
Design and Assessment of an Engine
for Embedded Feature Annotations

Master’s thesis in Computer Science and Engineering

Tobias Schwarz

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2020

Master’s thesis 2020

Design and Assessment of an Engine
for Embedded Feature Annotations

Tobias Schwarz

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2020

Design and Assessment of an Engine for Embedded Feature Annotations

Tobias Schwarz

© Tobias Schwarz, 2020.

Supervisor: Thorsten Berger, CSE and Wardah Mahmood, CSE
Examiner: Jan-Philipp Steghöfer, CSE

Master’s Thesis 2020
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2020

iv

Design and Assessment of an Engine for Embedded Feature Annotations

Tobias Schwarz
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Features are an inherent unit of development of every software; and are defined as a
set of implementation artifacts that constitute a functionality that adds value to the
product, and is perceived useful by the customer. Locating features in source code is
a typical software developer task, whether it before implementing a new feature, or
maintaining and bug fixing of existing ones, as it is essential to know where to make
changes. For tracing features to their implementation, two mechanisms can be used;
external and internal documentation. As the names imply, external documentation
refers to maintaining the traceability links externally, whereas internal documenta-
tion involves labeling assets inside the source code (aka embedded annotations). For
internal documentation, two strategies are used namely eager and lazy approaches.
The former involves annotating the code artifacts during development, whereas the
latter requires extracting feature-related information from an un-annotated code-
base based on heuristics. The former, although involves some added effort, result in
significant returns in terms of accuracy and degree of reuse, also enabling a wider
range of analyses. Also, the added effort can be minimal depending on the size of
the project but soon begins to prove its worth in the short-run (when aiming to
reuse) as well as the long run (when maintaining the code base).

Embedded annotations (with eager strategy) allow a minimally invasive and almost
cost-neutral way to document the product features inside source code. This brings
some benefits, the significant ones being easier co-evolution of code and traceability
links, elimination of feature location, and ease in tasks like feature and artifact
reuse (cloning) and maintenance (propagation). Several approaches exist today on
how to document features in source code. Different definitions lead to different
implementations and therefore, reuse is not directly possible. This work tackles
exactly this issue and provides a unified design of embedded annotations with a free-
to-use reference library according to the presented specification. The functionality of
this library, aka. engine, is shown on the use case of partial feature-based commits.
Feature centric development, which is typical for agile projects get the possibility for
isolated source code commits based on specific features aka. embedded annotations.

Keywords: Embedded Annotations, Feature, Software Engineering, Software Prod-
uct Line, Git, Partial Commits

v

Acknowledgements
First, I would like to use this chance to thank my supervisor, Prof. Dr. Thorsten
Berger, who has worked on this thesis topic with me. His enthusiasm for the project,
guidance, countless discussions, and encouragement for better results allowed me to
create a great research work. Special thanks to my co-supervisor Wardah Mahmood
who always had an open ear for me and my general research questions. Without the
support of Thorsten and Wardah, I could not have done this work. Allowing me to
participate in the research group of Thorsten and find open-minded experts was an
enlightening experience.

Thanks to my examiner Prof. Dr. Jan-Philipp Steghöfer for his critical words and
push to even better research work.

Without the participants that took part in the survey as well as my thesis opponent
Supriya Supriya and peers and friends of my Master Studies in Software Engineer-
ing and Management at Chalmers | Gothenburg University this work would not be
what it is.

I want to thank in a very special way Liza Reuter and her parents. Without your
encouragement and unconditional support, I would not be where and who I am to-
day.

Finally, I would like to give a big thank my parents, as well as my siblings. My life
would miss a lot without you.

Tobias Schwarz, Gothenburg, June 2020

vii

Contents

List of Figures xii

List of Tables xv

List of Grammars xvi

1 Introduction 1
1.1 Statement of the Problem . 2
1.2 Purpose of the Study . 3
1.3 Structure of the Report . 3

2 Background and Related Work 5
2.1 Feature Definition . 5
2.2 Feature Usage . 5
2.3 Feature Location . 6
2.4 Traceability and Variability . 6
2.5 Feature tangling and scattering . 7
2.6 Tangling Degree and Scattering Degree 8
2.7 Git Version Control Data Flow . 9
2.8 Git Partial Commits . 9
2.9 Related Work . 10

3 Methodology 13
3.1 Research Questions . 13
3.2 Design Science . 13

3.2.1 Adjusted Design Science . 15
3.2.2 Project Research Objectives 18

4 Embedded Annotations Design 19
4.1 Formal Definition of Embedded Annotations 20
4.2 Feature Hierarchy Model . 23
4.3 Feature Reference Names . 25
4.4 Annotation Listing . 25
4.5 Feature expression logic . 26
4.6 Annotation Markers . 27

4.6.1 The begin-marker . 27
4.6.2 The end-marker . 27

ix

Contents

4.6.3 The line-marker . 28
4.6.4 Interleaving of Annotation Markers 29

4.7 Feature Mappings . 30
4.7.1 Feature-to-code mapping . 30
4.7.2 Feature-to-file mapping . 30
4.7.3 Feature-to-folder mapping . 32

4.8 Embedded Annotation Examples . 33
4.8.1 Annotation Code Examples 33
4.8.2 File Mapping Examples . 35

4.9 Evaluation Embedded Annotation Specification 36
4.9.1 Survey Creation . 36
4.9.2 Survey Results . 37
4.9.3 Design Changes . 45
4.9.4 Outcomes . 45

4.10 Embedded Annotations Workflow and Usage 46

5 Engine for Embedded Annotation Extraction 47
5.1 Parser Generator . 47
5.2 Engine Architecture . 48
5.3 Public Interface Methods and Capabilities 50
5.4 Engine Usage Example . 51

6 Industrial Use Case 53
6.1 Potential Use Cases . 53
6.2 Use Case “Partial Commit” . 54
6.3 State of the Art . 55
6.4 Tool Design . 57
6.5 Tool Architecture . 58
6.6 Partial Commit Limitations . 59
6.7 Tool Evaluation . 60

6.7.1 Scenario 1 - Adding New Assets to an Existing Feature 63
6.7.2 Scenario 2 - Evolution of Source Code in Embedded Annota-

tion and Base Source Code . 65
6.7.3 Scenario 3 - Refactoring Existing Structural Code Within a

Feature . 66

7 Discussion 69

8 Threats to Validity 73

9 Conclusion 75

10 Future Work 77

Bibliography 79

A Embedded Annotation Specification I
A.1 Embedded Annotation Definition by Authors I

x

Contents

A.2 EBNF Grammar Definitions . III
A.2.1 Feature Hierarchy Model Grammar III
A.2.2 Source Code Annotations Grammar IV
A.2.3 Feature-to-File Annotations Grammar V
A.2.4 Feature-to-Folder Annotations Grammar VI

B Survey Data Evaluation Embedded Annotation Specification VII
B.1 Survey of Embedding Annotations in Code VII
B.2 Feedback Participants . VIII

C Partial Commit Evaluation XXXIX
C.1 Scenario 1 - Adding New Assets to an Existing Feature XXXIX
C.2 Scenario 2 - Evolution of Source Code in Embedded Annotation and

Base Source Code . XLIII
C.3 Scenario 3 - Refactoring Existing Structural Code Within a Feature . XLVII

xi

Contents

xii

List of Figures

2.1 Git Data Flow Extract and Storage Level 9

3.1 Design Science Methodology applied for this research 17

4.1 Meta-Model for Embedded Annotations 22
4.2 EA-Survey, Participants job titles . 37
4.3 EA-Survey, Combined Mean values of design properties 38
4.4 EA-Survey Results, The notation is useful 39
4.5 EA-Survey Results, The notation is intuitive 39
4.6 EA-Survey Results, The notation is easy to learn 40
4.7 EA-Survey Results, The notation is easily applicable 40
4.8 EA-Survey Results, The notation is flexible to use 41
4.9 EA-Survey Results, The notation avoids redundancies 41
4.10 EA-Survey Results, The notation is succinct 42
4.11 EA-Survey Results, The notation is robust 43
4.12 EA-Survey Results, The notation is cheap 43
4.13 EA-Survey Results, The notation is convincing 44
4.14 Embedded Annotation Workflow and Usage 46

5.1 FAXE Engine Class UML Diagram 49

6.1 Partial Commit Workflow With Interactive Console “git add −−patch” 54
6.2 Git Partial Commit Workflow With Feature Focus With New Tooling 55
6.3 Git Partial Feature Commit Tool - Flow Diagram 58
6.4 Tool Evaluation, Available Features in Project, FeatureDashboard . . 61
6.5 Tool Evaluation, Available Features in Project, FAXE 61

C.1 Tool Evaluation Partial Commit, Scenario 1, Changes to Commit . . XXXIX
C.2 Tool Evaluation Partial Commit, Scenario 1, Tool Execution XL
C.3 Tool Evaluation Partial Commit, Scenario 1, git-add for Hunk in

HelloCommitTest.java . XL
C.4 Tool Evaluation Partial Commit, Scenario 1, git-commit for Staged

Changes . XLI
C.5 Tool Evaluation Partial Commit, Scenario 1, git-log After Tool Exe-

cution . XLI
C.6 Tool Evaluation Partial Commit, Scenario 1, git-diff for New CommitsXLII
C.7 Tool Evaluation Partial Commit, Scenario 2, Changes to Commit . . XLIII
C.8 Tool Evaluation Partial Commit, Scenario 2, Tool Execution XLIV

xiii

List of Figures

C.9 Tool Evaluation Partial Commit, Scenario 2, git-add for Hunk in
HelloCommitTest.java . XLIV

C.10 Tool Evaluation Partial Commit, Scenario 2, git-commit for Staged
Changes . XLV

C.11 Tool Evaluation Partial Commit, Scenario 2, Non-feature Changes
Unmodified . XLV

C.12 Tool Evaluation Partial Commit, Scenario 2, git-log After Tool Exe-
cution . XLVI

C.13 Tool Evaluation Partial Commit, Scenario 2, git-diff for New CommitsXLVI
C.14 Tool Evaluation Partial Commit, Scenario 3, Changes to Commit,

Feature FeatureTestScenario4 . XLVII
C.15 Tool Evaluation Partial Commit, Scenario 3, Tool Execution, Feature

FeatureTestScenario4 . XLVIII
C.16 Tool Evaluation Partial Commit, Scenario 3, Git Split Hunk in HelloFea-

ture.java . XLVIII
C.17 Tool Evaluation Partial Commit, Scenario 3, Git Skip Hunk in HelloFea-

ture.java . XLIX
C.18 Tool Evaluation Partial Commit, Scenario 3, Git Skip Hunk in HelloFea-

ture.java . XLIX
C.19 Tool Evaluation Partial Commit, Scenario 3, Git Split Hunk in HelloFea-

ture.java . L
C.20 Tool Evaluation Partial Commit, Scenario 3, Git Split Hunk rejected L
C.21 Tool Evaluation Partial Commit, Scenario 3, Manual Workaround for

Rejected Hunk Split . LI
C.22 Tool Evaluation Partial Commit, Scenario 3, Changes to Commit,

Feature FeatureTestScenario3 . LI
C.23 Tool Evaluation Partial Commit, Scenario 3, Tool Execution, Feature

FeatureTestScenario3 . LII
C.24 Tool Evaluation Partial Commit, Scenario 3, Git Split Hunk in HelloFea-

ture.java . LII
C.25 Tool Evaluation Partial Commit, Scenario 3, git-commit for Staged

Changes . LIII
C.26 Tool Evaluation Partial Commit, Scenario 3, git-log After Tool Exe-

cution . LIII
C.27 Tool Evaluation Partial Commit, Scenario 3, git-diff for New Commits

of Feature FeatureTestScenario4 . LIV
C.28 Tool Evaluation Partial Commit, Scenario 3, git-diff for New Commits

of Feature FeatureTestScenario3 . LIV

xiv

List of Tables

2.1 Definition of Scattering and Tangling Degrees 8

4.1 EA-Survey, Mean and SD of all Design Properties 38

6.1 Bitcoin-Wallet, Tool evaluation summary, FeatureDashboard 63
6.2 Bitcoin-Wallet, Tool evaluation summary, FAXE 63

A.1 Overview Embedded Annotation Concepts II

xv

List of Tables

xvi

List of Grammars

4.1 EA, EBNF of Shared Feature-Reference Expression 23
4.2 EA, EBNF of Shared FEATURENAME Expression 23
4.3 EA, EBNF-Snippet of Simple Hierarchy Model 25
4.4 EA, EBNF-Snippet of Annotation Markers 28
4.5 EA, EBNF-Snippet of feature-to-file Mapping 32
4.6 EA, EBNF-Snippet of feature-to-folder Mapping 33

A.1 EA, Full EBNF of Simple Hierarchy Model III
A.2 EA, Full EBNF of Annotation Markers IV
A.3 EA, Full EBNF of feature-to-file Mapping V
A.4 EA, Full EBNF of feature-to-folder Mapping VI

xvii

1
Introduction

Feature-driven development (FDD) structures, as part of the agile methods, the soft-
ware development process into client-value functionalities, so-called features. FDD
focuses on the process to continuously delivering software with an increasing number
of functional and non-functional features. (Palmer and Felsing, 2001)
Developing feature-based software requires more than the planning aspects of FDD
(Passos, Czarnecki, et al., 2013). Besides adding new features, they often need to be
refactored and evolved for their new purpose. For this purpose, the current feature
location in the source code must be known.
Locating a feature is a difficult task mainly due to its cross-cutting nature and the
deteriorating knowledge about them. Feature knowledge is not only important for
variant-rich systems, where they provide a way to distinguish variants, but also for
diversified software, such as software product lines. (Passos, Padilla, et al., 2015; Ji
et al., 2015)
For feature recovery and feature location, there are research approaches available for
full or semi-automated feature locations, but their results are not yet satisfactory
for practitioners (Abukwaik et al., 2018). Manual feature recovery and location is
more precise but causes at the same time more costs due to labor-intensive work. A
solution recently proposed by researchers is to continuously trace features and their
locations, using a lightweight technique; embedded feature annotations. Considered
as the least expensive technique for feature annotation, the costs for maintenance
is reduced and feature propagation and migration is improved for further software
variants. (Ji, 2014)
To use the full potential of embedded annotated features, tool support is required.
This ensures on the one side to encourage developers to use the annotations, and
on the other side to locate features with embedded annotations. Such a tool could
also be potentially be enriched with an integration in an existing software version
control system, such as Git.
Embedded annotations might find application to many software development areas.
By an integration into a programming language itself they could become natural
part of that specific language in development IDEs and could also be added as a
part of the language’s documentation. On the other hand such an integration limits
it to a specific programming language. A different approach would be to provide a
generic support of embedded annotations into tools and platforms which cover all
kinds of programming languages, such as Git or other version control systems.

1

1. Introduction

1.1 Statement of the Problem
Features are commonly used as a way to abstractly and more intuitively describe
functional or non-functional parts of software assets. As they are describing the
functionality of a software product, they can be used to express the product’s func-
tionalities on a common language level. Also, they are used for describing the dif-
ferences between product variants. When features are not documented, knowledge
about their functionality and location in source code often fades out over time and
needs to be recovered through labor-intensive work. To document features, there are
two possibilities, with embedded annotations in the source code itself or with a sep-
arate tool. (Krüger, Mukelabai, et al., 2019). The notion of features can thereby be
found in many planning tasks, as well as in agile methods and variant-rich systems.

Relevance of feature annotations Besides the described planning aspect, in
project planning, there are more fields where features take a central element. On
the highest level, they allow to easily describe characteristics of a variant-rich system.
Additional, other tools such as project and issue trackers are using the terminology
of the features. The main challenge is the current lack of support of features at the
source code level (Ji et al., 2015).
Knowledge of functions is not only important at higher levels, but also at lower
levels, such as configuration files, data sets and especially source code. Developing
features for further development, maintenance, platform construction or reuse have
one thing in common: at which point or points they are coded in the software.
Finding a feature is therefore an important task. (Entekhabi et al., 2019)
Ji et al. (2015) unveiled in a study that feature location is “one of the most common
activities of developers” and researched the costs and benefits of embedded annota-
tions. There are two kinds of feature location techniques. First, the eager one where
features are annotated during development, and the lazy one, where features are
annotated after development or even when locating them. In the study of Ji et al.
(2015), a cost-saving of 90% from the lazy to the eager strategy could be shown.
Also, their work set the foundation for tool developments of FLORIDA (Andam et
al., 2017), FeatureDashboard (Entekhabi et al., 2019), and a recommender tool for
missing feature locations (Abukwaik et al., 2018). One of the challenges with em-
bedded annotations is that there is currently no standard which unifies their usage
and appearance.

Feature annotation management To explore the full potential of embedded
annotated features, tool support is required. This ensures on the one side to en-
courage developers to use the annotations and on the other side to locate features.
Such a tool might be usable as a standalone application or integrated into existing
tools and platforms.
So far the previous mentioned tools, as well as variant management systems such
as FeatureIDE 1 or Pure::Variants2 are independent standalone, or in other plat-
forms integrated, solutions with different annotation semantics. Latter tools support

1http://www.featureide.com/
2https://www.pure-systems.com/products/pure-variants-9.html

2

http://www.featureide.com/
https://www.pure-systems.com/products/pure-variants-9.html

1. Introduction

thereby variability annotations, while embedded annotations consist of traceability
annotations.

1.2 Purpose of the Study
The purpose of this study has several main aspects. First, a standard for embedded
annotations shall be proposed. Second, a re-useable parsing engine for locating em-
bedded feature annotations shall be created. And third, the parsing engine should
be integrated with Git as an extension for partial feature-based commits.
For the embedded annotations several concepts exist and even when tool imple-
mentations are successors of each other the interpretations are slightly different - as
evident in (Ji et al., 2015) and (Entekhabi et al., 2019). Therefore as a first step,
a reference definition is required. The generation of a unified design for embedded
annotations is important beyond the need of a work to reference to. As soon as
tools shall be used in different projects, or developers switch projects, an efficient
usage is only possible when people and tools work in the same way together.
Due to the different embedded annotation interpretations, different implementations
exist to perform the work to extract them. With a reference definition as the second
step, a conformal reference and re-useable implementation can be provided.
With the third step, partial feature-based commit, a field is addressed which is little
known by mainstream development, even when Git-tooling is available. The exten-
sion and simplification of partial commits shall allow developers to easily use them
and organize their commits for annotated source code in a better way. Providing
tool support for partial feature-based commit reduce the number of steps to be per-
formed and reduce the risk of wrong steps by the developer.

To perform this study as close to practice as possible and to collect real-world
requirements, this study is conducted with practitioners. The study concept is done
with one specific company from the area of web development. The survey to evaluate
the notion of embedded annotations is conducted with practitioners from different
companies and industrial fields.

1.3 Structure of the Report
This report is structured such that after this introduction, Chapter 2 presents the
relevant background information for this report and the research carried out. Chap-
ter 3 presents the structure of applied research and the application of theory in this
context.
The next three chapters describe the results of this work. First, Chapter 4 shows
the created and reviewed design for a unified embedded annotation approach and
in addition the results of the conducted survey to evaluate it. Chapter 5 shows the
results for an engine implementation according to the previously shown embedded
annotation design. Lastly, the usage of the created engine in an industrial use case
is presented in Chapter 6.
In Chapter 7 the reached results are discussed, followed by the threats to validity

3

1. Introduction

of the conducted research and its limitations (Chapter 8). A summary of the con-
ducted research is given by Chapter 9 and Chapter 10 closes the report with an
outlook for potential future research.
The work is appended with further information about the embedded annotations
design (Appendix A) and the unmodified results of the survey (Appendix B). Ap-
pendix C shows details of the tool evaluation process conducted in Chapter 6.

4

2
Background and Related Work

This chapter provides the background and refers to related work for the scope of the
conducted research and this report.

2.1 Feature Definition
A feature in the field of software product development can be defined as a “logical
unit of behavior that is specified by a set of functional and quality requirements”
(Bosch, 2000, p.194). Features are used to describe product functionalities and serve
as the common language between technical and non-technical persons.
From a user perspective, a software product consists of several functional units
within one product or a product family. In the requirements process, these functional
units are expressed in functional and non-functional (aka. quality) requirements. A
feature covers a specific set of these requirements.
Features are in the first view functional requirements - functionality that is provided
by a software product or not. Considering features as non-functional requirements is
as important as considering them as functional requirements. The reason for this is
the overarching scope of non-functional requirements for the whole system and how
it functions. Non-functional requirements can address e.g. reliability, performance,
or maintainability of software products.
Features are not only of the type present or not in a software product. They may also
have dependencies between each other. The most common relationship is “depends
on” where one feature can only be present when the other one is already there. The
opposite relation is “mutually exclusive” where features can never be present at the
same time.

2.2 Feature Usage
In Chapter 2.1, features were described as a more abstract concept to describe the
software’s functionality. There are several approaches which put features in the
center of their design such as:
Software Product Line Engineering (SPLE) A software product line has the

goal to support a set of similar software products with a shared set of source
code. The potential variants are integrated into the shared platform and are
selected via a feature model, representing features and their relation.

Clone&Own Describes a procedure to copy a complete software or parts with
certain features and use it independent of the original product further on.

5

2. Background and Related Work

Feature-Driven Development (FDD) An agile methodology for project plan-
ning whereby the customers’ functionalities (features) are put in the center for
all planning tasks.

Virtual Platform A tool that supports a set of incremental migration techniques
to perform a transformation from clone&own to software product line engi-
neering.

2.3 Feature Location
For developing or changing a feature in the software, its location must be known. Ji
et al. (2015) discussed two important questions with feature locations. Firstly, “How
to effectively maintain traceability between the features and the corresponding soft-
ware assets?” and secondly “Where to store the feature traceability information?”.
Addressing the first question, to map features to source code, two possibilities ex-
ist, the eager and the lazy strategy. The eager strategy requires an effort to record
feature positions during the actual software development. The lazy strategy retroac-
tively re-constructs the feature location when required afterward. The benefit of the
eager strategy is for the developer to have in the moment of development the best
understanding of the feature and its relation to the source code. The process to
share feature knowledge and even deteriorating feature location knowledge might
hinder this work for developers themselves (Ji et al., 2015; Krüger, Mukelabai, et
al., 2019; Andam et al., 2017).
For recording feature locations, which is only applicable in the eager strategy, two
possible solutions exist. Either to record the feature location in an own external tool
or directly with the source code artifacts. The external tool requires a universal way
to position the feature locations in different kinds of software artifacts and to handle
the evolution of source code. This means that changes must be either detected
and mapped or manual work is required to keep the tool up-to-date. The internal
(embedded) approach requires a general approach as well to annotate all kinds of
software assets without disturbing its functionality or pre-compiler functions.
Krüger, Çalıklı, et al. (2019) showed that small improvements on the source code
level have a big impact on software development, as developers primarily focus on
it. A lightweight technique, such as embedded feature locations into source code,
has an immediate benefit to development and maintenance without tool training or
specialist processes to follow.

2.4 Traceability and Variability
Embedded annotations for feature locations may serve two purposes. Either to trace
the location of the feature(s) in the source code (traceability) or to control the active
parts of a software product which are part of the product’s binaries (variability).
To document feature locations in a most flexible way, as well as to link these to
other artifacts, the notion of traceability is followed.
Using traceability information for variability purposes and vice versa must be han-
dled with care. Variability information (e.g. #IFDEF pre-compiler) are exclusive

6

2. Background and Related Work

on the source code level and contain very specific information which source code
parts are pre-compiled into the binaries. Traceability information thereby allows to
map source code to features while keeping it unmodified. Furthermore, it enables
the link to higher levels such as software architecture or requirements and provides
higher flexibility in marking features, due to the non-modifying character.

2.5 Feature tangling and scattering

A goal of software development is to create modular and re-usable source code.
Therefore, to follow the design principle separation of concerns is required. This
means that concerns - aka. features - are separated into consistent blocks of source
code, also known as cohesion. At the same time, these code blocks need to be inde-
pendent of each other, known as coupling. To reach a good modular and re-usable
software it shall have high cohesion and low coupling. With rising complexity, legacy
systems, and interconnections between concerns (cross-cutting concerns) the sepa-
ration into code blocks is difficult or would complicate the overall software unnec-
essarily. Therefore, software products have always features that are interconnected
either in a tangled or scattered way. (Apel et al., 2013)

Feature Tangling means that source code blocks belonging to a certain feature
are mixed with source code belonging to different feature(s) inside one logical unit,
such as a class, method, or if/switch statement.

Feature Scattering means that a certain feature is separated over multiple dif-
ferent parts of the source code, such as classes or methods.

Example for tangling and scattering The following source code snippets show
an illustrative example for tangling and scattering. The code is scattered for feature
“Weight” (in red) and feature “Color” (in blue) over all shown classes. Inside class
“Edge” both features are tangled.

7

2. Background and Related Work

c l a s s Graph {
Vector nv = new Vector () ;
Vector ev = new Vector () ;
Edge add (Node n , Node m) {

Edge e = new Edge (n , m) ;
nv . add (n) ; nv . add (m) ; ev . add (e) ;
if (Conf.WEIGHTED) e.weight = new Weight();
r e turn e ;

}
Edge add(Node n, Node m, Weight w){

if (!Conf.WEIGHTED) throw RuntimeException();
Edge e = new Edge(n, m);
nv.add(n);nv.add(m);ev.add(e);
e.weight = w; return e;

}
void p r i n t () {

f o r (i n t i =0; i<ev . s i z e () ; i++){
((Edge) ev . get (i)) . p r i n t () ;

}
}

}

class Color {
static void setDisplayColor(Color c) {. . . }

}

c l a s s Node {
i n t id = 0 ;
Color color = new Color();
void p r i n t () {

if (Conf.COLORED)
Color.setDisplayColor(color);

System . out . p r i n t (id) ;
}

}

c l a s s Edge {
Node a, b;
Color color = new Color();
Weight weight;
Edge (Node _a , Node _b) { a = _a ; b

= _b; }
void p r i n t () {

if (Conf. COLORED)
Color.setDisplayColor(color);

a . p r i n t () ; b . p r i n t () ;
if (!Conf.WEIGHTED) weight.print();

}
}

class Weight { void print() { . . . } }

Listing 2.1: Code example tangling and scattering (Berger, 2019)

2.6 Tangling Degree and Scattering Degree
To measure the tangling and scattering of code presented in Chapter 2.5, the two
measurement values scattering degree and tangling degree exist. Both, scattering
degree and tangling degree can be applied to source code and on file level. The
following definitions are a combination of the research results of Liebig et al. (2010)
and El-Sharkawy et al. (2019).

