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Ground surface classification by stereo polarised image sensors

Jan Jürgen Eisenmenger Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Detecting where water hazards are on a road is a non-trivial task for a computer
or an autonomous vehicle. By introducing polarized imaging, advances in water
hazard detection have been made in recent years. However, most approaches utilize
retrofitted polarized cameras for use in an off-road environment. In this thesis, a
dedicated polarized imaging sensor, the IMX250MZR, is used in order to investigate
the feasibility of polarization based water hazard detection in an urban environment.
Stereo imaging was used in order to measure the distance to the detected hazards,
but failed due to the lack of features on the road surface. Results show that detection
works well when the camera is facing away from the sun, with poor results when
looking towards the sun, due to the different polarization in the sky.

Keywords: Computer, science, computer science, polarization, image processing,
water detection, project, thesis.
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1
Introduction

The distinction of different road surfaces is a frequent task for a human driver. It
is necessary to adjust one’s driving style to the conditions, like ice or water. The
task of detecting water or ice is especially hard for an autonomous vehicle [NMM17].

One possibility to detect reflective surfaces, such as water, is to rely on their polar-
izing properties. Polarization refers to the direction in which the electromagnetic
wave vibrates. This direction changes, depending on the reflection. Since polariza-
tion is not visible to the naked eye, we have to deploy polarized imaging in order to
measure it.
One way to achieve this is by placing a polarizing filter in front of a general purpose
camera. However, recent advancements in sensor technology resulted in an image
sensor, where four differently aligned polarizing filters have been placed on the sen-
sor chip itself, on a per pixel basis. This sensor, the IMX250MZR [Son18], provides
dedicated polarizing capabilities, which should result in higher quality imaging com-
pared to the retrofitted counterparts.
An investigation into the capabilities of the IMX250MZR in terms of water detection
should provide useful insight in both the sensor and water detection via polarized
imaging itself.

1.1 Background
Polarization has been used as a criterion for water detection before. Most of those
approaches generally measure polarization by using two or more cameras, each with
a differently aligned polarized filter placed in front of the lens.
For example, Bin Xie et al. used three cameras with retrofitted filters in order to
measure and calculate the Degree and Angle of Polarization for off-road water haz-
ard detection [Bin+07]. However, they do not take stereo distance measurements
into account and focus on an off-road environment. Additionally, their main focus
lies on a so called Similarity Degree. This metric appeared to be unusable in an
urban environment, which will be shown later in Subsection 3.3.3.
Yang et al. used a head-mounted stereo camera setup, with two retrofitted filters.
They rely on the Degree of Polarization for water hazard detection. However, they
only detect water right in front of the test subject and therefore with a very high
angle of incidence of 70◦ [Yan+17]. This results in a different polarization on the
water hazards compared to a low angle, as will be shown later.
Nguyen, Milford, and Mahony focused on detecting and tracking water hazard in an
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1. Introduction

3D environment, using two cameras in a stereo setup. They measure polarization
by deploying a 0◦ and 90◦ polarizing filter in front of either camera. Their focus lies
on the influence of the position of the sun on the polarization of the water hazards.
However, they use the polarization data to train a Gaussian Mixture Model for
the classification of water and non-water, rather than performing image processing
based on the polarization values [NMM17].
Shen et al. have also been investigating how the position of the sun influences po-
larization patterns for imaging processes. They focus on the detection of non-water
objects on water and not on a road surface.
Han et al. introduced a new dataset for water hazard detection, using polarized
images as the ground truth. Since the work in this thesis relies on the polarization
capabilities of the IMX250MZR, this dataset can not be used. The authors also
used Artificial Intelligence with a new type of deep network unit in order to detect
water hazards reliably [Han+18].
Most of the previous approaches rely on general purpose cameras that have been
retrofitted with polarization filters. This makes it so that each camera can only
measure the intensity of a single phase, therefore requiring multiple cameras in or-
der to produce a complete overview of the polarization.
The IMX250MZR has, to the knowledge of the author, not been used in the par-
ticular setting of water hazard detection. There have been surveys about its per-
formance, i.e. [RRN19]. They focus more on the technical aspects of the sensor
however.

There have also been approaches that did not factor in polarization at all. They
more closely rely on color and brightness values. For example, Yao, Xiang, and Liu
use machine learning and general image segmentation for water detection on gen-
eral purpose digital cameras. Their algorithm seems to focus more on larger areas
of water, like lakes and not smaller puddles on a road however [YXL09]. Addition-
ally, their results suggest that they are only able to detect water when it is directly
reflecting the sky.
Zhao et al. rely on the brightness and saturation difference between water reflecting
the sky and the surrounding terrain. They also take the low texture of water com-
pared to the surrounding areas into account [Zha+13].
Rankin, Matthies, and Bellutta also introduce water detection based on the same
cues. They additionally relate those values to the incidence angle of the camera to
the given water surface. The lower the incidence angle, the more the color on the
surface is influenced by the reflection. Therefore, this also relies on water completely
reflecting the sky [RMB11].
Another approach was given by Shao, Zhang, and Li. They project a horizontal line
of light on the ground, at different positions. Depending on how the line is visible
on the ground, they can tell where a water hazard is present on the horizontal line,
amongst other categories. This process works well even during the day, but requires
an appropriate emitter [SZL15].
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1. Introduction

1.2 Problem Domain and Motivation
Most of the previous approaches have one thing in common: They mainly work in
offroad environments, with the use case being an Unmanned Ground Vehicle (UGV).
A UGV needs to avoid deep puddles in order to not get stuck, making smaller, wet
surfaces not a large problem. In an urban environment, wet surfaces do matter,
since they influence the breaking distance for vehicles. This is important for an un-
manned vehicle in a traffic situation. Additionally, the ground surface differs from
an offroad environment, consisting of a more even and regular surface, thus making
the differentiation between water and non-water more difficult and interesting. The
urban environment also poses challenges in terms of polarization, since places with-
out direct sunlight are likely differently polarized.
Another aspect are the capabilities of the IMX250MZR. As previously mentioned,
most of the previous approaches that rely on polarization have made use of gen-
eral purpose cameras that have been retrofitted with polarizing filters. Applying
a dedicated imaging sensor to the area of water detection via polarization could
possibly produce better results than previously had been seen. For this, the actual
capabilities and accuracy of the IMX250MZR will need to be investigated.

1.3 Research Goal and Research Questions
This thesis aims to present an investigation into if and how the IMX250MZR can
be used for water detection using polarization as a cue, in an urban environment.
In order to achieve this, the following questions will be answered.

1. How accurate is the polarization data coming from the IMX250MZR?
2. How much does the position of the sun influence the polarization on the

ground?
3. Is it possible to use the IMX250MZR in a stereo setup for distance measure-

ments?
4. Can image processing be used to segment water hazards from the scene by

relying on polarization data?
5. What challenges does an urban environment provide?

The final goal is not to provide a system which can reliably detect water hazards
and track the distance, but rather show how and if one could use the IMX250MZR
in order to do so.

1.4 Limitations
This thesis restricts the detection of water hazards to use straightforwards image
processing, rather than relying on probabilistic models or machine learning.
Additionally, all reference images will be taken during clear skies in order to reduce
the variety of sky polarization.
Since the goal is investigate the feasibility of a water detection algorithm on the
IMX250MZR rather than a high performing system, the final algorithm will not be
compared to previous approaches. This is mostly motivated due to the difference in
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1. Introduction

environment, where an in-depth comparison can not be conducted along the same
base and ground truth. This does not only refer to the difference in ground surface,
either asphalt or dirt, but also the conditions in the sky. Most previous approaches
do not restrict themselves to particular weather conditions, unlike in this thesis.
The difference in camera also plays a role. Since the type of data that is coming
from the IMX250MZR and the previous setups with retrofitted filters differs, the
approaches are only partially comparable.

1.5 Structure of the Thesis
The thesis is structured as follows. Chapter 2 introduces the theoretical concepts
behind polarization and stereo imaging. Chapter 3 describes how those concepts can
be implemented based on the format of the IMX250MZR. Additionally, the proposed
algorithm for water hazard detection will be outlined as well as the experiments that
aided the creation. Chapter 4 evaluates the IMX250MZR based on the polarization
calculations that have been established in Chapter 3. Chapter 5 discusses the results
as produced by the algorithm as well as how the detection could be improved in the
future. Chapter 6 concludes the thesis by summarizing the results.
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2
Theory

This chapter will lay the theoretical foundations necessary for understanding how
polarized light can be used to detect water. Additionally, an introduction into 3D-
imaging via stereoscopic pictures is given.

2.1 Polarization
What we commonly refer to as light is but a small fraction of the whole range of
electromagnetic (EM) radiation. The only thing special about the part of the EM-
spectrum we call light is that human eyes can perceive it. There is no distinction
when it comes to physical properties. We will therefore refer to electromagnetic
radiation in general for the following section.

For our intents and purposes we can refer to electromagnetic radiation as oscillations
in the electric and magnetic field. They propagate in the form of a transverse
wave. This means that the electric and magnetic fields oscillate perpendicular to
the direction in which the wave spreads, see Figure 2.1 [Gol16].

electric field
magnetic field

Figure 2.1: Components of a transverse wave. Note that the electric and magnetic
field are perpendicular to each other.

