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Abstract

The aim of this letter is to discuss and illustrate what we call
(
λ, σ2

)
-

analysis, which is a method to distinguish between the stability of a
stochastic dynamic system and the volatility of a variable generated by
this system. It is also emphasized that this method is able to generate
new research questions for economic theory. The data set used in an
empirical illustration is spot electricity prices from Nord Pool.

JEL codes: C14; C22.
Keywords: Smooth Lyapunov Exponents; Stability; Stochastic Dy-
namic System; Volatility.

1 Introduction

We argue in this letter that one should contrast the stability of a stochastic
dynamic system with the volatility of a variable generated by this system in
what we call

(
λ, σ2

)
-analysis.

For example, think of macroeconometric models with the aim of explain-
ing observed features of aggregate fluctuations. At the heart of these models,
there is an impulse-propagation mechanism in which impulses are shocks to

∗ This letter has benefitted from presentations at various conferences and seminars.
The usual disclaimer applies.

† Corresponding author.
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the economy, while the propagation mechanism is the means by which these
shocks lead to persistence over time of the cycle. Thus, a less stable economy
is associated with a higher persistence of the shocks, meaning that even a
small shock would have a large effect on the economy.
To further clarify the idea, let σ2 denote the conditional variance of a

variable generated by a stochastic dynamic system, and let λ denote the
stability of this system. Then,

σ2 = σ2 (λ, ε) , (1)

where ε is exogenous shocks to the dynamic system, meaning that the con-
ditional variance (σ2) is not only affected by the system’s stability (λ), it is
also affected by shocks to the system (ε). To be more precise, the conditional
variance of a variable increases when the dynamic system is less stable, but
also when the amplitude of the shocks increases. Thus, because of ε in (1),
there is no one-to-one correspondence between σ2 and λ, which motivates
the proposed method. In Bask et al [2], the stability of a stochastic dy-
namic system is also thoroughly examined, and here we evolve the analysis
by examine the relationship between stability and volatility.
To give a taste of the method, we will examine how the stability of elec-

tricity prices has evolved during the integration process at the Nordic power
market and contrast it with the volatility of these prices. In connection with
this analysis, we will also explain why

(
λ, σ2

)
-analysis is able to generate

new research questions for economic theory. However, before doing this, we
have to explain why λ is a measure of stability and how it can be estimated
from data.

2 Method:
(
λ, σ2

)
-analysis

Definition of λ Bask and de Luna [1] argue that the spectrum of smooth
Lyapunov exponents can be used in the determination of the stability of a
stochastic dynamic system. Specifically, assume that the dynamic system,
f : Rn → R

n, generates

St+1 = f (St) + ε
s
t+1, (2)

where St and ε
s
t are the state of the system and a shock to the system,

respectively. For an n-dimensional system as in (2), there are n Lyapunov
exponents that are ranked from the largest to the smallest exponent:

λ1 ≥ λ2 ≥ . . . ≥ λn, (3)

and it is these exponents that provide information on the stability properties
of the dynamic system f .
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Assume temporarily that there are no shocks, and consider how the
dynamic system f amplifies a small difference between the initial states S0
and S′0:

Sj − S
′
j = f

j (S0)− f
j
(
S′0
)
≃ Df j (S0)

(
S0 − S

′
0

)
, (4)

where f j (S0) = f (· · · f (f (S0)) · · · ) denotes j successive iterations of the
system starting at state S0, and Df is the Jacobian of the system:

Df j (S0) = Df (Sj−1)Df (Sj−2) · · ·Df (S0) . (5)

Then, associated with each Lyapunov exponent, λi, i ∈ [1, 2, . . . , n], there
are nested subspaces U i ⊂ Rn of dimension n+1− i with the property that

λi ≡ lim
j→∞

loge
∥∥Df j (S0)

∥∥

j
= lim
j→∞

1

j

j−1∑

k=0

loge ‖Df (Sk)‖ , (6)

for all S0 ∈ U
i−U i+1. Due to Oseledec’s multiplicative ergodic theorem, the

limits in (6) exist and are independent of S0 almost surely with respect to
the measure induced by the process {St}

∞
t=1. (See Guckenheimer and Holmes

[5] for a careful definition of the Lyapunov exponents and their properties.)
Then, allow for shocks, meaning that the aforementioned measure is induced
by a stochastic process. In this case, the Lyapunov exponents have been
named smooth Lyapunov exponents in the literature.

