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We describe and discuss statistical models of Swedish influenza data, with special focus on 
aspects which are important in on-line monitoring. Earlier suggested statistical models are 
reviewed and the possibility of using them to describe the variation in influenza-like illness 
(ILI) and laboratory diagnoses (LDI) is discussed. Exponential functions were found to work 
better than earlier suggested models for describing the influenza incidence. However, the 
parameters of the estimated functions varied considerably between years. For monitoring 
purposes we need models which focus on stable indicators of the change at the outbreak and 
at the peak.  
 For outbreak detection we focus on ILI data. Instead of a parametric estimate of the 
baseline (which could be very uncertain,), we suggest a model utilizing the monotonicity 
property of a rise in the incidence. For ILI data at the outbreak, Poisson distributions can be 
used as a first approximation.  
 To confirm that the peak has occurred and the decline has started, we focus on LDI data. 
A Gaussian distribution is a reasonable approximation near the peak. In view of the 
variability of the shape of the peak, we suggest that a detection system use the monotonicity 
properties of a peak. 
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1 Introduction 

Influenza epidemics impose huge costs on society due to, for example, high levels of work 
absence and heavy demands on the health-care system, see [1]. Hannoun and Tumova [2] 
investigated diagnostic procedures and surveillance systems in the European countries and 
found differences which hamper comparability. Information on the Swedish influenza 
incidence is found in the publications by the Swedish Institute for Infectious Disease Control 
(SMI). Spatial issues (see for example [3], [4], [5] and [6]) are of interest in modeling the 
spread of the influenza. Regional effects within Sweden are analyzed in [7] while aggregated 
data for Sweden is used here. 
 Different models are useful for different purposes. Probabilistic models for the 
transmission of infection are important for the causal understanding of the variation in 
influenza incidence, for example the effect of vaccination. A review of probabilistic models 
based on epidemiological theory of measles and influenza is given in [8]. The classical 
susceptible-infectious-recovered (SIR) paradigm, with its many variants, is important for the 
causal understanding of what factors influence the incidence of infectious diseases. An 
attempt to explain the large seasonal variation in influenza incidence is made in [9], where it 
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is demonstrated that the large oscillations in incidence may be caused by small, otherwise 
undetectable seasonal changes in the influenza transmission rate. A disease is transmitted 
within and between communities when infected and susceptible individuals interact. 
However, the parameters in an advanced causal model are not identifiable by means of the 
data available here (ILI and LDI). For surveillance purposes, simpler models which capture 
the most important features are useful. The models used in [10] provide links between 
theoretical epidemic probabilistic modeling and simple statistical models. In [11] it is stated 
that since small-scale movements and contacts between people are generally not recorded, 
available data regarding infectious disease are often aggregations in space and time. Thus, in 
[11] a spatially descriptive temporally dynamic model is used, where the intensity depends 
on space and time.  
 Prediction is an important aim. In [12] we examined some simple prediction rules based 
on multiple regression and there we found that an algorithm based only on a measure of the 
time of the start of the epidemic phase gave a good prediction of the height of the peak. An 
early start is a warning for a high peak. Prediction can also be used as a component in a 
surveillance system. The authors of [13] use 2-weeks-ahead predictions as a monitoring tool.  
 Modelling for monitoring is in focus here. For reviews and discussions of prospective 
statistical surveillance in public health, see [14] and [15] and Section 0. The aim of this 
article is to demonstrate aspects of  modelling, when the purpose is monitoring of influenza. 
We make an exploratory analysis of influenza-like illness (ILI) and laboratory diagnoses 
(LDI) in Sweden in order to study the statistical properties of these variables. We try to find 
reasonable stochastic models and find out which characteristics are stable between years and 
which are not. Thus we want to find models for the Swedish influenza data that could work 
in a future surveillance system. Important issues here are to examine the data quality and to 
examine if it is possible to find a model to describe the process before the change. It is 
important to be realistic and not base the decision on too many assumptions. This report 
focuses on those issues of modeling that are of concern in the construction of a surveillance 
system. Some general aspects on monitoring will be discussed, whereas the construction of 
the surveillance system itself will be presented in a forthcoming article. 
 The outline is the following: In Section 2 we describe the Swedish data available for our 
analysis. Least squares estimations of how the incidence depends on the time of year are 
presented in Section 3, for both non-parametric and parametric models. The distribution 
around the curves is analyzed in Section 4, both at the outbreak and at the peak. Some 
aspects on monitoring systems are given in Section 0. Conclusions are given in Section 6.  

2 The Swedish influenza data 

Two different types of data are analyzed: weekly ILI and LDI data. Their respective 
reporting systems are described in e.g [16] and in the annual reports from the National 
Influenza Reference at SMI.  
 

