remark. The reason we restrict the model to bounded random variables is that it should
be computable on a Turing machine, which cannot assign values to infinity. Furthermore, the
generator G is defined to act on ω ∈ Ω linearly in the first slot

G(Z, θg)(ω) := G(Z(ω), θg) ∈ Rd

Definition 5.5. The map

X∗Q : Θg × B −→ [0, 1]

(θ,B) 7−→ X∗Qθg (B)

is referred to as the Model distribution measure of the random variable and is presumed to satisfy
the axioms in Definition A.6 for a fixed θg ∈ Θg.

In accordance with, Roth et al. (2017), the essential idea of generative adversarial net-
works is to pair a θg parameterized generator that produces the distribution X∗Qθg for X(ω) =
G(Z(ω), θg) with a discriminator which aims to distinguish between X∗P and X∗Qθg , whereas
the generator tries to make X∗Qθg ∼ X∗P.

Definition 5.6 (Discriminator Roth et al. (2017)). A discriminator is a class of objective func-
tions F̂ that measures the dissimilarity of pairs of distributions.

Finally, one can define a generative adversarial network (GAN).

Definition 5.7 (Generative Adversarial Network). Let X be a random variable and G be a
generator producing the model distribution X∗Qθg from samples of a bounded random variable
Z. Furthermore, let F̂ be a discriminator. Then a generative adversarial network is the pair
(G,D) with the objective function

inf
θg∈Θg

[
sup
F∈F̂

F (X∗P, X∗Qθg )

]
. (21)
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where the loss is thus defined by

`(X∗Qθg ; F̂) := sup
F∈F̂

F (X∗P, X∗Qθg )

and F ∈ F̂ is represented as the integrals

F (X∗P, X∗Qθg ) = EP[logD(X)] + EQθg [log(1−D(G(Z, θq)))] . (22)

In order to justify the objective function in Equation (21), one first need a general measure
of divergence for distributions.

Definition 5.8 (f -divergence). Let (Ω,F ,P) be a probability space. Furthermore let Q : F −→
[0, 1] be a probability measure such that P is absolutely continuous with respect to Q. Let also
f : R −→ R be a convex function satisfying f(1) = 0. Then the f -divergence between P and Q
is the real number

Df (P||Q) := EQ

(
f ◦ dP

dQ

)
where dP

dQ is the Radon-Nikodym derivative of P with respect to Q, see the Radon-Nikodym
Theorem 9 for further details.

Using the empirical results collected in Nowozin et al. (2016), one can infer that any f−divergence
measure can be used for training a generative adversarial network. However, no theoretical re-
sults have yet been obtained for proving that generative adversarial networks actually minimizes
f−divergences. However, the empirical observations in Nowozin et al. (2016) indicates that this
is the case. We collect this theoretically important result in the form of a empirical observation.

Empirical Observation 1 (Nowozin et al. (2016)). Generative neural samplers minimizes the
f−divergence between the real distribution and the model distribution.

The above result provides a empirical observation indicating the theoretical justification for
using GAN´s to learn the distribution of a random variable. However, in this thesis, we aim
to approximate conditional distributions for random processes and hence need to extend the
definition. Conceptually, only countable sequences of random variables needs to be considered
in order to extend the definition.

Definition 5.9 (Generator). Let (Ω × T ,F ,F,P) be a filtered probability space and let Z ∈
L∞(Ω× T ,F ,F,P) be a F-adapted random process. In particular, let F = FZ be the generated
filtration and T ⊂ N0 to be countably finite. Then the map

G : L∞(Ω× T )×Θg −→ L∞(Ω× T )

(Z, θg) 7−→ G(Z, θg)

is called a generator if G is a artificial neural network, differentiable w.r.t θg.

Remark. As in Definition 5.4, let G act linearly in the first slot on ω ∈ Ω and t ∈ T to obtain
function values of generated processes

(ω, t) 7−→ G(Z, θg)(ω, t) := G(Zt(ω), θg) ∈ Rd.

In a similar fashion one could extend the definition of a discriminator as a class of functions
minimizing the dissimilarity for pairs of joint distributions of a random process under differ-
ent probability measures. Naturally, we can reuse the objective in Equation (21) to characterize
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a generative adversarial network for random processes and therefore recover the entire definition.

In practice however learning the joint distribution directly is a difficult objective function in
the standard GAN framework. Therefore, for performance reasons, the consideration of alter-
native computational graphs is warranted. In this thesis the TimeGAN algorithm proposed
by Yoon et al. (2019) is used to generate financial time-series, which utilises auxiliary maps to
reconstruct the joint distribution of a random process from its lower dimensional latent space
representation.

6 Methodology

In this section we utilise all previous developed theory in order to justify the proposed extension
of the deep hedging model. To that end, we use generative adversarial networks, see Subsection
5.3, to approximate the (conditional) P-distribution of market prices S, through the TimeGAN
algorithm proposed by Yoon et al. (2019).

6.1 Problem Formulation & Proposed Approach

In this Subsection we provide a formal statement for the problem we seek to address and detail
the proposed solution. Before proceeding, the model conditions and environment has to be
stated.

Conditions 2. Let (Ω×T ,F ,F,P) be a discrete time filtered probability space and consider the
market price process S : Ω× T −→ Rd+1 being a bounded discrete time random process. We fix
S0 as the numeraire asset, which for simplicity, is assumed to be deterministic and S0 = 1 for all
(ω, t) ∈ Ω×T . Furthermore, let F = FW for W : Ω×T −→ Rd denote a Brownian filtration and
motion respectively. We consider S in a arbitrage, incomplete and discrete market setting, hence
the market provides the equivalent martingale measure Q ∈ M, see Definition 4.6 for further
details. Furthermore, let T ∈ T and K ∈ R be a fixed maturity and strike respectively. Assume
further that there exists a European option X ∈ L∞(Ω,FT ,P) with maturity and strike at T,K
and that X is a claim on S1 that is liquidly traded.

Recall from Section 5 and in particular Subsection 5.3 that a generative adversarial network
is the pair (G,D) in which

G : L∞(Ω× T )×ΘG −→ L∞(Ω× T )

(W, θG) 7−→ G(W, θG)

is a generator that is defined linearly on Ω × T in the first slot. GANs have been empirically
observed to be minimizers of the f−divergence, as per Empirical Observation 1, defined as

Df (P̂||P) := EP

(
f ◦ dP̂

dP

)
.

