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Abstract

The failure of sensors to perceive the environment correctly is one of the primary
sources of risk that needs to be quantified in the development of active safety
features for autonomous vehicles. By extracting training data from the CARLA
simulator, an object detector was trained to simulate a perception system of
an autonomous vehicle. Using the detection model and gathering data for in-
correct detections, various extreme value models were created and compared
to investigate if extreme value theory is a viable option for estimating the risk
of sensor failures of the perception system. An analysis of the extreme value’s
dependency on the velocity of the vehicle is performed and a risk measure is
presented.
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1 Introduction

Quantifying risk is a principal part of the creation and analysis of various sys-
tems in our society. In particular, the industry of autonomous vehicles has
produced new areas of research where the modeling of risk is especially impor-
tant.

Around 1.4 million people die in traffic incidents each year, [1] which places
this cause of death in the top ten. However, from another perspective, human
drivers are safe, since in Sweden a traffic-related death occurs only 3.8 times per
billion vehicle-km [2]. For the autonomous vehicle industry, it is a requirement
to ensure that their vehicles are at least as safe as an average human driver,
which is a challenging task.

A key component in the safety system of autonomous vehicles is the percep-
tion system, which must fulfill very strict safety requirements. The errors of a
perception system can mainly be divided into two groups. On the one hand,
objects that should be detected may be missed by the system. This could, for
example, include objects that are uncommon, such as certain specific agricul-
tural vehicles. On the other hand, the system might incorrectly report an object
that does not exist. Two unrelated light sources at night might incorrectly be
interpreted as the headlights of a car, or a tree might be identified as a pedes-
trian. Incorrectly detected objects are a frequent occurrence, however, most
incorrectly detected objects appear far away or for a very short period of time.
An essential part of the design of a safe perception system is estimating the risk
of incorrect detections that could lead to dangerous situations. Mathematically
speaking this amounts to estimating the probability of random events that are
very rare, and might not ever have been observed.

Extreme value theory is the branch of mathematical statistics that is con-
cerned with estimating such rare random events. If the quantity of interest can
be represented by a one-dimensional value, there are mainly two different ways
of studying the tail of its probability distribution. One can model the maxima
M, of an i.i.d sample (X3, ..., X, ), or the values above certain thresholds, the
so-called peaks over thresholds. In the limit n — oo, the normalized M,, follows
a generalized extreme value distribution G¢(x). This family of probability dis-
tributions has three members that each are represented by various values of the
parameter £, which characterizes the tail of the distribution. The distribution
of the values above a threshold is the generalized Pareto distribution, which is
closely related to the generalized extreme value distribution.

For certain applications, the risk of interest depends on more than one ran-
dom quantity and thus requires the estimation of multivariate extreme value
distributions, for which a parametric representation is impossible in the gen-
eral case. To combat this problem one can either resort to various parametric
subclasses or create semi-parametric models using the theory of copulas.

Copulas are distribution functions that describe dependence structures and
provide a link between multivariate distributions and their marginals. Due to
Sklar’s theorem, given continuous marginals there exists a unique copula C' that
allows for a representation of a multivariate probability distribution in terms of



the copula and the marginals. For a bivariate distribution F', with marginals
F1, F> this representation reads

F(z1,22) = C(Fi(x1), Fa(x2))

The copula of an extreme value distribution is completely characterized by its
dependence structure, which can be represented in various ways, for example
using Pickands dependence function. This allows for the possibility of estimating
the multivariate extreme value distribution, from which risk estimates can be
inferred.

In this thesis, the possibility of applying these methods to estimate the risk
of sensor failures of the perception system is explored. Using sensor data, we
investigate modeling this risk using various random descriptors, such as velocity,
the cumulative distance traveled while detecting an object, and the remaining
distance to the object.

To obtain sensor data, the driving simulator CARLA was used. CARLA
has been developed to support the development, training, and validation of au-
tonomous driving systems. CARLA consists of two parts, a graphical simulation
and an API where the user controls the environment by writing scripts in the
python programming language. The weather conditions and environment can
freely be varied to simulate real-life events for research. It is also possible to
place sensors on the vehicle, from which data can be gathered. Using such sen-
sors in CARLA, a data set was collected and an object detector was trained on
this data set, resulting in a detection system from which sensor data could be
collected and analyzed.

The thesis begins with a description of how the sensor data was gathered
Following that, the necessary mathematical theory is presented. This includes
extreme value theory and copulas, but also dependence and risk measures that
are to be used. The procedure of estimating the bivariate extreme value distri-
butions is then described and the risk estimates are presented. In the section
titled model comparison, an attempt is made to compare the various model’s
ability to accurately predict extreme values when only being exposed to a small
amount of data. This procedure involves splitting the data set and using a
small part of it to fit the various models. The accuracy is quantified by using
a metric to compare how close the so-called quantile curves are. The thesis
is concluded with an analysis of how the velocity of the vehicle influence the
estimated extreme values and a risk measure based on the braking distance is
presented.



2 Sensor data

The scope of this thesis is to examine if extreme value theory is a viable option
for measuring the risk of sensor failures of the perception system. This raises
the question of what data to use. In a real-life application, the data would be
collected from real-life situations and it would be manually annotated, which is
a task that requires resources. Since the purpose is to explore if extreme value
theory can be applied in this context, it will suffice to use simulated data. This
is also convenient as it is easier to obtain a large data set.

With this in mind, the CARLA simulator is a suitable option. CARLA is
an open-source autonomous vehicle research simulator. It provides flexible data
generation and the sensor data obtained using CARLA is fairly realistic. Using
a simulated environment also gives access to ground truth information about
objects in the simulation. This allows for benefits such as automatic annotation
of the training data for an object detector or unique identifiers for distinguishing
objects. In addition, there is less variation in the obtained data, which allows
for the concepts of extreme value theory to be applied on a smaller scale to start
with. For information on the CARLA simulator, see [3].

CARLA offers a wide variety of sensors, such as RGB, LIDAR, and semantic
segmentation, from which data can be retrieved each frame. Using RGB sen-
sors, training data was gathered by running several simulations and retrieving
images at constant intervals. Automatic annotation of the images was done
using bounding boxes, which are available for most objects in CARLA, and a
semantic segmentation sensor to distinguish objects.

The gathered training data consisted of around 200 1024x1024 RGB images
and the classes it was trained to detect were vehicles, motorcycles, bicycles, and
traffic lights. The reason for the small size of the training data set is that in
this particular case, the detection model should not work perfectly, and thus
generate more data for sensor failures.

To achieve a somewhat realistic detection model, an object detector was
trained using the Tensorflow object detection API developed by Google. The
training process of the neural net starts from a checkpoint of a pre-trained
neural net. The neural net used for the object detector was the Faster R-CNN
Inception ResNet V2 1024x1024, which is a region-based convolutional neural
network (R-CNN). It has a speed of 236 ms and a COCO mAP of 38.7.



Figure 1: CARLA simulator

Using the trained object detector, new simulations were made and the object
detector was applied to each obtained RGB image. Around 200 simulations were
run, totaling 100 km of driving and an image data set of around 180 GB. Figure
1 depicts a frame of the CARLA simulator where the object detection model
has been applied.

Each detection from the model is in its rawest form an object label and a
bounding box. As mentioned before, the CARLA simulator provides unique
identifiers for each object which allows for the identification of objects between
different frames. Thus, incorrectly detected objects and objects that were missed
by the detection system can be identified and data for such detections generated.
Incorrect detections largely outweighed the number of missed detections and so
the models presented in this thesis are for incorrect detections.

