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Purpose: The aim of this proof-of-concept study was to assess the diagnostic value 
of texture analysis (TA) based on conventional balanced steady-state-free-
precession (bSSFP), late gadolinium enhancement (LGE) and T2-weighted 
cardiac magnetic resonance imaging (CMRI) in patients with clinically 
suspected myocarditis. 
 

Method: A retrospective cohort study was performed based on 30 patients  who 
underwent a comprehensive CMRI due to clinically suspected  myocarditis 
between 2013 and 2018 at the Sahlgrenska University Hospital: 10 patients 
with clinical signs and positive myocardial biomarkers (Troponin T, 
indicating myocardial injury)  as well as positive CMRI findings according to 
Lake Louise Criteria (LLC; group 1), 10 patients with clinical signs and 
positive myocardial biomarkers but negative CMRI findings according to 
LLC (group 2), and 10 patients with clinical signs but both negative 
myocardial biomarkers as well as CMRI findings according to LLC (control 
group). TA was performed on regions-of-interest, encompassing the left 
ventricle, on short axis bSSFP, LGE and T2-weighted images using a freely 
available software package. Promising features were selected to assess 
their diagnostic potential. 
 

Result: 
 
 
 

The differentiation between group 1 and the control group was possible 
with the help of three texture features based on bSSFP images (Variance: 
p = 0.004, Gradient Mean: p < 0.001, and Sum Average: p < 0.001), four 
texture features based on LGE images (Variance: p < 0.001, Skewness: p = 
0.004, Gradient Mean: p < 0.001, and Sum Average: p < 0.001) and two 
texture features based on T2-weighted images (Skewness:  p < 0.001 and 
Sum Average: p = 0.01). 
 

Conclusion: Our results show that TA is feasible based on conventional bSSFP, LGE and 
T2-weighted CMRI enabling automated detection of myocarditis in patients 
with initial clinical suspicion, emphasizing the value of bSSFP imaging as a 
promising non-contrast tissue characterization technique.  
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1 Background 

Myocarditis is a common inflammatory disease of the myocardium [1,2]. The diagnosis remains 
challenging due to the large spectrum of underlying etiologies and varying clinical presentation. The 
inflammation is mainly caused by viral infections, but can also be induced by bacterial, fungal and 
parasitic infections amongst other factors. Other non-infectious causes have been identified, including 
drugs, radiation and chemicals. The symptoms of the disease are highly variable and range from 
unspecific, such as fatigue, to common cardiac symptoms like chest pain or arrhythmias. Therefore, 
myocarditis may clinically mimic other cardiac diseases. In early stages of the disease, known as acute 
myocarditis, it usually resolves spontaneously but can rarely even cause acute heart failure or life-
threatening arrhythmias/sudden cardiac death. Sometimes, however, it may develop into a chronic 
condition, resulting in end-stage heart disease with a dilated cardiomyopathy. Studies have reported 
that myocarditis is shown to be responsible for 6-22 % of all cases of sudden cardiac death in young 
healthy adults. Thus, it is important to find better markers and methods to improve the diagnosis, and 
hence, the prognosis of myocarditis.  

In recent years, cardiovascular magnetic resonance imaging (CMRI) has been recommended for the 
diagnosis of myocardial tissue diseases, such as myocarditis [3]. Several studies have shown high 
diagnostic accuracy for CMRI [3], using endomyocardial biopsy (EMB) as reference standard [1]. The 
overall goal is to replace EMB completely with the non-invasive CMRI method. 

The CMRI examination includes different types of imaging techniques that provides functional and 
morphological, but also tissue characterization information, where pathology as edema, hyperemia, 
capillary leakage, necrosis and fibrosis associated with myocarditis can be detected [3]. The CMRI 
diagnosis of myocarditis is currently based on the validated Lake Louise criteria (LLC) where two out of 
the three following criteria should be fulfilled: 1) visualization of edema on T2-weighted imaging, 2) 
capillary leak/hyperemia on early gadolinium-enhanced (EGE) T1-weighted imaging, and 3) 
necrosis/fibrosis on late gadolinium-enhanced (LGE) T1-weighted imaging, based on delayed acquired 
images.  

Acute necrosis and myocardial scar, i.e. fibrosis, are detected with LGE imaging, due to the 
accumulated contrast agent and delayed washout from the myocardial tissue [4]. This results in an 
increase in extracellular volume due to edema or when necrotic cells are replaced by fibrotic tissue [3]. 
The increased contrast agent in the injured regions will lead to a high signal on delayed images, 
acquired with an inversion recovery gradient echo sequence using an inversion time that nulls the 
signal from normal myocardium [4]. In myocarditis, the myocardial injury appears in the mid wall 
and/or subepicardium (Figure 1). Hence, the location of the injury in LGE images distinguishes the 
disease from ischemic causes. Edema itself can be visualized directly with T2-weighted images as a 
bright signal surrounded by darker normal myocardium. 