In addition, let D be a discriminator, represented as a neural network

D : L∞(Ω× T )×ΘD −→ [0, 1]

(S̃, θD) 7−→ D(S̃, θD)
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which is also linear in the first argument on Ω×T . Let the generative adversarial network (GAN)
be be trained with the adversarial objective

inf
θG∈ΘG

sup
θD∈ΘD

F (S∗P̂, S∗P) (23)

where P̂ is a model probability measure, inducing a model distribution S∗P̂ as per Definition 5.5.
F measures the dissimilarity between the model distribution and the real distribution S∗P̂, S∗P
and is defined by

F (S∗P̂, S∗P) := EP

(∑
t∈T

logD(S̃)t

)
+ EP̂

(∑
t∈T

log(1− (D ◦ G)(W )t)

)
.

Assuming convergence of the generative adversarial network (GAN), the random process Ŝ =
G(W, θG) converges to the approximated P-dynamics of the process S. However the adversarial
objective in Equation (23) might be unattainable for complex dependency structures. Therefore,
in practice, one often consider variations on the GAN algorithm, see e.g. Wiese et al. (2020) and
Ni et al. (2020). To that end, we use the TimeGAN model proposed by Yoon et al. (2019), for
a detailed description see Appendix B.

Recall from Section 4 that arbitrage can be characterised in terms of the existence of a self-
financing portfolio H : Ω× T −→ Rd+1 with wealth/value process V : Ω× T −→ R satisfying

VT = V0 +

d∑
i=1

(Hi · Si)T

since S0 = 1 and thus the normalized/discounted wealth process Ṽ = V since H0 is uniquely
given, see Section 4 for further details. Furthermore, (Hi ·Si)T is the discrete stochastic integral

(Hi · Si)T :=

n−1∑
k=1

Hi
k(Sik+1 − Sik), i = 1, . . . , d, T = n

from Definition 3.12. Recall further that H is called a hedging/replication strategy for a given
claim X ∈ L∞(Ω,FT ,P) if the terminal replication condition is satisfied

X =
P−a.s.

VT + ZT (24)

where Z : Ω× T −→ R is a martingale that is orthogonal to S and thus V in the Hilbert space
(L2(Ω × T ,F ,F,P),+, ·, 〈·, ·〉2). Hence, Z represents a unhedgeable/intrinsic risk associated to
the claim X. Recall further that V is a martingale under Q as per Theorem 2. Hence the
arbitrage condition restricts self-financing portfolio wealth processes V , satisfying the terminal
replication constraint in Equation (24) to the be bounded by the interval

Vt = Πt ∈
[

inf
Q∈M

EQ (X| Ft) , sup
Q∈M

EQ (X| Ft)
]
. (25)

where M is the set of martingale measures, see Definition 4.6, Equation (7) and Delbaen &
Schachermayer (2006) Theorem 2.4.1. Note that in a complete market the interval in Equation
(25) reduces to the singleton set given by the general pricing formula in Theorem 3.
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Using the terminal replication constraint in Equation (24), one can easily characterise the ter-
minal profit-loss of the a hedged position as

ZT =
P−a.s.

X − V0 −
d∑
i=1

(Hi · Si)T . (26)

Similarly to Schweizer (1995), Buehler et al. (2019) now formulates the hedging problem by the
constrained optimization

Ψ(X) = inf
H∈H

ρ

(
X − V0 −

d∑
i=1

(Hi · Si)T

)
(27)

where H is the set of constrained hedging strategies for X

H :=

{
H : Ω× T −→ Rd

∣∣∣∣X =
P−a.s.

VT + ZT

}
and ρ is a convex risk measure, see Definition 1 in Buehler et al. (2019) for details. However,
as previously discussed, quadratic loss functions as defined in Föllmer & Schweizer (1991) are
also reasonable to consider. In essence, the optimization aims to minimize the length of the
replication error vector, to that end, let S,X and Π be square integrable and define the L2 norm
as the map

‖·‖2 : L2 −→ R

Y 7−→ ‖Y ‖2 := 〈Y, Y 〉 1
2

where 〈·, ·〉 is the (sesquilinear) inner product on L2. Then since Z is orthogonal to S, i.e.
〈Z, S〉 = 0 the Hilbert space optimization

Ψ(X) = inf
H∈H

∥∥∥∥∥X − V0 −
d∑
i=1

(Hi · Si)T

∥∥∥∥∥
2

arises naturally if one lets V0 = Π0 where Π represents the current market price of the claim X.
Furthermore, as discussed above, the TimeGAN architecture proposed by Yoon et al. (2019) can
be used to approximate the random process S and thus approximates the payoff X by a claim
X̂ ∈ L2(Ω × T ,FT , P̂) on Ŝ1 where P̂ is the approximated measure induced by the generative
adversarial network and Ŝ := G(W, θ). Since this thesis focuses on the pricing/hedging of call
options, X̂ is defined as

X̂ :=
(
Ŝ1
T −K

)
+
.

Thus the L2 minimization in Equation (6.1) needs to be updated to explicitly take into account
the objective of the thesis

Ψ̂(X) = inf
H∈H

∥∥∥∥∥X̂ −Π0 −
d∑
i=1

(Hi · Ŝi)T

∥∥∥∥∥
2

.

Using the theory developed in Buehler et al. (2019), the formulation of unconstrained hedg-
ing strategies as outputs of neural networks allows for the explicit application of the universal
approximation Theorem 6. However as discussed in Subsection 5.2, Schäfer & Zimmermann
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(2006) have shown RNN´s to also have this property. Hence the set of recurrent neural network
strategies can be defined as the set

HM =

H : Ω× T −→ Rd
∣∣∣∣∣∣Ht(ω) = F (Ht−1(ω), Ŝt(ω))

F∈RNNΣ
M,d,d,T


=
{
H : Ω× T ×ΘM −→ Rd

∣∣∣Hθ
t (ω) = F θ(Ht−1(ω), Ŝt(ω))

} (28)

where M denotes the depth of the network, d the input and output dimensions, ΘM the set
of weights and biases for the recurrent neural network and Σ denotes a set of activation func-
tions.Hence, using Lemma 1 in Buehler et al. (2019) one can reduce the infinite dimensional
problem of finding optimal hedging strategies to the finite dimensional problem of finding opti-
mal parameters for a recurrent neural network since

Ψ̂M (X) = inf
H∈HM

∥∥∥∥∥X̂ −Π0 −
d∑
i=1

(Hi · Si)T

∥∥∥∥∥
2

= inf
θ∈ΘM

∥∥∥∥∥X̂ −Π0 −
d∑
i=1

(Hi
θ · Ŝi)T

∥∥∥∥∥
2

(29)

for a fixed GAN parameterisation. However, in practice, since the gradient outside of the objec-
tive in Equation (29) vanishes, one may consider regularizing the distance from a target strategy
according to Buehler et al. (2019)

Ψ̂M (X) = inf
θ∈ΘM

∥∥∥∥∥X̂ −Π0 −
d∑
i=1

(Hi
θ · Ŝi)T

∥∥∥∥∥
2

+ γ ‖Hθ − δ‖2 .