Metric Description
SDvp Scattering degree per individual annotation in source code. Represents

the sum of variation points where the individual annotation is used.
Variation points are in this context &begin, &end and &line.

SDfile Scattering degree per individual annotation in file level. Represents the
sum of files where the individual annotation is used.

TDvp Tangling degree per individual annotation in source code. Represents
the sum of annotations used in one variation point.

TDfile Tangling degree per individual annotation in file level. Represents the
sum of used annotations in one source code file.

Usually for all metrics, the average value and standard deviation are given.

Table 2.1: Definition of Scattering and Tangling Degrees

With these metrics, you can make a general assumption about your project and its
tangling/scattering situation as well to track if it changes over time.
A factor to consider with such metrics is the way how they are calculated. Liebig

8

2. Background and Related Work

et al. (2010)[p.4] “measure each metric after normalizing the source code of each
software system (i.e., removing comments and so on)”. Another factor which might
be different handling in metrics “of variation points, namely negating and #else di-
rectives, to which we refer to as corner cases, as they are seldom explicitly considered
in research” (Ludwig et al., 2019)[p.1].

2.7 Git Version Control Data Flow

Figure 2.1: Git Data Flow
Extract and Storage Level

Git as distributed version control system stores its to
be managed source code online in a “Remote Reposi-
tory” and creates a full copy of this “Remote Repos-
itory” on the users’ machines. The user takes the
data from the “Remote Repository” (command “git
pull”) to its own “Local Repository” and “Working
Directory”. In the “Working Directory” the user can
perform its changes.
After completing the changes, the results shall be
shared with others and need to be moved from
the “Working Directory” to the “Remote Reposi-
tory”. The first step is to add your changes to the
“Staging Area”, aka “Index” (command “git add”).
The “Staging Area” serves the purpose to prepare
changes in different files and folders for a shared
change in source code. After all, changes have been
prepared in the “Staging Area”, they are bound to-
gether into one commit of changes (command “git commit”) and moved into the
“Local Repository”. The final step to share the changes with others is to push one
or more commits from the “Local Repository” to the “Remote Repository (command
“git push”).

2.8 Git Partial Commits
Git partial commit is a sub-command of the “git add” command. As the name indi-
cates, a “partial commit” versions only a part of a modified git resource. Therefore
the “git add” command offers the optional parameter −p or −−patch: “Interac-
tively choose hunks of patch between the index and the work tree and add them
to the index. This gives the user a chance to review the difference before adding
modified contents to the index.” (Conservancy, 2020)
To prepare the differences and add them to the “Local Repository”, the “Staging
Area” is used to collect the results of the individual partial commit steps.
The goal with this process is to enable software developers to work on different
features and the base code at the same time, without losing the possibility to create
commits in functional fitting units. To create a partial commit with the “−−patch”
option, Git is breaking down with an internal algorithm all changes into so-called
“hunks”. I.e. a hunk is a small piece of source code, representing a by git expected

9

2. Background and Related Work

belong together difference.
This partial creation of a git commit is possible as git indexes the changes in the
staging area before actually committing them. As a developer, you can decide per
hunk if you want to put it into the commit, not put it into the commit or break
that hunk further down. After evaluating all changes, the commit is complete and
can be versioned with a commit message.
Git partial commit is a way to implement parallel different changes in source code
and maintain a clean commit history but requires manual and time intense steps.
Such a process might be supported with specialized tooling for certain use cases.

2.9 Related Work
The following literature has been analyzed to provide the foundation for this work.
The different researchers show the importance of feature documentation and the
benefits of using embedded annotations for this purpose. Several works provide as
well tool implementations for feature extraction on embedded annotations and take
for this an own set of annotation rules on how to use them. It also reveals that only
with the right tool support, the concept of embedded annotations be can be used
to best effect.

Krüger, Mukelabai, et al. (2019) analyzed in their work two open-source products,
“Marlin” (3D printer SW) and “Bitcoin-Wallet” for Android. They identified and
located features and provided their results to the research community as a reference
software for feature location.
The main aspects taken of this work are the notion of features as well as the notion
of embedded annotations, shown in the created annotated projects.

The power of embedded annotations is shown by Ji et al. (2015). In their work,
the researchers unveiled that embedded annotations have the main benefit to evolve
naturally with the source code itself. The later usage of these annotations allows
reduced costs for development, feature propagation, and platform/clone creation as
well as maintaining tasks. The saved costs are thereby higher than the spend ones,
which were almost zero.
The work with feature annotation can be split into the following tasks: Adding
Features, Removing Features, Refactoring Features, Improving Feature Represen-
tation, Fixing Annotations, Cloning, and Maintaining Consistency and Evolving
Assets. All of them need to be considered when using embedded feature annota-
tions in real projects. (Ji et al., 2015)
The main aspects taken of this work are the challenges arising from working with
software features, the different documentation possibilities as well as the cost-efficient
usage of embedded annotations.

Entekhabi et al. (2019) proposed the tool FeatureDashboard1 for feature visualiza-
tion. The tool is based on textual feature annotation on source code snippet, source

1https://bitbucket.org/easelab/featuredashboard/

10

https://bitbucket.org/easelab/featuredashboard/

2. Background and Related Work

files, and folder level. FeatureDashboard is an Eclipse-based tool and supporting
different views about the annotated project. With the available graphical and met-
ric views, developers can identify where the features are located and in addition see
their relationship and how they are tangled.
The main aspects taken of this work are the notion of embedded annotations and
information about the tool FeatureDashboard to extract feature locations.

The foundation for FeatureDashboard is given by the tool FLORIDA (Andam et
al., 2017). Besides setting the two main use cases: Encouraging developers to use
embedded feature annotations and feature-location recovery, Andam defines the em-
bedded annotations, the feature views, and metrics as well as the feature location.
The main aspects taken of this work are notion of features and embedded annota-
tions, as well as potential use cases for embedded annotations.

Enabling and encouraging developers to add feature locations into their daily work
is challenging. Mainly as the benefit of this work is seen after some time in the
maintenance process and even not be the developer himself. Therefore, tool support
is necessary to document feature locations. As feature location is a labor exten-
sive working task and fully automated feature locating tools miss the industries
required precision, Abukwaik et al. (2018) proposed a machine learning enriched
recommender system to enable developers to tag their new created source code.
The main aspect taken of this work is the recommender system to support develop-
ers while development and maintenance to document their features.

Hevner et al. (2004) investigate in their work design-science and behavioral-science.
Both of them common research methodologies in the Information Systems discipline.
Behavioral-science covers research on humans and firms may behave, while design-
science searches new ways to create innovative artifacts.
The main aspect taken of this work is the design-science methodology.

11

2. Background and Related Work

12

3
Methodology

This chapter contains the research focus and describes the underlying research
methodology with its concrete adaption for this research. It describes the research
questions and how they are covered by the following described research methodology.

3.1 Research Questions

In Chapter 2.9 “Related Work” the current state of research is shown and that cur-
rently different definitions and therefore different implementations to extract em-
bedded annotations exist. This research is targeting both conceptual and technical
aspects and the following research question and claims are raised for it.

RQ1 What can a unified and intuitive standard for embedded annotations look
like?
Claim1 A common definition of embedded annotations improves software

development efficiency and maintainability.
Claim2 Embedded annotations are intuitive to use.
Claim3 Embedded annotation location extraction is meaningful for software

development
RQ2 How can embedded annotations make an industrial use case more efficient?

3.2 Design Science

The methodology chosen for this thesis is design science. Design science is a problem-
solving approach which describes how to conduct, evaluate, and present product
development for information system projects. Hevner et al. (2004, p.80) described
it as “The goal of design-science research is utility”, which means to extend persons
and organizations capabilities by creating new and innovative artifacts. The focus is
thereby to plan what will be developed and to reason how it will be used. A goal is
to learn from the reasoning when successful, but especially when expectations failed.
The difference to the related behavioral-science-research is its search to develop and
verify theories, Hevner et al. (2004) proposed in their work seven guidelines for
design science in information system projects. These guidelines are in the following
listed and contextualized to this work.

13

3. Methodology

Guideline 1: Design as an Artifact
The goal of design science is to create a viable artifact, which can be a software,
model, or method. Often the constructed solution is not fully grown and covering
in this phase a specific aspect of information systems.

In the context of this thesis, a unified design and an extraction engine for embedded
annotation, as well as a Git extension for partial feature-based commits is created.

Guideline 2: Problem Relevance
Design science aims by constructing innovative technology-based solutions to tackle
currently unsolved technology and business problems.

In the context of this thesis, we tackle the lack of standardization of embedded
annotations as well as the lack of an easy way to perform partial commits based on
embedded annotations.

Guideline 3: Design Evaluation
To demonstrate the intended functionality of the developed solutions, design prop-
erties for functional and quality aspects are required to evaluate the concept. Due
to the iterative and incremental activities, the evaluation phase provides regular
updates to the development phase.

The evaluation happens for this research in an empirical dimension as well as a tech-
nical dimension. For the unified standard of embedded annotations, personal talks,
and a survey is conducted with the supervisor, his research group, and practitioners.
To ensure the quality of the implemented tools, technical tests are derived from the
specification to ensure the valid detection of embedded annotations and the skipping
of non-embedded annotations.

Guideline 4: Research Contributions
As a research methodology, design science targets to provide new and interesting
research results to the body of knowledge. The kind of contribution for the designed
artifact might be in novelty, generality or significance.

The contribution of this thesis is on the one side the created embedded annota-
tions library - the design artifact - and the specification for embedded annotations
- methodology.

Guideline 5: Research Rigor
To determine how well an artifact works, rigor methods need to be designed. Often
mathematical formalism on data collection or data analysis is used for this purpose.

14

3. Methodology

Solutions which contain a human factor require more informal methods and inter-
action with the user.
The level of rigor is also derived from how efficient the solution can be used as well
as how applicable it is to the given theory. A high level of rigorous account of gen-
eralizability and means to find the right balance between rigor and relevance.

For research question 1, qualitative and quantitative data is collected to evaluate
the design of the embedded annotation design. The quantitative data shows thereby
if one attribute is in general fulfilled or not.
Research question 2 consists of a tool implementation, which will be evaluated with
a set of common development activities. For this the activities are conducted with
and without the help of the created tool.

Guideline 6: Design as a Search Process
Searching for the most optimal solution happens in design science as an iterative
approach. Starting with a simplified problem or subset allows in the different it-
erations to learn more about the underlying problem. Searching for the optimal
solution requires knowledge about the problem space and solution space. Problem
space is the given requirements for the to be solved issue and the solution space
covers the technical and organizational aspects.

For this thesis work, we consider different phases of artifact development. Starting
with a subset of embedded annotations, these will be tested with defined use cases,
defined in collaboration with the industrial partner and research group. Incremen-
tally expanding the functionality allows a deeper understanding of how embedded
annotations work is done in this context and how the final solution looks like.

Guideline 7: Communication of Research
To implement and apply the created artifacts, both technical persons and managers
need to be convinced of the meaningful purpose of it. The challenge is to provide
enough details to technical persons to apply and implement it on a technical level
and at the same time to abstract it to an organizational level to allow managers to
decide about it for their responsibility area.

In Chapter 4 the “Embedded Annotations Design” is presented and represents the
pivot point to use embedded annotations for a project. The design description is
written in a way to show technical details and convey the usefulness of the approach.
The concrete benefits are shown in Chapter 6 “Industrial Use Case”.
All created tools are online accessible and available for later use. It is intended to
write a research paper about this work to allow compactly sharing the results.

3.2.1 Adjusted Design Science
Design Science distinguish the research into “Environment”, “Design Science Re-
search”, and “Knowledge Base”. These areas are linked with different cycles: “The

15

3. Methodology

Relevance Cycle bridges the contextual environment of the research project with the
design science activities. The Rigor Cycle connects the design science activities with
the knowledge base of scientific foundations, experience, and expertise that informs
the research project. The central Design Cycle iterates between the core activities of
building and evaluating the design artifacts and processes of the research” (Hevner,
2007)[p.2].
In the Environment block, different “Application Domains” exist for this research.
The first are to be considered “People / Organizational Systems” with the different
roles and company processes, which are linked to the design science research, are
listed. For this research they are SW-Developer, SW-Architects, Project Manage-
ment, and Requirements Engineering. Secondly, for the to be considered “Technical
Systems”, for this research the areas of Feature Documentation, Feature Traceabil-
ity, Feature Location, and Feature Location Tools are considered. And lastly for
“Problems & Opportunities”, Standardization, Lightweight tool, and Feature Iso-
lated Development are the important aspects to consider.
The Relevance Cycle links the “Environment” and “Design Science Research”
blocks and is responsible for input requirements to the research, but also to return
the design science research output for field testing back to the environment. For this
research the relevance cycle is pass through with the talks to a web development
company for the usage of embedded annotations and potential use cases. Also, for
feedback to the in the design science research created artifacts this cycle is pass
through. For the created Embedded Annotations Design feedback is received by
practitioners and the industrial use case is evaluated on typical work tasks of the
application domain.
In the Knowledge Base block, the theoretical foundation for the design science
research is given. As foundation for the definition of embedded annotation, the “Sci-
entific Theories & Methods” of Andam et al. (2017), Entekhabi et al. (2019), Ji et al.
(2015), and Krüger, Mukelabai, et al. (2019) are used. The knowledge base is backed
with the “Experience & Expertise” of this thesis works supervisor’ Thorsten Berger
and his research group easelab. As existing “Meta-Artifacts” the tools FLORIDA
and FeatureDashboard, as well as the git-add sub-command “−−patch” are used.
The Rigor Cycle is located between the Knowledge Base and the Design Science
Research and provide current knowledge as well as state-of-the-art knowledge to the
research. For this research different research works have been conducted especially
in the first half of the research to design the embedded annotations design. This
cycle was also pass through in weekly meetings with the supervisors, plus talks to
the research group. Also, for program comprehension of the tools FeatureDashboard
and git partial commit this cycle is used.
Design Science Research has as core element the Design Cycles. In this block
the research itself is conducted. While Relevance Cycle and Rigor Cycle are con-
ducted for special purposes, the Design Cycles are pass through more frequently.
This research has different Design Cycle to evaluate the build artifacts. The Embed-
ded Annotation Design as artifact is evaluated in several iterations with the super-
visor and his research group. For this the current state as well as potential options
were discussed and the next steps defined. After a stable version of the design was
reached, external feedback was collected in an empirical survey with industrial par-

16

3. Methodology

ticipants. For this survey persons in different roles and from different companies
participated. The design was created based on a set of design properties, which
were also used to evaluate the design within this survey. For this the participants
had the option to rate a question in a Likert scale from “Completely Disagree” till
“Completely Agree” as well as to provide free text answers to the questions. The
survey is closed with optional participants industry role and contact information.
The received feedback was collected and used to further improve the design. In ad-
dition to the theoretical evaluation of the embedded annotation design, the design
was used to implement a further artifact, the Reference Engine. While the Reference
Engine itself is an artifact, it serves at the same time as evaluation of the design
as it is now put into practice and new aspects appeared while implementing and
testing. Also, potential options of the design could be eliminated and rose within
this Design Cycle. The last Design Cycle is between the Reference Engine, now
considered as artifact, and the Industrial Use Case. For the Industrial Use Case
several use cases have been evaluated and with the industrial partner two of them
where evaluated in more detail. Finally, one use case was implemented and evalu-
ated with this the Reference Engine. This Design Cycle fulfilled thereby especially
the purpose to evaluate the interfaces and reliable extracted data. Used to evaluate
the Reference Engine, the Industrial Use Case itself has own typical Development
Scenarios, e.g. bug fixing, new feature development, or to evaluate its functionality.
These typical scenarios have been defined and the result with and without the in
the Industrial Use Case created artifact evaluated.
Over the time of the research, the different Design Cycles have been focus of specific
Research Objectives where a specific aspect of the overall design science research
has been worked on.

Figure 3.1: Design Science Methodology applied for this research

17

3. Methodology

3.2.2 Project Research Objectives
The research questions are answered with a methodology, based on an adjusted
design science process. Different research objectives of the thesis answer thereby
different RQs.
The first research objective covers the creation of a unified embedded annotation
design and specification and answers thereby RQ1. Research objective 2 takes care
of the creation of an engine (aka. library) for extracting embedded annotations out
of source code. The last research objective, research objective 3, investigates into
industrial use cases for the usage of the created specification and implement one of
them. With research objective 3, RQ2 will be answered.

Research objectives 1 - Embedded Annotations Design to answer RQ1 with
steps:
Literature Review for knowledge seeking about embedded annotations, and

which notions currently are available, is conducted. The literature review
is conducted in a lightweight snowball technique with starting literature
provided by supervisor, plus a search for embedded annotations and fea-
ture documentation on Google Scholar.

Specification to create a notion of embedded annotations in syntax and se-
mantics is created, discussed, and shared.

Research Group Feedback to receive feedback from embedded annotation
experts and experienced researchers.

Survey Creation to conduct a survey with industrial practitioners.
Practitioner survey to receive industrial feedback and include their feed-

back into the embedded annotation design and specification.
Research objectives 2 - Engine for Embedded Annotation Extraction with

steps:
Embedded Annotation Engine according to the specification document to

implement a reference library that can be re-used in industrial use-cases.
Research objectives 3 - Industrial use-case to answer RQ2 with steps:

Define use cases which can be improved with the usage of embedded anno-
tations.

Pick use case in collaboration with an industrial partner. This decision is
taken in an open discussion between representatives from industry and
research.

Implement use case , which was collaboratively selected, create a detailed
concept to improve use case with embedded annotations and realize it.

Evaluate use case against described use case and present created concept.

18

4
Embedded Annotations Design

The embedded annotations design serves the purpose to describe how to document
software feature locations close to the source code artifacts level. In general, there
are two ways to locate features in a software product: First, the “lazy” approach
where to locate them when needed and second, the “eager” approach to document
feature location while development. The here chosen approach is the “eager” one,
which can be either reached with external tooling or as used here, to document the
feature locations directly in source code and specialized files close to it. Embedded
annotations offer the benefit - to externally documented feature locations - that
they evolve naturally with the source code itself (Ji et al., 2015) and while cloning
of source code in Clone&Own actions, allow propagating changes over software vari-
ants. Embedded annotations cover either blocks or specific lines of source code or
file system resources. With this flexible approach, it is possible to annotate projects
on a system level, e.g. to benefit from object-oriented programming, folders, and
files reflect the internal structure, and at the same time to annotate line-specific fea-
ture relations. The way how these annotations work is independent of any project
programming languages and can be also applied to non-source code files, such as
e.g. configuration or binary files.
Embedded annotations fulfill the purpose of traceability and neither required central
management nor to be pre-defined.

Features play a central role in modern software development. In general, agile
software development focuses on customer functionality and features, whereby the
method “Feature Driven Development (FDD)” takes a special position and puts the
feature as the center of every decision and following the agile manifesto. (Wikime-
dia, 2019)

Locating features in source code is an important work for software developers (En-
tekhabi et al., 2019). The benefit to document features is seen in most cases only in
the long run or with high coverage of the source code but can reduce feature location
costs significant (Ji et al., 2015). Currently several slightly different approaches exist
to write feature locations in project artifacts, known as embedded annotations (Ji
et al., 2015; Andam et al., 2017; Entekhabi et al., 2019; Krüger, Mukelabai, et al.,
2019)1. The situation of different approaches prevents a general unified working
with embedded annotations and therefore reuse of tools and for developers changing
projects/companies to use them without potential wrong usage. The here proposed

1Details to differences in Table A.1, Chapter A.1 .

19

4. Embedded Annotations Design

notion unifies these approaches and allows the implementation of reference software
libraries to it.

4.1 Formal Definition of Embedded Annotations

Embedded Annotations Terminologies

The design for embedded annotations requires some special terminologies:
Feature A distinct functionality or attribute of a software product, usually ex-

pressed in functional or non-functional requirements.2
Feature Model A feature hierarchy model, describing feature names and their

hierarchy in textual form.
Feature Reference Reference to a concrete feature in the feature model.
Annotation Marker Keyword to open/close the annotated scope for one or more

feature references.
Annotated Scope Artifacts, source code/files/folders, associated with one or more

features. The scope is set with specialized files and annotation markers in
source code.

Annotation Concrete usage of one Feature Marker in source code, including all its
feature references.

Design Properties

For Design Properties, goals “such as simplicity, aesthetics, expressiveness, and nat-
uralness are often mentioned in the literature, but these are vaguely defined and
highly subjective” (Moody, 2009)[p.757]. For this work several design properties
are defined and backed up with documenting the design decision flow and reasoning
about them. This allows traceability between the final design properties and their
origin and helps to justify them. For each design property a unique name is selected
and described in a short statement what the property is about. (Moody, 2009)

The following four main- and five sub-Design Properties are used for this embedded
annotations design. They are derived from Balzer’s “principles of good specification”
(Balzer and Goldman, 1981)[p.393] as well as extended with the experience & exper-
tise of the supervisor and co-supervisor. These principles cover the primary use of
software specifications: unambiguously and clearly understandable by specifier and
implementor (understandability), testability of the specification’s implementation,
and maintainability to change the specification over time.
Usefulness (Balzer’s Principle 1 and 2)

For Usefulness, the design must fulfill its intention to support embedded an-
notations and provide its user benefit to its working task. For this it defines
the necessary elements in functionality and inside the annotation process.
Easy Applicable is part of the Usefulness property and describes how easy

embedded annotations can be applied to a specific project.
2Detailed analysis about feature definition in Krüger, Mukelabai, et al. (2019)

20

4. Embedded Annotations Design

Flexible to Use is part of the Usefulness property and considers how flexible
embedded annotations can be used inside source code and for different
projects.

Intuitiveness (Balzer’s Principle 5)
For Intuitiveness, the designs level of how natural it feels for the user to use
embedded annotations is considered.
Easy to learn describes the process to learn to use embedded annotations

and that this time shall be as small as possible.
Robustness (Balzer’s Principle 3, 4, and 7)

For Robustness, two dimensions are considered. For the user of embedded
annotations, Robustness means that as many annotations as possible survive
the evolution of the project, e.g. moving folders/files, removing code, and
editing code. For the specification itself, Robustness means that it can be
extended and evolved modular and do not require to rework the whole design.
Redundancy (Balzer’s Principle 8) is part of the Robustness property and

ensures that embedded annotations are designed in that way that anno-
tating a feature in an artifact, the number of added markers and feature
references is minimal and not repeated unnecessarily.

Succinctness (Balzer’s Principle 6) is part of the Robustness property and
balances between readability and that the additional writing effort is
minimal.

Negligible Efforts
A design property which results in well working other design properties is
Negligible Efforts. Besides having a useful, easy to understand and robust
design, the arising costs to create and maintain embedded annotations shall
be minimal. This shall avoid that embedded annotations are refused to use
because of too high costs.

Embedded Annotations Meta-Model

The Meta-Model shown in Figure 4.1 shows the different attributes, relations and
constrains of the embedded annotation notion.
The Meta-Model for embedded annotations contains 16 attributes and 22 relations.
The elements used to mark source code artifacts with embedded annotation belong
to the attribute type Artifact and derive into Folder, File and Code Artifact. Code
Artifacts thereby derive into Code Block and Line of Code annotations. The differ-
ent types of Artifact have all a many-to-many relationship to their feature-mapping
counterparts. File has thereby the specialty that it contains of a feature-mapping
and a File Reference.
A concrete Feature is represented by a Feature Reference which in the following can
be used for Feature to Folder Mapping, Feature to File Mapping or Code Annotation;
all of them from the type Feature Mapping. A concrete Feature Reference is used
in a concrete mapping, but a mapping might consist of multiple Feature References.
Feature References in Code Annotations are either Block Annotations or Line Anno-
tations. One Block Annotations consist of exactly two Annotations Marker : “Begin”
and “End”. One Line Annotation consist of exactly one Annotation Marker : “Line”.

21

4. Embedded Annotations Design

Figure 4.1: Meta-Model for Embedded Annotations

Embedded Annotations Level System

The definition of embedded annotations is split into two levels. This serves the
purpose to have the appropriate level of expressiveness for different purposes. The
levels are briefly introduced and explained in detail in the further chapters.
Level 1 Begin-, End- and Line-annotations, annotation identifier, Least-Partially-

Qualified name, Simple Hierarchy Model, feature-to-file mapping and feature-
to-folder mapping

Level 2 Level 1 + Logical operator expressions, Full Hierarchy Model

Keywords

Keywords are reserved words for the usage of embedded annotations and can not
be used as annotation names. Note that the limitation is not on a combination
of keywords and other words, e.g. the keyword “line” in a concatenation such as
“DatabaseLineReading” will not be treated by the parser as a keyword.
Keyword-List:

• &begin
• &end
• &line
• &file

Grammar syntax definition

To express the description of embedded annotations in a regular grammar, the Ex-
tended Backus–Naur Form (EBNF) is used. The benefit of this representation is
to be free of programming language-specific constraints. The EBNF consists of ter-
minal characters (letters, numbers, spaces, symbols) and non-terminal characters
(one or more terminal characters or other non-terminal characters). An expression
in EBNF is composed of non-terminal characters and their replacements till only

22

4. Embedded Annotations Design

terminal characters are left in the expression.
For the notion of embedded annotations, there are “Code Annotations”, “File An-
notations”, “Folder Annotations” and “Simple Hierarchy Model” available as own
EBNF definitions. This is possible as file, folder and hierarchy annotations are
located in specialized files with pre-defined names. All remaining documents are
checked for “Code Annotations”.

Shared assets between the embedded annotation grammars are “Feature-Reference”
and “FEATURENAME”. The representation of the grammars is in the respective
EBNF snippets and the full EBNF grammar is attached in the appendix in Chapter
A.2 “EBNF Grammar Definitions”.

〈featurereference〉 ::= 〈FEATURENAME〉 (’::’〈FEATURENAME〉)*;

Grammar 4.1: EA, EBNF of Shared Feature-Reference Expression

〈FEATURENAME〉 ::= ([A-Z]+
| [a-z]+
| [0-9]+
| ’_’+
| ’\”+)+

Grammar 4.2: EA, EBNF of Shared FEATURENAME Expression

4.2 Feature Hierarchy Model
The Feature Hierarchy Model defines the available features and their hierarchy re-
lations in a textual format. The feature hierarchy model serves to model features
and organized them in a hierarchical structure to keep an understanding of them.
This model needs to be maintained by the developers themselves as they have the
deepest domain knowledge. This work can be supported by SW-Architects or do-
main experts.
The syntax is inspired by the Clafer modeling language (Bąk et al., 2011). Feature
models allow very detailed descriptions of feature hierarchy and relations in-between.
For the purpose of feature modeling, a subset of these options is sufficient and pre-
sented in the following as “Simple Hierarchy Model”. The full range of feature
models is touched in the “Full Hierarchy Model”.

