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Abstract

Three designs of Monte Carlo experiments are used to investigate the initial-value

problem in censored dynamic random-e¤ects (Tobit type 1) models. We compared

three widely used solution methods: naive method based on exogenous initial values

assumption; Heckman�s approximation; and the simple method of Wooldridge. The

results suggest that the initial values problem is a serious issue: using a method

which misspeci�es the conditional distribution of initial values can cause misleading

results on the magnitude of true (structural) and spurious state-dependence. The

naive exogenous method is substantially biased for panels of short duration. Heck-

man�s approximation works well. The simple method of Wooldridge works better

than naive exogenous method in short panels, but it is not as good as Heckman�s

approximation. It is also observed that these methods performs equally well for

panels of long duration.
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1 Introduction

Censored dynamic panel data models have been widely analyzed by many authors (Hon-

ore, 1993; Arellano and Bover, 1997; Arellano, Bover and Labeaga, 1999; Honore and Hu,

2001; Hu, 2002). Given the goal of disentangling the true (structural) state-dependence

from spurious state-dependence, one of the crucial issues is the initial values problem

(Heckman, 1981; Blundell and Smith, 1991; An and Liu, 1997; Blundell and Bond, 1998;

Lee, 1999; Arellano and Honore, 2001; Honore, 2002; Hsiao, 2003; Arellano and Carrasco,

2003; Honore and Hu, 2004; Arellano and Hahn, 2005; Honore and Tamer, 2006). The

aim of this paper is to compare some widely used solution methods of the initial values

problem in censored dynamic random-e¤ects panel data models using various designs of

Monte Carlo experiments (MCE).

The initial values problem can appear if the history of the stochastic process underlying

the model is not fully observed. If the process is operated before the sample data is

observed and if the initial (sample) values have been a¤ected by the unobserved past,

then the initial values problem can emerge since the initial values have possibly been

created by the evolution of the strictly exogenous variables in interaction with unobserved

individual-e¤ects. The solution of the problem is to specify a distribution of initial values

which is conditioned on strictly exogenous variables and unobserved individual-e¤ects.

Ad hoc treatments of this problem can produce bias and inconsistency in the estimators

of the censored dynamic random-e¤ects model as it would also cause in similar probit,

logit or Poisson models (Heckman, 1981; Honore, 2002; Hsiao, 2003; Honore and Tamer,

2006).

Besides the initial values problem, the random-e¤ect approach has some other lim-

itations. It requires an assumption about the conditional distribution of unobserved

individual-e¤ects. To avoid these problems a �xed-e¤ects approach can be used, which

can be attractive as a way to ensure that the conditional distribution of unobserved

individual-e¤ects does not play a role in the estimation of the parameters. However,

it can also be seriously biased since it su¤ers from the incidental parameters problem

(Neyman and Scott, 1948; Greene, 2004). Alternatively, some other estimators based

on semiparametric methods or combinations of these methods with the �xed-e¤ects ap-

proach (such as censored least absolute deviation estimator suggested by Hu (2002) or the

�xed-e¤ects approach developed by Honore (1993)) can be used for estimating a censored

dynamic panel data model (see also Honore and Hu, 2001). However, these estimators are

still subject to the incidental parameters problem and in these estimators time-invariant

exogenous variables are swept away, which can also be a serious problem in the prac-

tice. Thus, the random-e¤ects approach is still attractive, and if it is preferred, a proper
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solution for the initial values problem is necessary.

The aim of this paper is to compare some widely used solution methods of the initial

values problem in censored dynamic random-e¤ects panel data models. To do this, various

designs ofMCE are provided. We designed cases in which a solution for the initial values

problem is necessary, and three solution methods are investigated: The �rst is the naive

approach in which the initial values are considered as exogeneous variables, indepen-

dent from unobserved individual-e¤ects and strictly exogenous variables. The other two

consider the initial values as endogenous variables. Thus, the second is the Heckman�s

(1981) method, which uses a reduced-form approximation for the conditional distribu-

tion of initial values based on available pre-sample information. The third method is the

simple method of Wooldridge (2005), which uses an auxiliary distribution of unobserved

individual-e¤ects conditioned on initial values and strictly exogenous variables.

