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Abstract

A graph neural network (GNN) is constructed and trained with a purpose of using
it as a quantum error correction decoder for depolarized noise on the surface code.
Since associating syndromes on the surface code with graphs instead of grid-like
data seemed promising, a previous decoder based on the Markov Chain Monte Carlo
method was used to generate data to create graphs. In this thesis the emphasis has
been on error probabilities, p = 0.05, 0.1 and surface code sizes d = 5,7,9. Two
specific network architectures have been tested using various graph convolutional
layers. While training the networks, evenly distributed datasets were used and the
highest reached test accuracy for p = 0.05 was 97% and for p = 0.1 it was 81.4%.
Utilizing the trained network as a quantum error correction decoder for p = 0.05
the performance did not achieve an error correction rate equal to the reference
algorithm Minimum Weight Perfect Matching. Further research could be done to
create a custom-made graph convolutional layer designed with intent to make the
contribution of edge attributes more pivotal.

Keywords: quantum error correction, surface code, graph neural networks.






Acknowledgements

First I would like to thank my supervisor, Mats Granath, for guidance and contin-
uous discussions regarding possible advantages that could be made to improve my
study. In addition I would like to thank Evert van Nieuwenburg and Basudha Sri-
vastava for joining in on weekly meetings giving me valuable feedback. Final thanks
to Karl Hammar who helped me with the Markov Chain Monte Carlo-decoder

vii






Contents

List of Figures

List of Tables

1 Introduction
1.1  Quantum Error Correction . . . . . . . ... ... ...
1.2 Geometric Machine Learning . . . . . . . .. ... ...
2 Graph neural networks
2.1 Message-Passing . . . . ... ... ... ... ... ...
2.2 Graph Pooling Layers . . . . . . . ... ... .. ....
3 Quantum Error Correction
4 Methods
4.1 Dataset creation. . . . . . . ... ... ... ... ...
4.2 Network architecture . . . . . . ... ... ... ....
5 Results
6 Discussion and Analysis
7 Conclusion
Bibliography

xi

xiii

11

17
17
19

23

25

27

29

ix



Contents




2.1

2.2

3.1

3.2

3.3

3.4

3.5

List of Figures

Example of a simple graph where we want to aggregate information
to node 1 where two iterations are used in the message-passing pro-
cedure, as can be seen by the neighbouring nodes aggregating infor-
mation form their adjacent nodes. . . . . . . . .. ... ... ... ..

In 1) the node feature matrix X (with 4 features on 3 nodes) is
multiplied with a projection vector p to achieve the score vector y.
Then, in this case, (k = 2) the top two scoring indices are chosen
to select the most important nodes. Then in 2) the important nodes
from X are matrix multiplied with the score vector to receive the new
pooled graph. . . . . . ...

Qubit state viewed in the Bloch-sphere representation. The ground-
state, |0) can be seen in the north pole and the excited state |1) in
the south pole. The |+) is the received superposition state when act-
ing with Hadamard on the groundstate and similar for |—) with the
excited state. . . . . ...
The encoded state shown in the circuit representation. First the
CNQOT gate is used to entangle the two states, afterwards a X-error
occurs on one of the qubits. Then a Z;Z, operator entangled with an
introduced ancillary qubit, |0,) is used to measure the parity. Note

that for the CZ-gate it does not matter which qubit is the control one. 13

The first figure illustrates the representation of the smallest version
of the surface code. Here |U;,) are the states of the data qubit,
which we do not want to disturb. a,» are the ancillary qubits used to
measure the parity. Note that the dashed line represents the CNOT
gate and the solid line is the CZ gate. The second figure shows the
corresponding surface code using the quantum circuit representation.

A surface code containing five physical qubits and four ancillary
qubits, this is the least amount of qubits needed to make a surface
code that is protected from single qubit errors. . . . . . . . . ... ..

In the left figure a column of X-operators (red dots) define the logical-
X operator and a row of Z-operators (blue dots) define the logical-
Z. In the right figure the X-stabilizers surrounding a vertex and Z-
stabilizers surrounding a plaquette are shown. . . . . .. ... .. ..

13

X1



List of Figures

xii

3.6

3.7

4.1

4.2

4.3

4.4

0.1

A two vertex defect syndrome on the planar code and three possible
error-chains. Since there is no distinctive error-chain that corresponds
to a syndrome the definition of equivalence classes is essential since
the first two chains belong to class 0 while the last corresponds to
class 2. . . . e
The success ratio of error correction versus the error probability (p)
for planar code of size d = 5 with the MWPM algorithm and the
MCMC-decoder. Highlighted success rates for MWPM shows that
for p = 0.05 MCMC and MWPM are almost equal but for p = 0.1
the success ratio decreases significantly for MWPM. For depolarizing

noise, P, =Py =P =DP/3. . ..

Two defects on a planar code with size d = 5. The edges for the
specific type of defects are highlighted and the distance from the
defects to its edge is shown in our normalized way. . . . . . . . . . ..
Schematic figure of the mapping from syndrome on the surface code
to graph. The red node corresponds to the plaquette defect and blue
nodes to the vertex defects. The node features and the edge attributes
are visualized. . . . . . . ...
Schematic architecture of Model 1 where after two convolutional lay-
ers the data is fed to two separate heads. Each head contains a
pooling layer with a multilayer-percepton afterwards. . . . . . . . ..
Network architecture for Model 2. Here one can see that after the first
convolutional layer the information is sent parallel to a pooling layer
and the next convolutional layer. The pooled graphs from both the
first and second convolutional layer is then concatenated in separate
heads and is later processed in multilayer-percepton. . . . . . . . ..