Simple Hierarchy Model The simple hierarchy model covers the feature refer-
ences and their hierarchy with one-tab indentation per level. Each feature reference
is listed as an independent line. For the simple hierarchy model, the hierarchy-file
must be stored at the root node of the project and is exclusive per project.

23

4. Embedded Annotations Design

Example:
1 ProjectName
2 FeatureA
3 FeatureA1
4 FeatureA2
5 FeatureB
6 FeatureB1

Full Hierarchy Model The Full Hierarchy Model supports all language elements
of feature hierarchy models. Each feature is listed as an independent line and con-
straints such as annotations relation, e.g. xor as mutually exclusive selection between
annotations, or to mark an annotation with “?” as optional are possible. The full
hierarchy model covers extended capabilities, as defined by the Clafer language, and
includes also feature inheritance and nesting.
Example:

1 ProjectName
2 FeatureA ?
3 xor FeatureA1
4 FeatureA2
5 FeatureB
6 FeatureB1 ?
7 FeatureB2

In concrete implementations, the feature hierarchy file name could be _.cfr or similar
as defined for this project.

EBNF representation For the simple hierarchy model, which is used in this
project scope, the following EBNF implementation is used. The chosen approach
lacks flexibility but fulfills the functional requirements. The proper handling of
indents require specialized source code extending the EBNF.

24

4. Embedded Annotations Design

〈projectHierarchy〉 ::= 〈FEATURENAME〉 (〈subfeature〉)*

〈subfeature〉 ::= (’\n’ ’\t’ 〈FEATURENAME〉) 〈subsubfeature〉*

〈subsubfeature〉 ::= (’\n’ ’\t\t’ 〈FEATURENAME〉) 〈subsubsubfeature〉*

〈subsubsubfeature〉 ::= (’\n’ ’\t\t\t’ 〈FEATURENAME〉)
〈subsubsubsubfeature〉*

〈subsubsubsubfeature〉 ::= (’\n’ ’\t\t\t\t’ 〈FEATURENAME〉)
〈subsubsubsubsubfeature〉*

〈subsubsubsubsubfeature〉 ::= (’\n’ ’\t\t\t\t\t’ 〈FEATURENAME〉)
〈subsubsubsubsubsubfeature〉*

〈subsubsubsubsubsubfeature〉 ::= (’\n’ ’\t\t\t\t\t\t’ 〈FEATURENAME〉)
〈subsubsubsubsubsubsubfeature〉*

〈subsubsubsubsubsubsubfeature〉 ::= (’\n’ ’\t\t\t\t\t\t\t’ 〈FEATURENAME〉)

Grammar 4.3: EA, EBNF-Snippet of Simple Hierarchy Model

4.3 Feature Reference Names
Inside the feature hierarchy model, features with the same name may appear twice
or more often. To reference features uniquely the individual feature is pre-extended
by its ancestor till the combined feature reference is unique. This technique is called
Least-Partially-Qualified name, short LPQ.
Example:

1 CoffeeShop
2 Coffee
3 Sugar
4 Milk
5 Tea
6 BlackTea
7 Milk

The feature “Milk” appears twice in the overall model, the individual entities can
be addressed by “Coffee::Milk” and “BlackTea::Milk”.
In contrast, the fully-qualified-name is much longer and more likely to change as
compared to the least-partially-qualified name when the feature model evolves. In
case an annotation appears only once, its LPQ is identical to its name, e.g. “Sugar”.
The separation of individual annotations to their ancestors is shown via the “::”
characters. Approach from Andam et al. (2017).

4.4 Annotation Listing
Annotation identifiers are the concrete embedded annotations or features used in the
source code. They are individual or combined words, without spaces or punctuation
marks.

25

4. Embedded Annotations Design

The usage of multiple annotation identifiers together is possible. In concrete im-
plementations, the separator of annotations could be a comma, space-character, or
similar as defined for this project.
The following syntax applies for the annotations listing:

1 Annotation_1 , Annotation_2 [, Annotation_n]

The conjunction of multiple annotations causes the mapping of the marked source
code to ALL listed annotations in the same way. I.e. the order of the given annota-
tions is independent.

4.5 Feature expression logic
Besides mapping source code, files, and folders to features or a list of features, it
might be required to map code to combinations of features, written in Boolean
expressions.

AND-Operator

The marked code part is considered to all given annotations individually. Compa-
rable with multiple begin/end markers.
In concrete implementations the logical operator between individual annotations
could be an “AND”, “&&” or similar as defined for this project.
The following syntax applies for combining multiple annotations in one identifier :

1 Annotation_1 AND Annotation_2 [AND Annotation_n]

Alternatively, with symbolic characters
1 Annotation_1 && Annotation_2 [&& Annotation_n]

OR-Operator

The marked code part is considered to all given annotations individually. Compa-
rable with multiple begin/end markers.
In concrete implementations the logical operator between individual annotations
could be an “OR”, “‖” or similar as defined for this project.
The following syntax applies for combining multiple annotations in one identifier :

1 Annotation_1 OR Annotation_2 [OR Annotation_n]

Alternatively with symbolic characters
1 Annotation_1 || Annotation_2 [|| Annotation_n]

NOT-Operator

The marked code part is considered to all annotations individually, except the given
one.
In concrete implementations the logical operator for an annotation negation could
be an “NOT”, “!” or similar as defined for this project.
The following syntax applies for annotation negation in one identifier :

26

4. Embedded Annotations Design

1 NOT Annotation_1

Alternatively with symbolic characters
1 ! Annotation_1

Order of operators

Annotations logic operators may appear in mixed mode. The general precedence
rules of Boolean expressions apply in this case.

4.6 Annotation Markers
There are three kinds of annotation markers: &begin, &end, and &line, each with
specific purposes and syntax. Annotation markers are escaped through the pro-
gramming language specific comment characters, such as e.g. “//” or “#”. This
avoids unwanted side effects for the project execution.
The individual markers have a leading ‘&’-symbol to distinguish these keywords
from regular comments. Alternatives were considered, but the approach of the ‘&’-
symbol from the basic embedded annotations definition is taken over. For example
the ‘@’-symbol is used for JavaDoc keywords, the ‘$’-symbol is used in Bash scripts
for variable definition and as well in Bash scripts the ‘#’-symbol as escape character
for comments. Also, we consider the start of a comment with an ‘&’-symbol followed
by one of the keywords for a different purpose as unlikely.

4.6.1 The begin-marker
In concrete implementations, this could be #ifdef, &begin, or a similar expression
defined for this project.
The following syntax applies for the begin-marker:

1 //&begin[<parameter >] <comment > <cr > /*<cr > carriage return */
2 /*is a newline symbol */

This marker considers the following consecutive lines of text to be part of this iden-
tifier. Identifiers can be defined in a hierarchy feature model but must not. A
begin-marker must be closed by an end-marker.

4.6.2 The end-marker
In concrete implementations, this could be #endif, &end, or a similar expression
defined for this project.
The following syntax applies for the end-marker:

1 //&end[<parameter >] <comment > <cr >

This marker ends the scope of the begin-marker of the given identifier. Identifiers
can be defined in a hierarchy feature model but must not. An end-marker must have
a fitting begin-marker before.

27

4. Embedded Annotations Design

4.6.3 The line-marker
In concrete implementations, this could be &line or a similar expression defined for
this project. The line-marker is a convenient way to use a &begin- and &end-marker
for a single line and can be substituted by them.
The following syntax applies for the line-marker:

1 any source code //&line[<parameter >] <comment > <cr >

This marker considers exclusively its own line of text to be part of this identifier. If
this line is a class or method, still only the annotated line is considered as part of
this identifier.

EBNF representation

〈marker〉 ::= .*? (〈beginmarker〉
| 〈endmarker〉
| 〈linemarker〉)*

〈beginmarker〉 ::= ’&begin’ ’ ’* 〈parameter〉

〈endmarker〉 ::= ’&end’ ’ ’* 〈parameter〉

〈linemarker〉 ::= ’&line’ ’ ’* 〈parameter〉

〈parameter〉 ::= ’(’ ’ ’* 〈lpq〉 (’ ’+ 〈lpq〉)* ’ ’* ’)’ .*?
| ’(’ ’ ’* 〈lpq〉 (’ ’* ’,’ ’ ’* 〈lpq〉)* ’ ’* ’)’ .*?
| ’[’ ’ ’* 〈lpq〉 (’ ’+ 〈lpq〉)* ’ ’* ’]’ .*?
| ’[’ ’ ’* 〈lpq〉 (’ ’* ’,’ ’ ’* 〈lpq〉)* ’ ’* ’]’ .*?
| ’{’ ’ ’* 〈lpq〉 (’ ’+ 〈lpq〉)* ’ ’* ’}’ .*?
| ’{’ ’ ’* 〈lpq〉 (’ ’* ’,’ ’ ’* 〈lpq〉)* ’ ’* ’}’ .*?
| ’ ’* 〈lpq〉 (’ ’+ 〈lpq〉)*
| ’ ’* 〈lpq〉 (’ ’* ’,’ ’ ’* 〈lpq〉)* ’ ’*

〈lpq〉 ::= 〈FEATURENAME〉 (’::’〈FEATURENAME〉)*

Grammar 4.4: EA, EBNF-Snippet of Annotation Markers

28

4. Embedded Annotations Design

4.6.4 Interleaving of Annotation Markers

Annotation markers appear in the simple case independent of each other and have
no cross-cutting relation. That this is unlikely in a practical context is shown by fol-
lowing Listing 4.1. Here the annotation “Codecs” is surrounded by “RequestCoins”
and “BIP21” is inside “Codecs”.

Potential interleaving situations are e.g. with overlapping annotation scopes with
same begin-multiple end or vice versa.

Overlapping annotation scopes Between different &begin- and &end-markers
as well with the &line-markers the marked scope for a certain annotation might
overlap. A full overlapping (left), as well as a partial overlapping (right), are possi-
ble:

1 // begin[FeatureA]
2 ... (code FeatureA)
3 // begin[FeatureB]
4 ... (code FeatureA , FeatureB)
5 // end[FeatureB]
6 ... (code FeatureA)
7 // end[FeatureA]

1 // begin[FeatureA]
2 ... (code FeatureA)
3 // begin[FeatureB]
4 ... (code FeatureA , FeatureB)
5 // end[FeatureA]
6 ... (code FeatureB)
7 // end[FeatureB]

This situation might happen also with three and more annotation markers.

Same begin-multiple end or vice versa With the possibility of &begin and
&end to support multiple feature references at the same time, there is the option
to start multiple features within one &begin- and end them with individual &end-
markers - or vice versa.

1 // begin[FeatureA , FeatureB]
2 ... (code FeatureA , FeatureB)
3 // end[FeatureA]
4 ... (code FeatureB)
5 // end[FeatureB]

1 // begin[FeatureA]
2 ... (code FeatureA)
3 // begin[FeatureB]
4 ... (code FeatureA , FeatureB)
5 // end[FeatureA , FeatureB]

This situation might happen also with three or more feature references.

Greater flexibility than IFDEFs The approach of interleaving of annotation
markers provide greater flexibility to mark features than the notion of IFDEFs.
IFDEFs set for their scope a concrete set of features and close them always all
together. Usage of inner or simultaneous opening with individual closing is not
possible as the IFDEF-precompiler cuts out the code parts and the inner parts are
lost.

29

4. Embedded Annotations Design

Example 1: Same begin with multiple
ends

1 # define FEATURE_FIRST
2 # define FEATURE_SECOND
3

4 #ifdef FEATURE_FIRST &&
FEATURE_SECOND

5 ...
6 #endif /* FEATURE_FIRST */
7 ...
8 #endif /* FEATURE_SECOND */

This setup causes a compiler error
“#endif without #if” as #ifdef allows
exactly one endpoint about its scope.
I.e. multiple-ends or multiple starts are
technically not possible.

Example 2: Partially overlapping fea-
ture code (lines 4-8 and lines 6-10)

1 # define FEATURE_FIRST
2 # define FEATURE_SECOND
3

4 #ifdef FEATURE_FIRST
5 ...
6 #ifdef FEATURE_SECOND
7 ...
8 #endif /* FEATURE_FIRST */
9 ...

10 #endif /* FEATURE_SECOND */

Disabling “FEATURE_SECOND”
cause to early end of scope at first
found #endif:

1 # define FEATURE_FIRST
2 //# define FEATURE_SECOND
3

4 #ifdef FEATURE_FIRST
5 ...
6 #ifdef FEATURE_SECOND
7 ...
8 #endif /* FEATURE_FIRST */
9 ...

10 #endif /* FEATURE_SECOND */

4.7 Feature Mappings
Embedded annotations are mainly used to annotate source code parts. For the
mapping of whole files and folders including their subfolders, two kinds of mappings
exist: feature-to-file and feature-to-folder.

4.7.1 Feature-to-code mapping
The feature-to-code mapping serves to link specific blocks and lines of code to one or
more features. The parts of the source code which are mapped to a certain feature
are called annotation scopes. An annotation scope is surrounded by annotation
markers (see Chapter 4.6) and contains at least one feature reference (see Chapter
4.3).

4.7.2 Feature-to-file mapping
The feature-to-file mapping is a specialized file to map one or more file(s) and its/
their content to one or more feature references. All content of the linked file is
considered fully to be part of the given feature references. The mapping file must
be stored in the same folder as the source code files and covers only the file in this
folder. This is especially helpful to map files that don’t contain source code, such
as binary or generated files. The feature-to-file mapping is exclusive for files and

30

4. Embedded Annotations Design

folders to be mapped to features by the feature-to-folder mapping - even when some
operating systems handle files and folders identical (e.g. Linux).
In case the file name contains spaces or other special characters, the file name can
be escaped with leading and ending quotation marks, e.g. “database config.dab”.

For projects with little applicability, or if the files for feature-to-file mapping wants
to be avoided, the same effect of mapping the complete content of a file can be
reached with a “begin”-annotation marker at the beginning of the file and its “end”-
annotation marker counterpart at the end of the file.

The following syntax applies for the mapping file:
Alternative 1

1 File_a (File_b ...) <cr >
2 Feature_1 (Feature_2 ...) <cr >
3 File_x (File_y ...) <cr >
4 Feature_n (Feature_m ...) <cr >
5 <eof >

Alternative 2
1 File_a (File_b ...) <cr >
2 Feature_1 <cr >
3 Feature_2 <cr >
4 ...
5 File_x (File_y ...) <cr >
6 Feature_n <cr >
7 Feature_m <cr >
8 ...
9 <eof >

In concrete implementations, this filename could be _.feature-file or similar as de-
fined for this project. To avoid that the file is hidden by the development IDE or
file explorer the leading underscore is recommended.

For the file syntax in feature-to-file mapping two solutions with different focuses
exist. On the one side, one feature to multiple files and on the other side one file
to multiple features. The reasoning for one of these solutions could be given by the
scattering degree (SD) and tangling degrees (TD). For this, the SDfile and TDfile

would have been required. Based on the systematic literature review of El-Sharkawy
et al. (2019) only two works consider both metrics: Hunsen et al. (2015) and Zhang
et al. (2013). Hunsen et al. (2015) analyzed 41 systems and provided both values,
but analyzing the system on #IFDEF-variability and not traceability. Zhang et al.
(2013) provided in their results only ranges and makes it difficult to compare and
as well on variability base.
As no clear tendency can be given the proposed feature-to-file mapping is kept flex-
ible. It supports, therefore, a mapping with multiple files to one or more features
and one file to one or more features. The only constrain given is that a file-line is
followed by a feature-line and the file must start with a file-line.

Alternative 3 Instead of handling the feature-to-file mapping in an own file, the
same result can be reached with the file-marker which should be placed at the file-
header, best initial line.
The following syntax applies for the file-marker:

1 //&file[<parameter >] <comment > <cr >

This marker considers the whole file to the given features in the parameter. The
benefit is the independence of the specialized file and that with a copy/move the

31

4. Embedded Annotations Design

feature information is automatically considered. The drawback is that a feature
mapping change is not independent possible of the file, e.g. using in another project
or scope, and technically not possible for binary files.

The shown “Alternative 2” is dismissed for the implementation part. The reason
for this is the challenge to handle files without a file extension, e.g. a file named
“database”. The tool will not be able to detect if this is a file or feature. Therefore
a safe mapping from files and features is not possible with this approach.
The shown “Alternative 3” is not considered in the implementation part. The reason
for this is the late appearance of this option and that the functionality is available
with the “Alternative 1”.

EBNF representation

〈fileAnnotations〉 ::= (〈fileAnnotation〉)*

〈fileAnnotation〉 ::= 〈fileReferences〉 ’:’? ’\n’+ 〈lpqReferences〉

〈fileReferences〉 ::= (〈fileReference〉 (’ ’* 〈fileReference〉)* ’ ’*)
| (〈fileReference〉 (’ ’* ’,’ ’ ’* 〈fileReference〉)* ’ ’*)

〈fileReference〉 ::= (’’ <fileName> ’’)
| (〈fileName〉)

〈fileName〉 ::= 〈STRING〉
| (〈STRING〉’.’〈STRING〉)

〈lpqReferences〉 ::= (〈lpq〉 (’ ’* 〈lpq〉)* ’ ’*)
| (〈lpq〉 (’ ’* ’,’ ’ ’* 〈lpq〉)* ’ ’*)

〈lpq〉 ::= 〈STRING〉 (’::’〈STRING〉)*

(hint: STRING equals FEATURENAME in Grammar 4.2)

Grammar 4.5: EA, EBNF-Snippet of feature-to-file Mapping

4.7.3 Feature-to-folder mapping
The purpose of this file is to map complete folders and their content to one or more
feature references. The mapping of feature references to folders allows linking spe-
cific features to the folder, including all its sub-folders and files. With this, the
mapping of complete folder structures to features is possible and may substitute the
feature-to-file mapping. The mapping file is located on the top level inside the to
be annotated folder.
This way of the feature-to-folder has two main benefits. Firstly, the mapping takes
care that always all containing artifacts are linked to the feature(s) and provides,
therefore, more stability on a folder base than feature-to-file where the developer
would need to maintain the file list. And secondly, the location inside the folder is

32

4. Embedded Annotations Design

more stable against renaming or moving the folder than the feature-to-file mapping.

The following syntax applies for the mapping file:
Alternative 1

1 <LPQ > <cr >
2 <LPQ > <cr >
3 <eof >

Example:
1 Feature_1 <cr >
2 Feature_n <cr >
3 <eof >

Alternative 2
1 <LPQ > , <LPQ > <cr >
2 <eof >

Example:
1 Feature_1 , Feature_n <cr >
2 <eof >

In concrete implementations, this filename could be _.feature-folder or similar as
defined for this project. It is stored inside the folder it annotates to resists better
changes of the folder, such as renaming or moving.

EBNF representation

〈folderAnnotation〉 ::= (’ ’* 〈lpq〉 (’ ’* 〈lpq〉)* ’ ’*)
| (’ ’* 〈lpq〉 (’ ’* ’,’ ’ ’* 〈lpq〉)* ’ ’*)
| (’ ’* 〈lpq〉 (’\n’ 〈lpq〉)* ’ ’*)

Grammar 4.6: EA, EBNF-Snippet of feature-to-folder Mapping

4.8 Embedded Annotation Examples

4.8.1 Annotation Code Examples
To illustrate the defined begin-, end- and line-markers, two real-world examples shall
illustrate the usage.

224 pub l i c s t a t i c PaymentIntent f romBitco inUr i (f i n a l BitcoinURI b i t c o i nUr i) {
225 f i n a l Address address = b i t c o i nUr i . getAddress () ;
226 f i n a l Output [] outputs = address != nu l l ? buildSimplePayTo (b i t c o i nUr i . getAmount

() , address) : nu l l ;
227
228 f i n a l S t r ing bluetoothMac = (St r ing) b i t c o i nUr i . getParameterByName (Bluetooth .

MAC_URI_PARAM) ; //&l i n e [Bluetooth]
229
230 //&begin [RequestCoins]
231 f i n a l S t r ing paymentRequestHashStr = (St r ing) b i t c o i nUr i . getParameterByName ("h ")

;
232 f i n a l byte [] paymentRequestHash = paymentRequestHashStr != nu l l ?

base64UrlDecode (paymentRequestHashStr) : nu l l ;
233
234 //&begin [Codecs]
235 r e turn new PaymentIntent (PaymentIntent . Standard . BIP21 , nu l l , nu l l , outputs ,

b i t c o i nUr i . getLabe l () , //&l i n e [BIP21]
236 //&end [Codecs]
237 bluetoothMac != nu l l ? " bt : " + bluetoothMac : nu l l , nu l l , b i t c o i nUr i .

getPaymentRequestUrl () ,
238 paymentRequestHash) ;
239 //&end [RequestCoins]

33

4. Embedded Annotations Design

240 }

Listing 4.1: Code example embedded annotations: Bitcoin-Wallet, class
PaymentIntent. Adjusted from (Krüger, Mukelabai, et al., 2019).

Explanation of used markers and embedded annotations inside Listing 4.1:
• Line 228 “//&line[Bluetooth]” belongs to the feature Bluetooh and the line-

marker matches exclusive line 228 to the feature Bluetooth.
• Line 230 “//&begin[RequestCoins]” belongs to the feature RequestCoins and

the begin-marker maps lines 230 and following to the feature RequestCoins.
This scope is ended with the “//&end[RequestCoins]” at line 239.

• Line 234 “//&begin[Codecs]” belongs to the feature Codecs and the begin-
marker maps lines 234 and following to the feature Codecs. This scope is
ended with the “//&end[Codecs]” at line 236.

• Line 235 “//&line[BIP21]” belongs to the feature BIP21 and the line-marker
matches exclusive line 235 to the feature BIP21.

115 pub l i c c l a s s B lockcha inServ i c e extends L i f e c y c l e S e r v i c e {
116 pr i va t e Wal l e tAppl i cat ion app l i c a t i o n ;
117 pr i va t e Conf igurat ion con f i g ;
118 pr i va t e AddressBookDao addressBookDao ; //&l i n e [AddressBook]

. . .
139 pr i va t e long serv i ceCreatedAt ;
140 pr i va t e boolean resetBlockchainOnShutdown = f a l s e ; //&l i n e [ResetBlockChain]

. . .
157 //&begin [ResetBlockChain]
158 pr i va t e s t a t i c f i n a l S t r ing ACTION_RESET_BLOCKCHAIN = Blockcha inServ i c e . c l a s s .

getPackage () . getName ()
159 + " . re se t_blockcha in " ;
160 //&end [ResetBlockChain]
161 //&begin [BlockchainSync]
162 pr i va t e s t a t i c f i n a l S t r ing ACTION_BROADCAST_TRANSACTION = Blockcha inServ i c e .

c l a s s . getPackage () . getName ()
163 + " . broadcast_transact ion " ;
164 pr i va t e s t a t i c f i n a l S t r ing ACTION_BROADCAST_TRANSACTION_HASH = " hash " ;
165 //&end [BlockchainSync]
166
167 pr i va t e s t a t i c f i n a l Logger l og = LoggerFactory . getLogger (B lockcha inServ i c e .

c l a s s) ;

Listing 4.2: Code example embedded annotations: Bitcoin-Wallet, class
BlockchainService. Adjusted from (Krüger, Mukelabai, et al., 2019).

Explanation of used markers and embedded annotations inside Listing 4.2:
• Line 115 “//&line[AddressBook]” belongs to the feature AddressBook and the

line-marker matches exclusive line 115 to the feature Bluetooth.
• Line 140 “//&line[ResetBlockChain]” belongs to the feature ResetBlockChain

and the line-marker matches exclusive line 140 to the feature Bluetooth.
• Line 157 “//&begin[ResetBlockChain]” belongs to the feature ResetBlockChain

and the begin-marker maps lines 157 and following to the feature Reset-
BlockChain. This scope is ended with the “//&end[ResetBlockChain]” at line
160.

• Line 161 “//&begin[BlockchainSync]” belongs to the feature BlockchainSync
and the begin-marker maps lines 161 and following to the feature Blockchain-
Sync. This scope is ended with the “//&end[BlockchainSync]” at line 165.

34

4. Embedded Annotations Design

4.8.2 File Mapping Examples

1 Bitco in−wa l l e t
2 |−− f ea ture−model . c f r
3 |−− s r c
4 |−− de
5 |−− s ch i ldbach
6 |−− wa l l e t
7 |−− data
8 |−− o f f l i n e
9 |−− s e r v i c e

10 |−− ui
11 |−− u t i l
12 |−− _. f ea ture− f i l e
13 |−− _. f ea ture−f o l d e r
14 |−− Conf igurat ion . java
15 |−− Constants . java
16 |−− Logging . java
17 |−− Wal le tAppl i cat ion . java
18 |−− WalletBalanceWidgetProvider

. java
19 . . .

Listing 4.3: Code example mapping
files: Bitcoin-Wallet, adapted folder
structure. Adjusted from (Krüger,
Mukelabai, et al., 2019).

1 Bitco inWal l e t
2 Bluetooth
3 Bitco inBalance
4 DonateCoins
5 SendCoins
6 AppLog

Listing 4.4: Code example mapping
files: Bitcoin-Wallet, feature-model.cfr.
Adapted from (Krüger, Mukelabai, et
al., 2019).

1 Logging . java
2 AppLog
3 WalletBalanceWidgetProvider . java
4 Bitco inBalance

Listing 4.5: Code example mapping
files: Bitcoin-Wallet, _.feature-file.
Adapted from (Krüger, Mukelabai, et
al., 2019).

1 Main

Listing 4.6: Code example mapping
files: Bitcoin-Wallet, _.feature-folder.
Adapted from (Krüger, Mukelabai, et
al., 2019).

Explanation of used mappings inside Listings 4.4 till 4.6. Listing 4.3 shows the folder
structure for the mapping files.