For each incorrect detection the cumulative distance traveled between the
consecutive frames the object was detected, and the area of the bounding box is
observed. The values are recorded directly when the object stops being detected.
Mathematically it is an independent sample of the random vector consisting of
two random variables; the area of the bounding box (measured in pixels), and
the cumulative distance traveled while incorrectly detecting the object (mea-
sured in meters). Estimating the risk of sensor failures then corresponds to
estimating the probability that these two random variables take on large values
simultaneously.



The idea is that the area of the bounding box will serve as a measurement
of how close the object is. A large area corresponds to a small distance to the
object and vice versa. The reason for using the area of the bounding box as a
distance measure is that is easy to calculate and does not require measuring the
distance using LIDAR or any similar technology. The correspondence between
the area of the bounding box and the distance to the object was obtained using
a regression analysis for data of distances and areas. Thus, the analysis can be
carried out using the area of the bounding box, and then any results in terms
of bounding box areas can be translated into distances in meters.

Measurements of the area of the bounding box are dependent on what type
of object is being detected. Therefore, mathematical models for the various
objects need to be separated, but the mathematical treatment is the same. The
object detector generated very few incorrect detections for vehicles, motorbikes,
and bicycles. Most incorrect detections were labeled as traffic lights. Over the
200 simulations, the detection model produced 7654 incorrect detections traffic
light detections. Because of this surplus of data, the models created were made
using data for incorrect traffic light detections. The collected data is presented
in figure 2.
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Figure 2: (a) Scatterplot of bounding box area and distance traveled until the incorrect
detection disappears. (b) Scatterplot of the distance to incorrect detection and the
distance traveled until it disappears. The z-axis is log transformed and the scale is
reversed due to the relationship between area and distance.



In figure 3 is a depiction of the detection model’s incapacity to distinguish
black pixels in the upper part of the image from what is actually a traffic light.
This case is extreme in the sense that the area of the bounding box and the
distance traveled until the detection disappears are both large simultaneously.

Figure 3: A traffic light incorrectly detected during several consecutive frames

Most incorrect detections are only observed in one frame, and not the next,
resulting in the distance traveled until it disappears being 0 meters. In actuality,
the distance could be any value between 0 and the distance the vehicle moved
between the frames. The discretization created by measuring frame to frame
is necessary to keep the amount of data to reasonable levels but is problematic
when trying to fit distributions to the data. A solution to this problem was to
give the values a uniformly distributed value within the discretization.
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3 Theory

In this section the necessary mathematical theory is presented. Univariate ex-
treme value theory is presented briefly and then the extension to the multivariate
case is discussed. Most of the multivariate theory is described without using
copulas. The theory of copulas and how the theory translates using them is
introduced afterwards. The theory section is concluded with simulation meth-
ods for copulas as well as methods for estimating dependence structures and
quantile curves. The main reference for the sections on extreme value theory is
[4], and the main reference for the section on copulas is [7].

3.1 Extreme value theory

Extreme value theory is concerned with describing the probability distribution
of ’extreme’ observations. What is meant by extreme is ambiguous, but usually
the distribution of max(X1, X, ..., X,,) or the set of observations that are larger
than some threshold is of interest. These notions of what is meant by extreme
observations are cornerstones in the two leading methods, referred to as block
maxima and peaks over threshold (PoT). Both methods will be reviewed briefly.

3.1.1 Block maxima

In the block maxima methods, the data is divided into blocks of certain length
and for each block, the maxima is extracted. In the uni-variate case where
{X;}?, is an i.i.d sample with common distribution function F, the distribution
of M,, = max(X;, Xs, ..., X;,) can be obtained as

P(M, < z)= HP(XZ- <) = (F(2)"

In practice, however, one might not have access to an analytical expression for
F and thus one relies on asymptotical results in the limit n — oo to estimate
the distribution of M,,. Such a result is the Fisher-Tippett—Gnedenko theorem.

Theorem 1 (Fisher-Tippett-Gnedenko). If there exists a sequences {a,} and
{b,} with a, > 0 and b,, € R for all n such that

P(M < z) — Ge(z), n — oo,

an

where G¢ is a non-degenerate distribution, then G¢(z) is necessarily one of the
three possible extreme value distributions.

The possible limiting distributions are referred to as generalized extreme
value distributions. They are parametrized by location, scale and shape param-
eters p1, 0, €, respectively. It is convenient to simply write x instead of >£. The
normalizing constants {a,} and {b,} are needed to ensure that this convergence
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in distribution is not to that of a degenerate distribution with all of its mass on
the point inf{z : F(x) = 1}.

It is a result that all G¢, & € R can occur in this limit [4]. The parameter §
is the extreme value index and is central to extreme value analysis because it
is related to the tail of the distribution. There are three cases; £ > 0 gives the
Fréchet distribution

H@:ewkﬂﬂﬂal+&>0
0 1+¢x<0

&€ < 0 gives the Weibull distribution

Fla) = exp[f(lJr{:L’)%l] 1+&x>0
)1 14+&x<0

and & = 0 gives the Gumbel distribution

F(x) = e "

Apart from determining the possible limits G¢, the question that remains
is under what conditions on the distribution of the X; one precisely obtains a
specific distribution G¢ in the limit. The set of distributions F' such that this
occurs is denoted by D(Ge) and is referred to as the domain of attraction. One
writes F' € D(G¢). Under the assumption that F' is continuous, de Haan gave
necessary and sufficient conditions for F' to be in the domain of attraction of
G¢ for general £ in 1970. In terms of F' this condition is

1— F(y+b(y)v) -1 ) . B
1— F(y) — (1+¢&v) € asy — inf{z: F(z) =1}

where the function b is the so-called auxiliary function and (1 + &v) > 0. The
full treatment of these conditions are given in [4].

3.1.2 Peaks over threshold

The peaks over threshold model, introduced by Pickands, instead makes use of
all observations that exceed a certain threshold. This generally produces more
data than the block maxima method. For a one dimensional random variable
X, it is based on the fact that

P(X >t+ux)

PX>t+z|X >t)= PIX > 1)

~ F(x;p,0,8)

for x > 0, and sufficiently large threshold t. F(z;pu,0,€) is the generalized
pareto distribution, parametrized by the location, scale and shape parameters
peR,0>0,¢€R, respectively. With z = *=# the distribution function is

i semyE cxo
F<x>_{l—exp(—@> £=0

wherethesupportistOfor{EOandugxg,u—%for§<0.
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3.2 Multivariate extreme value theory

In multivariate extreme value theory one faces the problem of not having a
natural ordering. There is no longer an unambiguous way to describe what is
meant by a large or small value. Furthermore one must now take the dependence
structure of the random variables into account. In particular, it is crucial to
capture the possible dependence in the extremes. Thus, the focus shifts to the
marginal distributions and the structure of their dependence.

The extension of the block maxima and PoT methods to the multivariate
case is rather natural. A useful and natural way to think about ordering is
component-wise ordering, i.e for two vectors z and y one writes x < y iff z; < y;
for all 7+ and one can similarily define the component-wise maxima of x,y as the
vector with components max(x;,y;). In this section inequalities for vectors are
to be interpreted in this way. For a multivariate random sample {X;}!"; where
each X; € R", one can then analogously to the univariate case define the sample

maximum M,, as the vector with components max X, for j =1,...,n. An
1<i<m

immediate observation is that this maxima need not be in the sample. However,
this definition can still lead to useful results. For the PoT model, individual
thresholds can be defined for each marginal and one can consider points that
are above some or all of the thresholds.