Balanced steady-state-free-precession (bSSFP) is a pulse sequence that generates T2/T1-weighted 
images [5]. As such, the images are produced with high signal-to-noise-ratio and the contrast between 
blood and myocardial tissue is high. Moreover, the technique acquires multiple images over all phases 
of the cardiac cycle in just one breath-hold and enable robust estimation of cardiac function such as 
the stroke volume. As the images display T2/T1-weighted contrast, however, they should have the 
feasibility to offer not only functional information, but also visualization of myocardial injury/scar 
and/or inflammation. 

The diagnosis of myocarditis is based on visual examination of images taken with qualitative 
techniques, i.e. LGE and T2-weighted imaging. However, the images may contain pathological 
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information that is not visible to the naked eye. Recently, texture analysis (TA) has emerged as a 
promising CMRI method to quantitatively characterize myocardial tissue and improve the diagnosis of 
various myocardial diseases. With TA, features are extracted from regions of interests (ROIs) and 
computed with data-characterization algorithms, based on the distribution of pixels and their grey-
level values in an image [6]. Baeßler et al. have shown excellent accuracy of TA on non-contrast T1-
weighted images in patients with hypertrophic cardiomyopathy [7]. Moreover, Baeßler et al. have 
demonstrated high sensitivity and specificity for the diagnosis of acute myocarditis applying TA on T2-
mapping CMRI [8]. Hence, with the use of TA, subtle changes of the tissue can be detected, and the 
underlying texture of the tissue can be quantified into diagnostic features.    

We hypothesize that TA should also have the feasibility to extract diagnostic features in patients with 
clinically suspected myocarditis using conventional techniques as performed in clinical routine, i.e. 
bSSFP, LGE and T2-weighted imaging. We believe that such texture features can provide quantitative 
parameters with high accuracy, reflecting injured myocardial tissue in patients with myocarditis, and 
thus enhance the application of non-invasive CMRI methods. 

Hence, the aim of this study was to assess the diagnostic value of TA based on conventional bSSFP, LGE 
and T2-weighted CMRI in patients with clinically suspected myocarditis. 
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2 Materials and methods 

2.1 Study population 

Among all patients that underwent CMRI due to clinically suspected myocarditis between 2013 and 
2018 at the Sahlgrenska University Hospital, a subset of patients were randomly selected and grouped 
into the following three cohorts consisting of 10 patients each: Group 1 – clinical signs of acute 
myocarditis with positive myocardial biomarkers (Troponin T, indicating myocardial injury) and 
positive CMRI findings according to LLC, Group 2 – clinical signs of myocarditis with positive myocardial 
biomarkers but negative CMRI findings according to LLC, and Group 3 – clinical signs but both negative 
myocardial biomarkers and CMRI findings according to LLC (control group). However, negative results 
do not exclude the diagnosis. Images with insufficient image quality due to motion artifacts, i.e. with 
non-distinguishable epicardial border, were omitted. Demographics of patients for each group are 
summarized in Table 1.  
 
The study was conducted according to the Declaration of Helsinki. Ethical approval was given by the 
Regional Ethics Review Board at the Västra Götaland. 
 
Table 1. Patient demographics. 

Data are expressed as mean ± standard deviation or number (n). The significance of the differences is indicated as p-values 
(level of significance p < 0.05 (bold)). 

2.2 CMRI data acquisition  

All CMRI examinations were performed on a clinical 1.5T whole-body Philips MRI scanner (Philips 
Medical Systems, Best, The Netherlands) using the five-channel cardiac phased array coil. 
 
Conventional imaging had been performed in all patients, including scout imaging, morphological and 
functional studies of the heart. The scan protocol had been completed within 45 minutes with 
measurements during breath hold at end expiration, using retrospective electrocardiographic gating. 
Balanced SSFP imaging was performed in both long axis and short axis views. In this study, however, 
only bSSFP together with LGE and T2-weighted images in the short axis orientation were used for 
analysis (Figure 1). Typical sequence parameters for the different techniques are presented in Table 2. 

Figure 1. Images of the heart in short axis orientation, obtained with (A) bSSFP, (B) LGE and (C) T2-weighted CMRI. The white 
areas in the myocardium indicate inflammation due to myocarditis (red arrows). For information, right ventricle (RV) and left 
ventricle (LV) are also shown. 

Parameter Group 1 Group 2 Group 3 p-value 

Age [years] 25 ± 6 33 ± 14 45 ± 15 0.02 
Females/males (n) 1/9 5/5  1/9 0.21 
Height [cm] 180 ± 10 176 ± 7 179 ± 5 0.29 
Weight [kg] 83 ± 19 76 ± 18 86 ± 9 0.22 

A 

 

B
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RV 

 

LV 

 

Short axis 
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Table 2. Typical protocol parameters for bSSFP, LGE and T2-weighted CMRI. 
 

