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Abstract. Identifying and estimating the dose-response relationship between a compound and
a pharmacological endpoint of interest is one of the most important and difficult goals in the
preclinical stage of pharmaceutical drug development. We conduct pharmacodynamic studies to
investigate the dose-response profile and then different studies to find doses that lead to desired
efficacy or acceptable safety in the endpoint(s). The aim of this thesis is to provide an overview
of existing techniques and design of experiments which are appropriate for addressing the goals
of these studies simultaneously. We have used a method combining multiple comparisons and
modeling techniques (MCPMod) in designing the experiments and found that we can reduce the
required total sample size by using an optimal design. We have analysed the simulated data using
MCPMod and observed that this method can be used to identify the dose-response relationship and
estimate dose at a required effect. We have compared the two approaches of estimating dose and
discovered that using a weighted average of all fitted models gives a similar result as compared with
using the best fitted model. Finally we have investigated the possibility of identifying the presence
of toxicity in response of a few or many samples at higher doses and found that we can detect
toxicity if there are many samples with toxic response at a higher dose. This combined strategy is
both financially and ethically rewarding as it reduces the time and cost of study and also reduces
the number of animals used in pre-clinical trials.
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1 Introduction

1.1 Background

Drug discovery and development is a highly challenging process and identification of the appropriate
dosage is a one of the most important steps in the development process of a new drug. During pre-
clinical testing, 75% of safety closures were compound-related (that is, they were due to ‘off-target’
or other properties of the compound other than its action at the primary pharmacological target) as
opposed to being due to the primary pharmacology of the target.[1] If the target dose is selected too
high it can result in an unacceptable toxicity profile. Alternatively, if the target dose is selected too
low it increases the chance that the compound provides insufficient evidence of effectiveness.[2]

Searching for an adequate dose has historically been addressed using two approaches: multiple
comparisons and modeling. The former regards the dose as a qualitative factor and generally makes
few, if any, assumptions about the underlying dose-response relationship. The latter assumes a
functional relationship between the response and dose, taken to be a quantitative factor, according
to a pre-specified model.[3] The first approach of multiple comparisons typically has relatively few
dose-levels, with many observations made at each level in order to yield statistical confidence in the
results. The second approach of multiple comparisons typically has a larger number of dose-levels,
spread out in such a way that we gain insight into the functional relationship between dose and
response, whilst sacrificing confidence by having fewer observations at each dose-level. Regularly,
however, an optimal design for either of these endpoints might be sub-optimal for the other (e.g.
number of drug dose levels vs number of animals in each group), which can necessitate follow-up
studies with additional use of animals.

A unified strategy is possible to analyse data from dose-response studies which combines multiple
comparison and modeling techniques. This assumes the existence of several candidate parametric
models and uses multiple comparison techniques to choose the one most likely to represent the true
underlying dose-response curve, while preserving the family-wise error rate. The selected model is
then used to provide inference on adequate doses.[3]

The goal of this thesis to understand this unified strategy which can address efficacy and dose-
response endpoints simultaneously and then apply the above strategy on multiple designed experi-
ments. A combined strategy is rewarding both financially and ethically as it reduces the time and
cost of study and also reduces the number of used animals in pre-clinical trials.

A pioneering analysis using benchmark industry attrition data in 2004 highlighted the most common
causes of R&D attrition as being a lack of efficacy and/or safety and suggested that more attention
be spent on reducing toxicity risks, improving pre-clinical models and demonstrating adequate
proof of mechanism and proof of concept in the clinic.[4] This study also investigate that using the
above mentioned combined strategy we can get more insights about the efficacy and dose-response
end-points during pre-clinical experiments.

1.2 Pharmacological Background

All healthcare companies are making substantial investments in their capabilities for target selection
and validation, lead generation, pharmacokinetic/pharmacodynamic (PK/PD) modeling, patient
stratification and biomarkers. Dose selection and dose regimen design are essential for converting
drugs from chemicals to therapeutically useful agents.[5]

PK models describe the relationship between drug concentration(s) and time. A primary goal of
most population pharmacokinetic modeling evaluations is finding pharmacokinetic parameters
and sources of variability in a population. Other goals include relating observed concentrations to
administered doses through identification of predictive covariates in a target population.[6]

Models describing continuous PD metrics often represent the concentration–effect relationship as a
continuous function. PD modeling has been shown to be important during regulatory review of new
therapeutics.[7]
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Figure 1: PK/PD modeling as combination of PK and PD [11]

Baseline (predrug) and control (vehicle dose) data are as important for PD modeling as the drug
treated data and should be given equal attention. It is only with a faithful model of baseline
and control data that it is possible to distinguish drug effect from control effect and from noise
in the data.[8] This thesis focuses on dose–response studies, in which a drug is administered at
various dose-levels and the corresponding response is measured. The medicinally active substance is
delivered in an inert substance (excipient) referred to as vehicle.This vehicle treatment is a control
expected to have no effect, and as such, it can be thought of as a type of control. Since the vehicle
treatment contains no trace of the active substance, it is appropriate to associate it with a dose-level
of zero.

Most PD models are semi-physiologic and are parameterized to reflect what is known about the
drug’s mechanism of action. Despite this, identification of appropriate structural models for PD
evaluations is not straightforward. Comparing models with a linear drug effect vs. a nonlinear
drug effect are not nested (such that fixing one new parameter to 0 simplifies the test model to
the reference linear model), thus the likelihood ratio test is generally not an appropriate metric
to compare different models. Instead, the use of the Akaike Information Criteria(AIC) or similar
comparisons should be used.[6] It is to be noted here that AIC is not suitable when we want to
predict the observations using fitted model, in our case we will not predict the data using the fitted
models so this can be used. Preference is generally given to models that converge and provide robust
parameter estimates with respect to initial selected candidate models and their parameters.[8] In
our designed experiments, we have compared the results of estimated dose by using the best fitted
model and by taking weighted average of all fitted models.

All drugs exhibit between-subject variability (BSV) in exposure and response, and many studies
performed during drug development are aimed at identifying and quantifying this variability.[9] In
this thesis we have assumed the between subject variability is normally distributed with given mean
and response for a particular dose.

Integrated PK/PD modeling allows a quantitative description of the dose–exposure–response rela-
tionship by linking the concentration–time course resulting from a dosing regimen as assessed by
PK to the intensity of observed response in relation to drug plasma concentrations as quantified by
PD. The resulting PK/PD models allow a description of the complete time course of the intensity of
desired and/or undesired effects resulting from a certain dosing regimen.[10]
Figure 1 illustrates the PK/PD modeling as combination of PK and PD.
In this thesis our focus is on PD models, which represent concentration(dose)–effect(response)
relationship as a continuous function.
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Figure 2: Sigmoid Emax model dose-response curve [12]

2 Modeling and Data Simulation

2.1 Mathematical Models

Throughout this thesis we will consider the functional relationship between a dose variable d and a
response variable Y. Denoting the response function by f we will write Y = f(d, θ) + ε where θ is a
vector containing all parameters of the given response function and ε is random error.

The Emax model is a nonlinear model frequently used in dose–response analyses.[12] The model
can be shown as:

Y = f(d, θ) + ε = E0 + d·Emax
d+ED50

+ ε

Where Y is the response, d is the dose, and parameters for this model are θ = (E0, Emax, ED50)
and E0 is the value of response at control or zero dose, Emax is the maximum effect attributed to
the drug, and ED50 is the dose, which produces half of Emax.
Notice that Emax is the change in response relative to the baseline E0, meaning that the absolute
maximal response is y = E0 + Emax

If response is decreasing with the increase in dose, the Emax model can be written as follows:

Y = f(d, θ) + ε = E0 − d·Emax
d+ED50

+ ε

Where d, Y , and θ are the same as in the increasing Emax model.

The more general models of the Emax model is called the Sigmoid Emax model, which includes a
slope factor (Hill factor), represented here as N, measures sensitivity of the response to the dose
range of the drug, determining the steepness of the dose–response curve. The model is written as
follows:

Y = f(d, θ) + ε = E0 + dN ·Emax
dN+EDN50

+ ε

Where all other variables are same as above except that θ has one additional parameter which is N,
so θ = (E0, Emax, ED50, N)

Figure 2 illustrates the Sigmoid Emax model dose-response curve where the response is increasing
with the dose. We can see that for the particular case of Sigmoid Emax, when N =1, the model
is referred as the Emax model. To cover the different shapes of dose-response relationships in the
thesis, we will also use a logistic model and a beta model for the dose-response relationship. The
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Figure 3: Dose-Response curve for all described models, For all models dose range is [0,1] , and
parameters for standardized models are: for Emax: ED50 =.2 , For SigEmax: ED50 =.2 and N =
0.5, For logistic: ED50 = 0.2 and δ = 0.2, For Beta model: δ1 = 2, δ2 = 1.2, and scal = 1.2

logistic model is intended to capture general monotone, sigmoid dose-response relationships and
the beta model is intended to capture non-monotone dose-response relationships. Using the beta
model we can capture the case when the peak of the response occurs before the highest dose level
and then decreases in the dose-response relationship. This could be an indication that there is a
toxic effect at higher doses and we will use a beta model to detect the toxicity. Both the logistic and
the beta model are considered as given in the R[13] package DoseFinding [14].

The logistic model is as follows: Y = f(d, θ) + ε = E0 + Emax
1+exp

ED50−d
δ

+ ε

Where Y is the response, d is the dose, and parameters for this model are θ = (E0, Emax, ED50, δ),
E0 and Emax are the same as defined above, δ is the parameter determining the steepness of the
curve. .

The Beta Model is as follows: Y = f(d, θ) + ε = E0 + Emax ·B(δ1, δ2) · ( d
scal )

δ1 · (1− d
scal )

δ2 + ε

Where Y is response, d is dose, and parameters for this model are θ = (E0, Emax, δ1, δ2), E0

and Emax are the same as defined above, δ1 and δ2 are shape parameters. B(δ1, δ2) = (δ1+δ2)δ1+δ2

(δ1)δ1 ·(δ2)δ2

and the kernel of the beta model function consists of the kernel of the density function of a beta
distribution on the interval [0,scal]. The parameter scal is not estimated but set to a value larger
than the maximum dose via the argument scal.

It is to be noted that all dose-response models described above can be written as: f(d, θ) =
θ0 + θ1f

0(d, θ∗) where f0(d, θ∗) represents the standardized model parameterized by the vector
θ∗, θ0 a location parameter, and θ1 a scale parameter.[3] For example, the standardized model for
Emax model can be written as f(d, θ∗) = d

d+ED50
, where θ∗ = ED50.

