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1 Introduction

This project studies a model for data from pain threshold research. It is based
on the study ”Pain intensity and pressure pain thresholds after a light dynamic
physical load in patients with chronic neck-shoulder pain” by A. Grimby-Ekman,
C. Ahlstrand, B. Gerdle, B. Larsson and H. Sandén (2020) [1]. The idea of this
research is to measure the pain of sick patients over time after physical exer-
cises . Pressure pain threshold was used to measure pain. Pressure with an
instrument is performed on the patient and when they feel pain, the pressure
is reported. The pressure is applied to six different locations: Trapzeius 1, 2
and 3 on the right and left side. It is measured at four different times, before
a physical exercise and then at 3 times afterwards. To avoid bruising and pain,
the pressure pain thresholds are capped at a maximum value (700 kPa). If a
patient did not feel pain after this maximum, the 700 value is reported and
treated as the true measurement. Since the measurement is repeated over time
and a natural random effect occurs between the patient, a linear mixed model
is used. We will examine this linear mixed model in detail. The parameter esti-
mation of the study does not take into account the censoring of the data. The
censored data is considered as true data point. The idea of this project is to use
the Tobit model for censored data to improve the parameter estimation. The
first idea is to maximize a likelihood function that takes censoring into account
with a standard optimization algorithm. This algorithm is studied in detail in
another project. Instead, a Bayesian approach is studied. The Gibbs sampling
is a natural candidate to deal with censored data. The idea of this algorithm
is to redraw the censored data with a truncated normal distribution at each
iteration. The Expectation Maximization (EM) have an other approach. The
algorithm average according to the truncated normal distribution the censored
measurement at each iteration. After the study of these algorithms, a compar-
ison between taking into account and not taking into account the censorship is
made. To study the impact of censoring, we ran the algorithms on simulated
data with different levels of censoring. The finale goal is to provide a practical
answer for handling data from pain threshold research.
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2 The pain Threshold research

2.1 The study

Chronic musculoskeletal pain is a common clinical condition that brings pa-
tients to the doctor’s office and is a major cause of disability and reduced work
capacity. Clinical experience suggests that some patients with chronic muscu-
loskeletal pain may experience increased pain intensity the day after even mild
physical exertion. It is important to take this into account in the evaluation of
work capacity. The idea is to study the pain felt over time after a physical effort.
Two groups are studied: the patient with chronic musculoskeletal pain and a
control group. The study measures the pain pressure threshold to evaluate the
pain. The measurement was done in 4 different times. Before the exercise, 15
min, 1 hour and 1 day after. And on 6 different locations: trapezius 1,2,3 left
and right.

The goal of the study was to investigate the development of pain intensity
and pressure pain thresholds during and 24 h after a light dynamic physical load
among patients with chronic neck-shoulder pain.

The result of the study is that the patient has a pain threshold that decreases
right after the physical exercise to return to the same level after one hour and
after one day. The control group shows an increase in pain threshold for the
first three measurements and stay at the same level for the last measurement.
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2.2 The data

Pressure pain threshold (PPT) was measured by a hand held electronic pressure
algometer and measured in a standardized manner. The contact area was 10
mm and the pressure was applied at a rate of 30 kPa/second. The participants
were instructed to mark the PPT by pressing a signal button when they felt the
first sensation of pain. At a maximum value of 700 kPa the measurement was
interrupted to avoid bruising and soreness induced by the measurement method.
The people involved in the experiment are summarized in the table below.

Men Women total
Patient 5 21 26
Control 6 7 12
total 11 28 39

The following graph represents the pain thresholds for the sick group (in
black) and for the control group (in red). The first 6 graph is for women and
the next one for men. Each graph represents the pain threshold reported at a
given time. The three top graphs correspond to the three trapezius locations on
the left and the three bottom graphs on the right. It is clear that each person
has a different pain threshold. A random effect is needed to model the data. It
appears that a different pattern emerges for the left and right measurements.
The bolded lines represent the mean. On average, the control group has a higher
pain threshold, and is therefore more resistant to pain. The impact of censoring
is clearly visible. Some pain thresholds at 700 appear for all 4 measurements.
In the data set 4.8% of the data are censored.
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Figure 1: Individual lines and mean threshold at each time point for women for
the two group. The top three graph are the 3 right localisation and the 3 down
the left. In red the control group

Figure 2: Pain thresholds for men for the two group
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Figure 3: Average pain thresholds of women for both groups

The average of the main pain threshold already shows a pattern. The de-
crease after exercise is already present on the right side. The left side shows a
different pattern. The idea is build a model to have a more precise answered to
the change of pain threshold over time.
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3 The model for pain thresholds research

Because the measurements are taken over time and on different individuals, the
data are modeled with a linear mixed model. To model the random effect be-
tween patients, a random intercept is used. The left and right measurements also
lead to another random effect. We first describe the mathematical assumption
of the model and then the parameters used in this specific study.

3.1 Linear mixed model for longitudinal data

The linear mixed model is a regression model. It allowed to estimated both a
fixed and random effect.