2.1 Reports on influenza-like illness (ILI) 

Weekly data on ILI are collected from a number of sentinel physicians, who report the 
number of patient visits. For patients showing ILI, the date of the visit and the patient’s age 
and sex are recorded, see [17]. The data are collected during the weeks when an influenza 
epidemic can be expected, according to SMI (week 40 up to week 20). This will also be those 
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weeks during which the surveillance is applied. Around 2% of the Swedish general 
practitioners participate. Their involvement is voluntary and their representativeness can 
therefore be questioned. In [18] the representativeness of the physicians participating in a 
French sentinel system for ILI is discussed. 
 The percentages of patients showing ILI (%ILI) were available for the years 1999–2005. 
The time from autumn one year to spring next year (e.g. autumn 1999 to spring 2000) is 
hereafter denoted as a period (e.g. period 99_00). For the last five of these periods (00_01 to 
04_05), we also had access to the total number of patients (#PAT) as well as the number of 
patients showing ILI (#ILI). As is seen in Figure 1, the total number of patients varies 
considerably between weeks. The number of influenza patients contributes only marginally 
to this variation. The variances of the estimates of %ILI will also vary. The varying number 
of patients might reflect physicians’ inclination to send reports. After the peak of the 
influenza, some of the physicians might refrain from doing so. This could explain the 
decrease in the total number of patients, since aggregated data are used. The ILI data should 
consequently be interpreted with care since the data might be influenced by time-dependent 
effects, such as an interest in an expected outbreak or a lack of interest after the peak has 
been reached. In [10] a time-dependent underreporting (of measles) is modelled, but the 
possibility of identifying this when also the transmission intensity is time-dependent can be 
questioned.   
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Figure 1. The number of patients per week, reported to be seen by the sentinel physicians for the six 
influenza periods 00_01 to 05_06. The average and the range are illustrated 
 
 

2.2 Reports on laboratory diagnosed cases (LDI) 

The LDI data consist of weekly reports (during the time from week 40 to week 20) from five 
virus laboratories (at university hospitals and at SMI) and a number of microbiological 
laboratories (usually between 15 and 20, see [19] and [17]). The laboratory reporting mainly 
concerns patients who are severely ill and in need of hospital care. In the laboratories the 
influenza is typed as either A, B or C, which all belong to the group ortomyxovirus. It is 
mainly A and B that give rise to the typical influenza infection, see [20]. In this report, LDI 
consists of the sum of A and B cases. We had access to the number of laboratory diagnosed 
cases of influenza for seven influenza periods (1998–2005). In the weekly influenza reports 
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from SMI, the number of laboratory confirmed cases of influenza are given for each week 
during the monitoring period (in our data from week 40 in the fall to week 20 in the spring).  
 

2.3 Covariation between ILI and LDI 

The covariation between ILI and LDI has been studied. Unfortunately, the conclusion was 
that it is hard to use the ILI data as an early indicator since the relation between the processes 
is different before and after the peak. Similar differences between correlations of variables 
before and after the peak could be seen in a figure in [13]. The two series, ILI and LDI, do 
not have the same peak times or even the same relation between the peak times for ILI and 
LDI for different years. This is a further indication that ILI is not a simple leading indicator 
to LDI. Also, there is no clear-cut relation between %ILI(t) and LDI(t+j).  
  LDI data will be used for the peak and decline. We will only use ILI data for the outbreak 
period where no other variable is early enough. We will thus model for univariate 
surveillance, i.e. surveillance of only one process and thus we investigate the properties of 
each process separately.  

3 Least squares estimation of the incidence over time 

Monitoring of influenza concerns a change in the incidence. Therefore it is important to 
investigate the incidence. We consider two types of changes that are of interest, namely the 
increase of the incidence at the outbreak (start) of the epidemic phase and the decrease of the 
incidence after the peak of the influenza. The reason for the second surveillance is for 
example to be able to detect other contagious diseases that might show themselves in an 
increased number of cases of influenza-like illnesses. 
  In  [13], the expected value of each of four processes, is modeled. For each process, the 
expected value at time t is a function of the previous observed value of that process and, for 
some processes, also a function of previous values of some of the other processes.  
 

3.1 Parametric models 

Different regression functions for the variation of the incidence with time have been 
suggested. A cyclical pattern over the year with a peak during the winter is natural.  
  In an early model by [21], the proportion of deaths due to pneumonia or influenza is 
modeled using trigonometric regression  