• Listing 4.4 shows the feature hierarchy model (Folder structure line 2) with:
– Line 1 the project name and root node for the hierarchy.
– Lines 2 - 6 are the features in the project, three in the first and two in the

second hierarchy level. Even when more features are used by the project,
they are not required to be listed here. Nevertheless its encouraged

• Listing 4.5 shows the feature-to-file mapping (Folder structure line 12) of the
files “Logging.java” (Folder structure line 16) mapped to feature “AppLog” and
file “WalletBalanceWidgetProvider.java” (Folder structure line 18) mapped to
feature “BitcoinBalance”.

• Listing 4.6 shows the feature-to-folder mapping (Folder structure line 13) and
therefore, inside folder “wallet”. This means that the folder wallet and all its
content is mapped to the feature “Main”.

Fully annotated projects have been created by Krüger, Mukelabai, et al. (2019) and
can be found at https://bitbucket.org/rhebig/jss2018/.

35

https://bitbucket.org/rhebig/jss2018/

4. Embedded Annotations Design

4.9 Evaluation Embedded Annotation Specifica-
tion

The in Chapter 4 presented notation for embedded annotations is firstly designed
with literature review and expert discussions, see methodology “Research objectives
1” in Figure 3.1. To evaluate the proposed notation an online survey with practi-
tioners is hold. This survey has two main objectives: First, evaluate the acceptance
and second, improve the current specification itself. Further outcomes are potential
future research topics that are relevant for practitioners. The document reviewed is
a compressed and standalone version of the embedded annotation design and there-
fore called “Embedded Annotation Specification”
The following sub-chapters cover the survey creation, execution, and results.

4.9.1 Survey Creation
The survey consists of two parts: A PDF containing the specification3 and an online
survey.
We define “Design Properties” in Chapter 4.1, each aiming to qualitatively evaluate
one aspect of the embedded annotation design. To evaluate those properties, we
design the survey, where each question asks about one design property. The target
participants are industrial practitioners. For each property, the survey participant
is asked to rate its opinion on a Likert scale and support its choice in a free-text
field. The Likert scale range from “Completely Disagree” over “Disagree”, “Neu-
tral”, and “Agree” to “Completely Agree”. The free-text field allows to clarify the
chosen rating and add further feedback to the survey. The survey continues with
an open-ended question to the survey participant about its general opinion on how
embedded annotations are beneficial and for specification improvement suggestions.
The survey is closed with optional participants industry role and contact informa-
tion.

The survey questions are:
“To which extent do you agree with the following statements?”

• The notation is useful.
• The notation is intuitive. (e.g. How natural it feels to use it)
• The notation is easy to learn.
• The notation is easily applicable.
• The notation is flexible to use. (imagine the contexts in which you want to

use it, do you think it’s flexible to use?)
• Using the annotation will avoid redundancies. (i.e. Requires writing more

annotations than necessary for mapping assets to features)
• The notation is succinct. (i.e. the additional writing effort is minimal)
• The notion is robust during software evolution and maintenance. (i.e. as

many annotations as possible survive the evolution, e.g. moving folders/files,
3https://bitbucket.org/easelab/faxe/src/4548bac7575ae24c1438984e911324f405cb19b6/

specification/Embedded_Annotation_Specification.pdf

36

https://bitbucket.org/easelab/faxe/src/4548bac7575ae24c1438984e911324f405cb19b6/specification/Embedded_Annotation_Specification.pdf
https://bitbucket.org/easelab/faxe/src/4548bac7575ae24c1438984e911324f405cb19b6/specification/Embedded_Annotation_Specification.pdf

4. Embedded Annotations Design

removing code, and editing code, etc.)
• The additional effort of using annotations during programming is negligible.
• It will be easy to convince developers to use it while programming.
• What do you think the biggest benefits of using embedded annotations are?
• Any suggestions for improvements?

“Participant information” (optional)
• Please add your job title. (e.g. Developer, Tester, SW-Architect, Project

Manager)
• Please add your e-mail address

4.9.2 Survey Results
The survey was conducted in April and May 2020 as an online survey. The invited
participants belong to three groups:

1. Industry contacts of the field of software product lines from Thorsten Berger
as supervisor

2. Industry partner of thesis work
3. Industry contacts of Tobias Schwarz

For the survey in total 19 persons have been contacted and at least one person for-
warded the survey invite in its organization. In total 10 persons replied to the survey,
which makes a response rate of 53%. The survey was stopped after this number of
participants as the qualitative answers of participants from different companies and
backgrounds began to confirm each other and highlight the same factors. Due to the
timeline and ongoing Corona pandemic in first half of 2020 the survey was stopped
with the good amount of 10 filled survey.

Industry practitioners job roles (9 of 10 answered this optional question):

Figure 4.2: EA-Survey, Participants job titles

The summary of the means (Figure 4.3) shows for most design properties a rating
between “Neutral” and “Agree”. Outliers are the design properties “Effort” and
“Convince”. All design properties are discussed with their respective detailed results.
The selectable range is rated for this analysis from (1) “Completely Disagree” over
(3) “Neutral” till (5) “Completely Agree”.

37

4. Embedded Annotations Design

Design Property Mean SD
Useful 3,5 0,85
Intuitive 3,8 1,03
Learnable 4,2 0,79
Applicable 3,5 0,53
Flexible 3,7 0,95

Redundancy 3,5 0,85
Succinct 3,7 1,34
Robust 3,3 0,48
Effort 2,9 0,88

Convince 2,6 1,17

Table 4.1: EA-Survey, Mean
and SD of all Design Properties

Figure 4.3: EA-Survey, Combined
Mean values of design properties

With this result, the notation of embedded annotation has a solid foundation and
is understood by practitioners. For an even more convincing result, the survey par-
ticipants missed information about the return of investment, how teams collaborate
with this technique, and tool support. All of which are factors beyond the defini-
tion of embedded annotations and belong more to the application of how embedded
annotations are used.
The received survey results listed in Appendix B. They are unchanged, except for
the removed participant’s contact details.

In the following the individual survey questions are presented per question with
statistical values of mean and standard deviation, an overall summary of the question
in one to two sentences, a bar-chart with the results, and the summarized free-text
answers of the participants.

The notation is useful

This question evaluates the design property “Usefulness”. The results have a mean
of 3.5 with a SD of 0.85 .
The notion can be seen in general as useful. The rationale of this is that different
doubts have been seen about e.g. how meaningful for different programming lan-
guages it is or a clean code policy.

Annotating features in source code is seen as useful, especially as features and fea-
ture thinking is growing with the trends of agile software development concepts.
Software projects are growing over time in complexity and team members join over
the whole project duration. A project introduction can be supported with embedded
annotations for increasingly large and complex development projects. This may be
enriched with linking embedded annotations to requirements for general traceability
purposes, such as e.g. asked by standards such as ASPICE.
Considerations are in the areas of clean code, i.e. which is intuitive to read and
can be understood quickly (Wikimedia, Foundation Inc., 2019), and that embedded

38

4. Embedded Annotations Design

Figure 4.4: EA-Survey Results, The notation is useful

annotation might counteract against this. Besides that, there is the possibility to
document features on the software architecture level and structure your source code
by code generation from the created architecture. Which at the same time would
also allow us to generate embedded annotations directly and support developers
while their implementation.

The notation is intuitive

This question evaluates the design property “Intuitiveness (e.g. How natural it feels
to use it)”. The results have a mean of 3.8 and a SD of 1.03 .
The notion is seen in general as intuitive. The rationale of this is that especially the
similarity to other established approaches, such as #ifdef’s, support it.

Figure 4.5: EA-Survey Results, The notation is intuitive

The used keywords and syntax are considered as intuitive to use and the proposed
structure is appreciated. One doubt is that if embedded annotations are not part
of the original syntax, reading and using them might be non-intuitive, especially in
more abstract languages such as Python.

The notation is easy to learn

This question evaluates the design property “Easy to learn”. The results have a
mean of 4.2 and a SD of 0.79 .

39

4. Embedded Annotations Design

The rationale of easy to learn is that with the given keywords and structure the
notation is simple to use.

Figure 4.6: EA-Survey Results, The notation is easy to learn

Not only the source code annotations but also the feature-to-file and feature-to-folder
mapping is seen as easy to learn. The challenge to learn embedded annotations is
currently that there is no way to try them out in a ready to use environment.

The notation is easily applicable

This question evaluates the design property “Easy applicable”. The results have a
mean of 3.5 and a SD of 0.53 .
The rationale of the notion is highly applicable, but has at the moment a lack in
tool support and potential team commitment.

Figure 4.7: EA-Survey Results, The notation is easily applicable

The participants see the notation applicable to all stages of software project devel-
opment. Best case is early in the project phase, but also for legacy projects or in
maintenance phase could be e.g. with feature-to-file or feature-to-folder mapping a
low-cost feature mapping be created.
For the usage of embedded annotations in project teams, team-agreements are neces-
sary to commonly define the design and structures features and sub-features naming
conventions as well as up to which level features shall be documented. Following
such agreements as well as emphasizing their usage and finally benefit from them
the support of tools is essential.

40

4. Embedded Annotations Design

The notation is flexible to use

This question evaluates the design property “Flexible to use”. The results have a
mean of 3.7 and a SD of 0.95 .
The notion has a positive trend for its flexibility. The rationale of this is that the
survey participants have a lack in experience it.

Figure 4.8: EA-Survey Results, The notation is flexible to use

It is recognized that the notation of embedded annotations is independent of the
context and development itself and therefore can be applied independently to the
actual context. Also, the level to annotate ranges from whole file structures (folder)
over files till individual lines of text.
Considerations exist due to the lack to try out embedded annotations on a ready
to use the environment as well as doubts on scalability and validity while future
development and need to update them exist.

Using the annotation will avoid redundancies

This question evaluates the design property “Redundancy (i.e. Requires to write
more annotations than necessary for map-ping assets to features)”. The results have
a mean of 3.5 and a SD of 0.85 .
The rationale of this is that the notation is avoiding redundancies.

Figure 4.9: EA-Survey Results, The notation avoids redundancies

41

4. Embedded Annotations Design

It is in general seen that embedded annotations avoid redundancies. Redundancy is
saved on the one side with how embedded annotations are written and on the other
side with the feature knowledge to reduce the risk to implement features twice.
The survey feedback shows that how the question was not fully clear compared to
what or with which focus redundancy is avoided.

The notation is succinct

This question evaluates the design property “Succinctness (i.e. the additional writ-
ing effort is minimal)”. The results have a mean of 3.7 and a SD of 1.34 .
The level of succinct is rated more diverse, with a positive trend. The rationale of
this is that the notion is succinct, well-structured, and compact to write, but with
the need for tool support.

Figure 4.10: EA-Survey Results, The notation is succinct

The strength of the notation for embedded annotations is to act minimal invasive.
This is recognized and a compact way to express embedded annotations. At the
same time even with this succinct representation tool support is essential and might
be in contrast with a clean code approach.

The notation is robust during software evolution and maintenance

This question evaluates the design property “Robustness (i.e. as many annotations
as possible survive the evolution, e.g. moving folders/files, removing code, and
editing code, etc.)”. The results have a mean of 3.3 with a SD of 0.48 .
The robustness of the notation is seen as “Neutral” with a positive trend. The
rationale of this is that the risk is in the different usage of annotations and lack of
updating in the development and maintenance phase. Especially with project time
pressure and missing refactoring tooling.

The participants see the notation of embedded annotation robust on all software
artifact levels. Feature-to-folder annotations refer to the folder structure which is
less likely to change over time and therefore by themselves more stable. Even in the
case of renaming or moving to a new place. Feature-to-file are similar to folders,
but are liable to refactoring operations such as renaming, moving or deleting. Since
most changes happen in source code it is the part of embedded annotations that

42

4. Embedded Annotations Design

Figure 4.11: EA-Survey Results, The notation is robust

is least robust. Its level of robustness depends on how carefully developers handle
them. E.g. in case of adding new content, copy parts of source code, or updating
them while refactoring. One risk is that, especially at the end of a project, under
pressure, the careful handling is skipped, and no later documentation happens.
For the level of robustness two factors interplay. On the one side the notation itself
and on the other how it is used. The proper usage is especially important for large
distributed teams, differences in working and cultural backgrounds as well as to be
constant over time. For all drawbacks, tool support can reduce the risk of invalid
states and remember updating the annotations.

The additional effort of using annotations during programming is negli-
gible

This question evaluates the design property “Negligible effort”. The results have a
mean of 2.9 and a SD of 0.88 .
The rationale of this is that the additional effort to add embedded annotations is
neither seen as given nor as not given.

Figure 4.12: EA-Survey Results, The notation is cheap

With the different levels of the embedded annotation notation, the feature locations
for folders and files could be created with low additional effort. For well-structured
object-oriented-programming (OOP) projects a big part of the feature location doc-
umentation is seen to be annotated with this step. With a clean OOP approach,

43

4. Embedded Annotations Design

the actual code annotations should be on a small number.
As for writing readable and understandable source code, using embedded annota-
tions in the best way requires training and experience. Therefore, in the training
phase, an extra effort might be required until embedded annotations become a nat-
ural habit.

It will be easy to convince developers to use it while programming

As the first additional question to the design properties, an estimation is asked
how easy it is to convince developers in the survey respondent’s environment to use
embedded annotations as well. The results have a mean of 2.6 and a SD of 1.17 .
The rationale of this is that to convince other developers easily to use embedded
annotations is rated mainly “Neutral” with a tendency that this is not the case.
The survey participants see the lack in the existence of best practice as well as the
required tool support to work easily with.

Figure 4.13: EA-Survey Results, The notation is convincing

The notation of embedded annotations is seen new to most practitioners. As there
is no own experience or famous companies/tools using it, it is difficult to show the
actual advantage to get accepted by developers. Another aspect is the project or
product wide usage where guidelines and management support become important.
Easy and reliable tolling is an essential part to convince further developers to adapt
embedded annotations and apply them.
In the end, a developer or developer group must decide for their scope if the addi-
tional effort, independent how small, is worth to spend for more documentation.

What do you think the biggest benefits of using embedded annotations
are?

There are several areas of benefits that embedded annotations provide. The first
and foremost is the achievement of an overview of the implemented features in the
project with a detailed result where to locate them. Applying them over a longer
period allows the easier location of features for different tasks as well as supporting
effort estimations and planning the implementation of new or changed features. The
feature location may serve also for other purposes such as linking them to require-
ments or trace features for the use of report generation.

44

4. Embedded Annotations Design

Feature location and quickly locating the affected source code part(s) is highly rel-
evant to follow the agile methodologies as here changes over time in already imple-
mented source code parts are likelier than in waterfall projects.

Any suggestions for improvements?

The last question is openly formulated and asks for feedback to improve the speci-
fication.

4.9.3 Design Changes
With the received and in Chapter 4.9.2 summarized results, changes in the embedded
annotation design has been made. Some examples out of the survey which lead to
changes in the specification:

• The introduction was expanded to provide a better understanding of the im-
portance and general usage of embedded annotations.

• The terminology of Clafer was introduced as side note instead of using it in
the chapter names

• Special character “<cr>” explained
• For the interleaving of annotation markers, the high flexibility was added to

show the benefits to #ifdef notation
• The feature-to-file mapping received an own keyword to annotate file within

their own source code

4.9.4 Outcomes
The provided feedback is integrated into the embedded annotation design and part of
the latest version of the Specification of Embedded Annotations: https://bitbucket
.org/easelab/faxe/src/master/specification/Embedded_Annotation_Spe
cification.pdf
With the conducted survey, the notion of embedded annotations is empirically eval-
uated. For this the notion of embedded annotations is formalized and designed
according to defined design properties. The basic foundation of embedded annota-
tions is a summary of existing approaches of which this design is largely inspired.

45

https://bitbucket.org/easelab/faxe/src/master/specification/Embedded_Annotation_Specification.pdf
https://bitbucket.org/easelab/faxe/src/master/specification/Embedded_Annotation_Specification.pdf
https://bitbucket.org/easelab/faxe/src/master/specification/Embedded_Annotation_Specification.pdf

4. Embedded Annotations Design

4.10 Embedded Annotations Workflow and Us-
age

To receive the full picture, Figure 4.14 shows the workflow of handling embed-
ded annotations and the potential benefits which a project may take out of them.
This summary is created as last artifact in “Embedded Annotation Design”, see
Figure 3.1. With the creation of this figure at this point in time, the knowledge of
Chapter 2.9 “Related Work” and Chapter 4 “Embedded Annotations Design” run
into it. The developer, step (1), is responsible to add the source code and embed-

Figure 4.14: Embedded Annotation Workflow and Usage

ded annotations. While continuously developing new software, the added embedded
annotations can be re-used for feature location immediately. This allows a closed
feedback loop for the effort to add embedded annotations and benefiting of them.
Tool support for feature extraction, step (2), can be given via tool support, e.g.
FAXE - Feature Annotation eXtraction Engine4.
Besides the actual development, the developer should be responsible to update the
Feature Model. This work might be supported by SW-Architects and Domain ex-
perts.
With the knowledge of feature locations, several kinds of other benefits exist. One
of the topics on which this work has great expectations is the process of partial
feature-based commits. By knowing which parts of a local change belong to which
features, isolated code commits can be created. This has e.g. the benefit when on
multiple features or feature plus base code changes have been performed parallel
and clean feature commits shall be created. This process starts with step (3).
Further, embedded annotations might be used for Feature Visualization (Andam
et al., 2017; Entekhabi et al., 2019), i.e. keeping overview/understanding on fea-
ture level (instead folder/file level), or for Feature Metrics (Andam et al., 2017;
Entekhabi et al., 2019), e.g. for project tracking and warning indicators. Both in
taking a local perspective of the source code or based on an online git repository
and enrich it with the git history.

4https://bitbucket.org/easelab/faxe

46

https://bitbucket.org/easelab/faxe

5
Engine for Embedded Annotation

Extraction

In the conducted survey, results shown in Chapter 4.9, a major challenge was seen
in proper tool support to use embedded annotations on the one side in the right
way and on the other side to gain value from their existence. With the “Engine for
Embedded Annotation Extraction” a tool support is created for the core part, the
extraction of embedded annotations, out of a given project.
With the approach of a unified design for embedded annotations, it is possible to
implement software, which refers to this design, and developers and tool producers
can rely on the other’s interfaces. This engine functions as the first software to
support this unified design and shall allow clean and easy usage for further use.
This reference engine is based on the concept of embedded annotations introduced
in Chapter 4 “Embedded Annotations Design” and its capabilities and structure are
described in this chapter.
To support this, the foundation of the engine is on a domain-specific grammar, build
with the ANTLR4 Parser Generator1 and uses the in Appendix A.2 “EBNF Gram-
mar Definitions” defined EBNF grammars. The engine itself takes the interpreted
grammar, combines the grammar outputs and interacts with the user.
The engine itself is written in Java. The decision for Java is taken to support as
many as possible industrial use-cases with one engine implementation. For easier
referring and a succinct appearance the engine received the name “FAXE - Feature
Annotation eXtraction Engine”.
FAXE is hosted on Bitbucket: https://bitbucket.org/easelab/faxe/.

5.1 Parser Generator
With the definition of the embedded annotations grammar in EBNF, a parser gen-
erator is needed to generate source code that can take the projects’ source code and
“parse” it for the given grammar pattern. The parser for embedded annotations
is created with the tool ANTLR4, based on the EBNF grammars for code annota-
tions, file annotations, folder annotations, and simple feature hierarchy. The with
ANTRL4 generated parser receives the source code files and embedded annotation
files, checks for the defined grammar, and creates an abstract syntax tree (AST).
This AST can be accessed by the engine and the required information be taken out.

1https://www.antlr.org

47

https://bitbucket.org/easelab/faxe/
https://www.antlr.org

5. Engine for Embedded Annotation Extraction

The tooling used to extract keywords and their surrounding source code is usually
using regular expressions (RegEx). RegEx are powerful and easy to use, but becomes
difficult to use when searching regular expressions inside another regular expression
(recursion) or the number of expressions is growing (scalability). (Tomassetti, 2017)

5.2 Engine Architecture
The engine contains five core classes, shown in Figure 5.1, from which three extend
ANTRL4 generated files. The ANTRL4 generated files represent the entry point
and consist of more files than shown here.
The class FAXE is the entry point into the engine and offers the engine-user meth-
ods to check a whole project for embedded annotations or a specific type (source
code, feature-to-file, and feature-to-folder). The usage is designed in that way, that
the user provides a specific file to analyze or a project path where the engine search
iterates through all files and sub-directories. Providing a list of type EmbeddedAn-
notations to the user. Inside the class EmbeddedAnnotations all necessary in-
formation are stored to identify a specific embedded annotation inside the project,
i.e. its file, line position, and feature name. With the respective getters, the user
can extract the for him/her relevant information. To classify the different types of
embedded annotations, the enumeration eEAType list all types.
The layer between the publicly available methods and the generated ANTLR4
grammar is filled by the classes MyCodeAnnotationsVisitor, MyFileAnno-
tationsVisitor and MyFolderAnnotationVisitor. All these classes extend their
respective generated BaseVisitor and override the methods where grammar data
is extracted. For each visitor its in the grammar defined main rule, e.g. “visit-
Marker(. . .)” is called. Internally this triggers a search through the AST for this
grammar. The extracted embedded annotations are collected, merged and returned
as a list of embedded annotations.
The layer of generated ANTLR4 source code contains more functions that are over-
ridden by the visitor-classes. The methods of the base classes represent all rules
in the EBNF grammar and perform the actual detection of the grammar patterns.
Figure 5.1 shows one more BaseVisitor than in the engine implementation, this is a
preparation for future engine extension and not relevant for the following industrial
use case. In the projects’ repository unit tests for the engine’s functionality and
visitor files exist.

48

5. Engine for Embedded Annotation Extraction

Figure 5.1: FAXE Engine Class UML Diagram

49

5. Engine for Embedded Annotation Extraction

5.3 Public Interface Methods and Capabilities
As the design of embedded annotations, the engine’s design is driven for intuitive-
ness, easy to learn, and flexible to use. These concepts have been taken to design
the interfaces for public methods. The main goal is the seamless usage of the en-
gine for users, to simplify their work and let them focus on the usage of embedded
annotations than bothering to extract them.
The following methods are offered to the engine’s users:

Method extractEAfromRootDirectory
1 public static java.util.List < EmbeddedAnnotation >

extractEAfromRootDirectory (java.lang. String rootDirectory)

Method to extract embedded annotations from given root directory. The root direc-
tory and all sub-directories are checked for embedded annotations in source code,
files and folders. In addition, the hierarchy file is analyzed.

Parameters:
rootDirectory - String of root directory.
Returns:
List of found embedded annotations.

Method extractEAfromSourceCode
1 public static java.util.List < EmbeddedAnnotation >

extractEAfromSourceCode (java.lang. String fileToAnalyze)

Method to extract embedded annotations on source code level of given file.
Parameters:
fileToAnalyze - String of to be analyzed file.
Returns:
List of found embedded annotations.

Method extractEAfromFeatureFile
1 public static java.util.List < EmbeddedAnnotation >

extractEAfromFeatureFile (java.lang. String fileUnderTest)

Method to extract embedded annotations on file level of given file.
Parameters:
fileUnderTest - String of to be analyzed file.
Returns:
List of found embedded annotations.

Method extractEAfromFeatureFolder
1 public static java.util.List < EmbeddedAnnotation >

extractEAfromFeatureFolder (java.lang. String folderUnderTest)

Method to extract embedded annotations on folder level of given folder.

50

5. Engine for Embedded Annotation Extraction

Parameters:
folderUnderTest - String of to be analyzed folder.
Returns:
List of found embedded annotations.

Method serializeEAList2JSON
1 public static org.json. JSONArray serializeEAList2JSON (java.util.

List < EmbeddedAnnotation > eaList)

Transforms list of EmbeddedAnnotation to JSON object.
Parameters:
eaList - List of EmbeddedAnnotation
Returns:
JSON object out of parameter.

Method deserializeEAList2JSON
1 public static java.util.List < EmbeddedAnnotation >

deserializeEAList2JSON (org.json. JSONArray jsonArray)

Transforms JSON object to list of EmbeddedAnnotation
Parameters:
jsonArray - JSON object
Returns:
List of EmbeddedAnnotation out of parameter.

5.4 Engine Usage Example
A project requires adding the engine JAR file into your project or import of it
into your source code. Afterwards, the individual engine functions are one-line
commands. A small example can be found on Bitbucket2. Extract of this example:

1 import FAXE. ∗ ;
2

3 pub l i c c l a s s FAXEMiniApplication {
4 pub l i c s t a t i c void main (St r ing [] a rgs) {
5 . . .
6 List<EmbeddedAnnotation> eaL i s t =
7 FAXE. extractEAfromRootDirectory (pro jectRoot) ;
8 List<EmbeddedAnnotation> eaListCode =
9 FAXE. extractEAfromSourceCode (t e s tF i l eCode) ;

10 List<EmbeddedAnnotation> e aL i s tF i l e =
11 FAXE. extractEAfromFeatureFi le (t e s t F i l e F i l e) ;
12 List<EmbeddedAnnotation> eaL i s tFo lde r =
13 FAXE. extractEAfromFeatureFolder (t e s tF i l eF o l d e r) ;
14 }
15 }

2https://bitbucket.org/TobiasOnBitbucket/faxeminiapplication/

51

https://bitbucket.org/TobiasOnBitbucket/faxeminiapplication/

5. Engine for Embedded Annotation Extraction

52

6
Industrial Use Case

The embedded annotations specification represents a document, created out of lit-
erature review as well as researchers’ and practitioners’ feedback. Based on that the
reference engine was created. To show that this approach is valuable for industry,
and to evaluate the FAXE-engine, several actual use cases will be shown (Chapter
6.1) and one of them implemented.

6.1 Potential Use Cases
A subtotal list of use cases which can be improved with the notion of embedded
annotations. The fact which all these approaches are using is the knowledge about
the feature location in source code.
Maintenance: To quickly locate the feature of interest while bug fixing and im-

plementation work in an existing system.
Feature Metrics: With the knowledge about how features are distributed over the

source code and how they interact allows the calculation of metrics such as
scattering-, tangling- or nesting-degree.

Visualization: Extracting the feature locations and present them in a graphical
way. This could be used e.g. to show which parts of the source code belong
to a feature or how features are linked to others.

Version Control: Feature Metrics and Visualization itself would improve with the
notion of embedded annotations. Using the version control system, in addition,
would allow to calculate/show the evolution of the software over time and
especially variants.