The linear mixed model use in the project satisfies:
Y = Xβ +Wµ+ ε
or
Yi = W ′iβ +Wiµi + εi for i=1,...,N
or
yits = x′itsβ + γ1 + γs + εits for i=1,...,N, t=1,...,T and s=1,2

The Y vector is the reponses variable (the observation) of length N×T. The
X matrix is the designe matrix of the fixed effect. W the designe matrix of the
random effect. µ the vector of the random effect and ε the random error vector.
W

µi = (γ1, γ2, γ3)′ with γs ∼ N(0, σγs) and εij ∼ N(0, σ2
ε ). Let µi ∼N(0,R)

and

We assume strict exogeneity:

E[εit|X] = E[µi|X] = 0

E[ε2it|X] = σ2
ε

E[γ2
j |X] = σ2

γj

E[εitγj |X] = 0 for all i, t and j

E[εitεjs] = 0 if t 6= s or i 6= j,

E[γiγj |X] = 0 if i 6= j

ηits = εit + γ1 + γs

E[η2
its|X] = σ2

ε + σ2
γ1 + σ2

γs

E[ηitsηins] = σ2
γ1 + σ2

γs , n 6= t

E[ηitsηinv] = σ2
γ1 , n 6= t , s 6= v

E[ηitsηjnv] = 0 for all t,n,s and v if i 6= j.
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For the T observations for the person i, Σi = E[ηiη
′
i|X]. Then

Σi =


σ2
ε + σ2

γ1 + σ2
γs σ2

γ1 + σ2
γs σ2

γ1 + σ2
γs · · ·

σ2
γ1 + σ2

γs σ2
ε + σ2

γ1 + σ2
γs σ2

γ1 + σ2
γs · · ·

...
...

. . .
...

σ2
γ1 + σ2

γs σ2
γ1 + σ2

γs σ2
ε + σ2

γ1 + σ2
γs

 .

Or
Σi = WiRW

′
i +D

The disturbance covaraince matrix for all the observation is:

Ω =


Σ 0 · · · 0
0 Σ · · · 0
...

...
. . .

0 0 · · · Σ

 .

These assumptions mean that the measures between individuals are inde-
pendent and have the same variance structure.

3.2 The model of the study

We will now specify the parameters used in the study. The model is used in the
study is:

Y = Xβ +Wµ+ ε

The parameters are time, location, group, time× group and gender.All vari-
ables are categorical. N is the number of people in the study and T is the
number of measurements for each person. In this study N=39 and T=24 (3
measurement on each side for the 4 different time)

Y is the vector of outcomes of the N × T measures. Beta is the fixed effect
vector of length 11 (The 4 times are coded with 3 dummy variables, the loca-
tion by 2, the group by 1, the interaction between time and group by 3 and the
gender by 1 dummy variable). The random effect is a vector of length 3×N (
to model the random intercept and the two random effects of the left and right
measurement) and the random error is a vector of length N × T .

The matrix X is a (N × T , 11) matrix :

X =


1 0 0 0 0 0 1 0 0 0 1
1 1 0 0 1 0 1 1 0 0 1
...

...
...

...
...

...
...

...
...

...
...

1 0 0 1 0 1 0 0 0 0 0

 .
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The matrix W is a (N × T, 3N) matrix:

A =


1 1 0
1 1 0
1 1 0
1 0 1
1 0 1
1 0 1

 ; B =


A
A
A
A

 ; W =

 B (0)
. . .

(0) B



10



4 Linear mixed tobit model

The linear mixed model fits the way the data are collected but does not account
for censoring. We first show the problem that can arise if all the data are treated
as real measurements, and then we study the Tobit model to handle censoring.

4.1 The issue of not taking into account censoring

The most simple way to find the ML is the least square estimate. The formula
for the least square estimate is similar to the linear model:

β̂ = (X ′X)−1X ′(Y −Wµ)

Let Y ∗ the true unknown data set without the censoring.

E[β̂] = E[(X ′X)−1X ′(Y−Wµ)] = (X ′X)−1X ′(E[Y ]) ≤ (X ′X)−1X ′(E[Y ∗] = (X ′X)−1X ′Xβ = β

So the β estimate is biased and on average underestimate.This can lead to
a poor regression.

An other issue cause by censoring is with the assumption of the model.
The normality assumption is no respected with the censored points.The two
following graph are the QQ plot of the conditional residual for Gibbs sampling
with censored data considered as true value. The conditional residual is defines
as R = Y −Xβ −Wµ.

Figure 4: QQ plot without censoring taken into account

The two algorithm give similar result. A number of point are out of the 95%
tolerance band. This question the normality assumption of the residual.
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The fitted value versus the conditional residual is use to detect outlying
observation. The censorship can be detected in this plot. The line is 700-fitted
value.

Figure 5: Fitted value versus Conditional residual
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4.2 Longitudinal Tobit Model

The Tobit model is a regression model where the dependent variable is subject
to a certain constraint. The Tobit model was introduced by Tobin (1958)[2].
It was originally developed to model household expenditures. He developed a
regression model that takes into account the fact that expenditures cannot be
less than zero. This type of data can be called left-censored data. Amemyia
(1985) classified the Tobit model into 5 types, each differing in the form of the
likelihood. In this project, we are interested only in the type 1 Tobit model
with right censoring data. This model is described as follows:

yi =

{
y∗i if y∗i < l
l else

With yi the response variable and y∗i the true and unknown value (if the
censoring had not occurred)

The longitudinal Tobit model implement the censoring in the classical linear
mixed model. The model is described in [3]
The mixed Tobit model is defined here as:

y∗its = x′itβ + γ1 + γs + εits.

yits =

{
y∗its if y∗it ≤ l
l else.

With γj ∼ N(0, σγ
2
j ) and εits ∼ N(0, σ2

ε ). So y∗its ∼ N(x′itsβ, σγ
2
1 +σγ

2
s+σ2

ε )

The density function is:

f(yijs = l) = P (y∗ijs < l) = F (y∗ijs = l)

f(yijs) = f(y∗ijs) for yijs < l.