Here the error correction success rate is shown on the y-axis and the
error probability on x-axis. The decoded syndromes are generated on
d = 5 surface code. The GNN-model is "Model 1" and is trained with
dataset d5/d7 and is clearly showing lower success rate than MWPM
and MCMC. . . . . ...



List of Tables

5.1 Test accuracy for classification of syndromes generated with error
probability p = 0.05 for five different datasets. The datasets are
named such that the number following d is the size of the surface code
which the syndromes were generated from. The two last datasets are
combination of different code sizes. . . . . . .. ... ... 23

5.2 Test accuracy for datasets containing syndromes generated with p =
0.1. Comparison of two models are shown, for Model 1 k was 12 for
both datasets, while k was 14 for Model 2. . . . . . . . .. ... ... 23

xiii



List of Tables

Xiv



1

Introduction

This introduction will be divided into two parts, the first being a background of
quantum computers and the most significant problems with quantum computing
and the second part will be an introduction to Geometric Machine Learning.

1.1 Quantum Error Correction

With the first quantum computers being built at this time the road ahead to a
fully functioning and reliable quantum computer is still distant. Not only is it a
theoretical challenge to determine how to best construct it but also the practical
part of assembling. Over the last years the enthusiasm regarding quantum computers
has skyrocketed and almost all big tech companies want to be in the frontline. In
this master thesis project focus has been on one of the key obstacles regarding a
quantum computer: correcting errors.

Comparing classical- to quantum computers the operation differs notably, since in a
classical computer information is stored in binary form, and the error that occurs is
then only the simple bit-flip, while in the quantum computer the quantum bits can
be in a superposition of 0 and 1 and in addition to the bit-flip error, a relative phase
exists where errors can occur. With this said one could state that while the binary
operation that takes place in a classical computer is simple, it would indicate that
the correction to such error should also be rather simple, and with the more complex
operation in quantum computers the correction of an error should be harder. While
this of course is one part of the struggle with quantum error correction, this is not
the only one.

In classical error correction what is most commonly used is so called majority voting,
which means that instead of having single bits, each bit is encoded into a multiple
of physical bits which leads to the possibility that, if an error occurs on one of the
physical bits, a majority voting is done to see whether this is an actual logical error
or not. One thing to note in the classical case is that a copy or clone of a bit could
be produced. This becomes a problem since the non-cloning theorem states[1] that
in the realm of quantum mechanics there is no unitary operator that could act on
a state and clone it. Thus, the idea of using majority voting is not a possibility.
Another difficulty is measuring the states since in quantum mechanics, when a mea-
surement of a state is done, the state collapses into the eigenstate of the measured
observable. For a long time this was seen as dead-end for a practical quantum
computer|2]. However, in the 90s Peter Shor introduced the idea of error correcting
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1. Introduction

code which included nine-qubits[3]. This code was able to correct single-qubit errors.
Since then the interest reignited and multiple of other encoding of qubits have been
theorised, such as Kiteav’s surface code[4] which is the encoding used in this thesis.

1.2 Geometric Machine Learning

In the last decade the field of machine learning has found its way to a wide range
of sciences. It has somewhat become a crossroad where data science meets every
other science profession resulting in many revelations, from image recognition[5] to
finding out whether a molecule is suited for a antibiotic6].

Focusing on geometric machine learning, we first want to resonate the purpose of
it. In standard convolution neural networks (CNNs) the data is presented on a grid
making it euclidean, where for example pixels could be viewed in a euclidean way.
In some cases the euclidean way of presenting data meets its restrictions. For exam-
ple, mapping information about e.g a molecule’s connections, features of each atom
etc. to a grid would be rather inefficient compared to mapping it to a non-euclidean
structure such as an actual graph where the nodes could represent the atoms with
node features mirroring the attributes of the atom but also including the connection
between the atoms as edge attributes. Thus we will end up with both the struc-
ture compositions and the essence of the relation composition. Now the question
is if there are smart operations that could help us with the machine learning on them.

In recent years several graph convolutions methods have been theorized and tested[14][15],
and have shown great results compared to standard CNN. These different operations

will be gone through in detail in the graph neural network section to give a sense of
what could be the strengths and what could be the shortcomings.

Another topic within machine learning is the three paradigms that are used to pro-
cess the data. The paradigms are supervised learning, unsupervised learning
and reinforcement learning[7]. In supervised learning each data sample has a
corresponding target label, using the labeled data to conclude broad information
of the data and then utilize a trained model to predict labels on unlabelled data.
This is the paradigm that is used for most classification tasks and it is the one
used in this thesis. In unsupervised learning the data samples do not have labels
connected to them, thus the learning is more of a cluster understanding, meaning
that the machine learns to separate information to different clusters. Before men-
tioning reinforcement learning there is a sub-branch within unsupervised learning
called semi-supervised learning where just a fraction of the data have labels. Then
we have reinforcement learning which makes use of a reward system: The model is
rewarded based on its actions and outcomes. This is used when training models to
perform at super-human level, e.g. in games such as gol[§].

Both supervised learning and Reinforcement learning have been used for quantum
error correction [9][10].

Now knowing the paradigms we can categorise the typical tasks done with geometric



1. Introduction

machine learning. In this thesis, as already mentioned, the attention is focused on
graph classification, which falls under supervised learning. With graph neural net-
works node classification is also common, this task often falls under semi-supervised
learning since here, instead of having multiple graphs it could only be one graph
with a great amount of nodes. A good example hereof is a typical social network|[11].
Now we do not need a target label for each node in the social network but still clus-
ter the nodes together that have similar features. It is semi-supervised learning
that has really sparked the interest for graph neural networks. There is also link
prediction[12] where the edges between the nodes are of interest, this is also mostly
occurring in semi-supervised learning.
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Graph neural networks

The data structures used in geometric Machine learning are non-euclidean, for in-
stance graphs, manifolds and more. Most common today is to map the data to a
graph. We begin with a proper description of the graph data structure. A graph
consists of a set of nodes and edges, G = (N, E), where edges ¢;; € E indicates a
connection between two nodes, i,7 € N = {1,..,m}. The edges could be directed,
meaning that depending on which of the nodes that is source and destination node
respectively could indicate different features, or the edge could be undirected where
the edge does not depend on where it starts and ends up.