For the human eye the relevant factors in sensing light are the wavelength and the
amplitude of the wave. The wavelength refers to the colour that is being perceived,
the amplitude to the intensity or brightness [Bin+07]. To describe the wave com-
pletely more parameters than these two are needed, one of them being polarization.
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2. Theory

2.1.1 Types of Polarization

In optics, Polarization refers to the direction in which the electric field vibrates
[Gol16]. The polarization of a wave is dependent on the direction of the electric field
vector [SM07]. The tip of the vector describes the current amplitude of the electric
field. The endpoint of the electric field vector describes a particular shape over time
which defines the form of polarization for that specific wave [Gol16].
The shape indicated is generally speaking an ellipse, a circle and a line can be seen
as special cases, which results in the three forms of polarization: Linear, circular
and elliptical [Gol16].
Any single electromagnetic wave is always linearly polarized. Although the wave
consists of the two transverse components, the electric and magnetic field wave, only
the electric wave is relevant for polarization. The endpoint of the electric field vector
oscillates in a straight line for a single wave, therefore, the wave is linearly polarized,
see Figure 2.2.

electric field vector

Figure 2.2: Vertically polarized wave.

By combining two different orthogonal waves or using a different reference frame, it
is possible to obtain different shapes. Adding the two electric field vectors of each
wave results in a new, combined electric field vector, describing the polarization of
the two waves as one. The waves have to share the same frequency since they would
interfere otherwise [RSC05].
In the simple case of both waves being in the same phase the result electric field
vector still oscillates in a linear fashion, see Figure 2.3. The particular angle of
the linear polarization is the result of the difference in amplitude between the two
component waves. This so called Angle of Polarization (AOP) is the angle between
a linearly polarized light wave and a reference plane [Zho+17].
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2. Theory

electric field vector

Figure 2.3: Linearly polarized wave, consisting of two transverse components.

If a phase shift is introduced between the two waves, the direction of the electric
field vector describes an ellipse, see Figure 2.4.

electric field vector

Figure 2.4: Elliptic polarization.

Depending on the size of the offset as well as the amplitudes of the different waves
the shape of ellipse changes.
The particular case of identical amplitudes and an offset of 90◦ (π2 ), is described as
circular polarization, see Figure 2.5.
In any case, the direction of the offset influences the handedness of the polarization.
As the wave propagates, it can either be left- or right-handed. A wave is right-
handed if the tip of the electric field vector describes a clockwise motion, with the
beam coming towards the observer [Gol16].
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2. Theory

90◦

electric field vector

Figure 2.5: Circular polarization.

The existence of polarized light implies unpolarized light as well. Unpolarized
light is not a form of polarization per se, since a wave will always have an electric field
vector and will consequently be polarized. Unpolarized light can only be observed
as a superposition of multiple waves, each having their own random direction of
polarization. It can also be described as light without a polarization structure. This
is generally the case for most natural or human made light sources. The particular
electromagnetic radiation features a variety of random phases and also polarizations
[LLP96].
From this point on, we will refer to polarized light as a collection of waves that share
the same polarization and not just a single wave.

2.1.2 Reflecting Light

Reflection itself can be split into two categories: Diffuse and specular reflection.
Diffuse reflection can be observed when light is reflected by a rough surface. The
light gets scattered in different directions, due to the irregular shape of the mate-
rial. On the other hand, specular reflection occurs when the light is reflected by
a smooth surface, like a mirror. The relative shape and angles of the incoming rays
are kept intact. For example, if the incoming rays are parallel to each other, the
reflected rays will be so as well. While the rest of this section holds true for both
types of reflection, we will generally be referring to specular reflection.

The reflection of light has different properties depending on the type or direction of
the polarization. In general, it is defined by two values: The angle of incidence and
the angle of refraction.
The angle of incidence θi is the angle between the incoming ray and the normal
vector n̂ of the respective reflecting surface, see Figure 2.6. On the other side, the
angle of refraction θr is the angle between the refracted ray and the inverted normal
vector. The ray, as well as the normal vector, lies on the plane of incidence. It is
defined as the plane which contains the incidence ray [Gol16].

8



2. Theory

n̂

ni

nr

θi

θr

Figure 2.6: Reflection of light with the relevant parameters.

The angle of refraction depends on the angle of incidence, as well as the refractive
indices ni and nr of the two mediums in question. They describe the speed of light
in the particular medium. The difference in speed causes the refraction and can
therefore be used to calculate the θi or θi from each other. Snell’s law describes
the relation between the angles and refractive indices as stated in Equation 2.1.

nisin(θi) = nrsin(θr) (2.1)
Light reflects and refracts differently based on the orientation of the polarization.
Considering the plane of incidence, there are two general cases regarding the orien-
tation of the polarization: s- and p-polarization.
In s-polarization, the orientation of the polarization is perpendicular to the plane
of incidence. It is therefore parallel to the surface as well. Using the Fresnel equa-
tions, we can calculate how much of the s-polarized wave’s original energy (Es) gets
reflected (Rs), see Equation 2.2a. Using Snell’s law, we can simplify the equation
to Equation 2.2b, which now only relies on the angles present and not the materials
themselves [Gol16].
A similar approach can be taken to calculate the amount of the wave that is trans-
mitted within the material (Ts), see Equation 2.3a. We can use Snell’s law here as
well, resulting in Equation 2.3b [Gol16].

Rs = n1cosθi − n2cosθr
n1cosθi + n2cosθr

Es (2.2a)

Rs = − sin(θi − θr)
sin(θi + θr)

Es (2.2b)

Ts = 2n1cosθi
n1cosθi + n2cosθr

Es (2.3a)

Ts = 2sinθrcosθi
sin(θi + θr)

Es (2.3b)

9



2. Theory

The energy of the incoming ray has to be equal to the sum of reflected, transmitted
and absorbed component, see Equation 2.4. For mirror-like surfaces, such as water,
the absorbed component is negligible.

E = R + T + A (2.4)
For p-polarized light, the electric field vector is parallel to the plane of incidence.
Again, using the Fresnel equations and Snell’s law, we can calculate the reflection
and transmission amplitudes.
With the values for θi and θr, as well as the energy of wave Ep, we can calculate
the reflection with and without the refractive indices, see Equation 2.5a and Equa-
tion 2.5b, respectively. The same goes for the transmission, see Equation 2.6a and
Equation 2.6b [Gol16].

Rp = n2cosθi − n1cosθr
n2cosθi + n1cosθr

Ep (2.5a)

Rp = tan(θi − θr)
tan(θi + θr)

Ep (2.5b)

Tp = 2n1cosθi
n1cosθi + n2cosθr

Ep (2.6a)

Tp = 2sinθrcosθi
sin(θi + θr)cos(θi − θr)

Ep (2.6b)

Equation 2.4 holds here as well.
It has to be mentioned that the Fresnel equations used here are simplified, since
we assume that both materials are non-magnetic [BW13]. This is generally the
case for the mediums that we are interested in, water and air. While the equations
only work for s- and p-polarization, there are more cases; waves can have elliptical
polarization or are oriented linearly at an angle in between s and p. This is not a
problem however, since we can decompose the polarization mathematically into the
respective amounts of s and p.
One special case which can be derived from the previously mentioned equations is
Brewster’s angle θB. In this case, the transmission of p-polarized light and the
reflection of s-polarized light are maximized. This means that the reflected waves
are completely polarized, parallel to the surface. Brewsters angle is defined as shown
in Equation 2.7a. This is due to the fact that this effect occurs when the sum of θi
and θr is 90◦, see Equation 2.7b [San65].

θB = arctan
(
n2

n1

)
(2.7a)

90◦ = θi + θr (2.7b)

In the case of Equation 2.5b, we can substitute Equation 2.7b and get Equation 2.8.

Rp =tan(θi − θr)
tan(90◦) Ep (2.8)

10



2. Theory

Since tan(90◦) is undefined, we get no value for the reflection of p-polarized light.
Using Equation 2.4, we can state that all of the p-polarized light gets transmitted
rather than reflected. Therefore, all the remaining reflected light can only be s-
polarized and is consequently linearly polarized [Sai+99].
Knowing how much s- and p-polarized light is reflected enables establishing the
metric Degree of Polarization (DOP), as defined in Equation 2.9 [Zho+17].

DOPr =
r2
s − r2

p

r2
s + r2

p

(2.9)

In the case of Brewster’s angle, we therefore get a DOPr value of 1, see Equation 2.10.

DOPrB =
r2
s − r2

p

r2
s + r2

p

= r2
s − 02

r2
s + 02 = r2

s

r2
s

= 1 (2.10)

The relation of the DOPr to the angle of incidence can be seen in Figure 2.7, for
the specific case of a water-air interface. One can see that the highest amount of
DOPr is reached at Brewster’s angle, which is at 53.1◦, while there is no polarization
beyond 90◦ [She+17].

0◦ 20◦ 40◦ 60◦ 80◦ 100◦0

0.2

0.4

0.6

0.8

1
θB

θi

D
O

P r

Figure 2.7: Degree of Polarization for the reflection at a water-air interface, de-
pending on the angle of incidence θi, assuming initially unpolarized light.