Parameter bSSFP LGE T2w 

Field of view [mm] 320×320 320×320 350×350 
Acquisition Matrix 196×168 196×187 232×181 
TR [ms] 2.8 6.1 1714 
TE [ms] 1.4 3 70 
Slice thickness [mm] 8 8 8 
Reconstructed in-
plane resolution [mm] 

0.61×0.48 
 

0.61×0.58 
 

0.66×0.52 
 

Time frames per 
cardiac cycle  

40 - - 

bSSFP = balanced steady-state-free-precession, LGE = late gadolinium enhancement, T2w = T2-weighted imaging, TR = 
repetition time, TE = echo time. 

2.3 Texture analysis  

Texture analysis was performed in all patients using a freely available software package (MaZda version 
4.6, Institute of Electronics, Technical University of Lodz, Lodz, Poland) [9-11]. ROIs encompassing the 
left ventricular myocardium were manually drawn on each exported DICOM-image, as shown in Figure 
2. To reduce the risk of partial volume effects, both the trabeculated layer and the epicardial border 
were excluded. After segmentation, TA was performed using MaZda where the feature computation 
was completed within a second. In total, 204 images were used, with 63, 78 and 63 images in the three 
patient groups, respectively. 
 

 
 

Figure 2. A typical free-hand ROI drawn on a bSSFP image, encompassing the left ventricular myocardium.  

 
Before TA, grey-level normalization was performed by MaZda to correct for small technical intra- and 
inter-scanner fluctuations and to minimize the effect of contrast and brightness variations. This was 
obtained by rescaling histogram data to fit within μ ± 3σ (μ – grey-level mean, σ – grey-level standard 
deviation). 
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Six subset texture feature sets were extracted from the segmented region, resulting in 279 texture 
features based on histogram, absolute gradient, run-length matrix co-occurrence matrix, auto-
regressive model and wavelets (Appendix A – Texture analysis). In this study, only 12 promising 
features, presented in previous studies [7,8], were used (Table 3). The features from the run-length 
matrix category were calculated in 4 different directions: horizontal (0°), vertical (90°) and angulated 
at 45° and 135°. The selected features were statistically compared between the different patient 
groups and imaging sequences.  

  
Table 3. Texture features used for the assessment of their diagnostic potential. 
 

Texture Category Texture feature Number of used 
features 

Histogram Skewness 1 
Histogram Variance 1 
Absolute gradient Gradient Mean (dimensions: 4 

bits/pixel) 
1 

Run-length matrix GLevNonU (dimensions: 6 bits/pixel, 
0°, 45°, 90°, 135°) 

4 

Run-length matrix RLNonUni (dimensions: 6 bits/pixel, 
0°, 45°, 90°, 135°) 

4 

Co-occurrence matrix Sum Average (dimensions: 6x6 
bits/pixel, distance: 3) 

1 

GLevNonU = grey-level nonuniformity, RLNonUni = run-length nonuniformity. 

2.4 ROI analysis 

To determine the reproducibility of the analysis and investigate the impact of training for the drawing 
of ROIs, the first 10 individuals were reanalyzed by the same observer, separated in time by 
approximately 1 week. 

2.5 Statistical analysis 

All statistical analysis was performed using MATLAB (MATLAB R2018b, The MathWorks, Inc., Natick, 
MA, USA) [12]. Data are presented as mean ± standard deviation unless stated otherwise. The non-
parametric Wilcoxon signed-rank test was used to determine the significance of the difference 
between the different groups and techniques, where p < 0.05 was considered as statistically significant. 
The agreement in features between repeated measurements was assessed by intraclass correlation 
coefficient (ICC), where less than 0.40 was considered as poor agreement, 0.40 – 0.59 was considered 
as fair agreement, 0.60 – 0.74 as good agreement and 0.75 – 1.0 as excellent agreement [13].  
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3 Results 

3.1 Texture analysis 

Results from the texture analysis are presented in Table 4 in terms of means and standard deviations. 
The p-values for all features between group 1-3, 2-3 and 1-2 are presented in Table 5. 
 
Comparing group 1 (patients with both positive myocardial biomarkers and CMRI findings according 
to LLC) and 3 (controls with both negative myocardial biomarkers and CMRI findings according to LLC), 
the following four texture features showed statistically significant differences between the groups 
based on LGE imaging (p < 0.004): Gradient Mean, Sum Average, Skewness, Variance (Table 5). Except 
for Skewness, these features also differed between the two groups based on bSSFP images (p < 0.004). 
For the T2-weighted imaging, only Sum Average and Skewness showed significant differences (p < 
0.01). In Figure 3, the results of the four most important features are illustrated with Box-Whiskers 
plots for each technique and group.  
 
Comparing patients with clinical signs and positive myocardial biomarkers but negative CMRI findings 
(group 2) with controls (group 3), Gradient Mean and Variance were significantly different, however, 
only for the T2-weighted images. Except for this, the groups could not be differentiated by the four 
features that were previously shown to be important when comparing group 1 and 3. However, almost 
all run-length features were significantly different between these groups (Figure 3).  

