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Abstract
Software development with continuous integration changes needs frequent testing for
assessment. Analyzing the test output manually is time-consuming and automating
this process could be beneficial to an organization. The goal of this thesis project is
to do the automated anomaly detection analysis of software test output files provided
by Volvo Group Trucks Technology, to achieve this we evaluated four different neu-
ral network architectures. The four neural network architectures are two recurrent
neural networks with long short-term memory (LSTM) where one is unidirectional
and one is bidirectional as well as two autoencoders (an LSTM-based sequence-to-
sequence model and a Transformer) that aim to reconstruct a sequence from the files.

In order to evaluate the performance of the neural network architectures two datasets
were utilized. The first dataset is from the Hadoop Distributed File System (HDFS)
and this is a publicly available dataset where all logs are labelled as either anomalous
or non-anomalous. The second dataset are log files resulting from software testing
provided by Volvo Group Trucks Technology which contain no labels. The networks
were evaluated in two different settings when trained on the HDFS data. In the first
setting the logs labelled as anomalous were filtered out making it a semi-supervised
approach and in the second setting the logs labelled as anomalous were kept which
makes it an unsupervised approach. Lastly the networks were trained on the data
provided by Volvo Group Trucks Technology which is unlabeled, the objective of
approach is to evaluate how the networks perform in an unsupervised setting. In
addition, an analysis of the size of the data sets used to train the networks were
performed.

The results show that for the data provided by Volvo Group Trucks Technology the
size of the dataset used for training the networks influenced the performance of the
anomaly detection where a smaller dataset performed better than a larger dataset.
Moving on to the HDFS dataset, a smaller dataset for the unsupervised setting was
also better than a larger dataset. However, for the HDFS data the semi-supervised
approach outperformed the unsupervised setting regardless of the size of the training
dataset.

Keywords: anomaly detection, recurrent neural network, long short-term memory,
semi-supervised learning, seq2seq, transformer, unsupervised learning, log analysis.
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1
Introduction

1.1 Background

1.1.1 Logs in computer systems
Logs are reports of the behaviour of a software system during runtime [32]. The
logs are a collection of logging statements entered into the code by developers of the
system and used for the evaluation of the performance of the software. For instance,
a logging statement could describe an error in the code or the operation performed
by the software.

Software testing aims, as the name suggests, to test how a program performs. The
software test output used in this project is a result of regression tests performed once
a day with continuous integration of changes. The software testing results are in the
form of log files containing the completed commands and the corresponding result.
The log files obtained from this process are then analysed offline, meaning that they
are analyzed after the test has been performed and the log file has been created. Of
special interest are the irregular behaviours of the software, the anomalies. However,
the log files contain a lot of information and large quantities of log files are produced
as a result of the regression tests. Looking for anomalies manually in all produced
log files is therefore time-consuming and automating this process could potentially
speed up the detection of anomalies.
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1. Introduction

1.1.2 Automated anomaly detection in log data
Automated log anomaly detection is a research field that concerns methods of identi-
fying irregularities in the log data without human intervention. In the field, there are
various proposed machine learning methods using for example clustering techniques
[28] or Principal Component Analysis (PCA) based methods [33]. Deep learning
[23] methods have shown promising results in the area, several of them [7, 24, 35]
utilizing recurrent neural networks (RNN).

This project will focus on sequence modelling of the log files for anomaly detection
using deep learning. Most research in RNN:s for automated log anomaly detection
[7, 35, 26] use a semi-supervised approach which in this case means that only logs
without sequential irregularities, or ’normal’ execution path data, are used to train
the models. In this project we will mainly use an unsupervised approach and test
the assumption that the proportion of anomalies is small and in turn the model will
not be able to learn the patterns of these instances.

In order to evaluate the methods we will use two data sets. The first one consists of
the software test output from Volvo Group Trucks Technology (Volvo GTT) which
contain no information regarding which logs are anomalies except for a small data
set containing labelled log files used for evaluation. The second data set is from
the Hadoop Distributed File System (HDFS) and is a publicly available data set
[13] containing labels on a log level. The methods will be evaluated on the Volvo
GTT data set, the HDFS data set containing both anomalies and logs with normal
behaviour and lastly the HDFS data set with the anomalous logs filtered out.

2



1. Introduction

1.1.3 What is considered an anomaly?
Before giving an intuition behind what an anomaly could be in the data we need to
explain a bit about logging statements. Logging statements are messages inserted
into the code by developers intended to be printed out as a program is running. In
the following text logging statements will also be refered to as log lines.

One logging statement can be divided into variable and static components. The
variable components of a logging statement is the information that may change for
different runs of the program. For example, the timestamp in a logging statement
will change if a program is run at two different points in time. In order to explain
the variable components a written explanation is usually entered into the logging
statement to make the logs more comprehensible and this is called the static compo-
nent. Figure 1.1 contains a simple fabricated logging statement where the variable
and static component has been pointed out.

Figure 1.1: The static and variable components of a fabricated logging statement.

In this project we will model the logs as sequences of events defined by the logging
statements in a log. The events will in this project be defined as the static component
of a logging statement. An anomaly is then the pattern of a log corresponding to a
faulty process. Figure 1.2 depicts a simple fabricated example of a process working
as intended and figure 1.3 a faulty process. However, in the log data that has
been used in this project the anomalies might not be as easy to detect and may for
example consist of several lines which is why a deep learning approach was tested.

Figure 1.2: Fabricated example of a
normal log with the intended outcome.

Figure 1.3: Fabricated example of an
anomalous log with a faulty process.
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1. Introduction

1.2 Overview of Related Work in Automated
Anomaly Detection for Logs

In order to investigate research that has been done in the field of log anomaly detec-
tion LogPAI [17] has been used as a source of information. LogPAI is an open-source
platform containing research and implementation details for automated log analysis.

The focus of this thesis has been on approaches based on neural networks and there
are several works presenting neural network-based approaches to automated anomaly
detection. One possible approach is to use a recurrent neural network architecture
with long short term memory (LSTM) cells [7, 24] where the neural network model
is taught to predict the most likely subsequent log key given some past context
from the log sequence. This can be used for anomaly detection by pointing out
predictions that are not among the most probable subsequent log keys as anomalies.
These types of networks can also be used with attention mechanisms, such as in [35].

Other neural network-based approaches focus on the vector representations of logs
to be able to detect anomalous log lines as numerical outliers. For example, [26]
used a Transformer encoder model with the objective to enforce normal log lines
to be close to each other in vector space forming a cluster while the anomalous log
lines are further from this cluster of normal log lines. This is done to improve the
performance of clustering methods. Such an approach would require information re-
garding which logs are considered non-anomalous and can therefore not be applied
to the data provided by Volvo Group Trucks Technology (Volvo GTT).

Anomaly detection can also be implemented through an autoencoder neural network.
In this approach the objective is to reconstruct the initial input to the network. Au-
toencoders built as a sequence-to-sequence network with LSTM recurrent neural
networks have been used to reconstruct time series [22] to name an example. Ad-
ditionally, sequence-to-sequence networks are used in machine translation [30, 31].
In this project the data consist of integer sequences corresponding to a temporally
ordered sequence of log events, so instead of reconstructing some numerical vector
we aim to predict the integer (log event class) at each time instance. In short, each
sequence input is fed to an encoder and a representation of the original sequence
is fed to a decoder which then reconstructs the log sequence by predicting each log
key at the respective temporal position.

Additionally, other networks such as Transformers used for neural machine trans-
lation have also been used for anomaly detection in logs [15]. Transformers handle
sequence data but does not utilize recurrency in the manner that RNN:s do and have
been shown to perform better than RNN:s with LSTM in neural machine transla-
tion tasks [31]. In this project a Transformer autoencoder was implemented that
aims to reconstruct a log sequence in the same manner as the sequence-to-sequence
networks with RNN:s.

4



1. Introduction

Moving back to the data used in this project, we do not have access to a large sam-
ple of labeled data for the data provided by Volvo GTT and therefore do not know
which logs are anomalous and which ones are non-anomalous during the training of
the neural networks. This is different to the approaches in [7, 35] where the recurrent
neural networks are trained using data that conforms to normal behaviour. Because
of this we replicated our methods on the Hadoop Distributed File System (HDFS)
data [13] which has been used in these articles. We replicate our method using both
mixed data (data containing both regular behaviour and irregular behaviour) and
data only containing logs with only regular behavious.

5



1. Introduction

1.3 Project Description and Aim
The project was made available to us by Volvo Group Trucks Technology (Volvo
GTT) with the aim of exploring different data mining methods on their software
test output data. The purpose of the project is to find an efficient log analysis
method that alleviates the manual log analysis process. We wanted to explore dif-
ferent machine learning methods to obtain this goal but did not have access to
a large amount of labeled data. Therefore the main task of this project is to find
an anomaly detector that performs well on the Volvo GTT software test output data.

The aim of this project is further to investigate whether it is possible to create an
anomaly detector that has been trained in a completely unsupervised manner. To
this end we have explored different unsupervised anomaly detection methods on the
software test output provided by Volvo GTT. We want to compare and contrast
different types of neural network architectures in order to investigate which types of
architectures perform the best and potentially find an anomaly detector that can be
used in practice. The approach is unsupervised as there are no indications of what
could be an abnormal or normal log line or log file during training. Instead, neural
network models will be trained to learn the patterns of the sequence data and the
log files which the models do not perform well on are defined as predicted anomalies.

The architectures include LSTM-based models trained to predict a subsequent log
event, LSTM-based models that aim to reconstruct a sequence and a Transformer
architecture that also aim to reconstruct a sequence. The purpose is to find the
best performing architecture with corresponding hyperparameters. The hyperpa-
rameters we have used are guided by previous work done in the respective domain
and research.

To be able to compare our results we utilized a publicly available labelled data set
from the Hadoop Distributed File System (HDFS) [13] and replicated the entire
procedure used on the Volvo GTT dataset.

To conclude, the main objectives of this project has been summarized project below
in (i)-(iv).

(i) Literature study of unsupervised deep learning approaches for anomaly detec-
tion

(ii) Investigation of different neural network approaches

(iii) Implementation and comparison of different approaches on the Volvo GTT
dataset and the HDFS dataset

(iv) Evaluation of whether any of the implemented methods can be used in an
unsupervised setting to partly automate the log analysis for the Volvo GTT
data

6



1. Introduction

1.4 Limitations and Scope of the Project
The anomaly detectors for the Volvo GTT data has been trained with data where
there are no indications of what log files could contain anomalies. Therefore the
approach is completely unsupervised. Furthermore, as mentioned in Section 1.2 in
most other research that we are aware of only log files confirmed as ’non-anomalous’
have been used to train the neural networks. For the Volvo GTT data we train the
neural networks with log files that could be both anomalous and non-anomalous.
The assumption is that the portion of anomalies would be so small that the network
should not be able to learn the patterns of these sequences. For comparison to re-
lated work we have trained all of our models on both mixed data and only normal
data for the HDFS dataset.

