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ABSTRACT 

Granulocytes are the most abundant cells in the peripherial blood. They serve to eliminate 

invading microbes and parasites and release anti-microbial agents. In the event of injury, 

granulocytes are recruited to damaged tissues. Formerly it was thought that only foreign 

microorganisms and molecules could induce an immune response, but later it was proposed 

that the immune system can react to any molecule, endogenous or exogenous, that is 

percived as dangerous to the body (danger signals). This thesis will focus on granulocytes 

and how these cells can be directly activated by danger signals. It will also discuss possible 

ways to block receptors that may contribute to the activation of granulocytes by damaged 

cells.  

The effect of damaged and stressed cells on granulocytes was evaluated by studying 

different classical activation markers such as the release of granule content, expression of 

the surface marker CD11b and the production of superoxide radicals. Potential danger 

signals were induced from epithelial cells that were disintegrated by freeze-thawing, and 

freeze-pressing, and were stressed by heat treatment. The results show that disintegrated 

epithelial cells can directly activate granulocytes. This finding may change the view of 

these cells role in inflammatory reactions.  

Molecules from damaged tissue cells have been suggested to orchestrate the 

immune response through pattern recognition receptors (PRRs). PRRs is a group of highly 

conserved receptors that have developed during evolution. There are at least two 

subpopulations of PPRs and the formyl peptide receptor (FPR) family is one of them. In 

order to properly interpret receptor inhibition experiments, the precise receptor specificities 

of the employed antagonists are of crucial importance. Lately, a great number of agonists 

for various formyl peptide receptors (FPR) have been identified using a selection of 

antagonists. There is, however, some confusion about the receptor specificities for many of 

these antagonists. To investigate the specificity of FPR antagonists the FPR specific agonist 

N-formyl-Met-Leu-Phe (fMLF), the formyl peptide receptor like 1 (FPRL1) specific 

agonist Trp-Lys-Tyr-Met-Val-L-Met-NH2 (WKYMVM) and an agonist that binds to both 

these receptors, Trp-Lys-Tyr-Met-Val-D-Met-NH2 (WKYMVm), were used as neutrophil 

stimuli. The inhibition of neutrophil responses was investigated by the addition of the 

antagonists tert-butyoxycarbonyl-Met-Leu-Phe (Boc-MLF also termed Boc-1), tert-

butyoxycarbonyl-Phe-Leu-Phe-Leu-Phe (Boc-FLFLF also termed Boc-2), cyclosporin H, 

Trp-Arg-Trp-Trp-Trp-Trp (WRWWWW) and the non-steroidal anti-inflammatory drug 

piroxicam. These experiments show that the neutrophil responses triggered through FPR 

were inhibited by low concentrations of the antagonists cyclosporin H, Boc-MLF and Boc-

FLFLF. Higher concentrations of the Boc peptides also partially inhibited the signaling 

through FPRL1. The non-steroidal anti-inflammatory drug piroxicam inhibits the neutrophil 

responses triggered through FPR but not through FPRL1. This inhibition is due to a 

reduced binding of fMLF to its receptor. 

 

Keywords: granulocytes, neutrophils, eosinophils, danger signals, danger theory, formyl 

peptide receptors, antagonists, inhibitors 
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ABBREVIATIONS 

Ac9-25 amino acid 9-25 at the aminoterminus of Annexin 1 

APC  antigen presenting cell 

Boc  tert-butoxycarbonyl 

C5aR  complement fragment 5a receptor  

Ca
2+
  calcium ion 

CCR   CC chemokine receptor 

CD  Cluster of differentiation 

CLC   Charcot-Leyden crystal  

COX   cyclooxygenase 

CR   complement receptor 

CsH   cyclosporin H 

Cyt b  cytochrome b 

DC   dendritic cell 

DC-SIGN  dendritic cell-specific ICAM-3-grabbing non-integrin 

DNA   deoxyribonucleic acid 

ECP  eosinophil cationic protein 

EPO   eosinophil peroxidase 

EPX  eosinophil protein X 

FcR  receptor for the Fc-part of immunoglobulins 

FLFLF  phenylalanyl-leucyl- phenylalanyl-leucyl-phenylalanine 

fMLF  N-formyl-methionyl-leucyl-phenylalanine 

FPR   formyl peptide receptor 

FPRL1  formyl peptide receptor-like1 

GDP  guanine diphosphate 

GPCR   G-protein coupled receptor 

GTP   guanine triphosphate  

HMGB1  high-mobility group B1 protein 

ICAM   intracellular adhesion molecule 

Ig   immunoglobulin 

LFA   leukocyte function associated antigen 

LPS   lipopolysaccharide 

LxA4   lipoxin A4 

Mac-1  macrophage-1 antigen 

MBP   major basic protein 

MLF  methionyl-leucyl-phenylalanine 

MPO  myeloperoxidase 

NADPH nicotinamide adenine dinucleotide phosphate 

NSAID non-steroidal anti-inflammatory drug 

PRR  pattern recognition receptor 

PSGL  P-selectin glycoprotein ligand 

ROS  reactive oxygen species 

TLR  toll-like receptor 

VLA  very late antigen 

WKYMVM tryptophyl-lysyl-tyrosyl-methionyl-valyl-L-methionine 

WKYMVm tryptophyl-lysyl-tyrosyl-methionyl-valyl-D-methionine 

WRWWWW tryptophyl-arginyl-tryptophyl-tryptophyl-tryptophyl-tryptophan 
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PREFACE 

The immune system is a complex mixture of molecules and cells that have evolved to 

protect us from infectious agents. The human immune system is divided into two parts, the 

innate (also called the naïve or natural) and the adaptive (also called specific) immune 

system. Although both subgroups of the immune system work together to protect against 

invading organisms, they act in different ways. The adaptive immune system requires some 

time to react to formulate an antigen specific, precise response to the intruder. The innate 

immune system on the other hand, responds quickly to infectious agents, but it has 

classically been thought to have a limited capacity to distinguish between different antigens 

and respond without distinction. Normally the immune system neglect healthy tissues but 

induces an inflammatory reaction in infected or injured tissues. During the years many 

different hypotheses of what underlying mechanisms cause this action have been proposed. 