The results suggest that the initial values problem is a serious issue which can lead to

substantial bias if the conditional distribution of initial values is misspeci�ed. The naive

exogenous method can highly overstate (understate) the size of the true state-dependence

(spurious state-dependence), if it is wrong. It is found that Heckman�s reduced-form

approximation works well for all durations of panels. The simple method of Wooldridge

works much better than naive exogenous method, and it is as successful as Heckman�s

approximation with moderately long panels. It is also found that these methods tend to

perform equally well for panels of long durations.

The paper is organized as follows; the next section will give the model, description

of the initial values problem and three solution methods. Section 3 presents our Monte

Carlo designs and results. Section 4 concludes.

2 The model and three solution methods of the initial

values problem

Consider the following censored dynamic random-e¤ects model with one lag of censored

dependent variable:1

yi0 = max(0; x
0
i0� + �i0) (1)

yit = max(0; x
0
it� + 
yi;t�1 + �it) (2)

1 The other alternative is to consider that the lagged values of the dependent variable is also latent.
Considering the lagged dependent variable as observed or latent lead to di¤erent implications in
both economic and estimation terms. See Honore (1993), Hu (2002) and Hsiao (2003) for useful
discussions.
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where �it = �i + uit is the composite error terms; xit is a vector of strictly exogenous

variables in a sense that they are independent from all past, current and future values

of the disturbance uit � iidN (0; �2u); �i is time-persistent unobserved individual-e¤ects

(unobserved heterogeneity) with a conditional probability distribution f (�ijxit). In this
paper, we assume that the distribution of the random-e¤ects is �i � iidN (0; �2�), and they

are orthogonal to exogenous variables following the standard random-e¤ects assumption.

Throughout the paper, the number of individuals N (i = 1; :::; N) is considered to be

large relative to the number of periods T (t = 1; :::; T ). Covariance structure of the model

is assumed as

E[�it�i;t�sj fxgTt=1] =
�
�2� s = 0

��2� s 6= 0

�
(3)

The composite variance is written as �2� = �2� + �2u and � is the fraction of the variation

explained by the unobserved individual-e¤ects. The likelihood at time t for an individual

i is given by

fit (yitjyi;t�1; xit; �i; �) =
�
1� � [(x0it� + 
yi;t�1 + ���i)=�u] yit = 0

(1=�u)� [(yit � x0it� � 
yi;t�1 � ���i)=�u] yit > 0

�
(4)

where � denotes the distribution function and � denotes the density function of standard

normal random variable; and � =
h
� 
 �u

i
. The full log-likelihood function is given as

lnL =
NP
i=1

ln

264 1R
�1

264 f0

�
yi0j fxitgTt=0 ; �i; �

�
�

TQ
t=1

fit[yit=0] �
TQ
t=1

fit[yit>0]

375 f(�i)d�i
375 (5)

where f0
�
yi0j fxitgTt=0 ; �i; �

�
=
�
f0[yit=0]; f0[yit>0]

	
is the probability distribution of initial

values which is conditioned on strictly exogenous variables and the unobserved individual-

e¤ects.

There are two alternatives; either logical starting point of the stochastic process un-

derlying the model (2) and the observed sample data is the same or the sample data are

observed after the process is operated many periods.2 For the �rst case, initial values

yi0 may be known constants and therefore there is no reason to specify a probability

distribution for initial values. Thus, f0
�
yi0j fxitgTt=0 ; �i; �

�
can be taken out from the

likelihood function (Heckman, 1981; Honore, 2002; Hsiao, 2003). However, if observed

2 Considering the complex associations between variables in economics it is not easy to determine an
objective starting point for a process. For example, let us consider the relative earnings of immigrants
in a host country. We can start to observe them upon arrival and logically the starting point of the
earnings generating process can be assumed as started upon arrival. However, this assumption will
ignore earnings experiences and accumulated human-capital acquired in county of origin which can
also be considered as a part of the process.

4



sample data start after the process has been operated through many periods, the initial

values (the �rst period in the observed sample data, t = 1) cannot be constant since they

have possibly been created by the evolution of exogenous variables interacting with un-

observed individual-e¤ects. Thus, in this case a probability distribution of initial values

(fi1
�
yi1j fxitgTt=1 ; �i; �

�
) must be speci�ed.