The likelihood of i measurement is:

Li =

∫
bi

∏
j

f(yij)N(bi; 0, D)dbi.

The likelihood for all cases is:
L =

∏
i Li

So for Ti observation belonging to the i individual we have the likelihood
contribution :
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Li =

∫ ∞
−∞

( Ti∏
t=1

[ 1

σε
φ(
yit − β′xit − µi

σε

]dit[
Φ(
β′xit + µi − l

σε
)
]1−dit)

φ(
µi
σµ

)dµi.

dit = 1 for uncensored observation and 0 else. The log likelihood for the
whole sample is:

L =

N∑
i=1

log(Li).

This likelihood function can be maximized with a standard optimization
algorithm using Gauss-Hermit quadrature to compute the integral, but this
method is not studied here. Instead, we use EM and Gibbs sampling. Both of
these algorithms use the truncated normal distribution to handle censoring. A
left-truncated normal distribution has the following density for x≥ l, l being the
limit.

f(x,m, σ2) =
N(x,m, σ2)

1− Φ( l−mσ )

With Φ the standardized normal distribution function. The following graph
represents the truncated normal distribution with the limit set at 0.3 in blue
and the normal distribution with mean 0 and variance 1. The Gibbs sampling
draws the censored data belonging to this distribution with the right parameters.
The EM algorithm integrates on the censored variable with this distribution.

Figure 6: Normal and left truncated normal distribution
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5 The Bayesian approach

5.1 Gibbs sampling

The Gibbs sampler is well suit for missing data. The censored data can simply
be redraw according to the truncated normal distribution at each iteration. Lee,
Seung-Chun and Choi, Byongsu (2014) [4], Bruno (2004) [3]

for i=1,...,N , t=1,...,T and s=1,2:

y∗its = x′itsβ + γ1 + γ2 + εits.

yits =

{
y∗its if y∗its ≤ l
l sinon.

With matrix notation

y∗ = Xβ +Wµ+ ε.

The posterior distribution is:

p(β, µ, σ2
µ, σ

2
ε |y∗) ∼ p(y∗|β, µ, σ2

ε )p(β)p(µ|σ2
µ)p(σµγ

2
1)p(σµγ

2
2)p(σµγ

2
3)p(σ2

ε ).

This mixed Tobit model give some non-linear panel data. To solve this issue
we use data augmentation strategies: y∗it has truncated normal distribution on
[l,∞(. Otherwise, it has a degenerating distribution at yit. It enable us to
recursively simulate the entire posterior distribution of the parameters. The
pdf of the truncated normal distribution is

y∗its ∼
N(x′itsβ + γi + γs, σ

2
ε )

1− Φ(
l−x′itsβ
σε

)

The prior distribution of β and σε in absence of prior information is p(β, σ2
ε ) ∼

1
σ2
ε

and µi ∼ N(0, RT ) with RT = diag(γ1, γ2, γ3) and µ ∼ N(0, R) with a non

informative prior for σ2
γj , p(σ

2
γj ) ∼

1
σγj

for j=1,...,3.

We sample Y with the previous formula then we estimate β, σε and σµ with
the sample Y.
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Then the algorithm is:

y∗its|, µi, σµ, σε ∼
N(x′itβ+γi+γs,σ

2
ε+σγ

2
1+σγ

2
s)

Φ(
l−x′

it
β√

σ2ε+σγ
2
1+σγ2

s

)

β|ε, σ2
ε , y
∗ ∼ N((X ′X)−1X ′(y∗ −Wµ), σ2

ε (X ′X)−1)

µ|β, σ2
µ, σ

2
ε , y
∗ ∼ N((W ′W + σ2

ε /R)−1W ′(y∗ −Xβ), σ2
ε (W ′W + σε/R)−1

σ2
µγ1 |µ ∼ IG((N − 1)/2, µ′γ1µγ1/2).

σ2
µγ2 |µ ∼ IG((N − 1)/2, µ′γ2µγ2/2).

σ2
µγ3 |µ ∼ IG((N − 1)/2, µ′γ3µγ3/2).

σ2
ε |β, µ, y∗ ∼ IG(NT/2, 1/2(y∗ −Xβ −Wµ)′(y∗ −Xβ −Wµ))

5.2 Henderson’s mixed model

The Gibbs sampler described previously can be computationally heavy. To
reduce the complexity of the algorithm the Henderson’s mixed model can be
used. This improvement is described in Cs Wang, Jj Rutledge, D Gianola
(1994)[5].
As previously:

ε ∼ N(0, Iσ2
ε )

µ ∼ N(0, R)

The Henderson’s mixed model is described by :

Zθ̂ = b

With: Z = 1
σ2
ε

(
X ′X X ′W
W ′X W ′W +R−1σ2

ε

)
, θ̂ =

(
β̂
µ̂

)
, b = σ−2

ε

(
X ′Y
W ′Y

)
.

The solution to the Henderson’s ”mixed model equations” β̂ and µ̂ are the
best unbiased estimates and predictor for β and µ respectively

let
θ′ = (β′, µ1..., µ3∗N ) = (θ1, ..., θM ).

With M=11+3×N (µi is a 3 dimensional vector and β a 11).
and

θ′−i = (θ1, ..., θi−1, θi+1, ...θM )

Z={zij} for i,j=1,...,M and b={bi}, i=1,...,M.
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As prove in [5], the conditional posterior distribution of each of the θi is a
normal with mean and variance θ̃i and ṽi:

θi|Y, θ−i, σε ∼ N(θ̃i, ṽi).

With θ̃i = (bi −
∑M
j=1,j 6=i zijθj)/zii and ṽi = σ2

ε /wii

This method is more computationally efficient since we do not invert any
matrix and only compute scalars.

