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1. Introduction 

1.1 Diagnostic theory  
A fundamental difficulty within healthcare is that two patients never look the same. 
Furthermore, even if only one single patient is being studied, the medical information tends to 
vary over time. As a matter of fact, information normally varies between several 
measurements on the same individual even if these are taken over a short period of time. This 
is explained by the variability between patients, within patients and measurement error, 
respectively. Consequently, interpretation of uncertain medical information is a reality which 
health care professionals have to deal with.  
 
The obstacle caused by this dilemma is memorably expressed by Bertrand Russel as, ”The 
main task of modern philosophy is to teach man to live without certainty and yet not be 
paralyzed by hesitation” [1]. Another telling description is, “Medical care is often said to be 
the art of making decisions without adequate information.” [2].  
 
A correct diagnosis is crucial for the subsequent care of a patient. Since diagnostic tests play 
an important role in the diagnostic work-up and since test results often are afflicted with 
uncertainty, interpretation of diagnostic test results is one situation where the clinician has to 
deal with the dilemma described above.   
 
In the declaration of Helsinki, which presents ethical principles for medical research it is 
pointed out that most prophylactic, diagnostic and therapeutic procedures involve risk and 
burdens [3]. Moreover it is highlighted that, ”The primary purpose of medical research 
involving human subjects is to improve prophylactic, diagnostic and therapeutic procedures 
and the understanding of the aetiology and pathogenesis of disease.”  
 
Thus it is rather obvious that it is important to develop diagnostic theory in order to make the 
use of diagnostic information as certain as possible. An erroneous diagnosis could lead to 
dramatic consequences in terms of unjustified treatment, lack of treatment or even 
mistreatment. 
 
It is difficult to give an unambiguous definition of ”diagnostic theory”, but one possible 
suggestion of a general definition is “theory aiming at improving diagnostic procedures”. This 
general definition allows a wide range of issues. Without claiming to be an exhaustive 
overview, the list below contains some examples of important issues and examples of topics 
and questions related to diagnostic theory. For further reading, the comprehensive book “The 
evidence Base of Clinical Diagnosis” [4] is recommendable, and the references given for each 
topic in the list below is recommended as an introduction.  
 

 Analytical procedures and quality control [5].  
o Standardization of collection and handling of test material 
o Standardization and calibration of measurement procedures and technical 

equipment 
 

 Evaluation of a diagnostic tests discriminatory ability [6-8] 
o Optimal choice of diagnostic threshold 
o Test accuracy, e.g. sensitivity, specificity.  
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 The contribution of a single test in the diagnostic process [9] 
o Does the test contribute with information beyond already available 

information?  
 

 Study design [10-11] 
o Choice of study population 
o Choice of spectrum - clinical setting 
o Are the results transferable?  
o Choice of the reference test 
 

 Evaluation of cost/benefit [12] 
o Do the clinical benefits outweigh the costs and burdens? 
 

 Use of informatics and computer support [13] 
o Computer based decision systems 
o The use of digital journals 
 

 Meta analysis and review [14] 
o Which studies are possible to pool?  
o How to perform analysis of pooled data 
 

 Decision theory [2] 
o How to reason as a clinician 
o Understanding of fundamental concepts among clinicians 
o The implementation of new diagnostic procedures, possibly computer assisted 
 

Bearing in mind the wide spectra of topics it is natural that the theoretical area is of interest 
for a range of different specialists, e.g. physicians, epidemiologists, engineers, statisticians, 
psychologists to mention some of the professionals concerned by the topics. A theoretical 
arena for this cross-sectional discipline is “Medical Informatics”.  
 
According to Van Bemmel and Musen the work being done by researchers within the field of 
Medical Informatics could be described as, ”We develop and assess methods and systems for 
the acquisition, processing, and interpretation of patient data with the help of knowledge that 
is obtained in scientific research” [13]. 
 
In summary, the diagnostic work-up is a crucial procedure, and it is essential to develop 
theory regarding how to make as certain diagnosis as possible, even if available information is 
uncertain. This includes a wide range of questions and a wide range of specialists is needed. 
 
 

1.2 The development of diagnostic theory  
The theoretical development of diagnostic research lags behind that of therapeutic research, a 
fact that was noted by Cochrane already in 1972 [15]. Consequently, a large number of 
studies are reported with a relatively low scientifical quality [16-21]. Encouragingly, there has 
been a theoretical development during the last decade, originating in a number of articles 
dealing with a spectra of methodological aspects [10-11,22-26], some of which are 
synthesized into a book [4].   
 

 2



Furthermore, a standard for how to report diagnostic studies has been successively developed 
[27-29]. This standard, abbreviated “STARD” is an analogue to the standard available for 
how to report parallel group randomized therapeutic trials, i.e. the so called CONSORT-
statement [30-31].  
 
The suggested standard STARD focuses on design issues and univariate evaluation of tests. 
Consequently multivariate approaches are to a great extent neglected. According to a 
suggestion by Moons et al. univariate evaluation of a test should be defined as “test research” 
while “diagnostic research” should be characterized by multivariate evaluation [32]. The 
purpose of such a multivariate approach is to evaluate the additional information of a test 
beyond other pre-existing information [ibid]. This is due to the multivariate nature of a 
diagnostic work-up which most often inlcudes interpretation of joint information. Pre-existing 
information could for instance be medical history, physical examination, gender, preceding 
test, etc.  
 
Multivariate analyses also play an important role in diagnostic theory due to the fact that 
classical measures of accuracy, e.g. sensitivity, specificity and predicting values, actually 
could vary across subpopulations [33-36]. If the specificity and sensitivity depend on some 
factors, e.g. gender, race and smoking habits, it may be important to adjust for these factors 
when a test result is interpreted. In other words, a test result may be interpreted differently for 
patients with different characteristics, e.g. males vs. females, see also section 1.5 below.  
 
Thus, diagnostic issues have been highlighted over the last decade and even a standard has 
been suggested. There is, however, a discussion regarding the distinction between “test 
research” and “diagnostic research” – a debate which illustrates the lack of precise definitions. 
Furthermore, a suggested definition of “diagnostic theory” is based on a multivariate 
perspective.  
 

1.3 Briefly about laboratory medicine and reference values 
Reference values are essential for being able to interpret laboratory variables. Normally such 
reference intervals are population based, i.e. constructed by using a sample of reference 
individuals randomly chosen from the intended population. Such reference intervals are 
intended to serve a general purpose, meaning that the given interval should be possible to use 
as a reference regardless of suspected target disorder, if any.  
 
Laboratory variables are often a part of a diagnosis and reference values are claimed to be the 
most frequently used tool in the diagnostic work-up [37]. The development of reference 
values, e.g. a 95% reference interval, includes similar methodological considerations as when 
a diagnostic test is developed. For instance, how to define a population, sampling procedures, 
standardization of measurements, are all common methodological issues. Interestingly 
enough, available guidelines addressing methodological issues for the development of 
reference values were published within the field of clinical chemistry already in the late 80´s 
[38-44]. Methodological issues and also recommended statistical analyses are found in a 
comprehensive book by Harris and Boyd [45].  
 
As earlier mentioned, it is recognized within diagnostic theory that characteristics of 
diagnostic accuracy, e.g. sensitivity and specificity could vary across subpopulations. 
Regarding reference values, variation in specificity and sensitivity, even between individuals, 
was described by Harris already in 1974 [46].  
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Harris showed that the specificity and sensitivity for a specific individual depends on the 
individual’s steady state value and the within-individual variability.  
 
The steady state value is the value which observations vary around if several measurements 
are performed within a time where no steady state changes are expected, or in other statistical 
terminology: the expected value of the individual. If the variation in specificity is large, 
dividing reference values in more homogenous subpopulations is recommended [46]. Criteria 
for when such division in two different subpopulations is adequate were described by Harris 
and Boyd 1990 [47]. In the beginning of the new millennium some new criteria have been 
suggested for when reference values should be “partitioned” [48-52].  
 
In summary, the variability between individuals implying varying specificity and sensitivity 
of reference values was described a long time ago. There are also suggestions for when and 
how to adjust for this variability, e.g. criteria for when division of reference values in 
subpopulations is beneficial are suggested. If the between individual variance is relatively 
high even though appropriate partitioning has been applied, reference intervals may be of 
limited value anyway. In such a situation a possible solution may be to use the individual as 
his/her own reference, which naturally demands access to historical data on an individual 
level.  
 