During the course of this project we obtained a small labeled data set of log files
from the software test jobs to be able to evaluate the anomaly detection methods.
In this data set there are a total of 81 log files out of which 8 of these are confirmed
anomalous by developers at Volvo GTT and the other 73 log files are assumed to
contain no anomalies. In this data set the logs are labeled on a file level as being
either anomalous or non-anomalous. This dataset used for anomaly detection is
imbalanced and small which is why we used the HDFS dataset which contains more
labeled log sequences to get a more reliable result.

The Volvo GTT data set is on a file-level and in each file there are several temporally
ordered log lines containing information about the software tests performed. The
raw HDFS data set contains only log lines that can be sorted by a special identifi-
cation called a block-id. The block-id is unique for each log sequence so we sorted
the raw HDFS data set by grouping together the log lines belonging to a certain
block-id. In the HDFS data set we also observed that the length of a log sequence
belonging to a certain block-id can be an indicator of whether it is an anomaly or not
in itself. This was not observed for the Volvo GTT data and quantitative anomalies
are therefore not covered in this project.

Lastly, anomalies in log files can appear in the form of parameter value anomalies
such as the time it took to run a command, or abnormal numerical outcomes of a
command. In this thesis we focus only on sequential pattern anomaly detection with
the text information from logs. The reason for this is that we are starting from a
point where no machine learning methods have been tried for this data set. Thus,
we made the choice of restricting ourselves to sequential anomaly detection.

7



1. Introduction

1.5 Outline of the Thesis
The thesis starts with an outline of the theoretical aspects of the neural networks
utilized in this project in Chapter 2. The chapter starts with a general introduction
to neural networks and recurrent neural networks. Also in Chapter 2, there is a
detailed background of the long short-term memory (LSTM) cell, how the neural
network learns, and the individual components of the neural network architectures.

Chapter 3 will present the data pre-processing and model architectures then end with
an explanation of how the methods have been used to perform anomaly detection.
Next, Chapter 4 shows all the results of the applied models and methods. Last,
Chapter 5 presents a discussion of the results and the conclusions we have drawn
from the project and gives suggestions for future work.
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Neural network methods are a subset of machine learning methods, and machine
learning methods are commonly divided into supervised and unsupervised learning.
In supervised learning such as classification, the target (truth class) is known. In
unsupervised learning, it is usually the case that the response (target) variable is
unknown. Referring back to chapter 1, we mentioned that we are doing unsuper-
vised anomaly detection. However, in the approaches presented in this project, we
utilize entries from the log sequence as targets to be able to use supervised neural
network methods. The methods used in this project are unsupervised due to the
fact that we do not know which logs are anomalous and non-anomalous in the Volvo
GTT dataset during training of the neural networks.

In this chapter, we will present some theoretical background for neural networks.
This starts with a general background to feed-forward neural networks in section 2.1
and then move on to recurrent neural networks (RNNs) in section 2.2 which can be
used for sequence learning which is the main topic in this project. After the general
theory behind RNNs we will in section 2.3 explain how neural networks learn from
data. Lastly, in section 2.4 we will present the individual components and their
function of the neural networks that will be used in this project.
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2. Theory

Mathematical Notation

Notation
i/j Index
t Time step
x Input
O Output
y Target
w Weight
W Matrix of weights
b Bias
h Hidden state
c Cell state
K Amount of classes
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2.1 Neural Networks
The architectures of neural network methods are modelled on neurons in the brain
[23]. Figure 2.1 presents how one neuron generates output given some input x and
is a mathematical simulation of the neuron. The work progress will be like this:
the dendrites will carry the signals (the product of the input x and weight w, e.g.,
w0x0, w1x1, ....) to the cell body where they all get summed. Bias b is an additional
parameter to adjust the output and the weighted sum of the inputs to the neuron
and each neuron has its own bias. The signal transferred by the neuron is a function
f() called an activation function of the sum ∑

i wixi + bi. Some example activation
functions used in this project will be presented in section 2.1.1.

Figure 2.1: The mathematical illustration of one neuron.

In a neural network, the neurons are the smallest computational units which are
connected to each other and together build the network. Figure 2.2 shows how an
example network is structured with blocks of neurons, also called a layer of neurons.
The illustration specifically shows an example of a feed-forward neural network with
one input layer, one hidden layer, and one output layer. Each neuron corresponds
to the individual neuron in Figure 2.1 and has its associated weight. In general,
the weights between different pairs of neurons can be both positive or negative and
when the weight is zero it means that there is no connection between the pairs of
neurons. In addition, the computation is performed for all neurons in parallel, and
the outputs can be the inputs to other neurons at the next time step. Looking back
at Figure 2.1 the output of the neuron f(∑

i wixi + bi) is the input for the next
connected neuron.

When the neural network is training, the idea is to let the neuron transfer the input
to receive the output. The activation functions f() may be chosen during the con-
struction of the network, and different activation functions will give different types
of output. A simple linear model will be obtained if there are no activation functions
on any layer. The choice of the activation functions will depend on the situation
and we refer to section 2.1.1 for the activation functions used during this project.
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Figure 2.2: Illustration of an example feed-forward neural network.

Forward propagation is when input is fed to the model and the output is received
from this input. To name an example, in a classification task the output could be
the prediction of which class the input belongs to. In order to allow the network
to learn we use backward propagation of errors (backpropagation) where we go in
the opposite direction of forward propagation to minimize a loss function. The loss
function is used to measure the error between the ground truth and the prediction.
The goal during the training is to minimize the loss function. We use gradient de-
scent methods to adjust the parameters to minimize the loss, the objective is to
calculate the gradients of the loss functions with respect to weights and biases in
the neural network and fine-tuning the weights and biases according to the error
rate from previous learning (the parameter values of weights and biases for every
single neuron can be adjustable).

Different types and amounts of layers will form different types of neural networks.
See Figure 2.2 again, in this example neural network, only one hidden layer exists.
If there exist more hidden layers, this is a deep neural network. However, it is not
correct that choosing more hidden layers will always get better results. The com-
plexity of the data will determine the amount of hidden layers and widths of these
since if the choice of the amount of layers is not correct, the model can either under-
fit or overfit. Generally, underfitting is the case where the model has “not learned
enough” from the training data, resulting in bad predictions on both the training
data and unseen data, and overfitting is the case where the model has “learned too
much” from the training data, resulting in good predictions on the training data but
bad predictions on the unseen data.

There are several common neural networks such as single-layer perceptron, con-
volutional neural network, and recurrent neural networks.[23] In section 2.2, the
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recurrent neural network will be explained in detail since it will appear frequently
in the project.

2.1.1 Activation functions
As mentioned before, the purpose of the activation function is to enable the network
to learn complex patterns, and it will decide what to be transfer to the next neurons.
Here we outline three activation functions, sigmoid, tanh and ReLU, that will be
used in the architectures presented in this project. The output range of the sigmoid
function is 0 to 1; the output range of the tanh function is -1 to 1; and the range
of the ReLu function is 0 to infinity. Figure 2.3 to 2.5 shows the illustration of the
functions:

Sigmoid function (σ)
σ(b) = 1

1 + e−b
(2.1)

Tanh function (tanh)
tanh(b) = tanh(b) (2.2)

ReLU function (ReLU)

R(b) = max(0, b) (2.3)

Figure 2.3: Sigmoid
activation function.

Figure 2.4: Tanh
activation function.

Figure 2.5: ReLU
activation function.
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2.2 Recurrent Neural Networks
In the previous section Figure 2.2 showed an example of a feed-forward network. In
a feed-forward network the neurons are connected to each other in a forward fash-
ion. Recurrent neural networks (RNN) are neural networks with feedback loops, as
depicted in Figure 2.6. The feedbacks here can be placed in different ways: from
the output layer to the hidden neurons for example, or the connections between the
neurons in given layers. As shown in Figure 2.6: x1 and x2 are the input , h1 is the
hidden neuron. O1 and O2 are the output neurons. The weight from the input x to
the hidden neurons h is denoted as wxh.

Figure 2.6: Neural network with a feedback connection.

Recurrent neural networks handle sequential data and introduce the concept of a
time step. A time step is the part of a transfer in which neuron inputs are pro-
cessed into outputs, and then those outputs are fed to the next neuron. Basically,
the amount of time steps is equal to the length of the input, and it depends on the
setup: it can be characters, words or items. For example, if we feed the data word
"math" to the network, the input at time step 1 will be the character "m" and the
input at time step 2 will be the character "a" and so on.

In Figure 2.7 the evolution of a recurrent neural network over time is presented, the
left part refers to a single cell of the recurrent network and the right is the same
network as the left but unfolded in time. The unfolded network has t inputs and
outputs (t in here is the amount of time steps), and the weights between the different
time steps remain the same. h(t) and O(t) are the hidden state and output at the
same time step t, w(hh) is the hidden-to-hidden weight, w(xh) is the input-to-hidden
weight, and w(hO) is the hidden-to-output weight.

More specifically, the recurrence in the network comes from performing the same
computation for every element in the input. The equations 2.4 and 2.5 will explain
how a recurrent neural network evolves over time:

h(t) = σ(w(hh)h(t− 1) + w(xh)x(t) + b) (2.4)

O(t) = σ(w(hO)h(t)) (2.5)
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Figure 2.7: A single recurrent network cell (left) and the corresponding recurrent
network cell unfolded in time from time step 1 to time step t (right). [34]

As said previously in section 2.1.1, the activation function defined the output of a
neural given inputs. σ() function is the sigmoid activation function and the output
will be a value between 0 and 1.

We mentioned backpropagation which is the process of computing the derivatives
of the loss function with respect to the network weights and biases in section 2.1.
In a recurrent neural network we backpropagate through both time and layers. In
each time step we sum up all the previous contributions until the current one. This
computation is presented in (2.6) where the contribution of a state at current time
step t′ to the gradient of the entire loss function L, at time step t is calculated.

∂L
∂whh

=
t∑

i=0

∂Loss(t)
∂whh

∝
t∑

i=0

 t∏
i=t′+1

∂h(t′ + 1)
∂h(t′)

 ∂h(t′)
∂whh

(2.6)

Take a look at the ratio of the hidden state, if ∂h(t′+1)
∂h(t′) is less than 1, the equation

2.6 goes to zero exponentially fast, and the training will converge due to this.

