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Abstract 

All-optical recording of neural activity is becoming a reality through recent developments in 

the field of optogenetics. By pairing light-responsive actuators and fluorescent sensors in the 

form of microbial opsins and integrating them into neurons, electrical events can be triggered 

by light and visually recorded. This allows for large-scale characterisation of single neurons 

with a high temporal resolution of milliseconds. This project aims to realise the concept at our 

lab by delivering a construct termed “Optopatch” developed by Cohen et al. at Harvard 

University into cultured neurons and testing it, comparing optically recorded data with 

simultaneous patch clamp measurements. Different methods of neuronal culture and gene 

delivery are assessed. All elements of Optopatch are verified to function on a proof-of-concept 

level and the method’s strengths and weaknesses are discussed along with what needs to be 

done for the method to have a place in future research carried out at the lab. 

Keywords: optogenetics, voltage imaging, channelrhodopsin, GEVI, electrophysiology 

Introduction 

Electrophysiological recordings yield information about how neurons function and 

communicate. Electrical properties such as excitability, synaptic events and the shape and firing 

rate of action potentials can be directly measured or calculated by using the patch clamp method 

(1, 2). However, manually opening and recording from a cell is a time-consuming task and 

usually demands weeks of practice to learn. The concept of voltage imaging (3) can grant 

similar information about neurons by observation rather than physical measurement. With fast 

and stable voltage-sensitive proteins that emit light, and equipment capable of high-speed video 

capture, electrical events can be optically represented. Combining these voltage sensors with 

light-sensitive ion channels, all-optical electrophysiology presents a tool with vast possibilities. 
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Electrophysiology 

Membrane potential 

Movement of ions through channels in the cell membrane is the basis of neural communication. 

Ions are actively transported across the membrane to in order to form concentration gradients. 

Sodium, calcium and chloride are more plentiful extracellularly while a higher concentration of 

potassium exists inside the cell. Along with the difference in ionic concentrations this also 

establishes a difference in electrical potential across the membrane—the membrane potential. 

A positive change of the membrane potential is termed a depolarisation. A negative change is 

a hyperpolarisation. The membrane potential of a neuron at rest lies at approximately -70 mV.  

Together, the concentration gradients and the potential difference create a driving force for ionic 

currents through membrane channels. A wide variety of ion channels exist. Their quantity, 

permeability and kinetics establish the membrane’s electrical properties. 

Patch clamp 

Traditionally, patch clamping is the standard method for performing electrophysiological 

experiments on single cells. The method of “clamping” the membrane potential using 

microelectrodes stems from experiments performed by Hodgkin and Huxley in the 1950s (4). 

Their findings became the fundament to our understanding of the conducting properties of cell 

membranes. The patch clamp was later developed by Neher and Sakmann (5) in the late 1970s, 

who received the Nobel Prize for their research on single ion channels. Using a small glass 

pipette containing a microelectrode capable of stimulation and recording, a seal is formed onto 

the cell membrane. The membrane is then ruptured, and a circuit is established through the cell. 

The patch clamp gives the experimenter control of the cell and with the amplifier, voltages and 

currents can be modified, stimulating the cell and measuring its properties. 
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Optogenetics 

Opsins 

Opsins are proteins sensitive to light. Paired with the cofactor retinal they give us vision and, 

perhaps surprisingly, provide us with a useful tool for studying the electrical properties of 

neurons. The idea of using light to control cell activity originated in the early 2000s (6) and 

methods are constantly developing. Optogenetic actuators are light-activated ion channels, 

channelrhodopsins. In response to light, channels open to allow a flux of ions through them (7). 

Genetically modifying cells to express these opsins, researchers can stimulate cells with light 

and observe their behaviour. 