2.1.3 Stokes Parameters
One way to express polarization mathematically is to use the Stokes Parameters.
With four different values s0, s1, s2 and s3 one can completely describe polarization.
The first parameter, s0, describes the general intensity of the wave. s1 determines
the difference between the vertical and horizontal components, s2 for the diagonal
ones. Circular polarization is expressed in s3 [Li+14].
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2. Theory

2.1.4 Atmospheric Polarization
Figure 2.7 assumes unpolarized light, meaning that Ep is equal to Es. While this
is generally a good assumption for natural light, most light in nature is normally
partially polarized.
This seems contradictory to a previous statement, saying that light emitted by
natural sources is generally unpolarized. However, light is scattered in the upper
atmosphere due to molecules and aerosols which introduces a certain degree of po-
larization [Zho+17]. This effect is called Rayleigh scattering.
In general it states that when a light wave interacts with a molecule, it will re-
radiate the energy in such a way that the light that reaches the observer is (partially)
polarized.
In order to calculate the specific orientation, four values are needed: The zenith and
azimuth of the sun and the observed point. Note that the following description of
Rayleigh scattering assumes clear sky, since clouds change this behaviour [Gol16].
The azimuth ψ, as shown in Figure 2.8, states how far a point is away from the
reference point, generally true north. This means, for example, that south would be
at 180◦ and east at 90◦ if one were to choose north as the reference point. The zenith
is reached when the object is directly above the observer, meaning 90◦ above the
horizon. The zenith angle θ is therefore how far the object is away from the zenith.
Any value larger than 90◦ means that the object would be below the horizon.

θ

ψ

o

N

S

Figure 2.8: Azimuth ψ and zenith angle θ, from an observer to an observed point
o.

Using the azimuth for the sun ψs and the observed point ψo as well as the zenith
angle θs for the sun and θo for the observed point, one can calculate the scattering
angle γ, using Equation 2.11 [Zho+17].

cos γ = sin θs sin θo cos(ψo − ψs) + cos θs cos θo (2.11)
The scattering angle is the angular difference between the position of the sun and
the position of the observed object.
Using the value for γ, we can calculate the DOP, see Equation 2.12. Theoretically,
this value can reach 100%. However, a real world setting introduces additional
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2. Theory

atmospheric conditions that limit the DOP to around 77%, represented by the value
DOPmax.

DOP = DOPmax
sin2 γ

1 + cos2 γ
(2.12)

The equation shows that the highest DOP can be reached for a scattering angle of
90◦, while the lowest value is reached at 0◦ and 180◦.
With Equations 2.11 and 2.12 we can now calculate how high the degree of polar-
ization should be at a given position in the sky. Here, the relative azimuth angle
ψr is the shortest angular distance between ψo and ψs This is not the same as the
scattering angle. Figure 2.9 shows the theoretical DOP pattern in the sky. Note
that the max DOP here is 1.
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Figure 2.9: The DOP in the sky, for a given ψs of 0◦ and a fixed θo of 90◦ in
relation to a changing observer azimuth and solar zenith.

Additionally, we can also use the values for ψ and θ to calculate the AOP at that
particular position, see Equation 2.13 [Wan+14]. Here, the numerator represents
the p-polarized portion and the denominator the s-polarized part.

tan(AOP) = cos θs sin θo − sin θs cos θo cos(ψo − ψs)
− sin(ψo − ψs) sin θs

(2.13)

The theoretical sky polarization pattern can be seen in Figure 2.10.
We can see that the AOP changes sign as we pass the solar meridian. Note that while
the contrast at ±180◦ seems very high, 90◦ and −90◦ are basically interchangeable,
since we can only ever have angles in the range of [0, 180].
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Figure 2.10: The AOP in the sky, for a given ψs of 0◦ and θo of 90◦ in relation to
a changing observer azimuth and solar zenith.

2.1.5 Reflecting Polarized Sky Light
Knowing how water reflects polarized light as well as being able to calculate the
polarization of light at a specific point in the sky enables the calculation of the DOP
on a water surface.
Since one will generally face downwards towards a reflective surface, the zenith
of the observed point in the sky can be established by subtracting the angle of
incidence from 90◦. By using the angle of incidence with the Fresnel equations, we
can calculate how much of the incident s- and p-polarized waves get reflected, see
Equations 2.1, 2.2b and 2.5b. However, we need to establish Ep and Es as well,
since the sky light is not unpolarized.
The proportions of the incoming s- and p-waves ES

s and ES
p are a combination of

actually polarized light waves and unpolarized light waves.
We can calculate the actually polarized components by decomposing the AOP into
the respective amounts of s- and p-polarized waves Epol

s and Epol
p , see Equations 2.13

and 2.14.

Epol
s = − sin(ψo − ψs) sin θs

Epol
p = cos θs sin θo − sin θs cos θo cos(ψo − ψs)

(2.14)

The two values are then normalized, see Equation 2.15.

Epol
s = Epol

s

Epol
s + Epol

p

Epol
p =

Epol
p

Epol
s + Epol

p

(2.15)

The proportion of s- and p-polarized waves in unpolarized light is 50:50 due to the
random orientation of the waves. By calculating the DOP at the observed point, we
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know how much unpolarized light there is and set that into relation to the already
calculated linearly polarized light, see Equation 2.16.

Es = DOP ∗Epol
s + 1−DOP

2
Ep = DOP ∗Epol

p + 1−DOP
2

(2.16)

By then calculating the DOP as a fraction of s- and p-polarized light, the theoretical
value at the water surface is known, see Equation 2.9.

2.1.6 Polarizing Filters
In order to detect what kind of polarized light is occurring, one can deploy polar-
ization filters, also known as polarizers. The term polarizer is in so far fitting, as
that it converts unpolarized light into one particular orientation. While there are
different types of filters, we will only discuss wire-grid polarizers, since they are used
in the IMX250MZR.
Wire-grid polarizers are a form of polarizing filter that deploy nano-sized metal
wires. The wires are parallel to each other and conduct electricity [Hec13]. Broadly
speaking, the filter works by only allowing light in a particular orientation to pass.
Going back to s- and p-polarized components, we can refer to original wave as two
waves - one that moves perpendicular to the wires and the other one parallel.
P-polarized waves move along the wires, transferring their energy to the atoms in the
wire. Since they are parallel, there is enough time and distance for the intersecting
wave to actually transfer most of its energy. The wave then gets re-radiated by the
wire and interferes with the part of the original wave that passed through the wires,
thus removing most of the p-polarized wave [Hec13].
On the other hand, s-polarized waves have less impact with the grid, since their
direction is perpendicular to the wires. Less energy gets transferred and the wave
can propagate more or less unaltered through the grid. [Hec13].
This means that a wire-grid will only transmit radiation that is perpendicular to its
own orientation, as can be seen in Figure 2.11. There are other factors that influence
how much of the wave is getting transmitted, such as the incidence angle and how
much of the energy is transformed into heat in the wires of the grid itself [YK03].

Figure 2.11: Differently polarized waves arrive at a wire-gird polarizer. Only the
wave with orientation perpendicular to the grid is transmitted.
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2.2 Stereo Vision
In Stereo Vision, one can construct a three dimensional description of a scene by
observing said scene from different perspectives [MMK13]. Generally speaking, the
scene will be observed by two cameras, placed at slightly different positions [MV08].

2.2.1 Stereo Distance Measurement
In order to enable further processing, one needs to adhere to two particular restric-
tions [MV08]: The images need to be horizontally aligned and be taken at the same
instant.
We can refer to the pictures as Stereoscopic pictures. It is important that the
cameras share the same features, such a focal lengthf and view angle ϕ0 [MMK13].
In order to calculate the distance between the cameras and an object, additional
metrics are necessary.
First, the location of the object O in each image has to be established. For that,
the distance from the middle of the picture can be used, xl and xr respectively, see
Figure 2.12. The x values are given in pixels, x0 being the width of the image itself.

lens

sensor

x0

bl br

ϕ0

ϕl ϕr

O

d

xl xr

Figure 2.12: Parameters for estimating the distance to an object 0, as seen by two
cameras simultaneously.

The value b0 refers to the distance between the cameras. This value is generally
constant, since the cameras should not moved during use within the setup. Addi-
tionally, we refer to the distance between each cameras center view point and the
object itself as bl and br. We can use those values for basic triangulation in order to
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calculate the distance d, see Equation 2.17 [MMK13].

b0 = br + bl = d tanϕl + d tanϕr

d = b0

tanϕl + tanϕr
(2.17)

The viewing angle ϕ can be established using x, see Equation 2.18.

xl
x0
2

= tanϕl
tan ϕ0

2
−xr
x0
2

= tanϕr
tan ϕ0

2

(2.18)

Using Equations 2.17 and 2.18 we can calculate the distance d. In order to com-
pensate for alignments errors, we also introduce the alignment compensation term
φ, which adjusts the viewing angle, see Equation 2.19. This is necessary, since the
cameras will most likely not be aligned perfectly inhowever a real world setting.

d = b0x0

2 tan
(
ϕ0
2 + φ

)
(xr − xl) (2.19)

With the camera’s focal length f , we can express the distance equation in a simpler
way, see Equation 2.20.

d = fb0

(xr − xl)
(2.20)

By incrementing the distance b between the cameras, the long-range accuracy in-
creases [MV08]. In general, the accuracy of the distance measurement is higher
when the particular object is closer. This is due to the inverse relationship between
the pixel disparity and the distance of the object [Bag09].