Similarly to the univariate case one can now formulate the corresponding
statement regarding the convergence of M,, to an extreme value distribution.
For an i.i.d sample with distribution function F it is stated as finding a sequence
of vectors a,, > 0 and b,, such that F™(a,,x + b,,) converges in distribution to
a multivariate extreme value distribution G(x) as m — oco. Again the set
of all distribution functions for which the above holds make up the domain
of attraction for G, D(G). It can be noted that the above convergence in
distribution imply the convergence in distribtuion for each of the marginals,
which means that each marginal distribution converges to an extreme value
distribution as described in the univariate case.

A fundamental difference is that a general multivariate extreme value distri-
bution G(z) no longer can be indexed using a vector of finite dimension, which
poses a problem in the characterization of G(z). An informal reason for this
is that the set of dependence structures is simply too large. There are several
remedies to the problem of characterizing dependence structures, each resulting
in a different way of expressing the dependence structure.

A popular approach which will be used here is to index G(z) using certain
convex functions.To motivate this indexation we will require the concept of max-
stability. It is an important concept as it relates to the domain of attraction of
an extreme value distribution.

Definition 1. A multivariate distribtuion G(x) is called max-stable if for all
positive integers k, there exists vectors aj > 0 and i such that

G*(apz + Br) = G(x)

The above equality means that the distribution of the component-wise max-
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ima is the same for all sample sizes.

The classes of max-stable and extreme value distributions are the same.
Indeed, by combining the definition of max stability with the definition of the
domain of attraction mentioned earlier, it is easy to see that a max-stable distri-
bution is in its own domain of attraction and so is an extreme value distribution.
In other words, all max-stable distributions are in D(G).

Now, to show the reverse inclusion, assume F' € D(G) and partition the
sample size m into n blocks of size k, i.e write m = nk. Since F € D(G), we
then have

lim F™(amx + by) = G(z)

n—oo
on the other hand, for any positive integer k
i F™ (i + bg) = [ im F™(amix + bp)]¥ = G*(2)
m—o0 m— o0

By the convergence of types theorem there then exists o > 0, such that
k= o, W — By and G*(ayx + Br) = G(x) so that G is max-stable.

If a distribution is max-stable, then G* is a distribution function for all k,
and the exponent measure y, introduced by Balkema and Resnick in 1977, de-
fined on on [—00, 00), allows for a representation of G as G(x) = exp[—pu([—00, 00)\
[—o00,2])].

For max-stable (or extreme value) distributions the the stable tail depen-
dence function can be defined.

Definition 2 (Huang 1992). Let G be a max-stable distribution and let Gj_1 (u) =
inf{z : G;(x) > u} denote the generalized inverse of the marginal G;. Then the
stable tail dependence function, for v € R™, is

(o) = ~log G(G7 (™), Gy (7)o G (e ™)

Depending on the assumptions of the marginal distributions the stable tail
dependence functions has various properties. Some of them include homogene-
ity, convexity and certain boundary conditions.

One can obtain the original max-stable distribution G through its marginal
distributions and the stable tail dependence function, by writing

—log G(x) = ¢(—log G1(x1), ..., — log G (xn))
for x € R™ one obtains
G(x) = exp(—€(—log G1(x1), ..., — log Gp(zy)) (1)

showing how multivariate extreme value distributions can be indexed using the
stable tail dependence function.

For the practical application considered in this thesis, a special case of the
stable tail dependence function will be of greatest interest. It was introduced
by Pickands and has been popularized due to it being a helpful tool in the
estimation of bivariate extreme value distributions. As mentioned above, /¢
satisfies a homogeneity condition. It is thus possible to restrict ¢ to the unit
simplex, i.e the set of points in [0, 1]" whith components summing to 1.

14



Definition 3 (Pickands 1981). Let G be a max stable distribution of dimension
n + 1, with stable tail dependence function ¢. Let A™ = {(t1,t2,...,tnt+1) €
[0, 1]+ - ' ¢ = 1} € R™! be the unit simplex. Then Pickands dependence
function, A : A" — [L 1] is defined as

l(x1,29, ..., Tnit T
A(Zla"-azn+l): ( . 7;+1, s ); Zi = n-ﬁ—zl

Dic1 Ti dic1 Ti

Since A is defined through the stable tail dependence function, it inherits its
properties. In particular, Pickands dependence function is necessarily convex
and and satisfies max (21, ..., zn+1) < A(21, .0y 2ng1) < L.

For t € A™ it is possible to express one of the components of ¢ through the
other components, since they sum to 1. Thus, A can be written as a function of n
variables. To see this, let G be a n+ 1 = 2 dimensional max-stable distribution.
By equation (1) we have

G(z) = exp(—£(—log G1 (1), — log Ga(x2))
for z = (z1,22) € R%. Then, by definition of A,
G(z) = exp(—£4(—log G1(x1), — log Ga(x2))

B e )

1=1
B log G1(z1) log Go(z2)
=P {IOg(Gl(”“)GZ(””Q”A<1og<Gl<x1>G2<x2>>’ 08(C (1) Ca(12)) ﬂ

In this case the unit simplex is simply the line from (1, 0) to (0,1) which can be
log G2 (x2)

parametrized as (1 —¢,t),t € [0,1]. Then, if we let ¢t = R )Gy Ve can
write A as a function of a single variable,
log G (z2) log Ga(xz2)
Al)=£(1 —t,t) =4 ,
( ) ( ) (IOgGl(Il)GQ(Ig) IOgGl(Il)GQ(Z‘Q))
and get that
G(z) = exp(log(G1(x1)Ga(2)) A(t)) = (G1(1)Ga(w2)) ") (2)

Thus, one is able to reduce the inference of bivariate extreme value distributions
to that of estimating a function of a single variable.

3.2.1 Parametric subclasses of bivariate extreme value distributions

Although, the class of multivariate extreme value distributions is not parametriz-
able, there are, however, parametric subclasses. Some examples of such distri-
butions that are used in the modeling will be discussed here briefly.
-1
For ease of notation, let y; = y;(x;) = (1 + &(x; — wi)/os)) % , where
14 &(x; — pi)/o;) > 0. Introduced by Joe (1990), the asymmetric negative
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logistic distribution is parametrized by the dependence parameter r» > 0 and
the asymmetry parameters 0 < ¢t = (¢1,t2) < 1. The distribution function is

-1

G(71,22) = exp[—y1 — y2 + ((try1) ™" + (tay2) ") ™

Independence corresponds to either parameter approaching 0, complete inde-
pendence is obtained for fixed t; = to = 1, with r — oo.

A special case of the bivariate negative logistic distribution that will also be
used is due to Galambos (1975). It is the special case when ¢; = t3 = 1 and
thus have distribution function

G(x1,22) =expl-y1 —y2+ (y " +ys )7 ], >0

with independence and complete dependence for the limits » — oo and r — 0,
respectively.

In both cases, the marginal distributions are generalized extreme value dis-
tributions.

3.3 Copulas

In essence, copulas are distribution functions which contain all of the dependence
structure between components of a random vector. There are more technical
definitions available, see [7], but here the following simple definition will be used.