Partial Commits: Partial commits allow to commit a subset of changes inside
one software project (Chapter 2.8). With the existing git tooling this is a
process, requiring many manual steps. By knowing the feature locations inside
a project, an automated way is possible, to decide if certain changes are part
of a feature. With this the user interactions to perform a partial commit can
be made more efficient.

With the industrial partner, one specific company from the area of web development,
the potentials of embedded annotations and their software development challenges
have been discussed. As embedded annotations where not used in this company so
far, mainly the Version Control and Partial Commits options were discussed. The
possibility to develop at the same time different features while keeping the commit
history clean to specific feature commits, this option was chosen to be implemented.
This decision is supported from research side due to its innovative character.

53

6. Industrial Use Case

6.2 Use Case “Partial Commit”
The general idea of partial commit has been shown in Chapter 2.8 “Git Partial
Commits”. Git provides to the user with “git add −−patch” (alternative ‘-p’) such
a functionality with an interactive console and takes the user into the position to
decide which parts of the source code shall be added to a commit and which not.
Figure 6.1 shows the workflow which a user must perform for each feature. First,
the developer must go through all files and inspect the changes. Per change the user
must decide if it shall be part of the partial commit or not. The by git proposed
“hunk” blocks might have the need to be split and then added or rejected. After
going through all files the user can perform a commit with fitting message and
perform the same operation to collect data for the next commit. Finally, with a git
push, the data is moved to the server’s git repository.

Figure 6.1: Partial Commit WorkflowWith Interactive Console “git add−−patch”

For the purpose of partial feature-based commits, a fully automated approach is
targeted. Conceptually, the user provides the information which feature to commit
and the tool takes to map the current software changes to the feature scopes. The
precondition is that embedded annotations are present in the to be committed source
code.
The application shall be able to accept individual feature names as well as a list of
feature names. Latter is required to support product variants which contain a set
of features.
A partial feature-based commit shall happen in the following steps:

1. Receive a list of local differences in changed, added and removed files, com-
pared to the git repository

2. Receive list of embedded annotations from local project for a given feature
3. Determine overlapping elements between detected changes and given feature
4. Check if the staging area is empty and in case the user put something in there

ask for permission to delete it.
5. Prepare source code in the staging area to perform partial feature commit

(“git add”)
6. Perform git commit with either user commit message or tool-generated one

The goal of this application is on the one side to reduce the number of steps for
the user to perform a partial feature-based commit and on the other side to avoid
manual interactions in the process.

54

6. Industrial Use Case

Figure 6.2: Git Partial Commit Workflow With Feature Focus With New Tooling

How the steps of partial feature-based commit work with Figure 6.2. As
precondition the developer needs to have installed a git client and created or cloned
a git repository. In this working directory the developer performs changes to two
different features, namely “FeatureA” and “FeatureB”. These changes happen in the
working directory, shown in Figure 6.2 as orange cylinder object. In the box to the
right of the working directory, the changes of “FeatureA” are shown in blue and the
changes of “FeatureB” are shown in red. “FeatureA” and “FeatureB” have changes
in files A.java and B.java while C.java contains only changes of “FeatureB”.
The intention of partial feature-based commit is now to create own git-commits for
“FeatureA” and “FeatureB”. This is shown as with the numbers in blue circles

1. to perform a partial feature-based commit for “FeatureA” with a by the de-
veloper provided commit message (parameter ‘-m’)

2. to perform a partial feature-based commit for “FeatureB”
For these commits, individually for partial feature-based commit (1) and (2), as Step
1 the changes of the local working directory, compared to the local repository (git
version control data flow in Chapter 2.7) is detected. Step 2 takes care to identify
all features based on their embedded annotations in the git project root folder and
below. As now the two information, local changes, and feature positions, is avail-
able, these two lists can be compared in Step 3 and the changes be identified which
belongs to the requested feature. Before adding the changes, which belong to the
feature, the staging area must be cleaned to avoid manually added source code to be
included, Step 4. Step 5 takes care to add all changes of this feature to the staging
area, followed by the last Step 6 to perform a git commit and create a new commit
in git.
After the developer has performed the wanted partial feature-based commit, the de-
veloper must git-push his commits to the Remote Repository, shown as blue cylinder.
In the remote repository the commits are added and the individual partial feature-
based commits appear as own elements in the “Commit-History”.

6.3 State of the Art
To establish a body of knowledge, an online search has been conducted to find pos-
sible ways to implement the use case of partial commit. Thereby the search was
on the one side conceptional and analyzed the potential solution tracks to follow,
and on the other side tools, which offer a partial commit functionality for git. Best
results have been made with searching for “git” plus “partial commit”/“partial stag-
ing”. Most results are forum discussion where further hints are linked and lead to

55

6. Industrial Use Case

the following list.

The potential solution tracks are:
Shell Program that interacts with "git add -p" As an established and via con-

sole interaction available command exists, the first option is to create a tool
that interacts with the by git provided tool for partial commits. The process of
how to navigate through the menus is known and the structure of the answer
message is well structured. Nevertheless, the number of potential scenarios
and variances in answer messages is expected to be very high. Also, it re-
mains one inherent issue with the definition of hunk blocks. The source code
blocks are split into hunks, which can be further split down. This process is
not always possible to break down hunks to individual lines of source code.
Therefore, the risk of code blocks exists which contain feature and non-feature
code, but which cannot be separated further with the tool.

Git integration libraries Different libraries exist, to control git repositories for
different programming languages. E.g. libgit21 for C, JGit2 for Java and
GitPython3 for Python. The benefit of such libraries is the smooth integration
of git access and regular source code, such as a feature extraction library. All
libraries have in common, that native support of the sub-option “−−patch”
for “git add” is missing. Discussions are held for such a feature request and
the latest one found is for libgit2 from 2012: https://github.com/libgit2/
libgit2/issues/591.

Git Hosting Platforms Instead of interacting with the local git repository, one
alternative is to interact directly with the git hosting platforms. Hosting plat-
forms such as GitHub or GitLab provide APIs for other tools and websites
to interact with them. GitHub provides an API and a CLI (Command Line
Interface) tool, where both have the focus to work with GitHub repositories
and issues, but not source code. The GitLab API also focuses on repository
and issue interaction but allows as well to handle source code. The issue with
handling source code directly with GitLab is the divergence of the bypassed
local git repository and an additional challenge to handle.

Extension of git As the git tooling provides the partial commit option and as it
is available as an open-source project, one option is to extend git itself. By
providing a new parameter that triggers its own subroutine, this solution would
have the highest integration. Besides the need to understand the extensive
git source code and low-level version control handling, an issue is to make
this solution available to others. Before the solution is not available in the
mainstream git, anybody who would like to use it must replace his official git
by the customized version.

For the git tools which are capable to support partial commits, some even on indi-
vidual line level, in total six tools have been found:
Git-gui - https://git-scm.com/docs/git-gui

Git-gui is an in git by default integrated GUI tool to perform commit genera-
1https://libgit2.org/
2https://www.eclipse.org/jgit/
3https://gitpython.readthedocs.io/en/stable/#

56

https://github.com/libgit2/libgit2/issues/591
https://github.com/libgit2/libgit2/issues/591
https://git-scm.com/docs/git-gui
https://libgit2.org/
https://www.eclipse.org/jgit/
https://gitpython.readthedocs.io/en/stable/#

6. Industrial Use Case

tion. It is available as an open-source project, written in TCL, and supports
by itself to stage up to individual lines for one commit.

Git-Cola - https://git-cola.github.io/
Git-Cola is a standalone graphical tool to interact with git to stage commits
and handle branches. It is available as open-source, written in Python and
supports by itself to stage up to individual lines for one commit.

Egit - https://www.eclipse.org/egit/
Egit is a set of Eclipse plugins written with the JGit library. Its source code is
available and written in Java. The tool allows to edit the staging area directly
and crosscuts with this the need to mark and add individual lines. But with
this the inherent risk to add invalid code while manually editing the staging
area.

Git-tower - https://www.git-tower.com/
Git-tower is a comprehensive graphical interface to work with git. The tool is
proprietary software and no source code is available. The tool allows staging
individual lines.

git-crecord by andrewshadura -
https://github.com/andrewshadura/git-crecord
The first version of git-crecord is specialized to perform partial commits on
the actual git-diff between the working directory and staging area. It is a
command-line tool and allows to select individual lines of source code to in-
clude in a commit. The implementation is in Python and as open source
available.

git-crecord by mbrendler - https://github.com/mbrendler/git-crecord
The second version of git-crecord fulfills the same functionality as the first one.
It is written in Ruby and available as open source.

6.4 Tool Design
The internal implementation of the tool for partial feature-based commits is done
in Java with the JGit-library to interact with an online git repository. This Java
implementation is linked with a custom git command (Bash script) to the local
git installation and can be used as own git sub-command from the command line
console.
As implementation internal git commands, basic git commands such as git-clone,
-add and -commit have been used. The detection of changes happens between a
copy of the working directory and the unmodified version of the repository.
The tool is integrated into the user space of local git commands and provides on
command line level with a Bash script the functionality to the user. It supports
these parameters:

1 $ g i t p fc −h
2 Usage: −f featureName −m "message to add to commit " −nc
3 −f , −−feature <arg> S ing l e f e a tu r e to con s id e r [MANDATORY]
4 −m,−−message <arg> Text to be added to commit message [OPTIONAL]
5 −nc ,−−no−commit Suppress git−commit [OPTIONAL]
6 −p, −−print−embedded−annotations Pr in t s a v a i l a b l e embedded

annotat ions [OPTIONAL]

57

https://git-cola.github.io/
https://www.eclipse.org/egit/
https://www.git-tower.com/
https://github.com/andrewshadura/git-crecord
https://github.com/mbrendler/git-crecord

6. Industrial Use Case

The Java implementation requires a further argument parameter which is automat-
ically filled by the Bash script:

1 −wd, −−working−directory Path to g i t− f o l d e r (with . g i t) o f p r o j e c t

6.5 Tool Architecture
The tool is implemented as a Bash script, forwarding the given parameters to the
tool. The core implementation is done in Java in a single class. The internal flow
of decisions and data transmission is shown in the following figure.

Figure 6.3: Git Partial Feature Commit Tool - Flow Diagram

58

6. Industrial Use Case

6.6 Partial Commit Limitations

With the final version of this tool, the handling of changes in existing &begin -
&end annotation as well as existing &line annotation has been realized. Both work
within the in Figure 6.3 described workflow and analyze the differences based on
the embedded annotations lists. Adding and removing annotations is increasingly
complex, especially when changes evolve over feature and non-feature source code.
An example to visualize this situation is shown in Listings 6.1 and 6.2 and requires
advanced diffing as the origin of a change cannot be traced back just by the feature
information.
Partial commit in feature base is able to use with changing content of existing
embedded annotations and practical experience can be taken out of this.
Present embedded annotations in
Listing 6.1:

Name “FeatureA”
Begin 7
End 12
File “HelloPartial.java”

Present embedded annotations in
Listing 6.2:

Name “FeatureA”
Begin 7
End 10
File “HelloPartial.java”

Name “FeatureA”
Begin 15
End 19
File “HelloPartial.java”

1 pub l i c c l a s s He l l oPa r t i a l {
2
3 pub l i c void main (St r ing [] a rgs) {
4 methodA () ;
5 }
6
7 //&begin(FeatureA)
8 pr i va t e void methodA () {
9 System . out . p r i n t l n ("methodA") ;

10 System . out . p r i n t l n ("A Pr int ") ;
11 }
12 //&end(FeatureA)
13
14 pr i va t e void methodB () {
15 System . out . p r i n t l n ("methodB") ;
16 }
17
18 pr i va t e void methodC () {
19 System . out . p r i n t l n ("methodC") ;
20 }
21 }

Listing 6.1: HelloPartial.java, Partial
Commit Limitations Initial State

1 pub l i c c l a s s He l l oPa r t i a l {
2
3 pub l i c void main (S t r ing [] a rgs) {
4 methodA () ;
5 }
6
7 //&begin(FeatureA)
8 pr i va t e s t a t i c boolean var1 ;
9 pr i va t e s t a t i c boolean var2 ;

10 //&end(FeatureA)
11 pr i va t e s t a t i c boolean var3 ;
12 pr i va t e s t a t i c boolean var4 ;
13 pr i va t e s t a t i c boolean var5 ;
14
15 //&begin(FeatureA)
16 pr i va t e void methodA () {
17 System . out . p r i n t l n ("methodA") ;
18 }
19 //&end(FeatureA)
20
21 pr i va t e void methodB () {
22 System . out . p r i n t l n ("methodB") ;
23 }
24
25 pr i va t e void methodC () {
26 System . out . p r i n t l n ("methodC") ;
27 }
28 }

Listing 6.2: HelloPartial.java, Partial
Commit Limitations Final State

59

6. Industrial Use Case

6.7 Tool Evaluation
The tool evaluation was initially contemplated to be in collaboration with the in-
dustrial partner, but due to the mid of 2020 ongoing pandemic a different evaluation
approach had to be chosen.
By evaluating the tool for partial feature-base commits, research question 2 (“How
can embedded annotations make an industrial use case more efficient?”) of this
work shall be answered. For this, the tool is demonstrated in different scenarios
and each scenario is compared with the currently available techniques and the by
this work created tool. The tool is publicly available under https://bitbucket.
org/TobiasOnBitbucket/partialfeaturecommitongit/ and can be used as one
line commands within the git console.

As the Design Properties for the Embedded Annotations Design, the scenarios base
on the by Balzer and Goldman (1981) proposed principles of good software specifica-
tions: understandability, testability, and maintainability. With these basic principles
and the by Ji et al. (2015) presented evolution patterns for embedded annotations,
the scenarios have been selected and defined. With the in Chapter 6.6 introduced
limitations of the current implementation, the selection of evolution patterns is lim-
ited. The scenarios are presented and discussed in this chapter and their execution
is documented with screenshots in Appendix C.

The scenarios are:
1. Adding new assets to an existing feature and its unit tests
2. Evolution of source code in embedded annotation and base source code
3. Refactoring features - Structural change within a feature

Before the scenarios can be analyzed in detail, the reliability and scalability of the
tool must be ensured. For this the results of FeatureDashboard (original dataset4)
and FAXE (reworked dataset according specification5) are compared. The dataset
has around 1500 embedded annotations and due to the rework of the &line anno-
tation (from own line to behind the source code), the line numbers of following
embedded annotations are changed. With these two factors, the sequence and fea-
ture in &begin/&end and &line embedded annotations are compared.

To extract the data from FeatureDashboard, the original dataset was cloned from its
git repository to a local repository and imported to Eclipse with FeatureDashboard.
In the “Feature Dashboard View” all features have been selected in “Feature Model”
and all files and folders in “Resources”. With the option “export traces as CSV
format”, the detected embedded annotations are extracted to a CSV file.
FeatureDashboard discovers in total 62 features:
The bash script for partial commit supports a print option for all available features in
embedded annotations: “git-pfc -p”. The outcome of this is a list of 63 features. This
is one more feature than shown by FeatureDashboard because FeatureDashboard is

4https://bitbucket.org/rhebig/jss2018/src/master/Bitcoin-wallet/
5https://bitbucket.org/TobiasOnBitbucket/ea-bitcoin-wallet/src/master/Bitcoin-wallet/

60

https://bitbucket.org/TobiasOnBitbucket/partialfeaturecommitongit/
https://bitbucket.org/TobiasOnBitbucket/partialfeaturecommitongit/

6. Industrial Use Case

Figure 6.4: Tool Evaluation, Available Features in Project, FeatureDashboard

not case sensitive and merges the features “BlockchainSync” and “BlockChainSync”.

Figure 6.5: Tool Evaluation, Available Features in Project, FAXE

To receive an export from FAXE about the details of the embedded annotations
(type, feature and location), it must be run from its source code with activated
debug information. The created debug print was copied into a CSV file and both
data sets have been cleaned for braces, leading project paths and ‘\’ for easier com-
parison. For the dataset of FeatureDashboard in addition the embedded annotation
type (LINE or FRAGMENT (&begin+&end)) is added. The final steps is to sort
both data sets according to file name and line number.
The summary about the data shows that there are discrepancies how FeatureDash-

61

6. Industrial Use Case

board and FAXE work at the moment. The discrepancies are for the type FRAG-
MENT and only for certain features. Also, the example data needs to be checked, as
FAXE could detect some errors within this data, e.g. 36 &begin without a matching
&end. Some discrepancies can be explained with this, but not the fact that FAXE
found around 200 FRAGMENTS more than FeatureDashboard (see Table 6.1 and
Table 6.2).

175 //&begin [PaymentURL]
176 pub l i c PaymentIntent (@Nullable f i n a l

Standard standard , @Nullable f i n a l
S t r ing payeeName ,

177 @Nullable f i n a l S t r ing
payeeVeri f iedBy , @Nullable f i n a l
Output [] outputs , @Nullable f i n a l
S t r ing emo ,

178 @Nullable f i n a l S t r ing
paymentUrl , @Nullable f i n a l byte []
payeeData ,

179 //&begin [RequestCoins]
180 @Nullable f i n a l S t r ing

paymentRequestUrl , @Nullable f i n a l
byte [] paymentRequestHash) {

181 //&begin [RequestCoins]
182 t h i s . standard = standard ;
183 t h i s . payeeName = payeeName ;
184 t h i s . payeeVer i f i edBy =

payeeVer i f i edBy ;
185 t h i s . outputs = outputs ;
186 t h i s .memo = memo;
187 t h i s . paymentUrl = paymentUrl ;
188 t h i s . payeeData = payeeData ;
189 //&begin [RequestCoins]
190 t h i s . paymentRequestUrl =

paymentRequestUrl ;
191 t h i s . paymentRequestHash =

paymentRequestHash ;
192 //&end [RequestCoins]
193 }
194 //&l i n e [PaymentURL]

Listing 6.3: Bitcoin-
Wallet, PaymentIntent.java, Bugs for
embedded annotations in line 181 and
194

81 pub l i c Dia log onCreateDialog (f i n a l
Bundle savedIns tanceState) {

82 f i n a l Bundle args = getArguments () ;
83 //&begin [ShareAddress]
84 f i n a l Address address = (Address)

args . g e t S e r i a l i z a b l e (KEY_ADDRESS) ;
85 //&begin [Codecs]
86 //&l i n e [base58]
87 //&end [Codecs]
88 f i n a l S t r ing addre s sSt r = address .

toBase58 () ;
89 f i n a l S t r ing addressLabe l = args .

g e tS t r i ng (KEY_ADDRESS_LABEL) ;
90 //&end [ShareAddress]
91 . . .

Listing 6.4: Bitcoin-Wallet,
WalletAddressDialogFragment.java,
Undocumented handling of lines 85 till
87

The results of the comparison of both tools look promising for the &line annotation
and several embedded annotations but require future investigation. The original
data is not changed to avoid working on the data until just a satisfying result is
reached. The first ten lines of the compared data sets/tools (alphabetically sorted):

Embedded Annotations Count
&line 605
FRAGMENT 835

====
SUM 1440
ROWS 1440

Embedded Annotations Count
&line 605
&begin 36
FRAGMENT 1047

====
SUM 1688
ROWS in dataset 1688

62

6. Industrial Use Case

Features Count
AddressBook 80
AppLog 12
AutoCloseSendDialog 4
BackupReminder 10
BackupWallet 49
BalanceReminder 6
base58 81
BIP21 2
BIP70 14
BIP72 2

Table 6.1: Bitcoin-Wallet, Tool evalu-
ation summary, FeatureDashboard

Features Count
AddressBook 92
AppLog 12
AutoCloseSendDialog 4
BackupReminder 12
BackupWallet 57
BalanceReminder 6
base58 81
BIP21 6
BIP70 16
BIP72 2

Table 6.2: Bitcoin-Wallet, Tool evalu-
ation summary, FAXE

6.7.1 Scenario 1 - Adding New Assets to an Existing Feature
This scenario covers changes in existing embedded annotations in the project’s source
code and its unit test. For this purpose, an example test project is used to avoid
demonstration commits on a real project. The feature under test is “FeatureTestSce-
nario1”. Screenshots to this scenario can be found in Appendix C.1.
The source code for the program and unit test is changed in the following way:

1 pub l i c c l a s s HelloCommit {
. . .

12 //&begin (FeatureA)
13 pr i va t e void commitC () {
14 System . out . p r i n t l n (" commitC") ;
15 }
16 //&end (FeatureA)

. . .
24
25 //&begin (FeatureTestScenar io1)
26 protec ted boolean runTestScenar io1 (

i n t i) {
27 System . out . p r i n t l n ("Run

runTestScenar io1 with i=" +i) ;
28
29 commitC () ;
30
31 i f (i%2==0) {
32 r e turn true ;
33 } e l s e {
34 r e turn f a l s e ;
35 }
36 }
37 //&end (FeatureTestScenar io1)
38 }

Listing 6.5: PartialCommit-
Testapplication, HelloCommit.java,
Scenario 1 - Unmodified Source Code

1 pub l i c c l a s s HelloCommit {
. . .

12 //&begin (FeatureA)
13 pr i va t e void commitC () {
14 System . out . p r i n t l n (" commitC") ;
15 }
16 //&end (FeatureA)

. . .
24
25 //&begin (FeatureTestScenar io1)
26 protec ted boolean runTestScenar io1 (

i n t i) {
27 System . out . p r i n t l n ("Run

runTestScenar io1 with i=" +i) ;
28
29 i f (i==0) {
30 r e turn true ;
31 }
32
33 commitC () ;
34
35 i f (i%2==0) {
36 r e turn true ;
37 } e l s e {
38 r e turn f a l s e ;
39 }
40 }
41 //&end (FeatureTestScenar io1)
42 }

Listing 6.6: PartialCommit-
Testapplication, HelloCommit.java,
Scenario 1 - Modified Source Code

63

6. Industrial Use Case

1 import s t a t i c org . j u n i t . j u p i t e r . ap i .
As s e r t i on s . ∗ ;

2
3 import org . j u n i t . j u p i t e r . ap i . Test ;
4
5 c l a s s HelloCommitTest {
6
7 //&begin (FeatureTestScenar io1)
8 @Test
9 void t e s t 1 () {

10 HelloCommit h e l l o = new HelloCommit
() ;

11 boolean retVal = h e l l o .
runTestScenar io1 (4) ;

12 a s s e r tEqua l s (retVal , t rue) ;
13 }
14 //&end (FeatureTestScenar io1)
15
16 }

Listing 6.7:
PartialCommitTestapplication,
HelloCommitTest.java, Scenario 1 -
Unmodified Unit Test

1 import s t a t i c org . j u n i t . j u p i t e r . ap i .
As s e r t i on s . ∗ ;

2
3 import org . j u n i t . j u p i t e r . ap i . Test ;
4
5 c l a s s HelloCommitTest {
6
7 //&begin (FeatureTestScenar io1)
8 @Test
9 void t e s t 1 () {

10 HelloCommit h e l l o = new HelloCommit
() ;

11 boolean retVal = h e l l o .
runTestScenar io1 (4) ;

12 a s s e r tEqua l s (retVal , t rue) ;
13 }
14
15 @Test
16 void t e s t 2 () {
17 HelloCommit h e l l o = new HelloCommit

() ;
18 boolean retVal = h e l l o .

runTestScenar io1 (0) ;
19 a s s e r tEqua l s (retVal , t rue) ;
20 }
21 //&end (FeatureTestScenar io1)
22
23 }

Listing 6.8:
PartialCommitTestapplication,
HelloCommitTest.java, Scenario 1 -
Modified Unit Test

To perform the partial feature-based commit the following steps are taken for the
currently existing approach (git add) and the new tool approach.

Steps git-add:
1. Call “git add −−patch”
2. Decide for hunk in HelloCom-

mit.java to be staged. Select ‘y’
(yes).

3. Decide for hunk in HelloCom-
mitTest.java to be staged. Select
‘y’ (yes).

4. All changes are now in the staging
area. Call “git commit -m “Sce-
nario 1 manual”

Steps partial commit tooling:
1. Call “git pfc -f FeatureTestSce-

nario1 -m “Scenario 1 with tool”

64

6. Industrial Use Case

6.7.2 Scenario 2 - Evolution of Source Code in Embedded
Annotation and Base Source Code

This scenario covers changes in existing embedded annotations plus the base source
code (non-feature source code). Only the changes in the feature shall be commit-
ted and change outside is ignored. For this purpose, an example test project is
used to avoid demonstration commits on a real project. The feature under test is
“FeatureTestScenario2”. Screenshots to this scenario can be found in Appendix C.2.

The source code for the program and unit test is changed in the following way:

1 pub l i c c l a s s He l l oPa r t i a l {
2
3 pub l i c void main (St r ing [] a rgs) {
4 System . out . p r i n t l n ("Make p r i n t s

in d i f f e r e n t methods to s imulate
p a r t i a l commits . ") ;

5 methodA () ;
6 }
7
8 //&begin (FeatureA)
9 pr i va t e void methodA () {

10 System . out . p r i n t l n ("New Method
here1 ") ;

11 System . out . p r i n t l n ("New Method
here2 ") ;

12 System . out . p r i n t l n ("New Method
here3 ") ;

13 System . out . p r i n t l n ("New Method
here4 ") ;

14 }
15 //&end (FeatureA)

. . .
31
32 //&begin (FeatureTestScenar io2)
33 protec ted i n t runTestScenar io2 (i n t

i , i n t j) {
34 System . out . p r i n t l n ("Run

runTestScenar io1 with i=" +i +" j="
+j) ;

35 r e turn i ∗ j ;
36 }
37 //&end (FeatureTestScenar io2)
38
39 //&begin (FeatureA)
40 pr i va t e void methodC1 () {
41 System . out . p r i n t l n ("methodC") ;
42 }
43 //&end (FeatureA)
44 }

Listing 6.9: PartialCommit-
Testapplication, HelloPartial.java,
Scenario 2 - Unmodified Source Code

1 pub l i c c l a s s He l l oPa r t i a l {
2
3 //&begin (FeatureA)
4 pr i va t e void methodA () {
5 System . out . p r i n t l n ("New Method

here1 ") ;
6 System . out . p r i n t l n ("New Method

here2 ") ;
7 System . out . p r i n t l n ("New Method

here3 ") ;
8 System . out . p r i n t l n ("New Method

here4 ") ;
9 }

10 //&end (FeatureA)
. . .