2.2.2 General Disparity Estimation
This methods works well for a single target which has been annotated in both the
left and the right picture. The general problem is a more complex one: For any point
in the one image, the corresponding point in the other image has to be identified
or matched [HI16]. This is particularly hard since not all points may have a visible
counterpart in the other image, due to occlusion.
In order to discuss matching algorithms, it is necessary to establish certain terms.
We use two images Il and Ir. For any point P , pl and pr represent matching bright-
ness values or intensities in the respective image. In real world geometry, those
values lie on the same horizontal line e. Working under this assumption reduces
computational load, since the matching algorithm does not have to search the whole
image for similar values [HI16].
Generally speaking, this is not possible with regular images. The camera’s lens in-
troduces a certain amount of distortion, the two cameras might also not be aligned
perfectly. The process of reverting the distortion and a the alignment errors is called
rectification [Sze10].
Rectification works by rotating, distorting and translating the image based on a
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fixed ground truth object, such as a chessboard. By knowing the exact dimensions
and the fact that the lines between the corners on the board are straight in the real
world, a set of parameters intrinsic to the camera can be established. This set of pa-
rameters is referred to as the Q-Matrix. This matrix contains the estimated distance
between the two camera center points, as well as the supposed focal length. The
quality of the calibration process is measured in as the pixel reprojection error. It is
calculated by reprojecting a point in the image by using the previously established
parameters. Knowing where that value is in 3D space through the chessboard results
in an error value. The lower the value, the better the rectification parameters [HZ03].

We will assume rectified images from now on, in order to simplify the process of
stereo matching.
After having set up the images, the disparity can be calculated. One way to do so
is by using a cost model. The cost measures how much a pixel in the original image
would have to be moved in order to find it in the target image, at a position of
similar intensity. This calculation will then be executed for each pixel in question.
[HI16].
One frequently used algorithm is the Sum of Absolute Differences (SAD). Rather
than looking at each individual pixel, it calculates the cost within blocks. This
enables a more robust calculation, since outliers within a block are accommodated
for. The algorithm will calculate the absolute intensity difference between the block
in the left image w and the block in the right image. Equation 2.21 shows the cost
calculation for two particular blocks. The block in the left image is translated by d,
being the disparity. We only need to translate the blocks in the direction of x, due
to the fact that both blocks should lie on e.
The step from SAD to actual matching is an optimization problem. We try to
minimize the SAD value when matching pl on pr. The lowest SAD value then gives
us the disparity value for that particular block.

SAD(x, y, d) =
∑

(x,y)∈w
|Il(x, y)− Ir(x− d, y)| (2.21)

This approach assumes that all the pixels in the window have the same disparity
values. Depending on the window size, this can lead to fast, but fuzzy measure-
ments [LS11]. Having calculated the disparity map, we can calculate the real world
distances now with Equation 2.20. This is possible since we also know the focal
length of the camera as well as the distance between the two cameras due to the
previously established Q-matrix.
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Methods

This chapter contains the explanation of various elements needed for water detection.
It also touches on different experiments which were conducted in order to gather
information on how the polarization behaves in relation to the position of the sun
and the surrounding area. Finally, an algorithm for water detection is proposed.

3.1 Setup
The IMX250MZR is a polarization image sensor. Rather than having a polarizing
filter in front of the lens, as an accessory, this sensor features differently aligned
wire-grids on a per pixel basis [Son18]. This type of filtering is called filter on chip
(FOC) [RRN19].
The filters are aligned in four different orientations: 0, 45, 90 and 135◦. We will
refer to specific alignments as In with n ∈ {0, 45, 90, 135} respectively. They are
combined in a 2x2 matrix, see Figure 3.1. The data is recorded in grayscale.

I90 I45

I135 I0

Figure 3.1: 2x2 pixel grid with differently aligned grids as used on the
IMX250MZR.

If 0◦ linearly polarized light were to arrive at the pixel grid, each pixel in the grid
would register a different value, as can be seen in Table 3.1. Notice how I0 registers
no intensity, since the wire grid polarizers only transmit light that is polarized
perpendicular to the wires. The diagonal polarizers register only half of the original
intensity, since the wave can be broken down into 50 % s- and 50 % p-polarized light.
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Table 3.1: Theoretical intensities for four differently aligned polarizers for 0◦ lin-
early polarized light.

Polarizer Intensity (%)

I0 0 %
I45 50 %
I90 100 %
I135 50 %

In real life, additional constraints on the sensor inhibit this behavior, such as issues
in manufacturing.
For the purpose of this thesis, IMX250MZR has been fitted with a lens with a
focal length of 35mm. A higher focal length generally means that the camera has
a smaller field of view and a higher magnification, and vice versa.This specific focal
length provides a compromise between having a high enough resolution at a distance,
while also having information about closer objects.
This compromise has also been struck when it comes to the placement of the cameras
in a stereo setup. They have been mounted on a rod, about 51cm apart. This
provides reasonable disparity resolution at a distance, while still allowing for stereo
matching on closer distances.

3.2 Basic Components
While the IMX250MZR does provide 12 bit depth for the recorded images, some im-
age processing functions, as provided by OpenCV [Bra00], require the source image
to have a depth of 8 bit. Since the 12 bit depth image provides more information,
it will be used where possible. Otherwise, the image will be converted accordingly.

3.2.1 Preprocessing
As previously mentioned, the sensor does provide the four polarization directions
on a per-grid basis. However, it is more convenient and intuitive to work with a
different setup: Having the phases as a channel on a per-pixel basis. So rather than
having one grayscale value per pixel, we want to work with four different values per
pixel, each relating to a single polarizer. The sensor does not provide the data in
that way, so it is necessary to process it. In order to extract the different phases,
two approaches can taken.
First, one could handle the 2x2 grid as a single computational unit and simply
use each (sub-)pixel as input for the particular channel. This approach is easy
to implement and produces only a relatively small computational load. This also
reduces the resolution of the image by a factor of four, since we combine four pixels
into one. The reduced resolution of course also reduces the computational load for
further processing, since less pixels have to be handled. However, a high resolution
is beneficial for a more accurate distance measurement at a longer distance.
Therefore, it is necessary to enhance the image in such a way that we can keep
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the high resolution, but also provide the four channels. This can be achieved using
custom interpolation, as the second option.
For each pixel, we need to calculate the four phases using the surrounding pixels.
Due to the nature of the grid, we only need to look in a 3x3 grid around the pixel we
are currently handling. There, depending on the original orientation of the current
pixel, we can calculate the values for the other phases as well, see Figure 3.2.

Figure 3.2: Source pixels for interpolation per phase on the pixel marked in gray.
The light gray pixels on the side are part of the specific 2x2 grid, but not used for
the interpolation of the given pixel.

In order to interpolate the entire image, this interpolation grid will simply be ap-
plied to all the pixels in the image. Afterwards, each pixel holds the interpolated
polarization intensities in four distinct channels.

3.2.2 Distance Measurements
In order to provide a accurate distance measurements it is necessary to apply the
tools and algorithms mentioned previously in Section 2.2.
Due to the sensor’s pixel layout, neighboring pixel values do not represent the real
world brightness of that particular point. This quick change in value could be
detrimental to stereo matching algorithms, which rely on similar intensity levels in
order to match the pixels in the left image to the ones on the right.
It is therefore beneficial to use the previously mentioned interpolated image. For
ease of calculation, one can combine the four channels in to a single one in order to
provide a conventional gray scale image, see Figure 3.3.
In that figure, the images have been deliberately offset vertically by mounting the
cameras at a slight different angle, in order to demonstrate the effects of stereo
rectification.
Having processed the images, we now apply stereo calibration and rectification algo-
rithms in order to prepare the images for the matching step. An example of rectified
images can be seen in Figure 3.4. Notice how the translation and rotation of the
images created black margins and how the images are now aligned vertically.
With the images rectified, we can now apply Stereo matching. The matching step
only produces a sparse disparity map, since not all points in the image could be
matched. This causes artifacts, as can be seen in Figure 3.5. The gaps can be
filled by using a disparity filter, which applies the weighted least squares algorithm.
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Figure 3.3: Example images for the stereo calibration, with the chessboard present.

Figure 3.4: The images from Figure 3.3 after applying the rectification.

After applying said filter, the disparity map is now dense and can be used for further
distance calculation, see Figure 3.6. Notice how the filtered map is less fractured and
more even. It also deals better with occlusion, mostly noticeable when comparing
the values left of the person holding the chessboard.
The matching works reasonably well with the images shown: They are high in tex-
ture, which means that the matcher has enough features to match one point to
another. This can be seen in the clear edges in the disparity map in Figure 3.6.
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Figure 3.5: The unfiltered disparity
map for Figure 3.3

Figure 3.6: The filtered disparity
map for Figure 3.3

3.2.3 Calculating the Stokes Parameters
In order to calculate the AOP and DOP later, we need to establish the Stokes
parameters based on the intensity values from the different polarizers first. Since
it is only possible to detect partial linear polarization with the IMX250MZR due
the nature of the wire grid, we can not calculate s3. The other parameters can be
established as can be seen in Equation 3.1 [She+17]. The initial phase intensities
need to be normalized to the interval [0, 1] beforehand.

i0, i45, i90, i135 ∈ [0, . . . , 1]

s0 = i0 + i45 + i90 + i135

2
s1 = i0 − i90

s2 = i45 − i135

(3.1)

3.2.4 Calculating the Angle of Polarization
The angle of polarization is, as mentioned in Subsection 2.1.1, the angle between
the linearly polarized light wave and a reference plane. The reference plane in our
case is the horizontal plane through the two cameras.
We can use the Stokes parameters to calculate the AOP, see Equation 3.2 [HMD14].
The sgn function extracts the sign of the given number, either positive or negative.

s1 = 0


s2 > 0 : π/4
s2 = 0 : only relevant for circular polarization
s2 < 0 : 3π/4

χ = arctan s2

s1

s1 6= 0


sgn(χ) = sgn(s1) : χ

sgn(χ) = − ∧ sgn(s1) = + : χ− π/2
sgn(χ) = + ∧ sgn(s1) = − : χ+ π/2

(3.2)
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Equation 3.2 does produce values in the interval [−45◦, 135◦]. In order to reach the
more intuitive interval of [0, 180], 180 is added to any negative angle.