1.4 Diagnostic research vs. test research vs. reference values  
During the renaissance of diagnostic theory a great spectra of topics have been covered. As 
mentioned, there is no established explicit definition of diagnostic theory, which makes it 
difficult to discuss how it differs, if it differs, from the theory regarding reference values. The 
most apparent difference is that diagnostic theory focuses on a specific condition, e.g. a 
disease. In the guidelines STARD mentioned above, ”diagnostic accuracy” is defined as, “the 
ability of a test to identify a condition of interest”. Noteworthy is the terminology “condition 
of interest” implying that a test also could be used for discrimination between other conditions 
than the classical “healthy” vs. “diseased”. The terminology also reveals the focus on 
evaluation of a single test. Such univariate evaluation should, according to Moons et al., be 
referred to as ”test research”, while ”diagnostic research” should emphasize the estimation of 
post-test probability of disease, preferably in a multivariate model [32].  
 
The difference is that a test could be shown to have a good discriminatory ability when it is 
evaluated in a univariate manner, but still be redundant in the diagnostic work-up. This 
redundancy occurs if the test is closely interrelated with already known diagnostic 
information, e.g. medical history, gender and preceding tests. In such a case the post-test 
probability will not be significantly different from the pre-test probability, given that a 
multivariate logistic regression model, including existing information, is used for estimating 
the probabilities. 
 
Regarding reference values these are most often intended to describe the most common 
values, e.g. the central 95% of the distribution, in a healthy population. However, “healthy” 
has no clear-cut definition and a reference population could in some cases be constituted by a 
population of patients with a specific relevant disease [39,5].  
 
Generally, the aim with reference values is to support interpretation of laboratory results in 
clinical practice [53], which also imply that it in some cases could be valuable with references 
in a population with a specific health condition.  
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Reference values should not be interpreted as medical decision limits [38]. Noteworthy, is that 
there is a risk that reference values, intended as descriptive, are still used as diagnostic limits - 
a phenomenon that has been described as, ”the diagnosis of non-disease” [4 (chapter2)].  
 
 
Thus, reference values are based on a statistical distribution most common in a healthy 
population and are intended to be descriptive and not to be used as clinical decision limits. 
Test research is suggested to be an evaluation of the ability of a test to discriminate between 
clinical categories in an optimal way [5], most often performed in a univariate manner. 
Finally, diagnostic research is suggested to include a multivariate perspective of the 
diagnostic work-up.  
 
This multivariate approach suggests the use of a multivariate logistic regression model to 
estimate the probability of target disorder. In such a model it is reasonable to include variables 
that significantly affect the probability. If a laboratory variable, interpreted by using reference 
intervals, is shown to be significant in such a model, it may be questioned if the reference 
interval in that case could be considered as diagnostic decision limits, and if so, maybe these 
should be adjusted in order to optimize discrimination? In other words, if a reference interval 
is shown to significantly affect the probability of a target disorder its role may be transformed 
from just being referential to also being conclusive and a form of medical decision limits. 
This argument makes the concepts somewhat blurred.   
 

1.5 Test accuracy  
As discussed, a test is used for discrimination between different conditions, e.g. pregnant/non-
pregnant, inclusion/exclusion for further tests or healthy/diseased, however, for the sake of 
simplicity, the conditions healthy/diseased will be used in forthcoming examples and 
illustrations.  
 
To evaluate the ability of a test to discriminate between healthy and diseased, there must be a 
possibility to separate these two categories. The reference used for judging the “true” 
condition of the patient is called “gold standard”. Obviously, it is desirable to use a gold 
standard which is as certain as possible. The ”accuracy” of a test is often characterized by; 
sensitivity, specificity and likelihood ratio [54], defined as: 
 

 Sensitivity: the probability of a positive test (T+) in the population of diseased (D+), 
i.e. diseased according to the gold standard. In symbols: )( ++ DTP  

 Specificity: the probability of a negative test (T-) in the population of healthy 
individuals (D-), symbolized )( −− DTP  

 Likelihood ratio for a positive test: 
yspecificit

ysensitivit
DTP

DTP

−
=

−+

++

1)(

)(
 

 Likelihood ratio for a negative test: 
yspecificit

ysensitivit
DTP

DTP −
=

−−

+−
1

)(

)(
 

 
The characteristics described above are all based on the status of the patient, i.e. if the patient 
is healthy or diseased.  
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These measurements may be interesting in research studies, when a single test is evaluated or 
when different tests are being compared. However, in clinical practice, the true condition of 
the patient is seldom known, which makes these characteristics inapplicable.  In clinical 
practice, it is much more relevant to make the calculation the other way around, i.e. to 
consider the probability of the condition, given the test result.  
 
This could be done with the following characteristics:  
 

 Positive predicting value: )( ++ TDP , that is the probability of disease given a positive 
test  

 Negative predicting value: )( −− TDP , that is the probability of  health given a 
negative test  

 
The characteristics of accuracy described above depend on the choice of threshold for positive 
and negative tests, respectively. To study possible choices of threshold a so called ROC-curve 
is a common analysis [55]. Alternative analyses also include cost/benefit-considerations [12].  
 
It is noteworthy that the definitions above are on a population level and do not include any 
patient- specific information at all, except the condition. If for instance, the specificity is 95% 
it implies that 95 out of 100 individuals, randomly chosen from the population of healthy 
individuals, are expected to receive a negative test.  
 
However, on an individual level the specificity actually varies. A healthy individual whose 
steady state is close to the threshold has a higher probability of a false positive result than e.g. 
a healthy individual with a steady state around average or below. Furthermore, even if two 
healthy individuals should have equal steady states, they may differ in within-individual 
variance. Consequently, the individual with the highest within-individual variance will have 
the highest probability of a false positive result. Thus, the specificity and sensitivity varies 
between individuals (assuming varying steady states or within-individual variances).  
 
The variation in specificity may be more homogenous in certain subpopulations than the 
variation in the overall population, e.g. the specificity could vary less among women than in 
the total population. If such homogenous subpopulations exist it may be possible to 
harmonize the specificity by dividing the population in subpopulation and for each 
subpopulation choose a threshold corresponding to the required specificity.  
 
However, even if the specificity is harmonized the sensitivity may differ. If, for instance, the 
total population is divided into females and males due to lower between-individual variability 
among females than in the total population, it implies that the between-individual variance is 
greater among males. Thus, if thresholds are adjusted to give the same specificity, the 
sensitivity will be higher for females than compared to males.  
 
It is also worth remembering that characteristics of accuracy may vary between total 
populations. For instance, the sensitivity could be better among patients with a disease in an 
advanced stage than patients in an earlier stage [8]. According to Moons et al. evaluation of a 
test in terms of the characteristics defined above is only useful in a limited number of 
situations. [32]. Instead, Moons et al suggest that a test should be evaluated in a multivariable 
manner, analyzing if the test contributes to the diagnostic process beyond what is already 
known.  
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Regarding reference values, it is common to produce a 95% reference interval based on data 
from a healthy population. In terms of the characteristics above, such an interval has a 
specificity of 95%.  
 
It is rather common to notice the terminology “false positive” and “false negative” 
corresponding to a healthy individual with a positive test and a diseased individual with a 
negative test, respectively. The probability of a false positive is equal to 1-specificity and the 
probability of a false negative equal 1-sensitivity.   
 
The risk of receiving a false positive test increases with the increased number of independent 
tests being performed. For instance, if a healthy individual undergoes 12 independent tests, 
the probability of receiving at least one false positive is greater than 50% [2]. This calculation 
assumes that the tests are independent. It is also worth remembering that the probability of 
receiving at least one positive test among the twelve tests also depends on the individual 
specificity, e.g. an individual with a steady state close to threshold or a high intra-individual 
variance for each of the different tests, is more or less guaranteed a false positive when these 
tests are carried out.  In contrary, an individual with steady states close to average or smallest 
possible within-individual variances will have a low probability of receiving a false positive.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 7



1.6 Objectives 
 
 
Overall aim 
 
The overall aim was to describe, exemplify and possibly develop the theory for reference 
values and diagnostic tests, especially focusing on the variability between individuals.  
 
 
 
Study specific aims 
 
Study I: Existing criteria for when to partition reference values are valid only for two 
subpopulations. The aim was to find more generally valid criteria which were also applicable 
for several Gaussian subpopulations. 
 
Study II: The aim was to study a possible relationship between accommodation capability and 
subjective symptoms. A secondary aim was to suggest reference values possibly based on a 
bimodal model discriminating between individuals with vs. without symptoms. The 
population was composed of invited children between the ages of 6 – 10.  
 
Study III: The aim was to evaluate and further develop a procedure used for the diagnosis of 
food-hypersensitivity.  The diagnostic method used is considered as the gold standard for 
diagnosing food-hypersensitivity and includes a technique where the individual acts as its 
own control. The population was composed by patients with subjective symptoms and their 
corresponding symptom protocol.  
 
Study IV: The aim was to discuss how interactions between test results and other variables, 
e.g. patient characteristics, could be taken into account.  
 