Voltage imaging 

All-optical recording (AOR) combines optical stimulation with optical imaging (8), which is 

allowed by optogenetic sensors: fluorescent proteins sensitive to intracellular events such as 

changes in voltage, ion concentration (9) or neurotransmitter release (10). Genetically encoded 

voltage indicators (GEVIs) vary their fluorescence properties in response to fluctuations of the 

membrane potential (11). In search for a way to stimulate and record the electrical activity of 

single cells in real time using only optics, Cohen et al. from Harvard University have been 

developing a method termed the Optopatch. Their most recent DNA construct—Optopatch3 

(12)—will be assessed in this project. It contains both a channelrhodopsin and a GEVI. 

The signal-to-noise ratio (SNR) when capturing images of a GEVI is important. It is the ratio 

between the power of the signal (QuasAr fluorescence) and the distorting noise. Improved SNR 

means more accurate recordings. It can be achieved by taking measures such as achieving high 

protein expression and using sensitive camera equipment.  
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Optopatch 

Optopatch3 consists of three elements: an actuator, a sensor and a reporter. The 

channelrhodopsin CheRiff opens and depolarises the membrane in response to blue-shifted 

light. The archaerhodopsin-based GEVI QuasAr3 fluoresces in the near-infrared spectrum with 

in response to depolarisation. Following DNA delivery, the Optopatch protein components can 

be produced and expressed in transfected cells. 

The fluorescent reporter Citrine is derived from yellow fluorescent protein (YFP) (13) and 

functions as a marker, reporting which cells that successfully have been modified to express the 

Optopatch construct. With different filters inserted in the microscope, different wavelengths of 

light can be observed. The excitation peak of Citrine is at 516 nm and its emission peak is at 

529 nm.  

QuasAr stems from an opsin originally found in the archaebacteria Halorubrum sodomense 

(14). It has been genetically engineered (15) to optimise it for voltage sensing and fluorescence, 

among other things. It can be thought of as having two states, with changes in voltage being 

responsible for the switch between the non-fluorescent and the “active” fluorescent state. A 

positive membrane potential will increase the chance of QuasAr being fluorescent, which 

makes QuasAr a voltage sensor.  

CheRiff is a photosensitive ion channel, a channelrhodopsin, stemming from one originally 

found in the algae Scherffelia dubia (15). It has been engineered to improve properties necessary 

for optogenetic stimulation. One such property is membrane trafficking, the transportation and 

integration of processed protein into the cell membrane. Another property is kinetics; the 

channelrhodopsin needs to respond within milliseconds to changes in illumination by opening 

and closing at a fast and repeatable rate. This allows for high-frequency stimulation. 
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Photocurrent 

When CheRiff opens, ions travel through it. This is a flow of charges, a current. The current’s 

direction is determined by the driving force. CheRiff is a non-specific cation channel and 

therefore permeable to both potassium, sodium and calcium. Since potassium exists in high 

concentrations intracellularly, opening of the channel will cause a flow of potassium ions 

outwards. The opposite is true for sodium and calcium. If, theoretically, no other channels but 

CheRiff would be open, ions would flow until repelling charges cause equilibrium to be 

reached. The resulting membrane potential is termed the equilibrium potential of said channel 

and is dependent on its relative permeability for each ion. The reversal potential of CheRiff has 

been calculated to +4 mV (16), similar to that of AMPA and NMDA (17), the excitatory ion 

channels of the mammalian brain. 

The archaebacterial opsin modified into QuasAr originally produced a photocurrent as well. 

This property has been removed for QuasAr to function as a pure sensor. 

Fluorescence 

For fluorescence to be apparent, QuasAr needs to be excited by red-shifted light. Fluorescence 

is the property of certain molecules to emit photons when their electrons—having been excited 

by absorption of higher-energy photons—return to their ground state (18). In the context of this 

project, retinal functions as such a fluorescent molecule—a fluorophore (19). In the voltage-

induced fluorescent state of QuasAr, retinal can be excited by photons from a 638 nm laser. The 

re-emitted photons will have an even lower energy, being in the near-infrared spectrum (20). 