3.2.5 Calculating the Degree of Polarization
Similar to the AOP, we can calculate the DOP by using the Stokes parameters, see
Equation 3.3 [She+17].

DOP =
√
s12 + s22 + s32

s0
(3.3)

Since s3 is not defined in our case due to the wire grid polarizers on the IMX250MZR,
we can omit it. The result is the fraction of polarized light in relation to the total
intensity.

3.2.6 Solar Position Estimation
The position of the sun differs depending on the time of day, as well as the specific
day of the year. In order to use it as a cue for segmentation, the position needs to
be calculated depending on the location of the observer as well as the current time.
By using the position of the observer, given in latitude and longitude, as well as the
Coordinated Universal Time (UTC) at the desired point in time, one can calculate
the ψs and θs for the given parameters [Mee91].

3.2.7 Segmentation
The goal of segmentation is to identify regions with different features in an image.
Normally, the image will be pre-processed to enhance the image in such a way that
the requested features are more easily detectable. One of the most common way
to do so, is to apply a threshold to an image. Any pixel value that is below the
threshold will receive the value 0, the rest 1. That transforms the image into a
binary image.
Depending on the feature one wants to extract, this process needs to be repeated
multiple times with differently prepared images, adding or subtracting the resulting
images.
The underlying assumption for using segmentation in this thesis is that water is
differently polarized than the rest of the scene.

3.3 Experiments
With the basic tools for detecting polarized light in place, it is necessary to see how
they can be used in the real world in order to detect water hazards. For this, a
couple of experiments were conducted.
With the results from the experiments, we can compare the measured values with
the theoretical values, according to the Rayleigh sky polarization model. This also
gives a first insight into the influence of the sun on the polarization on the ground.
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Similar experiments have been conducted previously, for example [She+17]. They
used an inverted setup, meaning that they placed a non-reflective surface on water.
Additionally, they did not measure polarization by itself but the contrast between
said object and the water, depending on the position of the camera and the sun.
Subsection 3.3.3 differs in that regard since it aims at replicating previous results and
evaluating the feasibility of applying the given algorithm to an urban environment.

3.3.1 Influence of the Sun on the Degree of Polarization
As already mentioned in Subsection 2.1.4, the position of the sun influences the
polarization of the light for a particular observer, especially when looking at the
sky. In order to test how this phenomenon affects polarization on the ground, the
following experiment was conducted.
A bowl, filled with a dark liquid, in this case coffee, was placed on the ground, in
this case asphalt, in order to emulate a fixed water surface on the street. The dark
liquid was used in order to reduce the amount of internal reflection, more on this
later. The cameras were then focused on the liquid and used to take pictures of the
bowl from different angles, see Figure 3.7. The assumption is that the liquid will
reflect the sky at a certain position, which will influence the polarization. In the
test setup, ψs was around 220◦ and θs at 45◦. ψo will change from image to image,
whereas θo was kept at around 45◦. Note that all of the images were taken during
clear sky, in order to rely on the Rayleigh sky polarization model.

East West

South

North
camera

liquid

sun

Figure 3.7: Test setup for measuring the DOP in relation ψr.

First, the composition of the theoretical DOP at the surface of the liquid, DOPt
L

will be investigated. We can calculate the value by knowing the angle of incidence
as well as the polarization in the sky at the reflected point. The angle of incidence
θi here is the same as θo, due to the reflection. We also need to consider AOPsky,
the value of the AOP at the given point in the sky, as well as DOPsky.
The results can be seen in Table 3.2. One can see that DOPt

L increases with a
decrease in DOPsky. Additionally, AOPsky is generally closer to 90◦ along the solar
meridian than it is to the diagonals at 45◦ and 135◦. This means that proportion of
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s-polarized waves is higher in the unpolarized component rather than in the linearly
polarized one.
The behaviour of DOPt

L can be explained by comparing three cases, a relative angle
of 175◦, 130◦ and −5◦.
In the first case, the AOPsky of 86.47◦ consists of a large amount of p-polarized
light. This means that most of s-polarized component, which is the one that will be
reflected, is contributed by the unpolarized light. Since that value is relatively low
due to the high DOPsky, DOPt

L is low.
In the case of 130◦, we do have a similar DOPsky value. Yet here, the AOP is further
away from 90◦, which increases the proportion of the s-polarized wave significantly.
Combining that with a marginally lower DOPsky results in the large difference in
DOPt

L. Comparing the relative angles of −5◦ and 175◦, the AOPsky is basically
the same amount off 90◦, which makes the proportions of s- and p-polarized waves
very similar. Yet here, the DOPsky is extremely low, which means that the largest
contributor to the s-polarized portion is the unpolarized component, which has a
higher fraction of the s-polarized wave to begin with.

Table 3.2: Comparison between DOPsky, AOPsky and DOPt
L at a air-water inter-

face with θs and θo of 45◦. The relative azimuth angle ψr is the angle between ψs at
220◦ and ψo.

ψr (◦) DOPsky (%) AOPsky (◦) DOPt
L (%)

175 66.50 86.47 28.5
130 62.39 61.51 76.8
85 36.16 54.79 86.6
40 8.23 65.52 88.4
-5 0.13 93.53 89.9
-50 12.92 118.49 88.0
-95 43.57 125.21 85.8
-140 64.70 114.48 70.1

Knowing the theoretical value, we can compare it to the value that the camera
actually registered. We also introduce DOPr

L, the actual value of the DOP at the
surface of the liquid, as well as DOPS, the DOP value of the surrounding surface,
in this case asphalt. The results can be seen in Table 3.3.
In accordance with the theory, DOPr

L is generally higher when the observer is facing
the sun. This is also the case for DOPS, even though the values are significantly
lower.
However, DOPr

L is generally lower than DOPt
L. This might be caused by additional

atmospheric conditions or that the liquid was not perfectly flat due to wind. Also,
DOPr

L is higher than expected when facing away from the sun. This might also be
caused by the previously mentioned issues.

Remarks The experiment was first conducted with clear water in a white ceramic
bowl. In that particular case, the results showed the DOP of the bowl was lower
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Table 3.3: Comparison of the DOP in relation to ψr. ψs was 220◦ at the time of
measurement, θs and θo at 45◦

ψr (◦) DOPr
L (%) DOPS (%) DOPt

L(%)

175 33.1 3.6 28.5
130 24.2 4.0 76.8
85 29.9 10.0 86.6
40 54.9 19.4 88.4
-5 65.6 23.4 89.9
-50 41.9 16.3 88.0
-95 27.2 5.8 85.8
-140 27 4.4 70.1

than the one of the surrounding area. In theory, it should be higher due to the fact
that a larger fraction of s-polarized light is reflected than the fraction of p-polarized
light.
The lower DOP therefore means that more p-polarized light was registered on the
surface than expected. We assume that this is the case due to reflections within the
liquid itself.
Normally, water on the street is not as clear as water from the tap. The asphalt on
the street is also not as smooth or reflective as a white ceramic bowl. Therefore,
a darker liquid within a darker bowl was chosen in order to emulate a street in an
controlled environment.
Also, the incidence angle of 45◦ is higher than the angle if looking at a distance.
However, the change in value is not that important, since the experiments are focused
on the trends rather than actual values.

3.3.2 Influence of the Sun on the Angle of Polarization
The experiment from Subsection 3.3.1 was repeated, this time with a focus on the
AOP. For a more intuitive comparison of the AOP, the interval [0, 180] has been
transformed to the interval [−90, 90], meaning that an angle of 170◦ is now expressed
as −10◦. The results can be seen in Table 3.4.
One can see that AOPL is relatively close to 0, as was to be expected. The difference
between AOPL and AOPS appears to be largest when facing 90◦ away from the sun.
Along the solar meridian, the two values are quite close to each other and are likely
not usable for segmentation.

3.3.3 Similarity Degree
Bin Xie et al. deploy a so-called similarity degree S in order to detect water haz-
ards. It expresses how similar the angles in a particular window are compared to
the center pixel of the window. This works under the assumption that the light on
water surface is more similarly polarized compared to the rest of the scene.
For a particular pixel in the image at position (x, y), S is defined as in Equa-
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Table 3.4: Comparison of the AOP in relation to the solar azimuth and the observer
azimuth. The solar azimuth was 220◦ at the time of measurement, the zenith 45◦,
with a fixed observer zenith of 45◦.

ψr (◦) AOPL (◦) AOPS (◦)

175 -0.76 -2.87
130 1.56 -40.78
85 -2.43 -41.24
40 -5.26 -23.19
-5 -3.87 3.55
-50 17.47 22.16
-95 -6.95 37.03
-140 -3.85 -0.51

tion 3.4, with AOP(x, y) being the angle of polarization at the particular position
and AOP(x, y, w) being the average of the angle of polarization in a window of size
w with center point (x, y) [Bin+07].