Still, scientists do not know the correct answer, but as our knowledge of different immune 

cells increases, the knowledge about immune reactions increases correspondingly. This 

thesis will focus on the most common cell type in our immune system, the granulocyte, and 

its activation by damaged uninfected tissue cells. It will also discuss possible ways to block 

receptors that may contribute to the activation of granulocytes by damaged cells.  
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INNATE IMMUNITY 

Most organisms can fight infections through innate immunity alone. It is only in vertebrates 

that an adaptive immune system has evolved[1]. Innate immunity is enormously broad, 

consisting of both cellular and humoral components and it is difficult to decide what should 

be included or not. The more knowledge obtained about human immune defences the 

harder it is to uphold the historical description of innate immune cells. For example, 

epithelial cells lining the lungs and intestinal tract were primarily thought to form only a 

mechanical barrier to the outside, but it has become evident that these cells are able to 

secrete both anti-microbial agents and recruit leukocytes[2]. However, classic active innate 

immune cells are limited to granulocytes (neutrophils, eosinophils, basophils), mast cells, 

macrophages (e.g. Küpffer cells, microglia and osteoclasts), dendritic cells (e.g. Langerhans 

cell and plasmacytoid dendritic cells) and natural killer (NK) cells. These cells express 

structures, often referred to as pattern recognition receptors (PRRs), that can interact with 

molecules common to many pathogens e.g. lipopolysaccharides (LPS), other bacterial cell 

wall components and formylated peptides[3]. Activation of innate immune cells through 

PRRs starts a cascade of events, including production and secretion of anti-bacterial and 

leukocyte attracting molecules. This leads to the recruitment of more immune cells (innate 

as well as adaptive) and an inflammatory response.  

 

Apart from their role in host defence, innate immune cells have also been predicted to have 

a role in tissue remodelling. The secretion of pro-inflammatory cytokines and growth 

factors has been shown to contribute to, among other things, angiogenesis[4, 5]. 

  

GRANULOCYTES  

Granulocytes are cells that are filled with membrane-sealed organelles called granules 

(thereby the name). These cells were probably first discovered by Hunter in 1774 who 

described movable cells at the site of inflammation[6]. Almost 100 years later, in 1882, 

Metchnikoff witnessed the engulfment of particulate dyes by movable cells. However, it 

was Paul Ehrlich who classified granulocytes and divided them further into neutrophil, 

eosinophils and basophils depending on their staining characteristics, Fig.1 [7].  
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Fig. 1. Granulocytes constitute three subpopulations of cells. A The neutrophil with its segmented 
nucleus. B The eosinophil with a bilobed nucleus and granules that can be stained with the acidic 

dye eosin. C The basophil with slightly fewer and larger granules then the other granulocytes. 

 

Granulocytes develop in the bone marrow by a process referred to as myelopoiesis [8]. 

During myelopoiesis, granulocytes are formed from pluripotent stem cells via a sequence of 

events starting with the proliferation and formation of granules and ending with changes in 

nuclear shape and cell size[9].  This maturation process in the bone marrow takes about 14 

days[10]. In contrast to other leukocytes, granulocytes are fully mature, non-dividing cells 

when they leave the bone marrow and enter the blood circulation. Hence, they have 

synthesised most proteins and other molecules important for their function before they enter 

the blood stream. This cell type is therefore able to respond rapidly to stimuli; for example 

by releasing their granule content in the vicinity of the stimuli. Granulocytes are 

predominantly tissue dwelling cells and do not re-enter the circulation. 

 

NEUTROPHILS 

Neutrophils are the first type of immune cells that are recruited to the site of infection. They 

are the most abundant cell type in the blood of a healthy individual and constitute around 

60-70% of the blood leukocytes. On average, a neutrophil spends 10-25 hours in the blood 

before it enters the tissue[10, 11]. In healthy subjects, neutrophils infiltrate most tissues in 

low numbers where they may live for several days before they undergo apoptosis and are 

cleared by macrophages or are lost via mucosal surfaces[12]. 

Circulating neutrophils are almost spherical and measure 10-12 µm in diameter. However, 

as soon as they are activated by adhesion to a surface, they flatten, and assume an amoeboid 

shape with extended pseudopodia. Mature neutrophils have a segmented nucleus typically 

A B C 
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composed of two to four segments with the chromatin content coarsely clumped. 

Characteristically, they contain very few mitochondria, a small amount of Golgi and 

endoplasmic reticulum. Based on mature neutrophil morphology, it was formerly thought 

that protein synthesis in these cells was negligible. Today however, it is generally accepted 

that mature neutrophils are capable of rapidly starting biosynthesis during the inflammatory 

challenge process[13]. Neutrophils also contain membrane-sealed organelles called 

granules, which are filled with degradative enzymes and antimicrobial agents. On the basis 

of protein content, the granules are divided into four distinct populations: azurophil, 

specific, gelatinase and secretory granules. Azurophil granules are identified by the high 

myeloperoxidase (MPO) content. Specific granules are characterised by the high content of 

lactoferrin and vitamin B12-binding protein. Gelatinase granules are distinguished by their 

content of gelatinase and lack of lactoferrin[14, 15]. The secretory vesicles are formed by 

endocytosis during neutrophil maturation and are therefore filled with plasma proteins. 

These organelle membranes are rich in receptors and other structures and their main 

function is thought to be to quickly change the expression of neutrophil cell surface 

structures[16]  

 

Neutrophils are effective bacterial killers endowed with the capacity to engulf and eliminate 

pathogens (phagocytosis). Accordingly they express receptors for immunoglobulins (i.e. 

IgG receptors, FcγIR, FcγRII, FcγRIII) and complement receptors important for 

phagocytosis of particles opsonised with IgG and complement[17]. 