Study V: The aim was to investigate if a computer based support system and a multivariate 
prevalence function could improve allocation of life support level at a dispatch centre. The 
study population consisted of  patients calling the centre due to acute chest pain.  
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2. Theory and a summary of each study 

2.1 Reference values and partitioning 

2.1.1 General theory   
Reference values are claimed to be the most widely used tool for medical decision making 
[37]. To be able to compare an observed value with a relevant reference is essential for 
interpretation. A pioneer study, where observed values are described by using probability 
distributions was presented 1951 [56]. To define “normal” by using a reference interval was 
suggested 1969 [57].  
 
The rationale for using an interval instead of a single point as a reference is related to the 
natural variation between individuals [58]. The further development included a discussion 
regarding the reference population, i.e. a comparison between healthy individuals vs. 
hospitalized patients, suggested by Pryce [59]. This was one issue among several essential 
methodological issues, which urged a series of articles suggesting a standard for reference 
values [38-43]. This standard covers essential methodological issues, e.g. choice of 
population, sampling, standardization of measurements and procedures and statistical 
recommendations.  
 
However, even if the choice of population is adequate, the sampling is performed correctly, 
procedures are highly standardized and statistical procedure is correct, this does not guarantee 
that the received reference values will be useful in practice. This is due to the variability seen 
among individuals even in a well-defined population, as discussed by Harris 1974 [46]. Harris 
illustrates that if the within-individual-variance is low relatively to the between-individual-
variance, the sensitivity of a reference interval may be very limited. Consequently the clinical 
usefulness can be questioned.  
 
The main problem is that a large variance between individuals results in a wide reference 
interval, which will make individual changes, possibly due to illness, difficult to detect. In 
other words, the sensitivity will be low. A possible solution to this problem, suggested by 
Harris, is to divide the population in more homogenous subpopulations or to use the 
individual as its own reference. Naturally, the latter alternative demands individual historical 
data.  
 
To develop reference values for subpopulations is according to Harris useful if the standard 
deviation in the subpopulations is markedly lower than in the total population, i.e. at least 
37% lower. This may be fulfilled if there is a great difference in population means between 
the different subpopulations. Another situation where a division may increase the sensitivity, 
at least for one of the subpopulations, is when the between-individual variance is markedly 
different between the subpopulations being considered. These ideas were discussed in more 
detail in a proceeding paper [60].  
 
Moreover, an analysis and formalization of criteria for when it is appropriate to partition 
reference values in different subpopulations was suggested by Harris and Boyd in 1990 [47]. 
In this comprehensive study, it was emphasized that a statistical significance between 
subpopulations is not in itself a reason for partitioning.  
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Since even a small difference could be statistically significant if the sample sizes are large 
enough, it is clear that partitioning criteria is not equivalent with statistical significance. 
Partitioning should be based on a difference of a relevant magnitude between the 
subpopulations. A statistical significance thus does not guarantee that a division in 
subpopulations will be successful.  
 
As a matter of fact, Harris and Boyd illustrated that the differences must be highly statistically 
significant before partitioning is worth consideration. As criteria they suggested to partition 
either if the ratio between larger/smaller standard deviation is at least 1.5 or if a classical z-
function (difference in means standardized by standard deviations) is greater than a threshold.  
 
The z-function is in formulas described as:  
 gsNxxz /)2/)(( 21

21 −=  
 
, where ix  represents the sample means for i=1,2, and sg the common standard deviation and 
N the number of subjects in each subgroup.  
 
The suggested threshold was a function of sample sizes, which was a clever trick to guarantee 
a difference of a relevant magnitude regardless of sample sizes.   
 
For evaluation of the suggested criteria, a special case including two Gaussian subpopulations 
was used as an example. Unfortunately a mix between two normal distributions is non-normal 
in its distribution shape, which makes mathematical calculations rather complex. The 
combined distribution has the following cumulative distribution function:  
 
  )()1()()( 21 xFpxpFxC −+=
 
, where p is the first subpopulations fraction of the total population – also called prevalence, 
and Fi is the cumulative normal distribution function in subpopulation i, i.e.: 

 ∫
∞−

−
−
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2

2
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2
1)( σ
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, where iµ and iσ represent the population mean and standard deviation in subpopulation i, 
i=1,2, respectively. 
 
Since, the combined probability distribution was obtained to be of a rather complex 
mathematical nature demanding tedious work, Harris and Boyd instead decided to use 
simulations for evaluating the partitioning criteria. In these simulations it was investigated if 
one combined reference interval would imply that the fraction of the distribution in each 
subpopulation below or above the combined reference limits would deviate greatly from the 
nominal 2.5%. Simulations showed that the suggested criteria for partitioning corresponded to 
partitioning when these fractions where greater than 4% or lower than 1%, approximately.  
 
In a large project, common reference values for the Nordic countries have been suggested 
[61]. In relation to this project new criteria have been suggested by Lahti et al. [48]. The 
suggested criteria are based on the difference between reference limits in different 
subpopulations, e.g. the difference between upper reference limits.  
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Thus the procedure demands that reference values, e.g. the upper reference value, is 
calculated separately in each subpopulation, and thereafter to calculate the difference between 
these values.  
 
If such a difference is small it implies that pooling the reference limits into one single 
reference limit would not change diagnostic properties for the subpopulations that much.  
More specifically, Lahti et al. suggested to partition if the ratio between larger/smaller 
standard deviation is at least 1.5 or if the difference between two reference values, e.g. upper 
reference limits, divided by the smallest standard deviation is at least 0.75.  These criteria 
were found by, in contrary to the work by Harris and Boyd, using exact calculations.  
 
According to this exact evaluation, criteria corresponds to partitioning if proportions of the 
distribution above/below combined reference limits are greater than 4.1% or lower than 0.9% 
in any subpopulation. Another important finding in the study is that the partitioning criteria 
are valid only if the prevalence of each subpopulation is 50%, i.e. that each subpopulation 
constitutes half the total population. In a subsequent study by Lahti et al. criteria were 
redefined and a table with critical values, i.e. thresholds for partitioning, for various values of 
prevalence was presented [49].  
 
Importantly, it was also pointed out that the earlier suggested criteria by Harris and Boyd also 
are restricted to situations when the prevalence is 50%. In another study by Lahti et al. non-
parametrical alternatives of partitioning criteria are suggested [52]. In a study by Ichihara and 
Kawai multivariate analyses were used for partitioning considerations [51]. For an overview 
and comparison of existing methods, see the review by Lahti [50]. In this review, it is pointed 
out that criteria suggested by Harris and Boyd, are still the dominating criteria in guidelines, 
even though it is limited to only two subpopulations and fails to account for a prevalence 
different from 50%.  
 

2.1.2 Study I  
Aim: Existing criteria for partitioning of reference values are restricted to consider only two 
subpopulations, e.g. male vs. female. However, it is rather common with factors that divide 
the total population into more than two subpopulations.  
 
The aim with this study was to develop criteria for situations when partitioning of several 
Gaussian subpopulations is considered. The developed procedure should take account to 
prevalences. A secondary aim was to provide a tailor-made computer program as support.  
 
Theoretical idea: The suggested criteria by Harris and Boyd and also by Lahti et al. do all 
include some kind of measure, e.g. ratio between standard deviations, z-function or difference 
between reference limits, and to partition if these measures are greater than a threshold. The 
threshold is chosen in a way which guarantees that the proportions of the distribution outside 
combined reference limits should in each subpopulation not deviate markedly from the 
nominal 2.5%. For instance, proportions between 1-4% could be regarded as accepted, with 
such “proportions criteria” [52].  
 
The new suggested procedure does not include such a measure. Instead, these proportions are 
calculated directly. Naturally, this demands that the combined reference interval must be 
calculated. Once the combined reference interval is obtained it is simple to calculate the 
proportions outside combined values in each subpopulation.  
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To be able to obtain the combined interval, the following values must be found: 
and , assuming that a 95% interval is desired.  )975.0(1−C )025.0(1−C

 
These values are difficult to find mathematically, but easy to find with an equation solver 
algorithm. The calculation of the cumulative probability function for a normal distribution is 
elementary statistical theory and thus it is simple to also calculate the combined cumulative 
probability function C(x) for any given value of x. Thus, with some computer power it is a 
straightforward procedure to simply test different values of x and iteratively find the values of 
x which fulfils the equations: and , i.e. the upper and lower combined 
reference limits.  

)975.0(1−C )025.0(1−C

 
Results: A suggested algorithm was shown to be successful and it was possible to quickly and 
easily find the combined reference interval and thereby also proportions outside combined 
reference values in each subpopulation. The advantage with this procedure is that it is easy to 
generalize. In general, the combined cumulative probability distribution is 

  )()(
1

xFpxC i

k

i
i∑

=

=

, where  correspond to prevalence of subpopulation i and is the cumulative 
probability function in subpopulation i.  

ip )(xFi

 
In the same manner as in the two-sample case it is possible to identify the combined reference 
interval by finding the values of x, which satisfy the equations: C(x)=0.975 and C(x)=0.025. 
Once the combined reference interval is obtained it is easy to, in each subpopulation, calculate 
the proportion of the distribution outside each combined reference value, i.e. upper and lower 
value.  
 