To represent this data, the adjacency matrix A;; is an appropriate choice. The ad-
jacency matrix is a square matrix of the size of the number of nodes in the graph.
Non-zero elements in the matrix indicates a connection between nodes. In the most
simple case a connection is shown as one and no connection as zero. If there are no
self-loops (an edge with the same destination as source), the adjacency matrix has
no trace (zeros on diagonal). If the edge weight (e.g. length) is included, the ones
could be replaced with the weights in the matrix.

Information stored in graphs is often in the form of a feature vectors 7;. Every node
has a node feature vector and its dimension is R? where d is how many features each
node holds.

2.1 Message-Passing

The idea with the graph data is now to calculate what is most commonly called
node embeddings. We can think of it as mapping our nodes to an embedding
space, and this node embedding recaps the information of the node features and
the node’s neighbourhood, N (i) [13]. To gather the information about the nodes
neighbourhood we aggregate information from each connecting node. This process
is called the message-passing in graph neural networks and can be formulated as:

fik+1 = ’7<fz‘k7 DjEN(i) QS(fzka j’f’ eij)) (2'1)
where z is the node embedding, e represents edges, superscripts indicates which iter-
ation in the message-passing procedure it is, and the subscripts specifies the node. ~
and ¢ are differentiable functions i.e neural networks and [J is a permutation invari-
ant function such as summation or mean. The second term in the parentheses can
be seen as the aggregation of information from the neighbouring nodes. The initial
node embeddings (7°) are then the node features of the input graph. Essentially this
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2. Graph neural networks
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Figure 2.1: Example of a simple graph where we want to aggregate information to
node 1 where two iterations are used in the message-passing procedure, as can be
seen by the neighbouring nodes aggregating information form their adjacent nodes.

message-passing procedure is quite simple, by aggregating information from the lo-
cal neighbourhood in the first iteration £ = 1, and then in each subsequent iteration
the respective neighbourhoods are included.
Given (2.1) the question arises how this [-function could be defined to gather the
best information from neighbouring nodes. In the most simple cases this could just
be a summation of the aggregated information. However, this could be a complica-
tion since with a large amount of degree differences between nodes (great number
of fluctuations of neighbouring nodes) problems such as numerical instability arise.
One possibility is a symmetric normalization of aggregated information. This could
be written as N

=W Y g (2.2)

JEN (H)Ui \/@

where W is a trainable weight matrix and d denotes the number of adjacent nodes
of the specific node. It should be noted that here self-loops are also included. In
(2.2) we can now see that the aggregated information is normalized by how many
adjacent nodes each respective node has. This kind of normalization used was
first introduced by Kipf and Welling in 2016 [14] and goes by the name Graph
convolutional network (GCN). This is defined as node-wise and we can also define it
in matrix form using the node feature matrix X which takes the size R4*™ since that
is how it is implemented in pytorch geometric which is a geometric deep learning
extension library which include various convolutional- and pooling layers,

X' =o(DAD 2 XW) (2.3)
where X is the node feature matrix, A is the adjacency matrix where self-loops are

included (fl = A+ 1), D is a diagonal node degree matrix defined as D;; = >, Ajj
and o is a non-linear activation function such as tanh.

A remark on this convolution layer is that it is isotropic, meaning that the aggre-
gations obtained from all the neighbouring nodes are equally crucial, and this could
lead to a lower performance since sometimes the aggregation should be more im-
portant from a specific neighbouring node. To deal with this a more elaborate layer
could be used, namely GAT[15] (Graph Attention Layer). The GAT layer instead
uses the attention mechanism which results in a selective feedback from the adjacent

6



2. Graph neural networks

nodes.

Below we will again use X = {¥, 25, .., Z,,} where m is the number of nodes and
7; € R? meaning the number of node features. The output dimension post of this
convolution layer is 7;’ € R?, where d’ could either be larger or smaller than d. The
procedure of the layer is first having a linear transformation with trainable weights,
then the attention mechanism is added. Let us write

fi, = O'(Z OéﬁWij) (24)

where « is the attention coefficient, which could be defined as

- exp(o (AW, ||Wz,])
ij

— . 2.5
S rontn explo(@Wa W) (25)

d is a trainable attention vector, |||| is a concatenation operator, which is multiplied
with the concatenation of the products of weight matrices and the node feature
vectors. Here we can see that each exponential is divided with a summation of
exponentials, this is called softmax and works as a normalization factor in this
case. Finally the o, which again is a non-linear activation function. Looking at the
function of this layer it could be seen that it actually takes all the other nodes into
account, meaning that structural information is not explicitly included. A simple
change is to add the adjacency matrix after the concatenation so that attention
coefficients between nodes that are not connected become zero.

Q5 = SOftm&X(U(&[WfZHW.ZE}])AU) (26)

This is the description for one attention head, it is also possible to have multiple
attention heads, we can simply write this as

K
=
7= ||

k=1

O'(Z afjkaj) (2.7)

where K is the number of heads. Note that here we get K independent attention
coefficients.

Another layer that will be used in this work is the GraphConv layer defined as

fi/ = O'(Wlfi -+ WQ Z eijfj> (28)
JEN ()

in the Pytorch Geometric library, where in this case the aggregation is a summation
over the nodes weighted by the edge weights. However the implementation of this
in Pytorch Geometric allows the user to change the other permutation-invariant,
differentiable functions such as a mean or maximum.