µi is a three dimensional vector µi = (γ1, γ2, γ3). With the notation µγ1 =
(γ11, ..., γN1) , µγ2 = (γ12, ..., γN2) and µγ3 = (γ13, ..., γN3) . And γij ∼
N(0, σ2

µγj )

The new Gibbs sampling is :

y∗its|, µi, σµ, σε ∼
N(x′itβ+γi+γs,σ

2
ε+σγ

2
1+σγ

2
s)

Φ(
l−x′

it
β√

σ2ε+σγ
2
1+σγ2

s

)
.

θi|Y, θ−i, σε ∼ N(bi −
∑M
j=1,j 6=i Zijθj)/zii , σ

2
ε /zii).

σ2
µγ1 |µ ∼ IG((N − 1)/2, µ′γ1µγ1/2).

σ2
µγ2 |µ ∼ IG((N − 1)/2, µ′γ2µγ2/2).

σ2
µγ3 |µ ∼ IG((N − 1)/2, µ′γ3µγ3/2).

σ2
ε |β, µ, y∗ ∼ IG(NT/2, 1/2(y∗ −Xβ −Wµ)′(y∗ −Xβ −Wµ)).
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6 Maximum likelihood estimate

After a Bayesian approach to estimate the model parameters, we study a max-
imum likelihood algorithm. The specificity of this algorithm is that it uses the
maximization of the linear mixed model without censoring. Censoring is only
taken into account at each iteration of the algorithm. So that the censored data
are eliminated from the calculation, we integrate on them . We first describe
the likelihood function and the algorithm without censoring and modify it in a
third part.

6.1 Likelihood function

We find here the formula of the parameters to maximize the likelihood for the
linear mixed mo

Y = Xβ +Wµ+ ε

Y∼N(Xβ,WRW’+D) and Y |µ ∼ N(Xβ +Wµ,D)

If µ is known, the log likelihood function is:

LL(θ) = log(p(y, µ; θ)

= log(p(y|µ; θ) + log(p(µ; θ))

= log(p(y|µ;β, σε) + log(p(µ;σµ)).

Then σε, β minimizes:

− log(p(y|µ, θ)) = n log(πσ2) +
||Y −Xβ −Wµ||2

σε
.

and R minimizes:

−2 log(p(µ;σµ)) = N log(2π) +N log(R) +

N∑
i=1

µiR
−1µ′′i .

So:

β̂ = (X ′X)−1X ′(Y −Wµ)

R̂ =
1

N

N∑
i=1

µiµ
′
i

σ̂ε =
1

NT
||Y −Xβ −Wµ||2.
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6.2 EM algorithm for longitudinal data

To find the maximum likelihood the EM algorithm can be use as describe by
Laird and Ware [6].

Yi = Xiβ +Wiµi + εi.

Yi is the vector of T outcomes on the ith individual. Wi is the design matrix
for the individual random effect. µi is the individual random effect and εi is the
vector (εi1, ..., εiT )′. The parameter to estimate is θ = (β,R, σ2

ε )
If µ is know the parameters to estimate are the following.

β̂ = (X ′X)−1X ′(Y −Wµ)

R̂ =
1

N

N∑
i=1

µiµ
′
i

σ̂ε =
1

NT
||Y −Xβ −Wµ||2 =

1

NT

(
||y −Xβ̂||2 + ||Wµ||2 − 2 < y −X ˆβ,Wµ >

)
.

Or

||Wµ||2 =

N∑
i=1

||Wiµi||

=

N∑
i=1

µiW
′
iWiµi

=

N∑
i=1

Trace(µiW
′
iWiµi)

=

N∑
i=1

Trace(W ′iWiµiµ
′
i).

So the statistics use to estimate θ are µ1, ..., µN and µ1µ1, ..., µNµN

Since µ and µµ′ is not know the idea is to take there expectation.
The distribution for µ is:

p(µi|yi; θ) ∼ p(yi|µi; θ)p(µi; θ)

∼ C1 exp
(
− 1

2σε
||Yi −Xiβ −Wiµi||2 −

1

2
µ′iσ
−1
µ µi

)
∼ C2 exp

(
− 1

2
(µi − ηi)′τi(µi − ηi)

)
.

With

τi =
(W ′iWi

σ2
ε

+R−1
T

)−1
; ηi =

τiW
′
i (Yi −Xiβ)

σ2
ε

.
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So:

E[µi|Yi; θ] = ηi

E[µiµ
′
i|Yi; θ] = Var(µi|Yi; θ) + E[µi|Yi; θ]E[µi|Yi; θ]′

= τi + ηiη
′
i.

The estimated parameters become:

β̂ = (X ′X)−1X ′(Y −WE[µ|y, θ])

σ2
ε =

1

NT

(
||Y −Xβ̂||2 +

N∑
i=1

Trace(W ′iWiµiµ
′
i)−2

N∑
i=1

(yi−Xiβ̂)′WiE(µi|y, θ)
)
.

R =
1

N
E
[ N∑
i=1

µiµ
′
i|yi, θ̂

]
=

1

N

N∑
i=1

(ηiη
′
i + τi).

The formula E[µi|Yi; θ] = ηi give an empirical Bay estimator of µi. The
algorithm can be resume as: For a θk estimate E[µi|Yi; θk] and E[µiµ

′
i|Yi; θk]

and construct θk+1 with the previous formula.
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6.3 EM algorithm for mixed effects models with censored
data

The EM algorithm for mixed effect model is here modify to deal with censored
data. Hughes (1999) [7], [8].