Definition 4 (Copula). A copula C' is any multivariate distribution function
with uniform marginal distributions

Example 1. For any multivariate distribution function F with continuous
marginal distributions one can obtain a copula by letting U; = F;(X;), where
F;(X;) is the i’th marginal distribution. Then, since each U; is uniformly dis-
tributed, we have that

C’(ul,u2,...,un) = P(U1 S Ul,UQ S UQ,...,Un S un)
is a copula and F can be written as,

F(Z’l,{IIQ, ,"En) = P(Xl S $1,X2 S x2, 7Xn S xn)
= P(U, < Fi(21),Uz < Fy(22),...,U, < Fi(xy,))
= C'(Fl(ml),...,Fn(xn))

It is common to assume continuity of the marginals and write the copula C
as a function of u; = F;(z;). From now on, this will be the case unless otherwise
stated.

A copula that is very useful in practice is the empirical copula. If the
marginal distributions are unknown, which usually is the case, the empirical
copula provides a non-parametric estimation by using the empirical distribu-
tion functions Fi(xi) =U,.

16



Example 2 (Empirical copula).

. 1 &
C(uhU’Qa auﬂ) =—"0 ]I{Ul<u1 Us<us,... Un<un}
n+1 Z - Su,Uz<us,...,Un <
1=

As shown in in example 1, given a distribution F' with marginals F;, i =
1,...,n, it is possible to represent it through the copula C' and the marginals.
That this copula is unique, given that the marginal distributions are continuous,
is the cornerstone of the theory of copulas. It was first proved by Abel Sklar.

Theorem 2 (Sklar 1958). Given a multivariate distribution F' with continuous
marginal distribution functions, F;, ¢ = 1,...,n there exists a unique copula C'
such that

F(z1,...,xn) = C(F1(z1), ..., Fn(zn))

The use of copulas is to describe the dependence structure of random vari-
ables. An extreme case is independence.

Example 3 (Independence copula).

n
Cur, ug, .y Up) = HUL
i=1

The other extreme cases of dependence structures are perfect positive or
negative correlation. In the two-dimensional case, consider positive dependence,
for example X5 = 2X;. Then,

and we have
Ui = Fi(X1) = F2(2Xy) = Fy(Xo) = Us
so the copula becomes
C(uy,uz) = P(Uy < u1,Up < up)
=P(U; <uy,U; < uy)
= P(U; < min{uy,uz})
= min{uy, us}.
The calculation for perfect negative dependence, for example Xo = —2X7 gives
U; =1 — Uy and thus
C(ur,ug) = P(Uy < u,Us < uo)
(U1 <uyp, 1= Uy < ug)
(1—-uy <U; <uy)
ax{u; +ug — 1,0}.

P
P
m

These extreme cases provide upper and lower bounds for any copula, a result
due to Fréchet and Hoeffding.
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Theorem 3 (Fréchet-Hoeffding bounds). For any n-dimensional copula C, the
following inequalites hold:

max{u; +uz + ... + up + 1 —n,0} < C(ug,ugy ..., tp) < min{ug, vz, ..., Up

Now the theory of multivariate extreme value distributions will be connected
to the theory copulas. In the previous section, multivariate extreme value distri-
butions were described as the limit distribution of the sample maximum M, of
an 1.i.d multivariate random sample {X;}7, where each X; € R™. The theory
translates to copulas in the following way, where we restrict ourselves to the
bivariate case for ease of notation.

We will begin by showing that the copula of the component-wise max-
ima of i.i.d pairs of random variables (X1,Y7), ..., (X, Y) is Cp(ur,uz) =

C’m(uﬁ , uf ).Too see this, Let their common distribution function be H, their
copula be C. Let F' and G be the marginals of X; and Y;, respectively. Finally,
let m be a fixed positive integer.

Now, the distribution functions F{,,) and G,,) of X(,,) = maxij—1,... m X;
and Y{,,) = max;—1,_.. m Y;, respectively are given as Fi,,)(z) = [F(x)]™ and
Gm)(y) = [F(y)]™ due to independence. Therefore, the joint distribution func-
tion H(p,) of the component-wise maxima (X (), Y(m)) is

Now, we have

Hmy(,y) = [H(z, y)]"
= [C(F(x), G(y)™
= [C([Ftmy @) (G )] 7)] ™
As before, the question now is whether this converges in distribution as

m — oo. If it does, then the copula is an extreme value copula and Cp is in the
domain of attraction D(C).

Definition 5 (Extreme value copula). A copula C¢ is the copula of an extreme
value distribution, or simply an extreme value copula if there exists a copula
C'F such that

Co(ur,uz) = lim O (/™ uy/™)

The concept of max-stability is stated as

Definition 6. The copula C' is max-stable if for all positive integers m, we have
Clur,uz) = C™ (™, uy/™)

As before, the conditions that a copula is an extreme value copula and that
it is max-stable are equivalent.

As in equation (2), a bivariate extreme value copula C' can be represented
using Pickand’s dependence function, A, as

C(uy,ug) = exp(log(uiug) A(t) = (uyug)*® (3)

log(uz)

where t = m.
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3.4 Simulating from a copula

When estimating an unknown distribution using a copula, generating random
variates from this distribution might of interest. There are a number of different
methods to simulate from the copula. A common method where the approach is
to use conditional distributions, [7]. To simulate from the estimated distribution
one first generates two uniformly distributed numbers w1, 7 on (0,1). Since the
copula has uniform marginals, we have

0C’(u1, UQ)
8u1

Denoting this function of ug as Cy, (uz) one then sets v = C;'(r). Finally
mapping u, v to x, y using the inverses of the marginals produces random variates
with the dependence structure of the copula.

The function C;!'(uz) exists and is non decreasing almost everywhere, [7].
If C is an extreme value copula given as in equation (3), the partial derivative
has the closed form expression

8C(U1, UQ) _ C(ul, UQ)

8’[1,1 ul

P(UQSU2|U1:U1):

(A(t) —tA'(1)

log(uz2)

where t = Tog(urtia)’

3.5 Dependence measures
3.5.1 Tail dependence

In the study of extreme values and estimation of risk, an important concept
is that of tail-dependence, [15], [11], it is a way of measuring dependence in
the tail of a multivariate distribution. It is possible for random variables with
seemingly no correlation to exhibit tail dependence, the common example being
stock returns. When studying tail dependence, the so-called survival function,
S(x1,...,xn) = P(X1 > 21,X2 > x9,...,X,, > x,) is a natural object to con-
sider.

The copula of the survival function is called the survival copula, or sometimes
the reflected copula. In the two dimensional case it is defined as C(uy,us) =
up +uz — 14+ C(1 —ug,1 —ug). To motivate this definition, consider the joint
survival function of (X7, X5) with copula C' and marginals Fy, F>. Let the
univariate survival functions of Fy, F5 be S1,S3. Then we have

S(z1,22) =1 —P(X; <1 or Xo < x9)
=1-—Fi(x1) — Fo(xq) + F(x1,x2)
= S1(z1) + Sa(z2) — 1 + C(Fi(x1), Fa(z2))
= S1(z1) + Sa2(x2) = 1+ C(1 = S1(x1),1 — Sa(x2)).
and thus S(z1,22) = C(S1(x1),S2(z2)) The reason for this discussion is the

central concept of tail dependence; the coefficients of upper and lower tail de-
pendence.
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Definition 7 (Coefficients of tail dependence).