Table 4. Calculated means and standard deviations of all texture features in each group and technique. 

bSSFP = balanced steady-state-free-precession, LGE = late gadolinium enhancement, T2w = T2-weighted imaging, GLevNonU 
= grey-level nonuniformity, RLNonUni = run-length nonuniformity. Texture features are dimensionless. 
 

 

 

 

 

 

 

  Group 1   Group 2   Group 3  

Texture features bSSFP LGE T2w bSSFP LGE T2w bSSFP LGE T2w 

Skewness 0.39 ± 0.37 0.94 ± 0.38 0.40 ± 0.37 0.17 ± 0.30 0.66 ± 0.55 -0.01 ± 0.23 0.25 ± 0.31 0.48 ± 0.49 -0.01 ± 0.29 

Variance 236 ± 185 1290 ± 1748 706 ± 1143 141 ± 201 243 ± 319 330 ± 451 95.9 ± 96.5 136 ± 141 368 ± 357 

Gradient Mean 2.74 ± 0.55 2.24 ± 0.36 2.36 ± 0.45 3.42 ± 0.41 2.95 ± 0.42 2.76 ± 0.48 3.43 ± 0.37 2.87 ± 0.73 2.19 ± 0.49 

GLevNonU (0°) 41.1 ± 14.8 48.9 ± 12.4 45.8 ± 11.9 37.7 ± 11.3 38.2 ± 13.7 33.0 ± 9.82 47.8 ± 15.7 58.0 ± 21.1 47.9 ± 16.5 

GLevNonU (45°) 42.2 ± 15.0 50.5 ± 12.5 47.6 ± 12.5 38.9 ± 11.8 39.4 ± 14.2 34.2 ± 10.0 48.6 ± 15.9 61.1 ± 25.2 50.5 ± 17.3 

GLevNonU (90°) 40.9 ± 14.7 47.9 ± 11.8 46.2 ± 12.0 38.1 ± 11.3 38.1 ± 13.7 33.4 ± 9.76 47.4 ± 15.6 57.9 ± 21.5 48.6 ± 16.4 

GLevNonU (135°) 42.3 ± 15.2 50.4 ± 12.7 47.8 ± 12.6 39.3 ± 11.9 39.1 ± 13.9 34.2 ± 10.1 48.6 ± 16.0 61.8 ± 27.8 50.8 ± 17.5 

RLNonUni (0°) 995 ± 209 1166 ± 272 1244 ± 312 810 ± 235 861 ± 260 837 ± 214 960 ± 226.7 1170 ± 512 1272 ± 451 

RLNonUni (45°) 1053 ± 210 1241 ± 291 1352 ± 344 871 ± 253 926 ± 278 916 ± 226 1014 ± 237 1271 ± 565 1428 ± 485 

RLNonUni (90°) 972 ± 196 1117 ± 263 1252 ± 305 824 ± 238 852 ± 254 858 ± 209 942 ± 212 1177 ± 533 1309 ± 430 

RLNonUni (135°) 1050 ± 216 1243 ± 293 1365 ± 355 893 ± 271 918 ± 272 917 ± 221 1008 ± 229 1269 ± 564 1440 ± 495 

Sum Average 64.5 ± 1.30 66.2 ± 1.27 64.7 ± 1.61 63.3 ± 1.36 64.1 ± 1.93 64.1 ± 1.32 62.8 ± 0.88 63.3 ± 1.54 63.7 ± 0.76 
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Table 5. Estimated p-values for all texture features between group 1-3, 2-3 and 1-2.  

 Group 1-3 Group 2-3 Group 1-2 
Texture feature bSSFP LGE T2w bSSFP LGE T2w bSSFP LGE T2w 

Gradient Mean < 0.001 < 0.001 0.2 0.9 0.8 < 0.001 < 0.001 < 0.001 0.004 
Sum Average < 0.001 < 0.001 0.01 0.2 0.3 0.3 0.005 < 0.001 0.1 
Skewness 0.3 0.004 < 0.001 0.4 0.3 0.7 0.05* 0.03 < 0.001 
Variance 0.004 < 0.001 0.5 0.5 0.2 0.04 0.01 < 0.001 0.01 
GLevNonU (0°) 0.2 0.2 0.9 0.02 < 0.001 < 0.001 0.6 0.009 < 0.001 
GLevNonU (45°) 0.2 0.2 0.9 0.04 0.001 < 0.001 0.6 0.009 < 0.001 
GLevNonU (90°) 0.2 0.1 0.9 0.04 < 0.001 < 0.001 0.6 0.01 < 0.001 
GLevNonU (135°) 0.2 0.2 0.9 0.05 < 0.001 < 0.001 0.6 0.008 < 0.001 
RLNonUni (0°) 0.7 0.9 0.8 0.02 0.006 < 0.001 0.003 < 0.001 < 0.001 
RLNonUni (45°) 0.7 0.9 0.8 0.04 0.006 < 0.001 0.005 < 0.001 < 0.001 
RLNonUni (90°) 0.8 0.7 0.9 0.06 0.006 < 0.001 0.008 0.002 < 0.001 
RLNonUni (135°) 0.7 0.9 0.7 0.08 0.005 < 0.001 0.01 < 0.001 < 0.001 