  ( )( ) ( )( )
q q

0 0 i i
i=1 i=1

X(t)=μ +α t+ α cos 2 π t q + β sin 2 π t q +ε(t)⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅∑ ∑ ,  

where q is the periodicity and ε~iid N(0, σ2). Trigonometric regression models have later 
been used for different variables and both for epidemic and non-epidemic phases. Usually, a 
52-week periodicity is assumed, i.e. q=52 as in, for example, [22] for non-epidemic ILI in 
France.  
 In [18], a trigonometric regression function (with periodicity of 52) is used for modelling 
the weekly French ILI incidence. For the surveillance they use a Hidden Markov Model 
(HMM), which allows for switching between epidemic and non-epidemic states. The 
transitions are according to a Markov chain. In many papers, there are attempts separately to 
estimate the non-epidemic seasonal effect and the epidemic effect. In [18], the model 
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included both seasonality and switching between epidemic and non-epidemic phases. A 
general problem with the modeling of seasonality and the duration of non-epidemic phases is 
that the separation depends heavily on the assumptions made. Since the seasonality and the 
non-epidemic phase usually are found to be the same, or nearly the same, it is also hard to 
separate them. In [4] a trigonometric regression is also used for infectious disease data but 
with an additional autocorrelation effect (a “parameter- and data-driven” model). In [13], the 
seasonal variation in the expected value during non-epidemic phases is also  captured by 
trigonometric regression. Deviations from a trigonometric regression with a constant cycle 
length and a constant peak height might be used to detect unusually severe epidemics. 
However it is not suitable in surveillance for detecting the outbreak or the peak of an 
ordinary influenza since the characteristics of the influenza curve are not the same from one 
year to the next. A reference curve (e.g. a trigonometric curve that captures the expected 
value during non-epidemic phases) would be needed at the start of the season. But at the 
start, the characteristics of the coming season (peak time, peak height, shape of peak) are 
unknown. Therefore a reference curve must be modelled using data from previous seasons, 
which would result in a average curve. Thus a deviation from this curve will only tell if a 
particual year was very different. In Section 5 we suggest that a surveillance system for the 
start or peak of the influenza is based on monotonicity properties instead of an average curve. 
 We fitted a trigonometric regression to the Swedish LDI data from the seven periods 
98_99 to 04_05 in hope that the peak would be well represented. However the fit was poor 
(R2=0.2) due to a much more pointed peak than by the trigonometric regression and also due 
to the parametric restriction of constant amplitude and cycle length for all the periods. 
 In [23], the incidence during the non-epidemic phase was estimated as constant level. A 
very simple model for the incidence near the peak is to assume that the curve is linear on 
each side of the peak. Such a model fits the Swedish influenza incidence rather well, see 
[12]. If a piecewise linear model for the incidence curve holds, then the successive 
differences have a constant expected value on each side of the peak. This is also the case 
when X is a random walk with drift, X(t)=X(t-1)+β+ε(t), where ε is iid and the drift β 
changes from negative to positive. However, the stochastic properties are different for the 
two models, which will be of importance in the surveillance. If X can be described as 
X(t)=μ(t)+ε(t), where μ is piecewise linear and ε is iid, then the error term of the first 
difference X(t)-X(t-1) would be an MA(1) process. If, instead, X can be described as a 
random walk with drift, then it is reasonable to differentiate the data and monitor the 
observed successive differences, which will be independent. The implications of 
dependencies are discussed further in Section 0.  
 An exponential curve is a natural choice for the expected value of the incidence because 
of the biological process. Also, it does not allow the expected incidence to be negative, as 
some other models do. We tried different approaches for fitting the piecewise exponential 
curve  

  ( ) 0 1

0 1 2

β exp(β t),    t j
μ t j

β exp(β j β (t-j)),  t j
⋅ ⋅ ≤⎧

= ⎨ ⋅ ⋅ + ⋅ >⎩
, 

where j is the time of the peak and β1>0 and β2<0.  
  One way of fitting the exponential model is to linearize the curve by the logarithmic 
transform. This transformation implies that the deviations from the curve are multiplicative. 
In the case of our data, heteroscedasticity was a consequence. Another drawback was that the 
data contains zeros for which the logarithm cannot be computed and which cannot be deleted 
since they are important. Instead, we used non-linear least squares estimation.   
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Figure 2. Observed values of %ILI (circle) and the exponential regression curve (solid line).  

 
From Figure 2 and Figure 3 we conclude that the six (seven for LDI) influenza periods 

are very different. The curves differ much in both height and growth. The curves are un-
symmetric for all the influenza periods, but there is no consistency in whether the up-phase 
or down-phase has the largest slope. The possibility of using a parametric surveillance 
method (. basing a surveillance system on models for μ with known parameters β1 and β2) is 
hampered by this lack of consistency, also discussed in Section 3.1. 
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Figure 3. Observed values of LDI (circle) and the exponential regression curve (solid line). 
 
 

3.2 Nonparametric models 

Unimodal regression can be used to estimate a function without making any assumptions 
about the parametric shape but using only order restrictions. Consider the model    
   X(t) = μ(t) + ε(t),  
 
where E[ε(t)]=0, X is a process measuring the incidence and t is the time (in weeks). We 
want an estimate of the expected incidence, E[X(t)]=μ(t), and, based on data from the latest 
seven periods, μ has one peak every influenza period. However, the height and the time of 
the peak varies from one period to the next, making it difficult to use a single parametric 
model for prediction and surveillance in future periods. Therefore, in the estimation of μ, we 
use only the information of unimodality:  
 
   μ(1)≤ μ(2)≤ ... ≤μ(j-1) ≤μmax and μmax≥μ(j)≥μ(j+1) ≥ ... ≥μ(t). 
 