A= lim P(Xy < Fy Hq)| X1 < F{(q)),
qg—0+t
A = lim P(Xy > FyYq)| X1 > Fy N q)),

qg—1—

Both coefficients are in the interval [0,1]. They can elegantly be described
in terms of the copulas C and C as

Ay = lim P(U2 > U|U1 > U)

u—1-
. P(U2>u,U1>u)
= lim
u—1- P(U; > u)
— lim 1—-2u+C(u,u)
u—1- 1—wu
— lim C(l—u,l—u).
u—1- 1—u
and similarly
)\L = lim M
u—0+ U

For the application considered here, the coefficient of upper tail dependence is
mainly of interest. This coefficient can be represented using Pickands depen-

dence function [16] as

o = 2(1 - A(%)) (4)

If Ay > 0, C has upper tail dependence, and if A\yy = 0, C' has no upper tail
dependence.

3.5.2 The function x(u)

The upper coefficient of tail dependence can also be obtained as the limit of
another function, x(u) =2 — %, [11]. Using the above expression for the

upper tail coefficient it is also possible to write
1—C(u,u)
x(w) =0 o)
1—2u+ C(u,u)
= - =7 1
1—u +oll)
= P(Uz > u|U1 > u) + o(1)

Thus, the limit of x(u) as u — 1 is Ay, but this function can also be thought
of as a way of measuring dependence for various quantiles, where the sign of
x(u) is an indicator of negative or positive dependence. The Fréchet-Hoeffding
bounds gives

max(2u — 1,0) < C(u,u) < u
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for 0 < u < 1 so therefore
9 _ logmax(2u — 1, 0)]
logu

<x(u) <1
where the lower bound is interpreted as —oo for u < % and 0 for u = 1.

For the special case when C' is a bivariate extreme value copula, given as
in equation (3), one obtains C(u,u) = u?4(2) and thus lim,_,;- x(u) = Ay =
2(1 — A(3)) as before. Furthermore x(u) = 2(1 — A(3)) is constant for all u,
a property that is true for any bivariate extreme value distribution, [11]. This
gives a diagnostic tool for ascertaining membership of the bivariate extreme
value class.

3.6 Inference on Pickands dependence function

Representing a bivariate extreme value copula through the use of Pickands de-
pendence function allows for estimation of the copula by instead estimating
A(t). There exists many estimators in the litterature, [9], [8].

A classical estimator is the Pickands estimator, [8]. It is based on the fact
that for (X1, X2) with bivariate copula C' with marginals U; = F(X;), the
random variables E; = —log(U;) have a standard exponential distribution. One
then defines

. B Ey
t) = =2
(1) = min(-2 22)
and shows that the survival function of £(t), P(£(t) > ), is equal to e=#A(*)
and so is exponentially distributed with parameter A(¢t). Thus, E(£(¢)) = ﬁ

and the Pickands estimator is obtained through the method of moments simply

as
m

1 1

A problem is that in general, no estimator will fulfill the boundary condi-
tions or be convex. An estimator that fulfills these boundary conditions by
construction is due to Tajvidi and Hall. It is given by

it = (o igw)_l

where £(t) = min( 1‘5}t7 2) and

g _ —nlogﬁ1(X1,i) 7o —nlog FQ(XQJ»)
> ey — log F1 (X1 k) > oneq —log Fa(Xa 1)

To combat the non-convexity it is then convenient to consider the greatest
convex minorant of A#T (t). Combining these modifications provides legitimate
estimates of Pickands dependence function that fulfill all conditions. Other
popular estimators also exist, most notable is perhaps the Capéraa Fougeres
Genest (CFG) estimator [9)].
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3.7 Quantile curves

An interesting way to analyze and visualize bivariate extreme value distributions
is through its quantile curves [4]. Let G be an estimated bivariate extreme value
distribution. As was shown earlier, G can be expressed through its marginals
and Pickands dependence function as

G(71,72) = expllog(G1(21)Ga(x2)) A()]

log G2(x2)
log G1(x1)Ga2(z2) "

Q) = {(z1,72) : G(x1,72) = p}

where t = The quantile curves of the distribution are

for 0 < p < 1. Now, using the above representation of GG, it can be seen that

1—a
G(z1,2) = p if and only if there exists « € [0, 1] such that G1(z1) = p“a@ and
Gao(2) = pA@ | so that the quantile curve can be written as

Qp) = { (G (p™™), G5 (p7)) s a € 0,1]}

for the generalized inverses G; ', G5 .

A special case is independence, where A is identically equal to 1. The end-
points of the quantile curve correspond to w = 0 and w = 1, for which the
points on the curve are (G7*(p),Gy'(p))) and (G7'(1),G5 (p)). G;7'(1) is
approximated as a finite number in the discretization of the quantile curve.
Thus, the probability of (X7, X2) being in the region defined by the quan-
tile curve is approximately equal to the probability of being in the recan-
gle defined by the vertical and horizontal lines given by the marginal quan-
tiles, 1 = G7'(p) and 3 = G5 '(p). This probability is in turn equal to
P(X1 > xq, Xo > 132) = (1 —p)2.
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4 Estimation of bivariate extreme value distri-
butions

In essence there are four different models that will be considered. The data used
for modeling the tail will be chosen both by taking the component-wise maxima
of blocks of the data, and by using threshold exceedances.

In each case, the extreme value distribution will be estimated using two
various methods; a semi-parametric model and a parametric model. In the
semi-parametric model the marginals are modeled as generalized extreme value
or generalized pareto distributions and a copula is used to estimate the bivari-
ate distribution. In the parametric models, the component-wise maxima and
threshold exceedances are used to fit the parametric subclasses presented in sec-
tion 3.2.1 of the bivariate extreme value distributions. The parametric models
were fitted using the evd package [5] and the POT package in R [6].

For each model 10* random variates are generated and plotted to show
the general characteristics of the distribution. The quantile curves for p =
0.95,0.99,0.995, which are generated from 10° simulated random variates, are
also depicted. The quantile curves are used as the risk measure and further-
more are used to compare the estimated distributions in the section titled model
comparison.

As shown in the section on quantile curves, for independent, or roughly
independent data, the probability of an observation being in this region is ap-
proximately (1—p)? since the region determined by the quantile curves could be
approximated by a rectangular region. This rectangular region is formed by the
vertical and horizontal lines that intersect each endpoint of the quantile curve
and will be referred to as the threshold excess regions for p = 0.95,0.99,0.995.
The reason for introducing this region is because it is possible to represent it
using only two numbers, one for each marginal. These numbers can be viewed as
thresholds for which approximately for which the probability of an observation
being larger in both components is (1 — p)?, i.e 0.05%2 = 2.5-1073,0.012 = 10~
and 2.5 - 107° of observations are larger in both components.

For each model the thresholds of the threshold excess regions are presented,
with the area of the bounding box converted to distances in meters. Also pre-
sented are the empirical probabilities and the estimated number of detections
per 10° km for each of these regions. These were estimated by simulation of 10°
random variates.
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4.1 Analysis of the dependence structure

When modeling extreme value it is important to be aware of this structure,
in particular the dependence in the extremes. Therefore, before turning to
estimating the extreme value distributions, a brief analysis of the dependence
structure of the data will be made.

The data for the incorrect detections is presented in figure 4.

Cumulative distance traveled (m)

Area of bounding box (pixels)

Figure 4: Scatterplot of bounding box area and distance traveled when the incorrect
detection disappears.