27
28 //&begin (FeatureTestScenar io2)
29 protec ted i n t runTestScenar io2 (i n t

i , i n t j) {
30 System . out . p r i n t l n ("Run

runTestScenar io1 with i=" +i +" j="
+j) ;

31 i f (i ==0|| j==0) {
32 r e turn 0 ;
33 }
34 r e turn i ∗ j ;
35 }
36 //&end (FeatureTestScenar io2)
37
38 //&begin (FeatureA)
39 pr i va t e void methodC1 () {
40 System . out . p r i n t l n ("methodC") ;
41 }
42 //&end (FeatureA)
43 }

Listing 6.10:
PartialCommitTestapplication,
HelloPartial.java, Scenario 2 - Modified
Source Code

To perform the partial feature-based commit the following steps are taken for the
currently existing approach (git add) and the new tool approach.

65

6. Industrial Use Case

Steps git-add:
1. Call “git add −−patch”
2. Decide for hunk (remove main

method) in HelloPartial.java to
be staged. Select ‘n’ (no).

3. Decide for hunk (change method
runTestScenario2) in HelloPar-
tial.java to be staged. Select ‘y’
(yes).

4. All changes are now in the staging
area. Call “git commit -m “Sce-
nario 2 manual”

Steps partial commit tooling:
1. Call “git pfc -f FeatureTestSce-

nario2 -m “Scenario 2 with tool”

6.7.3 Scenario 3 - Refactoring Existing Structural CodeWithin
a Feature

This scenario covers the refactoring of existing embedded annotations plus outside
of it in the project’s source code. In this example, two features are to be committed.
Also, both features are interleaving with each other (line 33). Both created commits
shall only contain the changes of one feature. Therefore, the inner feature of the
interleaving needs to be committed first. For this purpose, an example test project is
used to avoid demonstration commits on a real project. The features under test are
“FeatureTestScenario3” and “FeatureTestScenario4”. Screenshots to this scenario
can be found in Appendix C.3.
The source code for the program and unit test is changed in the following way:

1
2 pub l i c c l a s s He l loFeature {
3
4 pub l i c s t a t i c void main (S t r ing [] a rgs

) {
5 i n t r e s1 = plus (1 , 2) ;
6 double r e s2 = mult i (5 , 3) ;
7 }
8
9 //&begin [FeatureTestScenar io3]

10 pr i va t e s t a t i c i n t p lus (i n t i , i n t j)
{

11 i n t tmp1 = i ;
12 i n t tmp2 = j ;
13 i n t tmp = tmp1 + tmp2 ;
14 r e turn tmp ;
15 }
16 //&end [FeatureTestScenar io3]
17
18 //&begin [FeatureTestScenar io4]
19 pr i va t e s t a t i c i n t minus (i n t i , i n t j

) {
20 i n t temp = 0 ;
21 temp = i−j ;
22 r e turn temp ;
23 }
24 //&end [FeatureTestScenar io4]

1
2 pub l i c c l a s s He l loFeature {
3
4 pub l i c s t a t i c void main (St r ing [] a rgs

) {
5 i n t r e s1 = plus (1 , 2) ;
6 double r e s2 = mult i (5 , 3) ;
7 }
8
9 //&begin [FeatureTestScenar io3]

10 pr i va t e s t a t i c i n t p lus (i n t i , i n t j)
{

11 r e turn i + j ;
12 }
13 //&end [FeatureTestScenar io3]
14
15 //&begin [FeatureTestScenar io4]
16 pr i va t e s t a t i c i n t minus (i n t i , i n t j

) {
17 i n t temp = 0 ;
18 temp = i−j ;
19 r e turn temp ;
20 }
21 //&end [FeatureTestScenar io4]

66

6. Industrial Use Case

25
26 //&begin [FeatureTestScenar io3]
27 pr i va t e s t a t i c double mult i (double x ,

double y) {
28 i f (y==0) {
29 r e turn x ∗0 ;
30 } e l s e i f (y==1) {
31 r e turn x ∗1 ;
32 } e l s e i f (y==2) {
33 x += Math . random () ∗2 ; //&l i n e [

FeatureTestScenar io4]
34 r e turn x ∗2 ;
35 } e l s e i f (y==3) {
36 r e turn x ∗3 ;
37 } e l s e {
38 r e turn −1;
39 }
40 }
41 //&end [FeatureTestScenar io3]
42
43 }

Listing 6.11: PartialCommit-
Testapplication, HelloFeature.java,
Scenario 3 - Unmodified Source Code

22
23 //&begin [FeatureTestScenar io3]
24 pr i va t e s t a t i c double mult i (double x ,

i n t y) {
25 switch (y) {
26 case 0 :
27 r e turn x ∗0 ;
28 case 1 :
29 r e turn x ∗1 ;
30 case 2 :
31 x = x + Math . random () ∗2 ; //&l i n e [

FeatureTestScenar io4]
32 r e turn x ∗2 ;
33 case 3 :
34 r e turn x ∗3 ;
35 de f au l t :
36 r e turn −1;
37 }
38 }
39 //&end [FeatureTestScenar io3]
40
41 }

Listing 6.12: PartialCommit-
Testapplication, HelloFeature.java,
Scenario 3 - Modified Source Code

To perform the partial feature-based commit the following steps are taken for the
currently existing approach (git add) and the new tool approach.

Steps git-add:
1. Call “git add −−patch” with tar-

get to commit “FeatureTestSce-
nario4”

2. Decide for hunk (method plus)
in HelloFeature.java to be staged.
Select ‘n’ (no).

3. Decide for hunk (method multi)
in HelloFeature.java to be staged.
Select ‘s’ (split) as hunk is defined
over whole method.

4. Decide for hunk (method multi,
first sub-hunk) to be staged. Se-
lect ‘n’ (no).

5. Decide for hunk (method multi,
second sub-hunk) to be staged.
Select ‘n’ (no).

6. Decide for hunk (method multi,
third sub-hunk with “Fea-
tureTestScenario4”) to be staged.
Select ‘s’ (split) as hunk consists
of two lines: one out of this
feature and one not.

Steps partial commit tooling:
1. Call “git pfc -f FeatureTestSce-

nario4 -m “Scenario 3 Feature
FeatureTestScenario4 manual”

2. Add remaining changes which
belong only to FeatureTestSce-
nario3

3. Commit remaining changes which
belong only to FeatureTestSce-
nario3

67

6. Industrial Use Case

7. Hunk cannot be split further.
Limitations of “git add −−patch”
reached and full manual approach
required.
(a) Save local copy of file

HelloFeature.java
(b) Reset HelloFeature.java to

git repository version
(c) Manual copy line-annotation

of FeatureTestScenario4 to
reset file

(d) Perform “git add HelloFea-
ture.java”

(e) Perform “git commit -m
“Scenario 3 Feature Fea-
tureTestScenario4 manual”

(f) Copy local copy of file
HelloFeature.java back to
the original file

8. Call “git add −−patch” with tar-
get to commit “FeatureTestSce-
nario3”

9. Decide for hunk (method plus)
in HelloFeature.java to be staged.
Select ‘y’ (yes).

10. Decide for hunk (method multi)
in HelloFeature.java to be staged.
Select ‘y’ (yes).

11. All changes are now in the staging
area. Call “git commit -m “Sce-
nario 3 Feature FeatureTestSce-
nario3 manual”

68

7
Discussion

The created solutions for an unified embedded annotation design (Chapter 4), fea-
ture extraction engine (Chapter 5), and partial feature-based commit (Chapter 6)
show that the chosen approach can be used to realize them. For this research, the
design science approach from Hevner et al. (2004) and Hevner (2007) was adjusted
to the specific research needs. Difference to the original approach is the fact that for
evaluation purposes, software implementations were used, which became afterward
artifacts and needed to be evaluated themselves.

My answer to research question RQ1 “What can a unified and intuitive standard for
embedded annotations look like?” is the in Chapter 4 provided the unified design
of embedded annotations. The research of Ji et al. (2015), Andam et al. (2017),
Entekhabi et al. (2019), and Krüger, Mukelabai, et al. (2019) has been analyzed
in detail and the unified design been created over many weeks and iterations, dis-
cussing the benefits and drawbacks of the different solutions and balancing them.
Several aspects with their benefits and drawbacks have been found, discussed and
only the most promising variants added to the design in Chapter 4. Important is
to conduct such discussions with persons with practical background and in collab-
oration with domain experts, such as my supervisor and co-supervisor, who know
the field of feature development and have seen the usage of embedded annotations
before. Especially the design of feature-to-file kept valid alternatives. The available
options are either to create the mapping of feature-to-file via a specialized file or
to create this mapping as code annotation in the file. Both solutions have thereby
their strengths and further research is required to see if one alternative is preferable.
The first alternative (specialized file) has the benefit to be able to annotate also
non-source code files while renaming or moving the file requires an update in it.
The second alternative (code annotation) has the benefit to resist file renaming and
movement but does not apply to non-source code or generated files. Latter unless
the code generator supports embedded annotations.
The created embedded annotation design is available in a shorted version as self-
containing “Embedded Annotation Specification” and can be used independently of
the overall research report. To use embedded annotations, the specification alone
may serve as a starting point for technical persons and management, but without
proper tooling, it is more unlikely that it will be implemented (confirming Andam
et al. (2017)). With this unified design for embedded annotations, a central refer-
ence point is given and has the potential for tool development referring to it. This
may avoid e.g. that derived tools diverge from each other (Entekhabi et al., 2019;
Ji et al., 2015).

69

7. Discussion

Software feature traceability is for this research a factor which accompanies con-
stantly this work. Ji et al. (2015) showed how to store and maintain traceability,
and this approach is central to the unified design. Against the lazy approach (Ji
et al., 2015) to document features after the development or omit feature documenta-
tion we follow the eager approach in an as flexible as possible way to annotate source
code and other software artifacts. Independent from the design of the embedded an-
notation itself, the usage of embedded annotations is a challenge itself and brought
up as uniform usage in the survey and was discussed in the research of Ludwig et al.
(2019) and Abukwaik et al. (2018) that feature annotations are used in the right way.

The factor of proper tool support is one of the key findings of the survey for the
embedded annotation design. Based on Java, as one of the most used programming
language, a ready-to-use engine to extract feature locations is such a tool.
Different to Entekhabi et al. (2019) this implementation bases on an EBNF gram-
mar. The different types of embedded annotations are described in a generic way,
which allows the grammar to be a core element for future non-Java implementations.
The usage of grammar is thereby more robust than using regular expressions but
at the same time, a different way of definition. Defining a language grammar has
some specialties which programmers typically would tackle differently and makes it
more difficult to define them without experience. Tomassetti (2017) background to
use EBNF grammar, as well as to highlight some general challenges with them, is
helpful to define such a grammar.
Core attributes of the engine are ease of use and reusability. The challenge thereby
is to define interfaces and return structures in a way to fulfill all kinds of project
types. With the help of practitioners and researchers applying the engine, it must
be further evolved and updated. Keeping in mind not to overload the engine’s inter-
faces and keeping the implementation stable and reliable. Such an evolution might
take a long time and several version iterations.

My answer to research question RQ2 “How can embedded annotations make an
industrial use case more efficient?” is provided with the use case of partial feature-
based commits, Chapter 6.
Having the ready-to-use engine based on Java allows a larger range of projects to
include it in their Java code or import it as Java-libraries into it. One of such imple-
mentations and a further tool is the created tool for performing partial feature-based
commits.
Partial commit is a known, even when not well known, technique that is supported
by Git itself. The new approach is to use the idea of partial commits for feature
development to allow a feature-driven development and feature isolated commits.
Which might allow projects to avoid feature-branch handling and the management
of them.
A lesson learned while developing a tool to interact with Git is that command line
git-commands and how a git source code library is used out of source code differs
in several aspects. This is especially the case for commands with user interaction,
such as “git add −−patch” or how data is received/interpreted in source code.

70

7. Discussion

The tool for partial commit is an independent tool, i.e. not integrated into “git add”
(Conservancy, 2020), and can keep with this its independent development from the
main git development. It includes the FAXE engine for extracting embedded anno-
tations and shows at the same time the possibility to perform partial feature-based
commits and the beneficial usage of the engine.

Figure 4.14 (Chapter 4.10) has among other things shown some concrete potential
use cases for embedded annotations. Beyond this list, further use cases are possible,
such as feature management or synchronization. Another use case could be in the
context of software product line or variant rich system to decide if a certain bug fix
must be included in the own derived version.

71

7. Discussion

72

8
Threats to Validity

With the decisions taken for this research and limitations in the potential scope of
such a work, different limitations must be considered. The validity of the presented
results depends on the as best as possible objective point of view taken for this
analysis. In the following validity threats for Construct validity, Internal validity,
External validity, and Conclusion validity are discussed.
It is not possible to avoid all threats, but important is to be aware of them and
consider potential De-limitations. In general, to reduce the risk/effect of the limi-
tations or at least decrease their impact, the following actions are taken. A regular
meeting with the research group of the supervisor takes place where the progress is
reported and the next steps are announced. The solutions will be available as open-
source products which allow others to review and extend for their needs if necessary.

Construct validity This type of validity considers how the actual research ques-
tions have been addressed by this work and ensured to be answered.
First of all, the research questions have been used as core elements for the
chosen methodology and based on this the results were presented. To ensure
construct validity for RQ1 (unified design for embedded annotations) a set of
design principles (Chapter 4.1) has been defined. Based on them the design
description has been created and evaluated. For RQ2 (EA in industrial use
case) a specific use case has been selected and scenarios have been defined to
show the intended functionality.

Internal validity Internal validity covers the different factors, e.g. design princi-
ples, and how they relate to each other. When analyzing two factors the risk
of an influencing third one is always present.
This threat mainly applies to the conducted survey. To avoid considering
connections between the results, the complete survey results have been dis-
cussed with the supervisor and co-supervisor, which have high expertise in the
domain.

External validity The goal of external validity is the generalizability of the results
and to what extent they are valid in other technology/industry fields.
For RQ1 a survey with ten participants from different industries and in dif-
ferent job positions has been conducted. With the number of participants,
one risk is to receive too specific requirements and therefore not being repre-
sentative of the general field of software engineering. RQ2 has been selected
based on the need of a specific company and the general lack in research for
such tooling. Even when the topic of partial commits is supported by several
tools, the limited knowledge and new way of working with features might limit

73

8. Threats to Validity

the applicability of the current solution. For the current situation, the tools
have not been applied by practitioners, and by relating to one company, the
integration into their IT setup and way of working might not be generalized.

Conclusion validity Conclusion validity covers the situations where researchers
might see relations where none are present and miss relations which are present.
This research has been discussed in detail between all project members and the
supervisor’s research group. Nevertheless, relations and bias is unavoidable,
even with domain expert knowledge. For the survey in RQ1 the participants
had the possibility to provide qualitative answers and show potential links and
relations. As the boundaries for RQ2 are set, relations between this tool and
others, or its environment, might exist. This is addressed in flexible interfaces
and an extendable software architecture.

74

9
Conclusion

For this research, we used the eager approach to document proactive features in
source code. The documented features are a good way to re-use them to trace fea-
ture locations. This feature traceability can be achieved with embedded annotations
that co-evolve with source code.

Tracing of feature locations is a field in software engineering which will be more
and more relevant for practitioners. Especially in safety-relevant fields, such as the
certifying body USA-Federal-Aviation-Authority, or the Automotive SPICE process
assessment, emphasizes is put on traceability between requirements, source code,
and testing.
Niu et al. (2016) pointed out the purpose of traceability as a key factor for its suc-
cess. The benefit of spending effort in traceability annotations must show early on
and also, it must serve the person creating them. If this is not present, the creation
and maintenance of traceability will not reach its full potential.
One of such techniques is the in this work analyzed notion of embedded annotations.
Documenting features as close as possible to the software artifacts is an approach
working on source code and specialized files and therefore known to developers. As
embedded annotations are part of the source code, receiving a benefit from them
is directly present for future work. With the situation of different definitions for
embedded annotations, this work targeted and solved RQ1 “How can a unified and
intuitive standard for embedded annotations look like?”. The full design is present
in this report and a compact form as a self-containing specification document. The
evaluation of the design was conducted as an online survey with practitioners and
confirmed thereby the general acceptance of embedded annotations.
Answering RQ2 “How can embedded annotations make an industrial use case more
efficient?” is done in the context of partial commits. Considering the notion of em-
bedded annotations, the created tool relies on extracting the locations of embedded
annotations and performs a Git-commit on all changes for a given feature. The
partial-commit-tool as well as the engine to extract embedded annotations (FAXE)
are independent tools and can be used for practitioners and researchers in the future.

Beyond the concrete answers to the research questions of this thesis, it provides the
scientific contributions to:

• Solves lack of unification of embedded annotations
• Empirically evaluation of unified embedded annotations design
• Feature location extraction engine FAXE on unified embedded annotation de-

sign

75

9. Conclusion

• Demonstration of FAXE on new use case partial feature-based commit for
isolated feature development

This report closes the raised research questions, provides for embedded annotations
a unified design, extraction engine, and based on them to perform partial feature-
based commits. Potential future extensions, as well as future research, is shown in
the next chapter.

76

10
Future Work

The results of this work may serve for a set of further research areas. Thereby
touching a lot of topics which can be further developed by themselves or raise new
research questions. This chapter discusses the most interesting questions to work
on in the future directly or in an extended scope.

Embedded Annotations Specification - Level 2
For the Embedded Annotations Design, Chapter 4, two levels of embedded annota-
tions are defined. Level 2 is considering in addition to logical operator expressions
as well as supporting a Full Hierarchy Model and is not covered by the current re-
sults and implementations. A detailed definition of the possibilities and exceptions
of embedded annotations with these elements will make the approach more flexible
and allow an easier combination with existing annotations, such as #IFDEF.

FAXE engine extensions
While developing the FAXE engine to extract embedded annotations and apply it to
the use case of partial commit, different fields of extension showed up. To learn more
about the requirements which tools have on such an engine, it could be e.g. applied
to existing open-source tools such as FeatureDashboard1 or FeatureIDE2. Another
internal field would be the implementation of configuration options for FAXE and to
implement the interpretation of feature models. The current engine supports local
directories. One next step might be the access to Git repositories and their history.

Extended embedded annotation language support
While there is a set of functionalities that can be added to the engine and extend
it, the current version is written in Java. This limits the scope of projects where
it can be used. Further research on how to extend this engine for a programming
language flexible/independent version of itself is required.

Embedded Annotations without embedded annotations
Adding and maintaining embedded annotations requires to add markers (begin, end,
line) into the source code. This additional content might be unwanted, e.g. with a

1https://bitbucket.org/easelab/featuredashboard
2http://www.featureide.com/

77

https://bitbucket.org/easelab/featuredashboard
http://www.featureide.com/

10. Future Work

Clean Code Policy. Future research might be therefore directed into the field of how
feature location could be done without embedded annotation markers. This could
be e.g. reached with naming conventions for functions and variables.

Usage of embedded annotations outside the technical scope
The focus of this work is how embedded annotations are technical to be realized and
can be extracted. A further step to investigate is the usage of how to benefit from
this information outside the technical scope, e.g. in requirements engineering or
project management. With the usage of embedded annotations for general project
purposes, their usage might be enforced with this.

Tool support
One of the main outcomes of the conducted survey for the design of the embedded
annotation is that without proper tool support, embedded annotations might not
be used, or at least not to the extent they could. Tool development for embedded
annotations might look at the following use cases:

• IDE plugin for automated embedded annotations completion
• Static analysis of broken annotation syntax
• Fail compilation if annotations are incorrect
• Support for refactoring, e.g. automation of feature file updates when files or

folders are renamed/moved/deleted
• Recommender systems, e.g. to suggest feature annotations based on context

and commits

Challenges for embedded annotations in larger development
teams
The benefit of embedded annotations is only provided when they are added to
the project and maintained over time. Besides the awareness, the different project
members must work in a similar way in which level and how embedded annotations
are used. This is especially for distributed teams a challenge. It becomes even more
relevant when different cultures and focus teams, e.g. platform development and
customer teams, come together. Further research is required to understand these
needs and propose how to tackle this challenge.

78

Bibliography

Abukwaik, Hadil et al. (Aug. 2018). “Semi-Automated Feature Traceability with
Embedded Annotations”. In: doi: 10.1109/ICSME.2018.00049.

Andam, Berima et al. (2017). “FLOrIDA: Feature LOcatIon DAshboard for Ex-
tracting and Visualizing Feature Traces”. In: Proceedings of the Eleventh Interna-
tional Workshop on Variability Modelling of Software-Intensive Systems. VAMOS
’17. Eindhoven, Netherlands: Association for Computing Machinery, pp. 100–107.
isbn: 9781450348119. doi: 10.1145/3023956.3023967. url: https://doi.org/
10.1145/3023956.3023967.

Apel, Sven et al. (2013). Feature-Oriented Software Product Lines: Concepts and
Implementation. Springer Publishing Company, Incorporated. isbn: 3642375200.

Bąk, Kacper, Krzysztof Czarnecki, and Andrzej Wąsowski (2011). “Feature and
Meta-Models in Clafer: Mixed, Specialized, and Coupled”. In: Software Language
Engineering. Ed. by Brian Malloy, Steffen Staab, and Mark van den Brand. Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 102–122. isbn: 978-3-642-19440-5.

Balzer, Robert and Neil Goldman (1981). “Principles of Good Software Specification
and Their Implications for Specification Languages”. In: Proceedings of the May 4-
7, 1981, National Computer Conference. AFIPS ’81. Chicago, Illinois: Association
for Computing Machinery, pp. 393–400. isbn: 9781450379212. doi: 10.1145/
1500412.1500468. url: https://doi.org/10.1145/1500412.1500468.

Berger, Thorsten (2019). Software Engineering Principles for Complex Systems -
Implementation -. Course Material.

Bosch, Jan (2000). Design and Use of Software Architectures: Adopting and Evolving
a Product-Line Approach. USA: ACM Press/Addison-Wesley Publishing Co. isbn:
0201674947.

Conservancy, Software Freedom (2020). git-add. url: https://git-scm.com/docs/
git-add (visited on 03/12/2020).

Entekhabi, Sina et al. (Sept. 2019). “Visualization of Feature Locations with the
Tool FeatureDashboard”. In: pp. 1–4. isbn: 978-1-4503-6668-7. doi: 10.1145/
3307630.3342392.

Hevner, Alan (Jan. 2007). “A Three Cycle View of Design Science Research”. In:
Scandinavian Journal of Information Systems 19.

Hevner, Alan et al. (Mar. 2004). “Design Science in Information Systems Research”.
In: Management Information Systems Quarterly 28, pp. 75–105.

Hunsen, Claus et al. (Apr. 2015). “Preprocessor-based variability in open-source
and industrial software systems: An empirical study”. In: Empirical Software En-
gineering 21. doi: 10.1007/s10664-015-9360-1.

Ji, Wenbin (2014). Cost and Benefit of Embedded Feature Annotation: A Case Study.

79

https://doi.org/10.1109/ICSME.2018.00049
https://doi.org/10.1145/3023956.3023967
https://doi.org/10.1145/3023956.3023967
https://doi.org/10.1145/3023956.3023967
https://doi.org/10.1145/1500412.1500468
https://doi.org/10.1145/1500412.1500468
https://doi.org/10.1145/1500412.1500468
https://git-scm.com/docs/git-add
https://git-scm.com/docs/git-add
https://doi.org/10.1145/3307630.3342392
https://doi.org/10.1145/3307630.3342392
https://doi.org/10.1007/s10664-015-9360-1

Bibliography

Ji, Wenbin et al. (2015). “Maintaining Feature Traceability with Embedded Anno-
tations”. In: Proceedings of the 19th International Conference on Software Prod-
uct Line. SPLC ’15. Nashville, Tennessee: Association for Computing Machinery,
pp. 61–70. isbn: 9781450336130. doi: 10.1145/2791060.2791107. url: https:
//doi.org/10.1145/2791060.2791107.

Krüger, Jacob, Gül Çalıklı, et al. (2019). “Effects of Explicit Feature Traceability on
Program Comprehension”. In: Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. ESEC/FSE 2019. Tallinn, Estonia: Association for Com-
puting Machinery, pp. 338–349. isbn: 9781450355728. doi: 10.1145/3338906.
3338968. url: https://doi.org/10.1145/3338906.3338968.

Krüger, Jacob, Mukelabai Mukelabai, et al. (2019). “Where is my feature and what
is it about? A case study on recovering feature facets”. In: Journal of Systems &
Software 152, pp. 239–253. issn: 01641212. doi: 10.1016/j.jss.2019.01.057.
url: http://search.ebscohost.com/login.aspx?direct=true&AuthType=
sso&db=buh&AN=135661128&site=eds-live&scope=site&custid=s3911979&
authtype=sso&group=main&profile=eds.

Liebig, Jörg et al. (May 2010). “An analysis of the variability in forty preprocessor-
based software product lines”. In: 2010 ACM/IEEE 32nd International Confer-
ence on Software Engineering. Vol. 1, pp. 105–114. doi: 10 . 1145 / 1806799 .
1806819.

Ludwig, Kai, Jacob Krüger, and Thomas Leich (2019). “Covert and Phantom Fea-
tures in Annotations: Do They Impact Variability Analysis?” In: Proceedings of
the 23rd International Systems and Software Product Line Conference - Volume
A. SPLC ’19. Paris, France: Association for Computing Machinery, pp. 218–230.
isbn: 9781450371384. doi: 10.1145/3336294.3336296. url: https://doi.org/
10.1145/3336294.3336296.

Moody, D. (2009). “The “Physics” of Notations: Toward a Scientific Basis for Con-
structing Visual Notations in Software Engineering”. In: IEEE Transactions on
Software Engineering 35.6, pp. 756–779.

Niu, Nan, Wentao Wang, and Arushi Gupta (2016). “Gray Links in the Use of
Requirements Traceability”. In: Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering. FSE 2016.
Seattle, WA, USA: Association for Computing Machinery, pp. 384–395. isbn:
9781450342186. doi: 10.1145/2950290.2950354. url: https://doi.org/10.
1145/2950290.2950354.

Palmer, Steve R. and Mac Felsing (2001). A Practical Guide to Feature-Driven
Development. 1st. Pearson Education. isbn: 0130676152.

Passos, Leonardo, Krzysztof Czarnecki, et al. (2013). “Feature-Oriented Software
Evolution”. In: Proceedings of the Seventh International Workshop on Variability
Modelling of Software-Intensive Systems. VaMoS ’13. Pisa, Italy: Association for
Computing Machinery. isbn: 9781450315418. doi: 10.1145/2430502.2430526.
url: https://doi.org/10.1145/2430502.2430526.