Values that deviate notably from the nominal 2.5% implicate partitioning. A pilot version of a 
computer program is developed. An advantage with this method is that prevalences are taken 
into account and that reference intervals are automatically being calculated in each 
subpopulation and for the total population as well.  
 
Summary: A procedure for considering partitioning of several Gaussian subpopulations has 
been suggested. The procedure takes into account prevalences and beyond a combined 
reference interval it automatically calculates reference intervals for each subpopulation as 
well. The procedure results in an output illustrating, all possible intervals, and proportions of 
the distributions in each subpopulation, which is below/above combined reference limits. The 
procedure is supported by a computer program and is thereby simple to use.  
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2.2 Reference values vs. medical decision limits 

2.2.1 General theory – limits and their rationale 
As discussed previously reference values found in clinical chemistry serves a general 
descriptive purpose, and is usually presented as a 95% reference interval, i.e. an interval 
where you are expected to find 95% of all observed values within the population. The 
calculation is based either parametrically assuming a specific probability distribution or non-
parametrically, i.e. without any assumptions about underlying distribution [42]. When 
discussing references, the word “normal” is sometimes used, and this may lead to 
misunderstandings.  
 
The word “normal” is ambiguous and six different meanings are described by Sacket et 
al.[62]. The term “Normal” could for instance refer to a Gaussian-shaped distribution of a 
studied variable. Furthermore, the default choice of a 95% reference interval has also been 
used for describing “normality”. This may be regarded as inadequate since it is an arbitrary 
choice and since there is really no justification for why 95% of the population should be 
normal and the remaining abnormal. As a consequence, this could, according to Sacket et al. 
lead to the phenomenon “the diagnosis of non-diseased”.  Thus, there is a risk that reference 
values intended to be descriptive are over-interpreted and also used as decision limits, even 
though standards and literature emphasize the distinction between reference value and clinical 
decision limits [38,63-64].  
 
Finally, Sacket et al. describes three other alternative definitions of normal. Firstly, the 
threshold for “normal” could be based on studies of risk factors, where the threshold is set 
based on an increased risk of future complications, e.g. cardiovascular ones.  
 
A pure descriptive limit (reference value) and a limit based on risk evaluation could naturally 
differ. For instance, a Nordic reference interval for total cholesterol level includes values 
above 6 mmol/L [65], while “Läkemedelsverket” (Swedish food and drug administration), 
suggest as a target for treatment to be below 5 mmol/L or even lower for patients with 
increased risk [66].  
 
Secondly, “normal” could be used in the sense that a diagnostic test was negative. Finally, it is 
also possible to use a therapeutic definition where the threshold is chosen based on an analysis 
identifying values which are associated with benefits of treatment.  
 
In summary, there are several possible rationales for choosing a limit, ranging from simply a 
statistical description to cost/benefit-justification.  

2.2.2 Accommodation references and diagnosis – a brief introduction  
Accommodation could be defined as the ability of the eye to focus objects at various 
distances. The reference values used in practice today actually originate from a study 
published as early as 1912 [67]. Based on data from this study a reference curve accounting 
for age were formalized in a study by Hofstetter 1950 [68]. This reference curve illustrates the 
successive decreasing accommodation by age. However, the original data contains only a few 
observations on children below the age of 10 years. Based on an extrapolation to lower ages 
based on the reference curve, children are often assumed to have a good accommodation. This 
assumption may be invalid due to a misleading extrapolation.  In a rather recent study by 
Sterner et al. it was shown that the accommodation amplitude of school children is not as 
good as expected [69].  
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There is no established clear-cut definition of accommodation insufficiency (AI) and in earlier 
studies around ten different definitions are being used [70]. The term “insufficiency” is 
unambiguous and the underlying reason for regarding some values as insufficient is unclear. 
Moreover, the rationale for the choice of limit in terms of decreased abilities or symptoms 
may also be questioned. Finally, a recent encouraging study shows that low accommodative 
ability, could be improved by a simple harmless and efficient treatment, which increases 
accommodative ability and decreases symptoms [71].   
 

2.2.3 Study II  
Aim: To study a possible relationship between subjective symptoms at near work, e.g. write 
and read, and accommodation ability and to suggest reference values for school children.  
 
Method: Children from a randomly chosen junior level school from ages 6-10 were invited to 
participate. This cohort was examined at two occasions with 1.8 years in between. The first 
examination included 72 children whereof 59 also took part in the second examination. 
Subjective symptoms at near work were studied by using interviews and accommodation was 
measured according to established methods. Regarding reference values the idea was to take a 
possible relation to subjective symptoms into account.  
 
Results: It was found that subjective symptoms were related to lower accommodation, as 
illustrated in the following figure, illustrating binocular accommodation amplitude, age and 
presence of symptoms (black dots) or not (white dots): 
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The suggested reference values took this relationship into account. A bimodal model was used 
and a ROC-table complemented with positive and negative predictive values was presented 
(AA=amplitude of accommodation, L=left eye, R=right eye, B=binocular): 
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 Reference 
value 

Proportion of 
children with AA 
less than or equal 
to reference value 
 

Sensitivity False pos. Positive 
predictive 

value 

Negative 
predictive 

value 

7.0 20% 0.44 0.03 0.92 0.70 
8.0 29% 0.60 0.06 0.88 0.76 

AA (R)  
 

9.0 32% 0.60 0.11 0.79 0.75 
7.0 19% 0.40 0.03 0.91 0.69 
8.0 25% 0.52 0.06 0.87 0.73 

AA (L) 

9.0 37% 0.60 0.21 0.68 0.73 
11.0 19% 0.40 0.03 0.91 0.69 
12.0 24% 0.44 0.09 0.79 0.69 

AA (B) 

13.0 29% 0.44 0.18 0.65 0.67 
 
 
 
In this situation positive predictive value corresponds to the probability that an individual with 
a value lower than the reference limit has symptoms. Correspondingly, negative predictive 
value is the probability that an individual with a value above the suggested reference value 
manages near work without receiving symptoms. For instance, given the reference value of 11 
D in binocular amplitude of accommodation, a prevalence of 19% means that around every 
fifth child will be “positive”.  
 
The positive predictive value is around 90%, i.e. around nine out of ten children with an 
amplitude of accommodation lower than 11 D (binocular) will have symptoms at near work. 
Suggesting reference limits 8 D monocular and 11 D binocular indicate a prevalence of 
around 25%. This is much greater than the 2.5% prevalence received if the standard 
calculation: mean±2sd had been used, (assuming normal distribution). Such a high prevalence 
is still suggested due to the high probability of subjective symptoms at near work and the 
possibility of using a simple effective treatment.  
 
Conclusion: Subjective symptoms at near work were in this population associated with lower 
accommodation. Preliminary reference values associated with risk of symptom was 
suggested. The suggested reference values imply a prevalence around 25%, which is 
motivated by the high probability of subjective symptoms and the possibility of using an 
effective treatment that the suggested reference values include. However, more research is 
needed in order to confirm appropriate reference values, especially if accommodation 
amplitude should be measured routinely or even screened among school children from the age 
of 8 years.  
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2.3 Diagnosis using the patient as its own reference 

2.3.1 General theory  
The variance found in a sample could be divided in analytical variance and variance within 
and between- individuals [72]. Statistical analyses could be used for separating these sources 
of variability [73-75]. As earlier discussed the clinical usefulness of reference values may be 
very limited if the variance between individuals are much greater than the variance found 
within an individual. If this ratio of variances, i.e. between/within individual variance, is great 
even after relevant partitioning and standardization of measurement procedures, a remaining 
possibility is to use historical data from the individual as reference, i.e. to use the individual as 
its own reference[46]. Appropriate analysis for following an individual over time includes 
time series analysis and surveillance theory [60,76-78].  
 
Another situation when it is favorable to use an individual as its own reference is when the 
observed data is subjective, e.g. when the medical information is subjectively estimated by the 
patient using a rating scale. When subjective symptoms, described and rated by the patient, is 
being studied, there is beyond the variance described above, also a variation regarding how 
different patients actually interpret the subjective scale being used [79]. To be able to analyze 
symptoms on such a lower level of data, e.g. ordinal data, non-parametrical analysis is 
recommended [80]. Naturally, it is desirable with high reliability, both within and between 
observers, regarding the interpretation of data [81-83]. 
 
If the same observer measures the same individual repeatedly with low variance among data, 
the within-observer reliability is high. If different observers measure the same individual with 
low variance in data, the between-observer reliability is high.  
 
Regarding diagnostic tests, where some kind of measurement equipment is used, methods for 
evaluating the precision of measurement is well described within the field of clinical 
chemistry [84]. It is claimed that evaluation of reliability traditionally have been more 
concerned by researchers of mental disorders than in other medical specialties [75].  
 