μmax is the peak value (not necessarily observable). The unimodal regression is consisting of 
an up-phase, where E[X(t)] is monotonically increasing with t up to an unknown time, and a 
down-phase, where the regression is monotonically decreasing with t. The solution technique 
[24] is based on the “Pool adjacent” procedure and gives a least square estimate where the 
sum of squares is minimized under the unimodal restriction above. A free computer program 
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is available from the corresponding author. When ε is iid N(0; σ2), this least square estimate 
is also the maximum likelihood estimate.  
 The values estimated by unimodal regression and the raw data are shown in Figure 4 and 
5. The cycle length and the height of the peaks are seen to change considerably from one 
period to the next.  
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Figure 4. Observed values of %ILI (circle) and the unimodal regression estimates (conected by solid 
lines).  
 
 
When the estimator of the incidence is strongly consistent for each time, it follows that the 
unimodal regression technique also gives strongly consistent estimates of the time of the 
peak, and the height of the peak, see [24].  
  Often, when considering non-parametric methods for trend estimation, moving averages 
and kernel smoothing are considered (see e.g [25]). However, they have the disadvantage of 
not preserving the peak location (see [24]) and this preservation is necessary here, since one 
goal is to detect the peak.  
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Figure 5. Observed values of LDI (circle) and the unimodal regression estimates (connected by solid 
lines). 

4 Stochastic distributions 

In order to construct a surveillance system to detect changes in influenza incidence, we need 
models that describe the stochastic properties of the process at the start of as well as during 
the epidemics. In public health monitoring, outbreak detection is probably the most 
interesting aspect. For the outbreak detection we have chosen to analyze the ILI variable and 
not the LDI.  
 In many situations it is also important to detect the peak. One example is when 
surveillance is carried out in order to detect new infectious diseases. If we have information 
that the “ordinary” influenza has reached its peak and we then detect an increase in the ILI 
incidence, this indicates an unusual situation which requires extra caution, since it could be 
an indication of another infectious disease. For this reason and for planning purposes we also 
need models for the peak. For peak detection it is reasonable to use the variable LDI, since it 
contains data of high quality including the confirmed cases of those who visited a physician. 
For peak detection, knowledge of the stochastic properties at the peak is needed.  
  When the curve is not known, it is difficult to make conclusions about the distributions of 
the deviations from the expected value at each time. If a very flexible nonparametric curve is 
used, then the deviation will be underestimated. If a mis-specified parametric curve is used, 
then the deviations will be overestimated. We use the residuals from the estimated 
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exponential models in Figures 2 and 3. The problem of determining the distribution for LDI 
at the peak appeared to be the easiest one to solve and will be described first. 
 

4.1 The distribution at the peak 

In most papers, an iid Gaussian distribution is used to describe the variation around the curve 
representing influenza incidence. In [21], a Gaussian distribution is used it for death rates, in 
[18] it is used for ILI and in [13] it is used for hospital cases. 
  In [26], [27] and [28], different Gaussian models allowing for autocorrelations were used. 
In our data for LDI near the peak (where LDI≥30), the autocorrelation was found to be small 
and within a distance of two standard errors from zero at nearly all time lags. Linearizing the 
exponential curve by the logarithm transformation resulted in residuals near the peak that 
were larger than the rest and a variance that was clearly not constant (not shown here). This 
is an indication that the stochastic term is not multiplicative but additive. No evidence for 
serious heteroscedasticity in the additive model was found. For details, see [12].  
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Figure 6. Residuals from the exponential, non-symmetric curves, fitted to LDI data. The graphs show 
ln( 2ˆ ( )tε ) (vertical axis) as a function of ln( ˆ ( )tμ ) (horizontal axis).  
 
 
 The residual variances differ between the periods. The periods 00_01 and 02_03 differ 
from the others in that both the average level of the incidence and the residual variance are 
lower. We analyze the variance near the peak in Figure 6, where the squared residuals 2ε̂ (t)  
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are plotted against the value of the estimated exponential curve μ̂(t) . If the disturbances of 
the LDI process are consistent with an iid Gaussian assumption, we would expect 2ε̂ (t)  to be 
constant. A natural alternative for count data is a discrete distribution such as a Poisson or 
negative binomial distribution. If LDI follows a Poisson distribution, we would expect 2ε̂ (t)  
to be equal to μ̂(t) . A negative binomial distribution has one more parameter and allows a 
model with over dispersion. The relation is illustrated in Figure 6. 
 
The conclusion from the analysis of the residuals is that for high values of μ̂  (near the peak) 

2ε̂ (t)  is fairly constant and there is no evidence for a specific alternative. A reasonable 
approximation for the stochastic term is that it is additive with a constant variance. It is of 
course not possible to give evidence for this being the correct distribution but it has earlier 
been assumed and this investigation does not contradict it.  