Yi = Xiβ +Wiµi + εi.

The complete data is (Yi, µi, εi)i=1,..,m the observed data is (Ci,Qi).{
Yij = Cij if Qij = 0
Y ij > Cij if Qij = 1

For censored data

β̂ = (X ′X)−1X ′(E[Y |C,Q]−WE[µ|C,Q])).

R̂ =

m∑
i=1

E(µiµ
′
i|Ci, Qi, θ)/m.

σ̂ε
2 =

1

NT

(
||E[Y |C,Q]−Xβ̂||2+

N∑
i=1

Trace(E(W ′iWiµiµ
′
i|Ci, Qi, θ))−2

N∑
i=1

(yi−Xiβ̂)′WiE(µi|Ci, Qi, θ)
)
.

To handle the censoring we integrate over the censored value.

E(µiµ
′
i|Ci, Qi, θ) =

∫
Yi(C,Q)

E(µiµ
′
i|Yi, θ)f(Yi|Ci, Qi, θ)

E(µi|Ci, Qi, θ) =

∫
Yi(C,Q)

E(µi|Yi, θ)f(Yi|Ci, Qi, θ)

With f(Yi|Ci, Qi, θ) the truncated multivariate normal with mean Xβ+Wµ,
variance σ2

ε and left limit l. E(µiµ
′
i|Yi, θ) and E(µi|Yi, θ) are the expected com-

plete data sufficient statistics.

E[µi|Yi; θ] = ηi

E[µiµ
′
i|Yi; θ] = Var(µi|Yi; θ) + E[µi|Yi; θ]E[µi|Yi; θ]′

= τi + ηiη
′
i.

With:

τi =
(W ′iWi

σε
+R−1

T

)−1
; ηi =

τiW
′
i (Yi −Xiβ)

σε
.
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The integral is calculated with Monte Carl integration.

E(µiµ
′
i|Ci, Qi, θ) =

L∑
l=1

E(µiµ
′
i|Y li , θ)/L

E(µi|Ci, Qi, θ) =

L∑
l=1

E(µi|Y li , θ)/L

E(Yi|Ci, Qi, θ) =

L∑
l=1

Y li /N

With Y li following the truncated normal distribution on the censored vari-
able and a degenerate distribution on the other. And L is the number of Monte
Carlo sample

An asymptotic approximation for the variance of the fixed effects is given
by:

Var(β) =
( N∑
i=1

X ′iZiXi −X ′iZiBiZiXi

)−1

With Bi = Var(Yi|Ci, Qi, θ)

One of the main problems of this algorithm is that it is computationally
heavy. Indeed, it is necessary to compute E[µi|Yi, θ] and E[µi|Yi, θ], then
E(µi|Ci, Qi, θ) and E(µi|C ′i|Ci, Qi, θ). The calculation can be simplified by us-
ing a Gibbs sampler. At each iteration, we sample yi ∼ pyi(yi|bi, Ci, Qi, θ) and
µi ∼ pµi(µi|yi, Qi, Ci) = pµi(µi|yi, θ) with the same distribution and parameters
as in the study of the Gibbs sampler in the previous part.

22



7 Residual Analysis

To justify the use of the Tobit linear mixed model a analyse of the residual is
made. Three type of residual can be studied with the linear mixed model .

The marginal residual ξ̂ = Y −Xβ̂, that predict the marginal errors ξ=Y-
E[Y]=Y-Xβ

The conditional residual ε̂=Y-Xβ̂-Wµ̂, that predict the conditional errors
ε=Y-E[Y—µ]=Y-Xβ-Wµ

The BLUP Wµ̂, that predict the random effect,Wµ=E[Y—µ]-E[Y]
The residual analysis is done with the EM algorithm. The Gibbs sampling give
similar result.

7.1 Gibbs

7.1.1 Marginal residual

The variance of Yi can be estimated by ξξ′. To study the within-subjects co-
variance matrix, we can use the Frobenius norm of Vi−ξξ′ (with Vi the variance
of Yi), ||Vi− ξξ′||2 must be close to zero. The following graph is the plot of this
value as a function of the subjects’ indices.

Figure 7: Subject indices versus ||Vi − ξξ′||2

The assumed covariance structure does not fit well in at least two cases. (
for subjects 26 and 27 and possibly 6).
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7.1.2 Conditional residual

The conditional residual ε̂ = Xβ̂ + Wµ̂, can be used to asses the presence of
outlying observation, the homoscedesticity of the conditional errors and his nor-
mality.

The next plots is the conditional residual over the fitted value.

Figure 8: Fitted value versus Conditional residual

The censored value still cause the clear line. The line correspond to 700
minus the fitted value. Despite the patern the homoscedesticity seem respected.

The presence of outlying observation can be detected with the plot of the
standardized conditional residual versus the observation indices

Figure 9: Observation indices versus conditional residual

There is 3 outlying observation at 71,133 and 139.
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The normality of the conditional errors can be verified with a QQ plot of
the standardize conditional residual.

Figure 10: QQ plot

All the points are not in the 95% tolerance band but it is better than the
plot without taking into account censoring.
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7.1.3 Best linear unbiased predictions (BLUP)

Wµ̂ predict the random effects, Wµ = E[Y |µ]−E[Y ]. So Wiµi reflects the dif-
ference between the predicted responses for the i-th subject and the population
average; therefore it can also be used to find outlying subject and verified the
normality of the random effects.

The two next plot is the EBLUP versus the subject indices.