They also express other cell structures important for bacterial recognition e.g. formyl 

peptide receptors (FPRs, more thoroughly described below) and toll-like receptors 

(TLRs)[18, 19]. 

  

EOSINOPHILS 

It was in the late 1870s that Paul Ehrlich noticed that a certain type of white blood cell was 

stained with the negatively charged dye, eosin, and that is presumably why he called them 

eosinophils. These cells are normally found in low numbers in the blood, constituting only 

4-10% of the circulating leukocytes. Compared to neutrophils, eosinophils are recruited and 

infiltrate tissues during the later stages of inflammation. The peripheral blood mean transit 

time has, however, been estimated to be almost the same as for neutrophils (10-26 
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hours)[10, 11]. In contrast to neutrophils, eosinophils transmigrate towards distinct tissue 

areas. In normal healthy individuals eosinophils preferentially are reported to infiltrate the 

gastrointestinal tract but also other epithelial interfaces with the environment [11, 20].  

 

Circulating eosinophils have a diameter of approximately 10-12 µm and like neutrophils 

they flatten and assume an amoeboid shape with extended pseudopodia when they attach to 

surfaces. Normally they have a bi-lobed nucleus with partially condensed chromatin, Fig. 2, 

but in some diseases the nucleus may be segmented into a larger number of lobes[21, A.-L. 

Stenfeldt unpublished observation]. Eosinophils contain four different types of granules 

 

           

 

Fig 2. A cross-section of a resting eosinophil. The two lobes of the neucleus are seen with partially 
condensed chromatin. The cytosol is filled with primary granules, mitochondria and the eosinophil 

characteristic specific granules. Transmission electron micrograph magnification ×8000 (A.-L. 

Stenfeldt, 2004). Intracellular structers marked in the sketch, (P) primary granule, (S) secondary 

granule, and (M) mitochondria. 
 

called primary, secondary, small granules and secretory vesicles. The primary granules are 

characterised by the content of Charcot-Leyden crystal (CLC) proteins, which have been 

classified as galectin-10 [22-24]. The secondary (also called specific) granules are the 

visual hallmark of the eosinophils. They contain the cationic proteins that are stained by 

negatively charged dyes and an electron dense angular core visable by electron microscopy. 

The core is mainly composed of major basic protein (MBP) and the less electron dense 

matrix consists of eosinophil peroxidase (EPO), eosinophil cationic protein (ECP) and 

Nucleus 

Nucleus 

   P 

 S 

 M 
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eosinophil-derived neurotoxin (EDN) also called eosinophil protein X (EPX)[25, 26]. Small 

granules have only been detected in tissue eosinophils and contain arylsulphatase and acid 

phosphates as well as ECP[25, 27]. Secretory vesicles are less well characterized but it 

might be that these compartments, as in neutrophils, contain membrane-bound receptors 

and proteins that can be rapidly mobilized during activation[28, 29].  

 

Eosinophils are thought to be multi-functional cells and accordingly they express several 

different classes of membrane proteins and receptors on their cell surface: G-protein 

coupled receptors, important for chemotaxis such as CCR1 and CCR3, Fc receptors for 

immunoglobulin (Ig) A (CD89), E (CD23), and G (CDw32). β-integrins such as 

CD11a/CD18 (LFA-1) and CD11b/CD18 (CR3, Mac-1), just to mention a few[30-33]. In 

fact, eosinophils express most of the membrane proteins expressed by other leukocytes. 

Therefore, instead of a specific eosinophil marker, it is the lack of low affinity IgG 

receptors (FcγIII, CD16) in resting eosinophils that makes it possible to isolate these cells 

of high purity from blood[34]. 

 

BASOPHILS 

Basophils are the third and rarest type of granulocytes in humans, comprising less than 1% 

of the blood leukocytes[35]. Compared to the other granulocytes, basophils are slightly 

smaller and contain larger and fewer granules[36]. Granule content is less well described 

compared to neutrophils and eosinophils, but granules are reported to contain CLC protein, 

histamine as well as MBP[37-39]. Activated basophils may also release interleukins such as 

IL-4 and IL-13[40, 41].  

 

Similar to eosinophils, basophils express most of the cell surface proteins expressed by 

other leukocytes[35]. The lack of a unique cell surface marker and the low number of 

basophils in peripheral blood makes it difficult to purify and study these cells in vitro, thus 

this cell type is less investigated than other leukocytes. Basophils will not be included in the 

continuing discussion. 

 

 



 13

GRANULOCYTE ACTIVATION 

Granulocytes activated by stimuli attach to the endothelium lining the blood vessel, 

transmigrate through it into the interstitial space where they start to mobilize their granules 

and migrate towards the infected or inflamed area. This is a complex process that is 

rigorously regulated and involves many different cell structures as well as inflammatory 

mediators derived from both granulocytes and other cells in their proximity.  

  

 

 
Fig. 3. The recruitment of granulocytes towards infected or damaged tissues start in the blood 
stream. Endothelial cells lining the blood vessel are stimulated by infected/damaged tissues to 

upregulate their expresion of leucocyte adhesion molecules. Granulocytes express structers on their 

surface that interact with the adhesion molecules on the endothelial cells. The constant blood flow 

in the vessel, cause the attached granulocyte to role. This interaction stimulate granulocytes to 

express more adhesion molecules, which leds to a ferm adhesion to the endothelium. The 

granulocyte cross the endothelium (transmigration) and start to migrate towards a chemical 

gradient of molecules  (chemotaxis) relaeased from the infected or injured tissue area. 