In summary, when subjective symptoms are being studied it is an advantage if the individual 
can act as his/her own reference. Furthermore, high reliability is desired.  

2.3.2 A brief introduction to the diagnosis of food hypersensitivity  
In a survey as high a proportion as 20% of the population claims to be hypersensitive to 
certain foods [85]. To some degree medical attention regarding problems with food may 
affect the likelihood that people associate symptoms with something they have eaten [85]. 
However, the prevalence of confirmed food hypersensitivity is as low as 1-3% [87-89]. The 
gold standard for establishing food hypersensitivity is double-blind, placebo-controlled food 
challenges (DBPCFC), where differences in reactions are being studied after provocations 
with the suspected food and placebo [90].  
 
When the symptoms are objective e.g. urticaria, one provocation with food and one placebo is 
regarded as sufficient, while it is recommended to use 3+3 or 3+2 provocations if the 
symptoms are subjective, e.g. abdominal pain [ibid]. Existing guidelines do not contain any 
information about the interpretation of subjective symptoms and further standardization is 
being asked for [92-93].  
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In contrast to objective symptoms it is common that subjective symptoms also occur on 
placebo. In such a case, a common strategy is to regard the DBPCFC as negative or to classify 
it as a failure and a non-interpretable challenge [93-94]. However, such conduct is actually 
inadequate.  
 
Regarding patients with subjective symptoms, the symptom profile varies between patients 
when there is no formalized and evidence-based description over the magnitude and 
frequency of their symptoms. This lack of statistical description of the profile of symptoms 
and the subjective nature of the symptoms make it difficult to establish common diagnostic 
thresholds, and it is therefore preferable if each patient could act as his/her own control. The 
DBPCFC technique makes this possible.  
 
The basic idea with using a placebo is to study if reactions seen on food provocation are 
beyond reactions seen on placebo within patient, regardless of the magnitude of placebo 
reactions.  
 

2.3.3 Study III  
Aim: When double-blind, placebo-controlled, food challenges are being used for diagnosing 
food hypersensitivity some patients suffer from subjective symptoms. The aim was to 
evaluate and further develop a strategy for how these subjective symptoms could be 
interpreted.  
 
Method: Existing protocols from DBPCFC including at least four provocations, received from 
consecutive patients were reevaluated according to a pre-defined strategy, in total, 32 such 
protocols were included. In contrary to original diagnoses a challenge with reactions on 
placebo could still be positive assuming that symptoms on active provocations were beyond 
symptoms on placebos. For each protocol all included provocations were ranked after the 
magnitude of symptoms, and thereafter the blinded observer, suggested discrimination 
between active provocations (containing the suspected food) and placebos.  For instance, if 
the patient had received five provocations (3 with food and 2 placebo or vice versa), the 
observer identified the two provocations with mildest symptoms and the two with the worst 
symptoms, suggesting that these were placebos and actives, respectively. Finally, the fifth 
provocation was judged and if the symptoms were similar to the two mildest it was suggested 
as placebo, otherwise as active.  
 
This ranking approach is similar to the classical non-parametric test, Mann-Whitney U´s test 
[80]. For a DBPCFC including five or six provocations the challenge was judged as positive if 
at least five provocations were identified correctly. If the DBPCFC only included four 
provocations a challenge was regarded as positive only if all provocations were identified 
correctly.   
 
Results: Since earlier diagnostic approach regarded challenges with reactions on placebo as 
negative, the new approach induced more positive challenges. Among the original diagnoses 
21.9% were positive, while the new strategy gave 34.4% positive. All protocols were judged 
by three independent observers who sent the result (positive or negative) of each protocol to 
an administrator. The between-observer reliability was high, two of the observers judged all 
protocols equally, while the third had a different opinion for one single protocol among the 32 
in total.  
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Conclusion: How the interpretation of the individual reference values, i.e. the placebo 
reactions, is being done, affects the results. A pre-defined strategy based on a ranking 
approach gave a high inter-observer-reliability.  
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2.4 Analysis of subpopulations 

2.4.1 General theory – accuracy is not static 
The accuracy of a diagnostic test in terms of the classical measures, e.g. sensitivity and 
specificity, varies across studies due to spectrum or selection bias [95-101]. Furthermore, it 
has been shown that accuracy could also vary across subpopulations even within a study 
population [33-36].  
 
If, for instance, the specificity in the study population is 80%, but 70% among females and 
90% among males (assuming equally many females/males), this information may be 
important to highlight in order to make it possible for the clinician to take individual 
characteristics in to account during the diagnostic work-up.  
 
As discussed previously, Harris demonstrated already in -74 that specificity and sensitivity 
vary on an individual level, and that it may be beneficial to divide the population in more 
homogenous subpopulations [46]. Interesting to note is that Harris is discussing varying 
diagnostic accuracy on an individual level, while the findings within diagnostic theory is on a 
subpopulation level, quoting Moons et al. “Note that there is a true sensitivity, specificity and 
LR for each homogenous subgroup” [36]. This is a slightly different perspective than the 
individual perspective described by Harris. Naturally, a single individual can be regarded as 
the smallest possible subpopulation and in that sense there is a true sensitivity and specificity 
for that specific patient/subpopulation.  
 
In summary, the variability in accuracy is discussed both within diagnostic theory and within 
the theory of reference values as well. How to account for this is thus a shared issue.  

2.4.2 Study IV  
Aim: The aim was to discuss two different alternatives to account for variation in diagnostic 
properties between subpopulations. Approaches found in diagnostic theory and for reference 
values are being compared.   
 
Theory: As described previously there are criteria available for when it is appropriate to 
divide reference values in subpopulations, i.e. so called partitioning. These criteria are 
specially designed for partitioning due to a factor which divides the population in a number of 
possible subpopulations, e.g. gender, smoking, race. Adjustments of reference values due to a 
continuous variable i.e. a covariate could be done by using regression analysis [6].  
 
Regarding factors and covariates which may affect the diagnostic accuracy in terms of 
sensitivity and specificity a similar approach has been suggested [34-36]. The approach starts 
with dividing the individuals into two groups, one with the diseased and one with the healthy 
ones. Within the ”diseased group”, logistic regression is used to estimate the probability of a 
positive diagnosis, i.e. sensitivity. Similarly, in the ”healthy group” logistic regression is used 
for estimating the probability of a negative diagnosis, i.e. the specificity.  
 
By using the logistic regression models potential influence of different factors and covariates 
on sensitivity and specificity can be studied. It is natural to include information already 
known from earlier steps in the diagnostic process, e.g. gender, age, symptoms, and laboratory 
variables. The analyses demand that values from the diagnostic test are dichotomized into 
positive or negative based on a threshold. In a study by Moons et al. several factors 
significantly affected the sensitivity, but not always the specificity [36].  
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The approach using logistic regression may seem straightforward and intuitively appealing 
since it directly gives an overview of variables affecting the diagnostic accuracy, divided in 
sensitivity and specificity. However, a disadvantage is the dichotomization of data which 
lowers the power, i.e. decreases the probability of receiving a statistical significance. This 
becomes especially troublesome if one of the groups is small, e.g. that only a few individuals 
are diseased. It is well-known that multivariate logistic regression is a large sample procedure, 
demanding at least ten positive and ten negative observations per factor being analyzed [102]. 
Furthermore, the logistic regression does not explain why there is a difference between 
subpopulations, i.e. if it is due to a difference between population means or standard 
deviations. Under some circumstances, two subpopulations could actually have the same 
diagnostic character, e.g. the same specificity, even if there are differences between 
population means and standard deviations as well. This could occur if the standard deviation 
is lowest in the population with the population mean closest to the diagnostic threshold.   
 
Thus, there may be situations where the diagnostic information could be more harmonized 
between subpopulations, but which are impossible to detect if the analysis described above is 
used.  
 
If the studied diagnostic test is based on a continuous variable, potential relationships with 
other variables can be studied without dichotomization, i.e. by using F-test and standard 
multivariate regression. Regarding reference values it is worth noting that existing criteria for 
partitioning actually is divided in criterion associated with a difference in standard deviations 
and one associated with a difference in population means.   
 
Regarding a general evaluation of a test and its potential value in the diagnostic work-up, it is 
suggested to use multivariate logistic regression [32]. A possible alternative would be to use 
pre-selection of variables, based on a univariate analysis and with a liberal choice of p-value, 
e.g. p<0.2 [103-104].  
 