Note that the theory is developed for convex risk measures and we do not mathematically prove
that ΨM → Ψ as M → ∞. However since we can confirm convergence using experiments in
Section 7, convergence is assumed.

7 Experimental Results

In this Section we provide some experimental results in a controlled environment using simulation.
In particular, we consider the approximation of asset price dynamics in the famous Black-Scholes
model introduced in Black & Scholes (1973) as an illustrative example. This means that we
simulate sample paths of a geometric Brownian motion (GBM), which are then feed to the
TimeGAN algorithm to approximate its conditional distributions. Then, using the TimeGAN
approximation of the P-dynamics of the GBM and the Black-Scholes prices of options, we use
the deep hedging algorithm to approximate hedging strategies.

Setting & Implementation. As indicated above, we consider the performance of the approach
in a controlled experiment using the Black-Scholes model in addition to the constraints set by
Conditions 2. Hence, a two asset market is defined and described in their P-dynamics by the
processes

S0
t = ert

S1
t = S1

0e
(µ− 1

2σ
2)t+σWt

(30)
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which can be equivalently expressed in its instantaneous return form

dS0
t

St
= rdt

dS1
t

S1
t

= µdt+ σdWt

(31)

using Itô’s lemma, see e.g. Protter (2005) for further details regarding stochastic calculus. See
Figure 3 for visualisation of sample path for a geometric Brownian motion. In practice however,
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Figure 3: Function value of geometric Brownian motion for fixed ω ∈ Ω. In the illustration we
use drift parameter µ = 0.1 and volatility σ = 0.2 over two years of daily price quotes, i.e. 730
days. The discretization scheme used is the so called Euler-Maruyama scheme.

we actually consider a Euler-Maruyama discretization of Equation (30) because our market
setting constitutes daily close prices. Following the theory developed earlier in Section 4 the
price system in Equation (30) is normalized to units of the numeraire, here represented as a risk

32



free credit in a dollar note, to obtain discounted prices

S̃0
t = 1

S̃1
t = S1

0 exp

((
µ− r − 1

2
σ2

)
t+ σWt

)
(32)

see e.g. Delbaen & Schachermayer (2006) for further details.

Notation. From now on let S0 = B and S1 = S in order to adhere to the notation developed
in Delbaen & Schachermayer (2006) and Björk (2009) and to prevent clutter. Also, ν = µ− r is
let to denote the excess return on S.

Note that the process S̃ does not satisfy the martingale inequality in Definition 3.5 under
P. The market is complete since filtration F is only generated by a one dimensional Brownian
motion and three, including the European call option, traded assets. Assuming the market is
free of arbitrage then, by the second theorem of asset pricing 5, there exists a unique equivalent
martingale measure Q for each choice of numeraire S0 such that S is a martingale under Q.
Using the Girsanov Theorem, see e.g. Musiela & Rutkowski (2005), one can then deduce that
the Q-dynamics of S is given by

St = S0 exp

((
r − 1

2
σ2

)
t+ σWQ

t

)
WQ
t =

r − µ
σ

t+Wt

(33)

where WQ is a Brownian motion under Q. Note that expressing S in Equation (33) in units of
the numeraire asset yields

S̃t :=
S1
t

S0
t

= S0 exp

((
−1

2
σ2

)
t+ σWQ

t

)
which is a martingale under Q since EQ(ST |Fw0 ) = S0e

rT . Most notably, by applying Corollary
1 on a call option X = (ST −K)+ one can solve for the famous Black-Scholes pricing formula.

Theorem 7 (Black-Scholes Pricing Formula). Let Π be the price process of a European call
option X. Then the Black-Scholes price of X is given by

ΠBS
0 = S0Φ

(
log
(
S0

K

)
+
(
r + 1

2σ
2
)
T

σ
√
T

)
−Ke−rTΦ

(
log
(
S0

K

)
+
(
r − 1

2σ
2
)
T

σ
√
T

)
. (34)

where Φ is the distribution function of a standard normal random variable.

Proof. See Delbaen & Schachermayer (2006) or for an alternative proof using partial differential
equations Black & Scholes (1973).

Our objective in this controlled simulation environment is to statistically estimate the P-
dynamics, i.e. Equation (32), using generative adversarial networks, then hedging and pricing
the call option in Equation (34) for a discrete grid of strikes and maturities using deep hedging.
Hence, the following metrics can be used in order to evaluate model performance:

• Distribution approximation. We evaluate the distributional performance of asset prices
by comparing the model distribution of the underlying asset to the empirical distribution.
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Fortunately, in the Black-Scholes model,using Equation (31) one can easily deduce that dS
S

is a normally distributed and stationary process with expected value and variance given by

EP

(
dSt
St

)
= µdt

Var

(
dSt
St

)
= σdt

(35)

for all t. Therefore we test the divergence of the model distribution P̂ from the target
P-distribution given by N (µdt, σdt) through the Kolmogorov-Smirnov test where µ = 0.1
and σ = 0.2 represents drift and volatility of S respectively.

• Hedging. In the Black-Scholes model, hedging has analytical techniques, the proportion
of stock to hold is given by the derivative of the option with respect to the stock price,
i.e. H1 = ∂SΠ and Hj = 0 for all j > 1. See e.g. Björk (2009) ch. 9 for further details.
Conveniently, H has a analytical solution given by

H1 = ∂SΠt = Φ

(
log
(
St
K

)
+
(
r + 1

2σ
2
)

(T − t)
σ
√
T − t

)
(36)

for a fixed maturity T . Therefore we compare the estimated hedging strategies from the
optimization in Equation (29) with the so called delta hedge in Equation (36).

The return distribution approximation of the TimeGAN algorithm applied to Geometric Brow-
nian motion is illustrated in Figure 4 and an example of generated sample path is also visualised
in Figure 5. Furthermore, the descriptive statistics are presented in Table 1.
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Figure 4: Histogram for returns of gen-
erated data G(W, θ) obtained by iterating
Equation (37) over 30 000 iterations with
batch size 128 on a Nvidia© V100 16GB
GPU using Tensorflow with CuDNN ker-
nels. Target data S is given by S1 in Equa-
tion (31) on 10 000 samples of 31 daily re-
turns.
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Figure 5: Sample path realization of gener-
ated random process Ŝt(ω) := G(W (ω), θ)t

where W is a Brownian motion as per
definition 3.2. Furthermore, the initial

condition is set to S0 = 3200 and T is a
index set over 31 days with daily prices.