bSSFP = balanced steady-state-free-precession, LGE = Late gadolinium enhancement, T2w = T2-weighted imaging, GLevNonU 
= grey-level nonuniformity, RLNonUni = run-length nonuniformity. Statistically significant p-values are highlighted in bold (p 
< 0.05). * Indicates that p-values were rounded up to 0.05.  
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Figure 3. Box-Whisker plots illustrating the differences for texture features between group 1 (dark grey), 2 (light grey) and 3 
(white) in bSSFP, LGE and T2-weighted images. The important features are shown in (A) to (D) with significant difference 
between group 1 and 3. Run-length features are presented in (E) to (L), showing significant difference between group 2 and 
3. The median is represented by the centerline of the boxplot with upper and lower limits of 25th and 75th percentiles, 
respectively. The Whiskers extending from the boxes indicates the most extreme values within 25th and 75th percentiles 
±1.5*interquartile range; data points beyond the whiskers are displayed as +. Texture features are dimensionless. * Indicates 
statistically significant p-values (p < 0.05). bSSFP = balanced steady-state-free-precession, LGE = Late gadolinium 
enhancement, T2w = T2-weighted imaging, GLevNonU = grey-level nonuniformity, RLNonUni = run-length nonuniformity. 
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3.2 ROI analysis 

For all features extracted from the bSSFP, LGE and T2-weighted images in the reanalyzed patients, the 
ICC-values were generally in the range 0.6–1.0, indicating good or excellent agreement regarding the 
reproducibility (Table 7, Appendix – Supplementary results). Figure 4 illustrates the small impact of ROI 
training on TA for bSSFP (A), LGE (B) and T2-weighted (C) images, in Gradient Mean. Similar results 
were found concerning the other features (not presented).  

Figure 4. The ROI analysis shows no impact of training for the drawing of ROIs in the bSSFP (A), LGE (B) and T2-weighted (C) 
images (x-axis) of Gradient Mean (y-axis), demonstrating good/excellent agreement of the old measurement and new 
(repeated) measurement. Similar results were found concerning the other features. Texture features are dimensionless. 
bSSFP = balanced steady-state-free-precession, LGE = Late gadolinium enhancement, T2w = T2-weighted imaging. 
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4 Discussion 

In this study, the potential of TA based on conventional bSSFP, LGE and T2-weighted CMRI was 
investigated for the purpose of differentiating between groups of patients with and without clinical 
signs of myocarditis using myocardial biomarkers and the LLC as reference standard. Moreover, groups 
of patients with and without CMRI findings of myocarditis were also compared to see if TA can find 
pathological patterns, present in the image but not directly visible for the eye.  The main findings of 
the study were that TA is highly feasible using bSSFP, LGE and T2-weighted CMRI and delivers texture 
features that allow the successful differentiation between the presence and absence of myocarditis in 
a patient (group 1 versus 3). Hence, TA is a promising tool that enables automated detection of 
myocarditis and obtains quantitative information with high diagnostic accuracy. Further investigations 
are needed to determine the true additional value of using combined features and techniques to 
improve the diagnosis of myocarditis on an individual patient level. 

The strongest texture features for the differentiation between group 1 (both positive myocardial 
biomarkers and CMRI findings proving the presence of myocarditis) and 3 (both negative myocardial 
biomarkers and CMRI findings proving the absence of myocarditis) were Variance, Skewness, Gradient 
Mean and Sum Average. All these features showed high statistical significance on LGE images. The 
bSSFP imaging technique could also separate these features, except for Skewness. With T2-weighted 
imaging, however, only Sum Average and Skewness were significantly different between the two 
groups.  This was probably due to the lower contrast between normal and injured myocardium in these 
images.  

Although a previous report has shown high sensitivity and specificity for T2-maps in detecting acute 
myocarditis [8] using features from the run-length matrix, we found no significant features from this 
category in our study when differentiating between patients in group 1 and controls in group 3. There 
are several ways of explaining this. In the present study, we did not use the same imaging technique 
as in the previous study that used advanced T2-mapping. As such, the images presented pure T2-
weighting and no T1-weighted contrast as conventional T2-weighted images. Additionally, the 
technique may have offered higher image quality, sufficient for TA. A more likely explanation is that 
our control group did not contain entirely healthy volunteers. The individuals had clinically suspected 
myocarditis, but with negative myocardial biomarkers and CMRI findings. Thus, myocarditis was 
excluded based on current standard techniques as in clinical routine. Nonetheless, we cannot 
completely exclude the fact that some of these individuals might have had undetected myocarditis, 
with false negative biomarkers and CMRI, and/or had another unknown heart disease, which might 
have negatively affected the analysis.  Most importantly, our control group (mean age 45 ± 15 years) 
was probably older than the group in the previous study. The age of the controls was not listed in the 
article, but it is reasonable to assume that the group consisted of young healthy students. As the 
myocardial tissue degenerates with age [14], changes in image characteristics measured by TA may 
appear. This could explain the patchiness in the myocardium of our control group that was observed 
after an inspection of the images. As such, the run-length features are presumably sensitive to small 
changes in tissue characteristics and will therefore present similar values for the patients with 
myocarditis as for the controls.  Moreover, healthy students have less problems with arrhythmia and 
tend to be more willing to cooperate. This should give the control cohort of the previous study lower 
artefactual level of the images.  