The backpropagation computations will be performed more times in the deep re-
current neural network (since there exist more hidden layers in the recurrent neural
network). The weights are assigned by sampling from a Normal or Uniform distribu-
tion at the start of the neural network, and from there, they are updated during the
training process. When the weight of recurrent becomes very small due to repeat
multiplication the result can be a vanishing gradient, which may cause the neural
network to stop further training of the network completely, which is the vanishing
gradient problem.
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More specifically, the problem relates to updating the recurring weight – the weight
that is used to connect the hidden layers to themselves in the unrolled loop. This
can also be seen from Figure 2.7 (see the right part of the figure, the recurring weight
here is whh ). To get from x(3) to x(2) we multiply x(3) by whh. Then, to get from
x(2) to x(1) we again multiply x(2) by whh. So, we multiply with the same weight
multiple times, and this is where the problem arises. When multiplying a small
value several times, the value decreases very quickly, and can become close to zero.
The lower the gradient is, the smaller the update of the weights and biases and the
longer it takes to get to the final result, this is called the vanishing gradient problem.

The long short-term memory (LSTM) cell is one approach to solve the vanishing
gradient problem [1], the content will be described in detail in Section 2.2.1 below.

2.2.1 Long Short-Term Memory (LSTM)
Long short-term memory (LSTM) is a type of recurrent neural network. The only
difference is replacing the hidden neurons of the recurrent network with compu-
tation units, which are also called LSTM cells. Figure 2.8 shows the structure of
an LSTM network, similar to the recurrent neural network structure but replacing
hidden neurons with LSTM cells. The explanatory note on this figure provides two
new definitions: cell state and hidden state. The cell state encodes the aggrega-
tion of data from all previous time steps that have been processed, and the hidden
state encodes the characterization data of the previous time step. The time step t is
the current time, time step t−1 is the past time, and time step t+1 is the future time.

Figure 2.8: The repeating module in an LSTM .

Every LSTM cell has four single neural network layers that interact in some partic-
ular way, and they are called the input gate, the forget gate and the output gate.
Those gates are internal mechanisms to regulate the flow of information. The main
idea to solve the vanishing-gradient problem is to avoid the behaviour of recurring
computations. The forget gate in the LSTM cell can let the network encourage de-
sired behaviour from the error gradient using the gates update on every time step.
Simply said, the vanishing gradient problem occurs because the weights are multi-
plied by themselves several times, the forget gates in the LSTM cell will reset the
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update to reduce the issue of the repeated multiplication. To understand the exact
details, we should look at what happens in the forget gate.

Before the description of the forget gate we present an overview of the whole struc-
ture of a single LSTM cell in Figure 2.9. The rectangle with "sig" is the sigmoid
activation function (equation 2.1) and the rectangle with "tanh" is the tanh activa-
tion function (equation 2.2). Each circle in this figure is an individual neuron. The
"+" and "×" inside of the circles represent operations, "+" is vector addition and
"×" is component-wise vector multiplication. And one characteristic of LSTM can
be seen from the figure: the output will depend on three inputs: h(t− 1), x(t) and
c(t − 1). The h(t) are both the output of the LSTM cell at time step t and a part
of the input of the LSTM cell at time step t+ 1.

Figure 2.9: The structure of a single LSTM cell.

We start with explaining the forget gate (F (t) in Figure 2.9). The forget gate is
the first computational step in the LSTM cell, which can be seen in Figure 2.10 in
the single LSTM cell (assume this is not the first or last LSTM cell, it has both
the past state and future state). The concatenation of input data from times step
t and the hidden state of the past time h(t − 1) will be fed through a layer with a
sigmoid activation function: the grey area is what is called the forget gate which is
the part that decides what information will "forget". The sigmoid activation func-
tion outputs a number between 0 and 1. The number 1 here represents "keep all",
while the number 0 represents "throw all", a value between 0 and 1 represents the
throw percent.

Every gate has entirely separate sets of weights and bias. The function of the forget
gate F (t) will be:

F (t) = σ(Wf · [ht−1, xt] + bf ) (2.7)
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Figure 2.10: Forget gate in LSTM.

This function can be easily seen from the figure,[ht−1, xt] is the vector concatenation
of ht−1 and xt. The weights in the forget gate Wf will determine which time-steps
are important (high forget weights), which are not (low forget weights) and encode
information from the current time-step into the cell state, then the cell state will be
F (t) ∗ c(t − 1). If F (t) is zero, the cell state here will also be zero. Then the cell
state is reset. This is how the forget gate solve the vanishing gradient problem, once
the cell state is reset, the recurring behaviour will be stopped.

Next step is the input gate. See Figure 2.11 where the gray area covers the process
of the input gate.

Figure 2.11: Input gate in LSTM.
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The input gate will do two functions, one is the same function as forget gate but
with the input weights and bias:

I(t) = σ(WI · [ht−1, xt] + bI) (2.8)

This function (equation 2.8) will decide the input values, that is why this gate is
named input gate. Another function is to create new values ĉt (with its own weights
and bias) and then through a tanh activation function, which means the range of
the values will be between -1 to 1:

ĉt = tanh(Wc · [ht−1, xt] + bc) (2.9)

Next combine the I(t) and ĉt to through the tanh activation function to update the
cell state, the values to the cell state will be tanh(It ∗ ĉt).

Lastly, the gray area of Figure 2.12 shows the diagram of the output gate. In this
gate, a sigmoid activation function will decide the values to output by:

O(t) = σ(WO · [ht−1, xt] + bO) (2.10)

Then to decide the values to output in the cell state:

ct = F (t) ∗ ct−1 + It ∗ ĉt (2.11)

Finally the output h(t) is the filtered version (cell state through the tanh activation
function) of cell state c(t) multiplies O(t), and output h(t) is also the hidden state
to the time step t+ 1:

ht = Ot ∗ tanh(ct) (2.12)

Figure 2.12: Output gate in LSTM.

All information in this section explained how the LSTM works. As the earlier Figure
2.2 shows, the neural network has some layers. The below section will present the
process during training the networks.
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2.3 Training the Networks
The objective of training a neural network is to minimize the loss function and this
is how the neural network "learns". A neural network learns through the forward-
and backpropagation algorithms, as mentioned in Section 2.1. The input data is
sent to the network architectures in steps and forward propagation is performed to
yield the loss value. Then we backpropagate the loss function to obtain the gradients
with respect to each changeable parameter. There are different ways of updating the
parameters, one of them being the Adam optimizer [16] which adjusts the learning
during training.

Before training a neural network model the data is split into training and validation
data sets. The network will be learning from the training data and the validation
data is not used for learning but only for validating the progress of the training on
an unseen dataset (why we need validation data will be explained in the next para-
graph). The two datasets are completely independent. During training, the loss and
accuracy are evaluated for each epoch on the training data set and the validation
data set. An epoch is a training instance in which the network has been exposed to
the entire dataset once through forward- and backpropagation.

When training a network we want to find the point where the loss computed using
the training data is at its lowest value while simultaneously the loss value with the
same weights and bias values on of the validation data is at its lowest value. Contin-
uing to train the network when the training loss decreases while the validation loss
stays the same or even increases means we are overfitting the network. Overfitting
a network means that the training data is modelled in too much detail and does not
generalize well for other data. This is why the validation data set is utilized during
the training in order to evaluate the model on a separate data set other than the
training data. One way of detecting overfitting is to see if the training loss continues
to decrease while the validation loss increases after some iterations. To find the best
model for predicting new data, the training should stop before the network starts
to overfit on the training data.

To avoid choosing a state of the model where the network has overfitted we can
choose to save the model state each time the training reaches a new lowest valida-
tion loss. This means that we do not save the state when a network has overfit. The
subsection below will describe the loss function and optimizer that we choose to use
during training.
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2.3.1 Loss function
In our models, we use the categorical cross-entropy loss because we are working with
multi-class classification. Each model performs the task of classifying the most likely
log event given some context. The categorical cross-entropy loss is a Cross-Entropy
loss with a Softmax activation function. Usually, the softmax activation is applied to
the output of the layers before the cross-entropy loss. The categorical cross-entropy
loss will be used when we train the network to output a probability distribution for
the classes for each input. The cross-entropy loss function is defined as in (2.13).

Loss(x) = −
K∑

i=1
yi · logfi(x) (2.13)

x is the sample (input for this layer), y is the one-hot encoded vector of the ground
truth class so that yi is either 1 at the position of the correct class and 0 at all
other positions and K is the output size of this layer which corresponds to the total
amount of classes. fi(x) is the corresponding output value (estimated probability
that class i occurs). The minus sign ensures that the loss gets smaller when the
estimated probability of the correct class increases. The softmax function is defined
as in 2.14.

fi(x) = exi∑K
j=1 e

xj
(2.14)

In this function, the xj are the output of the layers inferred by the net for each class
in the output size, the softmax activation for a class xj depends on all the output
of the layers in input x.

2.3.2 Optimization algorithms
To update the weights and biases we utilize the gradients of the loss function with
respect to each weight and bias. We can use the gradient of the loss function
concerning each scalar entry to update the parameter values in gradient descent.
The manner in which the weights and biases are updated are determined by the
chosen optimization algorithm and the objective of the optimization algorithm is
to minimize the loss. For this project, we have used Adaptive Moment Estimation
(Adam) [16] but we will start with a brief introduction to mini-batch gradient descent
to explain the optimizer.

Mini-batch gradient descent

Mini-batch descent is a gradient descent algorithm, the goal is to keep loss as small
as possible. This algorithm splits all data into small batches to calculate loss and
update parameters. Batch is the size of the samples processed before the model
is updated (the size should be more than zero and less than the size of the entire
training dataset).
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A smaller batch size gives a learning process that quickly converges during training.
Larger values of batch size provide a learning process that will slowly converge as
the error gradient is accurately estimated. Usually the batch size is a power of two,
that can fit the CPU/GPU memory. In the update function below, the Θ is the
parameter and the η is the learning rate which is a hyper-parameter to control the
size of the update steps along the gradient, the range of learning rate is between 0
to 1. n is the batch size, M is the number of batches where M =

{
1, N

n

}
, N is the

number of the entire sample. The function will be updated the parameters at the
end of each batch (denoted as e) and the function is:

Θe+1 = Θe − η
1
n

n·(M+1)∑
n·M

5ΘeLoss (2.15)

Adaptive Moment Estimation (Adam)

Adaptive Moment Estimation (Adam) [16] is an algorithm that computes adaptive
learning rates for each parameter. Equations 2.16 and 2.17 are the exponential mov-
ing average, they will update the value by each batch. Where m and v are moving
averages, e and e − 1 are the epoch steps, g is the gradient of the loss given the
current batch, and β — new introduced hyper-parameters of the algorithm. The
vectors of moving averages are initialized with zeros at the first iteration.