The idea with using a multivariate approach is to see if the test actually adds information 
beyond other already known characteristics. The use of multivariate logistic regression 
models is rather straightforward and known procedures. However, an important question to 
address is how to model the possible relationship between the test result and other explanatory 
variables in the model. For instance, assume that the presence of a disease is the target 
variable and that it is already known that symptom ”S”, laboratory variable ”L”, and gender 
“G” are predicting factors for the presence of disease. Further assume that the diagnostic test 
“T” includes a continuous variable, which has been dichotomized as positive/negative. For 
evaluation of the added value of T beyond S, L, and G a multivariate logistic regression 
model is applicable. However, it may be important to include interactions between T and the 
other explanatory variables. The disadvantage is that the number of parameters to estimate is 
rapidly increasing if interactions are included.   
 
A possible alternative would be to use different dichotomizations of T, i.e. different 
thresholds for T, based on the relationship with other variables. If for instance, T differs in 
population mean between males and females, and if disease has the same additive effect of T 
regardless of gender, it would be possible to achieve the same diagnostic properties of T by 
adjusting the threshold by gender. This is analogue to the approach found for reference 
values, i.e. partitioning of reference values.  
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As previously described “test research” is suggested to be defined as univariate evaluation of 
a test, while “diagnostic research” is characterized by a multivariate evaluation, where the 
added value of the diagnostic test is in focus. However, it would be reasonable to include 
analyses of interactions between the test result and other relevant factors, in the concept ”test 
research”. Such an analysis could evaluate the possibility to harmonize the properties of a 
diagnostic test.  
 
The aim with the analysis is to prepare the evaluation in a multivariate model, i.e. diagnostic 
research, and to be able to evaluate the test in a multivariate fashion under the correct 
conditions, i.e. under the correct assumptions, e.g. with adjusted thresholds or with included 
interaction factors.  
 
Discussion – summary: The potential relationship between the diagnostic accuracy of a test 
and other factors are discussed in diagnostic theory and within the theory of reference values 
as well. Section 23 in the STARD-statement recommends analysis of accuracy across 
subpopulations [31]. However, there are no advices given regarding how this analysis should 
be performed and adjusted for. In this article two possibilities have been presented, firstly the 
possibility to use a multivariate model including interactions, secondly to adjust thresholds for 
the test in order to harmonize the accuracy across subpopulations. It is recommended to 
develop further guidelines regarding this issue.  
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2.5 Individually adjusted diagnostic information and computer support 

2.5.1 Logistic regression – prevalence function 
By using the classical and well established analysis: multivariate logistic regression, the 
probability of target disorder could be estimated, given relevant diagnostic information in 
terms of one or several explanatory variables. This probability could be regarded as a 
comprehensive index summarizing the existing medical information on a subpopulation or 
even on a patient level. This index could be used when making medical decisions, e.g. if the 
probability of disease is high, i.e. greater than a threshold, treatment may be implied, 
otherwise not [2]. The choice of threshold should be based on decision theory and evaluation 
of cost/benefits [2,12]. The explanatory variables could either be factors, i.e. variables that 
could take a limited number of values, e.g. gender, race, positive/negative test, etc or 
covariates, i.e. continuous variables.  
 
Since the multivariate logistic regression model estimates the probability of disease, a suitable 
name of such a function is “prevalence function”. Due to the mathematical complexity of such 
a prevalence function, it is favorable to use some computer assistance, when implemented in 
practice. A computer based decision support system is defined by a system where medical 
knowledge and patient data are used for generating support for medical decisions [13].  
 

2.5.2 Briefly about priorities at the dispatch centre 
The dispatchers at the dispatch centre constantly make medical decisions, e.g. prioritize the 
patient’s need for help and ambulance transportation.  In a study performed in Göteborg all 
consecutive patients complaining about chest pain, were studied during a three month period.  
 
The dispatchers were instructed to interview these patients and address questions according to 
a standardized questionnaire.  Depending on the answers, the dispatcher estimated the risk of 
an acute myocardial infarction or other life threatening conditions. If the risk was judged to be 
low the patient was allocated basic life support, whereas a high risk implied allocation of 
advanced life support, including the use of a specially equipped ambulance.   
 
All patients were followed up and their final diagnoses were recorded. After the final 
diagnosis it was also judged by a clinician, whether their condition had been life-threatening 
or not. Furthermore, it was recorded if the patient survived or not. It was shown that a 
relationship between the estimated risk and final diagnosis and conditions existed [105], even 
though some patients with an acute myocardial infarction had received basic life support 
[106].  

2.5.3 Study V  
Aim: To evaluate if a computer based decision support system could be useful for the 
emergency medical system for identifying patients with acute myocardial infarction or life 
threatening conditions and thereby improve allocation of life support level. 
 
Method: The study included data from 503 consecutive patients who called the dispatch 
centre due to chest pain. The data was used for estimating a prevalence function, i.e. a 
multivariate logistic regression model, which estimates the probability of the target condition. 
The primary target condition was the presence of acute myocardial infarction (AMI). The 
prevalence function estimated the probability of AMI for each individual patient.  
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A retrospective allocation was done based on the prevalence function, i.e. if the probability of 
AMI was high, i.e. above a threshold, advanced life support was allocated otherwise basic life 
support was allocated. No formalized evaluation of costs and benefits was done. However, to 
be able to evaluate the use of the prevalence function, the model was restricted to using 
advanced life support just as frequently as in the original data. This was done by choosing a 
threshold which gave the same distribution between basic and advanced life support as the 
original allocations.  
 
Furthermore, the number of patients with AMI who were allocated basic life support by using 
the prevalence function was compared with the same number found among the original 
allocations. Thus, it was possible to compare the medical risk (AMI patient allocated basic 
life support) given the same economical budget. The following table illustrates a comparison 
between the original allocations (dispatchers’ allocation) and the allocations according to the 
model based on the prevalence function (model allocation). The distribution of allocations to 
basic life support (BLS) vs. advanced life support (ALS) by diagnosis of AMI is compared: 
 

   Level of life support 
Dispatchers allocation 

Level of life support 
Model allocation 

   BLS ALS BLS ALS 
n 107 291 114 284 No 

N=398 (79%) %  26.9 73.1 28.6 71.4 
n 15 90 8 97 

 
 
AMI 
  
  

Yes 
 N=105 (21%) %  14.3 85.7 7.6 92.4 

Total      N=503 n 122 381 122 381 
    p-value=0.167, regarding sensitivity (McNemar) 

 
According to the table above, 85.7% of all AMI-patients were allocated advanced life support 
by the dispatchers. If the allocations had been based on the prevalence function 92.4% of all 
AMI-patients would have been allocated advanced life support. Or, in other words, among the 
105 patients with AMI, the dispatchers called for BLS for 15 of those patients as compared 
with 8 allocated to BLS by the model. Observe that the number of ALS and BLS is exactly 
the same in the allocation based on the model as in the original allocations. The analysis was 
also repeated but with the presence of life threatening conditions as target variable.   
 
Results: The comparison between allocations made by using the prevalence function vs. 
original allocation made by the dispatchers was made with the restriction that the advanced 
life support was allocated as frequently.  This was achieved by adjusting the threshold for the 
probability of target disorder implying allocation of advanced life support.  
 
15 patients with AMI where allocated basic life support by the dispatchers. The corresponding 
figure found when evaluating allocation based on the prevalence function was 8. Interestingly, 
among the patients with AMI allocated basic life support by using the prevalence function 
were not found among the 15 originally erroneously allocated AMI patients. Among the 15 
originally erroneously allocated AMI-patients 9 died, while only one of the 8 erroneously 
allocated by the model died.  
  
Conclusion: A computer based decision support system including a prevalence function could 
be a valuable tool for allocating the level of life support. However, the case record form used 
for the interview can be refined and a model based on a larger sample and confirmed in a 
prospective study is recommended.  
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3.  Discussion, conclusions and future development 
 

3.1 Discussion 

3.1.1 Study I 
The suggested method is a straightforward method which directly calculates the proportions 
outside combined reference vales for each subpopulation. The procedure is supported by a 
computer program which produces both partitioned and combined reference interval, and 
misclassification rates in each subpopulation if the combined reference interval is used. This 
overview is valuable for considering partitioning or not.  
 
The main advantage with the procedure is that it is also applicable for considering partitioning 
of several subpopulations. Another advantage with the procedure is the automatic calculation 
of both separated and combined reference intervals. These calculations take account to 
prevalences even if the sample fractions do not reflect the prevalences. No resampling or 
other data management procedures are needed.  
 
Unfortunately, there is no distinct partitioning criteria suggested and further development is 
needed. If for instance, two subpopulations can be combined but deviates from a third, it is 
not clear if the two should first be pooled and regarded as one population to be compared with 
the third or if all three subpopulations should be considered jointly. Perhaps it is possible to 
use a stepwise procedure, i.e. a clustering analysis, according to the following steps: 
 

1. Compare all subpopulations pair wise. Pool the pair of subpopulations which 
are closest to each other, e.g. smallest difference between reference values.  

2. Consider the two pooled subpopulations as one subpopulation and repeat the 
procedure, i.e. step 1.  

3. Continue the “loop” until the most similar subpopulations are not similar 
enough for pooling, i.e. according to partitioning criteria.  