Comparing patients in group 2 (positive myocardial biomarkers but negative CMRI findings) and 
controls in group 3, Gradient Mean and Variance showed significant differences between groups, 
however, only for the T2-weighted images. Except for this, the features that were found to be strong 
markers of myocarditis, i.e. Variance, Skewness, Gradient Mean and Sum Average, did not discriminate 
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between these two groups. On the other hand, all run-length features did. Features derived from the 
run-length matrix are based on the computation of number of runs of pixels, of a given length, with 
the same grey-level value [6,15,17].  A grey-level run is a set of adjoining pixels with the same grey-
level value, and the grey-level run-length represents the number of pixels in it. The distribution will 
give the total number of runs for each grey-level value, meaning the distribution will be large when 
the runs are not homogenously distributed over the different grey-levels. Thus, GLevNonU and 
RLNonUni are describing the homogeneity of the grey-level distribution and should obtain lower values 
if the texture is homogenous, as in normal myocardial tissue. In this study, the myocardium in group 3 
was not completely homogenous, as already discussed. Also, we noticed that the images in group 2 
were more smoothed than others, therefore, the run-length features generally displayed lower values 
in this group. Such smoothing could be explained by arrhythmic behavior.  

Both Variance and Skewness were expected to give significant differences between group 1 and 3 as 
the measures reflect differences in heterogeneity for the entire myocardial ROI. These features are 
derived from the histogram of an image, where the histogram represents the distribution of pixels with 
a given grey-level value [6]. The variance describes the spread out from the mean of the grey-level 
values and the skewness describes the asymmetry of the distribution of the grey-level values, where a 
positive skewness indicates a longer tail to the right (higher intensity values) [6,15]. In bSSFP, LGE and 
T2-weighted images, pathology will appear with high intensity values, leading to a larger variance and 
a longer tail to the right of the distribution, hence positive skew. Our results showed higher values for 
Variance and Skewness in group 1 compared to group 3 for all imaging techniques (Table 4), but 
Variance was only significant for LGE and bSSFP imaging, while Skewness only was significant for LGE 
and T2-weighted images. Thus, high values in Variance and Skewness may indicate pathology and 
might be good discriminators using LGE images. The higher values of these features in LGE imaging can 
be explained by the high contrast between diseased and normal myocardium, provided by the 
inversion time of the inversion recovery gradient echo sequence that nulls the signal from normal 
tissue, and the contrast agent that enhances the signal from the injured tissue [4].  In bSSFP imaging, 
the contrast depends on the T2/T1 ratio, resulting in a good contrast between the blood and 
myocardium [5], but not as good between normal myocardium and pathology as in LGE. Furthermore, 
if edema is present, the contrast in T2-weighted images will be high between the inflamed and normal 
tissue [3], changing the distribution of the histogram with higher values of Skewness than in bSSFP 
images, as shown by our results. The contrast was, however, not sufficient to give significance in 
Variance since the grey-level distribution within the myocardium displayed a small range from light 
grey to white and not as in LGE where the grey scale varies from black to white. With these statements, 
LGE imaging was considered as the best technique in differentiating between group 1 and 3. For group 
1, this technique differed significantly from bSSFP imaging for most features (Table 6, Appendix – 
Supplementary results), except for RLNonUni in the directions 0°, 90° and 135°.  

The gradient based feature, Gradient Mean, was expected to separate group 1 from 3, as it is a 
measure of the spatial variation of the grey-level values in an image [6], that will change when 
pathology is visible or not. The Gradient Mean feature showed lower average values for group 1 
compared to group 3, which might be explained by quenching of the gradient vectors in areas with 
pathology, due to the high signal intensity. Nonetheless, the older controls in group 3 had slightly 
patchy myocardium. That is, more gradients will contribute to the gradient mean of the ROI.  

At last, Sum Average was expected to be a good discriminator as it is a measure of the heterogeneity 
in the ROI. The feature is derived from the co-occurrence matrix that contains information about the 
grey-level distribution of pairs of pixels and is calculated as the mean of the sum of this distribution 
[15]. As pathology is present, there will be occurrences of pairs of pixels with more combinations of 
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grey-level values, giving a larger distribution and therefore a higher value of Sum Average. Comparing 
group 1 and 3, this feature showed high statistical significance in all three imaging techniques. 