Passos, Leonardo, Jesús Padilla, et al. (2015). “Feature Scattering in the Large: A
Longitudinal Study of Linux Kernel Device Drivers”. In: Proceedings of the 14th
International Conference on Modularity. MODULARITY 2015. Fort Collins, CO,

80

https://doi.org/10.1145/2791060.2791107
https://doi.org/10.1145/2791060.2791107
https://doi.org/10.1145/2791060.2791107
https://doi.org/10.1145/3338906.3338968
https://doi.org/10.1145/3338906.3338968
https://doi.org/10.1145/3338906.3338968
https://doi.org/10.1016/j.jss.2019.01.057
http://search.ebscohost.com/login.aspx?direct=true&AuthType=sso&db=buh&AN=135661128&site=eds-live&scope=site&custid=s3911979&authtype=sso&group=main&profile=eds
http://search.ebscohost.com/login.aspx?direct=true&AuthType=sso&db=buh&AN=135661128&site=eds-live&scope=site&custid=s3911979&authtype=sso&group=main&profile=eds
http://search.ebscohost.com/login.aspx?direct=true&AuthType=sso&db=buh&AN=135661128&site=eds-live&scope=site&custid=s3911979&authtype=sso&group=main&profile=eds
https://doi.org/10.1145/1806799.1806819
https://doi.org/10.1145/1806799.1806819
https://doi.org/10.1145/3336294.3336296
https://doi.org/10.1145/3336294.3336296
https://doi.org/10.1145/3336294.3336296
https://doi.org/10.1145/2950290.2950354
https://doi.org/10.1145/2950290.2950354
https://doi.org/10.1145/2950290.2950354
https://doi.org/10.1145/2430502.2430526
https://doi.org/10.1145/2430502.2430526

Bibliography

USA: Association for Computing Machinery, pp. 81–92. isbn: 9781450332491.
doi: 10.1145/2724525.2724575. url: https://doi.org/10.1145/2724525.
2724575.

El-Sharkawy, Sascha, Nozomi Yamagishi-Eichler, and Klaus Schmid (2019). “Metrics
for analyzing variability and its implementation in software product lines: A sys-
tematic literature review”. In: Information and Software Technology 106, pp. 1–30.
issn: 0950-5849. doi: https://doi.org/10.1016/j.infsof.2018.08.015. url:
http://www.sciencedirect.com/science/article/pii/S0950584918301873.

Tomassetti, Gabriele (2017). The ANTLR Mega Tutorial. https://tomassetti.
me/antlr-mega-tutorial/. Accessed: 2020-05-11.

Wikimedia, Foundation Inc. (2019). Clean Code. https://de.wikipedia.org/
wiki/Clean_Code. Accessed: 2020-05-14.

Wikimedia, Foundation Inc. (2019). Feature-driven development. https : / / en .
wikipedia.org/wiki/Feature-driven_development. Accessed: 2020-05-15.

Zhang, Bo et al. (2013). “Variability Evolution and Erosion in Industrial Product
Lines: A Case Study”. In: Proceedings of the 17th International Software Product
Line Conference. SPLC ’13. Tokyo, Japan: Association for Computing Machinery,
pp. 168–177. isbn: 9781450319683. doi: 10.1145/2491627.2491645. url: https:
//doi.org/10.1145/2491627.2491645.

81

https://doi.org/10.1145/2724525.2724575
https://doi.org/10.1145/2724525.2724575
https://doi.org/10.1145/2724525.2724575
https://doi.org/https://doi.org/10.1016/j.infsof.2018.08.015
http://www.sciencedirect.com/science/article/pii/S0950584918301873
https://tomassetti.me/antlr-mega-tutorial/
https://tomassetti.me/antlr-mega-tutorial/
https://de.wikipedia.org/wiki/Clean_Code
https://de.wikipedia.org/wiki/Clean_Code
https://en.wikipedia.org/wiki/Feature-driven_development
https://en.wikipedia.org/wiki/Feature-driven_development
https://doi.org/10.1145/2491627.2491645
https://doi.org/10.1145/2491627.2491645
https://doi.org/10.1145/2491627.2491645

A
Embedded Annotation

Specification

A.1 Embedded Annotation Definition by Authors
Summary of definitions for embedded annotations by different authors. Out of these
differences this work formulates a common definition.

I

A. Embedded Annotation Specification

Fe
at
ur
e

M
od

el
LP

Q
Fr
ag

m
en
t

A
nn

ot
at
io
ns

Fe
at
ur
e-
to
-F
ile

Fe
at
ur
e-
to
-F
ol
de
r

Jietal.,2015
C
la
fe
r

un
sp
ec
i-

fie
d

Ye
s

&
be

gi
n[
LP

Q
s]

..
.

(L
P
Q

Li
st
)

..
.

&
en
d[
LP

Q
s]

..
.&

lin
e[
LP

Q
s]

fil
eN

am
e(
,fi
le
N
am

e)
*

fe
at
ur
eN

am
e

(,f
ea
tu
re
N
am

e)
*

.v
p-
fil
es

fe
at
ur
eN

am
e

(“
”f
ea
tu
re
N
am

e)
*

.v
p-

fo
ld
er

Andametal.,2017

C
la
fe
r

fe
at
ur
e-

m
od

el
.c
fr

Ye
s

&
be

gi
n[
LP

Q
]

..
.

(s
in
gl
e
LP

Q
)

..
.

&
en
d[
LP

Q
]

&
lin

e[
LP

Q
]

..
.

fe
at
ur
eN

am
e:

fil
e-

N
am

e(
,fi
le
N
am

e)
*

.fe
at
ur
e-

fil
e

fe
at
ur
eN

am
e:

fo
ld
er
N
am

e
(,
fo
ld
-

er
N
am

e)
*

.fe
at
ur
e-

fo
ld
er

in
pa

re
nt

fo
ld
er

Entekhabietal.,2019

C
la
fe
r

_
.c
fr

N
o

&
be

gi
n[
LP

Q
]

..
.

(s
in
gl
e
LP

Q
)

..
.

&
en
d[
LP

Q
]

&
lin

e[
LP

Q
]

..
.

fe
at
ur
eN

am
e:

fil
e-

N
am

e(
,fi
le
N
am

e)
*

.fe
at
ur
e-

fil
e

fe
at
ur
eN

am
e

(\
n

fe
at
ur
eN

am
e)
*

_
.fe

at
ur
e-

fo
ld
er

Krüger,Mukelabai,etal.,2019

C
la
fe
r

fe
at
ur
e-

m
od

el
.c
fr

.v
p-
pr
oj
ec
t

un
-

sp
ec
i-

fie
d

&
be

gi
n[
Fe

at
ur
e]

..
.

(s
in
gl
e
Fe

at
ur
e)

..
.

&
en
d[
Fe

at
ur
e]

&
lin

e[
LP

Q
]

..
.

fil
eN

am
e

fe
at
ur
eN

am
e

_
.fe

at
ur
e-

fil
e

.v
p-
fil
es

fe
at
ur
eN

am
e

_
.fe

at
ur
e-

fo
ld
er

Table A.1: Overview Embedded Annotation Concepts

II

A. Embedded Annotation Specification

A.2 EBNF Grammar Definitions

A.2.1 Feature Hierarchy Model Grammar

〈SPACE〉 ::= ’ ’* -> skip

〈KEYWORDS〉 ::= (’or’
| ’xor’
| ’?’) -> skip // Skip Clafer Keywords

〈projectHierarchy〉 ::= 〈FEATURENAME〉 (〈subfeature〉)*

〈subfeature〉 ::= (’\n’ ’\t’ 〈FEATURENAME〉) 〈subsubfeature〉*

〈subsubfeature〉 ::= (’\n’ ’\t\t’ 〈FEATURENAME〉) 〈subsubsubfeature〉*

〈subsubsubfeature〉 ::= (’\n’ ’\t\t\t’ 〈FEATURENAME〉)
〈subsubsubsubfeature〉*

〈subsubsubsubfeature〉 ::= (’\n’ ’\t\t\t\t’ 〈FEATURENAME〉)
〈subsubsubsubsubfeature〉*

〈subsubsubsubsubfeature〉 ::= (’\n’ ’\t\t\t\t\t’ 〈FEATURENAME〉)
〈subsubsubsubsubsubfeature〉*

〈subsubsubsubsubsubfeature〉 ::= (’\n’ ’\t\t\t\t\t\t’ 〈FEATURENAME〉)
〈subsubsubsubsubsubsubfeature〉*

〈subsubsubsubsubsubsubfeature〉 ::= (’\n’ ’\t\t\t\t\t\t\t’ 〈FEATURENAME〉)

〈FEATURENAME〉 ::= ([A-Z]+
| [a-z]+
| [0-9]+
| ’_’+
| ’\”+)+

Grammar A.1: EA, Full EBNF of Simple Hierarchy Model

III

A. Embedded Annotation Specification

A.2.2 Source Code Annotations Grammar

〈marker〉 ::= .*? (〈beginmarker〉
| 〈endmarker〉
| 〈linemarker〉)*

〈SPACE〉 ::= ’ ’* -> skip ; // ignores all more than one-time space characters

〈beginmarker〉 ::= ’&begin’ ’ ’* 〈parameter〉

〈endmarker〉 ::= ’&end’ ’ ’* 〈parameter〉

〈linemarker〉 ::= ’&line’ ’ ’* 〈parameter〉

〈parameter〉 ::= ’(’ ’ ’* 〈lpq〉 (’ ’+ 〈lpq〉)* ’ ’* ’)’ .*?
| ’(’ ’ ’* 〈lpq〉 (’ ’* ’,’ ’ ’* 〈lpq〉)* ’ ’* ’)’ .*?
| ’[’ ’ ’* 〈lpq〉 (’ ’+ 〈lpq〉)* ’ ’* ’]’ .*?
| ’[’ ’ ’* 〈lpq〉 (’ ’* ’,’ ’ ’* 〈lpq〉)* ’ ’* ’]’ .*?
| ’{’ ’ ’* 〈lpq〉 (’ ’+ 〈lpq〉)* ’ ’* ’}’ .*?
| ’{’ ’ ’* 〈lpq〉 (’ ’* ’,’ ’ ’* 〈lpq〉)* ’ ’* ’}’ .*?
| ’ ’* 〈lpq〉 (’ ’+ 〈lpq〉)*
| ’ ’* 〈lpq〉 (’ ’* ’,’ ’ ’* 〈lpq〉)* ’ ’*

〈lpq〉 ::= 〈FEATURENAME〉 (’::’〈FEATURENAME〉)*

〈FEATURENAME〉 ::= ([A-Z]+
| [a-z]+
| [0-9]+
| ’_’+
| ’\”+)+ // restriction from Clafer and follow their definition

〈OTHER〉 ::= . -> skip // allows fuzzy parsing

Grammar A.2: EA, Full EBNF of Annotation Markers

IV

A. Embedded Annotation Specification

A.2.3 Feature-to-File Annotations Grammar

〈SPACE〉 ::= ’ ’* -> skip // ignores all more than one-time space characters

〈WS〉 ::= [̊]+ -> skip

〈fileAnnotations〉 ::= (〈fileAnnotation〉)*

〈fileAnnotation〉 ::= 〈fileReferences〉 ’:’? ’\n’+ 〈lpqReferences〉

〈fileReferences〉 ::= (〈fileReference〉 (’ ’* 〈fileReference〉)* ’ ’*)
| (〈fileReference〉 (’ ’* ’,’ ’ ’* 〈fileReference〉)* ’ ’*)

〈fileReference〉 ::= (’’ <fileName> ’’)
| (〈fileName〉)

〈fileName〉 ::= 〈STRING〉
| (〈STRING〉’.’〈STRING〉)

〈lpqReferences〉 ::= (〈lpq〉 (’ ’* 〈lpq〉)* ’ ’*)
| (〈lpq〉 (’ ’* ’,’ ’ ’* 〈lpq〉)* ’ ’*)

〈lpq〉 ::= 〈STRING〉 (’::’〈STRING〉)*

〈STRING〉 ::= ([A-Z]+
| [a-z]+
| [0-9]+
| ’_’+
| ’\”+)+ // -> restriction from Clafer and follow their definition

Grammar A.3: EA, Full EBNF of feature-to-file Mapping

V

A. Embedded Annotation Specification

A.2.4 Feature-to-Folder Annotations Grammar

〈SPACE〉 ::= ’ ’* -> skip // ignores all more than one-time space characters

〈folderAnnotation〉 ::= (’ ’* 〈lpq〉 (’ ’* 〈lpq〉)* ’ ’*)
| (’ ’* 〈lpq〉 (’ ’* ’,’ ’ ’* 〈lpq〉)* ’ ’*)
| (’ ’* 〈lpq〉 (’\n’ 〈lpq〉)* ’ ’*)

〈lpq〉 ::= 〈FEATURENAME〉 (’::’〈FEATURENAME〉)*

〈FEATURENAME〉 ::= ([A-Z]+
| [a-z]+
| [0-9]+
| ’_’+
| ’\”+)+

Grammar A.4: EA, Full EBNF of feature-to-folder Mapping

VI

B
Survey Data Evaluation
Embedded Annotation

Specification

This chapter contains the unmodified results of all survey participants. Starting with
the given survey introduction and followed by sub-chapters per survey candidate.
The only information omitted is the optional given contact email-address of the
participant.

B.1 Survey of Embedding Annotations in Code

We are a group of researchers at Chalmers/Gothenburg University, studying the
usage of lightweight techniques to trace features in source code. Knowledge of feature
locations has several benefits. e.g. saving time, keeping an overview understanding
of source code and connecting code to the business side.
The goal of this survey is to receive feedback on the proposed specification for
embedded annotations for feature location in source code. Your feedback helps to
improve the proposed design for embedded annotations in the industry and your
own usage. The survey will take no more than 15 minutes.
The survey consists of two parts. The first part is to read the specification doc-
ument which explains and illustrates the design of embedded annotations. In the
second part, which is this questionnaire, we ask closed and open questions to eval-
uate the design of embedded annotations. We suggest to briefly skim through the
questionnaire first.
Your data will be treated confidentially. Your ratings will only be published in
aggregated form and any open-ended response will be shown in an anonymized way.
We are pleased to send you a summary of the results of this survey.
Thank you for your contribution! If you have any questions please let us know.
Tobias Schwarz - tobschw@student.chalmers.se
Wardah Mahmood - wardah@chalmers.se
Thorsten Berger - thorsten.berger@chalmers.se
Computer Science and Engineering, Chalmers |University of Gothenburg
*Required

VII

tobschw@student.chalmers.se
wardah@chalmers.se
thorsten.berger@chalmers.se

B. Survey Data Evaluation Embedded Annotation Specification

Our notation for embedded annotations
Please read the specification document:
https://drive.google.com/file/d/1gpSxDrXdW7vOxWc19WqHLaE5gUxzuzFZ/view?
usp=sharing
To which extent do you agree with the following statements?

B.2 Feedback Participants

Feedback Participant 1

The notation is useful. *

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ • ◦ ◦

Please elaborate:
-

The notation is intuitive. *
(e.g. How natural it feels to use it)

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ ◦ • ◦

Please elaborate:
-

The notation is easy to learn. *

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ ◦ • ◦

Please elaborate:
-

The notation is easily applicable. *

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ • ◦ ◦

VIII

https://drive.google.com/file/d/1gpSxDrXdW7vOxWc19WqHLaE5gUxzuzFZ/view?usp=sharing
https://drive.google.com/file/d/1gpSxDrXdW7vOxWc19WqHLaE5gUxzuzFZ/view?usp=sharing

B. Survey Data Evaluation Embedded Annotation Specification

Please elaborate:
-

The notation is flexible to use. *
(imagine the contexts in which you want to use it, do you think its flexible to use?)

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ • ◦ ◦

Please elaborate:
-

Using the annotation will avoid redundancies. *
(i.e. Requires to write more annotations than necessary for mapping assets to fea-
tures)

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ • ◦ ◦

Please elaborate:
-

The notation is succinct. *
(I.e. the additional writing effort is minimal)

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ ◦ • ◦

Please elaborate:
-

The notion is robust during software evolution and mainte-
nance. *
(I.e. as many annotations as possible survive the evolution, e.g. moving folders/files,
removing code, and editing code etc.)

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ • ◦ ◦

Please elaborate:
-

IX

B. Survey Data Evaluation Embedded Annotation Specification

The additional effort of using annotations during program-
ming is negligible. *

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ • ◦ ◦

Please elaborate:
-

It will be easy to convince developers to use it while pro-
gramming. *

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ • ◦ ◦

Please elaborate:
-

What do you think the biggest benefits of using embedded
annotations are?
-

Any suggestions for improvements?
-

Participant information
We would ask you to provide your name and email for verification and analysis
(e.g., to identify duplicates), to be informed about the study results, and in case of
questions we might have. Hint: Your information is voluntary.

Please add your job title. (e.g. Developer, Tester, SW-
Architect, Project Manager)
-

Feedback Participant 2

The notation is useful. *

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ ◦ • ◦

X

B. Survey Data Evaluation Embedded Annotation Specification

Please elaborate:
-

The notation is intuitive. *
(e.g. How natural it feels to use it)

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ ◦ ◦ •

Please elaborate:
The set of keywords (begin, end, AND, etc.) are minimal and similar to other
languages and easy to understand.

The notation is easy to learn. *

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ ◦ ◦ •

Please elaborate:
The simplistic design of notations allows developers to learn the framework easily

The notation is easily applicable. *

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ ◦ • ◦

Please elaborate:
It’s easy to apply notations in different stages of software development. Ideally the
notations should be applied as early as possible in a project to obtain the maxi-
mum value feature locating brings when the project ages. However, even for legacy
projects, I believe that only by spending some effort on feature-to-folder and feature-
to-file mappings, it would help a great deal in reducing the efforts of locating features
for developers, especially newcomers.

The notation is flexible to use. *
(imagine the contexts in which you want to use it, do you think its flexible to use?)

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ ◦ ◦ •

XI

B. Survey Data Evaluation Embedded Annotation Specification

Please elaborate:
The ability of annotating down to source code level with logical expressions provides
the maximum flexibility. I could not think of any uncovered use cases yet.

Using the annotation will avoid redundancies. *
(i.e. Requires to write more annotations than necessary for mapping assets to fea-
tures)

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ ◦ ◦ •

Please elaborate:
-

The notation is succinct. *
(I.e. the additional writing effort is minimal)

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ ◦ ◦ •

Please elaborate:
The convention is clear and concise so with a well-structured code base where fea-
tures aren’t interleaving one another, the effort of annotating is small.

The notion is robust during software evolution and mainte-
nance. *
(I.e. as many annotations as possible survive the evolution, e.g. moving folders/files,
removing code, and editing code etc.)

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ • ◦ ◦

Please elaborate:
Feature-to-folder: since folders are less subjected for change, annotations will stay
relatively consistent over time. If a folder is renamed/moved/deleted, the mapping
must be updated accordingly. Without proper tooling, this might cause an integrity
problem. I’d suggest that we keep the mapping in the same folder instead of from
the parent folder as you do now. More specifically, a folder shall have an annotation
file which defines all features included within this folder. Feature-to-file: similarly
to feature-to-folder, it’s subjected to the same problems. I’d suggest in a similar
fashion, we keep the annotations on the file headers or class headers instead of a
separate file which will be outdated the moment the file is renamed/moved/deleted.

XII

B. Survey Data Evaluation Embedded Annotation Specification

An alternative to the above suggestion is additional tooling which detects discrep-
ancy between the feature files and the actual files/folders. Lastly, feature-to-code is
advantageous when the files are copied/moved as the annotations will be replicated.
However, in case of source code modification, there will be cases where annota-
tions will become invalid if there’s no supported tooling around it. For example,
one of the annotation “begin” or “end” is accidentally removed during refactoring.
Another example is during refactoring, the annotations might be extracted into dif-
ferent methods without being noticed, as a result, the syntax might still be valid
but the annotated piece of code no longer reflects the real feature.

The additional effort of using annotations during program-
ming is negligible. *

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ • ◦ ◦

Please elaborate:
It largely depends on the codebase. If it’s written in a way that features are inter-
leaving, extensively using feature annotations might require large effort to maintain,
especially when it comes to feature-to-code mapping. However, I think it’s even a
sign of code-smell if one needs to employ feature-to-code at all. In general, feature-
to-folder and feature-to-file should be enough in an object-oriented code base which
strictly follows programming principals.

It will be easy to convince developers to use it while pro-
gramming. *

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ • ◦ ◦

Please elaborate:
Only when there’s sufficient supported tooling, developers will incline to use and
maintain feature annotations. Some examples are:

• Static analysis of broken annotation syntax
• Fail compilation if annotations are incorrect
• Automation of feature file updates when files or folders are renamed/moved/deleted
• Suggest feature annotations based on context and commits
• IDE plugins, git plugins or separate installable tools

What do you think the biggest benefits of using embedded
annotations are?
The biggest benefit is linking requirements to code, thereby, speeding up the process
of development. Nowadays, a lot of projects follow agile methodologies, requirements

XIII

B. Survey Data Evaluation Embedded Annotation Specification

are usually incomplete or constantly changing over the course of the project. Now
if there’s a change in requirement, the affected code path will be located instantly.

Any suggestions for improvements?
I’ve written the suggested improvements in the sections above. I hope with addi-
tional tooling and some revision on the structure of feature-to-folder and feature-to-
file, the framework will bring great benefit to the software industry.

Participant information
We would ask you to provide your name and email for verification and analysis
(e.g., to identify duplicates), to be informed about the study results, and in case of
questions we might have. Hint: Your information is voluntary.

Please add your job title. (e.g. Developer, Tester, SW-
Architect, Project Manager)
Project Manager

Feedback Participant 3

The notation is useful. *

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ • ◦ ◦ ◦

Please elaborate:
Reading code is harder with additional comments. For bug-fixing readability of code
is a must. Also I think with the key goals of identifying features on code level can be
easily achieved via architecture and code generation from architecture. I have seen
this in ASIL-D and aviation SW projects, where dead-code is strictly not allowed
and features are most visible on code level.

The notation is intuitive. *
(e.g. How natural it feels to use it)

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ • ◦ ◦

Please elaborate:
Many special characters are needed. I would not know how to grep them out of the
source code.

XIV

B. Survey Data Evaluation Embedded Annotation Specification

The notation is easy to learn. *

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ • ◦ ◦

Please elaborate:
I would need more examples in order to understand. Special cases, like nesting,
partial feature distribution, variant handling which are common in my area -> i
would not know how to start.

The notation is easily applicable. *

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ ◦ • ◦

Please elaborate:
-

The notation is flexible to use. *
(imagine the contexts in which you want to use it, do you think its flexible to use?)

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ • ◦ ◦

Please elaborate:
Can’t say without experience.

Using the annotation will avoid redundancies. *
(i.e. Requires to write more annotations than necessary for mapping assets to fea-
tures)

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ ◦ • ◦

Please elaborate:
If there eas no feature handling before. This is a valid method to create it.

The notation is succinct. *
(I.e. the additional writing effort is minimal)

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ ◦ • ◦

XV

B. Survey Data Evaluation Embedded Annotation Specification

Please elaborate:
-

The notion is robust during software evolution and mainte-
nance. *
(I.e. as many annotations as possible survive the evolution, e.g. moving folders/files,
removing code, and editing code etc.)

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ • ◦ ◦

Please elaborate:
With references (feature annotations) breaking features might be harder on one
hand, on the othe hand managing the annotations adds complexity to documenta-
tion, making the documentation phase longer. When pressure towards deadline hit
is applied during a project, documenation is always the trade off -> see also agile
manifesto.

The additional effort of using annotations during program-
ming is negligible. *

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ • ◦ ◦ ◦

Please elaborate:
Unless automated and somehow derived from existing function names -> No. One
way to solve this issue could be to create a annotation language with a regular
grammatic (chomsky L3) which has the source code as input alphabet, the language
as the automat, and the annotations as output alphabet.

It will be easy to convince developers to use it while pro-
gramming. *

Completely disagree Disagree Neutral Agree Completely agree
Rating: • ◦ ◦ ◦ ◦

Please elaborate:
more documenation = more effort

XVI

B. Survey Data Evaluation Embedded Annotation Specification

What do you think the biggest benefits of using embedded
annotations are?
Generating a feature Report out of source code, without architecture

Any suggestions for improvements?
show the complete annotation syntax in a table; show some regular expressions
examples -> or how to create the feature reports compare it to architecture driven
code creation (where features can be easily identified)

Participant information
We would ask you to provide your name and email for verification and analysis
(e.g., to identify duplicates), to be informed about the study results, and in case of
questions we might have. Hint: Your information is voluntary.

Please add your job title. (e.g. Developer, Tester, SW-
Architect, Project Manager)
Developer

Feedback Participant 4

The notation is useful. *

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ ◦ • ◦

Please elaborate:
Useful, but perhaps not complete in all development environments. The variability
describing the featuers might sometimes be outside of the source code, for example
at checkout time (what to checkout), build time (perhaps this notation can be used
there as well), load time, run time etc.

The notation is intuitive. *
(e.g. How natural it feels to use it)

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ • ◦ ◦

Please elaborate:
Yes, but I don’t think I fully understood the purpose of the clafer hierarchy from
the document. Perhaps I just need more time to read about it.

XVII

B. Survey Data Evaluation Embedded Annotation Specification

The notation is easy to learn. *

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ ◦ • ◦

Please elaborate:
Seams to be simple, but can’t say for sure until I have used it myself.

The notation is easily applicable. *

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ ◦ • ◦

Please elaborate:
-

The notation is flexible to use. *
(imagine the contexts in which you want to use it, do you think its flexible to use?)

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ • ◦ ◦

Please elaborate:
It is hard say without testing it myself. For example I was thinking about features
that spans many files and modules. Sometimes not everything is built at once. I
don’t know how flexible this is in this context. As the information is in comments,
everything is lost at compile time.

Using the annotation will avoid redundancies. *
(i.e. Requires to write more annotations than necessary for mapping assets to fea-
tures)

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ • ◦ ◦

Please elaborate:
I am not sure I understand this question.

The notation is succinct. *
(I.e. the additional writing effort is minimal)

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ ◦ ◦ •

XVIII

B. Survey Data Evaluation Embedded Annotation Specification

Please elaborate:
-

The notion is robust during software evolution and mainte-
nance. *
(I.e. as many annotations as possible survive the evolution, e.g. moving folders/files,
removing code, and editing code etc.)