Figure 3 is the plot generated for all explained models. In this plot, parameters of each model have
been assumed and the dose-response models are generated using the Mods function of package
DoseFinding [14] .
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Figure 4: Simulated dose-response data for different models with values at doses = 0, 0.05, 0.2,
0.6, 1, Sample size = 8 for each dose, Between subject standard deviation for each dose is 0.1,
Model parameters for all standardized models are, for Emax: ED50 =.2 , For SigEmax: ED50 =.2
and N = 0.5, For logistic: ED50 = 0.2 and δ = 0.2, For Beta model: δ1 = 2, δ2 = 1.2, and scal = 1.2

2.2 Data Simulation

The general framework is that a response Y (which can be an efficacy or a safety endpoint) is
observed for a given set of parallel groups of patients corresponding to doses d2,d3.....dk and control
d1, for a total of k arms. For the purpose of testing PoC and estimating target dose, we consider a
one-way layout for the model specification[15]

Yij = µdi + εij , εij ∼ N (0, σ2) and i = 1,2,..,k arms and j = 1,2,....,ni

where the mean response at dose di can be represented as µdi = f(di,θ) for some dose-response
model f(.) parameterized by a vector of parameters θ, ni is the number of patients allocated to
dose di, and εij is the error term for patient j within dose group i and these are independent across
subjects and also across measurements with in each subject. σ is considered as standard deviation
between subjects in a particular dose. It is to be noted that, we have considered the similar variance
in the observations at each dose, in practise we use the log transformed response at each dose
which in turn reduce the difference between the variance in each dose, so it is safe to use the same
variance across each dose while doing simulations.

To simulate the data set for a particular model, we require the doses, number of samples re-
quired for each dose, between subject standard deviation for each dose , and parameters for the
model. We decided the required values based on the designed experiment and simulated specific
dose-response model using genDFdata function of package McpMod [16]. This function simulates
normally distributed dose-response data, according to a pre-specified dose-response model and a
given standard deviation.

Figure 4 shows the simulated data for Emax, SigEmax, logistic, and beta models for assumed
values.

Depending on the designed experiment, we have generated different data sets using different
models. As we have discussed, different model shape represent different kind of dose-response
relationship. To create a data set which has observations from different underline dose-response
relationship, we have simulated data from different models and merged them to create the complete
data set.
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3 Theory

3.1 Multiple Comparison Procedure(MCP)

Generally, two types of errors can occur when conducting a test, either the null hypothesis is rejected
when it is true (type-I error) or it cannot be rejected although it is not true (type-II error). Formally,
the type-I error (denoted by α) is defined as

α = P(H0 rejected | H0 true)

One of the main issues in testing is to keep the type-I error below a certain designated level
which is referred to as the significance level, usually of a value of 5% .

In the framework of dose-finding, it is usually the case that more than one (pairwise) comparison
has to be drawn among the different dose groups. Each of those k comparisons is represented by
one null hypothesis Hi

0 ; i = 1,.., k. Conducting each of the pairwise comparison tests at the same
(local) level α can eventually produce a rate of false positives (meaning erroneously rejected null
hypotheses) above this predefined significance level. However, different definitions of error rates
for a multiple testing procedure are in place.

The most conservative one is the Family Wise Error Rate (FWER), defined as the probability
of committing at least one type-I error, e.g. the probability to erroneously reject any of the k null
hypotheses in the whole set of comparisons:

FWER = P( number of false positives > 0)

Generally, there are four main types of MCPs[17]:
1. All-contrast comparisons: all contrasts are to be tested
2. All-pairwise comparisons: all pairwise differences are to be tested
3. Multiple comparisons with the best: all treatment/dose groups shall be tested against the
treatment/ dose with the best effect
4. Multiple comparisons with the control: all treatment/dose groups shall be tested against the
control/active control group control.

The last type of Multiple Comparison Procedure were traditionally considered in dose-finding
studies when the primary objective was to conclude whether one, or possibly more than one, dose
was significantly superior than the control with respect to the primary efficacy criterion. Under
the MCP approach, one evaluates the statistical significance of contrasts between doses (typically
active dose vs control), while preserving the family-wise error rate (FWER) at a pre-specified level
α. Proof of Concept(PoC) is established when at least one contrast is statistically significant, in
which case one selects the minimum effective dose (MED) that is statistically superior to control
and produces a clinically relevant effect.[18]

A large number of multiple comparison procedures are available : Few of them are methods
based on ordered p-values( Bonferroni [19], Holm [20]), closed testing procedures ( Hommel[21]
and Hochberg [22]), and multiple contrast test ( Tukey[23] Dunnett [24]).

We will discuss the multiple contrast test in more detail as this is widely used in dose-response
studies.

3.1.1 Multiple Contrast Test(MCT)

The principle of (multiple) contrast tests allows testing of a more general set of hypotheses. Not
only pairwise comparisons of an active dose and the control can be addressed, but all types of
comparisons listed in above section. In this method, the null hypotheses are no longer formulated
directly on the basis of the group means themselves but by means of contrasts of these group
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means. A contrast is a linear combination of the group means
∑k
i=1 ciµi with the restriction that

all ci’s sum up to 0. One could also express this by the product of cTµ with the vector forms
µ = (µ1, µ2, ...µk)T and c = (c1, c2, ...ck)T of the group means and contrasts respectively. Using
this we can do any planned comparison using any linear combination of group means by defin-
ing the null hypothesis as

∑k
i=1 ciµi = 0 . For example, if want to compare two dose levels

with response of group means µ1, µ2 the contrast coefficient will be c1 = 1 , c2 = -1 and Null
hypothesis will become µ1 - µ2 = 0 or there is no difference in the response between two dose levels.

Assuming the responses Yij ; i = 1,2,..,k arms and j = 1,2,....,ni to be normally distributed
and independent within and across the different dose groups, the following test statistic can be used
for testing the null hypothesis H0 : cTµ = 0

T (Y ) =

∑k
i=1 ciȲi

S
√∑k

i=1 c
2
i /ni

(1)

Where Y is the matrix of all responses, Ȳi denotes the mean response in dose group i and
S2 =

∑k
i=1(Yij − Ȳi)2/ν and ν =

∑k
i=1 ni − k degrees of freedom

As the test statistic consists of the normally distributed contrast
∑k
i=1 ciȲi divided by the in-

dependent chi-squared distributed estimator of the pooled variance, under the null hypothesis H0,
the test statistic follows a central t-distribution T (Y ) ∼ tν with ν defined as above. This implies a
rejection of the null hypothesis if the value of the test statistic exceeds the (1 - α) quantile of the
central t-distribution t1−α,ν in the case of a single one-sided contrast test.

In case of an MCT, when testing several contrasts simultaneously, if m contrasts are to be tested,
one could use the (1 - α/m)-quantile of the central t-distribution instead of the (1 - α) -quantile for
each individual (one-sided) test in order to adjust according to the Bonferroni method [25]. This,
however, leads to a rather conservative control of the FWER.

By defining the null hypotheses by means of contrasts, e.g. H0 : cTµ = 0 as mentioned above, it is
possible to address every hypothesis as long as only linear components of the means are involved.
Particularly, by specifying appropriate contrasts, every set of pairwise comparisons can be defined.
This also includes the four different types of MCTs presented in previous section. Depending on the
type of MCT, the contrast vectors for all pairwise comparisons that are involved in this particular
contrast test are set up in a matrix, called contrast matrix:

C =


cT1
..
cTi
..

cTm


Where with the single contrasts cTi = (c1i , ..., c

k
i ) as row vectors

By multiplying this matrix with the vector of mean responses, one obtains a vector of all pair-
wise differences that are to be tested. Hence, also the corresponding null hypothesis can be
expressed by means of this matrix: H0 : Cµ = 0. It is rejected if the maximum of the in-
dividual test statistics constructed according to the 1 exceeds the quantile of a m-dimensional
t-distribution tm1−α/2,ν,R where m is the number of (pairwise) hypotheses that are part of the test
and R is the matrix of correlation between contrast test statistics and can be written as follows[15]:
R = ρij =

∑k
l=1 cilcjl/nl√

(
∑k
l=1 c

2
il/nl)(

∑k
l=1 c

2
jl/nl)

; 1 ≤ i, j ≤ m

One example of MCT is Dunnett procedure [24] is a method for the comparison of multiple
treatment groups with a control. In this a contrast matrix is defined only containing the contrasts
corresponding to the comparisons of the active treatment groups with the control group.
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3.2 Modeling Procedure(Mod)

The model-based approach assumes a functional relationship between the response and the dose,
taken as a quantitative factor, according to a pre-specified parametric model, such as a logistic or an
Emax model. The fitted model is then used to test if a dose–response relationship is present (PoC)
and, if so, to estimate an adequate dose(s) to achieve a desired response using, for example, inverse
regression techniques.

Response Y (which can be an efficacy or a safety endpoint) is observed for a given set of par-
allel groups of patients corresponding to doses d2,d3.....dk and control d1, for a total of k arms
and can be written as follows: Yij = f(di, θ) + εij , εij ∼ N (0, σ2) and i = 1,2,..,k arms and j
= 1,2,....,ni, where the dose–response model f (.) may be a linear or nonlinear function of the
parameters θ.

The testing of PoC and the selection of target doses using a modeling approach requires the
estimation of the model parameters θ. Under the assumption of independent, identically distributed
errors εij adopted here, ordinary least squares (OLS) estimates that minimize the residual sum
of squares

∑k
i=1

∑ni
j=1 |Yij − f(di, θ)|2 are typically used. In the case of nonlinear dose–response

models, nonlinear least squares algorithms are needed to estimate θ. The most popular of these
is the Gauss-Newton algorithm [26] which is an iterative procedure consisting of solving, until
convergence, a sequence of linear least squares problems based on a local approximation of the
nonlinear model. Such iterative algorithms typically require a starting point, the so-called initial
values, for the parameters.

The Gauss-Newton algorithm for nonlinear least squares is implemented in mainstream statis-
tical software packages. The functions nls[27] and gnls [28] are implemented in R.