In general, researchers can follow two alternative ways to solve the initial values prob-

lem in practice. The �rst is to naively forget the problem and assume that the initial

values have not been a¤ected by unobserved past, even if it may not be true. It means

that the initial values are exogenous variables, independent from unobserved individual-

e¤ects. Thus the conditional distribution of the initial values would be equal to their

marginal distributions fi1 (yi1) and it can be taken outside the maximization procedure

of the likelihood function. If the data have not been observed at the beginning of the

process, and if the disturbances that generate the process is serially correlated (which is

inevitable in the presence of unobserved individual-e¤ects), then this assumption is too

strong and causes serious consequences such as bias and inconsistency in the estimators

(Heckman, 1981; Hyslop, 1998; Honore, 2002).3

The second and more realistic approach is to assume endogenous initial values and

specify the conditional distribution. However, it is not a easy task to �nd a closed-form ex-

pression for this distribution.4 Heckman (1981) suggested a reduced-form approximation

for the conditional distribution of initial values, based on available pre-sample informa-

tion. Heckman�s approximation can provide �exible speci�cations for the relationship

between initial values, unobserved individual-e¤ects and exogenous variables. Consider

the following reduced-form equation for initial values:

yi1 = max(0; z
0
i1� + �i1) (6)

�i1 = ��i + ui1 (7)

where zi1 is a vector of available strictly exogenous instruments which will constitute the

pre-sample information. This vector can also contain the �rst observations of exogenous

variables in the observed sample; � and � are the nuisance parameters to be estimated; �i1

3 It is assumed that the actual disturbance process is serially uncorrelated (such as �rst order autocor-
relation AR(1)) and the dynamic feature of the model is obtained by including a lagged dependent
variable. However, it does not mean that the disturbances are serially uncorrelated. It is possible
only if the variance of the unobserved individual-e¤ects is zero, meaning that the model has no panel
data characteristics.

4 One possibility is to assume that the conditional distribution of initial values to be at the steady
state. However, it is still di¢ cult to �nd a closed-form expression for the distribution even for
the simplest case where there is no explanatory variable. This assumption is also very strong if
age-trended variables are driving the process (Heckman, 1981; Hyslop, 1998; Hsiao, 2003).
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is correlated with �i but it is uncorrelated with uit (t � 1):The random-e¤ects assumption
implies that �i is uncorrelated with ui1:Thus, the approximated conditional distribution

of initial values is speci�ed as follows:

fi1 (yi1jzi1; �i; �; �) =
�
1� � [(z0i1� + ����i)=�u] yi1 = 0

(1=�u)� [(yi1 � z0i1� � ����i)=�u] yi1 > 0

�
(8)

with V ar[�i1] = �2�2� + �2u and the correlation between �i1 and unobserved individual-

e¤ects (��i1�i) is

��i1�i = Corr(�i1; �i) =
���p

�2�2� + �2u
=

 p
 2 + 1

(9)

where  = ���=�u. The parameters of the structural system (2) and the approximate

reduced-form conditional probability (8) can be simultaneously estimated without impos-

ing any restriction (Heckman, 1981; Hsiao, 2003).

Another solution method is suggested by Wooldridge (2005) which is a simple alterna-

tive to Heckman�s reduced-form approximation. This method considers the distribution

of unobserved individual-e¤ects to be conditioned on initial values and exogenous vari-

ables. Specifying the distribution on these variables can lead to very tractable functional

forms, and consistent estimators in censored dynamic random-e¤ects models as well as in

similar probit, logit and Poisson models (Honore, 2002; Wooldridge, 2005).

This method suggests specifying f
�
�ij fxitgTt=1 ; yi1

�
instead of fi1 (:) using a similar

strategy to Chamberlain�s (1984) correlated-e¤ects model. It is based on the following

auxiliary distribution of unobserved individual-e¤ects.