By inspection, the data shows signs of independence and there is no evidence
for extremal dependence in the upper tail. To further investigate the dependence
structure one can plot the function x(u) for various quantiles u. Figure 5 shows
estimates and 95% point-wise confidence intervals for x(u), which are given by
bootstrap sampling the data as in [14].
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chi(u)

Quantile

Figure 5: The estimated dependence measure x(u) (solid line) and 95% confidence
intervals (dashed line). The cases for complete dependence and independence are also
shown as dashed lines at 1 and 0, respectively.

The 95% confidence intervals contain 0, which is the case for independence,
for all quantiles. However, as the quantiles increases, the sign changes from
positive to negative which indicates that there is some negative dependence
for higher quantiles. The limit of x(u) as u — 1, the coefficient of upper tail
dependence, is 0, which confirms that there is no upper tail dependence.

The constancy of x(u) is used to check if the dependence structure of the
data is in the domain of attraction of a bivariate extreme value copula. The
function x(u) does vary to some degree but the 95% confidence intervals does
include 0 for all quantiles. It is however approximately constant for quantiles
larger than 0.5, indicating that a threshold model taking the slight negative
dependence into account is more suitable.

In summary, the dependence measure x(u) suggests that a bivariate extreme
value distribution fitted using component-wise maxima might not be the best
model for the data, and that a model using threshold exceedances is a better
choice.
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4.2 Component-wise maxima

In figure 6 is the raw data for the incorrect detections (grey points) and the
component-wise maxima (black points) for 50 blocks each of size 150. The
blocks are chosen such that when fitting generalized extreme value distributions
to the marginals, the Smirnov-Kolmogorov test statistic was jointly minimized
over 1000 randomized trials.

Cumulative distance traveled (m)
°
00,

T T T T T T T
0 1000 2000 3000 4000 5000 6000

Area of bounding box (pixels)

Figure 6: Data (grey points) and 50 component-wise mazima (black points) of 150
blocks

4.2.1 Parametric model

Generalized extreme value distributions were fitted to the marginals of the
component-wise maxima by fitting the data to a parametric subclass of bi-
variate extreme value distributions. The model with the lowest AIC, which
therefore was chosen, was the negative logistic model. The ML estimates of the
parameters are given in table 1. The density and QQ-plots are presented in
figure 7.

Parameter Area of bounding box Cumulative distance traveled
Location (u) 3312 £ 125 13.85 £ 0.52

Scale (o) 765.5 £ 90.5 3.33£0.36

Shape (&) —0.053 £0.127 —0.18 £ 0.09

Dependence parameter («) 0.053 £ 0.013

Table 1: ML estimates and standard errors for the fitted generalized extreme value
distributions.
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Figure 7: QQ and density plots of the GEV fits to the marginals

Both generalized extreme value distributions have a negative shape param-
eter, which means they are type III or Weibull distributions and so the distri-
butions have upper bounds.

In figure 8, random variates from the distribution are shown with the esti-
mated quantile curves.
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Figure 8: 10 000 random variates from the fitted negative logistic distribution together
with quantile curves and threshold excess regions for p = 0.95,0.99,0.995.

The empirical probabilities for an observation to be in the threshold excess
regions, denoted pr, and the estimated number of detections, d, per 10° km for
each region are presented in table 2.

P Distance to object Traveled distance pr ci/ 105 km
095 7.1 21.5 2.5-107% 125
0.99 6.3 24.3 8.2-107°% 4.1
0.995 6 25.2 3.1-107° 1.6

Table 2: Thresholds which determine the threshold excess regions corresponding to the
quantile curves for p = 0.95,0.99,0.995 and the empirical probability of an observation
being in the region. Also presented is the estimated number of detections per 10° km
for each region.

4.2.2 Semi-parametric model

Using the estimated marginal distributions and Pickands dependence function,
a extreme value distribution was estimated using a extreme value copula. Ran-
dom variates were generated from this extreme value distribution, by simulating
from the extreme value copula using the conditional distribution approach. The
simulated values are presented in figure 9 with quantile curves and threshold
excess regions corresponding to p = 0.95,0.99,0.995.
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Figure 9: 10 000 random variates from the copula model together with quantile curves
and threshold excess regions for p = 0.95,0.99,0.995.

The empirical probabilities, pr, for the threshold excess regions obtained
from the quantile curves and the estimated number of detections per 10° km for
each region are presented in table 3.

P Distance to object Traveled distance pr ci/ 105 km
095 7.2 21.4 2.5-107% 125
099 64 24.6 9.3-107° 4.7
0.995 6.1 25.8 2.2-107° 1.1

Table 3: Thresholds which determine the threshold excess regions corresponding to the
quantile curves for p = 0.95,0.99,0.995 and the empirical probability of an observation
being in the region. Also presented is the estimated number of detections per 10° km
for each region.
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4.3 Peaks over threshold

In figure 10 is the data with the thresholds (700, 3) indicated. Using QQ-plots as
the diagnostic tool, the thresholds were chosen as the lowest thresholds (giving
the largest amount of data), for which the generalized pareto distributions still
provide a good fit.

Cumulative distance traveled (m)

T T
0 1000 2000 3000 4000 5000 6000

Area of bounding box (pixels)

Figure 10: Data for incorrect detections together with the thresholds for the generalized
pareto distributions

4.3.1 Parametric model

To the data above both thresholds, a bivariate extreme value distribution were
fitted. Out of the six parametric distributions available in the POT package in
R, the one with the lowest AIC, the negative logistic distribution, was chosen.
The ML estimates of the parameters are presented in table 4, together with the
standard errors.

Parameter Area of bounding box Cumulative distance
Location () 700 3

Scale, (o) 842 + 32 3.25 + 0.084

Shape, (&) —0.025 + 0.028 0*

Dependence parameter (o) 0.01569 £2.072 - 10

Table 4: ML estimates and standard errors for the fitted generalized pareto distribu-
tions. A * means the parameter was fized

The marginal corresponding to the distance traveled by the vehicle until the
incorrect detection disappeared was fitted with the shape parameter fixed at
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0, which corresponds to an exponential distribution. This produced the best
fit and was furthermore motivated by a 95% confidence interval for the shape
parameter, (—0.075,0.02), containing 0. Figure 11 contains the QQ and density

plots of both fits.
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Figure 11: QQ and density plots of the GPD fits to the marginal distributions

In figure 12 are 10 000 random variates, simulated from the estimated model,
together with estimated quantile curves corresponding to p = 0.95,0.99,0.995.
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Figure 12: 10 000 random variates from the fitted negative logistic model together with
quantile curves and threshold excess regions for p = 0.95,0.99,0.995

The empirical probabilities, pr, for the threshold excess regions obtained
from the quantile curves and the estimated number of detections, d, per 10° km
for each region are presented in table 5.

P Distance to object Traveled distance pr d/10° km
0.95 8.9 12.7 2.5-1073 540

099 8 17.9 9.7-107° 21

0.995 7.5 20.2 2.5-107° 5.4

Table 5: Thresholds which determine the threshold excess regions corresponding to the
quantile curves for p = 0.95,0.99,0.995 and the empirical probability of an observation
being in the region. Also presented is the estimated number of detections per 10° km
for each region.