Figure 11: Subject indices versus BLUP

Subject 27 is different from the others
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The next plot is the random effect versus the subject number. The graph
plot the random intercept and the side random effect (left to rigth)

Figure 12: Subject indices versus the 3 random effect

Here again the subject 27 is different from the others over.

The subject 27 have 13 censored measurement. It is normal that it does not
respect the model since many of its values are constant and equal to 700.

The other all study of residual doesn’t show any strong contradiction to the
model. Most of the strange behavior is due to the censored point, which is
actually taken into account in the algorithms. We can considered this model as
valid for this dataset.
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8 Analyse of the results

8.1 Gibbs Sampling

In the section we focus on the result give by the Gibbs sampler. The first plot
is 10000 iteration of the sampler:

Figure 13: 10000 iteration of the Gibbs sampling for σε,σγ1,σγ2,σγ3 from left
to right
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Figure 14: 10000 iteration of the Gibbs sampling β parameters

The intercept,group and sex are slower to converge. It show strong auto-
corelation for this parameters. The other group seem to converge very quickly
to there distribution.

The next graph show the convergence of five Gibbs sampling on the different
initial value with a burnin of 1000 iteration.

As show the Gibbs sampling is stable regarding the choice of the initial value.
Even with initial value far from coherent value the Gibbs sampling converge .
The blue line is the following value:
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Figure 15: Convergence of the variance for different initial value

Figure 16: Convergence of β for different initial value
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Value Standard error
Variance error σ2

ε 5652.47 4.16
Variance random effect σγ1 26053.24 33.26
Variance right σγ2 1762.03 5.19
Variance left σγ3 733.9594 3.95
Intercept β0 441.89 0.20
Time 2 β1 12.23 0.06
Time 3 β2 17.73 0.06
Time 4 β3 15.03 0.06
Trapezius 2 β4 18.58 0.03
Trapezius 3 β5 58.31 0.03
Group β6 16.30 0.22
Time2× Group β7 -25.33 0.07
Time3× Group β8 -17.67 0.07
Time4× Group β9 -18.71 0.07
Sex β10 -154.97 0.20

The variance of the random error is greater than that of the random effect,
which is consistent. The random difference between patients is the main random
effect. The variance of the left and right is less than the variance of the random
error, which means that the side effect has no significant impact. In this study,
we are interested in the variation over time. The parameters of interest are Time
and Time×Group. By adding the time and the time group for the patient, we
can see the variation of the pain threshold. This variation pattern is illustrated
in the following graphs.

The 6 regression mean for the patient follow the same pattern. A decrease
in pain thresholds after the exercise and then the value returns to the starting
value and finally a small decrease for the last value. This pattern was already de-
tected with the mean of the measurement but it was clear only on the right side.

The following plot is the regress value for the two group. The control group
is in red.

Most regression values follow the same pattern of variation. Only the re-
gression value for two individuals shows a different pattern of variation.

The figure 18 represents the average pain regression threshold. The control
group has a higher pain threshold, which means that they are more resistant to
pain, as expected. For the patient, the pain threshold decreases on the second
measurement, i.e. after the exercise. This shows a higher pain sensitivity for the
patient, unlike the control group, which has a higher pain threshold than the
initial measurement. The patient returns to his initial pain threshold after one
hour. After exercise, the control group maintained the high pain thresholds.
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Figure 17: Regression value. The top 3 graphs are the 3 trapezius on the right
side and the bottom 3 graphs on the left side.

Figure 18: Average of the regression values for the 3 trapezius on the right (top)
and left (bottom)

32



The post-exercise decrease for the patient is -13.1. Since we are looking into
the variation of the point only the variance of the residuals should be look at.
The error variance is σ2

ε=5652 and there are 26 patients. It lead to a standard
error of 14,7 for the mean of the patient. It lead to a 75% confidence interval
of [-23,127;-3,073] using the student distribution. In comparison of the 12.23
increase of the control group with a standard error of 21,703 which lead to a
75% confidence interval of [-2,526;26,98]. This interval lead to the conclusion
that a light physical exercise lead to more pain sensitivity for the patient.

The last measurement (the next day) shows a decrease of -3.68 for the pa-
tient and an increase of 15 for the control group compared to the initial value.
Which lead to a 75% confidence interval of [-13,70;6,347] for the patient and
[0,742;30,25] for the control. The interval are less statically significant but exer-
cise tends to reduce or at least not increase the pain threshold for the patient in
contrast to the control wish which tends to have a higher pain threshold. The
finding for the change after one day after exercise is less statically significant.
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8.2 The EM algorithm

The result of the EM algorithm is here study. The first graph is 100 iteration
of The EM algorithm with the censored data.

Figure 19: 100 iteration of the EM algorithm. Variance parameters

Figure 20: 100 iteration of the EM algorithm. β parameters

The EM algorithm converge in about 100 iteration. The Monte Carlo inte-
gration cause small variation.The most interesting parameters (time and time
group) converge quickly and have a very low variation.
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The next graph show the convergence of 5 EM algorithm on different initial
value. For σγj in (1,100,1000,10000,100000), σε in (1,100,10000,10000,100000).
β is initialise using the maximum likelihood formula on the initial censored
dataset and µ ∼ N(0, σγj). As shown in the figure 21 the algorithm converge
even with initial value far from the true value but take much more iteration to
converge.