Now with a fundamental understanding of how the graph convolutional layers work

there is difficulty to create deep-networks since after a certain amount of iterations
of the message-passing procedure the node embeddings for each node become very

7



2. Graph neural networks

alike, this is called over-smoothing[13]. There is no specific layer that deals with this
directly but in recent years architectures of the networks have been proposed where
instead of only relying on the output from the final convolution layer, a concatenation
of results from previous layers is done. In this way both a larger depth could be
used but then also keeping the behaviour of the node’s previous attributes.

2.2 Graph Pooling Layers

In standard convolution neural networks pooling layers are essential, not only to
reduce the data samples but also to harvest the key features of the data input
making the network more receptive to new information.

The most simple versions of pooling-layers for graphs is called global-pooling where
all node features in each separate graph is pooled. The ordinary global-pooling
layers are mean- and max-pooling, where we can write the mean-pooling as

1 m
m:3

where m is the number of nodes in the input graph. Note that the dimension of X’
is then compressed to R? in global pooling.

However, global-pooling is not always the most effective and performs poorly with
large graphs, since the substantial decrease of sample size also results in important
features being diluted. There are other pooling methods such as as TopK pooling
where particular nodes of each graph are selected depending on a score calculated
for each node. This instead leads to a lesser compression of the nodes in the graph
compared to the compression of graphs in global pooling. There are also pooling
layers used specifically for node classification and link-prediction which sort nodes
into specific clusters and then making use of both the graph and the cluster to pool
the data.

In the thesis the focus will be on non-global pooling layers such as TopK-pooling
because of the advantages it has on the graphs we are dealing with.

The procedure of TopK-pooling is as follows: a trainable projection vector called p’
is introduced, the product of the projection vector and the input feature matrix X
is divided by the norm of p’ giving a score vector ¥, corresponding to a score for each
node:

L Xp
Y= 1=
171l

The length of the score vector is the the amount of nodes in the input graph. The
next step is to select k nodes to keep from each graph. The parameter k can either
be fixed integer or a fraction of the total number of nodes depending on the wanted
output. In this thesis we want the pooled graphs to have the same sizes, thus k will
be fixed, while in other tasks when perhaps the graph sizes differ a lot, a fraction
is more suitable so the impact of the pooling will not have a bias effect on specific
graphs. The indices of the top scoring nodes are extracted and then used to calculate
the newly pooled graph.

(2.10)

8
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Xk ' Y
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i=topK(y)
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Figure 2.2: In 1) the node feature matrix X (with 4 features on 3 nodes) is
multiplied with a projection vector p to achieve the score vector y. Then, in this
case, (k = 2) the top two scoring indices are chosen to select the most important
nodes. Then in 2) the important nodes from X are matrix multiplied with the score
vector to receive the new pooled graph.

i = topy(¥) (2.11)

where topy is an operator selecting the indices ¢, corresponding to the k highest
scores.

X' = X(i)§(i) (2.12)

then using 7 to select which nodes to keep, also a re-scaling of the selected nodes are
done with the score vector.

In Fig. 2.2 a toy-example of TopK-pooling is shown, where a graph with three nodes
and each node has four features is pooled with £ = 2. The two high scoring nodes
are kept and the node features are updated depending on the scoring vector.

One theoretical disadvantage of TopK-pooling is that the connectivity of the graph
is ignored. To include some more complexity to the determination of kept nodes, a
layer named Self-Attention Graph pooling (SAG)[16] can be introduced. The prin-
ciple of SAG-pooling is the same as TopK but the calculation of projection scores
now depend on a convolutional layer. Replacing (2.10) with

7= GNN(X, A) (2.13)

where GNN is the chosen graph convolutional layer, e.g using the GCN in node wise
representation:

yi=o( Y —2zd) (2.14)
JEN UL djdi

where a is an attention score. Notice that y; is just a scalar. The rest of the
procedure is identical to TopK-pooling.
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3

Quantum Error Correction

The fundamental formalism of quantum bits (qubits) and the most simple represen-
tation of errors that act on them are discussed. The general way of writing the state
of a qubit is:

W) = al0) +51) (3.1)
where a and § are complex numbers and need to fullfill |a|® + |3]* = 1. It can be
seen from this equation that the qubit is a two-level system where the ground state
is in |0) and the excited state in |1). If a measurement of the qubit is done the
probability of it being 0 or 1 is |a|” respective |3|°. What the two-level also implies
is that the information no longer is binary like a classical bit but a superposition, the
superposition of states is the first indication of a quantum advantage. To visualize a
single qubit the use of the Bloch-sphere is standard. In Fig. 3.1 the ground state (0)
and the excited state (1) can be seen as the north- and south pole of the sphere re-
spectively. When the Hadamard gate, H, which is used to create superposition, acts
on 0 we will get the |+)-state and is analogue for the 1 state we get the |—)-state[18].

10)
W) T

1)
Figure 3.1: Qubit state viewed in the Bloch-sphere representation. The ground-
state, |0) can be seen in the north pole and the excited state |1) in the south pole.
The |+) is the received superposition state when acting with Hadamard on the
groundstate and similar for |—) with the excited state.

The simplest representation of errors that can occur to single qubits are the quan-

11



3. Quantum Error Correction

tum equivalent of the classical bit-flip. This bit-flip is represented as the Pauli-x
operator(X) and the second error is the phase-shift, which is represented by the
Pauli-z operator(Z). An operator Y is also an error and this arises from the product
of X and Z (neglecting the overall phase) meaning both a bit-flip and a phase-shift
error on the same qubit.

O IR R i

Acting with X on the |0) flips it into the [1) (X |0) = |1)). Acting with the phase
shift it can be seen that the complex amplitude for the "one state' flips sign but
otherwise stays the same as if we act on the general arbitrary state mentioned earlier.