Equations 2.18 and 2.19 refer the bias correction, when e is bigger, the 1 − βe
1 and

1− βe
2 will close to 1. Equation 2.20 will update the parameters and gives the out-

put. The ε here is just a small value (default 10−7 in Keras [4]) to make sure the
denominator of the equation is not zero. η is the learning rate.

me = β1me−1 + (1− β1)ge (2.16)
ve = β2ve−1 + (1− β2)g2

e (2.17)

m̂e = me

1− βe
1

(2.18)

v̂e = ve

1− βe
2

(2.19)

Θe+1 = Θe −
η√
v̂e + ε

m̂e (2.20)

When training the Transformer network with the Adam optimizer we noticed that
the loss increased drastically after some epochs. Therefore we implemented the
AMSGrad optimization algorithm [29] that claims to mitigate some issues that the
Adam algorithm might have with convergence. The use of AMSGrad was also mo-
tivated by the fact that this was used in the paper where the Transformer was
presented [31]. The difference between AMSGrad and Adam is that AMSGrad uses
the maximum of past squared gradients to compute v̂e instead of the exponential
moving average. For all other networks, we have used the Adam optimizer instead
of the AMSGrad optimizer because we did not notice any issues with convergence
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for the other methods.
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2.4 Components of the Neural Networks

Figures 2.2, 2.7 and 2.8 all depicted simple example structures of the neural network
in the previous section. In short, every neural network includes at least one input
and one output, with one or more layers in between. In this thesis we have used
some specific layers that will now be presented here. The full architectures of the
networks will be presented in section 3.3. We will begin by explaining the inputs
and the outputs used in this project to provide a better understanding of the layers.

2.4.1 Inputs and outputs to the networks
To reiterate, the theme of our project is sequence modeling. The input to our net-
work architectures are therefore sequences of integers corresponding to log lines that
in turn explain events in the log. The meaning of the integers can be thought of as
a class representing a certain event in the logs where the total amount of possible
integers are the total amount of classes and this is a fixed amount corresponding to
the possible events in a log. If we isolate one integer at one position in the sequence,
this can be thought of as the current class, or the current log event in the specific
time step. This integer can be represented as a one-hot encoded vector with the
same dimension as there are classes (log events) with a 1 at the position of the
integer value and 0 at all other positions. As a result, the inputs to the network are
one-hot encoded vectors representing a class of log lines. We will call a class of log
lines a log key.

The outputs of our networks are estimated probability distributions over all possible
classes or events in a log. The way that the network will produce this output is
explained in section 2.4.5. This ties back to the explanation of the loss function in
section 2.3.1 where we explained that the input to the loss function is the result of
a softmax operation.

2.4.2 Embedding layer
The embedding layer projects a one-hot encoded vector into a distributed represen-
tation of a different dimension. This requires an embedding matrixW (emb) initialized
randomly that is then updated during the training of the network. Assume that we
have a single log key integer that is one-hot (OH) encoded, x(OH)

i . The one-hot en-
coded log key vectors are of dimension K and the embedding matrix is of dimension
d(W (emb)) = (K × (embedding size)). The one-hot encoded log key is multiplied with
the embedding matrix resulting in a denser representation.

x(emb)
i = x(OH)

i W (emb) for all i in the input sequence (2.21)

The embedding size is an adjustable parameter in the embedding layer.
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2.4.3 LSTM layer
One LSTM layer consists of a set of recurrently connected LSTM-cells. The LSTM
layer has one changeable parameter which is the number of nodes in the hidden lay-
ers (dimensionality of the hidden layers) which is the number of cells in the forget
gate layer. The output from the LSTM-layer at each time step i is the hidden state
hi and the cell state ci as shown in 2.22. However, the output to be used as input
into other layers is hi. For simplicity we combine all computations of the LSTM-cell
explained in section 2.2.1 into a function LSTM()

hi, ci = LSTM(x(emb)
i , (hi−1, ci−1)) for all i in the input sequence (2.22)

2.4.4 Feed forward layer
In the feed forward fully connected (fc) layer all the neurons in the previous layer are
connected to all the neurons in the next layer. A fully connected layer is the matrix
multiplication between an input matrix and a weight matrix. This layer is normally
placed before the output layer and often follows LSTM layers. The function g() is
one of the activation functions mentioned in section 2.1.1. The vector x(fc)

i (2.23)
refers to the output vector from the fully connected layer.

x(fc)
i = g(hiW(fc) + bi) (2.23)

2.4.5 Output layer using a softmax activation function

Oi+1 = efyi∑
j e

fj
(2.24)

The output layer is responsible for producing the final result and in the sequence
modelling tasks in this project we want to output an estimated probability distri-
bution. The softmax function normalizes the input (vector of some real numbers)
into a probability distribution consisting of K (all possible log key classes) estimated
probabilities proportional to the exponential of the input size. The softmax function
is presented in (2.25).

Softmax(fyi
) = efyi∑

j e
fj

(2.25)

The output of the softmax can be interpreted as a probability vector because the
sum of each whole vector equate to 1. Thus, the output of the softmax layer is the
estimated probability that the input belongs to a certain class out of all the classes
which is the size of our vocabulary.
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2.4.6 Attention layers
Recurrent neural networks with LSTM carry information forward through the cell
state and the hidden state of the past time steps. However, when the length of the
input sequences increase some information may be lost. To combat this attention
can be incorporated in neural networks.

For example, attention can be implemented by including a so-called context vector [2]
which saves information from each hidden state. There are, however, several different
ways to implement attention mechanisms [20] but in this project we only use one
attention-based network architecture, the Transformer [31]. In section 2.4.6.1 we will
explain the mechanisms behind the attention mechanisms used in the Transformer
which is called multi-head self-attention. The network architecture will be presented
in section 3.3.4.

2.4.6.1 Multi-head self-attention layer

We will present the concept of multi-head self-attention by assuming we have some
input sequence X = {x1,x2, ...,xws} where the xt at some time t, t ∈ {1, ..., T} is a
vector.

The self-attention is implemented by creating three vectors (often referred to as
query (qi), key (ki) and value (vi)). To obtain these three vectors we utilize three
matrices W(query), W(key), W(value). Each matrix creates one of the three vectors
indicated by its name. Assuming that we want to feed the vector embeddings x(emb)

i

of dimension d(emb) of a one-hot encoded log key x(OH)
i the matrices are of dimension

d(emb). The result are the vectors qi (2.26), ki (2.27) and vi (2.28).

qi = x(emb)
i W(query) (2.26)

ki = x(emb)
i W(key) (2.27)

vi = x(emb)
i W(value) (2.28)

The output zi (2.29) of the self-attention layer is obtained by taking the sum of the
product of the weights (2.30) by the value vectors vj.

zi =
∑

j

wijvj (2.29)

wij = softmax( qT
i kj√
d(emb)

) (2.30)
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Multi-head attention means that instead of outputting just one output vector zi we
output h different outputs zk

i , k = 1, ..., h (2.31). The h parameter are called the
number of heads. To obtain this we split the embedding vector x(emb)

i into h chunks
x(emb),k

i of equal sizes of dimension dk, dk < d(emb). This requires h different matrices
W(query),k, W(key),k, W(value),k of dimension d(k) × d(k).

zk
i =

∑
j

wk
ijvk

j (2.31)

wij = softmax(
(qk

i )Tkk
j√

d(k)
) (2.32)

Lastly, to obtain the final output each zk
i (2.31) is concatenated and fed to a linear

transformation to yield zi of dimension d(emb).
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This chapter will describe the data and the methods used for anomaly detection.
Starting with section 3.1 and section 3.2 we will explain the details regarding how
we do data processing and create the data set that is to be used as input to the
neural network architectures for the models. Section 3.3 will show the architectures
of the neural network models. Then the following sections will present the methods
of anomaly detection.

3.1 Data Description
As previously mentioned in Section 1.3 we have utilized two datasets in this project.
To start with, we will present the Volvo GTT data set in Section 3.1.1 and this will
be followed by a description of the HDFS data set in Section 3.1.2. Before we begin
we will shortly explain the definitions of the labels in the data sets. The labels are
indicative of whether a log sequence is an ’anomaly’ or ’normal’ which corresponds
to the patterns of the sequences. The labels are on a log level where the log is a
collection of temporally ordered log lines. A log file labeled as an ’anomaly’ contains
one or more sequential irregularities while a log file labeled as ’normal’ is expected
to have no irregularities.

Furthermore, we have distinguished between the data sets used in the process of
training a neural network model and the data sets used in the process of evaluating
the anomaly detection. For the Volvo GTT data set we have a separate labeled data
set used for anomaly detection. For the case of the HDFS data set we need to create
an anomaly detection data set which is a random sample of log sequences from the
full data set.
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3.1.1 Volvo Group Trucks Technology (Volvo GTT)
The Volvo GTT data set consists of a sample of software test output contained in
text-files (.txt) during a time span of four months. Each of the files contains infor-
mation from the test jobs and the text contained in the files can be split into lines,
which we will refer to as log lines. The samples collected over four months contain
no labels and it will be referred to as the Model training data set. This corresponds
to the mixed data set in the HDFS data presented in section 3.1.2. That means
that there is no knowledge about which log files contain one or more anomalies and
which ones do not. To be able to evaluate the methods we received a small sample
containing a total of 81 log files collected after the primary sample was collected and
this data set will be referred to as the Anomaly detection data set. The Anomaly
detection data set has not been used for training any of the models.

Model
training
data set

Anomaly
detection
data set

Total number
of

log files
34 083 81

Total number
of

log lines
13 436 501 59 601

Number of
log files
labeled as
anomalous

Unknown 8

Table 3.1: Description of the data sets where the Model training data set are the
amount of log files used when training the neural network models and the

Anomaly detection data set is the data set used when detecting anomalies for the
Volvo GTT data set.

In detail, each log file consists of several executed tests. The tests are distinguish-
able inside the log file, with a command presenting the test being executed and
some subsequent responses to the test (whether it was successful or if the response
was abnormal). The data contains human-readable text with time stamps and some
semi-structured text such as Extensible Markup Language (XML).