Figure 21: Variances parameters on different initial value

35



Figure 22: β parameters on different initial value

Value Standard error
β0 436.907301 3.8
β1 11.572917 0.99
β2 16.767362 0.99
β3 14.930556 0.99
β4 16.678620 0.91
β5 53.712205 0.91
β6 2.229326 4.6
β4 -23.330931 1.2
β8 -14.482647 1.2
β9 -16.615716 1.2
β10 -135.949018 4.4
σ2
ε 6159.873
σγ

2
1 19681.28

σγ
2
1 925.0956

σγ
2
1 49.10442

As the table shows, the variance of the random intercept is much lower
than the previous algorithm. The side effect also tends to disappear. The EM
algorithm give similar result to the Gibbs sampling.
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Figure 23: Regress data of the EM algorithm the control group in red

Figure 24: Mean value of pain threshold. The patient in black and control group
in red
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9 The impact of censoring

With the result of the algorithms on the experimental data, simulated data can
be created. The idea is to evaluate the stability with different level of censoring
of the algorithm on this simulated data set. As the actual value is known,
the efficiency of the algorithm can be easily studied. The variation over time
is studied, so the important parameters to study are time and the interaction
between time and group. The other variables will only result in a translation
of the value of the 4 time point.This translation is only important to study the
difference between the groups ,sex and localisation.

9.1 Gibbs sampling

9.1.1 On the regressed value

We first create the simulated data as Ysim = Xβ̂ +Wµ̂.
The intercept and the variance is resume in the following table.

True value 0% 5% 13% 23% 40%
without intercept 437 427 442 445 409 351
with intercept 437 431 512 418 427 417
without σ2

ε 5664 1896 2002 2066 1773 1190
with σ2

ε 5664 1841 0 0 0 0
without σγ

2
1 26071 26892 25858 21915 16777 9893

with σγ
2
1 26071 26542 28219 26053 30354 35423

without σγ
2
2 1741 939 608 312 315 294

with σγ
2
2 1741 1000 1931 2472 1001 4499

without σγ
2
3t 726 474 379 347 237 90

with σγ
3
1 726 418 479 409 855 2174

The variance of the random error drop to zero when censoring is taken into
account. As shown in the next graph the Gibbs sampling with the truncated
normal distribution estimated very well the Time and Time×Group the param-
eters.
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The figure 25 is the sum of the β parameters time and the interaction for
time and group for different level of censoring. It is this sum who will direct
the variation over time for the patient. The first time is coded as 0 so the value
are the variation from the initial value. The true value is in blue. The more
censored the data is the more red are the curve. Almost only one curve can be
seen. The algorithm estimates these parameters perfectly even with a high level
of censoring. The first value in the graph is negative which means that there is
a decrease in the pain threshold for the second measurement as expected. The
figure 26 is without taking into account censoring. The impact of censoring can
be clearly seen. The first and last values tend to increase with increasing level
of censoring, which has the effect of flattening the curve of the average pain
threshold.

Figure 25: Time+Time×Group with censoring taking into account
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Figure 26: Time+Time× Group parameter without censoring taking into ac-
count

Figures 26 and 27 show the time parameters with the truncated normal
distribution and the second without. These parameters are responsible for the
variation in the control group. All 3 values are positive, which means an increase
in pain threshold after exercises. The same conclusions as for the patient are
shown.
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Figure 27: Time parameter with censoring taking into account

Figure 28: Time parameter without censoring taking into account
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The variation pattern can be seen in the mean plot of the regress value. The
variation is as show in the previous graph almost the same for all the level of
censoring. A height level of censoring lead to a small overestimation of the value
of the mean if the truncated normal distribution is used. Not taking account
of censoring lead to underestimation of the value of the mean and tend to fade
the variation. The same conclusion can be seen for the control group.

Figure 29: Mean of the patient with censoring taking into account
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Figure 30: Mean of the patient without censoring taking into account

Figure 31: Mean pain threshold of the control group with censoring taking into
account
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Figure 32: Mean pain threshold of the control group without censoring into
account

The Gibbs sampler that accounts for censoring works best with censored
data. It tends to overestimate the data with a high level of censoring, but the
variation over time remains the same. Gibbs sampling without using the trun-
cated normal distribution tends to attenuate the variation and underestimate
the mean value. The difference start to be significantly especially for more than
20% of censoring.
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9.1.2 On regressed value with random error

In this part we simulated the data according to : Ysim = Xβ̂ + Wµ̂ + ε with
ε ∼ N(0, σ̂ε

2).
The following graph is the sum of the time and time-group interaction with-

out censoring with the data for 5 different iterations of the algorithm. As can
be seen, the impact of the random error is significant. With this data set, the
random error is high compared to the impact of the censoring. The main focus
is the difference between taking into account or not the censoring.

Figure 33: Times+Time×Group for 5 Gibbs sampling on data set with different
random error
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The following table resume the intercept and the variance component for
different level of censoring.

True value 0% 5% 13% 23% 40%
with intercept 437 431 435 439 434 469
without intercept 437 436 427 420 386 342
with σ2

ε 5664 8916 6859 6450 6231 6037
without σ2

ε 5664 9611 8966 8114 6494 4475
with σγ

2
1 26071 26776 26205 27171 24777 30135

without σγ
2
1 26071 26745 24742 21361.75 16148 9449

with σγ
2
2 1741 476 589 478 410.20 410.20

without σγ
2
2 1741 455 338 235 161 133

with σγ
2
3 726 412 578 477 438.49 305

without σγ
2
3 726 361 291 235 146.99 120

The intercept tends to decrease if censoring is not taken into account, con-
versely, if censoring is taken into account, the intercept is stable, especially for
23% and below. The random intercept also tends to decrease if censoring is not
taken into account, which can be a problem for the calculation of the confidence
interval. The random error is also better estimated with censoring taken into
account.
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The figure 34 and 35 is the graph of the Time+TimeGroup wish is respon-
sible for the variation of the patient group. The first value remains negative,
which means that the decrease in pain thresholds after exercise . The difference
between the taking or not censoring is less visible.