We will now discuss the basics of error correction, beginning by defining some gates

100 0 100 0
0100 010 0

CNOT =0 0 o 11" CZ2=10 0 1 o (3.3)
0010 000 —1

These gates are control gates, where action to a second qubit is governed by the
first qubit(control-qubit). The CNOT-gate will create an entanglement between
two qubits, since entanglement is the closest thing we can do to clone a state. This
is used for encoding our states.

We define an encoded state as:
|Vr) = CNOT(|¥) ® |0)) = CNOT ((«[0) + 1)) ® |0)) = «[00) + 5 |11) (3.4)

where the L stands for logical. Let us now introduce a bit-flip error on the first
qubit, [¥U,) = a|10) + 3]01). To extract this error from the code an ancillary qubit
entangled with a parity operator Z;Z, is applied to the entangled state as can be
seen in Fig 3.2. The Z;Z, operator allows us to measure the states and see whether
an error has occurred. This is because it acts as a stabilizer operator meaning that
it does not perturb the superposition but only adds a global phase factor

02y |WL) = |Vp), Z1Zs|WL) = —|¥p). (3.5)

The results of the measurement will show whether a bit-flip has occurred or not,
however with this small encoding we can not conclude which qubit flipped.

With this knowledge we can go ahead and look at the so called surface code four-
cycle [17]

12



3. Quantum Error Correction

|¥) — —T T

|0y X

o) —{H] HHA

Figure 3.2: The encoded state shown in the circuit representation. First the CNOT
gate is used to entangle the two states, afterwards a X-error occurs on one of the
qubits. Then a Z;Z, operator entangled with an introduced ancillary qubit, |0,)
is used to measure the parity. Note that for the CZ-gate it does not matter which
qubit is the control one.

Figure 3.3: The first figure illustrates the representation of the smallest version
of the surface code. Here |U; ) are the states of the data qubit, which we do not
want to disturb. a;, are the ancillary qubits used to measure the parity. Note
that the dashed line represents the CNOT gate and the solid line is the CZ gate.
The second figure shows the corresponding surface code using the quantum circuit
representation.

Looking at Fig. 3.3 we can see that the ancillary qubits a;, a; are connected to both
data qubits, |U; ). This connection is a CNOT for the dashed line and a CZ for
the solid line. This indicates that a; measures the stabilizer X; X5 and a, measures
the stabilizers Z;7Z5. However, this small code meets the same restrictions as the
earlier encoded state, where we are only able to determine if an error occurred but
not to which qubit, but what one can see is that this code is actually very scaleable.
By Making a grid of four four-cycle surface codes we obtain the so called [[5,1,2]]
code. This is often referred to as the perfect code since this is the least amount of
physical qubits needed to encode a logical qubit that is protected from single-qubit
errors. The numbers stand for the number of physical qubits that the enconding
needs(5), the number of encoded (logical) qubits (1) and the Hamming distance(2).
The Hamming distance is the distance between the logical qubit states. With the
use of different sizes of the surface code it is sufficient to have an equation that

13
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Figure 3.4: A surface code containing five physical qubits and four ancillary qubits,
this is the least amount of qubits needed to make a surface code that is protected
from single qubit errors.

states the different parameters:

lp=d®+(d—1)%1=1,d] (3.6)

The [[5,1,2]] code is visualized in Fig. 3.4, where we can see that the every ancillary
qubit is connected to three data qubits. Stabilizers for these ancillary qubits are
then:

X Xo X3, 212324, ZoZ3Zs, X3XuXs (3.7)

To iterate why this code is protected from single qubit errors is that with three
stabilizers for each ancillary qubit, we are now able to do measurements for every
pair of qubits and based on outcome pin-point which ancillary qubit that has violated
stabilizers. Ancillary qubits with violated stabilizers are called defects in the thesis.
Where ancillary qubits with violated X-stabilizers are defined as vertex defects and
ancillary qubits with violated Z-stabilizers are plaquette defects. A collection of
defects is called a syndrome.

One set-back about the perfect code is that the logical errors are only of length 2.
The logical operators are identified as operators that commute with the stabilizers.
In this case X; = X1 X, and Z;, = Z1Z5. These also anticommute with each other
thus acting as Pauli operators on the code space. Meaning that the if multiple errors
occurs on the code, there is a big chance of it being a logical error. Thus, larger
code size is necessary to avoid the otherwise common occurrence of logical errors.

In Fig.3.5 the logical-X and logical-Z operators are shown for a surface code with
size d = 5, where the row of X-operators is X and the column of Z-operators is 7.
The X-stabilizers surrounding a vertex and Z-stabilizers surrounding a plaquette are
also illustrated in the figure. The different error chains that occur on the surface
code is categorised into equivalence classes. There are four equivalence classes for
the planar surface code used in this thesis. The equivalence class of a error chain
depends on whether it commutes or not with the logical operators, all chains that
anticommutes with Z; belong to class one, similar for chains anticommuting with
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3. Quantum Error Correction

X1 belong to class two. Combining the X and Z; we get Y7, chains anticommuting
with Y7, belong to class three. Class zero is then the chains that commutes with the
logical operators.

Figure 3.5: In the left figure a column of X-operators (red dots) define the logical-X
operator and a row of Z-operators (blue dots) define the logical-Z. In the right figure
the X-stabilizers surrounding a vertex and Z-stabilizers surrounding a plaquette are
shown.

One challenge that comes with large surface codes is that some clever algorithm
needs to decode the most probable error-chain. This is not an easy task since,
with the knowledge of how stabilizers work, multiple error chains can correct the
same syndrome and the amount of possible syndromes on the surface code increases
exponentially with the size of the code. In Fig. 3.6, the same syndrome, containing
two vertex defects is error corrected by three different error chains.