Motivation of λ According to Bask and de Luna [1], the reason why the
spectrum of smooth Lyapunov exponents provides information on the sta-
bility properties of a stochastic dynamic system may be seen by considering
two starting values of a system, where the difference is an exogenous shock
at time t = 0. The largest smooth Lyapunov exponent, λ1, measures the
slowest exponential rate of convergence of two trajectories of the dynamic
system starting at these starting values at time t = 0, but with identical ex-
ogenous shocks at times t > 0. (When λ1 > 0, the trajectories diverge from
each other, and for a bounded stochastic dynamic system, this is an opera-
tional definition of chaotic dynamics.) In fact, λ1 measures the convergence
of a shock in the direction defined by the eigenvector corresponding to this
exponent. However, if the difference between the two starting values lies in
another direction of Rn, then the convergence is faster. Thus, λ1 measures
a “worst case scenario.”
The average of the smooth Lyapunov exponents,

λ ≡
1

n

n∑

i=1

λi, (7)

measures the exponential rate of convergence in a geometrical average di-
rection. That is, the convergence of two trajectories of the dynamic system
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in the geometrical average of the directions defined by the eigenvectors cor-
responding to the different exponents. Thus, λ measures an “average sce-
nario.” We can, therefore, compare the stability of two stochastic dynamic
systems via the smooth Lyapunov exponents since a one-time shock has a
smaller effect on the dynamic system with a smaller λ than for the system
with a larger λ. Since we are dealing with dissipative systems, meaning that
λ < 0 by definition, a dynamic system is more stable than another system,
if λ is more negative.

Estimation of λ Since the actual form of the stochastic dynamic system f
is not known, it may seem like an impossible task to determine the stability
of the system. However, it is possible to reconstruct the dynamics using
only a scalar time series, and, thereafter, to measure the stability of the
reconstructed system. Therefore, associate the dynamic system f with an
observer function, g : Rn → R, that generates the following scalar time
series:

st = g (St) + ε
m
t , (8)

where st ∈ St and ε
m
t are an observation in the time series and a measure-

ment error, respectively. That is, the time series {st}
N
t=1 is observed, where

N is the number of observations.
Specifically, the observations in a scalar time series contain information

about unobserved state variables that can be used to define a state in present
time. Therefore, let

T = (T1, T2, . . . , TM)
′ (9)

be the reconstructed trajectory, where Tt is the reconstructed state and M
is the number of states on the trajectory. Each Tt is given by

Tt = {st, st+1, . . . , st+m−1} , (10)

where m is the embedding dimension. Thus, T is an M ×m matrix and the
constants M , m and N are related as M = N −m+ 1.
Takens [11] proved that the map

Φ(St) =
{
g
(
f0 (St)

)
, g
(
f1 (St)

)
, . . . , g

(
fm−1 (St)

)}
, (11)

which maps the n-dimensional state St onto the m-dimensional state Tt, is
an embedding if m > 2n. This means that the map is a smooth map that
performs a one-to-one coordinate transformation and has a smooth inverse.
A map that is an embedding preserves topological information about the
unknown dynamic system, like the smooth Lyapunov exponents, and, in
particular, the map induces a function, h : Rm → R

m, on the reconstructed
trajectory,

Tt+1 = h (Tt) , (12)
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which is topologically conjugate to the unknown dynamic system f . That
is,

hj (Tt) = Φ ◦ f
j ◦ Φ−1 (Tt) . (13)

Thus, h is a reconstructed dynamic system that has the same smooth Lya-
punov exponents as the unknown dynamic system f .
Then, to be able to estimate the smooth Lyapunov exponents, one has

to estimate h. However, since

h :






st
st+1
...

st+m−1





−→






st+1
st+2
...

v (st, st+1, . . . , st+m−1)





, (14)

the estimation of h reduces to the estimation of v:

st+m = v (st, st+1, . . . , st+m−1) . (15)

Moreover, since the Jacobian of h at the reconstructed state Tt is

Dh (Tt) =






0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
...

...
...

...
∂v
∂st

∂v
∂st+1

∂v
∂st+2

· · · ∂v
∂st+m−1





, (16)

a feedforward neural network is recommended to estimate the above deriva-
tives to derive the smooth Lyapunov exponents, and this is because Hornik
et al [6] have shown that a map and its derivatives of any unknown functional
form can be approximated arbitrarily accurately by such a network.

Measuring σ2 We will not spend time here on how to measure the volatil-
ity of a variable generated by a stochastic dynamic system, because there are
several techniques for this purpose that are well-known within the research
community.

3 Illustration of
(
λ, σ2

)
-analysis

Since the beginning of the 1990s, there has been an evolution in the Nordic
countries from national markets to a multi-national electricity market. To
be more precise, Norway, Sweden, Finland and Denmark have all reformed
their electricity sectors and have today access to a common wholesale market
that consists of bilateral trade of electricity contracts between operators and
the non-mandatory Nordic power exchange, Nord Pool.
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The data set used in the empirical illustration is spot electricity prices
from Nord Pool. Specifically, it is the daily average of the hourly system
price for the period January 1, 1993, to December 31, 2005. Moreover, the
data set is split in parts with the natural breakpoints when a new country
is joining the common market. However, since prices are non-stationary, we
use the returns in the analysis.
We first estimate the smooth Lyapunov exponents for each time series

using the neural network algorithm proposed in Gencay and Dechert [4] and
Kuan and Liu [7].1 Specifically, we estimate these exponents making use
of 4, 8, 12, 16 and 20 inputs to the neural network, respectively, where the
number of hidden units in each case runs from 1 unit to 20 units. Our
estimate of λ that minimizes SIC in each subperiod is reported in Table 1.