During the course of the project we found that splitting each log file on the distin-
guished tests inside a log file before anomaly detection improved the performance of
the anomaly detection. However, it was better to train the neural networks on the
data without using this split which is why we did this afterwards. We assume that
this is due to the fact that the different tests are not always executed in a certain
order and this is the format of the data we have used to produce the results.
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3.1.2 Hadoop Distributed File System (HDFS)
The Hadoop distributed file system log (HDFS) dataset [38] used in this project
contains 575 061 log sequences called blocks that are labelled either as ’normal’ or
as ’anomaly’. It is a publicly available dataset and was used in this project to have
as comparison to the Volvo GTT dataset which only contains a small proportion of
labelled data.

The dataset was retrieved from Loghub Zenodo [38]. In its raw form it only con-
tains the log output as unstructured text produced by concurrent processes and the
labels are in a separate table containing labels for each block-id. In order to use
this data as separate log sequences we utilized the block-id:s of each line to group
the log lines together that belonged to one block id. This process can be found
in the preprocessing implementation details provided by LogPAI [14]. The result
is a dataset containing a log sequence for each block-id representing a single process.

To obtain separate datasets used for training the networks and performing anomaly
detection we split the entire dataset randomly where 80% of the data was chosen to
be the Model training data and 20% to be the anomaly detection data. Figure 3.3
shows the workflow of splitting dataset.

Figure 3.1: Workflow of how the HDFS data set is split into a model training
data set and an anomaly detection data set.

In addition, we create two types of training datasets: Model training (mixed dataset)
includes block-id:s with ’anomaly’ label. Then we remove all the block-id:s with
’anomaly’ label from the Model training (mixed dataset) to create Model training
(normal dataset). Table 3.2 contains an overview of the datasets.
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Model
training

(mixed dataset)

Model
training

(normal dataset)

Anomaly
detection
dataset

Number of
block-id:s 460 048 446 541 115 013

Number of
block-id:s
labeled as
anomalous

13 507 (3%) 0 3 331 (2,9%)

Table 3.2: Description of the mixed data set and the data set containing only
normal log files for the HDFS data set.

3.2 Data Preprocessing
To be able to use the log file data in the sequence learning models it needs to be
converted to numerical values. In natural language processing [10] this is commonly
done by going through the entire data set consisting of text and extracting all unique
words. After this a dictionary can be created with all unique words, and in this dic-
tionary an integer is mapped to each of these unique words. This means that each
particular word can be identified by an integer. The process of mapping text to an
integer and creating a dictionary is called tokenization [10].

We have used tokenization in this project but not on a word level, but instead on a
log line level. However, log lines often consist of various variable components such as
time stamps and parameter values. The variable components can best be explained
by a simple example print statement in a program such as print(’The value of
variable x is %d’). When running the program we then get a statement and let
us say that this is The value of variable x is 0. The static component of this
print statement is The value of variable x is * while the variable component
is the numeric value which is 0.

The variable components, especially in the case of time stamps, introduce the issue
of a very large dictionary if we were to tokenize these directly. In addition, if the
time stamps are present each newly created log line would be a unique word in
the dictionary unless the exact same log statement was created at the exact same
time. There is little meaning in the patterns produced if every single log line is its
own unique entry in the dictionary. Because of this we need to extract the variable
components from the log lines, we will call this cleaning the log lines.

Continuing on the topic of cleaning the log lines, we used regular expressions (regex)
to remove variable components that follow a certain pattern. One example of a pat-
tern is the pattern of a timestamp, which could be YEAR:MONTH:DAY HOUR:MINUTE:SECOND.
Regex can remove these types of patterns and we have used the following patterns
to clean the data consisting of log lines:

• Numerical values

32



3. Method

• Non-alphanumeric characters
• Replace empty lines with a string (empty_line)

After cleaning the log lines, we create a dictionary mapping each unique clean log
line to an integer which is refered to as the log key. The dictionary can then be
used to produce integer sequences where each integer in the sequence correspond to
a cleaned log line.

An example of the data cleaning is found in figure 3.2, with a log line from the
HDFS dataset.

Figure 3.2: Example of preprocessing done with regex of a log line in the HDFS
data set.

The order of converting the raw log file data to an integer sequence is therefore as
described below:

• Split each log file into a sequence of log lines
• Clean each log line with the stated regex methods to obtain the static version

of a log line
• Convert the static versions of the log lines of the log into integers using the

dictionary. This creates a sequence of integers also called a log sequence.

The result of this preprocessing is a sequence of integers which represents sequences
of temporally ordered events in the log. The entire workflow has been visualized in
figure 3.3.

The resulting log integer sequences are of variable size, and can be long. This intro-
duces an issue regarding long-term dependencies with sequence modelling. Because
of this we used a so-called sliding window technique to decrease the length of the se-
quences to perform pattern recognition on. This method will be explained in section
3.2.1.
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Figure 3.3: The data pre-processing flow going from a completely unprocessed
set of log files to the integer sequences representing the log files.

3.2.1 Sliding window technique
The idea behind the sliding window technique is to traverse through a log sequence
and divide the sequence into fixed size windows while still preserving the temporal
order of the integers.

Sliding windows require a window size and a step size. The window size determines
how long a window should be while the step size determines the step taken while
creating one window to the next. In this project we have used a window size of 10
and a step size of 1 for all models, which is what we found was the best for the Volvo
GTT data. This creates overlapping windows from the log integer sequence.

The sliding window technique is described in (3.1) as the creation of sliding windows
from an example integer sequence. In this example, the sequence length is 5, the
window size is 3 and the step size is 1.

2
1
3
20
5

→
[2 1 3]
[1 3 20]
[3 20 5]

(3.1)
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3.2.2 Vector representation of log keys
The inputs into each of the networks that will be presented in section 3.3 are vector
representations of the log keys. As explained in previous sections 3.2 and 3.2.1 we
create sequences of log keys by assigning an integer to each unique cleaned log line.
The cleaned log lines and their corresponding integer then composes the dictionary
of all log keys. This process enables the log keys to be represented in vector format
by one-hot encoding the log keys.

A one-hot (OH) encoded log key is a vector the same size as the size of the dictionary,
or the vocabulary size. The vectors has zeros in all positions except for the position
indicated by the log key integer. Assume that the log key integer is 2 and the size
of the vocabulary is 4. A one-hot encoded representation of this log key is then as
in (3.2).


0
1
0
0

 (3.2)
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3.3 Network Architectures and Methods for Pre-
diction

In this section we will present the architectures of the networks. So if we think of the
layers presented in section 2.4 as the building blocks of the neural networks, we now
want to present the entire structure. Furthermore, we want to explain how these
models learn the patterns of the sequences and how they can be used for anomaly
detection.

We have utilized four different architectures to compare anomaly detection perfor-
mances. The four different architectures can be divided into two main approaches.
The first approach is to teach the model to predict a subsequent log key given some
previous context window from the log sequence. The second approach is to try to
reconstruct the context window.

The first approach is similar to the approach used DeepLog [7]. A recurrent neural
network with LSTM-cells presented in 3.3.1 is used with the intention of creating
a predictor for the subsequent log key given a window of past log keys of a fixed
size. We also tried an extension to this, a bidirectional network presented in 3.3.2,
which draws information from both past and future information from the sequence.
Moreover, two sequence-to-sequence models were evaluated which include an LSTM-
based model presented in 3.3.3 and a Transformer presented in 3.3.4.

Notation

ws := window size (3.3)
T := indices of time step in the window of size ws, t ∈ T = {1, ..., ws} (3.4)
`t := log key at time step t (3.5)
`0 := special token log key ’sos’ (3.6)
xt := one-hot encoding of one log key `t at time step t (3.7)
Ot := output from the model corresponding to time step t (3.8)
ˆ̀
t := argmax(Ot), predicted log key at time step t (3.9)
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3.3.1 Unidirectional Long Short TermMemory Network (uni-
LSTM)

In the unidirectional LSTM (uni-LSTM) network the objective of the training of the
neural network is to learn to predict a log key integer given log keys from past time
steps of a fixed window size. In Figure 3.4 we have a scheme of the architecture of
this network.

Figure 3.4: Visualization of the unidirectional recurrent neural network with
LSTM-cells unfolded in time that predicts the next coming log key given a window
of window size (ws). The last layer, the softmax layer, generates an estimated
probability distribution over all possible log keys.

The input into the network presented in Figure 3.4 are one-hot encoded log keys
which represent the log keys at a certain time step in the window. The one-hot
encoded log keys are fed to an embedding layer (performing the operation presented
in Section 2.21). The embedding layer projects the input to another dimension and
makes the vector a distributed vector instead of a one-hot encoded vector. The dis-
tributed vector is fed to an LSTM-cell and the cell state and hidden state is carried
forward over time. The last output from the LSTM-layer is fed to a fully connected
layer to project the vector to a dimension the same size as the size of the dictionary.
The output from the fully connected layer is then fed to a softmax layer that com-
putes the estimated probability distribution over all log keys given information of a
fixed length (the window size).

The predictions are received by finding the log key with the highest estimated prob-
ability. The output is ˆ̀

t=ws+1 = argmax(Ot=ws+1) if we wanted to output the most
likely log key. For anomaly detection we use the top-n method [7] that will be
presented in Section 3.4.
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3.3.2 Bidirectional Long Short Term Memory Network (bi-
LSTM)

In the bidirectional LSTM (bi-LSTM) network there are basically two independent
LSTM networks coming from different directions in the log sequence. The network
is therefore constructed to predict a log key given the past and the future. The
architecture can be seen in figure 3.5.

Figure 3.5: Visualization of the bidirectional recurrent neural network with
LSTM-cells unfolded in time that predicts a log key given a window of window size
(ws) taking information both from the past and the future. The last layer, the
softmax layer, generates an estimated probability distribution over all possible log
keys.

The process in the bi-LSTM is the same as for the uni-LSTM, presented in sec-
tion 3.3.1 with the exception that we have two LSTM layers coming from different
directions. One of the LSTM layers take a context of a certain window size from
the past and the other takes a context of a certain window size from the future.
The estimated probability distribution coming from the softmax layer is therefore
instead the probabilities of the log key given the past and the future.

The same method for prediction is used for the bi-LSTM model as for the uni-LSTM
model with the exception that we now want to predict ˆ̀

t=ws+1 = argmax(Ot=ws+1)
which is a result of the concatenation of the vectors ht=ws and ht=ws+2 fed through
a fully connected layer and a softmax layer. The anomaly detection method is the
same as for the uni-LSTM model, the top-n method, presented in section 3.4.
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3.3.3 Sequence-to-sequence LSTM Architecture
In a sequence-to-sequence LSTM architecture both the input and the output consists
of a sequence of a certain window size. Similar architectures are used in for example
machine translation [30] mentioned in section 1.2. The sequence-to-sequence archi-
tecture can be divided into two separate networks: an encoder and a decoder, as
presented in figure 3.6.