Observed through a low-pass filter blocking out other light, this makes QuasAr a light-emitting 

voltage sensor. The cell marker Citrine is a fluorescent protein whose fluorescent properties are 

intrinsic and thus not dependent on cofactor. 
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Cell culturing 

If the right conditions are met, cultured neurons in a cell dish will attach to each other, form 

synapses and consequently also communicate (21). Matured neurons will be able to fire action 

potentials even in a cell culture. Cultured cells are therefore an excellent alternative when 

studying the electrical properties of single cells. 

Cell cultures can be used as disease models. A dish of neurons is more accessible than a brain, 

which can be beneficial when studying certain genotypes on a cellular level. An advantage of 

stem-cell research in comparison to ex vivo experiments on live tissue is the restriction of live 

animal expenditure. 

Cultured neurons 

Induced pluripotent stem cells (iPSC:s) (22) can be created from any healthy cell and are a 

promising tool for researching specific disease genotypes (23). In this project, fibroblasts from 

a patient with juvenile-onset Huntington’s disease (24) have been converted into neurons. 

In contrast to iPSC:s, induced neuronal (iN) cells (25) can be directly converted from other cell 

types without going through a pluripotent phase. In this project, induced neurons are created 

from human embryonic stem cells (hESC:s). Although hESC:s are clearly pluripotent, the main 

benefit and purpose of iN:s is to convert terminally differentiated cells directly into neurons.  

On the contrary, primary neurons are matured in the animal and then isolated from its nervous 

tissue (26). In this project, the hippocampus is dissected from neonatal mice and cells are 

subsequently cultured in growth medium. 



9 

 

Gene delivery 

Since the genetically engineered opsins don’t exist in mammalian cells, new genetic material 

needs to be introduced to the cells. Transfer of genetic material can be achieved in multiple 

ways. In this project, two types of genetic vectors—a plasmid and a recombinant virus—will 

be assessed. Plasmid delivery will be carried out with the use of both magnet-assisted (27, 28) 

and calcium phosphate (29) transfection and the same plasmid will also be utilised to construct 

an adeno-associated virus for transduction. With transfection, DNA is attached to small 

particles and taken up by cells. In this case, magnetic nanoparticles and calcium phosphate 

precipitate will be assessed. 

Aim 

The purpose of this project is to perform and evaluate all-optical recording of neural activity 

using Optopatch. With the traditional patch clamp method, properties of both optogenetic 

proteins shall be verified and quantified. Also, as a part of the process, different types of 

cultured neurons as well as different methods of gene delivery shall be evaluated. 

There will be three main steps to verifying Optopatch function. By patch clamping a cell and 

recording currents while illuminating the cell with stimulating light, CheRiff activity can be 

measured. By injecting current into the cell through the patch clamp while observing changes 

in brightness captured from the camera, QuasAr can be verified. The final step is the removal 

of the patch clamp electrode. By observing changes in fluorescence from a neuron while 

stimulating it with light in another part of the wavelength spectrum, the goal of all-optical 

stimulation can be realised. 
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Methodology 

Electrophysiology 

The student’s main responsibility was to coordinate the project and to perform experiments. 

Growth and transfection of cells were not performed by the student. Therefore, methodology 

concerning cell culturing and gene delivery will be described in less detail than the methods of 

electrophysiological recordings. 

Microscopy 

For Optopatch experiments, a Nikon Eclipse Ti2 inverted wide-field microscope was used. It 

was mounted on a Newport RS 2000 auto-stabilising table. Cover slips with cells were attached 

to a Warner Instruments RC-25 polycarbonate chamber on a PM3 magnetic heated platform, 

mounted on the microscope. The chamber was perfused with a bubbled Ringer solution [table 

1] containing necessary ions, nutrients and oxygen, flowing through polyethylene tubing. 