S(x, y, w) = |AOP(x, y)− AOP(x, y, w)| (3.4)

A lower value denotes a more similar window. After establishing S for the entire
image, an adaptive threshold based on the min and max values of S is applied.
Applying this algorithm to test images taken in an urban environment resulted in
poor results. The similarity of the surrounding area was not low enough for it to not
be considered water in comparison with the actual water surface. It was possible to
identify vegetation on the side of the road however.
This means that the similarity degree, as implemented here, does not provide the
necessary insight into the difference between water and asphalt to be useful for water
detection in an urban environment.

3.4 Water Detection
With the different components in place, a combination of them is needed in order
to reliably recognize water surfaces. This section will show how the components can
be used in order to detect water hazards. Two example images will be used in order
to show the effect of the individual steps. They can be seen in Figure 3.8, with the
water hazard ground truth marked in red. We will be referring to the left image as
image_1 and the right one as image_2. image_1 was taken with ψr = −152◦ and
θs = 25◦, image_2 with ψr = 27◦ and θs = 25◦ as well. Just like all images, both
were taken during clear skies.
By choosing those particular angles, the camera is either facing towards or away
from the sun. The large difference in polarization is visible in the two images, which
is why they have been selected for this visualization. Note that an in-depth analysis
with images from additional angles will be given in Chapter 5.
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Figure 3.8: Original input images for the water detection algorithm. Water hazards
are marked in red.

3.4.1 Segmentation Based on the Degree of Polarization
As the experiments showed, the DOP can be used to segment water surfaces from
the rest of the scene. However, the experiments also showed that a single, general
purpose threshold would not work, since the values change depending on the relative
angle of the observer and the sun. The DOP seemed to depend on ψr, which will
therefore be used an indication for the threshold.
In order to establish the current relative angle between the camera and the sun, three
parameters are needed: First, the current location of the observer, the observer
azimuth of the camera as well as the current time of day. All of these can be
established by using a global navigation satellite system (GNSS), such as GPS.
Using the ψr, a threshold for the DOP can be chosen based on previous, empiric
results.
In Figure 3.9 one can see the DOP false-colour image of the original images.

Figure 3.9: DOP false colour images for the water detection algorithm. Water
hazards are marked in red. A higher pixel value corresponds to a higher DOP

Before the empirically determined threshold is applied, the image is blurred. This
decreases noise and results in a more coherent image after applying the threshold.
The resulting binary image can be seen in Figure 3.10.
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Figure 3.10: The DOP images from Figure 3.9 after applying a threshold and
noise-reducing post-processing.

Next, morphological transformations are applied to the image. Since this topic is
quite complex by itself, we recommend further reading, if interested, see [KP12].
The transformations result in clearer edges and less noise, which is beneficial for
further processing. Note that small true positive water areas are also removed in
this process, since their area is not enough to fulfill the not-noise requirement.
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3.4.2 Segmentation Based on the Angle of Polarization
In addition to the DOP, we can also use the AOP as a cue for segmentation. So
first, the AOP of the original images needs to be calculated. The result can be seen
in Figure 3.11

Figure 3.11: AOP false colour images for the water detection algorithm. Water
hazards are marked in red. Otherwise, the 8-bit pixel value correlates directly with
the AOP.

One can see that the AOP for the water hazards is generally closer to 0◦ than the
one of the surrounding area. Note that while the two values at the water surfaces
look different in either picture, it is because 175◦ is as close to 0◦ as 5◦ is. This also
explains the supposed noisy nature of the first image.
With the AOP images in place, we can now apply a threshold, as before. The results
of that, as well as additional pre-and post-processing can be seen in Figure 3.12.

Figure 3.12: The DOP images from Figure 3.9 after applying a threshold and
noise-reducing post-processing.

Note that this is not a general threshold application, where every value above a
the threshold is considered a true value, and the other ones as false. In this custom
threshold application, we consider all values around the threshold in a certain margin
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as a truth value. This is necessary due to the previously mentioned nature of the
angles, where 180◦ = 0◦.

3.4.3 Combining the Information
After applying the thresholds for both the DOP and the AOP, two different binary
images are available. From here, two approaches based on two different requirements
can be taken. First, the images can be combined via a conjunction. That means that
the final image will be true only where both of the original images were true as well.
This is particularly useful if one deems false positives worse than false negatives.
The system will detect less water hazards in general, but will be more confident.
The second option is to use a disjunction. Here, the final image will be true where
either of the original images were true as well. In this case, false negatives are deemed
worse than false positives. Here, the system will detect water more frequently, with
a lower confidence.
Here, the second approach will be taken. In the use case of an autonomous vehicle
driving along a road, we assume that it is less problematic for the vehicle to detect
a water hazard incorrectly compared to it not detecting the hazard at all. The
combined images can be seen in Figure 3.13.

Figure 3.13: Combined binary images from Figures 3.12 and 3.10. Water hazards
are marked in red.

In order to track and measure the distance to each individual hazard rather than a
general value, a contour algorithm is used. As the name suggests, it provides the
coordinates of the contour of the particular segment. In Figure 3.14 you can see
the result of applying the contour algorithm to the previous images. Additionally,
contours below a certain area size have been removed, in order to further reduce
noise.

Each individual contour has been colored differently for demonstration purposes.
Now, supposedly knowing each individual hazard, we can apply stereo matching
and calculate the distance to the point.
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Figure 3.14: Figure 3.13 after applying a contouring algorithm. Individual con-
tours have been colored randomly.

3.4.4 Measuring Distance
Now knowing where the water hazard candidates are, we can use the previously
mentioned stereo matching in order to compute the distance from the camera to
the given point. We use the original left and right images as provided by the two
cameras. They are undistorted using the previously established parameters and
then passed to the stereo matching algorithm. Figure 3.15 shows the results of said
algorithm, with pixel disparity being encoded in intensity.

Figure 3.15: The filtered disparity maps for Figure 3.8. A brighter value encodes
a higher pixel disparity.
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4
Results

This section aims to show the results of evaluating the individual components pre-
sented in Chapter 3 and thus the accuracy of the IMX250MZR.

4.1 Angle of Polarization
In order to evaluate whether the angle of polarization is measured and calculated
properly, the ground truth needs to be established.
For this, we need to establish an accurate source of linearly polarized light. This
can be achieved by projecting unpolarized light through a linearly polarized filter.
For our purposes, we use linearly polarized foil. The particular set of foil used offers
a polarization efficiency of 99.9% [3Dl20].
We can then emulate different angles of polarization by rotating the foil in front
of the light source. The camera is kept stationary so the reference frame does not
change. The entire setup can be seen in Figure 4.1.

foil
light source

camera

Figure 4.1: Test setup for measuring the Angle of Polarization. The foil is rotated
and polarizes the light that is emitted by the light source.

The results of the measurements can be seen in Table 4.1.

One can see that the calculated angles seem to be a little bit higher than the actual
angle, with the two biggest outliers being at 90◦ and 135◦ actual angle. However,
even with those two outliers, the precision of the AOP calculation is high, with an
average error of 0.492◦. Note that the emitted angles likely are not exactly as stated
here, due to manufacturing issues and the manual calibration of the setup itself.
However, even a larger error would not cause a big problem for the AOP part of the
algorithm either, since the thresholds were determined empirically in the first place.
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Table 4.1: Comparison of the actual angle of polarization with the calculated angle,
as per setup in Figure 4.1.

actual angle (◦) calculated angle (◦) abs. error (◦)

0 0.279 0.279
15 15.025 0.025
30 30.281 0.281
45 45.078 0.078
60 60.329 0.329
75 75.445 0.445
90 90.967 0.967
105 105.554 0.554
120 120.421 0.421
135 136.213 1.213
150 150.588 0.588
165 165.724 0.724

average error: 0.492

4.2 Degree of Polarization
The calculation of the DOP depends on the differences between the four phases that
are used. That means that the calculated DOP is not only going to depend on the
actual degree of polarized light, but also on the angle.
In order to examine how the AOP actually affects the DOP, we can reuse the setup
from the previous experiment, see Figure 4.1. The specific values can be seen in
Table A.1.
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Figure 4.2: measured DOP depending on emitted AOP, based on the setup in
Figure 4.1.

The results from the experiment validate the previous claim: The measured DOP
fluctuates, depending on the AOP. While the DOP should be 99.9% in theory, we
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only reach 92% in this experiment. This could also be due to environmental lighting
conditions, where a higher DOP might be present than expected, which in turn will
reduce the DOP after passing through the foil, depending on the orientation.
Previous research has also found that the diagonal polarizers on the IMX250MZR
have a smaller difference between min- and max value (Imin, Imax) than their hori-
zontal/vertical counterparts [RRN19]. However, the results here indicate otherwise.
At 45◦ and 135◦ incoming angle, the diagonal polarizers are at Imin and Imax, re-
spectively, the other polarizer pair at Imin+Imax

2 .
In that case, the difference between Imax and Imin of the diagonal polarizers deter-
mines the DOP. A larger contrast equals a larger DOP, see Equation 3.3. According
to the results here, the larger contrast is therefore present on the diagonal polarizers,
not the horizontal/vertical ones. This is visible by the clear peaks of the DOP at 45
and 135◦.
However, Rebhan, Rosenberger, and Notni used a pre-production model of the
IMX250MZR and only exposed the sensor to a specific wavelength. This means
that either the characteristics of the sensor changed since then or that the sensor
behaves differently at a larger spectrum of wavelengths.
In any case, these values do not cause an issue for the water detection, since the
threshold are established empirically, as previously mentioned.