The arrows between the encoder and the decoder represent the hidden state (hws)
and the cell state (cws) (Figure 2.9) after the last input into the encoder. The cell
state and the hidden state are used as the initial states in the decoder-network. The
decoder is used to reconstruct the input based on these states.

Figure 3.6: Visualization of the LSTM sequence-to-sequence autoencoder
architecture where the input to the decoder is the input used during training.

In the training stage of the model, the input window is fed to the encoder. It is this
input that is visualized in Figure 3.6. The sequence fed to the decoder contains the
vector representation x0 of a special token `0 (3.6) representing a start of sequence
token and has one less element than the encoder input at the end. This enables the
network to learn to predict the coming log keys. This means that the input into the
decoder is of the same format as presented in 3.11. This is called teacher forcing [30].

X(encoder) = {x1,x2, ...,xws} (3.10)
X(decoder) = {x0,x1, ...,xws−1} (3.11)
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During prediction when we use the model for anomaly detection there is no teacher
forcing, instead the predicted log key from the previous time step is used as input
to the decoder. To predict the first log key `1 we utilize the special token `0. This
predicted log key is then fed to the decoder in the next step and this procedure
keeps going until a sequence of the window size has been created. The algorithm is
explained in detail in Algorithm 1.

Algorithm 1: Prediction algorithm for the LSTM sequence-to-sequence model
Result: Sequence of predicted reconstructed log keys {ˆ̀1, ˆ̀2,..., ˆ̀

ws}
Feed X(encoder)={x1, x2, ..., xws} to the encoder to obtain hidden state hws and
cell state cws;
Feed vector representation of special token `0 to the decoder and obtain O1;
Save ˆ̀1 = argmax(O1) as the predicted log key for t = 1;
for t=2,...,ws do

Feed vector representation of ˆ̀
t−1 to the decoder and obtain Ot;

Save ˆ̀
t=argmax(Ot) as the reconstructed log key at time t;

end
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3.3.4 Sequence-to-sequence Transformer Architecture
This architecture is the same architecture as presented in [31]. We will present it
here to explain how we have used the network. The Transformer performs the same
task as the LSTM sequence-to-sequence network presented in the previous section
(section 3.3.3). The main difference is that no recurrent mechanism is used for this
network. Instead all of the layers are feed-forward layers and self-attention layers.
To keep track of the positions of the log keys in the input sequence two operations
are performed: a positional embedding and a sequence embedding.

For an explanation of what happens in the embedding layers we refer to section
2.4.2. The task of the sequence embedding is the same as in the LSTM networks. In
the case of the Transformer, the positional embedding serves to project the one-hot
encoded position of a log key at a temporal position in the sequence into a lower
dimension. This is done in order to preserve information about the order of the log
keys in the sequence.

The multi-head attention, as explained in section 2.4.6.1 is positioned at three places
in the model and the output from the attention layer is added and normalized with
the input into the attention layer. After addition and normalization the vectors are
fed to a feed forward layer as presented in Section 2.4.4 with a ReLU activation
function which was presented in Section 2.1.1.

The encoder and the decoder both contain a block of four layers that are presented in
figure 3.7. In the following explanations we will refer to this block as the Transformer
block.

Figure 3.7: Visualization of the Transformer block used to build the Transformer.
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The entire network of the Transformer is presented in figure 3.8 and we will now
shortly explain the workings of the network, starting with the encoder. When input
is fed to the encoder this means that the input positions and the input sequences
are fed to an embedding layer and then combined by vector addition. The resulting
vector is copied 4 times and fed to a Transformer block. The encoder computations
are repeated N times where the output of the encoder is fed back to the encoder.
The last output is then fed to the transformer block in the decoder along with the
vectors created by the previous operations in the decoder (as can be seen in figure
3.8). The decoder operations are also repeated an N amount of times in the same
manner as for the encoder. Finally, before the softmax layer which computes the es-
timated output probabilities a linear transformation xout

i = xin
i Wl +b is performed

on the vectors fed to the layer.

During training the network uses teacher forcing in the same manner as explained
in section 3.3.3. The difference in the Transformer is that no recurrent mechanism is
utilized. Instead, there is a masked multi-head attention present in the decoder. The
masked multi-head attention prevents the network from accessing future log keys in
the window. Assume that we have some window of log keys from a log sequence
{55, 10, 1, 43, 1, 2, 3, 9, 75, 30} that we want to reconstruct. The input into the de-
coder is then {′sos − token′, 55, 10, 1, 43, 1, 2, 3, 9, 75}. At time step 0 the decoder
receives the ′sos− token′, at time step 1 the decoder receives the {′sos− token′, 55}
and this continues until it has received the entire decoder input sequence. After
the network has been trained and the model is used for prediction we follow the
algorithm presented in Algorithm 2.

Algorithm 2: Prediction algorithm for the Transformer sequence-to-sequence
model
Result: Sequence of reconstructed log keys { ˆ̀1, ˆ̀2,..., ˆ̀

ws}
Feed X(encoder)={x1, x2, ..., xws} to the encoder to obtain the queries q and
keys k;
Feed `0 to the decoder and obtain ˆ̀1 = argmax(O1);
Save ˆ̀1 as the predicted log key for t = 1;
for t=2,...,ws do

Feed {`0, ˆ̀1,..., ˆ̀
t−1} to the decoder and obtain ˆ̀

t = argmax(Ot);
Save ˆ̀

t as the reconstructed log key at time t;
end
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Figure 3.8: Visualization of the Transformer network.
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3.4 Detecting irregularities from the model pre-
dictions

In the uni- and bi-directional LSTM networks presented in previous sections 3.3.1
and 3.3.2 we utilized a method which we will call the top-n method to detect irregu-
larities. The top-n method of anomaly detection was presented in DeepLog [7]. The
method consist of sorting the softmax output containing an estimated probability
distribution from the model in descending order. Then if the true subsequent log
key is not among the top n most likely subsequent log keys we have encountered
an irregularity. The irregularities are used to detect anomalous log files. The entire
method of detecting an anomalous log file will be explained in section 3.5.

The disadvantage of this method is the fact that the parameter n needs to be defined
and considering there is no prior knowledge of what could be considered an anomaly
in the Volvo GTT data set we needed to find this threshold n with trial-and-error.
In the results presented in chapter 4 we have just shown the results for the best
threshold n. This motivates the use of the sequence-to-sequence architectures, where
we aim to get rid of the thresholds. In the sequence-to-sequence architectures, we are
simply assumed to have found an irregularity if the window was not reconstructed
correctly.
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3.5 Detecting Anomalous Log Files from Model
Predictions

During the training of the neural network models used in this project the objective
is to create a model that either predicts the target log key correctly as in the uni-
and bi-LSTM models presented in sections 3.3.1 and 3.3.2 or reconstructs the input
sequence correctly as the sequence-to-sequence models presented in sections 3.3.3
and 3.3.4. The assumption that will be tested is that log lines corresponding to an
anomaly is rare and following this the neural network models will not be able to
learn these patterns.

This is on the level of a window (section 3.2.1) of log keys. We want to point to
the log files that contain an anomaly. Because of this we now define what we will
consider to be an anomalous log file and the background to the results in section
3.5.1. We then move on to explaining the evaluation metrics in section 3.5.1.2.

3.5.1 Log File Anomaly Definition and Metrics

3.5.1.1 Definition of an Anomalous Log File

The anomaly detection takes place on a file level and therefore a log file is defined as
anomalous if it contains one or more wrong predictions. This is further motivated by
that the data sets utilized in this project contain labels on a log sequence level. For
the HDFS data set this means that each block-id has a corresponding label and in the
Volvo GTT data set each log file in the evaluation data set has a corresponding label.

During anomaly detection for one log file we therefore follow the procedure below:

• Read the log file and preprocess the log file so that we receive the corresponding
log integer sequence

• Convert the log integer sequence into windows of equal window size
• Perform the prediction algorithm from the respective methods
• if #correct predictions

#all predictions < 1 → log file is predicted anomalous

The reason why this definition was used is that in the Volvo GTT data set a log
file/log sequence could be labeled as an anomaly but this does not necessarily mean
that each line in that log sequence is anomalous. Because the log file data contains
the result of software testing this means that some parts of the code could be work-
ing correctly and be non-anomalous, while some other part of the code is anomalous.
It is also difficult to label the logs on a log line level as several log lines could express
the anomaly.
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3.5.1.2 Evaluation metrics

The anomaly detection method is a binary classification task on a log file level with
the two classes anomalous (positive) and non-anomalous (negative). If an anomaly
has been detected this is considered a positive prediction (3.12), and this happens
when not all log lines are predicted correctly, that is if #correct predictions

#all predictions < 1. The
method has classified a log file as non-anomalous if there are no wrongly predicted
log lines, and this is considered a negative prediction (3.13).

Positive prediction := log file is classified as anomalous (3.12)
Negative prediction := log file is classified as non-anomalous (3.13)

To evaluate the anomaly detector the occurrences of true positives (TP), true neg-
atives (TN), false positives (FP) and false negatives (FN) were measured. The
meaning of a true prediction is that the label on the log file corresponds to the
prediction, while a false prediction is one where the label does not correspond to the
prediction. Table 3.3 depicts all possible scenarios.

Ground truth
Anomalous Non-anomalous

Prediction Anomalous True positive
(TP)

False positive
(FP)

Non-Anomalous False negative
(FN)

True negative
(TN)

Table 3.3: Table of metrics.

From these scenarious the evaluation metrics presented in (3.14), (3.15), (3.16) and
(3.17) will be used.

Accuracy = TP + TN

TP + TN + FP + FN
(3.14)

Precision = TP

TP + FP
(3.15)

Recall = TP

TP + FN
(3.16)

F1 = TP

TP + 1
2(FP + FN) (3.17)

The accuracy (3.14) measures how many correct predictions there are in relation to
the total amount of predictions. However, the accuracy can be high if the model only
detects the true negatives which is not a useful model. Therefore the precision (3.15)
which shows the rate of true positives in comparison to all positive predictions. The
recall (3.16) shows the rate of true positives to all predictions of a log file labelled as
an anomaly. The F1-score (3.17) is a combined metric for the precision and recall.
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3.6 Implementation
The many-to-one recurrent LSTM models were implemented in Keras [4] with the
TensorFlow framework. These models were trained on a CPU.