The application of a model-based approach to analyze a given dose–response study may raise
questions on the validity of the statistical results, since the true underlying dose–response relation-
ship under investigation is typically unknown. This model uncertainty remains during the entire
drug development until the late Phase III clinical trials.[29]

3.3 MCPMod Method

MCP approach makes the inherent assumption that one of the doses under investigation is the
correct one. In particular, the objective of finding individual doses that achieve statistical significance
has been an important driver toward dosing designs with few doses. Modeling approach provides
greater flexibility than the MCP methodology; however, its validity depends on an appropriate
dose-response model being prespecified for the analysis. Because the model prespecification needs
to be included in the study protocol, prior to any data being available, considerable prior knowledge
about the dose-response shape is required for this approach to be reliable.[15]

We can say modeling techniques provide a flexible tool for describing functional dose–response
relationships and subsequently selecting a suitable dose. Typical model-based analyses, however, do
not provide a rigid error control, as it is provided, for example, by multiple comparison procedures.
There is a hybrid approach which provides the flexibility advantages of modeling based techniques
within the framework of multiple comparisons abbreviated MCPMod.[3] The motivation for MCP-
Mod is derived from the recognition that the power of standard dose-response trend tests depends
on the (unknown) dose-response relationship and proposed the use of a set of multiplicity adjusted
trend tests based on several transformations of the doses.[30]

In this method, we assume the existence of several candidate parametric models and use multiple
comparison techniques to choose the one most likely to represent the underlying dose-response
curve. The first step consists of computing optimum contrast coefficients, once the doses, sample
sizes, and the set of candidate models have been identified. In the second step we evaluate the
significance of the individual models in terms of the corresponding single contrast tests. Good
candidate models are chosen which lead to significant contrast tests. Such a procedure allows the
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selection of the most adequate dose-response model, while preserving the FWER. Other criteria
may be used for the model selection step, which is also discussed briefly. Finally, the selected model
is then used to produce inference on adequate doses, employing a model-based approach.

Formulation of MCPMod method:[15]

As described in section 2.2, the general framework is that a response Y (which can be an effi-
cacy or a safety endpoint) is observed for a given set of parallel groups of subjects corresponding to
doses d2,d3.....dk and control d1, for a total of k arms. For the purpose of testing PoC and estimating
target doses, we consider a one-way layout for the model specification[15]

Yij = µdi + εij , εij ∼ N (0, σ2) (2)

for i = 1,2,..,k arms and j = 1,2,....,ni, where the mean response at dose di can be represented as
µdi = f(di,θ) for some dose-response model f(.) parameterized by a vector of parameters θ, ni is
the number of patients allocated to dose di, and εij is the error term for patient j within dose group i.

Most dose-response models used in practice can be written as: f(d, θ) = θ0 + θ1f
0(d, θ∗) where

f0(d, θ∗) represents the standardized model parameterized by the vector θ∗, θ0 a location parameter,
and θ1 a scale parameter.[3]

Assume that a set S of M parameterized candidate models is given together with prior param-
eter values for their standardized versions. When used with the doses planned for the trial,
d1,d2.....dk, these candidate models produce mean response vectors µm = (µm1, µm2...., µmk) where
µmi = fm(di, θm), and fm is the mth dose-response function, m = 1,2,...M. Each of the dose-
response shapes in the candidate set is tested using a single contrast test, with coefficients chosen
to maximize the power of the test when the true underlying mean response equals µm.

The single contrast tests are defined as

Tm =
∑k
i=1 cmiȲi

S∗
√∑k

i=1 c
2
mi/ni

where S2 =
∑k
i=1

∑ni
j=1(Yij − Ȳi)

2/(N − k) and N =
∑k
i=1 ni . The contrast vectors cm =

(cm1....cmk)
′

follow the regularity conditions
∑k
i=1 cmi = 0 and

∑k
i=1 c

2
mi = 1. Optimum contrast

coefficients for model testing are determined as the best contrast associated with a given model
function f(d,θ), in the sense that, when that model is correct, it maximizes the chance of rejecting
the associated null hypothesis.[3] The associated null hypothesis are Hm

0 : cTmµ = 0 for given k ×
1 contrast vectors cTm = (cm1, ..., cmk) of known constants subject to cTm1 = 0 , m = 1,. . . ,M models.

Every single contrast test thus translates into a decision procedure to determine whether a given
dose-response shape is statistically significant, based on the observed data. This means for a
particular model the associated Null hypothesis Hm

0 : cTmµ = 0 is rejected and the observed data
significantly follow the underlying dose-response curve. The final test statistic Tmax is based on
the maximum contrast test, i.e., Tmax = maxmTm. PoC is verified if this maximum statistic Tmax,
and thus at least one single contrast test, is statistically significant, while controlling the FWER at
level α. Let q1−α denote the multiplicity adjusted critical value. PoC is then established if Tmax
≥ q1−α. Under the distributional assumptions stated in 2, the contrast test statistics T1....TM are
jointly multivariate t distributed with correlation matrix R determined by the model contrasts and
N - k degrees of freedom.

Numerical integration routines [31] or Monte carlo simulation can be used to compute the mul-
tiplicity adjusted p-values and critical values. If no candidate model is statistically significant,
the procedure stops indicating that a dose-response relationship cannot be established from the
observed data (i.e., no PoC). Otherwise, the maximum contrast test statistic, and possibly further
contrasts, are statistically significant that is, larger than q1−α. Note that testing the individual
contrasts at multiplicity adjusted level ensures the strong control of the FWER. For the PoC step, the
same multiple comparison procedure was used to test, the global hypothesis of no dose-response,
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Figure 5: Overview of MCPMod method [32]

without the individual hypotheses being formally tested.

Out of the statistically significant models in the candidate set a best model is selected for dose
estimation in the last stage of the procedure. The selection of the dose estimation model can be
based on the minimum p-value or some other relevant model selection criteria like the AIC or
the BIC.[3] The selected dose-response model is then employed to estimate target doses using
inverse regression techniques and possibly incorporating information on clinically relevant effects.
The precision of the estimated doses can be assessed using, for example, bootstrap methods. The
complexity of implementing such dose estimation procedure will vary with application and can be
computationally involved in some cases.

Figure 5 illustrates schematic overview of the multiple comparison and modeling procedure.
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4 Methodology and Designed Experiments

4.1 Methodology

For all the experimental study, methodology can be divided in two parts: Design and Analysis.
We describe below the steps for both parts while using the MCPMod method. To apply the
methodology we have used functions of the packages DoseFinding [14] and McpMod [16] in R[13].

4.1.1 Design

After defining the main study characteristics (e.g. the primary endpoint and the study population)
as it is essential for any study, the study-specific features have to be set up such that the outcome of
the study is as promising as possible. Those features include[25]:

1. candidate models for the dose-response relationship (selected on the basis of available prior
knowledge which can be obtained for example from similar compounds),

2. the choice of dose groups to be included in the study as well as the corresponding allocation ratios,

3. the optimal contrasts for the selected candidate models to maximize the power of the trend tests
conducted in the MCP-step,

4. the sample size providing a certain target power for the establishment of PoC or a certain
precision for one of the estimates of interest.

Optimal design criteria
We can search for the optimal selection of dose groups to be included in the study and identify
how to allocate the animals optimally to the selected dose groups. The ratio of required animals at
each dose level is referred to as an allocation ratio. The identification of optimal design features
is implemented in the function optDesign of DoseFinding [14] package in R , which offers three
different kinds of optimality criteria. Either the study design is optimized with regard to the
estimation of the model parameters (D-optimal), with regard to the Target Dose(TD) estimation
(TD-Optimal) or with regard to both. In practice, D-optimal signifies the minimization of a criterion
which involves the variance of the model parameters whereas TD Optimal means minimizing the
length of the confidence interval for the TD.

4.1.2 Analysis

Once the study has been designed thoroughly and data is simulated accordingly, the analysis is
carried out in two subsequent steps. First, the models are tested separately for an existing dose
effect while still adhering to the overall type-I error. If that could be proven for at least one of the
candidate models, the dose-response relationship is modelled by means of a parametric model that
is either the candidate model that fits the data best or a weighted average over those candidate
models with a significant test result. On the basis of the fitted model, the target dose can be
estimated via inverse regression techniques and precision of the estimates can be assessed if desired.

In the dose finding step there are two methods using which we can estimate the dose (i) us-
ing best fitted model (ii) using weighted average of all fitted models. To use the first method we
need to select the best fitted model. The best fit model can be selected with the smallest p-value or
highest T-value as it is most likely to be (closest to) the true model or the best model with respect to
some goodness-of-fit criterion. As mentioned in section 1.2 it is better to use a criterion like AIC. In
this thesis we will use AIC criterion to decide the best fit model and then we can estimate the dose
by using best fit model.

To use the second method we use the posterior weight of all fitted models. This can be inferred as
how much weight to the particular models should be given if we want to use all the fitted models
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for inference. These weights for all fitted models can be calculated using the equation:

wi =
exp (0.5 ·AICi)∑k
j=1 exp (0.5 ·AICj)

(3)

where wi is the posterior weight of ith fitted model, AICi is AIC value for ith fitted model , and
k is number of all fitted models. After calculating the posterior weight we can calculate the
estimated dose by using weighted average of all fitted models, which means Estimated dose(ED)
=

∑k
i=1 wi · EDi where wi is the posterior weight of ith fitted model and EDi is estimated dose

calculated by ith fitted model.[33]

4.2 Designed Experiments

MCPMod method can be used in clinical trials to simultaneously address the both aims of verifying
PoC and estimating the dose.[15] In this thesis we want to investigate the use of the MCPMod
method for pre-clinical studies.

In pre-clinical experiments, we follow the 3Rs(Replacement, Reduction, Refinement)[34] principle.
The reduction principle suggests that we need to design the experiment in such a way that we
require as few animals as possible. As compared to clinical trials, in these experiments the variance
between the subjects in response is also smaller as compared to clinical trials. This is due to the fact
that animals are genetically more similar and also in a more controlled external environment. We
attempt to design the experiment in such a way that we need smaller sample sizes and generate
data with low variance so that it is similar to a pre-clinical setup.

Before designing the experiment it is important to define and understand the objective of the
experiments. In this thesis we want to evaluate the MCPMod method for Pre-clinical Experiment
and attempt to answer the following questions:

1. Is there any reduction in sample size required for the experiment when using different al-
location ratios for different dose levels(optimal design) as compared to using similar allocation
ratios for each dose level(normal design)? [For results refer to 4.2.4 ]

2. Can we use the MCPMod method to estimate the underlying model of given data? How
close are the estimates of the fitted model to the real model? While estimating the parameter of
the best fitted model, what is the difference in the results using optimal design and normal design?
[For results refer to 5.1 ]

3. What is the probability of estimating the best fit model same as the model from which data has
been generated? In the Mod step of MCPMod, can we use the weighted average of all fitted models
instead of the best fit model based on AIC values? [For results refer to 5.2 ]

4. Using MCPMod, can we detect that there are toxic effects in the responses at higher doses? [For
results refer to 5.3 ]

The answer to the first question can be found while designing the study for different experi-
ments. To answer the second question we will design two experiments, one with optimal design
(different allocation ratio for different dose levels) and another with normal design (equal allocation
ratio for each dose level). To answer the third and the fourth question we will use the optimal
design and attempt to answer these by analysing data generated for 2000 simulations.
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Design:

4.2.1 Candidate Model Selection

For both the experiments with optimal design and normal design, we use the same candidate models.