4.2 Distributions at the outbreak 

Also for ILI at the outbreak an iid Gaussian distribution is used in most papers. Gaussian 
distributions were, however, criticized in [18] and [29] because they assign a non-zero 
probability for negative incidences. The suggestion in [29] is a Gaussian distribution for the 
epidemic state but an exponential distribution for the non-epidemic state. In [4] the Poisson 
distribution is discussed for infectious disease surveillance data. The  negative binomial 
distribution is suggested here and also in [30]  when there is an over-dispersion compared to 
the Poisson distribution. In [13], a log-normal distribution is used for ILI data. We tried 
linearizing the exponential curve by the logarithm transformation. However, this resulted in 
residuals near the peak that were larger than the rest and the variance that was clearly not 
constant for epidemic data. In [11] a Bayesian hierarchical model with Poisson distribution is 
used for the incidence counts, while normal distributions are used for several of the 
parameters. In [13], a Poisson log-linear model was used for death rates. 
 In our data of ILI at the outbreak, the autocorrelations were found to be small (within a 
distance of two standard errors from zero). Neither a Gaussian distribution nor a constant 
variance is realistic as regards ILI at the outbreak. First, the variance is clearly dependent on 
the incidence, which is quite different before and after the outbreak. Second, the total number 
of patients (#PAT) varies considerably, and this will influence the variance of %ILI as well 
as the variance of #ILI conditionally on #PAT. The binomial or Poisson distributions are 
simple and natural choices for the distribution of #ILI. Since the incidence is low, these 
distributions will be similar. We have chosen to examine the fit to the Poisson distribution. 
We have to consider #PAT when we examine the Poisson assumption for #ILI. If #ILI 
follows a Poisson distribution, then, conditional on #PAT(t), we would have 
 
  E[#ILI(t)] = Var[#ILI(t)]. 
 
We have no good direct estimate of Var[#ILI(t)]. When we study the residuals from the 
expected value for each week we have to use the curve for %ILI, since we do not have a 
natural curve for #ILI. Var[%ILI(t)] can be estimated by 2ε̂ (t) , where ˆ ˆε(t)=%ILI(t)-μ(t)  is 
the residual from the estimated exponential curve in Section 3.1. We express #ILI as a 
function of %ILI, so that 
 
   E[#ILI(t)] = (#PAT(t)/100) · E[%ILI(t)] and 
  Var[#ILI] = (#PAT/100)2 · Var[%ILI], which implies  
  E[%ILI] = (#PAT/100) · Var[%ILI] 
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The Poisson assumption can thus be examined by relating  
 
  g( ε̂ (t))= (#PAT/100)· 2ε̂ (t) / μ̂(t)  
 
 to μ̂(t) . The comparison is shown in Figure 7 for values of μ̂(t)  below or equal to 0.5% in 
the start of the outbreak. The figure does not clearly demonstrate that g( ε̂ (t)) is independent 
of μ̂(t)  as it should be for a Poisson distribution but gives no strong evidence for an 
alternative natural hypothesis. The stochastic variation is large. Since no direct evidence 
against the Poisson distribution is found (e.g. obvious overdispersion), the conclusion is that 
the Poisson distribution can be used as a first approximation. Even though no hard evidence 
can be given that this is the true distribution, neither other investigations in the literature nor 
our data point towards a serious disagreement. Since we have very little data, a model with 
more parameters might be overfitted. With more data, it might be useful to estimate a model 
with more flexibility (e.g. a negative binomial distribution).  
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Figure 7. Residuals from the exponential curves, fitted to data on %ILI. The graphs show ln(g( ε̂ (t))) 
(vertical axis) as a function of ln( ˆ ( )tμ ) (horizontal axis).  