Original sample size is 3000 daily prices.
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Data Type K-S statistic P-value Min, Max Mean Std.dev Skewness Kurtosis
Target · · (−0.0528, 0.0649) 0.0003 0.0001 −0.0077 0.0845
Model 0.500 0.000 (−0.0502, 0.0466) 0.0002 0.0001 −0.0313 0.0136

Table 1: Descriptive statistics for return distribution. Null hypothesis for Kolmogorov-Smirnov
(K-S) test represents equivalence of distributions. Generated data obtained by calculating returns
on the generator function values G(Wt(ω), θ) and target data from Euler discretization of dS

S in
Equation (31). Statistics are obtained for 10 000 sample path realizations of 31 daily prices.

Hence, although one can see in Figure 4 that the univariate P-distribution of a geometric
Brownian motion is rather well approximated, the Kolmogorov-Smirnov test concludes that the
target data and generated return data is from different distributions. However, this is likely due
to the large sample size chosen to conduct the test. If we decrease the sample size to 90 days of
returns, the Kolmogorov-Smirnov test statistic is reduced to 0.0.161 and a p-value of 0.211 which
is at least non-zero. However, the null hypothesis is still not rejected. In order to get a more
direct overview on the distributional approximation of the price S, we consider a countable set
of 200 function values of the random process S and its approximation Ŝ. The results are shown
in Figure 6, which illustrate similar results to those obtained in e.g. Buehler et al. (2020).
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Figure 6: Simulated paths from Ŝ(X ) := G(W (X ), θ) (Blue) and S(X ) (Red) given by Equation
(30).X ⊂ Ω is a countable subset of 200 samples.
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From Figure 6, we can see that marginal probability distributions, i.e. P(ω ∈ Ω : St(ω) ≤ s)
seems rather well approximated. Although our implementation of the TimeGAN algorithm is
unable to replicate the thickness of the tails for the target distribution. In Fu et al. (2019),
they are able to more closely fit the tails of the distribution. The fat-tailed/power-law nature of
returns is also used as a key evaluation metric used in Buehler et al. (2020), hence the ability for
our proposed model to generalize to real financial time-series may be impaired by this stylised
fact.

Since the random process S is a geometric Brownian motion given by Equation 32, it is Marko-
vian and therefore its returns exhibit zero autocorrelation. We visualize the results in Figure 7
from which one can see that the TimeGAN approximation also preserves low autocorrelation.
However, note that the autocorrelation is non-zero for the first time-step.
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Figure 7: Autocorrelation plot for Ŝ(X ). X ⊂ Ω is a countable set of 10 000 sample paths.
Geometric Brownian motion is a Markovian process hence zero autocorrelation beyond first step
so S is omitted from the figure.

This is one property that, upon reflection, could have been more clearly incorporated in the
architecture to suit the application of financial time-series generation. If one would have utilised
signature transforms, one could potentially eliminate this unwanted dependence structure since
the time-series would be encoded in very few coefficients. Furthermore, empirical research into
asset returns also confirm that real financial time-series exhibit zero autocorrelation and hence

36



constitutes a desirable property to replicate in order to accurately generalize to real financial
time-series.

We now consider the performance of the deep hedging algorithm. Firstly, the approximation of
the target δ-strategy is investigated when trained on sample paths of the true geometric Brownian
motion S. When the approximation capabilities and minimisation the L2 loss given by Equa-
tion 29 is established, we extend to sample paths from the generator which approximates the
P−dynamics of the random process S. In Figure 8, we show the resulting profit-loss-distribution
associated to the optimization in Equation 29 and Figure 9 displays sample path of the neural
network hedge, trained on sample paths of S, along with the benchmark δ-hedge.

Figure 8: Profit and loss histogram of Z
in Equation (26) of deep hedging algorithm
Hθ in the set (28) obtained by Equation
(29) and target δ-hedge computed by (36).
V0 in Equation (26) is set to current Black-
Scholes of option Π0 = 74.4. The model
is trained on 200 000 sample paths of S
given by Equation (32) and results are eval-
uated on 1 000 sample paths (out of sample)
for at-the-money European call option with
K = 3200. Training conducted on Nvidia©

V100-GPU using Tensorflow.

Figure 9: Sample path realization of hedg-
ing strategies. Deep Hedge H (blue) ob-
tained by training on sample paths of S
in Equation (32) and δ-hedge (red) com-
puted by Equation (36). T is set to 31 days
and T = 31/365. The option that is being
hedged is at-the-money (ATM) call option
with K = 3200. Data is obtained out-of-
sample from trained model with 200 000
sample paths of geometric Brownian mo-
tion, with 4 hidden layers, 40 neurons in
each layer and batch size of 128.

From the results presented in Figures 8 and 9, one can see that training the deep hedging
model on sample paths of the true P-dynamics of S approximates the target profit and loss
distribution. Note that a replication error is always going to be present in any discrete-time
implementation. Hence even though the theoretical hedge can completely hedge all risk in con-
tinuous time, the terminal profit loss distribution for the hedged portfolio will have non-zero
variance. If one would allow more frequent hedge re-balancing, the profit loss distribution will
converge towards zero.

As one can see in Figure 8, the target δ-strategy, given by Equation (36), is learned by the
hedging algorithm which can be further illustrated by the function values in Figure 9. Hence
one can empirically confirm that L2 loss in Equation (29) is also a feasible loss function in the
context of deep hedging. Therefore, the intuition of characterising optimal hedging policies as
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constrained minimisation of the arbitrage vector length is confirmed empirically.

We now consider the model performance of the joint algorithm, i.e training the deep hedg-
ing model on the approximated P-dynamics given by the generator function values G(Wt(ω), θG)
where W is a standard Brownian motion, see Definition 3.2 for details. The pnl-distribution of
the hedged portfolio is illustrated in Figure 10 and a sample path of the hedge in Figure 11. The
relevant metrics are presented in Table 2.

Figure 10: Profit and loss histogram of deep
hedging trained on generator sample paths.
The figure illustrates the density of Z in
Equation (26) for deep hedging algorithm
Hθ in the set (28) obtained by Equation
(29). The target δ-hedge is computed by
(36). V0 in Equation (26) is set to Black-
Scholes price of option given by Theorem 7
with r = 0 and σ = 0.2, resulting in V0 =
Π0 = 74.4. The model is trained on 200 000
generated sample paths From Ŝ = G(W, θG)
and results are evaluated on 1 000 sample
paths (out of sample) for at-the-money Eu-
ropean call option with K = 3200. Training
conducted on V100-GPU using Tensorflow.