P
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s

Figure 3.6: A two vertex defect syndrome on the planar code and three possible
error-chains. Since there is no distinctive error-chain that corresponds to a syndrome
the definition of equivalence classes is essential since the first two chains belong to
class 0 while the last corresponds to class 2.

The standard algorithm used to decode syndromes is called Minimum Weight Perfect
Matching (MWPM)[19]. MWPM is a rather simple algorithm that tries to match
all the defects pair-wise and using the least amount of errors-corrections needed to
eliminate the defects. MWPM is approximate, assuming Y-errors only occur as in-
dependent X- and Z-errors on the qubit. This a crucial set-back especially when it
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Figure 3.7: The success ratio of error correction versus the error probability (p)
for planar code of size d = 5 with the MWPM algorithm and the MCMC-decoder.
Highlighted success rates for MWPM shows that for p = 0.05 MCMC and MWPM
are almost equal but for p = 0.1 the success ratio decreases significantly for MWPM.
For depolarizing noise, p, = p, = p, = p/3.

comes to codes of greater size and also when the error probability (p) is larger for the
physical qubits. The algorithm does not depend on the probability rate. There is
also another algorithm [20][21] which makes use of the Markov-Chain Monte Carlo
(MCMC) procedure to determine the most probable error-chain. This algorithm
makes use of the actual error-rate of the physical qubits and performs better than
the MWPM as exemplified in Fig. 3.7

The procedure starts with a syndrome and a corresponding error-chain, the syn-
drome is fed to the MCMC algorithm and many chains that solve the syndrome is
generated using the Metropolis-Hastings algorithm. After the generation of chains
is done, the distribution of equivalence classes among the chains is extracted. While
determining the distribtuion of error chains in the MCMC-algorithm the physical
error probability is incorporated, meaning that the MCMC-decoder is dependent
on the error probability. This is a significant change from the MWPM. Note that
the output from the MWPM-algorithm is binary since only one chain is generated
compared to the distributions from MCMC.
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Methods

This chapter will focus on the creation of the dataset and how the mapping from syn-
drome to graph is done and the architecture of the two networks used for classifying
the graphs. The training procedure is also explained.

4.1 Dataset creation

When creating a dataset it is important to find a good representation. Since the
graphs should be analogous to the syndrome on the surface code, the fundamental
property of how many defects the syndrome consists of is mapped to the number of
nodes. The fact that there are two different types of defects (vertex and plaquette)
which determine the equivalence class indicates that the defect type is significant to
include. Thus, the first node feature is the defect type. Another crucial attribute to
transfer from the syndrome is the positions of the defects relative to the edge where
the equivalence class is determined

As previously stated the data used to create the graphs are obtained from a decoder
based on the MCMC-method. The output of the decoder is the syndrome given
in the form of two matrices where one matrix contains the positions of the vertex
defects and the other matrix the positions of the plaquette defects. The equivalence
class distribution is also in the output of the decoder. From the two matrices all
necessary data to create the mentioned features of the graphs are obtained.

The position of a defect in this thesis are chosen to be the distance to the closest
edge. In Fig. 4.1 an illustrative example of the distance to the edge is shown for two
defects, where the single plaquette defect is created by a X-error either left or right
of the defect and the single vertex defect is created by a Z-error either above or below
the defect. Depending on which type of defect it is the reference edge is different,
this feature seemed important to include considering that the logical error depends
on this distance, and while having the distance to both edges can be argued to hold
more information the plaquette defect does not contribute to an logical Z-error and
equivalent for vertex defects and logical X-errors. Note that larger distance in the
figure is presented as —1, this is due to a normalization done to the distance. The
reason for a normalization is that datasets with graphs created from different sized
surfaces codes want to be possible. While the different sizes does not prevent such
datasets to be done, without a normalization the distance from the edge could affect
the results. An example of the mapping from "distance to edge" to node feature is
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shown in (4.1).

0.5, 1.5, 2.5, 3.5] —» [0.5, 1, —1, —0.5]. (4.1)

Figure 4.1: Two defects on a planar code with size d = 5. The edges for the
specific type of defects are highlighted and the distance from the defects to its edge
is shown in our normalized way.

Having determined the nodes and node features, the next step is the edges of the
graph. Since all the defects depend on each other in the syndrome, edges between
all nodes are included. The graph is thus a fully-connected graph. The Manhattan
distances between all nodes are then calculated. However, the further away a defect
is from another the less important it is, thus, the attribute distributed to the edge
is the inverse Manhattan distance.

All components to create graphs have now been presented, but since the datasets
are made for supervised learning, each graph needs to have an corresponding target
label for training. The target label is the one hot encoded equivalence class obtained
from the decoder.

In this thesis seven datasets are created, five with p = 0.05 and two with p = 0.1.
With the lower error probability rate three datasets are created with the separate
sizes, d = 5,7,9 and then two datasets containing a combination of sizes, 5 and
7 and finally 5,7 and 9 are created. For p = 0.1 there is one dataset for d = 5
and one for d = 7. To optimally train neural networks datasets containing evenly
distributed target labels are desired. However with low error probabilities the rarity
of syndromes belonging to equivalence class three is much higher than for the other
classes, which leads to problems to achieve perfectly even distributions of classes
and this also makes it difficult to create large datasets. The datasets created with
p = 0.05 contains between 5000 and 6500 graphs, while datasets with p = 0.1 con-
tains 15000 to 16000 graphs. Besides the evenly distributed target labels, all the
graphs in the datasets are unique. This is done to improve the training of the net-
work, since when the dataset is split into a training- and a test-dataset we do not
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Figure 4.2: Schematic figure of the mapping from syndrome on the surface code
to graph. The red node corresponds to the plaquette defect and blue nodes to the
vertex defects. The node features and the edge attributes are visualized.

want to have graphs that appear in both subsets.