 

 

Rolling 

Adhesion 

Transmigration 

Chemotaxis 

Chemoattractants 
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ENDOTHELIAL ADHESION 

The migration of leukocytes from blood into tissue is roughly divided in to three steps: 

rolling, adhesion and transmigration, Fig. 3. In the blood stream, circulating granulocytes 

utilize P-selectin glycoprotein ligand 1 (PSGL-1), L-selectin and very late antigen-4 (VLA-

4, CD49d/CD29) to attach to counter structures expressed on endothelia cells that line the 

blood vessel[42-46]. This makes the granulocytes roll and form tethers (long thin 

extensions of the granulocyte membrane formed during shear flow), which slow down the 

velocity of circulating cells. The loss of velocity allows the cells to sense molecules 

(chemoattractants) from the tissue surroundings and/or cell contact-mediated signals from 

the endothelium. The chemoattractants and/or cell contact-mediated signals functionally 

activate integrins such as CD11a/CD18 (LFA-1), CD11b/CD18 (CR3, Mac-1) and 

CD49d/CD29 (VLA-4) on the granulocyte surface[47]. The integrins in turn, bind to 

counter-structures expressed by endothelial cells, which results in a sustained, strong 

attachment.  

 

ENDOTHELIAL TRANSMIGRATION  

The firmly attached granulocytes leave the blood vessel in a process referred to as 

diapedesis or transendothelial migration, Fig. 3. The mechanism for transendothelial 

migration is less well understood than the adhesive interactions (tethering, rolling and 

adhesion). It is still controversial whether granulocytes prefer to use the route between 

endothelial cells (paracellular pathway) or through the endothelial cells (transcellular 

pathway) lining the blood vessel. Different experimental models that describe both these 

routes of transmigration have been studied, however, it is not clear which factors dictate the 

granulocytes choice of route[48-52]. In transmigration the integrins CD11a/CD18 and 

CD11b/CD18 also seem to play a crucial role as well as a heavily glycosylated 32-kD 

transmembrane protein, CD99[53-56]. 

 

MIGRATION 

Granulocytes that have passed through the vessel wall continue to migrate through the 

extracellular matrix either by chemotaxis (locomotion towards an increasing gradient of 

chemoattractants) or by chemokinesis (non-directional movement)[57]. During chemotaxis 

granulocytes are able to sense a concentration difference as small as a few percent over the 
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length of the cell[58]. Cells move along the chemoattractant gradient by stretching out parts 

of the plasma membrane (pseudopodia). The pseudopodia tips are rich in adhesion 

molecules that interact with counter-structures on the extracellular matrix, and this 

interaction further propels the cell to move forward[59]. The formation of pseudopodia is 

dependent on cytoskeletal components called actin filaments, Fig. 4. These filaments are 

built up by polymerized actin monomers that continuously assemble at the leading end and 

dissociate at the posterior end of the filament, which in turn causes the directional 

membrane stretching[58, 60].  

 

 

Fig. 6. Granulocytes move by stretching out parts of the plasma membrane (pseudopodia). The 
formation of a pseudopod is dependent on actin filaments. These filaments are built up by actin 

monomers. 

 

 

DEGRANULATION 

Activated granulocytes release granule constituents into the surroundings or into 

phagosomes. The most established way for cells to release granule constituents is by 

exocytosis. This is a rather well-defined process in which the granule membrane fuses with 

the plasma membrane, Fig. 5A[61-63]. In addition to exocytosis, eosinophils release their 

granule content in two non-classical ways, the so called piecemeal and cytolytic 

degranulation, Fig. 5B, C[64, 65]. During piecemeal degranulation vesicles bud of specific 

granules and fuse with the plasma membrane[64, 66]. This function makes it possible to 

partially empty granules. Cytolytic degranulation (when free granules are seen in 

association with necrotic eosinophils) is a phenomenon reported in subjects suffering from 

Actin 
filaments 

 

Pseudopod 
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atopic dermatitis and allergic inflammation of the upper airways [65, 67]. Whether this 

cytolysis is a regulated process or just an effect of milieu changes in the cell vicinity is not 

clear.  

 

 

 
Fig. 5. Three different ways for granulocytes to release their granule content. A Exocytosis, the 
most wellknown, when granules are transported to and fuses with the plasma membrane. B 

Piecemeal degranulation, when small vesicles bud of from the granula and fuses with the plasma 

membrane. C Cytolisis, the most debated one, when intact granules are released in the 

surroundings of a necrotic cell. 

 

Neutrophils mobilize their granules in an hierarchical order, starting with the secretory 

vesicles followed by gelatinase and specific granules[68, 69]. The azurophil granule 

population is the least prone to mobilization when it comes to extracellular release. Instead, 

fusion with and release of contents into phagosomes seems to be the main function of these 

granules[70]. There are no reports suggesting that eosinophils mobilize their granules in a 

hierarchical order.  

Granule mobilization is not just a tool for release of granule content. The granule 

membranes are rich in proteins and upon activation these are translocated to the plasma 

membrane and exposed on the cell surface. This in turn makes it possible for the cell to 

facilitate new interactions with the surroundings[71]. 

 

SUPEROXIDE PRODUCTION 

In addition to degranulation, activated granulocytes are able to produce and release reactive 

oxygen species (ROS). The production of ROS is associated with increased molecular 

oxygen consumption therefore it is often referred to as the respiratory burst[72]. In this 

A B C 
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process, molecular oxygen is reduced to superoxide (O2
-
) by an enzyme called NADPH-

oxidase (also called respiratory burst oxidase).  

 

The NADPH oxidase is a membrane-bound, multi-component enzyme complex that is 

assembled only when cells are activated by appropriate stimuli (e.g. chemoattractants, 

chemokines and bacteria). Most studies of the NADPH oxidase are performed in 

neutrophils but the assembly and function of the enzyme in eosinophils is expected to 

operate in the same way. In resting neutrophils the enzyme is divided into a cytosolic 

heterotrimeric complex (p40
phox

, p47
phox

 and p67
phox

), the cytosolic rac2 and a membrane 

bound heterodimer subunit flavo-protein, cytochrome b558 (cyt b558, composed of gp91
phox

 

and p22
phox

), Fig. 6A[73-75]. A few years ago, yet another cytosolic protein p29Prx was 

suggested as an oxidase-associated protein, but the role and requirement of this component 

needs to be further investigated[76]. In resting neutrophils most of the cyt b558 is localized 

to the specific granules, and only a minor portion of the protein is found in the plasma 

membrane [71, 77, 78]. It is well documented that neutrophil activation leads to the 

assembly of NADPH oxidase components in the plasma or phagosome membrane, but there 

are also reports suggesting a translocation of cytosolic components to the specific 

granules[79, 80]. The role of an active NADPH oxidase in specific granules is not known. 