�i = �0 + �1yi1 + �2xi + �i (10)

where �ijyi1; xi � N
�
�0 + �1yi1 + �2xi; �

2
�

�
and �i is a new unobserved individual-e¤ects

which is assumed as �i � iidN
�
0; �2�

�
; yi1 is the initial sample values; xi is the within-

means of time-variant exogenous variables de�ned as xi = 1
T

XT

t=1
xit. Thus, we obtain

a conditional likelihood which is based on the joint distribution of the observations con-

ditional on initial values. This likelihood function will be like those in standard static

random-e¤ect censored model and the parameters can be easily estimated using a com-

mercial random-e¤ects software.

The likelihood function (5) of the censored dynamic random-e¤ects model which is

adopted here, involves only a single integral, which can be e¤ectively implemented using

Gaussian-Hermite Quadrature (Butler and Mu¢ tt, 1982). This method is much less time

consuming and e¢ cient in comparison with the other alternative based on simulation
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with a proper simulator, such as frequency (natural) by direct Monte Carlo sampling

from normal distribution and GHK. (Gourieroux and Monfort, 1993; Hajivassiliou and

Ruud,1994). In this paper, we therefore prefer to use Gaussian-Hermite Quadrature in

all likelihood computations.

3 Monte Carlo experiments and the results

In order to compare the �nite sample performance of the solution methods several designs

of MCE are considered that di¤er on the length of the panel, number of individuals, the

relative sizes of the key parameters and on the data generating process for the explanatory

variables.5 We apply the following strategy: We �rst analyze the bias for the case in which

the initial values are known constants in order to check the possible bias when the initial

values problem is not exist. Second, we design cases in which the initial values problem

is severe and analyze naive exogenous initial values method as a worst scenario. Third,

we use the same data sets to analyze and to compare the performance of Heckman�s

reduced-form approximation and simple method of Wooldridge.

The data generating process based on the censored dynamic random-e¤ects model is

speci�ed as follows.

yi0 = max(0;
�xi0
1� 


+
�i
1� 


+
ui0p
1� 
2

) (11)

yit = max(0; �xit + 
yi;t�1 + �i + uit) (12)

where i = 1; :::; N and t = 1; :::; T ; �i � iidN [0; �2�]; and uit � iidN [0; �2u]. The design

adopted for the initial values yi0 aims �rst to include correlation between initial values and

unobserved individual-e¤ects, and second, to create mean stationarity in the stochastic

process. All the results presented here are based on L = 200 conditioning data sets. We

produced a new set of panel data for each experiment and the same data set is also used

for each solution methods. The number of individuals is set to N = 200. The behavior of

bias is also analyzed for large number of individuals by using N = 300, 500, 750 and 1000.

The durations of the panel data sets are set to T = 3; 5; 8; 15; 20. Number of quadrature

points (nodes and weights) used in the optimization procedure of the likelihood function

is set to 30.6

5 Our MCE is designed in Fortran software, and the optimization for the likelihood functions is
performed using ZXMIN , which is very fast and robust. The routines written for the experiments
can be provided by the author upon request.

6 We used di¤erent number of quadrature nodes and weights in order to check stability of estimated
parameters. It is observed that 30 quadrature points produce very stable results.
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3.1 MCE1 : Benchmark design. A normal explanatory variable

The benchmark design consists of one strictly exogenous explanatory variable which is

obtained by using independent and identically distributed standard normal random vari-

ates,

xit � N [0; 1] (13)

True values of the parameters � and �2u are set to 1; two values for the true state-

dependence 
 = �0:5 and 
 = 0:5 are used. The variance of unobserved individual-e¤ects
is �rst set to �2� = 1 and then increased to �2� = 3, in order to analyze the size of the

variance of unobserved-e¤ects on the estimated parameters. The design is produced, in

average, 45� 55% censored observations.

The results of MCE1 are summarized in Table 1a, 1b, 1c and 1d. Tables report

results only for the key parameters: b�, b
, b�2� and b�2u. In addition to the mean bias and
root mean square error (RMSE), the median bias and median absolute error (MAE)

are also reported since the estimators of the type considered here often do not have

�nite theoretical moments. The median bias and MAE are also less sensitive to outliers

compared to other two measures. A negative sign on both mean and median bias shows

an underestimation and a positive sign shows an overestimation.