Figure 11: Sample path realization of hedg-
ing strategies. Deep Hedge H (blue) ob-
tained by training on sample paths of the
TimeGAN generator Ŝ = G(W, θG), see Ap-
pendix B. δ-hedge (red) computed by Equa-
tion (36) on S. T is set to 31 days and
T = 31/365. The option that is being
hedged is at-the-money (ATM) call option
with K = 3200. Data is obtained out-of-
sample from trained model with 200 000
sample paths from generator. Hedging net-
work has 4 hidden LSTM layers, 40 neurons
in each layer and batch size of 128.

Model Type Π0 Hedging Loss ‖H − δ‖2 Mean Std.dev
δ-strategy 69.00 14.375 0.000 0.000 12.285

Deep Hedge 73.94 6.9851 0.0558 0.000 5.646

Table 2: Statistics on testing results of hedging using the joint model. Π0 := X − VT for both
strategies. Hedging loss is defined by the L2 loss in Equation (29) evaluated on 1 000 samples of
the generator (out-of-sample). Note that distributions has zero mean since they are de-meaned.

From Figures 10 to 11 and Table 2 one can see that the deep hedging model seemingly out-
performs the δ-hedge even though their sample paths are very similar. However, note that one
calculates the δ-strategy using the Black-Scholes model, on sample paths from the generator.

38



Therefore, since the GAN approximation is imperfect, especially in the tails, the δ−strategy is
naturally slightly biased. The GAN model will assign a larger probability to the option remain-
ing in the money than what the normal distribution implies and therefore the δ-strategy will be
under sensitive to lower probability moves. This likely causes the δ-strategy induced price to be
lower than the Black-Scholes price of Π0 = 74.4 as can be seen in Table 2. Furthermore, the
TimeGAN induced distributional divergence may also be the root cause of the tighter profit-loss
distribution, see Figure 10 and Table 2. However, due to the time constraints of a thesis project,
we are not able to further investigate weather or not this is the case. In Figure 11, we can see
that deep hedging strategy is very similar to the δ-hedge which is further confirmed by their L2

distance presented in Table 2.

The code for the model herein presented is available at the projects GitHub repository. For
further information regarding training time and hyper-parameter settings used, the reader is
referred to the projects Weights And Biases pages.

As is indicated by the results, our combined model is seemingly able to outperform the δ-strategy,
which could be due to the approximation error caused by the TimeGAN algorithm. However,
we are unable to produce results on real market data to a satisfactory degree. We believe that
this is at least in part attributable to the architecture of the TimeGAN algorithm, since it uses
a multitude of recurrent neural networks and the CuDNN kernels for recurrent neural networks
is somewhat constrained such that recurrent dropout regularisation is unavailable. However,
we believe that the main reason as to why the model is unable to generalise is due to the fact
that random process approximation is a highly specific task. Therefore, in our view, a different
architecture should be considered for future research and applications. Preferably one that uses
signature transforms and is tailor-made to random process approximation in the context of fi-
nancial modelling such as Ni et al. (2020) or Kidger et al. (2019). More suggestions are provided
in the conclusion.

8 Conclusions & Suggestions for Future Research

This thesis has investigated both the theoretical aspects and implementation of a derivative pric-
ing model, exclusively using machine learning. We combine the deep hedging model presented by
Buehler et al. (2019) with the TimeGAN algorithm in Yoon et al. (2019) in order to approximate
the P-dynamics of a given asset price process, trained on a reasonable number of samples. The
deep hedging algorithm is trained on samples from the generator in order to arrive at a pricing
and hedging policy.

Our results indicates that the model is successful in approximating both pricing/hedging and
simulation in the context of the Black-Scholes model. Meaning that we have successfully imple-
mented both component algorithms in a controlled simulation environment. However, we are
unable to generalise beyond a one dimensional geometric Brownian motion. Generative adversar-
ial networks are notoriously difficult to train because of the adversarial objective function. The
objective in a regular neural network is to minimize some loss function by choice of parameters.
However, in GAN’s the objective is to reach a Nash-equilibrium and have a stable loss associated
to the generator and discriminator. In essence, one want the generator to achieve a accuracy of
”fooling the discriminator” of around 50% and a classification accuracy for the discriminator of
50% Salimans et al. (2016). We have found that if the generator loss is larger than 50%, then
the generator likely fools the discriminator by generating samples that only exploits the discrim-
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inator miss-classification, which has also been found in numerous other GAN architectures, see
e.g. Salimans et al. (2016). In the case of the TimeGAN algorithm we believe that this is likely
due to the many networks involved in the calculation of the total loss. Therefore we believe that
in order to achieve stable training, the GAN architecture has to be suited to random process
approximation. In our view, architectures similar to Ni et al. (2020) would likely be better since
it explicitly uses signatures, which accelerates training and yet still preserves the essential struc-
tures of the original dataset. Furthermore, we also believe that some of the training instability
could be addressed by placing larger emphasis on pre-processing in general. Furthermore, we
also found that the TimeGAN approximation of the geometric Brownian motion yields non-zero
auto-correlated returns. This would likely also be addressed by signature transforms and could
perhaps be resolved through a larger amount of training iterations.

Even though we can visually identify that the distribution is approximated for a geometric
Brownian motion, the training procedure was highly sensitive to hyper-parameter optimization.
For example, the convergence of the TimeGAN algorithm was highly sensitive to changes in
learning rate, batch size and the number of neurons in the hidden layers of the network. We
achieved convergence of the algorithm only whilst using a depth of 3 layers in each component
network, learning rate of 0.0005, batch size of 128 and 30 000 training iterations on a V100
GPU. Hence, upon reflection, we would likely choose a different architecture for the generative
adversarial component of the joint method.

The deep hedging model converge to its benchmarked δ-hedging strategy when trained on sam-
ple paths of 1-dimensional geometric Brownian motion. Furthermore, replacing the convex risk
measure in Equation (27), by the L2 norm still approximates the target δ-hedging strategy as can
be seen in Figures 8 and 9. However when training the deep hedging network on samples from
the generator G, the loss density becomes tighter than the delta hedging strategy, see Figures 10
to 11 and Table 2. The δ-strategy is computed by the Black-Scholes model and represents the in-
the-money probability, see Equation (36). As discussed in Section 7, the δ-strategy is computed
on sample paths of the generator which has tighter return distribution than that of the target
P-dynamics of the geometric Brownian motion. Therefore, the δ-strategy will naturally associate
higher probability to tail events than the trained neural network strategy would. This causes
a bias in the δ-strategy, which is likely the cause of the over-performance of the deep hedging
strategy. Furthermore, this is also likely the cause of the miss-pricing illustrated in Table 2 for
the δ-strategy. Therefore, it might be the case that the inability of the TimeGAN algorithm
to approximate the tails of the target distribution, see Figure 4, causes a divergence in hedging
performance from the benchmark strategy. However, it could also be a result of implementation
error. Due to the limited time constraints placed on a thesis project, we have not been able to
investigate this result any further.