The assembled and functional oxidase uses NADPH as an electron donor and transfers 

electrons across the membrane to molecular oxygen, thus generating superoxide either in 

the extracellular environment or the phagosomal cavity, Fig. 6B. Eosinophils have been 

reported to produce larger quantities of superoxide compared to neutrophils, and this 

phenomenon is simply explained by the fact that cytosolic components (p40
phox

, p47
phox

 and 

p67
phox

) are more abundant in eosinophils[81-83].  

 

Conventionally ROS have been considered to function as antimicrobial agents, even though 

in recent years the direct role in bacterial killing has been questioned[84]. There are also 

reports suggesting a roles for ROS in cell proliferation and differentiation[85, 86]. 
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Fig. 6. The NADPH-oxidase in the cell. A In a resting cell the NADPH-oxidase is divided into a 
cytosolic heterotrimeric complex (p40phox, p47phox and p67phox), a rac protein and a membrane 

bound heterodimer subunit (gp91phox and p22phox ) flavo-protein. Most of the gp91phox and p22phox is 

located to the specific granules, only a minor portion of these proteins is found in the plasma 

membrane. B In an activated cell the components of NADPH-oxidase assemble in the plasma or 

phagosome membrane to a functional enzyme. The functional NADPH-oxidase uses NADPH as an 

electron donor and transfers electrons across the membrane to molecular oxygen generating 

superoxide (O2
-). Superoxide, in turn, is a reactive molecule that could react with protons (H+) and 

form hydrogen peroxide (H2O2). 

 

 

THE DANGER THEORY 

One fundamental question in immunology is how the immune system discriminates 

between different structures within the body. Why does it respond to some structures but 

neglect/tolerate others? In 1959, Lederberg proposed a tolerance model that was called self 

–nonself discrimination, Fig. 7A[87]. He suggested that cells of the adaptive immune 

system (lymphocytes) are responsible for the discrimination between bodily structures that 

are continuously present (self) or not (nonself). The theory was based upon the assumption 

that lymphocytes expressed multiple copies of one single surface receptor with specificity 

for one antigen epitope. Receptor-antigen (nonself) binding would activate these cells to 

produce antibodies and initiate an immune response. About ten years later, Bretcher and 
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Cohn further developed this model and proposed that adaptive immune cells were only 

activated to produce antibodies if two epitopes on the antigen were recognized by receptors 

from two different lymphocytes, Fig. 7B [88]. Since then, the self-nonself theory has gone 

through several modifications and in the late 1980s Medzhitov and Janeway claimed that 

cells within the innate immune system also were able to discriminate between self-nonself 

by expressing receptors (PRRs) towards highly conserved microbial structures, Fig. 7C[3, 

89]. A few years later, Matzinger proposed to resume an old theory (postulated in 1890s by 

Ehrlich) to explain tolerance[90, 91]. The renewed model was called the danger hypothesis. 

According to this, the immune system is activated by molecules that are interpreted as 

threats to the body irrespective of endogenous (self) or exogenous (nonself) sources, Fig. 

7D. Hence, stressed or injured cells (e. g. cells exposed to pathogens, toxins or mechanical 

damage) as well as cells that die necrotically are suggested to send out alarm signals 

whereas healthy cells or cells that die through normal programmed cell death (apoptosis) do 

not.  

 

There are several hypotheses about what is sensed as danger and why. Molecules normally 

kept within the cell such as mitochondrial DNA and proteins, nuclear constituents (e.g. the 

high-mobility group B1 protein HMGB1) and heat shock proteins (Hsp) are some of the 

molecules that have been reported to activate immune cells[92-94]. Probably there are 

several other danger signals within cells that have yet to be characterized. The crystalline 

form of the extracellular molecule uric acid has also been suggested to act as a danger 

signal to dendritic cells (DCs)[95].  

 

The danger model has focused on the activation of professional antigen presenting cells 

(APCs, DCs) but granulocytes are also directly activated by endogenous danger signals 

(Paper I and II). Necrotic epithelial cells stimulate eosinophils to migrate and release 

granule constituents (Paper I). Transmission electron microscopy (TEM) studies also show 

that eosinophils incubated with necrotic epithelial cells are markedly affected, Fig 8. The 

eosinophil granules are known to contain cationic proteins (such as ECP and EPO) that 

potentially damage tissues. It is hard to understand the advantage of releasing harmful  
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Fig. 7. Historical overview of different tolerance models. A In 1959, it was thought that lymphocyte 
stem cells that did not recognize any antigen matured to antigen-sensitive cells (B-cells). These cells 

expressed multiple copies of one single surface receptor with specificity for one antigen epitope. 

Upon antigen recognition (e.g. bacterium) these cells became antibody-producing cells. B In the 

1970s it was proposed that two different epitopes on one antigen had to be regognized by two 

different lymphocytes to induce an antibody production. C In 1989, it was suggested that antigen-

presenting cells (APCs) recognize foreign structures via PRRs and activated T-cells by co-

stimulatory signals. D In the mid-1990s it was proposed that molecules from injured tissues activate 
APCs to produce co-stimulatory factors for T-cells.   
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substances into a milieu that already has damaged cells. However, it has been reported that 

healthy individuals may have at least two variants of ECP, one toxic and one markedly less 

toxic[96]. If the eosinophil cationic proteins (EPO and ECP) exist in more than one variant 

and these possess other functions than that already described, it would make sense that 

these molecules are released. Eosinophil accumulation and killing of helminthic parasites 

has been known for many years, but the accumulation of eosinophils in a variety of 

different diseases has continued to baffle scientists[97]. Most of these conditions have 

tissue damage in common. The capability of eosinophils to release toxic constituents 

(superoxide and cationic proteins) has therefore led to the conclusion that these cells induce 

tissue damage in different health conditions. However, it might also be the other way 

around, in that already damaged tissues attract eosinophils. With respect to this it is 

interesting to note that a recent study of eosinophil infiltration in solid tumours indicated 

that it is the necrotic tissue surrounding the growing tumour that attracts the eosinophils and 

not the tumour cells[98].  