4.3.2 Semi-parametric model

To create a semi parametric model using threshold exceedances, the marginals
are modeled as generalized pareto distributions with the parameters that were
estimated in the previous section. A bivariate distribution with these marginals
is then obtained using a copula, as in [12]. A suitable copula to use because of
its lower tail dependence is the Kimeldorf and Sampson copula,[15]

-

°]

Clu,v) = [u™® +v7% —1]

where ¢ > 0.
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The dependence parameter § can easily be estimated by using the connection
to Kendall’s tau, 7 = ﬁ [15]. Kendall’s tau for the data of the exceedances
is 7 = —0.044 which gives § = —0.084. The generalization of the Kimeldorf
and Sampson copula which handles negative correlation is the widely popular
Clayton copula,

C(u,v) = max(0, [u™® +v=° — 1])7Tl
where 6 > —1

For negative §, C is 0 if v < (1 — u=%)% , which makes such pairs (u,v) an
area where the copula is not useful. If this area is too big, the copula can not
be used. For § = —0.18, 10° random uniform numbers were generated, and the
occurence of C vanishing was estimated to be 0.002%, which is considered to be
negligible.

Assuming for notational simplicity that F; and F5 are standard GPD marginals,
the estimated joint distribution function is

—1

F(z,y) = C(Fy(2), Fa(y)) = max(0, [(1—-(1-&2) T ) "+ (1—(1—-E&p) = ) )+

In figure 13 is 10 000 random variates from the estimated distribution, sim-
ulated from the copula using the conditional distribution approach.
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Figure 13: 10 000 random variates from the estimated bivariate distribution with

GP margins, together with quantile curves and threshold excess regions for p =
0.95,0.99,0.995.

The empirical probabilities, pr, for the threshold excess regions obtained
from the quantile curves and the estimated number of detections, d, per 10° km
for each region are presented in table 6.

33



P Distance to object Traveled distance pr CZ/ 10° km

095 8.7 12.8 2.3-1073 495
099 8 18 9-1075 19.4
0995 7.5 20.2 25-107° 5.4

Table 6: Thresholds which determine the threshold excess regions corresponding to the
quantile curves for p = 0.95,0.99,0.995 and the empirical probability of an observation
being in the region. Also presented is the estimated number of detections per 10° km
for each region.

5 Model comparison

In this section the various models will be compared in terms of their abilities to
accurately estimate the risk of an observation being large in both components.

The data set is randomly split into a smaller and larger set in the ratio
1:9. The non-parametrically estimated quantile curves of the larger set is used
as ground truth. Using the smaller set the various models were fitted. The
quantile curves were then estimated and compared to the ground truth quantile
curves. The number of blocks for the component-wise maxima were set to 50 as
before and the thresholds for the threshold models were chosen using a function
available in the evd package in R.

To measure how accurate the estimated quantile curves are, a similarity
measure of these curves is needed. A suitable metric, which takes the location
and ordering of the points along the curves into account is the Fréchet distance
[13]. Let X be a metric space with metric d and ~;,v2 be two curves in X.
Furthermore let @ and 8 be any reparametrizations of +1,7v2. The Fréchet
distance between two curves 71,2 is defined as

dr(y1,72) = }Xng tgl[g’i] d(vi(a(t)), v2(B(t))

where d is the metric in X. Here, X = R? and d is the euclidean metric.

A common way of explaining the definition of the Fréchet distance is that it
corresponds to the length of the shortest leash needed for a man walking along
one curve to be connected to his dog, walking on the other curve. They can
both vary their speed, but not walk backwards.

The mean of the distance between the quantile curves for p = 0.95,0.99,0.995
quantile curves and the sum of these distances over 10° repetitions of the above
procedure is presented in table 7.
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D Param. POT Semi-param. POT Param. Maxima Semi-param. Maxima

0.95 9.31 9.47 18 17.45
0.99 9.21 9.39 17.83 17.2
0.995 9.19 9.36 17.66 17

Y 27.71 28.22 53.49 51.65

Table 7: Mean Fréchet distance between the estimated quantile curves and the quantile
curves of the data for p = 0.95,0.99,0.995. The last row contains the sum of the
distances for each model.

The Fréchet-distance measures how far away the predicted quantile curve is
from the quantile curves of the data. Since dp is a metric, a perfect prediction
of the quantile curves would correspond to dp = 0. Thus, the results are to be
interpreted as a lower mean distance being better. The sum of the distances
over p = 0.95,0.99,0.995 is given as an over all score for the model.
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6 The extreme value’s dependency on velocity

So far the velocity of the vehicle has not been taken into account. The velocity is
of course natural to include in any risk analysis regarding vehicle safety. As the
other quantities, the velocity was measured directly when the incorrect detection
disappeared.

It was not possible to fit any extreme value distribution to the velocity data,
as the self driving autopilot of the CARLA simulator produced little variation
in the velocity. The autopilot is also set to keep a velocity of around 70% of the
current speed limit. This in combination with the environment being an inner
city, the resulting data for the velocity is lower than it would be in a real life
application.

A question is whether or not the bivariate extreme value distributions that
were estimated earlier depends on the velocity of the vehicle. To answer this
question the data was divided into groups with mean velocities v, v2, v3 equal to
10,18,40 (km/h), respectively. Again, the best performing model, the negative
logistic model was fitted using threshold exceedances. The thresholds for the
threshold excess region obtained from the quantile curves are presented in table
8.

D Group 1 (v; = 10) | Group 2 (v = 18) | Group 3 (vs = 40)
0.95 | 83,108 9. 128 94,198
0.99 7.2,13.9 8.3, 17.7 7.9, 24.7
0.995 | 6.7, 15 7.9, 19.7 7, 29.2

Table 8: Thresholds for the threshold excess region for p = 0.95,0.99,0.995. The
numbers correspond to the threshold for the distance to the object in meters and the
cumulative distance traveled until the object disappears.

7 A risk measure based on velocity

One might be interested in a risk measure that incorporate the velocity. This
could be achieved by considering the braking distance, which is a quadratic
function of the velocity. The idea is that a safety system of a self driving vehicle
could for example brake abruptly if an object is incorrectly detected and the
braking distance is under a certain threshold.

The formula is easily derived by equating the work W = pumgd done by
braking and the kinetic energy £ = 5~ of the vehicle, where p is the coefficient
of friction between the road surface and the tires, g is the gravity of the earth,
and d is the distance travelled. Thus, the braking distance can be written as a
function of the velocity:

2
b(U) = %

An assumption is needed regarding the coefficient of friction. Here, it is set as
w = 0.8, which covers most normal situations [17]. A critical region can then be
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defined by considering points for which b(v) + ¢ > d where d is the distance to
the object and ¢ is a tolerance.

As an example, consider the data for the third group in the previous section.
In figure 13 is a plot of the area of the bounding box and the velocity, with the
region for t = 0 displayed. This critical region contains five detections, which
gives an empirical probability of 6.5 - 10~* for such an event.

Velocity (km/h)

T T T T T
0 500 1000 1500 2000 2500

Area of bounding box (pixels)

Figure 14: Scatterplot of bounding box area and velocity for incorrect detections, to-
gether with the critical region
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8 Conclusions

Extreme value theory has the potential to be a valuable tool in estimating the
risk of sensor failures, and some of the various techniques and methods that
could be employed in such extreme value models have been presented here.
The methods that mainly are used in extreme value theory, the block maxima
method and peaks over threshold, were both investigated. For the data consid-
ered here, it is clear that a model using threshold exceedances is to be preferred.
This is not only because of preserving more of the data, but mostly because the
distribution of the data above both thresholds serves as a better approximation
of the general distribution than the component-wise maxima.