Since we are unable to approximate the distribution of real asset prices to a satisfactory de-
gree, a lot of research is still required for the interplay between the deep hedging algorithm and
neural samplers. There is still no guarantee that the distribution implied by the neural sampler
preserves no-arbitrage, especially the martingale condition in Theorem 2. One possible avenue
of how to address this could be to utilise the deep hedging algorithm combined with a neural
sampler (GAN, RBM, VAE), to better understand the connection between the physical measure
P and the pricing measure Q. For example, the theoretical extension of the deep hedging to
cover the entire option chain is rather trivial, since arbitrage will be defined point-wise on the
term-structure. If one is able to simultaneously price and hedge all options on a fixed underly-
ing asset and then backpropagate the pricing error to the generator, then one could potentially
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calibrate the generator to market prices. Thereby implicitly learning the pricing distribution of
the underlying asset.

In conclusion, even though our proposed model, i.e. the combination of the TimeGAN algorithm
with the deep hedging model, shows good performance in approximating the Black-Scholes model
in terms of simulation, pricing and hedging, we are unable to generalise to real market data. In
the future, we would consider replacing the TimeGAN algorithm with models similar to those in
Ni et al. (2020) or Buehler et al. (2020) and Wiese et al. (2020), since larger emphasis is placed
on pre-processing the data.

We hope that this thesis could provide a good introduction to the interplay between genera-
tive adversarial networks and the general field of arbitrage theory. Furthermore, given the lack
of accurate approximations for real market data, we also hope that this thesis may highlight some
implementation related difficulties using the TimeGAN and its impact on hedging strategies.
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A Mathematical Prerequisites

This Appendix serves the purpose of introducing the reader that is unfamiliar with probability
theory to the necessary concepts utilised in the thesis. Therefore, this appendix contains all
notation not covered in the main part of the thesis. Hence, the reader is referred here in case of
unclearity regarding notation utilised in the above sections.

Outline. In Appendix A.1, we aim to provide a mathematical introduction to probability spaces.
In particular, we define topological spaces and vector spaces, both of which will be needed for
future constructions. Furthermore, in Appendix A.2, probability theory from a measure of
theoretical point of view is considered, since it will be required throughout the thesis. Appendix
A.2 contains several sub-appendices. We start by constructing the relevant space for general
probability theory. In Appendix A.2.2, the theory developed in Appendix A.2.1 is used to provide
a proper definition of random variables as measurable functions on the previously constructed
probability space. We also define the expectation operator as the Lebesgue integral over the
domain of a random variable.

A.1 Algebraic Structures

Algebraic structures embed information about a set and provide operations necessary for the
definition of the object of study. Arguably the simplest structure is that of a topology

Definition A.1. Let M be a non-empty set. A topology is a collection of subsets O ⊂ P(M)
such that

• ∅,M ∈ O.

• For any sequence (An)n∈N such that An ∈ O ∀n ∈ N it is true that⋃
n∈N

An ∈ O.

• Let N ∈ N be finite, then for any finite sequence (An)n=1,...,N such that An ∈ O n ≤ N it
is true that ⋂

n≤N

An ∈ O.

For further reference on basic topology, see e.g. Rudin et al. (1964) ch 2.

Terminology. The elements of a topology are called the open sets and (M,O) a topological
space.

For completeness vector spaces are also defined. Throughout the thesis, the Lp spaces of
random variables and processes (to be defined) are used for construction and can be shown to
adhere to the vector space definition. Hence the following definition is absolutely central to the
formal theory herein developed.

Definition A.2. Let (K,+, ·) be a field. A K-vector space is a triple (V,⊕,�) where V is a
non-empty set and two maps

⊕ : V × V −→ V

⊗ : K × V −→ V

satisfying the axioms: C⊕A⊕N⊕I⊕ A(⊕,⊗)D(⊕,⊗)D(⊕,⊗)U⊗. We call the elements of a vector
space vectors.
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Any introductory linear algebra textbook can be consulted for the clarification of the vector
space axioms, see e.g. Treil (2016) pp 1-2.

Notation. From now on, unless it is not clear from context which maps are meant, we drop the
circle notation.

A.2 Probability Theory

In this Appendix we try to provide a acceptable foundation to readers that are uninitiated in
probability theory. Therefore, naturally, this Appendix will also develop notation, that is utilised
in the thesis.

A.2.1 Probability Spaces

Fundamentally, what is a probability? Intuitively a probability is notion of relative volume. The
Formal definition of a probability require restricting to which sets/events probabilities can be
defined on.

Definition A.3. Let Ω be a non-empty set. A collection of subsets F ⊂ P(Ω) is called a
σ-algebra if:

• ∅,Ω ∈ F .

• ∀A ∈ F : Ω \A ∈ F .

• For all countable sequences (An)n∈N such that An ∈ F , ∀n ∈ N it is true that⋃
n∈N

An ∈ F .

Terminology. The elements of a σ-algebra are called the measurable sets and (Ω,F) a measur-
able space.

The most frequently used σ-algebra in probability theory is the so called Borel σ-algebra.
However, before defining the Borel σ-algebra, we need the notion of generated σ-algebras.

Definition A.4. Let M be a set and A ⊂M . Then the collection

E = σ(A) :=
⋂

σ:σ−algebra
A⊂σ

σ

is a σ-algebra. Furthermore, E is called the σ-algebra generated by A which is called the gener-
ating set. Note that E constitutes the smallest σ-algebra containing A.

Proof. See e.g. Jacod & Protter (2012).

Definition A.5. Let
(
R,O

∣∣
R

)
be the standard topological space over R. Then the Borel σ-

algebra is defined as
B := σ(O

∣∣
R).

Theorem 8. Let (R,B) be a Borel measurable space over R. Then

B = σ({(−∞, x] : x ∈ R)})
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Proof. See e.g. Rudin (2006) page 12.

Sufficient definitions have now been made in order to construct the notion of a measure

Definition A.6. Let (Ω,F) be a measurable space. A measure is a map

µ : F −→ R

satisfying the following conditions:

i For all A ∈ F : µ(A) ≥ 0.

ii µ(∅) = 0.

iii For any countable sequence (An)n∈N of measurable and pairwise disjoint sets, it is true
that

µ

(⋃
n∈N

An

)
=
∑
n∈N

µ(An).

Terminology. We call the triple (Ω,F , µ) a measure space.

One general measure that is used in the definition of probability densities is the so called
Lebesgue measure.