5 Surveillance systems 

The aim in a surveillance system is to detect a change in the underlying process, for example 
the change from a non-epidemic to an epidemic period. The starting time of the influenza 
differs from one year to the next, as was demonstrated in Figures 4 and 5. In Sweden, data 
are collected weekly during the period from week 40 to week 20. Thus a surveillance system 
would have its first observation at week 40, and after that once a week until week 20 in the 
spring. The start of the influenza period (the outbreak), however, is of course not identical to 
week 40, but varies.  
 The most commonly used surveillance systems are based on the Shewhart method (see 
[31] and [32]). In its original form, we compare the current observation (of e.g. ILI) to a 
reference model, which shows the expected value that week, given that the epidemic phase 
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has not started yet. The difference between the observed and the expected value is calculated 
and compared to an alarm limit, which is usually three standard deviations. If the observed 
difference for the current week is below the alarm limit, we conclude that the epidemic phase 
has not started yet. The next week we get a new observation, calculate the difference to the 
expected value of that week and compare the difference to the alarm limit. In a more 
advanced setting we use a derived statistic. In [13], the 2-weeks-ahead predictions are used 
and here an alarm (for an influenza incidence that is higher than expected) is given when the 
predicted value is large.  
  In the Shewhart method, only the latest (derived) observation is used as a basis for 
inferring whether the epidemic phase has started or not. The Shewhart approach is optimal 
for detecting a large change immediately. In contrast, other methods use all the observations 
and are better to detect smaller changes where an accumulation of the information improves 
the performance, see [33]. Some commonly used methods which use all the observations 
since the start of the surveillance are, CUSUM ([34]), EWMA ([35]) and the full likelihood 
ratio method ([36], [37]). Since all the methods are based on the likelihood ratio, we need 
information about the distribution of the process, with and without the change. In order 
for a surveillance system to be efficient, it is important to find the stable characteristics of the 
change. If this model is seriously misspecified, the surveillance system will be of little use 
(see e.g. [38]). In order to choose the correct alarm limit, the distributional properties such as 
the variance of the process and whether the observations can be considered to be independent 
over time are especially important. Thus, for constructing the surveillance system, the 
investigation of the distributional properties of the process is important. 
 An important question is whether the surveillance system would be improved by using 
several processes in the monitoring. Potentially this is so and in [13], the relation between 
four series is successfully utilized. 
 Below we briefly exemplify surveillance using the Shewhart method using a parametric 
model. The situation when we want to detect a peak is used in the example. We want to 
detect (confirm) the peak, i.e. we want to detect a deviation from the model where the 
incidence is increasing. We monitor X(t), which is modeled as 
 
   X(t) = μ(t) + ε(t), where ε is iid N(0;σ).  
 
If the peaks were relatively alike, from one year to the next, we could use parametric 
functions for μ. Then, at decision time s, we would expect an incidence of   
 
   μ(t) = exp(β0 + β1*t). 
 
The alarm statistic, according to the Shewhart method, is the difference between the observed 
value and the expected value, given that the incidence is still increasing. Thus, the alarm 
statistic at time s would be 
 
   0 1( ) exp( )x s tβ β− + . 
 
The alarm limit at time s is often constructed as 
 
   g(s) = k*σ, 
 
where k is a constant (often the value 3). Depending on the desired false alarm probability, 
the constant k can be set to different values. 
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  Another possibility, than the Shewhart approach, could be to use the full likelihood 
method using the theory in [36], where we could have the following model for the expected 
incidence 
 
   μ(s) = exp(β0 + β1s), s<τ 
    μ(s) = exp(β0 + β1(τ-1) - β2(s-τ+1), s≥τ 
and the alarm statistic would be the ratio between the two likelihoods for X (conditional on 
s<τ and conditional on s≥τ, respectively).  
 Alternatively, a maximum likelihood approach could be used. Since the peaks are very 
different from one year to the next, a non-parametric approach might be useful. We suggest a 
nonparametric maximum likelihood approach based on the comparison between the 
likelihood conditional on s<τ and conditional on s≥τ, respectively. We suggest that the 
expected incidence is estimated under monotonicity restrictions (see e.g. [24] and [39]).  For 
peak detection [40] the relevant conditions to be compared are 
 
   μ: μ(1)≤ μ(2)≤ ... ≤μ(s), s<τ 
      μ: μ(1)≤ ... ≤ μ(τ-1) and μ(τ)≥ ... ≥μ(s), s≥τ. 
 
For outbreak detection the relevant conditions to be compared are 
 
  μ: μ(1)= μ(2)= ... =μ(s), s<τ 
     μ: μ(1)= ...=μ(τ-1) and μ(τ)≤...≤μ(s), s≥τ. 
 
Outbreak detection using these monotonicity restrictions is a topic for further research. 