Important to note is that syndromes only containing one defect are neglected, since
practical obstacles arise when graphs with no edges are included. Nevertheless, these
are trivial to decode using only the type and distance to relevant edge.

Since the data is generated from the MCMC-decoder the best performance of the
graph neural network is limited by the performance of this decoder. While the
decoder has a much higher complexity, and is more computationally demanding
than the MWPM algorithm the results are more accurate. This means that if our
network shows a good accuracy on the MCMC-decoder data, the network could
potentially outperform MWPM.

4.2 Network architecture

The network structures are somewhat different when working with graph networks
compared to standard convolutional networks, mainly due to the problem of over-
smoothing as mentioned earlier, which arises with the usage of stereotypical deep
networks. There are two different network architectures tested in this thesis and
they are quite similar. Both networks have the same core-structure which are two
graph convolutional layers to create node embeddings.

In the first convolutional layer we want to increase the node feature dimension, while
in the second layer the two models differ, the first model, "Model 1" also increases
the dimension in the second layer while Model 2 maintains the dimension.
Posterior to the convolutional layer the node embeddings are pooled in two separate
heads, the pooling layer in these models are TopK-pooling. Considering that the
number of nodes in the graphs may vary immensely from one graph to another,
pooling with a large k-value could lead to much of the data not being pooled at all
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(k-value larger than number of nodes). To deal with this dilemma, after the TopK-
pooling all graphs that contain less than k nodes get the remaining node number
as empty nodes (nodes with zeros as node features). This way all graphs have the
same size after pooling, thereafter the node feature vectors are squeezed such that
the dimension (1, kd) is achieved in each head, where d are node features.

This flattened vector is then fed to a Multilayered percepton (MLP). The MLP
consists of three layers and between each layer is tanh-activation function. The fi-
nal linear output dimension of the MLP is just a single number, which is activated
by a Sigmoid function. This results in the final output of the head being a value
between zero and one. The argument for using two different heads now becomes
clear, since the equivalence classes 0,1,2 and 3 can be written in binary form as
0=00,1=01,2=10,3 = 11 and then pointing out the first binary number in
the sequence to represent a logical X-error or not and the second number for logical
Z-errors. Then using these binary numbers as target labels for each head we can
combine two binary classifiers to fit our problem.

To calculate the loss of the prediction of the network the Binary-Cross Entropy
(BCE) loss-function is used, which is defined as

L; = —(y; log z; +log(1 — x;)(1 — v;)) (4.2)

where y is the target label and z is output of the network. Note that each head
have a separate loss-function attached to them.

The second model while still having the same structure, also pool the information
from the first convolutions layer and then concatenate the pooled graphs with the
pooled graphs from the second layer, this way we include more node features and
have a larger vector to process in the MLP. This type of method is inspired by [22],
however here we do not include the global pooling of each batch of graphs. Again,
the reason to include information from earlier layers is that in the event of over-
smoothing, information from previous layers contributes to the output.

Various different graph convolutional layers could be used in these models but in this
thesis the convolutional layers are chosen to be Pytorch geometric’s GraphConv.
Model 1 has also been tested with the GAT-layer. Although not shown, other layers
have also been tested, but with under performing results no further analysis was
done with them.

For each dataset different parameters are used. The hidden channels parameter
which governs the output size from the convolutional layer is adapted to the size
of the surface code, since with a larger surface code more probable positions are
introduced. Likewise for the k-value, where syndromes generated from larger codes
or higher error rates includes more nodes.

The Stochastic Gradient Descent (SGD) optimizer was used. The momentum hy-

perparameter was 0.9 and the learning rate was set to 0.025 for both models. A
learning rate scheduler was also implemented with the Pytorch library. Learning
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rate schedulers adjust the learning rate depending on some condition. The condition
we use is that if the training loss does not decrease over an interval of 10 epochs the
learning rate was lowered with 60%. This way the training could be more efficient
because it is easier to descent into a narrow local minimum. For each training proce-
dure 250 epochs were used, in some cases if the network had not yet fully converged
by 250 epochs, it would be increased to 400 epochs. The dataset are split into to
80% training data and 20% test data.

‘ Graph Convolutional Layer

Y

‘ Graph Convolutional Layer

Yoo\

’ X-head Pooling ‘ ‘ Z-head Pooling ’
MLP . MLP |

Figure 4.3: Schematic architecture of Model 1 where after two convolutional layers
the data is fed to two separate heads. Each head contains a pooling layer with a
multilayer-percepton afterwards.
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Graph Convolutional Layer

\

Graph Convolutional Layer

X-head Pooling  X-head Pooling Z-head Pooling  Z-head Pooling
I Concat I Concat
MLP MLP

Figure 4.4: Network architecture for Model 2. Here one can see that after the first
convolutional layer the information is sent parallel to a pooling layer and the next
convolutional layer. The pooled graphs from both the first and second convolutional
layer is then concatenated in separate heads and is later processed in multilayer-
percepton.
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Results

The results of classification accuracies for error probability p = 0.05 is presented in
Tab. 5.1. For p = 0.05 Model 1 outperforms Model 2 and GAT for all datasets
except for the combination dataset of d = 5,7,9 (d5/d7/d9). The highest accuracy
reached was for the dataset d7. These results are obtained with k-values 8, 12, 14
for db, d7,d9 respectively. Datasets containing multiple sizes use the same k-value as
the largest individual size included. Hidden features remain the same for all datasets
and are 16 for Model 1, 12 for Model 2 and 8 for GAT. The GAT network also have
6 attention heads.

While the classification accuracy for p = 0.1 is significantly lower than p = 0.05,
Model 1 still exceed Model 2. The best precision was achieve for the dataset db,
where k = 12.