 
A limitation of the suggested procedure is that it is only valid for Gaussian subpopulations, or 
subpopulations with a probability distribution possible to transform into a normal distribution.   
 
However, it is simple to construct an analogous non-parametrical procedure, just by replacing 
the cumulative normal probability functions by the corresponding cumulative empirical 
distribution functions.   
 

3.1.2 Study II 
Existing reference values for accommodation amplitude are basically based on the classical 
calculation: mean ± 2 standard deviations, adjusted for age [69]. Previous studies include 
several different definitions of accommodation insufficiency (AI), more or less related to the 
existing reference values [71]. Since the diagnosis is called accommodation insufficiency, it is 
reasonable to wonder in when and in what situations the accommodation ability is 
insufficient, consequences of this insufficiency and possible treatment. In this study, it was 
actually shown that there is a relationship between low accommodation amplitude and the 
presence of subjective symptoms at near work. The suggested reference values are related to 
the probability of these symptoms among school children.  
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The suggested reference values imply 25% prevalence, i.e. children with lower values than 
the reference value, which may be regarded as high. This high prevalence may be partly 
explained by a bias induced by a higher frequency of symptoms and low accommodation 
among children who accepted an invitation, than it would be with a totally random sample. 
Another limitation of the study is that all measurements were made by the same observer and 
the reliability has not been investigated.  
 
However, even though the high prevalence may be overestimated, the suggested reference 
values may still imply a high prevalence. Nevertheless, this could be motivated since there is 
an efficient and harmless treatment available. However future studies, including reliability 
studies and confirmative studies of reference values are needed, especially if accommodation 
amplitude should be measured routinely or even screened among school children.  
 
Regarding the diagnosis of accommodation insufficiency a possible definition would be a 
combination of accommodation amplitude below reference value and the presence of 
subjective symptoms. To make the diagnosis even more certain it is possible to confirm the 
diagnosis further if symptoms disappear after improving the accommodation amplitude by 
treatment (training).  
 
 

3.1.3 Study III 
Double-blind, placebo-controlled, food challenges (DBPCFC) are regarded as the gold 
standard for diagnosing food hypersensitivity. As late as 2004 a review article presented 
recommendations regarding how to perform DBPCFC [90]. Strangely enough, this review 
does not contain any information about how reactions should be interpreted and no 
information about appropriate thresholds and their rationale.  
 
Since the method is gold standard it is not only used in clinical practice, it is also used as a 
reference test when new diagnostic tests are being evaluated. Naturally, it is desirable that the 
reference test is as certain as possible. Unfortunately there is no formal evaluation of the gold 
standard and its precision, even though such an evaluation is actually possible to achieve. 
Regarding objective symptoms, it would be possible to study variability within and between-
individuals and thereby develop adequate thresholds for when reactions seen on active 
provocation is reasonably beyond possible reactions on placebo. Such thresholds could in this 
case be population based.  
 
Regarding subjective reactions, the suggested ranking procedure including 3+3 or 2+3 
provocations is comparable with the classical non-parametrical rank-sum test, i.e. Mann-
Whitney U´s test. It has earlier been suggested to use 3+3, but we suggest the possibility to 
use 2+3 (or 3+2). The reason for this is that if the patient is told that there will be 3 active and 
3 placebos, there are 20 possible sequences to chose between, i.e. the probability to correctly 
guess the sequence is one out of twenty. However, if the patient is told that there will be 3 
actives and three placebos or vice versa, there will still be 20 possible sequences. This 
indicates that the risk of a false positive could remain the same even with one provocation 
less. Since this could save time, money and harm for the patient, this was appreciated and 
accepted as a standard at a specialist meeting, when the review paper was being structured 
and discussed [90].  
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The ranking and identification of active and placebo provocations, respectively, is a task for 
both the clinician and the patient. The clinician uses experience partly on a populations level, 
i.e. the characteristics of similar patients, while the patient uses his/her own experience of 
how the symptoms usually appear. In this way, both “between-patients-knowledge” and 
“within-patient-knowledge” is used mutually. The study illustrates that the ranking approach 
gave high between-observer-reliability.  
 
The study also shows that different approaches gave different results, which indicates the 
need for further standardization and establishing criteria for how to interpret. There is also a 
need for studies considering cost/benefits and the precision of the DBPCFC.  
   

3.1.4 Study IV 
The variability of test accuracy across subpopulations is recognized and discussed in 
diagnostic theory and within the theory of reference values as well. To use multivariate 
analyses are rather well-established in epidemiological and therapeutic studies, but is now 
also suggested as a tool in diagnostic studies. However, there is no guideline available for 
how to adjust for interactions between a test and other diagnostic predicting variables, e.g. 
gender and age. In this debate article, two different possibilities are discussed. One possibility 
is to mimic the approach found for adjusting reference values/thresholds to different 
subpopulations, i.e. partitioning. The second possibility presented, is to include interaction 
effects in the multivariate logistic regression model.  
 
In therapeutic studies it is rather common to assume that the treatment effect is additive. With 
a similar assumption regarding the effect of a present disease this could make analysis more 
powerful. Different alternatives must be tested and evaluated by using real data.   
 
Regarding laboratory variables and corresponding reference values these are, as discussed 
previously, intended to be descriptive. However, if a laboratory test result, dichotomized as 
“positive” or “negative” is shown to be significant in a multivariate logistic regression model, 
there may be a reason for reevaluation of the limits, due to the fact that the variable has been 
shown to also be useful as a decision limit. This has never been discussed before and further 
studies and guidelines for how to successively build a diagnostic multivariate model must be 
further developed.  

3.1.5 Study V 
The study illustrates that a prevalence function with individually estimated probabilities of 
target disorder may be beneficial. Naturally, such a system requires adequate input and during 
the last years differences in symptom profiles due to gender have been highlighted. In this 
study, models including interaction factors were tested in an explorative manner, but did not 
improve the results.  
 
However, in a forthcoming study it may be important to analyze these differences in more 
detail. It is also interesting to consider if the dispatchers with their experience could add 
information beyond the formal description of the patient according to a questionnaire. This 
experience may be taken into account by adding the judgment made by the dispatcher as a 
factor in the model. This was also tested in this study in an explorative manner, but did not 
improve results.  
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In the study, the numbers of advanced and basic life support allocations were fixed to be equal 
as the original allocations. This was done in order to make the comparison of correct medical 
allocations under equal economical circumstances. In an explanatory manner, it was also 
analysed, even though it was not included in the paper, if the economical budget could be 
decreased, given the same medical precision. It was found that if the threshold for when 
advanced life support should be allocated was increased to a degree which gave 15 AMI-
patients allocated the basic life support (the same frequency of “medical error” as in the 
allocation made by dispatchers), the frequency of advanced life support allocations could be 
decreased with around 50.  
 

3.1.6 Overall discussion 
 
Limits and their rationale  
To facilitate interpretation of medical information it is common to use some kind of limit. 
There are several different rationales for the choice of a limit. Within laboratory medicine and 
the theory considering reference values, the limits, i.e. reference values are solely descriptive 
in their purpose. This is reasonable due to the role as general reference regardless of potential 
target disorder, even though the reference values may be transformed to medical decision 
limits if it is shown that the laboratory variable significantly affects the probability of the 
target disorder. In such a situation it may be worth re-evaluating the existing limits and 
adjusting these in an optimal way related to the specific target disorder. When the limit is 
intended to be used for a specific present target disorder, i.e. a diagnostic test, the choice of 
limit should be based on an optimal cut-off between healthy and diseased individuals.  The 
difference between these two populations is often illustrated by the following figure, 
illustrating the distribution of the results, by population:  
 

   
 
In the figure above, values above the threshold are considered as positive (assuming that the 
presence of disease is related to increased values), and values below as negative. It is obvious 
that the properties of the test, i.e. sensitivity and specificity, change if the threshold is 
changed, e.g. if the threshold is moved to the left, it will increase the sensitivity (more 
diseased are being detected) but decrease the specificity (more false positives). 
 
This illustration often considers ”healthy” vs. diseased, but naturally it could also be used for 
discrimination of other populations. Regarding the reference values suggested for 
accommodation amplitude among school children, these references considered children with 
subjective symptoms at near work vs. children without symptoms. In general, a diagnostic test 
aims at discriminating between two different health conditions, e.g. healthy/diseased; 
symptoms/no symptoms, etc.  
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It is reasonable that the explicit choice of threshold takes cost/benefits into account. The 
division in two subpopulations as in the model above is a model of a bimodal nature.  
 
Regarding a risk factor a model for describing the choice of limit and consequences, may be 
viewed as a unimodal model according to the following figure [107]: 
 

  
 
In this unimodal model all individuals belong to the same population and the “prevalence of 
positive values” is related to the choice of threshold. In this model, there are no false positive 
or false negative results.  
 