When searching for candidate cells, the cover slip was illuminated with blue-shifted light to 

identify YFP-expressing cells. A Cobolt 06-MLD 488 nm diode laser and a Rapp 

OptoElectronic 473 nm diode laser were used for this purpose. Fluorescence from transfected 

cells was observed through a filter. Many filters and mirrors were used for different purposes 

Figure 1: Same neurons in a different light. LEFT: Regular light microscopy. MIDDLE: Citrine fluorescence. RIGHT: QuasAr 

fluorescence. 
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in the set-up. For the purpose of all-optical recording, a combination of three filters was inserted 

into the microscope. A Semrock FF01-378/474/554/635-25 bandpass excitation filter let the 

laser beams through and cancelled other light. A Semrock Di01-R635-25x36 longpass dichroic 

mirror reflected the lasers onto the sample while letting red-shifted light through. A Chroma 

ET710/75x bandpass emission filter additionally filtered emissions from the sample to cancel 

unwanted wavelenghts.  

Patch clamp 

A HEKA Elektronik EPC 9 amplifier was used for patch clamp recordings. Small ~5 MΩ 

pipettes were pulled from glass tubes using a Sutter Instruments micropipette puller. They were 

filled with intracellular solution (Table 2) and inserted over a silver chloride electrode 

connected to a Narishige MHW-3 three-axis water hydraulic micromanipulator. After the 

pipette was placed on a cell, a slight suction was applied, forming a tight seal. The membrane 

was then ruptured and a circuit was established through the cell to the earth electrode placed in 

the bath, giving the user control over the membrane potential. 

Table 1 

Extracellular (bath) solution 

NaCl 124 mM 

KCl 3 mM 

NaHCO3 26 mM 

NaPO4 1,25 mM 

CaCl2 2 mM 

MgCl2 1 mM 

D-Glucose 10 mM 

 

Table 2 

Intracellular (pipette) solution 

K+ gluconate 127 mM 

KCl 8 mM 

HEPES 10 mM 

Phosphocreatine 15 mM 

Mg-ATP 4 mM 

Na-GTP 0,3 mM 

KOH 10 mM 
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Voltage imaging 

To prove QuasAr function, images were captured from a patch clamped cell while current was 

passed through the circuit. Starting at -200 pA and increasing step-wise with increments of 40 

pA up to 200 pA, conditions above and below the set membrane could be observed. 

To expose QuasAr, a Cobolt 06-MLD 638 nm laser was used. Emissions from QuasAr were 

observed through a high-pass filter and captured with a monochromatic Andor iXon 897 Ultra 

CMOS camera. Images were captured using the Micro-manager ImageJ plugin software, which 

also controlled the 488 nm and 638 nm lasers. 

Image stacks were processed and analysed using the ImageJ software. Regions of interest 

(ROIs) were selected and plotted, where the average intensity(grey value) of the ROI 

represented a data point for each image. Fluctuations in brightness could in that way be traced.   

Optogenetic stimulation 

To prove CheRiff function, currents were recorded from the electrode while cells were shined 

upon with blue (473 or 488 nm) light. An area of approximately 300 µm in diameter was 

illuminated. Both blue-shifted lasers were tested for the purpose of stimulating CheRiff and 

finding YFP. The 488 nm laser was controlled through the Micro-manager software which did 

Figure 2: A simple illustration of the Optopatch mechanism. Blue light activates CheRiff while red light exposes QuasAr. 
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not allow for continuous stimulation while capturing images. The 473 nm laser was controlled 

through a separate digital head unit which allowed for continuous illumination. This gave the 

experimenter accessible control of stimulation time, pulse frequency and pulse width.  

The 473 nm laser was reflected by a digital multi-mirror device (DMD). The DMD contained 

a 640 by 480 px grid of mirrors, with each pixel having a controllable on or off state. Every 

mirror was in its on-state for this project, therefore making the DMD function as a regular 

mirror. 