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ • ◦ ◦

Please elaborate:
Maybe, but I think this depends on the develipment model, environemnt etc. For
example, how to document versions of features? Are a feature always compatible
with everything else independent of versions? Of course, the goal is usually yes (?),
but in reality maybe not. Is it notion rubust to having information in other files
than source code? For example recipies to the checkout system? I don’t know.

The additional effort of using annotations during program-
ming is negligible. *

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ ◦ • ◦

Please elaborate:
I should be negligible, but I was thinking about the parallell traceability to require-
ments etc? Is this replacing that, or should/could it be used in parallell without
creating ambiguities.

It will be easy to convince developers to use it while pro-
gramming. *

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ ◦ • ◦

Please elaborate:
I think yes - at least if features are an important part of the development organiza-
tion.

XIX

B. Survey Data Evaluation Embedded Annotation Specification

What do you think the biggest benefits of using embedded
annotations are?
To keep the information about features close to the implementation itself. The
disadvantage could be in those cases where you would like to separate problem- and
solution space more. Maybe this is not a problem, I need to think about it.

Any suggestions for improvements?
Develop a small example of the complete development workflow using the notion
(and not only the code examples)

Participant information
We would ask you to provide your name and email for verification and analysis
(e.g., to identify duplicates), to be informed about the study results, and in case of
questions we might have. Hint: Your information is voluntary.

Please add your job title. (e.g. Developer, Tester, SW-
Architect, Project Manager)
Principal Engineer

Feedback Participant 5

The notation is useful. *

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ ◦ • ◦

Please elaborate:
-

The notation is intuitive. *
(e.g. How natural it feels to use it)

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ • ◦ ◦

Please elaborate:
-

XX

B. Survey Data Evaluation Embedded Annotation Specification

The notation is easy to learn. *

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ ◦ • ◦

Please elaborate:
-

The notation is easily applicable. *

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ • ◦ ◦

Please elaborate:
-

The notation is flexible to use. *
(imagine the contexts in which you want to use it, do you think its flexible to use?)

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ ◦ • ◦

Please elaborate:
-

Using the annotation will avoid redundancies. *
(i.e. Requires to write more annotations than necessary for mapping assets to fea-
tures)

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ ◦ • ◦

Please elaborate:
-

The notation is succinct. *
(I.e. the additional writing effort is minimal)

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ • ◦ ◦ ◦

XXI

B. Survey Data Evaluation Embedded Annotation Specification

Please elaborate:
-

The notion is robust during software evolution and mainte-
nance. *
(I.e. as many annotations as possible survive the evolution, e.g. moving folders/files,
removing code, and editing code etc.)

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ ◦ • ◦

Please elaborate:
-

The additional effort of using annotations during program-
ming is negligible. *

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ • ◦ ◦ ◦

Please elaborate:
-

It will be easy to convince developers to use it while pro-
gramming. *

Completely disagree Disagree Neutral Agree Completely agree
Rating: • ◦ ◦ ◦ ◦

Please elaborate:
In my opinion, this would require a lot of user-friendliness: e.g., support the anno-
tations by means of coloring within an IDE like eclipse as depicted in the figures
(maybe this already exists?), GUIs with file- and folder-choosing dialogs for your
mappings, etc.

What do you think the biggest benefits of using embedded
annotations are?
It offers arbitrarily fine-grain mappings

XXII

B. Survey Data Evaluation Embedded Annotation Specification

Any suggestions for improvements?
-

Participant information
We would ask you to provide your name and email for verification and analysis
(e.g., to identify duplicates), to be informed about the study results, and in case of
questions we might have. Hint: Your information is voluntary.

Please add your job title. (e.g. Developer, Tester, SW-
Architect, Project Manager)
-

Feedback Participant 6

The notation is useful. *

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ • ◦ ◦ ◦

Please elaborate:
I wouldn’t put in more comments or notation about features in the code if I didn’t
feel like I needed to, the code should be self explanatory from the start. I like
python because of its simplicity/pseudo like syntax. Maybe a java developer could
appreciate these notations more.

The notation is intuitive. *
(e.g. How natural it feels to use it)

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ • ◦ ◦ ◦

Please elaborate:
If it’s not part of the original syntax I wouldn’t say it’s intuitive to use.

The notation is easy to learn. *

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ • ◦ ◦

XXIII

B. Survey Data Evaluation Embedded Annotation Specification

Please elaborate:
Maybe, I would need to try it myself to give an honest opinion.

The notation is easily applicable. *

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ • ◦ ◦

Please elaborate:
It’s all about being agile nowadays so I don’t see a developer using this if it’s not
very late iteration of a project that focus on reusability and robustness.

The notation is flexible to use. *
(imagine the contexts in which you want to use it, do you think its flexible to use?)

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ • ◦ ◦

Please elaborate:
I haven’t tried it so I can’t say... But I think software updates will break the notation
after a while.

Using the annotation will avoid redundancies. *
(i.e. Requires to write more annotations than necessary for mapping assets to fea-
tures)

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ • ◦ ◦ ◦

Please elaborate:
I think it might be a redundancy to use it from the start.

The notation is succinct. *
(I.e. the additional writing effort is minimal)

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ • ◦ ◦ ◦

Please elaborate:
I think adding any other code than necessary is bad practise.

XXIV

B. Survey Data Evaluation Embedded Annotation Specification

The notion is robust during software evolution and mainte-
nance. *
(I.e. as many annotations as possible survive the evolution, e.g. moving folders/files,
removing code, and editing code etc.)

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ • ◦ ◦

Please elaborate:
I think it’s safe to removing code and edit folders since any developer will hotreload
his/her software after any changes.

The additional effort of using annotations during program-
ming is negligible. *

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ • ◦ ◦ ◦

Please elaborate:
-

It will be easy to convince developers to use it while pro-
gramming. *

Completely disagree Disagree Neutral Agree Completely agree
Rating: • ◦ ◦ ◦ ◦

Please elaborate:
If it’s not part of the original syntax in java so I don’t think it will be easy to
convince developers to use it.

What do you think the biggest benefits of using embedded
annotations are?
It may give a new developer a better chance to understand someone else’s code.

Any suggestions for improvements?
I would want a clear example of what you mean by feature. "Feature A distinct
functional or non-functional attribute of a software product.1" this quote is really
abstract for a common developer. And since I’m in data science I associate feature
with something else.

XXV

B. Survey Data Evaluation Embedded Annotation Specification

I would also shorten the questionnaire by at least 3 questions. Then I would feel
more obliged to answer the questions more thoroughly.

Participant information
We would ask you to provide your name and email for verification and analysis
(e.g., to identify duplicates), to be informed about the study results, and in case of
questions we might have. Hint: Your information is voluntary.

Please add your job title. (e.g. Developer, Tester, SW-
Architect, Project Manager)
Data Engineer

Feedback Participant 7

The notation is useful. *

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ ◦ • ◦

Please elaborate:
It’s good to standardize feature annotations (i.e., have a common understanding).

The notation is intuitive. *
(e.g. How natural it feels to use it)

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ ◦ • ◦

Please elaborate:
It is close to what we know from #ifdef’s. So, yes, it should be intuitive to the
majority of (C) programmers.

The notation is easy to learn. *

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ ◦ ◦ •

Please elaborate:
Very limited set of keywords (i.e., should be easy to learn)

XXVI

B. Survey Data Evaluation Embedded Annotation Specification

The notation is easily applicable. *

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ • ◦ ◦

Please elaborate:
Only with appropriate tool support (e.g., code completion). Otherwise, it could be
cumbersome to add.

The notation is flexible to use. *
(imagine the contexts in which you want to use it, do you think its flexible to use?)

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ • ◦ ◦

Please elaborate:
1. The level of granularity is not clear to me. Which AST elements can be anno-
tated. From the examples I see that statements are supported. What about more
fine-grained annotations such as individual switch cases, parameter declarations,
etc.? What about elements that are non-optional in the AST, such as type and
expressions?
If you just parse text: how do you enforce syntactic correctness?
2. What about feature combinations that are not possible according to the feature
model (i.e., having two features selected in the annotation and then making them
alternative to each other in the feature model)? I know we just talk notation here,
but the question is whether there should be support for it? I don’t know ;)

Using the annotation will avoid redundancies. *
(i.e. Requires to write more annotations than necessary for mapping assets to fea-
tures)

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ • ◦ ◦

Please elaborate:
Compared to what?

The notation is succinct. *
(I.e. the additional writing effort is minimal)

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ • ◦ ◦ ◦

XXVII

B. Survey Data Evaluation Embedded Annotation Specification

Please elaborate:
Only with appropriate tool support. Otherwise, I wouldn’t use it.

The notion is robust during software evolution and mainte-
nance. *
(I.e. as many annotations as possible survive the evolution, e.g. moving folders/files,
removing code, and editing code etc.)

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ • ◦ ◦

Please elaborate:
Hm, renaming files will break it. Also renaming features... Although this is not
an issue with notation itself. For instance, if the notation is implemented in a
projectional editor or in a textual editor with automated refactorings, we could
avoid these issues. Nevertheless, I wouldn’t say the "notation" is robust...

The additional effort of using annotations during program-
ming is negligible. *

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ • ◦ ◦ ◦

Please elaborate:
Cf. to answer for "The notation is succinct. *".

It will be easy to convince developers to use it while pro-
gramming. *

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ • ◦ ◦

Please elaborate:
You could be more precise here. Who are the developers using it? Web developers,
embedded software developers, etc.? The latter is very hard to convince (since
#ifdefs are already in place).

What do you think the biggest benefits of using embedded
annotations are?
Being able to trace your features is a big plus.

XXVIII

B. Survey Data Evaluation Embedded Annotation Specification

Any suggestions for improvements?
IMO there should be a more straightforward way for feature mappings, e.g., I don’t
understand why we need to distinguish files and folders. From a developer’s per-
spective it should be easy to just include/exclude mappings of folders and files.
Maintaining two files could be too cumbersome.

Participant information
We would ask you to provide your name and email for verification and analysis
(e.g., to identify duplicates), to be informed about the study results, and in case of
questions we might have. Hint: Your information is voluntary.

Please add your job title. (e.g. Developer, Tester, SW-
Architect, Project Manager)
Engineering Manager

Feedback Participant 8

The notation is useful. *

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ ◦ • ◦

Please elaborate:
fast finding of features in the source code

The notation is intuitive. *
(e.g. How natural it feels to use it)

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ ◦ • ◦

Please elaborate:
-

The notation is easy to learn. *

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ ◦ • ◦

XXIX

B. Survey Data Evaluation Embedded Annotation Specification

Please elaborate:
-

The notation is easily applicable. *

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ • ◦ ◦

Please elaborate:
-

The notation is flexible to use. *
(imagine the contexts in which you want to use it, do you think its flexible to use?)

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ • ◦ ◦

Please elaborate:
-

Using the annotation will avoid redundancies. *
(i.e. Requires to write more annotations than necessary for mapping assets to fea-
tures)

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ ◦ • ◦

Please elaborate:
depends on the discipline of the developer when assigning the parameter names

The notation is succinct. *
(I.e. the additional writing effort is minimal)

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ • ◦ ◦

Please elaborate:
-

XXX

B. Survey Data Evaluation Embedded Annotation Specification

The notion is robust during software evolution and mainte-
nance. *
(I.e. as many annotations as possible survive the evolution, e.g. moving folders/files,
removing code, and editing code etc.)

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ ◦ • ◦

Please elaborate:
-

The additional effort of using annotations during program-
ming is negligible. *

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ ◦ • ◦

Please elaborate:
-

It will be easy to convince developers to use it while pro-
gramming. *

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ • ◦ ◦

Please elaborate:
-

What do you think the biggest benefits of using embedded
annotations are?
-

Any suggestions for improvements?
-

Participant information
We would ask you to provide your name and email for verification and analysis
(e.g., to identify duplicates), to be informed about the study results, and in case of
questions we might have. Hint: Your information is voluntary.

XXXI

B. Survey Data Evaluation Embedded Annotation Specification

Please add your job title. (e.g. Developer, Tester, SW-
Architect, Project Manager)
Director

Feedback Participant 9

The notation is useful. *

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ ◦ • ◦

Please elaborate:
It may especially be useful for linking SW requirements with corresponding code
part, where such code parts spread over sources files and over source file contents.

The notation is intuitive. *
(e.g. How natural it feels to use it)

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ ◦ ◦ •

Please elaborate:
-

The notation is easy to learn. *

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ ◦ ◦ •

Please elaborate:
-

The notation is easily applicable. *

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ ◦ • ◦

Please elaborate:
This annotation concept looks very flexible and hence I would expect that a project
planing to use it should initially agree e.g. schemes and structures of how to identify
features, sub-features etc, up to which level, naming conventions etc. Also important

XXXII

B. Survey Data Evaluation Embedded Annotation Specification

seems to be the associated tool(s), which extract and process the annotations and
represent the extracted information in a user friendly way.

The notation is flexible to use. *
(imagine the contexts in which you want to use it, do you think its flexible to use?)

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ ◦ ◦ •

Please elaborate:
-

Using the annotation will avoid redundancies. *
(i.e. Requires to write more annotations than necessary for mapping assets to fea-
tures)

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ • ◦ ◦

Please elaborate:
Not yet quite clear to me - the actual annotation syntax is very compact.

The notation is succinct. *
(I.e. the additional writing effort is minimal)

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ ◦ ◦ •

Please elaborate:
-

The notion is robust during software evolution and mainte-
nance. *
(I.e. as many annotations as possible survive the evolution, e.g. moving folders/files,
removing code, and editing code etc.)

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ ◦ • ◦

Please elaborate:
Much might depend on the discipline of the involved SW developers. In case of
big and larger organizations and changing teams and responsibilities certain code

XXXIII

B. Survey Data Evaluation Embedded Annotation Specification

parts are often maintained by different people with different experiences, know-how,
ways of working, cultural differences and so on. The added value of the annotations
might depend on a consistent usage over time and among different people as much as
possible. Thus, it may depend on correspondingly chosen SW development process
aspects and their consistent application. (This however is not a topic specific for
this annotation scheme.)

The additional effort of using annotations during program-
ming is negligible. *

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ ◦ • ◦

Please elaborate:
I would assume that initially a "getting used to" process is required - SW developpers
will have to keep in mind using the annotations consistently. This may be similar to
the readiness to add to source code "sensible" and "readable" and "understandable"
comments in general. Once a certain mindset is achieved and mentally accepted I
indeed think that adding such annotations may become a "natural" habit.

It will be easy to convince developers to use it while pro-
gramming. *

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ ◦ • ◦

Please elaborate:
Would be easy to convince me at least. :-)

What do you think the biggest benefits of using embedded
annotations are?
If used and applied consistently over the lifetime of the related SW parts (from
the begiining) and if related tool(s) are available to easily extract the annotated
information and present it to the user, then the annotation scheme may indeed be
really helpful in order to quickly identify source code parts associated with certain
features. This may be especially helpful e.g. for bug fixing tasks, for effort estimation
and implementation tasks related to new of changed features.

Any suggestions for improvements?
Have you already had a closer look at how the information, which is generated
using this annotation scheme, may be represented to potential users, and how users
then may actually work with it? This and potential initial experiences might be

XXXIV

B. Survey Data Evaluation Embedded Annotation Specification

great information for future interested users of this scheme. Potentially also some
best practice recommendations regarding feature granularity and structuring might
round up the description.

Participant information
We would ask you to provide your name and email for verification and analysis
(e.g., to identify duplicates), to be informed about the study results, and in case of
questions we might have. Hint: Your information is voluntary.

Please add your job title. (e.g. Developer, Tester, SW-
Architect, Project Manager)
Developer

Feedback Participant 10

The notation is useful. *

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ ◦ • ◦

Please elaborate:
The annotations Importance increase with size and complexity of the development
project

The notation is intuitive. *
(e.g. How natural it feels to use it)

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ ◦ ◦ •

Please elaborate:
The annotation is based on in software development commonly used keywords and
syntax. Hence, it is easy to learn and to work with. Furthermore it is compact so
that it does not increase the length of the source code.

The notation is easy to learn. *

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ ◦ ◦ •

XXXV

B. Survey Data Evaluation Embedded Annotation Specification

Please elaborate:
See answer above.

The notation is easily applicable. *

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ ◦ • ◦

Please elaborate:
As single developer the annotation is simple to use. The applicability of the anno-
tation to be used in multidisciplinary and distributed development team should be
investigated.

The notation is flexible to use. *
(imagine the contexts in which you want to use it, do you think its flexible to use?)

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ ◦ ◦ •

Please elaborate:
The annotation is independent of the context or development problem. Hence it can
be applied in a large variety of software development projects.

Using the annotation will avoid redundancies. *
(i.e. Requires to write more annotations than necessary for mapping assets to fea-
tures)

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ ◦ • ◦

Please elaborate:
It will not avoid redundancies by itself, but it can support the developer to identify
those.

The notation is succinct. *
(I.e. the additional writing effort is minimal)

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ ◦ ◦ •

Please elaborate:
The annotation syntax is very compact and is therefore efficient to be written.

XXXVI

B. Survey Data Evaluation Embedded Annotation Specification

The notion is robust during software evolution and mainte-
nance. *
(I.e. as many annotations as possible survive the evolution, e.g. moving folders/files,
removing code, and editing code etc.)

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ • ◦ ◦

Please elaborate:
That depends a lot on the discipline of the developer. Here it is the risk that with
changing source code the annotations get outdated.

The additional effort of using annotations during program-
ming is negligible. *

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ • ◦ ◦

Please elaborate:
I would say it is worth the effort, but it requires still time and concentration to write
high quality annotations.

It will be easy to convince developers to use it while pro-
gramming. *

Completely disagree Disagree Neutral Agree Completely agree
Rating: ◦ ◦ • ◦ ◦

Please elaborate:
Typically the first thing a developer does is to get the source code working. After
this is achieved the developer should improve code quality and documentation. In
practice this is the part which lacks on quality. The advantages of this method need
to be experienced by the developers to get acceptance.

What do you think the biggest benefits of using embedded
annotations are?
Achieving overview of the developed features in the project as well as motivating
the developer to think about the written code in more detail resulting in improved
code quality

XXXVII

B. Survey Data Evaluation Embedded Annotation Specification

Any suggestions for improvements?
It would be interesting to see the benefits of this method with respect to small-
/medium/large development projects.

Participant information
We would ask you to provide your name and email for verification and analysis
(e.g., to identify duplicates), to be informed about the study results, and in case of
questions we might have. Hint: Your information is voluntary.

Please add your job title. (e.g. Developer, Tester, SW-
Architect, Project Manager)
Project Manager

XXXVIII

C
Partial Commit Evaluation

C.1 Scenario 1 - Adding New Assets to an Exist-
ing Feature

Steps for “git add −−patch” on the left side and the new tool on the right side.

(a) Git add −−patch (b) Partial Commit Tool

Figure C.1: Tool Evaluation Partial Commit, Scenario 1, Changes to Commit

XXXIX

C. Partial Commit Evaluation

(a) Call “git add −−patch” and Add
Hunk in HelloCommit.java

(b) Call Partial Commit Tool

Figure C.2: Tool Evaluation Partial Commit, Scenario 1, Tool Execution

Figure C.3: Tool Evaluation Partial Commit, Scenario 1, git-add for Hunk in
HelloCommitTest.java

XL

C. Partial Commit Evaluation

Figure C.4: Tool Evaluation Partial Commit, Scenario 1, git-commit for Staged
Changes

(a) Call git add −−patch (b) Call Partial Commit Tool

Figure C.5: Tool Evaluation Partial Commit, Scenario 1, git-log After Tool Exe-
cution

XLI

C. Partial Commit Evaluation

(a) Call git add −−patch (b) Call Partial Commit Tool, line-
breaks highlighted due to tool internal
handling

Figure C.6: Tool Evaluation Partial Commit, Scenario 1, git-diff for New Commits

XLII

C. Partial Commit Evaluation

C.2 Scenario 2 - Evolution of Source Code in Em-
bedded Annotation and Base Source Code

Steps for “git add −−patch” on the left side and the new tool on the right side.

(a) Git add −−patch (b) Partial Commit Tool

Figure C.7: Tool Evaluation Partial Commit, Scenario 2, Changes to Commit

XLIII

C. Partial Commit Evaluation

(a) Call “git add −−patch” and Skip
Hunk in HelloPartial.java

(b) Call Partial Commit Tool

Figure C.8: Tool Evaluation Partial Commit, Scenario 2, Tool Execution

Figure C.9: Tool Evaluation Partial Commit, Scenario 2, git-add for Hunk in
HelloCommitTest.java

XLIV

C. Partial Commit Evaluation

Figure C.10: Tool Evaluation Partial Commit, Scenario 2, git-commit for Staged
Changes

(a) Git add −−patch (b) Partial Commit Tool

Figure C.11: Tool Evaluation Partial Commit, Scenario 2, Non-feature Changes
Unmodified

XLV

C. Partial Commit Evaluation

(a) Git add −−patch (b) Partial Commit Tool

Figure C.12: Tool Evaluation Partial Commit, Scenario 2, git-log After Tool
Execution

(a) Git add −−patch (b) Partial Commit Tool

Figure C.13: Tool Evaluation Partial Commit, Scenario 2, git-diff for New Com-
mits

XLVI

C. Partial Commit Evaluation

C.3 Scenario 3 - Refactoring Existing Structural
Code Within a Feature

Steps for “git add −−patch” on the left side and the new tool on the right side.

(a) Git add −−patch (b) Partial Commit Tool

Figure C.14: Tool Evaluation Partial Commit, Scenario 3, Changes to Commit,
Feature FeatureTestScenario4

XLVII

C. Partial Commit Evaluation

(a) Call “git add −−patch” and Skip
Hunk in HelloFeature.java

(b) Partial Commit Tool

Figure C.15: Tool Evaluation Partial Commit, Scenario 3, Tool Execution, Feature
FeatureTestScenario4

Figure C.16: Tool Evaluation Partial Commit, Scenario 3, Git Split Hunk in
HelloFeature.java

XLVIII

C. Partial Commit Evaluation

Figure C.17: Tool Evaluation Partial Commit, Scenario 3, Git Skip Hunk in
HelloFeature.java

Figure C.18: Tool Evaluation Partial Commit, Scenario 3, Git Skip Hunk in
HelloFeature.java

XLIX

C. Partial Commit Evaluation

Figure C.19: Tool Evaluation Partial Commit, Scenario 3, Git Split Hunk in
HelloFeature.java

Figure C.20: Tool Evaluation Partial Commit, Scenario 3, Git Split Hunk rejected

L

C. Partial Commit Evaluation

Figure C.21: Tool Evaluation Partial Commit, Scenario 3, Manual Workaround
for Rejected Hunk Split

(a) Call git add −−patch (b) Call Partial Commit Tool

Figure C.22: Tool Evaluation Partial Commit, Scenario 3, Changes to Commit,
Feature FeatureTestScenario3

LI

C. Partial Commit Evaluation

(a) Call “git add −−patch” and Add
Hunk in HelloFeature.java

(b) Call Partial Commit Tool

Figure C.23: Tool Evaluation Partial Commit, Scenario 3, Tool Execution, Feature
FeatureTestScenario3

Figure C.24: Tool Evaluation Partial Commit, Scenario 3, Git Split Hunk in
HelloFeature.java

LII

C. Partial Commit Evaluation

Figure C.25: Tool Evaluation Partial Commit, Scenario 3, git-commit for Staged
Changes

(a) Git add −−patch (b) Partial Commit Tool

Figure C.26: Tool Evaluation Partial Commit, Scenario 3, git-log After Tool
Execution

LIII

C. Partial Commit Evaluation

(a) Git add −−patch (b) Partial Commit Tool

Figure C.27: Tool Evaluation Partial Commit, Scenario 3, git-diff for New Com-
mits of Feature FeatureTestScenario4

(a) Git add −−patch (b) Partial Commit Tool

Figure C.28: Tool Evaluation Partial Commit, Scenario 3, git-diff for New Com-
mits of Feature FeatureTestScenario3

LIV

	List of Figures
	List of Tables
	List of Grammars
	Introduction
	Statement of the Problem
	Purpose of the Study
	Structure of the Report

	Background and Related Work
	Feature Definition
	Feature Usage
	Feature Location
	Traceability and Variability
	Feature tangling and scattering
	Tangling Degree and Scattering Degree
	Git Version Control Data Flow
	Git Partial Commits
	Related Work

	Methodology
	Research Questions
	Design Science
	Adjusted Design Science
	Project Research Objectives

	Embedded Annotations Design
	Formal Definition of Embedded Annotations
	Feature Hierarchy Model
	Feature Reference Names
	Annotation Listing
	Feature expression logic
	Annotation Markers
	The begin-marker
	The end-marker
	The line-marker
	Interleaving of Annotation Markers

	Feature Mappings
	Feature-to-code mapping
	Feature-to-file mapping
	Feature-to-folder mapping

	Embedded Annotation Examples
	Annotation Code Examples
	File Mapping Examples

	Evaluation Embedded Annotation Specification
	Survey Creation
	Survey Results
	Design Changes
	Outcomes

	Embedded Annotations Workflow and Usage

	Engine for Embedded Annotation Extraction
	Parser Generator
	Engine Architecture
	Public Interface Methods and Capabilities
	Engine Usage Example

	Industrial Use Case
	Potential Use Cases
	Use Case ``Partial Commit''
	State of the Art
	Tool Design
	Tool Architecture
	Partial Commit Limitations
	Tool Evaluation
	Scenario 1 - Adding New Assets to an Existing Feature
	Scenario 2 - Evolution of Source Code in Embedded Annotation and Base Source Code
	Scenario 3 - Refactoring Existing Structural Code Within a Feature

	Discussion
	Threats to Validity
	Conclusion
	Future Work
	Bibliography
	Embedded Annotation Specification
	Embedded Annotation Definition by Authors
	EBNF Grammar Definitions
	Feature Hierarchy Model Grammar
	Source Code Annotations Grammar
	Feature-to-File Annotations Grammar
	Feature-to-Folder Annotations Grammar

	Survey Data Evaluation Embedded Annotation Specification
	Survey of Embedding Annotations in Code
	Feedback Participants

	Partial Commit Evaluation
	Scenario 1 - Adding New Assets to an Existing Feature
	Scenario 2 - Evolution of Source Code in Embedded Annotation and Base Source Code
	Scenario 3 - Refactoring Existing Structural Code Within a Feature