4.3 Distance Measurement
The accuracy of the distance measurement via stereoscopic imaging can be estab-
lished by taking images, calculating the distance to a given target and then com-
paring said distance with a manually established one.
Another metric that is to be considered is the reprojection error. It states how well
the intrinsic and extrinsic camera parameters like focal length and baseline between
the cameras have been calibrated. We can compare the real world values to the
calculated ones to see whether the calibration generally worked. It is still favourable
to actually calculate those values rather than entering them manually, since they
are of generally higher accuracy than manually made measurements.
Table 4.2 shows the real world values compared to the ones established by the cali-
bration. The focal length has been taken from the manufacturer, see [VS 13]. Note
that this value might differ slightly due to issues during the production of the lens.

Table 4.2: Comparison between calculated and real world values for baseline and
focal length after calibration.

baseline focal length
calculated 51.21 cm 35.45 mm
real world 51.2 cm 35.1 mm

We can see that the values do not align perfectly, but are reasonably close to each
other. Taking a look at the previously mentioned reprojection error, we reach a
good value of 0.335. This means that the necessary intrinsic and extrinsic parame-
ters have been setup well. In order to calculate the distance, we also need the pixel
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Figure 4.3: The left input image
used for the disparity estimation in
Figure 4.4

Figure 4.4: The filtered disparity
map for Figure 4.3. A brighter value
indicates a higher disparity value.

disparity value, which is established via stereo matching.
Recalling from earlier in Section 2.2, stereo matching works by comparing the pixel
values in the left and right image and then returning the distance in pixel between
pixels of similar intensity. To know which pixel actually corresponds which, a tex-
tured environment is favourable. Having more distinct pixels enables the matcher to
more precisely tell which pixels belong together and thus results in a more detailed
and accurate disparity map.
We can see this behaviour in Figures 4.3 and 4.4.
The areas in the back contain more distinct features and have more texture than
the asphalt in the front. This results in a uniform, and thus bad, disparity map for
the the asphalt, whereas the car in the back can clearly be distinguished from the
rest.
Ignoring this fact and just taking a look at the performance of the stereo matcher
on a high-feature area such as the car in the back, we can see that the calculation
actually works pretty well. Applying the previously established baseline, focal length
and now the pixel disparity to Equation 2.19, we can calculate a distance of 32.7m
from the camera to the back of the car. This estimated distance is very close to
the actual real world distance of ca. 33.2m. The small difference shows that the
distance estimation and the stereo matching are working properly, if supplied with
enough features.
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This chapter discusses the results of the algorithm and methods presented in Chapter
3. Both example images produced quite different, thus inconclusive, results, which
makes an investigation into the causes necessary.

5.1 Setup
In order to investigate and explain the results of the example images as shown in
the previous section, a dataset of images was established. image_1 and image_2 are
part of said dataset.
For this, four different values for ψo were used, based on the available environment.
Then, images were taken at these angles at three different times of day (10:00, 14:00
and 18:00 CEST) in order to produce different solar azimuths. This resulted in
a total of 12 images, each with a distinct ψr. The specific values can be seen in
Table A.2. In order to analyze the water detection, we will categorize the possible
surface conditions as in Table 5.1

Table 5.1: Surface condition categories.

is water category description

true
wet road A piece of wet road, without a puddle
puddle (sky) A puddle reflecting the sky
puddle (non-sky) A puddle not reflecting the sky

false
obstacle Any reflective non-water surface
shadow Non-wet road in the shadow
road Non-wet road not in the shadow

For each image, the DOP and AOP values have been manually extracted, as an
average of multiple positions in the scene.

5.2 Degree of Polarization
The previous experiments showed that the DOP can be used as a cue for segmen-
tation. However, in the case of image_2, applying the threshold produced mixed
results. Parts of the water surface were below the threshold, whereas parts of the
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asphalt were above it. Additionally, shadows proved to result in different DOP val-
ues than the surrounding background.

5.2.1 Differences in Water Surfaces
First, we will compare the different water surfaces in order to analyze why certain
parts of the water surfaces were below the threshold, see Figure 5.1.
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Figure 5.1: The DOP of the three different water categories at a given ψr.

The graph shows that puddle (non-sky), generally speaking, provides the lowest
value out of the three. The value does not seem to change much depending on ψs
neither. Since there is no direct impact by the light from the sky, it shouldn’t have
a huge impact either. This is in accordance with previous research, which came to
the conclusion that water is less polarized if it does not reflect the sky [Bin+07].
In the case of puddle (sky), we can see that the DOP roughly follows the sky
polarization pattern. There, the DOP is highest at ±90◦ from the sun, which can
be observed here as well. The pattern is also symmetrical along the solar meridian.
The DOP value for wet asphalt changes quite drastically depending on the relative
angle. With a positive ψr, the DOP is notably higher compared to the negative
counterpart. This suggests that the DOP on a rough surface such as asphalt is more
dependent on the AOP in the sky compared to the reflective counterparts. While
the sky DOP is mirrored along the solar meridian, the AOP is not. However, the
DOP is generally still higher than the one for puddle (non-sky).
This does partially explain why on image_2, the puddle in the foreground is only
detected in the front part, where the road is wet. In the particular image, the DOP
value for both types of puddle is lower than the one for wet road.

5.2.2 Differences Between Water and Non-Water
Besides the missing detection of the some water surfaces in image_2, a lot of the
road is detected as well. In order to investigate this, we will have to compare the
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DOP of the road with the one for the water categories. This can be achieved by
calculating the contrast between the values.
A low contrast indicates a smaller difference between the value, thus a smaller
window for a threshold value to properly segment both categories from each other.
This also suggests worse detection quality, caused again by the window for the
threshold. Contrast is calculated as in Equation 5.1 [Mic27].

c = Imax − Imin
Imax + Imin

(5.1)

For this, the wet asphalt and puddle (sky) have been merged into a single category.
Puddle (non-sky) will not be considered here, since its DOP proved to be too low
to be usable. The calculated contrast can be seen in Figure 5.2.
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Figure 5.2: The contrast between the DOP of the road and the average DOP of
puddle(sky) and wet road.

As the the results from image_1 and image_2 showed, the quality of detection was
lowest when facing the sun. This correlates with a low ψr, which also has the lowest
contrast value. One can see that the contrast is lowest with a low ψr. This does
support the previous observation. We can also still see the higher contrast is higher
with positive ψr.
Taking a closer look at just the non-water data in Figure 5.3, we can see that the
DOP value for the road is higher with a lower ψr. While this follows the same
pattern as the DOP for the water data, the DOP is much lower when facing away
from the sun, therefore increasing the contrast and improving detection.
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Figure 5.3: The DOP of the three different non-water categories at a given ψr.

The graph also shows that the value for the shadow follows the sky polarization
pattern, being highest at ±90◦ away from the sun. This is similar to the pattern of
puddle (non-sky), where the impacting light is also highly unpolarized. Due to the
rough nature of the road surface, it reflects more area in the sky, which likely results
in the observed pattern. The values from the road and the shadow are relatively
close though, the only difference being when the camera is facing the sun.
As for the road value, it is unclear what causes the peak at ψr = 0◦.
The value for general obstacles, just as car windows or letterboxes is extremely high.
In fact, it is much higher than even the highest DOP for water surfaces. So in order
to inhibit the detection of those obstacles, an additional inverted threshold will need
to be applied to the DOP image. Since the DOP values for the obstacles are so high,
there is little chance to mistakenly remove actual water surfaces from the image. It
has to be noted that the values for the obstacle are taken from different surfaces, the
values therefore only provides a general suggestion and not a conclusive statement
It has to be noted that all of the values used for these graphs are only mean of mul-
tiple locations within the image itself. There are vast differences in DOP, especially
when it comes to different types of asphalt. In just a single image, the DOP of the
road ranges from 22% up to 45.3%, for example. This inhibits choosing a proper
threshold as well.

5.3 Angle of Polarization
Similar to the DOP, previous experiments have shown that the difference in AOP of a
water surface compared to the surrounding asphalt is high enough for segmentation,
mostly when 90◦ away from the sun.
The difference in AOP of the different water surfaces was negligible. They will
therefore be combined into a single category. Additionally, the values for obstacles
were very different from the rest of the scene and will therefore be omitted here as
well.
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Taking a closer look at image_2, we can see that the detected regions are the actual
water surface and partially road in shadow. We can investigate this behaviour by
comparing the different AOP values, see Figure 5.4. Here, we will again be referring
to the interval of [−90, 90] for the AOP for a more intuitive visualization.

−150−100 −50 0 50 100 150

−40

−20

0

20

40

ψr

A
O

P

wet
road
shadow

Figure 5.4: The AOP of the water, shadow and road at a given ψr.

The graph shows that the largest deviations from 0◦ are when facing 90◦ away from
the sun. This is also the same pattern as previously observed during the experiments
in Section 3.3. Comparing the AOP values on the ground with the ones in the sky
shows that a positive AOP in sky results in a negative value on the ground, and
vice versa.

Surprisingly, the AOP for shadow appears to be closer to 0◦ than the AOP for water.
This might be attributed to the fact that there is no direct sunlight, which increases
the amount of incoming unpolarized light. The highly unpolarized light therefore
appears to cause a lower AOP than the more polarized counterpart. In areas with a
high DOP in the sky, ±90◦ from the sun, the AOP is higher as well. The the closer
the DOP gets to 0, so does the AOP on the ground. This applies to the wet surfaces
as well. While the reflection is more pronounced due to the specular nature of the
surface compared to the shadow, the larger amount of polarized light still amounts
in a larger AOP value.