Table 1a about here

We focus �rst on the case in which initial values are known (Table 1a) in a sense

that the sample data and the process start at the same time and also initial values are

nonstochastic (yi0 = 0). Thus, there is no initial values problem and the bias is very

small even with panels of short durations. The mean and median bias are very close to

each other meaning that the bias has a symmetric distribution. The variation around the

true values is reduced as T increases. A larger true value for the variance of unobserved

individual-e¤ects (�� =
p
3) causes a slight increase in the bias and variation. Last row

of Table 1a results by number of individuals (N) for a constant number of time periods

(T = 5). The bias seems not to be a¤ected by the number of individuals in the panel set.

Table 1b about here

As a second step, the process is operated 25 periods before the sample data are col-

lected in order to create a initial values problem.7 Table 1b presents the results for the

7 We operate the system through 25 periods before the sample data is observed. For example, when
T = 3, the sample data contain the (yi26; yi27; yi28) and we use it as (yi1; yi2; yi3). Where yi1 are the
initial sample values.
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naive method based on exogenous initial values assumption. In this case, this assumption

is wrong and, as expected, it causes large bias in 
 and ��. 
 is highly overestimated while

�� is highly underestimated. The bias is 40� 50% when T = 3 for these two parameters.

The bias is also remarkable reduced by the duration of panel (especially for T > 10). A

large value of �� increased the bias substantially (70% for 
 and more than 100% for ��).

The other two parameters (� and �2u) are found not be largely biased in almost every

case.

Table 1c and Table 1d present results for Heckman�s reduced-form approximation and

simple method of Wooldridge, respectively. Heckman�s approximation method performs

very well for all durations of the panels. 
 and �� are almost 3� 5% biased when T = 3,

and a large value of �� causes the bias to be larger (5 � 10%). The simple method of
Wooldridge also performs well but not as well as Heckman�s approximation. The simple

method of Wooldridge also tends to overestimate 
 and underestimate �� for small samples

as naive method. The bias produced by this method is about 15� 25% for T = 3. For a

duration which is greater than T = 5, the size of the bias produced by the simple method

of Wooldridge method tends to be equal to the Heckman�s approximation. Additionally,

all methods perform equally well for the panels which are longer than T = 10� 15:

Table 1c about here

Table 1d about here

3.2 MCE2 : A non-normal explanatory variable

As pointed out by Honore and Kyriazidou (2000), normally distributed explanatory vari-

ables can make the bias appear smaller than it is for other distributions of the explana-

tory variables, which can largely a¤ect the results in Monte Carlo studies. We, therefore,

modify MCE1 by changing the distribution of the explanatory variable to one degrees of

freedom chi-square distributed random variable �2(1); which has a skewed distribution.

We standardize this random variable to transform it to the same mean and variance with

the exogenous variable given above.8

xit �
�2(1) � 1p

2
(14)

8 Note that Z =
�
�2(k) � k

�
=
p
2k, where k is the degrees of freedom. Z is the standardized �2 random

variable.
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The data-generating process for dependent variable (11-12) is the same as for the

benchmark case and the only di¤erence is explanatory variable used in the estimation.

True values of the parameters are set to: � = 1, 
 = 0:5, �i � iidN [0; �2� = 1] and

ui � iidN [0; �2u = 1]. The process is operated through 25 periods before the samples are

observed with durations of T = 3; 5; 8; 15; 20, and the average number of observations

that are censored is almost the same as the benchmark design.

Table 2 about here

The results of MCE2 are summarized in Table 2. A comparison between the results

in Table 1a-1d and the corresponding results in Table 2 suggests that the results in

benchmark design MCE1 are very robust. The methods do not produce signi�cantly

larger bias with non-normal explanatory variables. The bias has symmetric distribution

with a decreasing variance. The performance order between the methods is clear: The

smallest bias is obtained by Heckman�s reduce-form approximation and it is followed by

the simple method of Wooldridge for short panels. The initial values problem tended to

be not important source of bias when the duration of the panel is increased.