  

Figure 3: A simplified model of the set-up in its 473 nm laser configuration. 
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Cell culturing 

iPSC-derived neurons 

A cell line from an early-onset Huntington’s disease patient with 109 CAG repeats (ND42223, 

derived from a 9-year-old patient) was used. Induced pluripotent stem cells were cultured in a 

1:1 mixture of a DMEM/F-12 (GIBCO) medium with GlutaMax™ and N-2 supplements and a 

Neurobasal-A (GIBCO) medium supplemented with GlutaMax and B17™. 

Induced neuronal cells 

Human embryonic stem cells (hESC:s) were converted to induced neurons (iN:s) by 

sequentially changing growth media to facilitate differentiation. Originally in mTeSR™ 

(STEMCELL Technologies) medium, hESC:s were then cultured in DMEM/F-12 (GIBCO) 

with N-2 supplement to start neural differentiation. They were later re-plated together with glial 

cells in Neurobasal-A (GIBCO) medium supplemented with B27™ and GlutaMax™ and 

matured for ~25 days. 

Primary neurons 

Hippocampi were dissected and neurons were harvested from new-born (P0/P1) mouse pups. 

They were plated and grown in Neurobasal-A (GIBCO) medium [Table 3] supplemented with 

B27™ and HyClone™ (GE Healthcare) fetal bovine serum. 
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Gene delivery 

A plasmid denoted YA1529: pAAV_hSyn-QuasAr3-P2A-CheRiff (Supplementary figure 1) 

was used to incorporate Optopatch3 into target cells. The plasmid is a gift from Adam Cohen 

(RRID: Addgene_107700) (12). It contained the human synapsin 1 promoter to restrict protein 

expression to neurons and not glia. The plasmid also contained necessary elements to create a 

viral vector for transduction. 

Magnet-assisted transfection 

For magnet-assisted transfection, Magnetofection™ (OZ Biosciences) kit was used. Plasmid 

was isolated and mixed with magnetic nanoparticles in OptiMEM™ (GIBCO) medium. The 

mixture was added to the cells and placed on a magnetic plate for 20 minutes. 

Adeno-associated virus (AAV) 

HEK293 cells were cultured in order to be used to accommodate virus formation. The 

Optopatch plasmid contained some necessary elements for AAV formation. It was added along 

with two additional plasmids, one for capsid formation (RC-DJ) and one with a helper sequence 

to allow for replication. After creation, the virus could be used to transduce neurons. 

Ethics 

One advantage of stem-cell research is the avoidance of live-animal expenditure. Unfortunately, 

as iPSC-derived neurons proved difficult to perform experiments on within the time frame of 

this project, primary neurons harvested from mouse pups had to be examined as an alternative. 

This was done in accordance with ethical permit 134-2015 from the Gothenburg ethical 

committee for animal research. Stem cell-derived neurons remain the targets of future testing. 
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Results 

Calcium phosphate transfection and viral transduction were successful. Viral delivery showed 

a high yield (10-50% of cells expressed Optopatch) and a higher expression of QuasAr with a 

seemingly large signal-to-noise ratio. Calcium phosphate showed a lower yield (1-2%) and a 

seemingly lower signal-to-noise ratio. The magnet-assisted transfection method did yield some 

transfected cells but resulted in no QuasAr function. 

CheRiff 

CheRiff could be verified by illuminating it with blue light while measuring currents in a 

transfected neuron with the patch clamp electrode. CheRiff function was apparent in both 

induced and primary neurons, while expression in iPSC-derived neurons could not be verified. 

 

 

  

1 

2 

Figure 4: Voltage clamp recording on a primary neuron. In [1], the membrane potential (baseline) is kept at -72 mV. 

Continuous stimulation with the 473 nm laser yields a large current (1,2 µA) that slowly diminishes over time (1,7 s). In [2], 

the membrane potential (baseline) is kept at -22 mV. Pulsating stimulation (10 ms pulses at 10 Hz) with the 473 nm laser. 

Spontaneous post-synaptic potentials are also apparent.  
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QuasAr 

QuasAr could be verified by capturing images of a transfected cell while injecting it with current 

through the patch clamp electrode. QuasAr function was also apparent in both induced and 

primary neurons, while expression in iPSC-derived neurons could not be verified. 