Our results yielded another interesting finding regarding the value of bSSFP imaging technique for the 
diagnosis of myocarditis. To our knowledge, no other studies have previously investigated the value of 
bSSFP imaging for the diagnosis of myocarditis and no study has used advanced analysis tools for 
automated diagnosis of myocarditis from bSSFP images. As seen from our results, the technique might 
be used as a surrogate to LGE for the detection of myocarditis. This finding is very satisfying, since 
bSSFP imaging offers a non-invasive non-contrast medium alternative to LGE. The bSSFP imaging 
technique may not have the possibility to replace LGE completely, although the combination of these 
techniques could increase the diagnostic potential of TA. As stated before, LGE appears bright on 
delayed images when there is an inflammation with necrosis, fibrosis or edema, due to the presence 
of accumulated contrast agent in the increased extracellular volume. On the other hand, the contrast 
on bSSFP images depends on the T2/T1 ratio where presence of edema in the myocardial tissue will 
result in a higher signal, due to the prolonged transverse relaxation (T2) time in the edematous tissue 
[16]. Presence of scars will result in a lower signal, due to a prolonged longitudinal relaxation (T1) time. 
Thus, active inflammation, in which edema is an important hallmark, will appear bright on bSSFP 
images. However, the signal will decrease when the inflammatory response leads to progressive 
fibrosis. Therefore, this imaging technique may in the future be a useful tool to determine if LGE on 
delayed images is indicating an active inflammation and/or progressive fibrosis. Future studies are 
needed to substantiate this hypothesis.    

In order to demonstrate the potential of TA for the diagnosis of myocarditis, the study-design was set 
up to ensure successful separation in features between patients with detectable and non-detectable 
pathology. The features, which we expected to be important, included two first-order histogram 
features, Variance and Skewness, one first-order gradient-based feature, Gradient Mean, and one 
second-order co-occurrence-based feature, Sum Average. That is, these important features were 
expected to differentiate patients (group 1) from controls (group 3), as they reflect measures that are 
characteristic for visible pathology. With this study design, we have extracted features that have 
potential to be used in clinical practice for automated diagnosis of myocarditis, with the potential to 
present continuous quantitative information for longitudinal follow-up and possibly even for 
myocarditis phenotyping. 

4.1 Study limitations 

Our study population was relatively small with variations in demographic characteristics between the 
groups. However, we considered the sample size sufficient for a proof-of-concept study. Future studies 
should be performed using a larger sample size to further investigate the true potential of texture 
features, alone and combined, in order to detect and differentiate between different stages of 
myocarditis. 

Compared to the previous study [8], our study design had different inclusion criteria of the control 
group due to the retrospective nature of the study design, making the comparison of the results 
difficult. In particular, the mean age was higher in the control group and this must be taken into 
consideration as this may have limited the possibility to separate the groups. Regardless, TA managed 
to differentiate between groups showing the potential of the method. 
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5. Conclusions 

In conclusion, our study indicates that TA is feasible based on conventional bSSFP, LGE and T2-
weighted CMRI, enabling automated detection of myocarditis in patients with initial clinical suspicion. 
The results showed statistical significance for Variance, Skewness, Gradient Mean and Sum Average 
based on LGE imaging between patients with and without proven myocarditis based on myocardial 
biomarkers and CMRI according to LLC. Except for Skewness, bSSFP imaging could also significantly 
differentiate between the presence and absence of myocarditis, emphasizing the potential of this non-
contrast technique and its currently underappreciated value for tissue characterization. With T2-
weighted imaging, only Sum Average and Skewness could significantly separate the two groups, 
explained by the lower contrast between normal and injured myocardium. 
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Appendix A – Texture analysis 

Radiomics is a relatively new field of medical studies that has shown promising results for improved 
accuracy in diagnosis, assessment of prognosis and prediction of treatment response [18]. It has 
originally emerged from oncology and can provide information of personalized medicine, where 
treatments are adapted to characteristics of the patient and tumor [17]. Moreover, research is also 
increasing in other applications, ranging from the detection of lesions and segmentation of anatomical 
structures, to differentiation between normal and pathological tissue in different organs such as the 
brain, lungs [6] and recently also the heart [7,8]. As a part of the process in radiomics, TA is used to 
detect tissue characteristics and describe the underlying texture [6]. This analysis is performed on 
extracted texture features that are computed with data-characterization algorithms, based on pixel 
interrelationships and grey-level patterns in an image.  
  
In this study, the features were extracted with MaZda and derived from six main categories: histogram, 
absolute gradient, grey-level run-length matrix, grey-level co-occurrence matrix, auto-regressive 
model and wavelets. The texture categories with including texture features, computed by MaZda, are 
described below [6,15,18,19]. The mathematical definitions of these features can be found in the 
Mazda manual [19]. 
 