After discussing with the modeling team we have selected six candidate models: Three Emax
models, one Sigmoid Emax, one logistic model, and one Beta model. We have selected different
models so that we can cover different shapes of the dose-response relationship. The reason for
selecting three Emax models is that it is the most common found dose-response model but we can
not be sure about the parameters of the model in advance so it is advisable to use several models
with different parameters. The beta model can be used to detect the toxicity at higher doses.

We find the parameters of the standardized version of each model which is described in Section 3.3
using function guesst of package DoseFinding. [14].

To use this function, we need prior information about the expected dose-response relationship.
We need to know the number of (dose, response) pair values same as the number of unknown
parameters in the standardized chosen models. In our case for Emax we need one (dose, response)
pair, for Betamod we need one (dose, response) pair and the value of the dose at which the
maximum effect occurs, and for Sigmoid Emax and logistic models we need two (dose, response)
pair values. Criteria to choose these values are generally based on previous knowledge or historical
data. In our case, we assume that we have some idea of the expected dose-response relationship
and that we can guess the value at dose = 0.1 and dose = 0.5 which are 10% and 50-80% of the
maximum effect respectively. For the Sigmoid Emax and logistic models which need two pairs of
values, we will be using response values 10% and 50% at dose = 0.1 and 0.5 respectively. For
BetaMod we will use response value 70% at dose = 0.5 and maximum effect occurs at dose = 0.75.
For one of the Emax model we use response value 70% at dose = 0.5 and for the other two Emax
models we will use response values 60% and 80% at dose = 0.5. This way we have ensured that
we have 3 different Emax models with different parameters. Using these values we have tried to
cover the different shapes of initial candidate models along with one close to the one with which
we will be simulating the data.

Table 1 describes the guessed values and calculated parameters for all standardized versions of all
the candidate models. Referring to figure 6 we can see that each of the Emax models have different
value at dose 0.5, which is the assumed values at dose 0.5 and the model must pass through that
point.

Model Name Guessed Value Output parameters
Emax1 per = 0.8 at d = 0.5 ED50 = 0.125
Emax2 per = 0.7 at d = 0.5 ED50 = 0.214
Emax3 per = 0.6 at d = 0.5 ED50 = 0.333

BetaMod per = 0.7 at d = 0.5, Maximum Effect at d = 0.75, scal= 1.2 δ1 = 2.54 and δ1 = 1.52
Sigmoid Emax per = 0.5 at d = 0.5 , per = 0.1 at d = 0.1 ED50 = 0.5 and N = 1.37

Logistic per = 0.5 at d = 0.5 , per = 0.1 at d = 0.1 ED50 = 0.5 and δ = 0.182.

Table 1: Parameters of standardized candidate models and the guessed values to calculate those(per
is fraction of maximum effect and d is dose level)

We have set the value of control effect to 0 and maximum change from base effect to 1 and
used the Mods function of the DoseFinding package to calculate the complete model involving all
the parameters.

All complete candidate models are as follows:
First Emax model is f(d, θ) = 0 + d·1.125

d+0.125

Second Emax model is f(d, θ) = 0 + d·1.214
d+0.214
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Figure 6: All candidate models. Dots on the curve are the response at dose 0,0.5,1

Third Emax model is f(d, θ) = 0 + d·1.333
d+0.333

BetaMod Model is f(d, θ) = 0 + 1 ·B(2.54, 1.52) · ( d
1.2 )2.54 · (1− d

1.2 )1.52

Sigmoid Emax model is f(d, θ) = 0 + d1.37·1.39
d1.37+0.51.37

logistic model is f(d, θ) = −0.069 + 1.137
1+exp 0.5−d

0.182

Figure 6 shows the plot for all above mentioned candidate models. We can observe that different
candidate models are representing different shapes for the dose-response relationship.

4.2.2 Dose levels selection and respective allocation ratio

For optimal design, to find the optimal doses and respective allocation ratios we have used the
function optDesign of the DoseFinding [14] package . Our main aim is to understand the shape
of the model in observed data so we have used the D-optimal optimality criteria as mentioned in
section 4.1.1. The probabilities of all candidate models are assumed equal and the possible input
dose levels are [0,0.05,0.1,0.15,0.2,0.25,0.4,0.45,0.5,0.6,0.7,0.8,0.9,1].

The result of optimal design is as follows:

Calculated D - optimal design:
0 0.1 0.15 0.35 0.7 1

0.27075 0.07250 0.11346 0.15760 0.14712 0.23857

The output of this function gave us that required dose levels are [0, 0.1,0.15,0.35,0.7,1] and
the ratios of sample size required for each dose level are [0.271,0.073,0.114,0.158,0.147,0.239].

To find the integer allocation ratio at different dose levels we have divided the output of the
ratio at each dose level by 0.025 and then taken the nearest integer value as allocation ratio. We
have divided by 0.025 as we can safely assume that 2.5% is a very low weight as compared to
the total weight and we can ignore all the weights below this value. We got the allocation ratios
as [11,3,5,6,6,10] for the dose levels [0, 0.1,0.15,0.35,0.7,1]. This means that if we require 11
samples at dose 0, we will require 3 samples at dose 0.1, 5 samples at dose 0.15, 6 samples at doses
0.35 and 0.7, and 10 samples at dose 1.

For the normal design, we will use the same dose levels [0,0.1,0.15,0.35,0.7,1] with allocation ratio
[1,1,1,1,1].
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4.2.3 Optimal contrasts for the selected candidate models

We have used function optContr for calculating the optimal contrast for all the candidate models.
This function takes the input as candidate models and weight of each dose group or allocation ratio.

For optimal design with different allocation ratio for each dose, we got the following optimal
contrasts:

Optimal contrasts
emax1 emax2 emax3 betaMod sigEmax logistic

0 -0.831 -0.795 -0.761 -0.628 -0.672 -0.563
0.1 -0.043 -0.072 -0.091 -0.160 -0.131 -0.137
0.15 -0.002 -0.050 -0.085 -0.237 -0.163 -0.208
0.35 0.156 0.130 0.101 0.023 0.034 -0.100
0.7 0.249 0.262 0.268 0.605 0.279 0.278
1 0.470 0.524 0.568 0.396 0.653 0.731

In the above table, every column represents the contrast coefficient for each candidate model
with respect to each dose. For ex. for the Emax1 model contrast coefficients are c0 = -0.831 , c0.1 =
-0.043 , c0.15 = -0.002 , c0.35 = 0.156 , c0.70 = 0.249 , c1 = 0.470 and the null hypothesis for this
model will be for this model Hemax1

0 : c0µ0 + c0.5µ0.1 + c0.15µ0.15 + c0.35µ0.35 + c0.7µ0.7 + c1µ1 = 0
and will represent no dose-response effect for the Emax1 model, where µdosei is mean response at
dosei.

For normal design with similar allocation ratio for each dose, we got the following optimal contrasts:

Optimal contrasts
emax1 emax2 emax3 betaMod sigEmax logistic

0 -0.780 -0.707 -0.648 -0.387 -0.505 -0.383
0.1 -0.180 -0.248 -0.286 -0.361 -0.352 -0.335
0.15 -0.043 -0.113 -0.161 -0.318 -0.257 -0.302
0.35 0.215 0.188 0.155 0.043 0.079 -0.090
0.7 0.366 0.398 0.413 0.728 0.435 0.442
1 0.421 0.482 0.527 0.295 0.600 0.668

In the above table, every column represents the contrast coefficient for each candidate model
with respect to each dose. For ex. for the Emax1 model contrast coefficients are c0 = -0.780 , c0.1 =
-0.180, c0.15 = -0.043 , c0.35 = 0.215 , c0.70 = 0.366 , c1 = 0.421 and the null hypothesis for this
model will be for this model Hemax1

0 : c0µ0 + c0.5µ0.1 + c0.15µ0.15 + c0.35µ0.35 + c0.7µ0.7 + c1µ1 = 0
and will represent no dose-response effect for the Emax1 model, where µdosei is mean response at
dosei.

4.2.4 Sample size calculation

We have used the sampSizeMCT function of the DoseFinding package to calculate the sample size
required for each dose level. To calculate these we have assumed significance level α = 0.05 for a
one-sided hypothesis test, power to detect PoC as 80%, and expected standard deviation with in
subjects at each dose level as 0.75 for both the optimal and the normal design experiments. We
have chosen these values through consultation with experts.

For the optimal design experiments with different allocation ratios for each dose level, we have
used the samples allocation ratios calculated in step 2 which are [11,3,5,6,6,10] for dose levels
[0,0.1,0.15,0.35,0.7,1], the optimal contrasts calculated in step 3 and got that we need sample sizes
[7,2,3,4,4,7] for dose levels [0,0.1,0.15,0.35,0.7,1] respectively.

For the normal design experiments with different allocation ratios for each dose level, we have
used the samples allocation ratios calculated in step 2 which are [1,1,1,1,1,1] for dose levels
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[0,0.1,0.15,0.35,0.7,1], the optimal contrasts calculated in step 3 and got that we need sample sizes
[6,6,6,6,6,6] for dose levels [0,0.1,0.15,0.35,0.7,1] respectively.

Discussion on the sample sizes required by the optimal and normal designs:
The total sample size required with optimal design is 27 samples, while with normal design a total
36 samples are required. We can say that in this case we can achieve a 25% reduction of the total
sample size required. In turn this will also reduce the total dose required in the experiment. It is to
be noted that this value depends on the design criteria, input parameters such as selected candidate
models, power to detect PoC value, significance level, and the expected between subject standard
deviation.

In addition to the reduction in the total sample size required, another advantage of using the
optimal design is that we were able to filter out the doses levels we do not require.

At this point we can say that there is an improvement in the total sample size required when
using optimal design as compared to normal design, however we still need to check how this
effects the result of the experiments. Going forward we will simulate the data for both designed
experiments and evaluate the results.
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Figure 7: Simulated dose-response data from the Emax model with parameters E0 = 0, Emax
= 1.2, ED50 = 0.2 , dose levels = [0,0.1,0.15,0.35,0.7,1] , different allocation sample sizes =
[7,2,3,4,4,7] and between subject standard deviation = 0.1 , red line is joining the means at each
dose

5 Simulations and Results

5.1 Evaluation of MCPMod for Pre-clinical Experiments

We have generated two data sets for dose levels [0,0.1,0.15,0.35,0.7,1] using both optimal design
and normal design. For this, we have used the Emax model with parameters E0 = 0, Emax = 1.2,
ED50 = 0.2,and with the following setup:
1. Sample sizes [7,2,3,4,4,7] and between subject standard deviation = 0.1 at each dose level
2. Sample sizes [6,6,6,6,6,6] and between subject standard deviation = 0.1 at each dose level

In the above setup sample sizes are decided based on the sample size calculated in the design
step, and between subject standard deviation is decided based on the advice from experts with
knowledge of pre-clinical experiments historical data.