This agrees with the results of the model comparison, where the models
using threshold exceedances on average produced quantile curves with smaller
Fréchet distance to the non-parametric quantile curves of the data set which
was used as ground truth. It should be noted that since the data set itself was
used for generating the ground truth quantile curves which are used to compare
the models, the results of this section are not to be interpreted as the model’s
abilities to accurately predict extreme observations. Comparing the models
using a larger data set, or even data for extreme observations is to be preferred,
but such data is usually scarce or non-existent, a general problem in extreme
value theory. However, the method of using the Fréchet distance to compare
quantile curves (or other risk measures that can be realised as simple curves)
could be used as a general strategy for comparing risk estimates of models to
real, observed data in further research.

In general, the threshold excess regions are slightly larger for the threshold
models, meaning that the rare and potentially dangerous incorrect detections
of the sensors are estimated to be less severe. The estimated frequencies of
observations large in both components are thus also higher for these models. The
frequencies decrease rapidly as p increases since the probability of an observation
being in the threshold excess region corresponding to a probability p is (1 —p)2.

This difference in the risk estimates stems from the common criticism of
models based on component-wise maxima, which is that it produces synthetic
observations that are not in the data set, something that is clear from figure
6. For independent data, these synthetic observations are different from the
observed data and the relevance of such a model must be questioned. However,
the component-wise maxima inherit the independence of the data, and thus
produces a model with results not that different from the threshold models.
This type of model may still have value in applications concerning safety, as it
can be used to provide a small overestimation of the risk estimates. If such a
model estimates risks that are within tolerable limits, then it can be seen as an
indication that the process of generating a large data set to be used for validation
is worthwhile, as the number of observed extreme observations is more likely to
also be within the limits.

There is no real difference in the risk estimates for semi-parametric and
parametric models. The reason for this is the dependence structure of the data.
Although a semi-parametric model using threshold exceedances can incorporate
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negative dependence structures of data more flexibly, for example by reflecting
the copula, the dependence structure of the data is still too close to independence
for it to make a real difference. It shows however the flexibility of modeling
dependence using copulas.

For all models, the estimated regions include incorrectly detected objects
that are within 10 meters before disappearing. A reason for the distance not
being larger is that on average, the velocity determined by the autopilot in
CARLA is lower than it would be in reality. The extreme value’s dependency on
the velocity was investigated and the analysis indicated that the risk estimates
depend on the velocity, with the dependence differing for the traveled distance
and the distance to the object. As the velocity increases, the vehicle travels a
longer distance while incorrectly detecting an object and this influenced the risk
estimates presented in this section. On the other hand, the distance to the object
becomes larger as the velocity increases. This might seem counter-intuitive but
could be explained by the fact that a higher velocity increases the chance of
driving past the object between frames, resulting in the measurement being
made in an earlier frame where the distance to the object was larger. In any
case, the methodology of investigating factors that potentially influence extreme
values is an important one and should be carried out extensively. Methods
similar to the one used here, where data is divided into discrete groups and
extreme value analysis is performed for each group, can serve as an instructive
way of investigating such dependence in real-life applications.

To motivate how risk estimates from extreme value models such as those
presented here can be used in validating the safety of a perception system, what
is meant by sufficiently safe needs to be defined. This is an open question but as
a minimum requirement, one can refer to the ethical guidelines from [21] stating
that self-driving vehicles should be at least as safe as human drivers. However,
such a requirement is not very precise and it is not exactly clear what types of
accidents should be included.

To further motivate the complexity of proving that a perception system is
sufficiently safe, the amount of time 100 autonomous vehicles would need to drive
at an average speed of 25 miles per hour to have sufficient data was estimated to
be 225 years [22]. In this estimate the authors used the number 1.09 deaths per
100 million miles driven and they note that this number decreases with time,
thus making the requirement harder and harder to fulfill. An estimation of the
amount of data collected from an 8-megapixel camera recording at 10 frames
per second is 170 - 109 Terabytes, which is impossible to store. One should
also note that the number 1.09 is estimated from all types of situations which
shows that in individual cases there might be more aspects to consider and the
requirements need to be more conservative.

A possible way to regard such safety requirements is thus to divide accidents
into subsets with varying tolerances for each subset. For example, incorrect
detections might cause false braking which could lead to a rear-end crash. Ap-
proximately 1.8 million rear-end crashes occur in the U.S annually [23]. With
5 trillion driven kilometers per year estimated by the federal highway admin-
istration, this gives a frequency of 2.78 rear-end crashes per million km. Out
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of these, it is estimated that 0.2 percent lead to an injury on the maximum
abbreviated injury scale (MAIS) corresponding to the worst type [24]. Thus,
rear-end crashes resulting in such injuries occur less frequently than 5.6 per 10°
km and so an autonomous vehicle would need to have a frequency lower than
that to be considered safer than an average human driver.

Not all false braking will lead to rear-end crashes and potentially a severe
injury. Accurate estimations of this probability are hard to make. For simplicity
and sake of argument assume that this probability is 0.01. Then false braking
should occur less frequently than 5.6 per 107 km. Now, as a simplified model
assume that incorrectly detected objects lead to false braking if the vehicle drives
a distance larger, and the object is closer than some pre-determined thresholds.
Then, to fulfill the requirement of a false deceleration occurring less than 5.6
times per 107 km, a large amount of data needs to be collected. Before starting
this process of data collection, risk estimates from extreme value models such
as those presented here can be used as an indication of whether or not the
perception system fulfills the requirement, which can save time and resources
by not having to restart the process.

As a final note, this thesis also shows that what is being measured, and
how it is measured is of great importance in creating extreme value models.
The distance traveled while incorrectly detecting an object and the remaining
distance to it when it disappears resulted in an approximately independent
dependence structure, with no upper tail dependence. Thus, if this methodology
is applied in a real-life setting, care should be taken in the analysis of the
dependence structure, especially when modeling the dependence in the extremes.

9 Further research

Further research should be carried out using a non-simulated data. As was
investigated in the later sections of the thesis, different notions of what is con-
sidered to be a dangerous situation, using more than two random variables,
should be determined. Such models would result in more complicated depen-
dence structures for which tools outside the scope of this thesis are needed. An
example of such a tool is vine copulas, [18], which are described as a flexible
way of handling higher-dimensional settings. The idea is based on using bivari-
ate copulas as building blocks for higher-dimensional distributions. Thus, the
copula methods presented here could be applied for pairs of random variables,
which then in turn can be used to obtain a vine copula.

The risk measure considered here, the quantile curves of a bivariate extreme
value distribution, is a natural generalization of the traditional univariate risk
measures such as value at risk or expected shortfall. An interesting topic to
explore is other kinds of risk measures, both in the bivariate and the multivariate
case. This was briefly touched upon by presenting a risk measure based on
velocity, which is only relevant for this particular application. It should be noted
that this risk measure only takes the velocity of the vehicle and the distance
to the object into account, neglecting other factors that decide the severity of
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the situation. Other multivariate risk measures that might be suitable in this
area are perhaps those based not only on the frequency of observations over
certain thresholds but also on the mean of how large the threshold exceedances
are when they do occur. This is indeed an active area of research in modern
times, [19], [20]. Although often developed with financial models in mind, they
should translate with ease to the current application.

Finally, the data that was obtained for missed detections using this detection
model was insufficient to create any extreme value models. An interesting and
important topic for further research is models for objects that should be detected
but are missed by the detection model. As a first step, marginals similar to those
considered here could be used together with the tools presented for estimating
dependence structures.
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