 

Neutrophils are also activated by necrotic epithelial cells (Paper II). The cell surface 

expression of the adhesion molecule CD11b is markedly increased in the presence of 

necrotic epithelial cells. As mentioned before, the CD11b/CD18 (CR3) molecule is 

important for neutrophil adhesion to endothelium as well as migration in tissues. However, 

this molecule is also involved in other important neutrophil functions such as phagocytosis, 

the regulation of neutrophil survival and apoptosis[99-102]. Lately, it has also been shown 

that CD11b/CD18 is important for neutrophil communication with DCs[103]. At the site of 

infection, neutrophils are reported to interact through CD11b/CD18 with the dendritic cell-

specific ICAM-3-grabbing non-integrin (DC-SIGN) structure on immature DCs. This 

interaction induces DC maturation and as a result production of IL-12[103, 104]. It is 

therefore tempting to propose that neutrophil CD11b/CD18 expression induced by necrotic 

epithelial cells is one of the steps that initiate an immune response. 
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Fig. 8. An eosinophil that has been incubated with freeze-pressed HT29 cells for 30 min in 37°C. 
The eosinophil is markedly affected and contains large empty vesicles. TEM picture, magnification 

×5000 (A.-L. Stenfeldt, 2004). 

 

 

RECEPTORS INVOLVED IN DANGER SIGNALING 

The huge variety of danger signalling molecules would suggest that many different 

receptors are involved. Conversely, the proposed main target for danger signals is a limited 

number of receptors within highly conserved receptor families like the toll-like receptor 

(TLR) and formyl peptide receptor family (FPR)[105]. These receptor families have 

developed during evolution and are expressed by different vertebrates (TLRs are also 

expressed in invertebrates and plants)[106, 107]. Both TLRs and FPRs bind molecules of 

extracellular as well as intracellular origin. The evolutionary reason for this is not known, 

but it is suggested that these receptors have evolved to protect hosts from microbes and 

viruses[3]. Mitochondria (intracellular organelles) are of bacterial origin and hence, 

proteins from this organelle also bind to these receptors. Others suggest that these receptors 

were produced to recognise damaged tissues and that microbes make use of these receptors 

for selfgain[90]. Irrespective of evolutionary background, the important thing is that 

receptors from both families are able to activate innate immune cells and initiate an 

immune response.   
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FORMYL PEPTIDE RECEPTORS 

The human formyl peptide receptor family comprise three different receptors: the formyl 

peptide receptor (FPR), the formyl peptide receptor like 1 and 2 (FPRL1 and FPRL2). The 

FPR was first cloned in 1990 from differentiated HL-60 cells (myeloid leukemia cells) and 

shortly after both FPRL1 and FPRL2 were cloned by screening a cDNA library using FPR 

cDNA as a probe[108-110]. The three receptors possess a high degree of amino acid 

identity. It has been calculated that FPR/FPRL1 possess 69% identity, FPR/FPRL2 have 

56% identity and FPRL1/FPRL2 are 83% identical at the amino acid level. 

 

It was originally believed that only phagocytes expressed FPRs but these receptors are 

widely expressed by various cells of both hematopoietic and non-hematopoietic origin[111, 

112]. The FPR has been observed in cells such as monocytes, immature DCs, neutrophils, 

eosinophils, platelets, fibroblasts, hepatocytes and endothelial cells. The FPRL1 is 

expressed for example by monocytes/macrophages, neutrophils, eosinophils, immature 

DCs, T- and B-cells, fibroblasts, epithelial cells and endothelial cells whereas FPRL2 has 

been observed in monocytes, macrophages, DCs, lung, liver and small intestine tissues. 

Human neutrophils and eosinophils express the FPR and FPRL1 but not the FPRL2[113, 

114].  

 

The FPRs belong to the seven transmembrane domain G-protein-coupled receptor (GPCR) 

family. Receptors within this family form loops, which span the membrane seven times and 

are intracellularly associated with a trimeric guanosine-triphosphate (GTP)-binding protein 

(G-protein), Fig 9. The receptor is orientated in the membrane with the N-terminus located 

extracellularly and the C-terminus within the cytosol. The C-terminus as well as other 

intracellular parts of the receptor contain binding sites for the heterotrimeric protein (G-

protein). G-proteins are composed of three different polypeptide chains called α, β and 

γ[115, 116]. When an agonist binds to GPCR, the receptor changes conformation and alters 

the interaction with the G-protein. The altered interaction triggers the α-chain to hydrolyse 

GTP to guanosine-diphosphate (GDP) and dissociate from the βγ-complex. This in turn 

activates a cascade of downstream signalling molecules (referred to as second messengers) 

that leads to the release of Ca
2+
 from intracellular stores[117, 118]. The rise in cytosolic 

Ca
2+
 induces the opening of Ca

2+
-channels in the plasma membrane, which results in a 
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sustained influx of Ca
2+
. The high concentration of cytosolic Ca

2+
 activates Ca

2+
-dependent 

proteins and starts the granulocyte functional repertoire[119-121]. The increase in cytosolic 

Ca
2+
 is one of the earliest detectable events in FPR-mediated neutrophil activation therefore 

Ca
2+
 measurement is often used as a tool for studying ligand-receptor interactions in 

granulocytes. 