Simulated data points and box plots at each dose for both data sets are shown in Figure 7 and
Figure 8 respectively. Full data is presented in A.1. We can observe that in both data sets means at
each dose are following the dose-response relationship of the Emax model.

Assuming maximum effect to be 1, we can calculate the true value of estimated dose for 50%
effect of the maximum effect by using the definition of the Emax model and known parameters of
the underlying data generating model. This results in an Estimated Dose(ED) of 0.1429.

We have applied the MCPMod methodology on both above simulated data sets and run the analysis
using the MCPMod function of package DoseFinding. [14]

We have conducted one-sided hypothesis testing at significance level= 0.05, and selected the
best fit model based on AIC values.
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Figure 8: Simulated dose-response data from the Emax model with parameters E0 = 0, Emax = 1.2,
ED50 = 0.2 , dose levels = [0,0.1,0.15,0.35,0.7,1] , similar allocation sample sizes = [6,6,6,6,6,6]
and between subject standard deviation = 0.1, red line is joining the means at each dose

For the first data set with optimal design and sample sizes [7,2,3,4,4,7], we have got the
following results(Summary of the full R output is presented at A.2):

In the first step of the MCPMod method(MCP), all the selected candidate models were signifi-
cant and we can see for all the models the multiplicity adjusted p-values are less than 0.001 and the
corresponding t-statistic values are significantly higher than the t-critical value of 2.032.

Multiple Contrast Test:
t-Stat adj-p

emax2 19.289 <0.001
emax1 19.223 <0.001
emax3 19.164 <0.001
sigEmax 18.393 <0.001
logistic 16.850 <0.001
betaMod 16.426 <0.001

Critical value: 2.032 (alpha = 0.05, one-sided)

AIC values for all fitted models are given below and the minimum AIC value is achieved for
Emax model so Emax is the best fitted model based on AIC values.

Model selection criteria (AIC):
***************************************

emax betaMod sigEmax logistic
-42.01810 -38.81453 -40.33912 -37.95860

Selected model: emax
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Table 2 describes the estimates, standard errors, and 95% confidence intervals for all estimated
parameters for all the fitted models and Figure 9 shows the fitted model with 95% confidence
intervals. We can observe that all the models fit the data and are significant but Emax seems to
be the best fit as suggested by AIC values. Comparing the estimated parameter(E0 = 0, Emax =
1.19, ED50 = 0.188 ) values of the fitted Emax model with the model from which the data has
been simulated (E0 = 0, Emax = 1.2, ED50 = 0.2 ) we can say that the estimates are good and the
method is able to detect the underlying model.

Model name Estimated Parameters Standard Error 95% CI for Parameters
emax e0 = 0.00 0.0382 e0: [-0.075,0.075]

eMax = 1.19 0.0748 eMax : [1.043,1.337]
ed50 = 0.188 0.0440 ed50: [0.102,0.275]

sigEmax e0 = 0.002 0.0390 e0: [-0.075,0.078]
eMax = 1.195545567 0.1441 eMax: [0.814,1.379]

ed50 = 0.162 0.0419 ed50: [0.080,0.245]
N = 1.235 0.4515 N: [0.35,2.12]

logistic e0 = -0.942 1.5521 e0: [-3.984,2.10]
eMax = 1.914 1.5673 eMax: [-1.158,4.986]
ed50 = 0.001 0.2153 ed50: [-0.421,0.422]
δ = 0.135 0.0619 δ: [0.014,0.257]

betaMod e0 = 0 0.0401 e0: [-0.078,0.079]
eMax = 1.005 0.0517 eMax: [0.904,1.106]
δ1 = 0.479 0.1060 δ1: [0.271,0.687]
δ2 = 0.159 0.0969 δ2: [-0.031,0.349]

Table 2: Parameters for all fitted models along with their 95% CI (Used data set with Sample sizes
[7,2,3,4,4,7])

In the second step of the MCPMod method, we have estimated the dose required to have 50% of the
maximum observed effect. We have estimated this value with both the methods using the best fitted
model and using weighted averages of all the fitted models. Below is the dose required using all the
fitted models and posterior weights(calculated using equation 3 ) of all fitted candidate models:

Estimated ED, p=0.5
***************************************

emax betaMod sigEmax logistic
0.1368 0.1389 0.1390 0.1489

Model weights (AIC):
emax betaMod sigEmax logistic

0.5666 0.1142 0.2447 0.0744

Estimated dose required using the best fitted model(emax) = 0.1368
Estimated dose required when using the weighed averages of all the fitted models = 0.1385

We can say that both of these values are close to the expected true value 0.1429. We will do
more analysis on this and calculate the confidence interval for the estimated dose in the next section
5.2.
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Figure 9: All fitted models along with 95% confidence intervals with all data points of data set with
sample sizes [7,2,3,4,4,7] and between subject standard deviation = 0.1

For the second data set with normal design and sample sizes [6,6,6,6,6,6], we got the follow-
ing results(Summary of the full R output is presented at A.2):

In the first step of the MCPMod method(Multiple comparison procedure), all the selected candidate
models were significant and we can see that for all the models adjusted p-values are less than 0.001
and corresponding t-statistic values are higher than the t-critical value 2.02.

Multiple Contrast Test:
t-Stat adj-p

emax2 22.905 <0.001
emax3 22.859 <0.001
emax1 22.592 <0.001
sigEmax 21.991 <0.001
logistic 20.308 <0.001
betaMod 18.744 <0.001

Critical value: 2.02 (alpha = 0.05, one-sided)

AIC values for all fitted models are given below and the minimum AIC value is for the Emax
model so Emax is the best fitted model based on AIC values.

Model selection criteria (AIC):
***************************************

emax betaMod sigEmax logistic
-60.38221 -58.97291 -59.95446 -47.63632

Selected model: emax
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In the results of this experiment we can also observe that all the models fit the data and are
significant but Emax seems to be the best fit as suggested by AIC values. Figure 10 shows the fitted
models with 95% confidence intervals and Table 3 describes the estimates, standard errors, and
95% confidence intervals for all estimated parameters for all the fitted models. Comparing the
estimated parameter(E0 = 0, Emax = 1.343, ED50 = 0.243 ) values of the fitted Emax model with
the model from which the data has been simulated (E0 = 0, Emax = 1.2, ED50 = 0.2 ) we can say
that the estimates are good and the method is able to detect the underlying model.

Model name Estimated Parameters Standard Error 95% CI for Parameters
emax e0 = 0.00 0.0391 e0: [-0.076,0.077]

eMax = 1.343 0.0715 eMax : [1.20,1.48]
ed50 = 0.243 0.0437 ed50: [0.157,0.329]

sigEmax e0 = -0.009 0.0396 e0: [-0.087,0.069]
eMax = 1.991 1.1326 eMax: [-0.229,4.211]
ed50 = 0.702 1.2093 ed50: [-1.669,3.072]

N = 0.667 0.2574 N: [0.163,1.172]
logistic e0 = -0.957 1.2926 e0: [-3.491,1.576]

eMax = 1.998 1.3139 eMax: [-0.578,4.57]
ed50 = 0.001 0.1931 ed50: [-0.377,0.379]
δ = 0.156 0.0591 δ: [0.040,0.272]

betaMod e0 = 0.01 0.0401 e0: [-0.088,0.069]
eMax = 1.127 0.0801 eMax: [0.970,1.284]
δ1 = 0.443 0.0720 δ1: [0.302,0.584]
δ2 = 0.05 0.0717 δ2: [-0.09,0.19]

Table 3: Parameters for all fitted models along with their 95% CI (Used data set with Sample sizes
[6,6,6,6,6,6])

In the second step of the MCPMod method, we have estimated the dose required to have 50% of the
maximum observed effect. We have estimated this value with both the methods using the best fitted
model and using the weighted average of all the fitted models. Below is the dose required using
all the fitted models and posterior weights(calculated using equation 3 ) of all the fitted candidate
models:

Estimated ED, p=0.5
***************************************

emax betaMod sigEmax logistic
0.1635 0.1773 0.1696 0.1710

Model weights (AIC):
emax betaMod sigEmax logistic

0.4341 0.2146 0.3505 0.0007

Estimated dose required using the best fitted model = 0.1635
Estimated dose required when using the weighed average of all the fitted models = 0.1686

We can say that both of these values are close to the expected true value 0.1429. We will do
more analysis on this and calculate the confidence interval for estimate doses in next section 5.2

Comparison of results from optimal and normal designs:

We have observed that in both the optimal design and the normal design using the MCPMod method
we are able to fit the data with the underlying model. To compare the parameters of the best fitted
model using both the designs we have presented estimated values of the parameters in table 4.
We have observed that in both the designs the best fitted model is the Emax model. Estimated
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Figure 10: All fitted models along with 95% confidence intervals with all data points of data set
with sample sizes [6,6,6,6,6,6] and between subject standard deviation = 0.1

parameters and residual standard errors are the same for the E0 parameter for both designs. While
for the Emax and ED50 parameters, the estimated value is higher in case of the normal design
as compared to the optimal design but the standard errors are the same so the wideness of the
confidence intervals are same in both cases.

Data for both the designs are different as they are generated separately and have different sample
sizes so difference in the estimates is possible due to different data sets, however we can say that
fitted models using both designs are fairly reasonable when compared to the model from which
data has been generated which is the Emax model with parameters E0 = 0, Emax = 1.2, ED50 =
0.2. By comparing the posterior weights of the best fitted model in both designs, we observe that
weight of the Emax model is 0.5666 in optimal design and 0.4341 in normal design so we can say
that the Emax model is better fitted with respect to its data set in optimal design.
While comparing the estimated dose at 50% of the maximum observed effect in the second step of
the MCPMod method, we have already seen that results using both designs are close to the expected
true value.

Best fitted Model Estimated Parameters Standard Error 95% CI for Parameters
emax using Optimal design e0 = 0.00 0.0382 e0: [-0.075,0.075]

eMax = 1.19 0.0748 eMax : [1.043,1.337]
ed50 = 0.188 0.0440 ed50: [0.102,0.275]

emax using Normal design e0 = 0.00 0.0391 e0: [-0.076,0.077]
eMax = 1.343 0.0715 eMax : [1.20,1.48]
ed50 = 0.243 0.0437 ed50: [0.157,0.329]

Table 4: Parameters for the best fitted models along with their 95% CI (For both optimal design
and normal design)
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5.2 Probability of selecting the true model as the best fit model and compar-
ison of the estimated doses using the best fit model and the weighted
average of all fitted models

Taking note of previous results we can say that optimal design works well so in our further experi-
ments we will consider optimal design. In this exercise we have conducted 2000 simulations of the
experiments and first calculated the probability of selecting the true model as the best fit model and
then compared the estimated doses calculated using the best fit model and the weighted average of
all fitted models.