  

 

Figure 5: QuasAr. QuasAr was tested by injecting a step-wise increasing current through the patch pipette in current-clamp 

mode. CaP = Calcium phosphate. No extra retinal was supplied to the cell cultures. QuasAr was detected in both induced as 

well as primary neurons, while expression in iPSC-derived neurons could not be verified. Voltage imaging could detect both 

negative and positive events. 

All-optical recording 

Citrine fluorescence is almost invariable and its fluorescence life time (the amount of time a 

fluorophore spends in its excited state before returning to its ground state) is only 3,6 

nanoseconds (30). The amount of time it takes for a channelrhodopsin to activate and depolarise 

11-step stim. 

11-step stim. 
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the cell membrane is on a scale of micro- to milliseconds (31). No control cell line without the 

cell marker Citrine was available. Therefore, to eliminate any hypothetical Citrine fluorescence 

leakage through the optical filters, the change in intensity from the first recorded frame has been 

subtracted from every stimulation. This was done only to prove Optopatch function on a basic 

level with certainty, and will not have be done regularly after future optimisations. 

 

 

 

 

 

  

stim stim stim 

stim 

Figure 6: Recording of three second-

long laser stimulations without patch 

clamp. ~40 frames per second. [1] 

and [2] are traced from the same 

recording. In [2], any unwanted 

contributions by Citrine has been 

mathematically subtracted post-

recording. Much of the QuasAr 

response is gone as well but the result 

is purely QuasAr and this is sufficient 

to prove the AOR concept on a very 

basic level. 

1 

2 

Figure 7: Recording from one 

five-second-long stimulation. ~40 

frames per second. Trace [2] has 

been modified in the same way as 

in the previous figure. 

1 

2 
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Spontaneous activity 

 

Figure 8: Observing QusasAr for two and a half minutes without patching or optically stimulating. Here, [1] is plotted from a 

seemingly active cell expressing QuasAr while [2] is plotted from autofluorescent material visible in the same images. Both 

traces are from the same recording. In [1], what looks like spontaneous neural activity can be seen, while [2] is silent. 

 

 

Figure 9: An oddly shaped and behaved neuron, recorded for three minutes. A spontaneous periodic activity of 

hyperpolarization was observed in this neuron. It could not be confirmed by patch clamping because of technical difficulties.  

Also, a slow but steady slope indicating bleaching became apparent when recording for a longer while.  

1 

2 

1 

2 
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Discussion 

The main goal was achieved, such that the function of CheRiff as well as QuasAr were verified 

and that all-optical recordings could be performed on a proof-of-concept level. Viral 

transduction seemed to be the favourable way of delivering the Optopatch construct into the 

cells. 

Before the set-up can be used in future studies, further effort needs to be put into exploring its 

limits and standardising the procedure. One main goal is to observe action potentials. This is 

achievable on a hardware basis, meaning the camera used can capture images at a high enough 

framerate, but this demands a short shutter time and thus more light, creating some obstacles. 

Another goal is to expand the field of view, watching neighbouring cells communicate with 

each other. 

The possibilities with all-optical electrophysiology are vast. The neuronal effects of certain 

pharmaceutics, environmental factors, genetic diseases, toxins or other circumstances can with 

these methods be examined on a large scale. Since impressive research already has been made 

on the subject with recent advancements (12, 32), the intention to implement Optopatch in our 

lab is not far-fetched. It is rather a natural step towards future discoveries.  

Interpretation 

In short, one would like Optopatch to provide traces similar in shape to those achieved by 

traditional patch clamp recordings. The optogenetic proteins used are theoretically fast and 

dynamic enough (15) to represent the shape and frequency of electrical events well. In order to 

achieve interpretable traces, framerate must be increased while noise is kept at a low level. 
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Optopatch cannot physically measure the voltage level, only provide images representing it. 