1. Histogram features 
The histogram of an image will show the distribution of pixels with a given grey-level value. In a 12 bits 
image, the grey-level values range from 0 to 4095, with 0 representing black and 4095 white. The 
histogram contains first-order statistics of an image, without providing information about spatial 
relationships. Texture features computed by MaZda, derived from the histogram, are mean, variance, 
skewness, kurtosis and different percentiles.  
 
2. Absolute gradient features 
The gradient measures the spatial variation of the grey-level values in an image, where a big change 
between pixels gives a high gradient value and a small change gives a low gradient value. Computed 
parameters in Mazda, derived from the absolute gradient image, are mean, variance, skewness, 
kurtosis and the percentage of nonzero gradient pixels. 
 
3. Run-length matrix features 
The run-length matrix is searching across the image for runs of pixels with the same grey-level value. 
The length of the run is defined by the number of pixels within the run. The computed features by 
Mazda are run-length nonuniformity (RLNonUni), grey-level nonuniformity (GLevNonU), long-run 
emphasis (LngREmp), short-run emphasis (ShrtREmp) and fraction of image in runs. They are 
considered higher order parameters and the calculated direction of them are vertical, horizontal and 
diagonal in 45 degrees and 135 degrees. 
 
4. Co-occurrence matrix features 
The co-occurrence matrix contains information about the grey-level distribution of pairs of pixels and 
can be defined as the second-order histogram. With defined distances and directions, the co-
occurrence matrix is calculated for each angle, where counts are made for the number of occurrences 
of given pixel grey-level values. With the mean of the calculated values on the matrix, for each angle, 
numeric features are then computed on the resultant matrix. Computed features by Mazda are angular 
second moment, contrast, correlation, sum of squares, inverse difference moment, sum average, sum 
variance, sum entropy, entropy, difference variance and difference entropy.



 

 

5. Auto-regressive model features 
In the auto-regressive model, local interactions between pixels in an image are assumed. The grey-
level values of the neighboring pixels around a pixel represents a weighted sum of the grey-level 
values in that pixel. Different relations between groups of neighboring pixels can be found and thus, 
shapes within the image can be described. The computed parameters are the set of weights and the 
standard deviation of the driving noise. 

 
6. Wavelet-based features 
Wavelets analyzes data of an image in different frequency components within different scales of the 
image. Computed wavelet parameters are energy of wavelet coefficients in low-frequency sub-bands, 
horizontal high-frequency sub-bands, vertical high-frequency sub-bands, and diagonal high-frequency 
sub-bands. 
 



 

 

Appendix B – Supplementary results  

 

Table 6. Estimated p-values for texture features between the different imaging techniques bSSFP, LGE and T2w. 

  Group 1 

Texture feature bSSFP – LGE  LGE – T2w  bSSFP – T2w  

Gradient Mean 0.002 0.4 0.02 
Sum Average 0.002 0.003 0.9 
Skewness < 0.001 < 0.001 0.9 
Variance < 0.001 0.09 0.03 
GLevNonU (0°) 0.03 0.4 0.1 
GLevNonU (45°) 0.02 0.5 0.1 
GLevNonU (90°) 0.03 0.7 0.08 
GLevNonU (135°) 0.03 0.5 0.1 
RLNonUni (0°) 0.05 0.3 0.006 
RLNonUni (45°) 0.04 0.1 0.002 
RLNonUni (90°) 0.07 0.1 0.002 
RLNonUni (135°) 0.06 0.2 0.002 

bSSFP = balanced steady-state-free-precession, LGE = late gadolinium enhancement, T2w = T2-weighted imaging, GLevNonU 
= grey-level nonuniformity, RLNonUni = run-length nonuniformity. Statistically significant p-values are highlighted in bold (p 
< 0.05). 

 

Table 7. For features extracted with bSSFP, LGE and T2-weighted imaging in the group with reanalyzed patients, the ICC-
values were generally in the range 0.6 – 1.0, indicating good or excellent agreement in reproducibility.  

bSSFP = balanced steady-state-free-precession, LGE = late gadolinium enhancement, T2w = T2-weighted imaging, GLevNonU 
= grey-level nonuniformity, RLNonUni = run-length nonuniformity.  

 

  Group 1  
Texture features bSSFP LGE T2w 

Gradient Mean 0.98 0.98 0.99 
Sum Average 0.48 0.87 0.90 
Skewness 0.89 0.96 0.97 
Variance 0.98 0.99 0.99 
GLevNonU (0°) 0.91 0.87 0.90 
GLevNonU (45°) 0.91 0.87 0.90 
GLevNonU (90°) 0.91 0.86 0.90 
GLevNonU (135°) 0.91 0.87 0.91 
RLNonUni (0°) 0.66 0.81 0.86 
RLNonUni (45°) 0.62 0.84 0.86 
RLNonUni (90°) 0.62 0.85 0.87 
RLNonUni (135°) 0.64 0.85 0.88 