 

 

 

 

 
Fig. 9. A model of a G-protein coupled receptor (GPCR). The protein spans the membrane with α-
helical structures seven times. It is orientated in the membrane with the C-terminal end in the 

cytosol and the N-terminal facing the extracellular environment. In the cytosol a trimeric GTP-

binding protein (G-protein) is in close contact with intracellular parts of the receptor.   
 

 

LIGAND RECEPTOR BINDING 

The first described high affinity FPR ligand was a synthetic, trimeric, formylated peptide N-

formyl-methionyl-leucyl-phenylalanine (fMLF). Thus, the biologically relevant agonists for 

this receptor are probably the N-formylated peptides formed in nature during bacterial and 

mitochondrial protein synthesis[122]. Results of binding studies with fMLF and its non-

formylated counterpart led to the assumption that the formyl group was crucial for high 

affinity binding[123]. Later on, other studies revealed that the formyl group is less 

important than was first assumed. High affinity binding to FPR occurs with both non-
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formylated peptides as well as peptides with no structural similarity to the prototype agonist 

fMLF[124, 125]. Low affinity ligands like Annexin 1 and its peptide fragments Ac2-12, 

Ac2-26 and Ac9-25 also bind to FPR[126, 127]  

FPRL1 binds several non-formylated peptides with high affinity and formylated peptides 

with low affinity. The first described high affinity ligand for FPRL1 was the ecosanoid 

lipid, Lipoxin A4 (LXA4)[128]. LXA4 is a potent anti-inflammatory molecule and in 

contrast to other FPRL1 ligands it inhibits neutrophil activity. Another FPRL1 specific 

agonist is the hexapeptide WKYMVM. It was identified by screening synthetic peptide 

libraries and initially shown to activate a human B-cell line[129]. Later on, it was shown 

that also neutrophils were activated by WKYMVM through the FPRL1[130]. It is of 

interest to note that one modification of the hexapeptide where the L-methionyl group (M) 

at the carboxy end of WKYMVM is replaced by a D-methionyl group (m) has broader 

receptor specificity[131]. Even though this peptide, WKYMVm, preferentially binds to the 

FPRL1, it also binds and activates granulocytes through FPR [132, 133]. 

  

The FPR and FPRL1 bind molecules from both endogenous and exogenous origin, Table 1. 

Although these receptors share a high degree of amino acid identity, the extracellular loops 

that are thought to be important for ligand binding have a lower degree of identity than 

other parts of the receptors[134]. This probably explains the difference in ligand specificity 

between FPR and FPRL1. 

 

Even though FPR has been extensively studied for several years, no definite structure for 

FPR ligand binding has been identified. Studies with different chimera receptors have 

however led to the suggestion that the first, second and the third extracellular loop together 

with the second and fifth transmembrane regions are important for the formation of the 

ligand-binding pocket[135, 136]. The ligand-binding pocket is proposed to have a limited 

depth with room for as few as four to five amino acids[137]. FPRL1 ligand binding has also 

been studied using chimera receptors. According to this single study, the third extracellular 

loop and the sixth transmembrane region are the most important structures for agonist 

recognition[138]. 

 

 



 26

Tabel 1. Examples of FPR and FPRL1 ligands from both exogenous and endogenous origin. 
 

Receptor Ligand Origin Reference 
Human FPR fMLF and analogues Exogenous (bacteria) [139] 
 T20 (DP178) Exogenous (HIV) [140] 
 T21 (DP107) Exogenous (HIV) [141] 
 Formylated peptides Endogenous (mitochondria) [122] 
 Cathepsin G Endogenous (neutrophils) [142] 
 Ac9-25 Endogenous (Annexin 1) [127] 
 gG-2p20 Exogenous (HSV) [143] 
 WKYMVm Synthetic peptide [132, 144] 
Human FPRL1 Hp2-20 Exogenous (bacteria) [145] 
 N36 Exogenous (HIV) [146] 
 F peptide Exogenous (HIV) [147] 
 T21 (DP107) Exogenous (HIV) [141] 
 SAA Endogenous (serum) [148] 
 LL-37 Endogenous (neutrophil) [149] 
 WKYMVM Synthetic peptide [130] 
 WKYMVm Synthetic peptide [150] 
 MMK1 Synthetic peptide [151] 
 LxA4 Endogenous [128] 
 PACAP27 Endogenous [152] 
Abbreviations and clarifications: Ac9-25, amino acid 9-25 in Annexin 1; fMLF, formyl-Met-Leu-Phe; F 

peptide, a 20 amino acid fragment of the HIV envelope protein gp120; gG-2p20, a peptide from herpes 

simplex virus type 2 glycoprotein g; Hp(2-20), 19-residues fragment of an H. pylori peptide; LL-37, a 37-

residue fragment from cathelicidin;  LxA4, Lipoxin A4, a lipid metabolite; MMK-1, Leu-Glu-Ser-Ile-Phe-Arg-

Ser-Leu-Leu-Phe-Arg-Val-Met; N36, peptide domain on gp41 an HIV envelope protein; PACAP27, pituitary 

adenylate cyclase activating polypeptide, a neuropeptide; SAA, serum amyloid A, an acute phase protein; 

T20/T21, peptide domains of  gp41 an HIV envelope protein; WKYMWM, Trp-Lys-Tyr-Met-Val-L-Met-

NH2; WKYMVm, Trp-Lys-Tyr-Met-Val-D-Met-NH2.  

 

RECEPTOR SPECIFIC ANTAGONISTS/INHIBITORS 

The first specific antagonists reported to block FPR-mediated signals were the Boc-

peptides, Boc-MLF (Boc1) and Boc-FLFLF (Boc2)[123]. They were developed in an 

attempt to determine the ligand-binding site in FPR. In both these peptides the formyl 

group is replaced by a tert-butoxycarbonyl (tBoc) at the N-terminus. The inhibitory effect 

achieved was, at that time, thought to be due to the loss of the formyl group, but probably it 

is due to the size and shape of the tBoc[153]. The tBoc is branched and hence bulky. If a 

small, unbranched, less bulky group replaces it, e.g. n-butyloxycarbonyl (n-Boc), the 

antagonistic effect is lost. The Boc-peptides specificity for FPR has later on been 

questioned and some have claimed that they also have an inhibitory effect on the 

FPRL1[154, 155]. However, the inhibitory effects of tBoc-peptides on neutrophil activity 
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reveal that they are fairly specific for FPR (Paper III). Cyclosporin (Cs) H, is another FPR 

specific antagonist, suggested to be the best choice for inhibition of FPR[156] (Paper III). 