The recorded images contain varying pixel intensities (grey levels) that need to be translated. 

Additional effort needs to be put into working out how to treat the data, and how comparable it 

is to patch clamp measurements. No specific unit of light intensity is used. When analysing the 

traces, ΔF/F0—the change in fluorescence divided by the baseline—will be the output. 

The camera sees what the camera sees. Environmental changes like water level fluctuations in 

the bath will in some way affect how light scatters and thus must be stable so as not to interfere 

with QuasAr emissions. Insoluble particles disturb images. A speck of dust or a loose cell 

floating by out of focus will affect recordings and therefore the bath solution needs to be kept 

clean and clear. 

Limitations 

Searching light 

Finding cells expressing Optopatch and stimulating them are both achieved by illuminating the 

culture with the same laser. The excitation spectrum of Citrine overlaps with that of CheRiff. 

This poses a problem. One would want to stimulate cells as little as possible when not 

performing measurements, to limit any possible alterations in neuronal functionality and to keep 

any dissimilarities between tests at a minimal level. A possible solution to this would be to add 

an additional laser to the set-up with its wavelength at the excitation peak of Citrine – 516 nm. 

This would allow for a weaker power of the “searching light” which would minimise CheRiff 

activity and neural excitation. 
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Calcium influx 

CheRiff, like most channelrhodopsins, is a non-specific cation channel (16). Continuous 

stimulation will therefore lead to an influx of calcium into the cell, which is problematic. 

Calcium in high concentrations is among other things a death signal to the neuron (33), 

triggering apoptosis. In lower levels it might also cause intracellular events such as synaptic 

alterations (34). Although not characterised in this project, this calcium influx is a potential 

disturbing factor when working with Optopatch since it might interfere with the tight 

physiological regulation of intracellular calcium levels. 

Non-physiological environment 

The integration of large amounts of “unnatural” ion channels into the neuronal membrane might 

affect the permeability and intrinsic behaviour of cells. One other important aspect to consider 

is that the level of Optopatch protein expression must be similar between similar neurons for 

the neurons to be compared.  

Photobleaching 

When shined upon, fluorescent molecules are always bleached to some degree. Photobleaching 

is an unwanted transfer of the energy absorbed by the opsin. In a perfect optogenetic set-up, 

every fluorescent molecule will absorb the photon and re-emit a photon with a longer 

wavelength with the rest of the energy converted into harmless energy forms. However, with a 

given risk depending on the strength of the laser and the properties of the chromophore, 

sometimes the energy will break covalent bonds (35) or cause the molecule to interact with 

other proteins in a harmful manner. Thus, the more light is used to illuminate the culture, the 

less the cells will function and the more harm they will take. Measurements over longer periods 

of time are therefore difficult. For the experimenter, the only way to avoid photobleaching is to 
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minimise the energy put in to illuminate the cells, in this case the power of the 638 nm laser. 

This creates an apparent conflict since stronger illumination leads to an increased signal-to-

noise ratio in the captured images. 

Photobleaching can be accounted for when interpreting data. A slow decline in intensity is to 

be expected when observing QuasAr, as photobleaching will cause it to fade steadily. By 

applying a ΔF/F formula (36) to the diminishing baseline, bleaching can be corrected for. 

Events are compared what the baseline was before and after. These calculations have not been 

applied to the presented data. 

Optimisation 

Calibration 

In order to interpret data from voltage imaging one needs to know what changes in fluorescence 

corresponds to in terms of voltage. By comparing voltage steps with recorded changes in 

brightness as well as changes in voltage achieved by different levels of laser stimulation, patch 

clamp measurements can be utilised to quantify Optopatch function. 