We have generated data sets for 2000 simulations using Emax model with parameters E0 =
0, Emax = 1.2, ED50 = 0.2, with the same set up as before:
Sample sizes [7,2,3,4,4,7] for doses [0,0.1,0.15,0.35,0.7,1] respectively and between subject stan-
dard deviation = 0.1 at each dose level

For every simulation we have run the analysis using the MCPMod function of the package DoseFind-
ing [14] and estimated the best fit model based on the AIC value and the posterior weight of all
fitted models and then calculated estimated doses with both the methods described in section 4.1.2.

To answer the first part of the exercise and calculate the probability of selecting a specific model
as the best fit, we have calculated how many times each model has been selected as the best
fitting model. Table 5 shows the number of times each model has been selected and its respective
probability of selection. The probability of the selected model is calculated as the number of times
the model was selected divided by the total number of simulations. We can see that Emax is selected
as the best fit model in 71.6% of the simulations, much more than any of the other candidate
models. It seems reasonable as data has been generated from the Emax model.

Model name Counts of selected as Best fitted model Percentage of selecting as best fit
Emax 1432 71.6

SigEmax 215 10.75
BetaMod 285 14.25
Logistic 68 3.4

Table 5: Models and their respective percentage of being selected as the best fit model

Table 6 shows the mean value, standard deviation, and 95% Confidence interval values for estimated
doses at 50% effect of the maximum observed effect using both methods. We can see that the
reported values are similar to each other and the mean values in both cases are close to the expected
true value 0.1429. To understand the distribution of estimated doses we have drawn a density plot
in figure 11 and observe that the whole distribution of estimated doses are very similar in both
methods and the 95% confidence intervals are nearly the same. The only visible difference in both
of density plots is that the density at the mean value is slightly higher while using the best fit model.
To verify one to one values for each simulation we have drawn the scattered plot in figure 12 and
we can see that it resembles the line with slope 1. We can explain this behavior by the reasoning
that the posterior weight is higher when the model is close to the observed data and the posterior
weight is lower when the model is not that good fit to the observed data so in the weighted average
we get the estimate close to the estimate calculated by the best fit model.

Method Mean value Standard deviation 95% confidence interval
Estimated using best fit model 0.145 0.025 [0.099, 0.196]

Estimated using weighted average of fitted models 0. 145 0.026 [0.097, 0.196]

Table 6: Estimated dose mean value, standard deviation, and 95% Confidence interval using
optimal design
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5.3 Toxicity detection

In the context of pharmacology, drug toxicity occurs when a person has accumulated too much of a
drug in his bloodstream, leading to adverse effects on the body. Usually in toxic response, we see the
maximum response at dose below to the highest dose and then decrease in the response. As we have
discussed in section 2.1 this type of dose-response behavior can be captured by using the betaMod
model in which we can define the maximum effect at any dose below to the highest dose. So we
can generate data points using the betaMod model which resemble the toxic response of few subjects.

In this experiment our objective is to check that by using the MCPMod methodology we can
identify if there are some subjects that have a toxic response. To do that we have used the same
experimental design which we have used for the previous experiments that is same set of candidate
models with sample size [7,2,3,4,4,7] for doses [0,0.1,0.15,0.35,0.7,1] respectively. As discussed in
section 4.2.1 in our candidate models we have already added one betaMod model in the hope that
this can help us in detecting toxicity.

To do the analysis at different levels of toxicity, we have generated data sets by merging the
two data sets. One generated using the Emax model with parameters E0 = 0, Emax = 1.2, ED50

= 0.2 and another generated using the betaMod model with parameters E0 = 0, Emax = 1, δ1 =
2.54 and δ1 = 1.52. It is to be noted that the betaMod model parameters are the same as in our
candidate betaMod model. In these two data sets data samples from the Emax model represent the
expected response and data samples from the betaMod samples represent the samples with toxic
response. By merging the datasets we have simulated the data set with expected responses mixed
with toxic responses at higher doses.

Table 7 describe in detail how we have generated different types of data sets. For all these
types of merged data sets we have generated data for 2000 simulations and used in the analysis.

Level of toxicity in data Data set 1 Data set 2
No toxic response samples [7,2,3,4,4,7] No samples

1 toxic response sample at two highest doses [7,2,3,4,3,6] [0,0,0,0,1,1]
2 toxic response samples at two highest dose [7,2,3,4,2,5] [0,0,0,0,2,2]
3 toxic response samples at two highest dose [7,2,3,4,1,4] [0,0,0,0,3,3]
4 toxic response samples at two highest dose [7,2,3,4,0,3] [0,0,0,0,4,4]

4 toxic response samples at second highest dose and 5 at highest dose [7,2,3,4,0,2] [0,0,0,0,4,5]

Table 7: Data set 1: Emax model with parameters E0 = 0, Emax = 1.2, ED50 = 0.2 and Data set
2: betaMod model with parameters E0 = 0, Emax = 1, δ1 = 2.54 and δ1 = 1.52 (Sample sizes for
doses [0,0.1,0.15,0.35,0.7,1] respectively )

For each level of toxicity in data and for each simulation we have run the analysis using the
MCPMod function of package DoseFinding [14] and calculated the betaMod posterior weight. De-
pending on the observed data set we have got the value of the betaMod posterior weight ranging
from 0 to 1. It is not possible to quantify the expected betaMod posterior weight based on the
number of toxic samples. To understand how the betaMod posterior weight varies with the increase
in toxic samples we have generated the histogram and density plot for each level of toxicity. This
can be seen in the figures 13, 14, 15. We can see that as toxicity increases, the distribution of the
betaMod posterior weight shifts towards 1 and we can say that the probability of getting a higher
betaMod posterior weight increases. This increase is significant in cases when there are many toxic
samples for example as in figure 15.

There is no clear definition for when a dose level is to be considered toxic or not based on the
posterior weights. So it is hard to define a value of the betaMod posterior weight at which we say
there is toxicity. One possible way of detecting the toxicity could be to set a threshold for a value
of the betaMod posterior weight in the design and say that if we get a betaMod posterior weight
higher than that value we will conclude that there are toxic responses in a few samples and that we
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Figure 13: Histogram and density plot for betaMod posterior weight with no or very few toxic
response samples

2 toxic Samples at doses 0.6 & 1

Histogram of BetaMod Posterior Weight calculated using AIC

F
re

q
u

e
n

c
y

0.0 0.2 0.4 0.6 0.8 1.0

0
1

0
0

2
0

0
3

0
0

4
0

0

3 toxic Samples at doses 0.6 & 1

Histogram of BetaMod Posterior Weight calculated using AIC

F
re

q
u

e
n

c
y

0.0 0.2 0.4 0.6 0.8 1.0

0
5

0
1

5
0

2
5

0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

Density plot of BetaMod Posterior Weight calculated using AIC

D
e

n
s
it
y

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

1
.2

Density plot of BetaMod Posterior Weight calculated using AIC

D
e

n
s
it
y

Figure 14: Histogram and density plot for betaMod posterior weight with few toxic response
samples
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Figure 15: Histogram and density plot for betaMod posterior weight with many toxic response
samples

have detected the toxicity. We have set this threshold value to 0.5 and calculated the percentage of
experiments we detect the toxicity for each level of toxicity presented in simulated data set. The
results are reported in table 8. We can see that as the number of toxic response samples increases
the percentage of detected toxicity also increases and in case of very high numbers of toxic response
samples we can almost surely detect the toxicity.

Type of data Count Detected toxicity Percentage
No toxic response samples 121 6.05

1 toxic response sample at two highest doses 226 11.3
2 toxic response samples at two highest dose 598 29.9
3 toxic response samples at two highest dose 1254 62.7
4 toxic response samples at two highest dose 1803 90.15

4 toxic response samples at second highest dose and 5 at highest dose 1973 98.65

Table 8: Count of the betaMod posterior weight > 0.5 out of 2000 simulations and the percentage
of experiments in which toxicity is detected for all toxicity levels
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Figure 16: Dose-response data for previous study with drug A ( Response: Ejection Fraction and
doses [0,10,30,100,300,1000] , red line is joining the mean value of response at each dose level

6 Application: Design based on real data

This section is based on observed data from a previous study in which drug A is used with dose
levels [0,10,30,100,300,1000] for the treatment of Myocardial Infarct(MI) in mice and in this study
the primary endpoint for response was ejection fraction, reflecting the heart capacity. Full data is
presented in section A.3. Based on this data we attempt to design a future experiment with Drug B.
In vitro data indicate they have similar potency and our aim of the study is to understand how the
in vivo potency of a new compound compares with drug A with a minimal design. We will neglect
the PK differences and assume that both drugs have the same PK.

We want to place one dose greater than and one smaller than the ED50 for Drug B. The closer the
better in terms of the precision of our estimate/interval, but with high variability we will struggle
to resolve differences for a narrow interval. Additionally there is a chance that drug B is more or
less potent than drug A. Using MCPMod we attempt to find the appropriate dose levels for future
studies with Drug B.

Figure 16 shows the given dose- response data and the respective box plot, we can see that
the variance in the response is high and varied across all dose levels. It is one of the types of
experiments in which we observe high variability in pre-clinical experiments. This is due to the
fact that in the response of this experiment we measure heart function in mice after myocardial
infarction and there is inherent variability in functional cardiac parameters after induction of heart
failure by MI in mice.[35]

First we attempted to fit this data using the MCPMod method. From figure 16 we notice that the
dose-response shape is similar to the Emax model so we have used four Emax models as candidate
models. To evaluate the parameters for the standardized version of each of these models we have
used the values at different dose levels. For each dose level we have calculated percentage effects at
each dose by dividing the change in mean response at that dose by the change in mean response at
the maximum dose. Table 9 shows the value of percentage effects at each dose and corresponding
ED50 parameters. To calculate the full candidate models we have used mean response at dose level
0 as control effect and mean response at the maximum dose level as maximum effect.
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Model Name Value from given data Output parameters
Emax1 per = 0.77 at d = 300 ED50 = 89.61
Emax2 per = 0.74 at d = 100 ED50 = 35.14
Emax3 per = 0.43 at d = 30 ED50 = 39.77
Emax4 per = 0.41 at d = 10 ED50 = 14.4

Table 9: Parameters for standardized candidate models and used value from given data(per is
fraction of maximum effect and d is dose level)

We have used the above decided candidate models to conduct one-sided hypothesis testing at signif-
icance level= 0.05,run the analysis using the MCPMod function and got the following results(The
full results are presented in section A.4):

Multiple Contrast Test:
t-Stat adj-p

Multiple Contrast Test:
t-Stat adj-p

emax2 5.178 <0.001
emax3 5.170 <0.001
emax4 5.138 <0.001
emax1 5.055 <0.001

Critical value: 1.857 (alpha = 0.05, one-sided)

In the first step of the MCPMod method(Multiple comparison procedure), all the selected candidate
models were significant and we can see that for all the models the multiplicity adjusted p-values are
less than 0.001 and corresponding t-statistic values are significantly higher than the t-critical value
of 1.857.