Definition A.7. Let (Rd,F) be a measurable space. The Lebesgue measure on Rd is the map

λd : F −→ R

E 7−→ λd(E) :=

d∏
i=1

(bi − ai)

for every closed interval E with bi ≥ ai for all i.

Now, the definition of a probability measure is very simple.

Definition A.8. Let (Ω,F) be a measurable space. A probability measure is a measure such
that

P : F −→ [0, 1]

and we call the triple (Ω,F ,P) a probability space.

A.2.2 Random Variables & Integration

One of the most fundamental concepts in probability theory is that of a random variable and
the expectation operator.

Definition A.9. Let (Ω,F ,P) be a measurable space and (E, E) a measurable space. Then a
map X : Ω −→ E is called a random variable if

∀B ∈ E : X−1(B) ∈ F .

where X−1(B) = {ω ∈ Ω : X(ω) ∈ B} denotes the pre-image of B under the map X.

Terminology. In the above definition we say that the random variable X is (F , E)-measurable.
If the choice of σ-algebra in the target is immaterial, the σ-algebra in the target on which X is
measurable is linguistically ignored.
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One way to inherit a probability measure from a probability space is through what is called
the push-forward method, which is vital in the construction of the Lebesgue integral.

Definition A.10. Let (Ω,F ,P) be a probability space and (M,O) a topological space that
induces a measurable space (M,σ(O)). Furthermore, let X : Ω −→M be a (F , σ(O))-measurable
random variable. Then the push-forward probability measure X∗P is a probability measure on
(M,σ(O)) and is defined by

X∗P : σ(O) −→ [0, 1]

B 7−→ (X∗P)(B) := P(X−1(B)) = (P ◦X−1)(B)

for any B ∈ σ(O)

Remark. Let M = R and choose O = O
∣∣
R as the standard topology on R, then the topology

induces the Borel σ-algebra σ(OS|R) = B. Furthermore, by Theorem 8

(X∗P)(B) = P({ω ∈ Ω : X(ω) ∈ B})
= P({ω ∈ Ω : X(ω) ∈ (−∞, x]})
= P({ω ∈ Ω : X(ω) ≤ x]})

which provides the characterization of the probability distribution of a real valued random vari-
able, as a measure inherited from the probability space over the target, making (R,B, X∗P) a
probability space in its own right.

Definition A.11. Let (Ω,F ,P) be a probability space. Furthermore, let X and Y be two
random variables defined on Ω. Then X is equal to Y almost surely if

X =
a.s.

Y :⇐⇒ ∃ N ∈ F : X(ω̄) = Y (ω̄), ∀ω̄ ∈ Ω \ N

where P(N ) = 0. Furthermore, equal almost surely constitutes an equivalent relation. The
definition works just as well when Y is a constant.

Notation. If it is unclear from context which probability measure is meant we explicitly denote
the equivalence relation by =

P−a.s.
.

In order to develop a notion of integration of non-negative measurable functions / random
variables on probability spaces, we need to define set functions.

Definition A.12. Let (Ω,F ,P) be a probability space and (R+,B+) be a Borel measurable
space. Then a measurable function S : Ω −→ R+ is called a simple function if its image is finite

S(Ω) = {S1, . . . , SN}

for some N ∈ N.

Remark.
S =

∑
z∈S(Ω)

z · 1S−1({z}) ∈ F , ∀i ≤ N

where 1{A} is an indicator function for an arbitrary set A. Note that S(Ω) is a countable set
and S is finite and therefore do not need to worry about convergence.

We can now give the definition of integration on probability spaces.
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Definition A.13. Let (Ω,F ,P) be a probability space and (R̄+
0 , E) a measurable space over

the extended non-negative real numbers. Then the Lebesgue integral over the domain of a non-
negative real random variable X : Ω −→ R̄+

0 is a real number∫
Ω

XdP := sup
0≤Y≤X

∑
y∈Y (Ω)

y · P(Y −1({y})) = sup
0≤Y≤X

∑
y∈Y (Ω)

y · (Y∗P)({y})

where Y : Ω −→ R̄+
0 is a simple random variable as in Definition A.12 that lie below the graph

of X.

Definition A.14. A random variable X is called integrable if

i X is measurable.

ii
∫

Ω
|X|dP <∞.

Remark. Let X : Ω −→ R̄ then
∫

Ω
|X|dP <∞ if and only if∫

Ω

X+dP <∞,
∫

Ω

X−dP <∞

where X = X+ −X−, X+ := max(X, 0) and X− := max(−X, 0).

Definition A.15. Let (Ω,F ,P) be a probability space and (R, E) be a measurable space over
the real numbers. The function space of p-integrable real valued random variables is the set

Lp(Ω,F ,P) :=

{
X : Ω −→ R

∣∣∣∣X (F , E)-measurable,

∫
Ω

|X|dP <∞
}

for some p <∞ and any σ-algebra on the target.

The definition of the expectation operator is now very simple.

Definition A.16. Let X ∈ L0(Ω,F ,P) be a random variable. The expectation operator is the
linear map

E : L0 −→ R

X 7−→ E (X) :=

∫
Ω

XdP.

Before being able too highlight the abstract definition of a expectation to the standard intr-
ductory definition, we have to state a theorem from measure theory.

Theorem 9 (Radon - Nikodym). Let (Ω,F ,P) be a probability space. Suppose that

∃ ν >> P :⇐⇒ P(A) = 0 =⇒ ν(A) = 0, for some A ∈ F .

Then

∃ F-measurable random variable Y :

ν(A) =

∫
A

Y dP ∀ A ∈ F .

Proof. See e.g. Billingsley (2008)
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Notation. Y is called the Radon-Nikodym derivative and denote it by dν
dP . Note that this

theorem holds for general measures and not only probability measures.

Definition A.17. Let X : Ω −→ Rn be a random variable. Furthermore, let λn be the Lebesgue
measure on Rn as in Definition A.7, and suppose that λn >> X∗P. Then the probability density
X exists and is defined as the Radon-Nikodym derivative

fX :=
dX∗P
dλn

.

For random variables with values in the integers, we let the reference measure ν be the counting
measure.

Theorem 10 (Change of Variables). Let (Ω,F ,P) and (E, E) be a probability space and mea-
surable space respectively. Let X : Ω −→ E be a random variable. Another random variable
Y defined on E is integrable with respect to the push-forward measure X∗P if and only if the
composition Y ◦X is integrable with respect to P. In that case, the integrals coincide∫

Ω

Y dX∗P =

∫
E

Y ◦XdP.

Proof. See e.g. Bogachev (2007)

We now give some concrete examples on applications of Radon - Nikodym derivatives and
Theorem 9.