Table 5.1: Test accuracy for classification of syndromes generated with error prob-
ability p = 0.05 for five different datasets. The datasets are named such that the
number following d is the size of the surface code which the syndromes were gener-
ated from. The two last datasets are combination of different code sizes.

Datasets
Model d5 d7 d9 ds/d7 d5/d7/d9
Model 1 93% 97% 96.8% 96% 95.4%
Model 2 92.4% 94.5% 96% 95.5% 96.4%
GAT 86% 82% 83% 84% -

Table 5.2: Test accuracy for datasets containing syndromes generated with p = 0.1.
Comparison of two models are shown, for Model 1 k£ was 12 for both datasets, while
k was 14 for Model 2.

Datasets
Model dopl d7pl
Model 1 81.4% 7%
Model 2 79.5% 5%

Utilizing Model 1 trained with the d5/d7 dataset as decoder for quantum error
correction with error probabilities between 0.02 and 0.05 and d = 5 is done and
the results are shown in Fig. 5.1. The performance of the GNN is compared with
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the MWPM-algorithm and the MCMC-method. The successful correction ratio is
decreasing as the error probability increases. In the GNN case all zero defect and
one defect syndromes are determined to be solved trivially, thus decoded with a
100% accuracy.
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) ¢
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§’ °
961 ® GNN
MWPM
¢ MCMC
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0.01 0.02 0.03 0.04 0.05 0.06

Error rate

Figure 5.1: Here the error correction success rate is shown on the y-axis and the
error probability on x-axis. The decoded syndromes are generated on d = 5 surface
code. The GNN-model is "Model 1" and is trained with dataset d5/d7 and is clearly
showing lower success rate than MWPM and MCMC.
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Discussion and Analysis

From Tab. 5.1 it can be seen that the accuracy of the networks vary depending
on the code size, while this is expected the deviation is not critical and therefore
larger d could be investigated to see whether the behaviour maintains or if there is
a threshold where the accuracy diverge. The precision for the datasets containing
a mixture of sizes seems to decrease, however the decrease is not significant thus
implying that a dataset consisting of various code sizes could result in a graph neural
network decoder which could perform well independently of code size.

An analysis regarding which type of syndromes that are hardest to classify shows
that syndromes belonging to class 3 are hardest. Considering that the majority of
syndromes that the network fail to classify include larger number of nodes, and class
3 syndromes often contain many nodes indicates a correlation.

Viewing the classification accuracies for syndromes generated from p = 0.1, the ac-
curacies are significantly lower. While it is expected to be harder to classify those
syndromes the decrease is too substantial to consider it as a viable decoder at this
time. However, we need to keep in mind that in the interval between p = 0.05
and p = 0.1 the performance of MWPM deviate notably from MCMC. Increasing
the test accuracy to approximately 90% when training a network for p = 0.1 could
potentially give a decoder that matches the performance of MWPM.

One important fact when comparing the accuracy when training a network and using
it as decoder is that the occurrence of syndromes belonging to equivalence class zero
is higher than the other classes (for lower p) and especially the rarity of class 3, since
it is very high. For example the 10000 syndromes generated for p = 0.2,0.3,0.4,0.5
contained 80, 165, 221 and 300 class 3 syndromes. This indicates that training a
network to better classify syndromes giving arise to class 0 could be rewarding.

Practical modification could be done to both the way we structure the graphs and
the network architecture. Having graphs containing a large number of nodes and
also being fully connected could lead to some of the poor results, seen in the case
of p = 0.1. One idea could be to introduce a cut-off, where edges outside a certain
threshold gets neglected. However this could be problematic for graphs that have
node clusters far away from each other in the graphs, since then the cut-off would
neglect the edges connecting the two cluster, resulting in two graphs.

Theoretically a pooling layer like SAG could perform better considering that its
projections scores are conditional on the connectivity of the graphs. While this is
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not certain a deeper analysis of training with SAG-pooling would be appropriate.
In addition the k-value used when pooling is often larger than the mean node number
of the dataset, meaning that we introduce more empty nodes than we actually down-
sample the information. This indicates that comparable accuracy could perhaps be
achieved without pooling.

We believe that the main obstacle to obtain better results while training the network
is that with the current model the processing is only done on node features. A
natural extension would be to develop a new custom-layer that operates on the edge
weights as well.
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Conclusion

In this thesis graph neural networks have been used to classify syndromes accord-
ing to equivalence class on the surface code. From a Markov Chain Monte Carlo
based decoder, probability distributions of error-chains corresponding to stochastic
syndromes on the surface code for depolarizing noise are generated. The most likely
equivalence class of error chains and the syndromes are used to create graph struc-
tured data. Datasets containing unique syndromes generated from different surface
code sizes along with different error rates are used for training. The uncommon
occurrence of syndromes corresponding to equivalence 3 makes it a challenge to cre-
ate large class balanced datasets for low error probability. Several types of graph
convolutional layers and pooling layers have been tested. The networks are trained
in a supervised fashion using graphs representing syndrome as input and most likely
equivalence class as target.

Examining the results it can be seen that the accuracies for p = 0.05 do not devi-
ate significantly depending on the code size d, however the accuracy for p = 0.1 is
considerably lower. Utilizing the best performing network as a decoder for low error
probabilities shows that it underperforms compared to the reference algorithm Min-
imum Weight Perfect Matching (MWPM). Where MWPM achieves approximately
98.2 success ratio of error correction for p = 0.05, the GNN reaches 96.5.

Some ideas for future research on the subject are to compose a convolutional layer
that incorporates a trainable parameter for edge attributes as well. Considering
further analysis of other pooling-layers could also be of interest, as is other ways to
represent the edge and node features of the graph representation of the syndrome.
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