Figure 17 shows the fitted model with 95% confidence interval. Table 10 describes the esti-
mate, standard error, and 95% confidence intervals for all estimated parameters for the fitted model
and we can observe that for the fitted Emax model, the estimated value for ED50 parameter is
27.25 but there is a very high standard error and in turn this has a very wide 95% confidence
interval. This means that this parameter is not identifiable from the given data. This could be due
to the large variability in the given data set.

Model name Estimated Parameters Standard Error 95% CI for Parameters
Emax e0 = -4.53 2.11 e0: [-8.66,-0.41]

eMax = 13.60 2.58 eMax : [8.55,18.65]
ed50 = 27.25 20.28 ed50: [-12.5,67.00]

Table 10: Parameters for the fitted model with previous experimental data using drug A

Now based on the above findings we attempt to design the experiment for drug B. At first, we
have decided the values for the candidate models based on the parameter estimates of the fit-
ted model. Considering the wide confidence interval ED50, we have assumed four candidate
models with ED50 value as 5, 25,50,75. The estimates of E0 and Emax parameters has smaller
standard errors so We have assumed the estimate of the E0 parameter as control effect and the
difference of estimates of Emax and E0 parameters as the maximum effect. These assumptions
gave us the candidate models as described in table 11 and we have guessed initial doses as
[0,10,20,30,40,50,60,70,80,90,100,200,300,500,700,1000]. We have selected more doses in the
range of 0 to 100 as we can see from the fitted model that the main change in the shape happens in
this region of the dose levels and our aim is to find doses around possible ED50 of drug B.

To find out the optimal doses and the respective allocation ratio we have used the function optDesign
of the DoseFinding [14] package . This function can calculate the optimal design for estimating
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Figure 17: Fitted models along with 95% confidence interval with all data points of given data set
of ejection fraction for dose levels [0,10,30,100,300,1000]

Candidate Models f(d, θ)
Emax1 −4.53 + d·15.37

d+5

Emax2 −4.53 + d·15.67
d+25

Emax3 −4.53 + d·16.05
d+50

Emax4 −4.53 + d·16.44
d+75

Table 11: All candidate models for future experiment with drug B

the dose-response model parameters (D-optimal). We have provided all candidate models given
in table 11 with equal probabilities and calculated the dose levels and allocation ratios. Table 12
shows the results and it suggests the dose levels 0, 10 , 50, and 1000. Based on these results we can
recommend to use dose level 10 and dose level 50. However from the given data we were not able
to identify the ED50 parameter due to a wide confidence interval. Considering this, we can not
deduce where the selected dose levels [10,50] stand with respect to ED50 of drug B. If we consider
the estimate of ED50 for drug A, which was 27.25 then the selected dose level 10 is below this
value and selected dose level 50 is above this value. Additionally, if we are allowed to use one more
dose level we would like to recommend dose level 100 as from the fitted model in figure 17, we
can observe that at this level shape of fitted model is changed from increasing to flat.

Dose levels Allocation ratio
0 0.31

10 0.15
50 0.23

1000 0.31

Table 12: Dose levels and respective allocation ratio for future experiment with drug B
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7 Discussion and Outlook

The MCP-Mod methodology allows the combination of multiple comparisons and modeling methods
in a statistically principled way. Such methodology is useful for Phase II clinical studies, when one
is interested in testing the presence of dose-response and in selecting the adequate dose(s) for the
confirmatory phase of development.[15] One of the clear advantages of this method in comparison
to more traditional approaches, is its added flexibility in searching for and identifying an adequate
dose for future drug development. Instead of fitting one dose relationship we have the option of
fitting many possible dose relationship shapes. Also when we use multiple comparison methods we
often see that ED50 is in between the suggested doses and using this method we can estimate the
value of ED50.

In this thesis we have attempted to explore if we can use this methodology for pre-clinical exper-
iments and then tried to answer the important questions related to dose-response studies. We
have explored the possibility of using the MCPMod method in improving our experimental design,
estimating the underlying model from observed data, estimating dose at the given percentage of
maximum observed effect, and identifying the toxicity in responses at high doses.

While designing our experiments we have the choice of selecting a normal design when sam-
ple sizes are equal for each dose level or an optimal design when sample sizes are not equal for
each dose level but decided based on the specified allocation ratio. If results are not negatively
affected it is recommended to use optimal design as we can save animals and other resources such
as total dose. In our design we saw that we could reduce the sample size by 25% as 27 samples
were required in optimal design and 36 samples were required in using normal design. Also we
have noted that this method can also be useful in identifying the required dose levels for experiments.

We have simulated data as specified in the design and run the analysis using the MCPMod method
and observed that we were able to estimate the underlying model of simulated data and the
resulting parameters estimates were more close to the true estimates in case of optimal design. It is
to be noted that data is separately simulated for both designs so results were not similar but we
observe that in both cases the estimates are close to the true estimates and had similar standard
errors. Based on these results we can say that we can use the MCPMod methodology for design
and analysis of pre-clinical experiments for dose-response studies. We can say that results are not
affected negatively by using optimal design so this is recommended as it allows us to save resources.

After this we have conducted the analysis for 2000 simulations and found that probability of
detecting the underlying model as best fitted model is a lot higher as compare to other candidate
models. This probability will increase if we have candidate models which are not similar to the
underlying model. For all simulations we have calculated the estimated dose at 50% of observed
maximum effect using two methods (i) using best fitted model (ii) using weighted average of
all fitted models where weights has been calculated based on AIC values. We have observed
that estimates using both methods were very similar to each other. This suggests, we can use
weighted average of all the fitted models to estimate the dose in place of best fitted model as this
method consider all the fitted candidate models and model averaging techniques offer the pos-
sibility to take into account the uncertainty in the model selection process and prevent potential bias.

For toxicity analysis, we have simulated data ranging from no samples with toxic response to
many samples with toxic response at higher doses. For each level of toxicity we have simulated
and analysed 2000 simulations. We have observed that the frequency of observing higher posterior
weights of the BetaMod model is increased when toxicity level is increased and when the level of
toxicity is very high the posterior weight of the BetaMod model is mostly very high. This suggests
that by adding one BetaMod model to the candidate models in the design, we can identify toxicity
at higher levels.

Finally we have attempted to apply the methodology for designing future experimental stud-
ies for a different drug using the historical data of another drug for the same disease. We have been
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given the data of a dose-response study conducted using drug A for treating Myocardial Infarct in
Mice. The measured response were ejection fraction, reflecting the heart capacity. In this case we
have found that data has high variability and varied responses at different dose levels while in all
our experiments we have assumed homoscedastic normality at each dose level. We tried to fit the
observed data with a similar methodology and the fitted model has an ED50 estimate with a higher
standard error and a wider 95% confidence interval. Taking note of this, for future designs we used
multiple Emax candidate models with different ED50 parameters covering the whole interval. Using
these candidate models and providing many dose levels as input we could determine suggested
dose levels for future studies with a minimal design.

Overall we can say that we can use the MCPMod methodology in pre-clinical experiments for
dose-response studies. This methodology can help us in optimizing the design so that we can
reduce the required resources such as animals and dose. This can also reduce the time of study
by replacing separate experiments for PD study and efficacy study to single experiment. Addition-
ally this methodology can help us in identifying the important things such as toxicity at earlier stages.

We think there is a lot of potential for future research in this area. In this thesis we have worked on
the data in which error was normally distributed with equal variances across all dose levels. We have
seen in the example data, in pre-clinical experiments we might observe data with varied variances
across dose levels. It would be interesting to explore how can we use MCPMod methodology on this
type of data. In this thesis we have used the D-optimal criterion, it would be interesting to see the
results after applying other optimally criteria described in section 4.1.1. We think that there is more
scope of research in formulating the studies related to toxicity identification such that evaluating the
effect of defining the prior weight of the BetaMod model while designing the study. Apart from the
MCP-Mod approach, there is a similar Bayesian model strategy (BMA-Mod) for carrying out analyses.
Studies of the performance of BMA methods have demonstrated a number of desirable attributes.
[36] There is scope to evaluate this method for design and analysis of pre-clinical experiments for
dose-response studies.
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A Supplementary material

A.1 Simulated data for experiments

Full data Generated for dose levels [0,0.1,0.15,0.35,0.7,1] using Emax model with parameter E0 =
0, Emax = 1.2, ED50 = 0.2, with following set up:
Sample sizes [7,2,3,4,4,7] and between subject standard deviation = 0.1 at each dose level

[,1] [,2] [,3] [,4] [,5] [,6]
dose 0.00000000 0.1000000 0.1500000 0.3500000 0.7000000 1.0000000
1 0.05855288 0.3723816 0.4223535 0.8006992 0.8446976 1.0779622
2 0.07094660 0.3715840 0.5026609 0.8156580 0.9001756 1.1455785
3 -0.01093033 0.6960169 0.6885832 1.0454046 0.9355672
4 -0.04534972 0.8453263 0.9632057 0.8446863
5 0.06058875 0.8402290
6 -0.18179560 1.1805098
7 0.06300986 0.9518353

Full data Generated for dose levels [0,0.1,0.15,0.35,0.7,1] using Emax model with parameter E0 =
0, Emax = 1.2, ED50 = 0.2, with following set up:
Sample sizes [6,6,6,6,6,6] and between subject standard deviation = 0.1 at each dose level

[,1] [,2] [,3] [,4] [,5] [,6]
dose 0.00000000 0.1000000 0.1500000 0.3500000 0.7000000 1.000000
1 0.05855288 0.4630099 0.5513485 0.8757076 0.7735624 1.081187
2 0.07094660 0.3723816 0.5663074 0.7935087 1.1138431 1.219683
3 -0.01093033 0.3715840 0.4392325 0.8415986 0.8851686 1.204919
4 -0.04534972 0.3080678 0.5959757 0.9092149 0.9953713 1.163245
5 0.06058875 0.3883752 0.4256500 0.6992035 0.9945457 1.025427
6 -0.18179560 0.5817312 0.4811280 0.6083226 0.9171022 1.049119

A.2 Full results of experiments in section 5.1

Below is full output summary of results after analysing simulated data for normal design with
sample sizes [7,2,3,4,4,7] at dose levels [0,0.1,0.15,0.35,0.7,1] using MCPMod method.