Area of stimulation 

Though not utilised in this project, the digital multi-mirror device allows for a considerable 

precision when illuminating an area (37). By applying different patterns to the DMD, the size 

and shape of the illuminated area can be specified, and several cells can be stimulated 

simultaneously. This could also evolve into targeting certain parts of the cell or cell-to-cell 

connections. All-optical recordings can in this light be advantageous to traditional patch clamp 

recordings that target the whole cell. 
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Retinal 

The question arose during the process if and how to add cofactor. Retinal is vital for the function 

of opsins since it functions as the chromophore absorbing light. It is also the observable light-

emitting molecule in QuasAr. Retinal is a form of vitamin A and thus cannot be produced by 

mammalian cells. Whether or not retinal has to be supplied to cell cultures remains unanswered. 

Some laboratories add it (15) while others don’t. It is obvious that cells studied in this project 

contained the molecule in some form. The question remains if saturating cells with additional 

retinal can boost voltage sensitivity. 

Conclusions 

The basal concept of all-optical recording was proved to function. Viral transduction with AAV 

seemed to be the favourable method of gene delivery while the goal of using iPSC-derived 

neurons for these recordings remains to be realised. The kinetics and stability of both CheRiff 

and QuasAr were impressive, and neurons seemed to survive for a reasonable amount of time 

throughout testing. 
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Populärvetenskaplig sammanfattning 

Att studera enstaka nervceller och deras elektriska egenskaper har länge begränsats av att 

gängse mätmetoder varit tidskrävande och svåra att bemästra. Patch clamp-mätningar har varit 

den gyllene standarden sedan början av 80-talet. Med metoden öppnas en cell under stor 

försiktighet med hjälp av en liten pipett innehållandes en silverkloridbeklädd elektrod. Denna 

metod används för att göra elektriska mätningar och kan även injicera ström i cellen.  

Ända sedan optogenetikens inträde i forskningsvärlden kring millennieskiftet har 

förhoppningen att heloptiskt kunna avbilda och mäta cellers elektriska aktivitet funnits. Stora 

framsteg har gjorts de senaste åren och de optiska metoderna börjar få ordentligt fotfäste inom 

neurofysiologin och andra områden. Verktyget "Optopatch" tillåter användaren att både optiskt 

stimulera och avbilda nervceller, efter att de modifierats till att uttrycka särskilda optogenetiska 

proteiner. För att detta ska ske i vår forskargrupp behöver metoden testas och utvärderas 

noggrant för att belysa dess möjligheter och begränsningar. Med heloptiska metoder öppnas 

nya dörrar för storskalig karaktärisering på cellulär nivå av sjukdomar drabbande nervsystemet.  

Optogenetiken handlar om användandet av ljusproteiner (opsiner) som hjälpmedel vid 

studerandet av cellers elektriska aktivitet. Opsiner hämtade från mikroorganismer introduceras 

i cellerna på konstgjord väg. Optopatch-konstruktet innehåller två modifierade opsiner som 

tillåter mätningar. Ett ”kanalrodopsin” vid namn CheRiff fungerar som ett ställdon. Det är en 

ljuskänslig jonkanal som aktiveras och då tillåter införsel av positiva joner genom 

cellmembranet (depolariserar) när den belyses med blått ljus. Det andra opsinet—QuasAr—

fungerar som en spänningssensor och självlyser (fluorescerar) i rött när cellmembranet 

depolariseras. Genom att fånga upp fluorescensen med en höghastighetskamera kopplad till 

mikroskopet kan elektrisk aktivitet fångas på bild och nervcellerna kan därmed både stimuleras 
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och avbildas med optiska metoder. Detta möjliggör storskaliga undersökningar av enstaka 

nervceller. 

Målet med projektet var att få metoden att fungera. Optopatch kunde uttryckas i odlade 

nervceller och båda komponenternas funktioner bevisades med hjälp av simultana patch clamp-

mätningar. Opsinerna verkade vara synnerligen stabila. Kvarstår gör ytterligare testning och 

utökade experiment för att i forskargruppen kunna utnyttja Optopatch för robusta, storskaliga 

mätningar i framtida studier. 
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Supplementary figure 1: The plasmid 