[Table 1 about here.]

The general picture is that the integration process is associated with more
stable electricity prices.
Thereafter, we estimate an EGARCH model for each time series, where

our estimate of σ2 is the persistent volatility parameter in the model. See
Table 1 for these estimates, where the general picture is that the integra-
tion process is associated with a decrease in volatility of electricity prices.
(The parameter is not significant for the period July 1, 1999, to Septem-
ber 30, 2000, when eastern Denmark is not part of the common market.)
Thus, there seems to be a pattern in the change in stability and volatility of
electricity prices, but without having a one-to-one correspondence between
these changes.2

4 Discussion

First of all, we are not aware of any distributional theory for λ. However,
Shintani and Linton [10] show that a neural network estimator of the smooth
Lyapunov exponents of the type that we have used is asymptotically normal.
Our conjecture is, therefore, that asymptotic normality holds for a neural
network estimator of λ since the eigenvectors corresponding to the different
exponents are pairwise orthogonal.
Secondly, in Bask and de Luna [1], it is argued that when the volatility of

a variable modelled is of interest, one should also consider the stability prop-
erties of the same model. In the present letter, however, a non-parametric
approach is used when estimating λ, whereas any kind of (good) volatility
model may be used when estimating σ2.

1 We have used NETLE 3.01, a program developed by R. Gencay, C.-M. Kuan and T.
Liu, when estimating the smooth Lyapunov exponents.

2 Detailed estimation results are available on request from the authors.
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Clearly, the appropriateness of the two approaches depend on the pur-
pose of the analysis. For instance, when it comes to developing a theoretical
model with the aim of explaining movements in, for example, asset returns,
we believe that one should not only evaluate the out-of-sample performance
of the model, but also its stability to match it with the stability properties of
asset returns. However, when a successful risk management is in focus, it is
necessary to measure the stability of the “true” stochastic dynamic system
generating asset returns, and not the stability of the model fitted to these
returns. The reason is that there is no guarantee that the smooth Lyapunov
exponents for the “true” system and the model selected to measure volatility
coincide with each other.
Thirdly, in Bask et al [2], the stability of electricity prices is also exam-

ined, but a difference is that they focus on the presence of chaotic dynamics,
which is the case when λ1 > 0, whereas we examine how sensitive the dy-
namic system generating electricity prices is to shocks, making use of λ.
Potter [8] mentions that λ1 can be used not only to categorize an observed
time series as stable or unstable, but also to give a measure of the speed of
convergence or divergence. Shintani [9] uses λ1 when he examine the speed
of convergence towards PPP.
Last but not least, our method is able to generate new research questions

for economic theory. For example, Bask et al [3] examine how the degree
of market power has evolved during the aforementioned integration process
at the Nordic power market using a conjectural variation method, and they
found that the degree of competition has increased when the common market
has expanded. One might, therefore, ask: is there any theoretical justifica-
tion for the finding that the degree of market power is inversely related to
the stability of this market? To our knowledge, this type of question has
never been posed in the literature.
To conclude, even though more work has to be done to be able to test

for a change in stability of a stochastic dynamic system, we believe that the
empirical illustration in this letter has made it clear that

(
λ, σ2

)
-analysis can

be a fruitful tool in both empirical and theoretical research. It is, therefore,
our hope that future research can resolve the remaining questions to have
this powerful tool.
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Countries Stability Stability Volatility Volatility

change change

Norway −0.268
12 inputs 0.975

(1/1/1993-12/31/1995) 5 hidden units

Increase Decrease

Norway and −0.359
Sweden 8 inputs 0.935
(1/1/1996-12/28/1997) 2 hidden units

Decrease Decrease

Norway, Sweden −0.168
and Finland 12 inputs 0.686
(12/29/1997-6/30/1999) 3 hidden units

Increase Decrease

Norway, Sweden, −0.273
Finland and 8 inputs 0.148
western Denmark 1 hidden unit
(7/1/1999-9/30/2000)

Increase Increase

Norway, Sweden, −0.275
Finland and 8 inputs 0.616
Denmark 5 hidden units
(10/1-2000-12/31/2005)

Table 1: The stability (λ) and volatility (σ2) of electricity prices during
the integration process at the Nordic power market.
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