MCPMod

***************************************
MCP part
***************************************
Multiple Contrast Test

Contrasts:
emax1 emax2 emax3 betaMod sigEmax logistic

0 -0.824 -0.787 -0.752 -0.628 -0.664 -0.556
0.1 -0.048 -0.078 -0.097 -0.168 -0.137 -0.142
0.15 -0.008 -0.053 -0.085 -0.224 -0.156 -0.196
0.35 0.150 0.122 0.092 0.013 0.022 -0.111
0.7 0.244 0.256 0.260 0.604 0.268 0.264
1 0.487 0.540 0.584 0.403 0.667 0.742

Contrast Correlation:
emax1 emax2 emax3 betaMod sigEmax logistic

emax1 1.000 0.994 0.980 0.821 0.925 0.835
emax2 0.994 1.000 0.996 0.857 0.962 0.889
emax3 0.980 0.996 1.000 0.876 0.982 0.925
betaMod 0.821 0.857 0.876 1.000 0.894 0.867
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sigEmax 0.925 0.962 0.982 0.894 1.000 0.977
logistic 0.835 0.889 0.925 0.867 0.977 1.000

Multiple Contrast Test:
t-Stat adj-p

emax2 19.289 <0.001
emax1 19.223 <0.001
emax3 19.164 <0.001
sigEmax 18.393 <0.001
logistic 16.850 <0.001
betaMod 16.426 <0.001

Critical value: 2.031 (alpha = 0.05, one-sided)

***************************************
Mod part
***************************************
** Fitted model 1
Dose Response Model

Model: emax
Fit-type: normal

Residuals:
Min 1Q Median 3Q Max

-0.1792 -0.0672 0.0107 0.0576 0.1816

Coefficients with approx. stand. error:
Estimate Std. Error

e0 -0.000207 0.0382
eMax 1.190175 0.0748
ed50 0.188344 0.0440

Residual standard error: 0.102
Degrees of freedom: 24

** Fitted model 2
Dose Response Model

Model: betaMod
Fit-type: normal

Residuals:
Min 1Q Median 3Q Max

-0.1891 -0.0666 0.0113 0.0637 0.1822

Coefficients with approx. stand. error:
Estimate Std. Error

e0 0.000366 0.0401
eMax 1.005206 0.0517
delta1 0.478728 0.1060
delta2 0.159357 0.0969

Residual standard error: 0.106
Degrees of freedom: 23
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** Fitted model 3
Dose Response Model

Model: sigEmax
Fit-type: normal

Residuals:
Min 1Q Median 3Q Max

-0.1870 -0.0601 0.0127 0.0525 0.1835

Coefficients with approx. stand. error:
Estimate Std. Error

e0 0.00173 0.0390
eMax 1.09683 0.1441
ed50 0.16245 0.0419
h 1.23522 0.4515

Residual standard error: 0.103
Degrees of freedom: 23

** Fitted model 4
Dose Response Model

Model: logistic
Fit-type: normal

Residuals:
Min 1Q Median 3Q Max

-0.2093 -0.0500 -0.0017 0.0593 0.1936

Coefficients with approx. stand. error:
Estimate Std. Error

e0 -0.942 1.5521
eMax 1.914 1.5673
ed50 0.001 0.2153
delta 0.135 0.0619

Residual standard error: 0.108
Degrees of freedom: 23

***************************************
Model selection criteria (aveAIC):
***************************************

emax betaMod sigEmax logistic
-42.01810 -38.81453 -40.33912 -37.95860

Model weights (AIC):
emax betaMod sigEmax logistic

0.5666 0.1142 0.2447 0.0744

***************************************
Estimated ED, p=0.5
***************************************

emax betaMod sigEmax logistic
0.1368 0.1389 0.1390 0.1489
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Below is full output summary of results after analysing simulated data for normal design with
sample sizes [6,6,6,6,6,6] at dose levels [0,0.1,0.15,0.35,0.7,1] using MCPMod method.

MCPMod

***************************************
MCP part
***************************************
Multiple Contrast Test

Contrasts:
emax1 emax2 emax3 betaMod sigEmax logistic

0 -0.780 -0.707 -0.648 -0.387 -0.505 -0.383
0.1 -0.180 -0.248 -0.286 -0.361 -0.352 -0.335
0.15 -0.043 -0.113 -0.161 -0.318 -0.257 -0.302
0.35 0.215 0.188 0.155 0.043 0.079 -0.090
0.7 0.366 0.398 0.413 0.728 0.435 0.442
1 0.421 0.482 0.527 0.295 0.600 0.668

Contrast Correlation:
emax1 emax2 emax3 betaMod sigEmax logistic

emax1 1.000 0.990 0.970 0.781 0.897 0.795
emax2 0.990 1.000 0.995 0.839 0.950 0.868
emax3 0.970 0.995 1.000 0.869 0.977 0.913
betaMod 0.781 0.839 0.869 1.000 0.901 0.880
sigEmax 0.897 0.950 0.977 0.901 1.000 0.975
logistic 0.795 0.868 0.913 0.880 0.975 1.000

Multiple Contrast Test:
t-Stat adj-p

emax2 22.905 <0.001
emax3 22.859 <0.001
emax1 22.592 <0.001
sigEmax 21.991 <0.001
logistic 20.308 <0.001
betaMod 18.744 <0.001

Critical value: 2.018 (alpha = 0.05, one-sided)

***************************************
Mod part
***************************************
** Fitted model 1
Dose Response Model

Model: emax
Fit-type: normal

Residuals:
Min 1Q Median 3Q Max

-0.19018 -0.07122 0.00216 0.05978 0.22355

Coefficients with approx. stand. error:
Estimate Std. Error

e0 -0.00019 0.0391
eMax 1.34343 0.0715
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ed50 0.24294 0.0437

Residual standard error: 0.0978
Degrees of freedom: 33

** Fitted model 2
Dose Response Model

Model: betaMod
Fit-type: normal

Residuals:
Min 1Q Median 3Q Max

-0.16453 -0.07287 -0.00218 0.06173 0.21538

Coefficients with approx. stand. error:
Estimate Std. Error

e0 -0.00969 0.0401
eMax 1.12677 0.0801
delta1 0.44294 0.0720
delta2 0.05000 0.0717

Residual standard error: 0.0985
Degrees of freedom: 32

** Fitted model 3
Dose Response Model

Model: sigEmax
Fit-type: normal

Residuals:
Min 1Q Median 3Q Max

-0.16389 -0.07187 -0.00312 0.06281 0.21251

Coefficients with approx. stand. error:
Estimate Std. Error

e0 -0.00869 0.0396
eMax 1.99099 1.1326
ed50 0.70154 1.2093
h 0.66712 0.2574

Residual standard error: 0.0971
Degrees of freedom: 32

** Fitted model 4
Dose Response Model

Model: logistic
Fit-type: normal

Residuals:
Min 1Q Median 3Q Max

-0.2335 -0.0627 -0.0161 0.0505 0.2444

Coefficients with approx. stand. error:
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Estimate Std. Error
e0 -0.957 1.2926
eMax 1.997 1.3139
ed50 0.001 0.1931
delta 0.156 0.0591

Residual standard error: 0.115
Degrees of freedom: 32

***************************************
Model selection criteria (aveAIC):
***************************************

emax betaMod sigEmax logistic
-60.38221 -58.97291 -59.95446 -47.63632

Model weights (AIC):
emax betaMod sigEmax logistic

0.4341 0.2146 0.3505 0.0007

***************************************
Estimated ED, p=0.5
***************************************

emax betaMod sigEmax logistic
0.1635 0.1773 0.1696 0.1710

A.3 Historical data of previous study

Full dose-response data of previous study in which drug A is used with dose levels [0,10,30,100,300,1000]
for the treatment of Myocardial Infarct(MI) in mice and in this study primary endpoint for response
was ejection fraction, reflecting capacity of heart.

[,1] [,2] [,3] [,4] [,5] [,6]
dose 0.000 10.000000 30.000000 100.000000 300.000000 1000.000000
1 0.728 -8.994596 2.702602 8.874409 6.975372 7.183406
2 -3.230 -2.809798 4.709994 0.506821 -0.290615 13.042204
3 -6.670 1.891771 1.212081 14.681336 8.474189 10.264326
4 -3.610 3.011568 1.286021 4.164526 8.812609 26.594684
5 -9.700 3.268864 -4.029345 -1.060348 11.708344 -2.827373
6 -6.870 -0.612570 1.666271 3.767455 3.806658 0.928837
7 -7.470 11.147938 11.018046 15.018660

A.4 Full results after fitting historical data

Below is full output summary of results after analysing historical data:

MCPMod

***************************************
MCP part
***************************************
Multiple Contrast Test

Contrasts:
emax1 emax2 emax3 emax4

0 -0.526 -0.641 -0.624 -0.761
10 -0.401 -0.378 -0.386 -0.275
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30 -0.184 -0.081 -0.097 0.035
100 0.129 0.236 0.226 0.276
300 0.369 0.360 0.364 0.318
1000 0.613 0.504 0.518 0.408

Contrast Correlation:
emax1 emax2 emax3 emax4

emax1 1.000 0.976 0.982 0.905
emax2 0.976 1.000 1.000 0.974
emax3 0.982 1.000 1.000 0.966
emax4 0.905 0.974 0.966 1.000

Multiple Contrast Test:
t-Stat adj-p

emax2 5.178 <0.001
emax3 5.170 <0.001
emax4 5.138 <0.001
emax1 5.055 <0.001

Critical value: 1.851 (alpha = 0.05, one-sided)

***************************************
Mod part
***************************************
Dose Response Model

Model: emax
Fit-type: normal

Residuals:
Min 1Q Median 3Q Max

-17.889 -3.024 0.409 2.524 11.533

Coefficients with approx. stand. error:
Estimate Std. Error

e0 -4.53 2.11
eMax 13.60 2.58
ed50 27.25 20.28

Residual standard error: 5.83
Degrees of freedom: 37

***************************************
Model selection criteria (AIC):
***************************************

emax
259.4512

Selected model: emax

***************************************
Estimated ED, p=0.5
***************************************

emax
25.8381

44


	Introduction
	Background
	Pharmacological Background

	Modeling and Data Simulation
	Mathematical Models
	Data Simulation

	Theory
	Multiple Comparison Procedure(MCP)
	Multiple Contrast Test(MCT)

	Modeling Procedure(Mod)
	MCPMod Method

	Methodology and Designed Experiments
	Methodology
	Design
	Analysis

	Designed Experiments
	Candidate Model Selection
	Dose levels selection and respective allocation ratio
	Optimal contrasts for the selected candidate models
	Sample size calculation


	Simulations and Results
	Evaluation of MCPMod for Pre-clinical Experiments
	Probability of selecting the true model as the best fit model and comparison of the estimated doses using the best fit model and the weighted average of all fitted models
	Toxicity detection

	Application: Design based on real data
	Discussion and Outlook
	References
	Supplementary material
	Simulated data for experiments
	Full results of experiments in section 5.1
	Historical data of previous study
	Full results after fitting historical data