CsH is a cyclic undecapeptide and an analog to CsA, a fungal peptide with T- and B-cell 

suppressing activity[157, 158]. CsH does not possess a lymphocyte inhibitory effect; its 

major immune suppressive effect seems to be the blocking of FPR.  

 

The specific FPRL1 antagonist WRWWWW (WRW4) was identified by screening 

hexapeptide libraries[159]. This is at present the only antagonist that specifically blocks 

signalling through FPRL1, (Paper III) [144]. The cell permeable rhodamine B-linked 

peptide (PBP10) derived from the polyphosphoinositide-binding region of the cytoskeleton 

protein gelsolin, has also been reported to inhibit cell activity mediated through 

FPRL1[160, 161]. The inhibitory effect achieved with PBP10 is due to intracellular 

interactions, but the exact inhibitory mechanism is not known.  

 

Some natural inhibitors of FPR- and FPRL1-mediated activity have also been described. 

The bile-salts deoxycolic acid (DCA) and chenodeoxycholic acid (CDCA) as well as the 

bacteria derived proteins, chemotaxis inhibitory protein Staphylococus aureus (CHIPS) and 

FPRL1 inhibitory protein (FLIPr) have been reported to block FPR and FPRL1 ligand-

binding[162, 163, 164, 165]. 

 

COX-INHIBITORS AND THEIR INTERACTION WITH FPRs 

Non-steroidal inflammatory drugs (NSAIDs) are a group of drugs known for their anti-

inflammatory and pain killing (analgesic) effect. These drugs are widely used to treat a 

variety of diseases ranging from the common headache to illnesses that cause chronic 

inflammation (e.g. rheumatoid arthritis). The use of NSAIDs goes back thousands of years 

in history when decoctions or preparation of plants containing salicylate were used to treat 

rheumatic pains[166]. Synthetic variants of salicylate were made at the end of 1850s and 

these were further developed into acetylsalicylic acid (aspirin) at the end of 1890s. Since 

then, several other drugs with antipyretic, anti-inflammatory and analgesic effects have 

been developed and produced. The main function for NSAIDs is thought to be the 

inhibition of the enzyme cyclooxygenase (COX)[167, 168]. This is a membrane bound 
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glycoprotein that is responsible for the formation of inflammatory mediators called 

prostanoids (prostaglandins, prostacyclin thromboxane). Since the beginning of the 1990s it 

has been known that at least two isoforms of COX exist, COX-1 and -2, but in recent years 

a third variant COX-3 has also been described[169, 170]. COX-1 is constitutively 

expressed in most cells whereas COX-2 is an inducible enzyme abundant in e.g. 

macrophages and neutrophils[171]. COX-3 on the other hand, has so far only been 

described in human brain tissues and the aorta[171]. 

 

Although NSAIDs share the same theraputic effect (antipyretic, anti-inflammatory and 

analgesic effect) as the original aspirin, they are a heterogeneous group of chemical 

compounds. Many NSAIDs have been synthesized in an attempt to minimize gastric 

damage, the most common side effect of these drugs. Accordingly the different NSAIDs 

have diverse selectivity for the three COX variants. The oxicams are one defined chemical 

group of NSAIDs, but even within this group there are differences in structure and function. 

For example meloxicam {4-hydroxy-2-methyl-N-(5-methyl-2-thiazolyl)-2H-1,2-

benzothiazine-3-carboxamide 1,1-dioxide} and piroxicam {4-hydroxy-2-methyl-N-

(pyridin-2-yl)-2H-1,2-benzothiazine-3-carboxymide 1,1-dioxide}have a similar “backbone” 

structure, but piroxicam has a pyridine attached to it while meloxicam has a methylated 

thiazol. This difference in structure makes meloxicam a potent COX-2 inhibitor and 

piroxicam the preferential inhibitor for COX-1 [172]. Piroxicam has been reported to affect 

neutrophil secretion and NADPH-oxidase activity in response to the FPR agonist fMLF, an 

effect achieved through blocking ligand receptor binding[173]. One report also suggests 

that piroxicam inhibits the G-protein GDP/GTP exchange, a function that would block not 

only FPR but GPCRs in general[174]. However, piroxicams effect on the neutrophil 

activity mediated by the FPRL1 ligand WKYMVM have been investigated (Paper IV). This 

study shows that piroxicam inhibits signalling through FPR but not through FPRL1 and an 

unrelated GPCR, namely C5aR.  



 29

CONCLUDING REMARKS 

The danger theory introduced in the mid-1990s presented a new way of thinking about 

immune reactions and immune reactivity. The suggestion that tissue components released 

from damaged tissues may be the initiating factor for the triggering of an inflammatory 

reaction and immune response could be useful for a better understanding of the regulating 

mechanism behind the accumulation of immune cells in both health and disease. The 

precise role of eosinophils has baffled scientists for many years, since these cells 

accumulate in a variety of conditions with no direct common ground. In diseases 

eosinophils have been regarded as troublemakers that cause tissue destruction. The 

suggestion that these immune cells might be part of a response to damaged tissues could 

change how their role in inflammatory reactions are interpreted. 

 

It still has to be determined which types of molecules are perceived as danger signals to 

immune competent cells. Presumably a large number of different molecules from damaged 

tissues orchestrate the immune response through different types of receptors. Much 

attention has been drawn to the pattern recognition receptors. These receptors have 

developed during evolution and bind molecules from both exogenous and endogenous 

origin and therefore it is tempting to believe that these receptors are the main target for 

danger signals.  
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