Examples. Let the target σ-algebra in Definition A.17 be the Borel σ-algebra B on R.

i Then the distribution can be characterized as

(X∗P)(B) =

∫
X−1(B)

dX∗P, for any B ∈ B.

fX :=
dX∗P
dλn

implies dX∗P = fXdλ
n.

Hence

∫
X−1(B)

dX∗P =

∫
X−1(B)

fXdλ
n

=

∫
X−1(B1)

∫
X−1(B2)

. . .

∫
X−1(Bn)

fX(x1, . . . , xn)dx1dx2 . . . dxn

=

∫ x1

−∞

∫ x2

−∞
. . .

∫ xn

−∞
fX(y1, . . . , yn)dy1dx2 . . . dyn.

which is the usual characterization of a probability density function for a Rn valued random
variable,

ii Suppose X : Ω −→ R and λ >> X∗P, then by Theorem 9

E(X) =

∫
Ω

XdP =

∫
R
xd(X∗P(x))

=

∫
R
xfX(x)dλ =

∫ ∞
−∞

xfX(x)dx

Notice that we go from the abstract Lebesgue integral to the Riemann integral. For conditions
on which functions are Riemann integrable, see e.g. Rudin et al. (1964).
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We are now able to properly discuss conditional expectations.

Definition A.18. Let (Ω,F ,P) be a probability space. Furthermore, let G ⊂ F be a σ-algebra.
Then the conditional expectation of a F-measurable random variable given the information G is
a random variable E(X|G) such that

i . E(X|G) ∈ L1(Ω,G,P).

ii . For all G ∈ G it is true that ∫
G

E(X|G)dP =

∫
Ω

XdP

Remarks. The definition is quite abstract and only states which conditions must be satisfied.
Hence we proceed by the following remarks

i . Since G ⊆ F , X is not necessarily G-measurable. Which means that integrals like∫
G

XdP
∣∣
G , G ∈ G

where P
∣∣
G is the restriction of P to G, do not exist unless X is G-measurable.

ii . The existence of E(X|G) can be established by noting that ∀ A ∈ F it is true that

µX : A 7−→
∫
A

XdP

is a finite measure on (Ω,F) such that µ << P. Let g : G −→ F be an inclusion map, then

µX ◦ g = µX
∣∣
G

and P ◦ g = P
∣∣
G . Furthermore, µX ◦ g << P ◦ g, hence their Radon-Nikodym derivative is

defined and the conditional expectation exists in the form

E(X|G) =
dµX

∣∣
G

dP
∣∣
G
.

iii . Suppose Y is also random variable with values in the measurable space (E, E). Then the
conditional expectation of X given Y is defined as

E(X|Y ) := E
{
X|σ(Y −1(E))

}
= E

{
X|Y −1(E)

}
.

B TimeGAN Algorithm

The particular architecture we consider for approximating distributions in this thesis is the
TimeGAN algorithm introduced by Yoon et al. (2019). In practice, the convergence of a ”pro-
totypical GAN” as per Definition 5.7, can be difficult to achieve with respect to sequential data
according to Yoon et al. (2019). The TimeGAN attempts to address this by introducing auxil-
iary components; One embedding function E , recovery function R, a generator G and finally a
discriminator D. The first two components are maps into and out of a lower dimensional latent
space representation of the state space of d+ 1-dimensional market process S respectively. The
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adversarial components (G,D), then aim to map some d + 1-dimensional noise process Z into
the latent space, on which the discriminator acts. For our applications, it makes sense to use a
Brownian motion W , see Definition 3.2, to represent Z.

Formally, let (V,+, ·) be a R-vector space of dimension m < d. Furthermore, let E and R
be maps

E : L∞(Ω× T )×ΘE −→ V
R : V ×ΘR −→ L∞(Ω× T )

represented as outputs of two recurrent neural networks, as defined in Definition 5.3. In particular
E and R adhere to the representation

E(S, θE)t =fE(Et−1, St; θ
E)

R(S̃, θR)t =fR(Rt−1, S̃t; θ
R)

for state transition functions fE and fR and each t ∈ T . It is evident that the objective of the
recovery function is to reconstruct the random process from its latent space representation, i.e.
serve as a approximation of the inverse embedding function E−1. To that end, Yoon et al. (2019)
defines the reconstruction loss

LR :=
∑
t∈T
‖St − (R ◦ E)(S)t‖2

where R◦E(S) is the reconstructed process and the norm ‖·‖2 is the L2 norm on the probability
space (Ω,FWt ,P) defined by

‖St‖2 =

(∫
Ω

|S|2dP
) 1

2

for all t ∈ T . Note that T is a countable and finite set, hence convergence is naturally satisfied.
The generator and discriminator are now defined as a map and a class of functions

G : L∞(Ω× T )× θG −→ V
D : V −→ [0, 1].

Furthermore, in order to train the adversarial component one can define a unsupervised loss LU ,
equivalent to Equation (22), by

LU := EP

(∑
t∈T

(log ◦D)(S̃)t

)
+ EP̃θ

(∑
t∈T

(log ◦D ◦ G)(1−W )t

)

where W is a d-dimensional Brownian motion as per Definition 3.2 and S̃ ∈ V. However, Yoon
et al. (2019) argues that LU may be insufficient to recover the marginal conditional distributions
of the random process S and to address this they consider the additional supervised loss LS to
further discipline learning

LS :=
∑
t∈T

∥∥E(S, θE)t − G(W, θG)t
∥∥

2

where again ‖·‖2 is the L2 norm on (Ω,FWt ,P). The training is then performed in two steps

step 1: inf
(θE ,θR)∈ΘE×ΘR

{λLS + LR}

step 2: inf
θG∈ΘG

{ηLS + sup
θD∈ΘD

LU}
(37)
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for hyperparameters λ, η ∈ R+, where step 1 is the training of the embedder and recovery net-
works and step 2 is the adversarial training. Note that step 2 in Equation (37) is very similar to
the prototypical adversarial objective in Equation (21), with the only difference being an addi-
tional supervised loss component. Both steps in Equation (37) is achieved by gradient descent
and backpropagation. The optimizations in Equation (37) enables the TimeGAN algorithm to
encode the random process, generate latent space representations of the process and recover such
latent space representations into bounded random processes.

Intuitively, one can think of the TimeGAN algorithm as optimizing a latent space represen-
tation and noise embedding maps such that the mapped noise is ”dense” in the latent space
representation of the random process. This makes hyper-plane separation between real and fake
samples infeasible and thus high probability classification is unattainable. The objective is then
to learn to reconstruct the distribution of the original process by learning the inverse embedding
function.
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