6 Conclusions 

To construct a system for on-line detection of changes in the influenza incidence, by 
monitoring ILI and LDI, we need first find reasonable models for these processes. Generally, 
the modeling of processes which are subject to many disturbing factors implies many 
challenges. For monitoring purposes, however, it is especially important to decide which 
assumptions are valid approximations and which would result in bad conclusions. Robust 
simple models may be better than models with many estimated parameters which are not 
stable over the years. 
 In this paper we have analyzed the statistical properties of two variables related to the 
evolution of influenza in Sweden, namely influenza-like illness (ILI) and laboratory 
diagnoses (LDI). This analysis forms a basis for constructing a system for on-line 
surveillance.  
 For outbreak detection we have to use ILI since no observations on LDI are available until 
the influenza is manifest. As regards non-epidemic phases, very sparse data are available in 
the present data set. No data are available prior to week 40. This means that there is a lack of 
good baseline data. A very simple model with a constant incidence during non-epidemic 
phases could be satisfactory as a first approximation. From the present data, however, such 
an incidence can be estimated only with large uncertainty. The lack of good baseline data is a 
serious problem for the detection of a change from a baseline. A surveillance system which 
relies on an estimate of the baseline level is very vulnerable to errors in the estimate. Instead, 
we suggest that the fact that there is a level rise at the start of an epidemic be utilized. Thus, a 
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detection system which utilizes the monotonicity property at a level rise, rather than an 
estimate of the non-epidemic level, is suggested.  
 For the detection of the peak and decline of the influenza, we consider LDI. Several 
suggestions of the shape of the curve at the peak of the influenza incidence have been 
discussed and compared with the present data set. Both parametric and non-parametric 
models can describe the data near the peak. Trigonometric curves were shown to fit the 
Swedish data poorly. Several other suggestions of the shape of the curve at the peak of the 
influenza incidence agreed rather well with the present data set. We found an exponential 
model with additive stochastic term to be preferred. A problem in the construction of a 
surveillance system based on estimates of a parametric curve is that the parameters vary a lot 
from one influenza period to the next. Since the data are accruing in time conclusions for the 
present time cannot be based on earlier information unless this information it stable over the 
periods. Thus, a non-parametric model for the shape is an important alternative. Surveillance 
methods based only on monotonicity properties (first increase and then decline) are more 
robust.  
 The available data are sparse and do not give any evidence of complicated stochastic 
models. A general problem with the modeling of both heteroscedasticity and autocorrelation 
is that the estimated parameters depend heavily on the assumptions made about the time-
dependent expected value of the process. Based on the data available to us, we conclude that 
a Poisson distribution can be used as a first approximation for the outbreak phase and that 
Gaussian distributions with a constant variance can be used near the peak.  
  Information about the data for different geographical areas is valuable since it is possible 
that the influenza reaches different areas at different times. In this article, however, the data 
are collected on a national level and, consequently, only the temporal aspects are studied. 

Acknowledgement 

The data were made available to us by the Swedish Institute for Infectious Disease Control, 
and we are grateful for discussions about the aims and the data quality. 
 
 



  

 

16

References 

[1] Szucs T. The socio-economic burden of influenza. Journal of Antimicrobial 
Chemotherapy. 1999;4:11-5. 
[2] Hannoun C, Tumova B. Survey on influenza laboratory diagnostic and surveillance 
methods in Europe. European Journal of Epidemiology. 2000;16(3):217-22. 
[3] Nakaya T, Fotheringham AS, Brunsdon C, Charlton M. Geographically weighted 
Poisson regression for disease association mapping. Statistics in Medicine. 2005;24(17):2695-
717. 
[4] Held L, Höhle M, Hofmann M. A statistical framework for the analysis of multivariate 
infectious disease surveillance data. Statistical Modelling. 2005;5(3):187-99. 
[5] Diggle P. Spatio-temporal point processes, partial likelihood, foot and mouth disease. 
Statist Meth Med Res. 2006;15(4):325-36. 
[6] Clark AB, Lawson AB. Surveillance of individual level disease maps. Statist Meth 
Med Res. 2006;15(4):353-62. 
[7] Bock D, Pettersson K. Exploratory analysis of spatial aspects on the Swedish 
influenza data. Stockholm: Report from the Swedish Institute for Infectious Disease Control; 
2006. Report No.: 3:2006. 
[8] Cliff AD, Haggett P. Statistical modelling of measles and influenza outbreaks. 
Statistical Methods in Medical Research. 1993;2(1):43-73. 
[9] Dushoff J, Plotkin JB, Levin SA, Earn DJD. Dynamical resonance can account for 
seasonality of influenza epidemics. Proceedings of the National Academy of Sciences of the 
United States of America. 2004 Nov 30;101(48):16915-6. 
[10] Morton A, Finkenstädt BF. Discrete time modelling of disease incidence time series 
by using Markov chain Monte Carlo methods. J of the Royal Statistical Society C. 
2005;54(3):575-94. 
[11] Mugglin AS, Cressie N, Gemmell I. Hierarchical statistical modelling of influenza 
epidemic dynamics in space and time. Statistics in Medicine. 2002;21(18):2703-21. 
[12] Andersson E, Bock D, Frisén M. Exploratory analysis of Swedish influenza data: 
Report from the Swedish Institute for Infectious Disease Control; 2006. Report No.: 1:2006. 
[13] Sebastiani P, Mandl KD, Szolovits P, Kohane IS, Ramoni MF. A Bayesian dynamic 
model for influenza surveillance. Statistics in Medicine. 2006;25(11):1803-16. 
[14] Sonesson C, Bock D. A review and discussion of prospective statistical surveillance in 
public health. Journal of the Royal Statistical Society A. 2003;166(1):5-21. 
[15] Lawson AB, Kleinman K, eds. Spatial and Syndromic Surveillance for Public Health: 
Wiley 2005. 
[16] Ganestam F, Lundborg CS, Grabowska K, Cars O, Linde A. Weekly antibiotic 
prescribing and influenza activity in Sweden: a study throughout five influenza seasons. 
Scandinavian Journal of Infectious Diseases. 2003;35(11-12):836-42. 
[17] Linde A, Brytting M, Johansson M, Wiman Å, Högberg L, Ekdahl K. Annual Report 
September 2003 - August 2004: The National Influenza Reference Center. Stockholm: 
Swedish Institute for Infectious Disease Control; 2004. 
[18] Le Strat Y, Carrat F. Monitoring epidemiologic surveillance data using hidden 
Markov models. Statistics in Medicine. 1999;18(24):3463-78. 
[19] Linde A, Brytting M, Petersson P, Mittelholzer C, Penttinen P, Ekdahl K. Annual 
Report September 2001 - August 2002: The National Influenza Reference Center: Swedish 
Institute for Infectious Disease Control; 2002. 