The autoencoder models were implemented with Pytorch [27] and trained using a
Nvidia GTX 1080Ti graphics processing unit (GPU)
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4
Results

The following sections will present the results for the Volvo GTT (section 4.2)
dataset and the HDFS (section 4.3) dataset. The results are presented using train-
ing datasets of different sizes. The sections will start with details regarding the size
of the dictionary and the amount of windows in the data sets using a window size
of 10 and then move on to the anomaly detection results for the different methods.
Finally we will compare the results of the best performing models for each data set.

All of the models have been trained with 10 epochs. The training converged quickly
for the models and we did not detect any overfitting with the Adam optimizer and
an initial learning rate of 10−4 for the uni-LSTM and bi-LSTM models. The param-
eter values used in the Adam optimizer was β1 = 0.9 and β2 = 0.999 which are the
default values for the Adam optimizer in Keras [4].

Moving on to the Transformer, using the entire data set and the Adam optimizer
with a learning rate of 10−4 introduced a problem with a drastically increasing loss
value after a certain amount of epochs. Because of this we used AMSGrad [29] for
the training of the Transformer. The Transformer models have been trained for 10
epochs using the Adam optimizer [16] with β1 = 0.9, β2 = 0.98 and ε = 10−9 with
AMSgrad [29] which solved this issue. The parameters are the same ones used in [31].

For all models we have used mini-batch training which means that during one epoch
the training samples are sent to the model in batches. For this end we tried batch
sizes between 64, 128, 256 and 512. We did not notice any significant difference
when training the models and used 128 for the Volvo GTT data set and 64 for the
HDFS data set as batch size in the results presented in section 4. The batch size
determines how many samples of windows as presented in section 3.2.1 the model
should be exposed to before updating the weights.
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4. Results

4.1 Data Overview
In this section we present the results from the pre-processing of the log files. All of
the data sets were divided into windows of window size 10 (windows of window sizes
5 for the bi-LSTM models which results in a context length of 10) and the amount
of windows present the total amount of windows on which the models were trained
on. The Volvo GTT data set has a dictionary size of 533 and is presented in table
4.1 and the HDFS data set is presented in table 4.2.

Proportion
of the
data set

1% 5% 10% 100%

Number of
windows

(window size 10)
91 528 457 643 915 286 9 152 860

Table 4.1: Description of the amount of windows used for the Volvo GTT data
set.

The HDFS data set is divided according to two different methods. In the first data
set corresponding to the (mixed data) data sets in table 4.2 log sequences labeled as
anomalies and normal are mixed. The data set corresponding to the (normal data)
data sets in the table contain only log sequences that are confirmed normal. The
Model training (mixed dataset) has a dictionary size of 97 and the Model training
(normal dataset) has a dictionary size of 55.

Model
training

(mixed dataset)

Model
training

(normal dataset)
Propottion

of the
data set

1% 5% 10% 100% 1% 5% 10% 100%

Number of
windows

(window size 10)
42415 212074 424148 4241476 43767 218838 437676 4376760

Table 4.2: Description of the amount of windows used for the mixed data set
(mixed data) and the data set containing only normal log files (normal data)

respectively for the HDFS data set.
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4.2 Volvo GTT

Architecture Layers Hidden
size Heads Batch

size Epochs

uni-LSTM 1 128 - 128 10
bi-LSTM 2 128 - 128 10
LSTM
seq2seq 3 128 - 128 10

Transformer
seq2seq 6 256 8 128 10

Table 4.3: Summary of all the model parameters used for producing the results
when training models with data provided by Volvo GTT.

For the bi- and uni-LSTM models on the Volvo GTT data we tried hidden sizes
64, 128 and 256. The hidden sizes here refer to the embedding size, the size of the
hidden state vector in the LSTM cells and the size of the output vector from the
fully connected layer (Section 3.3.1 and 3.3.2). The models performed the best with
a hidden size of 128 so this is what we have used in the results.

For the LSTM sequence-to-sequence model we found that more than 1 LSTM layer
performed the best with the best amount of layers being 3. The hidden size of 128
also performed the best here, although this was still an unusable model for anomaly
detection. For the Transformer, we used a hidden size of 256 with 8 heads.
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4. Results

4.2.1 Uni-LSTM model
The uni-LSTM models use the same method as the LSTM sequential anomaly detec-
tor in DeepLog [7]. The results are for the best thresholds which have been included
in Table 4.4.

Figure 4.1: Results of the uni-LSTM based anomaly detectors for various
proportions of the training data on the Volvo GTT data.

The uni-LSTMmanages to catch all the log files labeled as anomalies for the different
proportions of the data set. The best performing model is therefore the one that
classifies the least false positives. This is the model trained with 10% of the data
set. The TP, FP, FN and TN scores can be found in Table 4.4. Notably in all cases
using the uni-LSTM we did not observe any false negatives (FN) which means that
the model successfully catches the true anomalies.

Proportion
of the
dataset

Threshold TP FP FN TN

1% 20 8 16 0 57
5% 9 8 8 0 65
10% 9 8 7 0 66
100% 5 8 13 0 60

Table 4.4: True positives (TP), false positives (FP), false negatives (FN) and
true negatives (TN) for the uni-LSTM models with varying proportions of the data

set anomaly detection results on the Volvo GTT data.
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4. Results

4.2.2 Bi-LSTM model
In contrast to the uni-LSTM models, the bi-LSTM models produce false negatives
(FN) when using 10% and 100% of the data set. The model trained using only 1%
of the data produces the overall best result indicated by the F1-score.

Figure 4.2: Results of the bi-LSTM based anomaly detectors for various
proportions of the training data on the Volvo GTT data.

In Table 4.5 we can see the details and the thresholds used for producing these
results. For this model there are cases when the model does not catch all anomalies
as opposed to the uni-LSTM model. This means that if this model was to be used
for anomaly detection important information would be missed meaning that this is
not a preferable anomaly detection method to the uni-LSTM model.

Proportion
of the
dataset

Threshold TP FP FN TN

1% 8 8 8 0 65
5% 3 8 19 0 54
10% 5 6 7 2 66
100% 5 6 7 2 66

Table 4.5: True positives (TP), false positives (FP), false negatives (FN) and
true negatives (TN) for the bi-LSTM models with varying proportions of the data

set anomaly detection results on the Volvo GTT data.
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4.2.3 LSTM sequence-to-sequence model
When evaluating the anomaly detection performance of the LSTM sequence-to-
sequence model the result was that no log files were ever predicted correctly. In
order for a log file to be considered non-anomalous all of the windows of log keys in
the log file should be predicted correctly, and this never happened in these results.
The minimum accuracy for one log file was 0.451 and the maximum accuracy was
0.555 which means that it detects anomalies in all of the log files presented to it. This
resulted in the amount of true positives being 8 and the amount of false positives
being 73.
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4.2.4 Transformer sequence-to-sequence model
While creating the anomaly detector and choosing hyperparameters for the Trans-
former we noticed that less data produced better results which can be seen in Figure
4.3 and Table 4.6.

Figure 4.3: Results of the Transformer based anomaly detectors for various
proportions of the training data on the Volvo GTT data.

The amount of true positives (TP), false positives (FP), false negatives (FN) and
true negatives (TN) are presented in table 4.6 for reference. The model using 1% of
the data performed the best and when we increased the size of the data set the model
performs worse. One interesting observation is that the false positives (FP) stays
the same at a value of 7. This was also the lowest observed value in the uni- and
bi-LSTM models. Nevertheless, a model missing anomalies is not a useful model.

Proportion
of the
dataset

TP FP FN TN

1% 8 7 0 66
5% 4 7 4 66
10% 4 7 4 66
100% 2 7 6 66

Table 4.6: True positives (TP), false positives (FP), false negatives (FN) and
true negatives (TN) for the Transformer mosel with varying proportions of the

data set anomaly detection results on the Volvo GTT data.
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4.3 HDFS
For the Uni- and Bi-LSTM models on the HDFS data we have tried the same hidden
sizes 128 as Volvo GTT data first. However, the model performed not so well with
hidden sizes 128. Then we changed the hidden size to 64 and the model performed
better, so hidden sizes 64 is what we have used in the results.

For the LSTM sequence-to-sequence model, the amount of layers where the model
performed the best we found was 3 with a hidden size of 64, although this was an
unusable model for anomaly detection. For the Transformer model, we used a hid-
den size of 64 with 4 heads.

Table 4.7 presents the summary of the all the model parameters used for producing
the results.

Architecture Layers Hidden
size Heads Batch

size Epochs

uni-LSTM 1 64 - 64 10
bi-LSTM 2 64 - 64 10
LSTM
seq2seq 3 64 - 64 10

Transformer
seq2seq 6 64 4 64 10

Table 4.7: Summary of the all the model parameters used for producing the
results when training models with HDFS datasets.
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4. Results

4.3.1 Uni-LSTM model
As mentioned before, the results are from the models’ corresponding best thresholds
that yield the best F1 score.

Mixed training dataset

The best thresholds for training data proportion 1%, 5%, 10% and 100% are 4, 4,
4, and 5, respectively. Figure 4.4 shows the results of training different ratio of
the mixed training data on the Uni-LSTM model, and we observed that the model
trained with 1% of the mixed training data performs best.

In addition, when we increase the proportion of the training data from 10 % to
100%, the precision increased and the recall decreased, which means when we use
more training data to train the model, the network will predict less anomalous
predictions.

Figure 4.4: Results of the uni-LSTM based anomaly detectors for various
proportions of the mixed training data on the HDFS data.
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Normal training dataset

The best threshold for training data proportion 1%, 5%, 10% and 100% are 7, 6,
7, and 6, respectively. Figure 4.5 shows the results of different ratio of the normal
training data on the Uni-LSTM model, and we observed that the model trained
with 100% of the normal training data performs best. Furthermore, all proportions
of the training dataset performed well.

Figure 4.5: Results of the uni-LSTM based anomaly detectors for various
proportions of the normal training data on the HDFS data.
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4. Results

4.3.2 Bi-LSTM model
As mentioned before, the results are from the models’ corresponding best thresholds
that yield the best F1 score.

Mixed training dataset

The best threshold for the training dataset proportion 1%, 5%, 10% and 100% are 3,
3, 3, and 5, respectively. Figure 4.6 shows the results of different size of the normal
training data on the Bi-LSTM model, and we observed that the model trained with
1% of the mixed training data performs best.

Similar observation as the Uni-LSTM with mixed training dataset, when we increase
the proportion of the training data from 10 % to 100%, the precision increased and
the recall decreased, which means the network will predict less anomalous predic-
tions when we use more training data to train.