Figure 34: Time+Time×Group with censoring taking into account for 5 dif-
ferent level of censoring, the more red is the curve the more censored is the
data

Figure 35: Time+Time×Group without censoring taking into account for 5
different level of censoring, the more red is the curve the more censored is the
data
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The graph 36 and 37 is the one of the Time parameter responsible for the
variation of the control group.

Figure 36: Times with censoring taking into account for 5 different level of
censoring, the more red is the curve the more censored is the data

Figure 37: Times without censoring taking into account for 5 different level of
censoring, the more red is the curve the more censored is the data
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The mean are more stable with increasing level of censoring if the censoring
is taken into account.

Figure 38: Mean of pain threshold for the patient with censoring taking into
account for 5 different level of censoring, the more red is the curve the more
censored is the data

Figure 39: Mean of pain threshold for the patient without censoring taking into
account for 5 different level of censoring, the more red is the curve the more
censored is the data
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Figure 40: Mean of pain threshold for the control group with censoring taking
into account for 5 different level of censoring, the more red is the curve the more
censored is the data

Figure 41: Mean of pain threshold for the control group without censoring
taking into account for 5 different level of censoring, the more red is the curve
the more censored is the data
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Taking censoring into account led to a more stable result. It also leads to
a better estimation of the average pain threshold with a slight overestimation.
Conversely, not taking censoring into account leads to an underestimation and
a less stable result.

The the mean squared error given by:

MSE =
1

N ∗ T

N∗T∑
i=1

(Yi − Ŷi)2

With Ŷi = Xβ̂ +Wµ̂ can be used to compare the efficiency.

The red line is the Gibbs sampling taking into account censoring.

Figure 42: Mean squared error for different level of censoring in red with cen-
soring taking into account and black without

Figure 43: Mean squared error with censoring taking into account
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The sum of square is significantly higher if the censoring is not taking into
account. The sum of square start to show significant increase after 20% of cen-
soring.

Taking into account censoring lead to better result. This especially interest-
ing for the computation of the confidence interval of the mean. If censoring is
taken into account, the value of the mean of the pain threshold increases with
increasing censoring level. Conversely, if censoring is not taken into account,
the value of the mean decreases as the censoring level increases.
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9.2 The EM algorithm

The EM algorithm on simulated data can be computationally expensive, espe-
cially for a high level of censoring, but leads to a very accurate estimate. The
computation is performed with the lmec package of R which is an optimal ver-
sion of the EM algorithm in the study. The following table shows the result of
the EM algorithm with different levels of censorship.

True value 0% 5% 13% 23% 40%
Intercept 437.80051 508.9176 509.3067 509.8563 505.8806 496.4879
Time 11.59338 11.59338 11.59338 11.57990 11.57993 11.52423
Time 16.97063 16.97063 16.97063 16.95941 16.95719 16.83838
Time 14.74941 14.74941 14.74941 14.74169 14.73596 14.63462
Localisation 17.25923 17.25923 17.25861 17.25666 17.24507 17.13940
Localisation 56.39784 56.39784 56.39707 56.39400 56.39615 56.26496
Group 18.32266 -105.39162 -106.23791 -107.19470 -104.35884 -95.30308
Time×Group -24.69131 -24.69131 7 -24.69065 -24.67800 -24.66906 -24.52309
Time×Group -17.70270 -17.70270 -17.70270 -17.69141 -17.68604 -17.55684
Time×Group -18.47402 -18.47402 -18.47402 -18.46385 -18.46899 -18.38024
sex -144.97289 -159.3773 -159.5307 -159.7931 -157.5964 -154.6812
σε 75.26 0.9995062 1.1475508 1.4338765 1.8039797 3.6852193
σγ1

2 26071 2310.13892 2240.41006 2172.17260 1885.21823 1680.00701
σγ2

2 1741 46.06586 45.40891 27.97303 29.44360 40.50042
σγ3

2 726 36.46706 36.71389 33.90755 23.91327 28.34155

The algorithm perfectly estimate the Time and Times× group parameters
even with height level of censoring. Time variation is perfectly estimated. The
impact of censoring is only visible on the other parameters. Without censoring
taken into account the variation over time tend to fade as shown in figure 44.

Figure 44: EM estimation of the Time+Timegroup parameter for different level
of censoring without censoring taking into account
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Figure 45: EM estimation of the Time parameter for different level of censoring
without censoring taking into account

The EM algorithm taking into account censoring is more stable with increas-
ing level of censoring.

Figure 46: Mean of the regress pain threshold for the patient for different level
of censoring with censoring taking into account
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Figure 47: Mean of the regress pain threshold for the patient for different level
of censoring without censoring taking into account

Figure 48: Mean of the regress pain threshold for the control for different level
of censoring with censoring taking into account
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Figure 49: Mean of the regress pain threshold for the control for different level
of censoring without censoring taking into account
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10 Conclusion

Taking censoring into account provides a better estimate and a more stable
result. Consideration of censoring gives a similar result to the initial study.
A decrease in the pain threshold after exercise for the patient. This is due to
the small amount of censored data (5 %) and a significant random error. The
variation over time is also not significantly impacted by censoring. Censoring has
a greater impact on intercept, group, location, and gender. This is particularly
visible for censorship of 20% and above. The computational time needed to
obtain a meaningful result with the EM algorithm with the study data increases
significantly with the increase of the censoring level but gives very accurate
results on simulated data even with a high censoring level.
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