3.3 MCE3 : An autocorrelated explanatory variable

MCE3 is based on a relatively complicated data generating process for explanatory vari-

able which contains higher degree of intra-group variations. In this design, there is only

one strictly exogenous variable xit based on following �rst order autoregressive process

xit = �xit�1 +  it (15)

where  it is a standard normal random variable  it � N [0; 1], � = 0:5 and  i1 = xi1.

True values of the parameters are set to: � = 1:0, 
 = 0:5, �i � iidN [0; �2� = 1] and

ui � iidN [0; �2u = 1]. The data generating process for dependent variable is kept the

same as in (11-12) and the process is operated through 25 periods before the samples are

observed with the durations T = 3; 5; 8; 15; 20. The number of the censored observations

is almost the same as those produced in �rst two MCE.

Table 3 about here

The results of the MCE3 are reported in Table 3. Introducing more intra-group

variation to explanatory variable does not change the results found above. The magnitude

of the bias and the performance order among the solution methods are the same as those

obtained in other two MCE.
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Figure 1 shows the Q-Q plots based on the quantiles of normal distribution, by solu-

tion methods. We present only for the true state-dependence and variance of unobserved

individual-e¤ects. These �gures show whether the asymptotic distribution of the estima-

tors used here can be approximated by normal distribution for our MCE samples. We

plot the empirical quantiles of the estimated Monte Carlo parameters in MCE3 against

those of normal distribution, where T = 10 and number of MCE replication is L = 200.

Figure 1 about here

The Q-Q plots support the normality approximation. The empirical quantiles of es-

timated Monte Carlo parameters in MCE3 lie mostly in straight lines for all solution

methods.

4 Discussion and conclusions

The performance of some widely used solution methods of initial values problem in cen-

sored dynamic random-e¤ects models is analyzed using several designs of Monte Carlo

experiments. We �rst presented results for the case in which the initial values are known

constants implying that there is no initial values problem. Second, we designed cases in

which the initial values problem is severe, and the naive method based on exogenous ini-

tial values is analyzed to simulate the e¤ect of a mistreatment for the problem. Third, the

performance of the Heckman�s (1981) reduced-form approximation and simple method of

Wooldridge (2005) are analyzed and compared using the same conditioning data.

The initial values problem can lead to misleading results on the magnitude of true

and spurious state-dependence. The naive exogenous initial values method can produce

substantial bias especially for the panels of short duration. It causes true state-dependence

to be highly overestimated while the variance of unobserved individual-e¤ects is highly

underestimated. Considering the durations of the micro-panel data sets encountered in the

practice, which generally have thousands of individuals and small number of periods, the

conditional distribution of initial values must be speci�ed. Among the solution methods

based on specifying the conditional distribution, Heckman�s reduced-form approximation

is the best choice for the small samples, but for moderate samples there is no clear

performance order between Heckman�s and Wooldridge�s methods with respect to bias

that they produce. The message is that the simple method of Wooldridge can be used

instead of Heckman�s approximation for the panels of moderate duration (such as, time

periods T = 5 � 10 time periods). Another intuitive message is that all methods which
are compared here tend to perform equally well for panels of long duration (such as, time

11



periods T > 10� 15)
From an empirical point of view, Heckman�s approximation constitutes a computa-

tionally challenging task especially with an unbalanced panel data set. As explained in

Honore (2002), ad hoc treatments of the initial values problem are in particular unap-

pealing with unbalanced panel data sets, which are the ones generally used in empirical

applications. As seen in the Monte Carlo studies above, the simple method of Wooldridge

is attractive especially with panels of moderate durations and also it can be easily applied

using a standard random-e¤ect software with either balanced or unbalanced panel data

sets.
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Figure 1. Q-Q plots based on the quantiles of normal distribution by solution methods
for true state-dependence and the variance of unobserved individual-e¤ects. L = 200

estimated Monte Carlo parameters based on T = 10 and the design; xit = �xit�1 +  it,

 it � N [0; 1], � = 0:5 and xi0 =  i1; yi0 = max(0; �xi0=(1�
)+�i=(1�
)+ui0=
p
1� 
2);

yit = max(0; �xit+
yi;t�1+�i+uit); (�; 
; ��; �u) = (1; 0:5; 1; 1); and number of individuals

is N = 200:
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Figure 1. Continued
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