However, it is actually possible to apply a bimodal perspective even when considering risk 
factors. Since a risk factor is used for predicting potential future target disorders, e.g. a high 
cholesterol level implies an increased risk of acute myocardial infarction, a bimodal model 
could be used for discrimination between the two possible future conditions, e.g. AMI or not.  
 
From this point of view the bimodal model is applicable no matter if it is supposed to 
discriminate healthy individuals from individuals with a present disease or a predicted future 
disease. To be able to study the discrimination of future conditions there is naturally a need 
for longitudinal studies of epidemiological or therapeutical nature.  
 
According to Jørgensen et al. the threshold used in the unimodal affects the prevalence [107]. 
This is true if ”prevalence” describes the proportion of individuals with a positive test value. 
However, the prevalence of the potential future target disorder is unaffected by the choice of 
threshold. Thus it is important to differentiate between prevalence meaning “proportion of 
positive tests” and prevalence meaning ”proportion of individuals stroked by the future target 
disorder”. Perhaps the bimodal illustration would make this distinction more clear, and if it is 
applied for a risk factor, false positives correspond to individuals with a positive test who will 
not be stroked by the future target disorder, while false negatives are individuals with a 
negative test, but still will be stroked by the future disorder.  
 
Thus, the illustrative bimodal model is actually applicable not only for diagnostic tests, but for 
considering risk factors as well. The main difference is that in a diagnostic test a healthy 
population is compared with a population with a present disorder, while modeling risk factor 
means comparing healthy individuals which will remain healthy (not stroked by the disorder 
in the future) with healthy individuals which, in the future, will be stroked by the disorder.  
 
If a variable used in a diagnostic test also is used as a risk factor the concepts may be 
confused.  
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For instance, lipid levels in blood, where increased values (hyperlipidemia) imply increased 
risk of future disorders, e.g. AMI. Hyperlipidemia could be atopic or lifestyle conditioned. To 
find a limit, there are four different possibilities. Firstly, a statistical description in terms of a 
reference interval can be developed. Secondly, a bimodal model for a present disease could be 
applied and an adequate threshold chosen.  
 
The third alternative is to regard hyperlipidemia as a risk factor and apply a bimodal model 
discrimination between those who will be stroked by the future disorder and those who will 
not. Finally, it would be possible to choose a threshold based on analysis of finding a lower 
limit for which treatment will still be beneficial. As a matter of fact, regarding lipids there is a 
rather recent study implying that the lowest possible limit still beneficial to treat, is much 
lower than the present level [108]. Consequently, the latter approach could more or less imply 
prevalences (of positive tests) close to 100%, at least in the study population.  
 
Regarding accommodation amplitude among school children the suggested reference values 
were related to the presence of symptoms at near work.  
 
Since the symptoms occurred during near work, this type of work could be regarded as a kind 
of provocation, which makes the diagnosis of accommodation insufficiency similar to the 
diagnosis of food hypersensitivity. A main difference is that the symptoms occurring after 
eating a suspected food cannot be related to any objective measure. To be able to judge if the 
symptoms occurring truly are associated to the food placebo, provocations are used. This 
gives the possibility to use the patient as his/her own control.  
 
Adjusting for individual characteristics 
Within laboratory medicine partitioning reference values in subpopulations is a suggested 
solution to the problem with varying sensitivity and specificity across subpopulations. Criteria 
for when partitioning is appropriate are related to “proportion criteria”, i.e. partitioning is 
recommended if the proportion of the distribution of a subpopulation outside a combined 
reference value markedly differs from the nominal value (usually 2.5%).  
 
Regarding diagnostic tests, there are no formalized criteria for when and how adjustments by 
subpopulations should be made. Two possible alternatives are discussed: either to mimic the 
approach with partitioning test threshold by subpopulation or to include interaction effects in 
the diagnostic prevalence function. However, further evaluations of these possibilities are 
necessary to perform before any general guidelines can be suggested. In some simple 
situations where there is a pure additive difference between subpopulations, e.g. male and 
female patients, harmonization of the test accuracy may be created just by choosing different 
thresholds, i.e. a kind of partitioning. To use a prevalence function with an interaction effect 
demands rather complex statistics and computer support is more or less essential. Moreover, if 
computer assistance is used, it may be possible to use continuous test variables as input in the 
model, without dichotomization.  
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3.2 Conclusions 
 
 

 A bimodal model can be used not only for discrimination between healthy vs. diseased 
but for discrimination between other subpopulations as well, e.g. between individuals 
with/without symptoms. As an illustration, subjective symptoms at near work among 
school children were studied and shown to be associated with lower accommodation 
amplitude. Reference values for amplitude of accommodation were suggested based 
on a bimodal model discriminating between children with vs. without symptoms 
occurring at near work.  

 
 In situations where the variability between individuals is high compared to the 

variability found within an individual, it may be necessary to use the individual as 
his/her own reference. Another situation when it is favorable to use the individual as 
his/her own reference is when the diagnostic information is subjective. The diagnosis 
of food-hypersensitivity for patients with subjective symptoms was used as an 
illustration. It was shown that the strategy used for interpretation affects the diagnostic 
outcome. Furthermore, it was shown that a pre-defined strategy based on a ranking 
approach gave a high inter-observer reliability. 

 
 To harmonize the sensitivity and specificity of reference values across subpopulations 

division of references in subpopulations is one suggested solution. A procedure for 
considering partitioning of several Gaussian subpopulations has been developed. The 
procedure takes into account prevalences and in addition to a combined reference 
interval it automatically calculates reference intervals for each subpopulation. The 
procedure is supported by a computer program and is thereby simple to use.  

 
 The potential relationship between diagnostic accuracy of a test and other factors are 

highlighted in diagnostic theory. However, there is no advice regarding how to adjust 
for this relationship. Two possibilities have been presented, firstly the possibility to 
use a multivariate model including interactions, secondly to adjust thresholds for the 
test in order to harmonize the accuracy across subpopulations. It is suggested that “test 
research” should include such analysis.  

 
 Diagnostic information could be individually adjusted by using a prevalence function 

used to estimate probability of target disorder, given patient characteristics. A 
computer based decision support system including such a prevalence function was 
shown to have potential benefits for assisting medical decisions.  
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3.3 Future development 
 
Partitioning of reference values: 

 The development of more precise criteria based on the suggested procedure and the 
discussed clustering technique is already initiated and started.  

 The development of a non-parametrical version of the procedure is planned. This 
version should simply replace the cumulative normal distribution function with the 
empirical cumulative function according to the established standard.  

 
Reference values for amplitude of accommodation 

 The suggested reference values must be confirmed in larger studies.  
 A larger study would make it possible to also study if any partitioning, e.g. due to 

gender is appropriate.  
 It is important to use a relevant population and clinical spectra. That is, if 

accommodation amplitude should be recommended to undergo screening, a random 
sample of school children must be used. Furthermore, measurements must be taken by 
the same professionals as those expected to measure routinely if screening is launched.  

 Evaluations of reliability within and between observers are desirable.  
 
The diagnostic work-up for food-hypersensitivity 

 It would be beneficial to further develop guidelines for how to interpret symptoms, 
both objective and subjective symptoms. A common strategy would improve the 
diagnostic work-up and is necessary for being able to compare research studies.  

 Evaluations of the gold standard and its reliability are desirable and actually possible 
to perform.  

 A systematic collection of symptoms in a formalized and user-friendly computer 
system would benefit future development and understanding of food-hypersensitivity.  

 
Adjustments to subpopulations and analytical approaches  

 There is a need for formalizing terminology, e.g. what is diagnostic theory, test theory, 
etc. This thesis only highlights some similarities and some differences, but the 
concepts are still blurred. What is, e.g. distinct definition of a diagnosis?  

 It is recommended to further develop recommendations regarding statistical analysis 
suitable for test research and diagnostic research.  

 If a laboratory variable reported as “positive” or “negative” according to reference 
values is shown to be a significant factor in a prevalence function, it may be worth a 
re-evaluation of adequate limits. This is a situation were the laboratory variable 
actually is a diagnostic test and therefore general reference values may not be optimal 
thresholds. 

 
Individually adjusted diagnostic information and computer support 

 The results found in the study must be confirmed in a prospective study. This work 
has already been initiated.  

 It is important to also develop a user-friendly system and also highlight ethical 
questions. 

 The prevalence function in the study used AMI as a preliminary target variable. This is 
thus a sub-system for patients with e.g. acute chest pain. It must be evaluated as to 
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how such a sub-system should interact with other sub-systems and existing overall-
systemsprioritization.  

 Using multivariate logistic regression is one possibility for constructing a prevalence 
function. However, there are several other alternatives, including machine learning 
methods, e.g. neural networks, Tree analysis, etc, to be tested.  
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