  

 

17

[20] Andersson Y, Normann B, Tideström L. Fakta om smittsamma sjukdomar. 
Stockholm: Swedish institute of infectious disease control; 1999. 
[21] Serfling R. Methods for current statistical analysis of excess pneumonia-influenza 
deaths. Public Health Reports. 1963(78):494-506. 
[22] Costagliola D, Flahault A, Galinec D, Garnerin P, Menares J, Valleron AJ. A Routine 
Tool for Detection and Assessment of Epidemics of Influenza-like Syndromes in France. 
American Journal of Public Health. 1991;81(1):97-100. 
[23] Quenel P, Dab W, Hannoun C, Cohen JM. Sensitivity, Specificity and Predictive 
Values of Health- Service Based Indicators For the Surveillance of Influenza-a Epidemics. 
International Journal of Epidemiology. 1994;23(4):849-55. 
[24] Frisén M. Unimodal regression. The Statistician. 1986;35(4):479-85. 
[25] Andersson M, Ekdahl K, Mölstad S, Persson K, Hansson HB, Giesecke J. Modelling 
the spread of penicillin-resistant <I>Streptococcus pneumoniae</I> in day-care and 
evaluation of intervention. Statistics in Medicine. 2005;24(23):3593-607. 
[26] Stroup DF, Thacker SB, Herndon JL. Application of Multiple Time-Series Analysis to 
the Estimation of Pneumonia and Influenza Mortality By Age 1962-1983. Statistics in 
Medicine. 1988;7(10):1045-59. 
[27] Quenel P, Dab W. Influenza A and B epidemic criteria based on time-series analysis 
of health services surveillance data. European Journal of Epidemiology. 1998;14(3):275-85. 
[28] Hussain S, Harrison R, Ayres J, Walter S, Hawker J, Wilson R, et al. Estimation and 
forecasting hospital admissions due to Influenza: Planning for winter pressure. The case of the 
West Midlands, UK. Journal of Applied Statistics. 2005;32(3):191-206. 
[29] Rath TM, Carreras M, Sebastiani P. Automated Detection of Influenza Epidemics with 
Hidden Markov Models.  Advances in Intelligent Data Analysis V. Berlin, Germany: 
Springer-Verlag 2003:521-31. 
[30] Grabowska K. Occurrence of invasive pneumococcal disease and number of excess 
cases due to influenza. Examensarbete: Mathematical Statistics, Stockholm University; 2005. 
[31] Shewhart WA. Economic Control of Quality of Manufactured Product. London: 
MacMillan and Co. 1931. 
[32] Frisén M. Properties and Use of the Shewhart Method and Followers. Sequential 
Analysis. 2006:to appear. 
[33] Frisén M. Statistical surveillance. Optimality and methods. International Statistical 
Review. 2003;71(2):403-34. 
[34] Page ES. Continuous inspection schemes. Biometrika. 1954;41:100-14. 
[35] Roberts SW. Control Chart Tests Based on Geometric Moving Averages. 
Technometrics. 1959;1:239-50. 
[36] Shiryaev AN. On optimum methods in quickest detection problems. Theory of 
Probability and its Applications. 1963;8:22-46. 
[37] Frisén M, de Maré J. Optimal Surveillance. Biometrika. 1991;78:271-80. 
[38] Andersson E, Bock D, Frisén M. Statistical surveillance of cyclical processes. 
Detection of turning points in business cycles. Journal of Forecasting. 2005;24:465-90. 
[39] Robertson T, Wright FT, Dykstra RL. Order Restricted Statistical Inference: John 
Wiley & Sons Ltd 1988. 
[40] Bock D, Andersson E, Frisén M. On statistical surveillance of Swedish influenza 
incidence. Peak detection.: Smittskyddsinstitutets rapportserie; 2006. Report No.: 2:2006. 
 
 



 



Research Report 
 

2007:1 Andersson, E.:  Effect of dependency in systems for multivariate 
surveillance. 

2007:2 Frisén, M.:  Optimal Sequential Surveillance for Finance, 
Public Health and other areas. 

2007:3 Bock, D.:  Consequences of using the probability of a false 
alarm as the false alarm measure. 

2007:4 Frisén, M.:  Principles for Multivariate Surveillance. 

    

    

    

    

    

    

    

    

    

    

    