Figure 4.6: Results of the bi-LSTM based anomaly detectors for various
proportions of the mixed training data on the HDFS data.
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4. Results

Normal training dataset

The best threshold for training dataset proportion 1%, 5%, 10%, and 100% are 5,
4, 4, and 4, respectively. Figure 4.7 shows the results of different sizes of the normal
training data on the Bi-LSTM model, and we observed that the model trained with
5% of the normal training data performs best.

In addition, the results of 1%, 5%, and 10% proportions of the training data are
quite similar. However, when we increase the proportion of the training dataset
from 10% to 100%, almost similar precision but recall decreased, this means more
false negatives were detected.ed.

Figure 4.7: Results of the bi-LSTM based anomaly detectors for various
proportions of the normal training data on the HDFS data.

60



4. Results

4.3.3 LSTM sequence-to-sequence model
When evaluating the anomaly detection performance of the LSTM sequence-to-
sequence model the result was that only very few log files were ever predicted cor-
rectly. The minimum accuracy for one log file was 0, the maximum accuracy for
one log file was 1 (very few). The anomaly detection average accuracy of the mixed
dataset is 0.2876, and of the normal dataset is 0.5780. In this case, we can not do
any effective anomaly detection by using this model on both mixed training dataset
and normal dataset.

61
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4.3.4 Transformer sequence-to-sequence model

Mixed training dataset

The 100% dataset here contains 3817328 windows. Figure 4.8 shows the results of
the transformer model with training on the mixed dataset with different propor-
tions, and we observed that the model trained with 1% of the mixed training data
performs best.

Moreover, we observed that when we increased training data from 1% to 100%, the
F1 score will decrease to almost zero. This observation presents that the model can
find very few anomalies if the model trained with 100% training data.

Figure 4.8: Results of the Transformer based anomaly detectors for various
proportions of the mixed training data on the HDFS data.
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4. Results

Normal training dataset

The 100% dataset here contains 3750414 windows. Figure 4.9 shows the results of
the transformer model with training on the normal dataset with different propor-
tions, and we observed that the model trained with 1% of the normal training data
performs best.

Significantly, the recall is 1 when we trained with 1% of the normal training data
which means the model caught all the true positives. And the precision is 1 when
we trained with 100% of the normal training data which means no false positive in
this case.

Figure 4.9: Results of the Transformer based anomaly detectors for various
proportions of the normal training data on the HDFS data..

63



4. Results

4.3.5 Comparing models
The previous subsections show the results of different proportions of the training
data in each model. To find the best model for the mixed/normal dataset, we choose
the best ratio of the training data for each model according to the highest F1 score
then compare them. Figure 4.10 and Figure 4.11 present the best proportion of the
training data for each model for both the mixed dataset and the normal dataset,
and provide some observations.

For the mixed training data: smaller proportions of training data always get better
results, and 1% is the best proportion of the training data for all three models.

For the normal training data: the best proportion of the data for the uni-LSTM
model is 100%, for the uni-LSTM model is 5%, and for the transformer model is
1%. Moreover, the transformer model with 1% proportion of the training data has
recall 1 but lower precision causes a lower F1 score.

Overall, the results of training on the normal training data are always better than
the results of training on the mixed training data, and the uni-LSTMmodel performs
best for both the mixed training dataset and the normal dataset. Besides, the bi-
LSTM model seems no advantage compare to the other two models neither in the
mixed training data nor the normal training data.

Figure 4.10: Best result for each
model with mixed data on the HDFS
data.

Figure 4.11: Best result for each
model with normal data on the HDFS
data.
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5
Discussion and Conclusion

5.1 Discussion

Out of the anomaly detection approaches investigated in this project, the uni-LSTM
model with a top-n threshold and the Transformer model trained on 1% of the train-
ing data perform the best on the Volvo GTT data and the uni-LSTM model with
a threshold trained on 100% of the normal training data perform the best on the
HDFS data. The disadvantage of the uni-LSTM method is the use of the threshold,
which needs to be found with trial-and-error. Further, for the Volvo GTT data it is
not certain how this method will perform in practice due to the small imbalanced
data set the anomaly detection methods have been tested on. However, as the uni-
LSTM method successfully pointed out the anomalous logs for all proportions of
data the results indicate that this method might be used for filtering out logs which
may automate the anomaly detection process to some extent.

Moving on to the HDFS data, the best results are based on training with only
normal data while the mixed data yield poor results. The uni-LSTM method also
gets the best result for the training on mixed data compares to other methods, but
the F1-score is low indicating poor performance. The results from using the HDFS
data show that the results of training on the dataset containing no anomalies are
consistently better than the results of training on the mixed dataset which includes
anomalies. To reiterate, training on a data set containing no anomalies is how most
other approaches implemented their anomaly detection models.

Another observation is the bi-LSTM model performs worse than the uni-LSTM
model. The issue may when we created the inputs for the bi-LSTM model the
bottom information is missing, if the anomalies exist at the bottom of the log file
then the bi-LSTM model has no chance to indicate them. The issue could also be
an effective way to read the information is to read from one direction. But in the
bi-LSTM model, we read the information from both directions.

We found no significant advantage to adding more recurrent layers in the uni- and
bi-LSTM networks. Neither did the methods improve when we used a smaller or
higher dimension for the hidden states. Lastly, in DeepLog [7] two layers were uti-
lized in the LSTM neural network. This method did not perform better than a
one-layer LSTM network when using the Volvo GTT data. Thus, as we noticed no
improvement in the anomaly detection we chose to only use one LSTM-layer in the
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5. Discussion and Conclusion

architectures to decrease the time it takes to train the network. It might be that
replicating the DeepLog method exactly would produce better results for the HDFS
data. However, the aim of this project is to find a method that works well on the
Volvo GTT data and therefore we used the same methods for the Volvo GTT data
and the HDFS data.

Moving on to the LSTM sequence-to-sequence model, the issue might be that we
are not using a top-n threshold here to compute the n most likely log keys in the
output. The reason why we wanted to try this approach was to see how methods
without a threshold perform. Comparing the results from the sequence-to-sequence
LSTM model to the sequence-to-sequence Transformer model, we can see that the
Transformer is better at learning the log sequences. This result is supported by the
fact that Transformers perform better in neural machine translation [31] tasks.

Moreover, our results point to the fact that changing the size of the dataset might
influence the performance of the anomaly detector. A more thorough analysis of
this would be interesting to implement. For the Volvo GTT data all the models
performed better with a smaller amount of data. Meanwhile for the mixed HDFS
dataset training on a smaller proportion of data was also better but the F1-score
was small for all models. When removing the anomalies from the HDFS data (the
normal dataset) the uni-LSTM model performed better with a larger amount of data
while the bi-LSTM model and Transformer performed better with a smaller amount
of data.
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5.2 Future work
As mentioned in section 1.4, there are other ways than regex to pre-process the
data. Pre-defined log parsers exist such as Spell [8] and Drain [12] and it would
be interesting to try a different data preprocessing approach with a pre-defined log
parser. Aside from this, it is difficult to identify the areas in which the anomaly de-
tection methods could be improved when using an unsupervised approach. However,
it seems likely that training the models using only confirmed non-anomalous data
for the Volvo GTT dataset will increase the performance. This was unfortunately
not possible during this project, but it would be interesting to further evaluate how
the methods would perform in this scenario.

In its current states, the sequence-to-sequence model (section 3.3.3) and the Trans-
former (section 3.3.4) trained on the entire training data set is not usable. The
sequence-to-sequence model does not reconstruct the log line windows well, while
the Transformer is too good at reconstructing the window of log lines. Adding an
attention mechanism to the LSTM sequence-to-sequence model would be interest-
ing to see if this is a middle-ground to this issue. Also, using strict teacher forcing
during training might be misguiding for the model.

Furthermore, other problem definition approaches to the sequence-to-sequence mod-
els could be considered, such as predicting more than one log line based on some
context of past log lines which might introduce some more complexity to the Trans-
former model. Additionally, it might be interesting to get rid of the sliding windows
approaches and try to reconstruct an entire log sequence.

Also, in the research where the uni-LSTM method was inspired by [7] the neural
networks are trained on a set of only normal (non-anomalous) data. It might be
that when including abnormal log sequences during the training, the networks learn
these too well and the assumption that they are too few to be learned do not hold.
This is an issue when the data set is so big that something that is uncommon in a
couple of weeks might not be so uncommon when accumulated over a few months.
The network then receives these inputs and no consideration of the occurrences with
respect to time is done. On the flip side, one month might be too little to capture
the behaviour of the data as one month might be some exception to the normal
behaviour.
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5.3 Conclusion
The results from the experiments run on the Volvo GTT data set do not provide
a definite conclusion to be made regarding the anomaly detection performance due
to the anomaly detection data set being small and imbalanced. The best models
yielded 8 true positives and 0 false negatives with 7 true positives. We do not know
how this will scale with a larger data set. However, in the results run on the HDFS
data the performance quite vastly differs between using mixed data and data sets
using only normal data. The models using only ’normal’ data with the HDFS data
set provide quite good results. However, it is not clear how this is relatable to a
real-life application with large data sets and no labels in the data set.

Assuming that we have some system producing a lot of log files which may change
slightly over time and require retraining within intervals, manually labelling all these
log files will too result in time-consuming work. It is also not completely clear why
one would choose an unsupervised approach in this case, as this might as well be
used as a supervised classification task if the labels already exist because the method
require only normal data.

Furthermore, the labelling of the files in order for it to be used as a semi-supervised
approach is quite unclear. A log file might contain an anomaly that the user wants
to output (for example an error message) but this might not be abnormal behaviour
in the large data set. On the opposite hand, the user might not consider a log file as
anomalous but in the context of the data set it is uncommon and an anomaly. There-
fore, using the approach presented in this thesis, the labelling of the data would also
require an analysis of the data set. The anomaly detection method might output
some anomalies, but it also outputs log files with a process breaking down that the
user does not consider an anomaly.

In conclusion, the results from the anomaly detection performed on the HDFS
dataset seem to indicate that using a semi-supervised approach using only data
that is confirmed non-anomalous seem to be critical when creating an anomaly de-
tector for this dataset. Compared to the dataset used for anomaly detection on the
Volvo GTT dataset these results could be viewed as more reliable as there are more
labeled log sequence to use for anomaly detection. Therefore, a definite conclusion
cannot be made of how the anomaly detectors work in practice on the Volvo GTT
data. However, the Volvo GTT dataset is larger and has a bigger dictionary size
than the HDFS dataset which might influence the suitability of an unsupervised
approach. As a final remark, the uni-LSTM model does successfully point out all
anomalies in the Volvo GTT data for all proportions of data, which indicate that
this method might be used for filtering out logs that are not of interest without
missing the anomalies.
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