Taking a closer look at the AOP of the road, it seems like the value is offset by 90◦
from the sky polarization pattern, see Figure 5.5. This means that an sky AOP of
60◦ results in a surface value of −30◦ and so on. This is probably caused by the
reflection itself, but could not be verified.
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Figure 5.5: Comparison between the AOP for road and the AOP of the sky, offset
by 90◦.

Figure 5.6 shows the contrast between the AOP of the road and the AOP of a water
surface.
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Figure 5.6: The contrast between the AOP of the road and the average AOP of a
water surface.

The contrast is overall really low, which explains the mixed results in image_2.
The highest contrast appears at ψr = −157, which explains the good detection in
image_1. The generally very low contrast seems to indicate the AOP is a worse
metric than the DOP. However, the deviation of values within the same category
is much lower compared to the DOP. Where the DOP would deviate from 22% up
to 45.3% on the road, as previously mentioned, the AOP in the same image only
deviates from 7.3◦ to 13◦ in the same category. The lower variance should allow for
a more robust threshold.

44



5. Discussion

5.4 Contoured Areas
After applying the contouring algorithm, each individual hazard should be identified.
Ignoring the obstacles in image_1, this worked really well and provided the outlines
of two out of the three hazards. The shape of the contour followed the ground
truth reasonably well. Only smaller sections of the water hazard were ignored, due
to the kernel size during the morphological transformations. This is also likely the
cause for ignoring the third puddle. In the DOP image, see Figure 3.9, is is clearly
visible. Only after applying the threshold and the morphological transformations,
it disappears.
On the other hand, in image_2, a lot of false positive detections are present. While
2 out of the 3 areas have at least some form of detected segment within them, the
general shape does not fit the ground truth. This, combined with the amount of
false positives makes the results for this image unusable.

5.5 Distance Measurement
The results from the stereo matching step proved to be unsatisfying for when it
comes to the actual road surface. As already mentioned in Section 4.3, this is likely
due to the low amount of distinct features on the asphalt.
This is caused by the distance from the camera to the road surface itself, thus mak-
ing the actual features appear smaller and less clear. This effect is increased in areas
that are not in focus of the camera, thus resulting in an even smoother looking road
surface.
One way to combat this is to not rely on the original image itself, but rather take
the final mask of the water detection algorithm as input. This is favourable since
we only want to measure the distance to these points anyways. Since the mask is
a binary image it has very clear edges, which are beneficial to the stereo matching
step. However, being able to use this binary image also requires both masks from
the left and right image to be identical or very similar at least. If the outline of the
water hazard on either camera differs greatly from the other one, then no proper
matching can take place.
This approach to stereo matching was implemented, but also produced unsatisfac-
tory results, due to the poor nature of the detected themselves, as has been seen
previously.

5.6 Additional Remarks
Most of the algorithm and explanations in the previous sections have only relied on
a small amount of parameters. Only the azimuth of the sun and the observer have
been taken into account when it comes to environmental parameters. These are only
a fraction of the large parameter space that is the lighting in an outdoor scene.
For example, the surface of a puddle is not perfectly flat but influenced by wind
or vibrations on the ground. This impacts reflection and therefore the AOP and
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DOP values. In terms of reflection, the internal reflection within a puddle and the
resulting change in polarization has not been discussed neither. Additionally, all of
the data that has been collected and evaluated throughout the run of this thesis has
purposefully been taken only during clear skies.
Most of these omissions and decisions have been taken in an effort to reduce com-
plexity, some simply due to missing environmental data. For example, knowing the
geometry of the road would enable the estimation of incidence angles. An additional
factor for the road is the type of asphalt. For example, freshly laid asphalt appears
to be more reflective than older asphalt, which could impede detection rates as well.
It could also be possible to remove vegetation at the side of the road by deploying
the previously mentioned similarity degree. Since there were no occurrences of false
positives due to the vegetation, this will likely not result in better detection rates.
There are more possibilities in order to increase the amount of data that is available
to the system, which in turn could increase the detection quality. However, each
increase in data results in an increase in complexity as well. Gathering this data
can be both labour and cost intensive as well.
This increase in information does not change that fact that the contrast in both
DOP and AOP between water and non-water surfaces remains low when facing the
sun. This might not be the case when the sky is overcast though. This would
partially eliminate the sky polarization and thus remove some of the implications of
reflecting polarized light, as previously discussed.
An additional way to combat the effect of sky polarization would be to rely on a
distributed system. In the case of two vehicles driving towards each other, one could
detect water reliably. Sharing that information between the vehicles could result in
a more robust system.
More sensors are likely not able to overcome the issues with polarization when facing
the sun. They have to be used and evaluated independently of the polarization in
order to improve detection rates.
General improvements to the detection quality could be gained by relying more on
general image processing. For example, a partial shadow could likely be excluded
by ignoring areas below a certain general intensity value. Also, the non-polarization
based approaches as shown in Section 1.1 could be combined with the polarization
data that has been gathered and produce a more robust system.
Nevertheless, the issues in detection arise from the environment itself and not the
IMX250MZR. As the evaluation has shown, the polarization data is captured rel-
atively precisely. Having four differently aligned polarizing filters within the same
camera rather than multiple cameras with external filters also enables a more robust
stereo matching. The pixel values in either camera should be the same, whereas they
are not in the other setup, by design.
The time in order to compute one set of pictures is relatively high. It takes around
four seconds for a pair of images to be processed in terms of polarization and also
applying the stereo matching step. This could be improved greatly by removing the
stereo matching step, which has been found to be working poorly. As a consequence
of the removal, the resolution of the images can also be reduced. The main argu-
ment for a high resolution was the better precision for the stereo matching at longer
distances. With this out of the way, a lower resolution results in less pixels to be
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considered and therefore faster computation overall. The calculation is also done on
a CPU, with little parallelization. Moving parts of the calculation to a dedicated
GPU as well as optimizing the code in general could reduce the time further.

A comparison against previous approaches has been omitted due to the poor de-
tection quality when facing the sun. It was never to the goal to produce a reliable
system which would work better than previous ones, but rather only rely on the
polarization cues that the IMX250MZR provides.
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Conclusion

In this thesis, the detection of water hazards by deploying a dedicated polarization
image sensor was investigated in an urban environment.

The accuracy or the IMX250MZR has been evaluated in terms of AOP and DOP.
Comparing the measured value with the emitted AOP showed a low average error of
0.492◦. The comparison of the DOP values showed that there is a small difference in
transmittance ratio between the horizontal/vertical and diagonal filters, confirming
the results of previous work in this area. The DOP values were close to the supposed
real world values, yet a bit lower, which is likely attributed to the previously men-
tioned transmittance ratios. These two factors combined state that the data coming
from the IMX250MZR is quite accurate and can be used to measure polarization
precisely.
Additional experiments in regard to the influence of the sun on the polarization on
the ground were conducted. Depending on the ψr, the polarization on the ground
differed greatly, as was to be expected in accordance to the Rayleigh sky model.
The experiments were conducted in an controlled environment, which allowed to
calculate the theoretical DOP value on the ground. While the experimental values
were in line with the theoretical ones, they were lower than expected. This is likely
caused by the simplified environmental model that was used, making an accurate
prediction not possible.
Using the IMX250MZR in a stereo setup proved to be difficult. This is not caused
by the sensor itself, but rather the urban environment. The stereo matching step
provided poor results, due to the low amount of features on the asphalt. More
highly textured regions provided accurate disparity and thus distance measurement
results. This made measuring the distance to detected water hazard on the road
surface unfeasible with the current stereo matching algorithm.
The quality of detecting said water hazard depends greatly on ψr. This dependency
has been identified as being the contrast between water and non-water surface val-
ues. A high contrast enables a more accurate threshold for separating water and
non-water. Low contrast values were generally found when facing the sun, high
values when facing away. This means that segmenting water hazard via image pro-
cessing does provide promising results, but only when the camera is facing away
from the sun. However, the poor detection quality when facing the sun results in
an overall unreliable system.
The urban environment provided additional challenges compared to an outdoor en-
vironment. The presence of shadows and man-made reflective surfaces made the
distinction between water and non-water more difficult, due to the difference in po-
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larization. Also, as previously mentioned, the relatively smooth asphalt proved to
be a large obstacle for the stereo matching algorithm.

In conclusion, the IMX250MZR is an accurate source of polarization data. However,
a more precise model of the environment in terms of polarization is necessary in
order to be able to accurately segment water hazards from non-water surfaces, when
solely relying on image processing. More sophisticated approaches in terms of stereo
matching might also allow for the accurate measurement of distances on the road
surface.
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Table A.1: Comparison of the actual angle of polarization with the calculated
angle, as per setup in Figure 4.1.

AOP (◦) measured DOP (%)

0 90.880
15 91.141
30 91.439
45 91.723
60 91.259
75 90.577
90 89.813
105 90.785
120 91.969
135 92.352
150 92.020
165 91.163

mean: 91.260
standard deviation: 0.705
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Table A.2: Combination of observer and solar azimuth angles for the investigation
of DOP and AOP.

ψo (◦) ψs (◦) ψr (◦)

62 118 56
62 197 135
62 269 -153
152 120 -32
152 199 47
152 269 117
242 117 -125
242 196 -46
242 269 27
332 119 147
332 198 -134
332 269 -63
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