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THE ROLE OF REACTIVE ASTROCYTES  
IN BRAIN ISCHEMIA AND NEUROTRAUMA 

 

Lizhen Li 

Institute of Neuroscience and Physiology, Sahlgrenska Academy, Göteborg University, Göteborg, 

Sweden 

ABSTRACT 
Astrocytes are the most abundant cell type in the central nervous system (CNS) and 

increasing evidence now suggests that they play an active role in various brain functions. 

Astrocytes are involved in the induction and maintenance of the blood brain barrier, as well 

as the induction and stabilization of neuronal synapses. Moreover, astrocytes control the 

extracellular ionic homeostasis, recycle neurotransmitters and are interconnected through 

gap junctions into a network. Astrocytes become reactive, a process known as reactive 

gliosis, in CNS pathologies, such as ischemia, neurotrauma or neurodegeneration. Major 

features of reactive gliosis include hypertrophy of astrocyte processes, upregulation of glial 

fibrillary acidic protein (GFAP) and vimentin and re-expression of nestin. GFAP, vimentin 

and nestin are constituents of intermediate filaments (IFs), which are part of the 

cytoskeleton. It remains largely unclear whether reactive astrocytes are beneficial or 

detrimental in CNS pathologies. In this thesis, the role of reactive astrocytes was studied in 

brain ischemia and neurotrauma by using a mouse model in which the GFAP and vimentin 

genes were ablated. These GFAP
–/–

Vim
–/– mice are devoid of astrocyte IFs and show 

attenuated reactive gliosis following CNS injury. We found that, after neurotrauma, 

reactive astrocytes produce synemin, another IF protein, and that synemin needs vimentin 

to form IFs. We propose that synemin expression is part of the response of astrocytes to 

neurotrauma and thus, synemin might be a useful marker of reactive astrocytes. When 

subjected to brain ischemia, GFAP
–/–

Vim
–/– mice have larger infarct volume than wildtype 

controls, which suggests that reactive astrocytes are protective in brain ischemia and limit 

the extent of the infarct. The absence of IFs affects vesicle trafficking in astrocytes.  

GFAP
–/–

Vim
–/– astrocytes have a decreased number of vesicles displaying directional 

mobility and fewer vesicles that travel for a long distance compared to wildtype astrocytes. 

This suggests that IFs may act as a structure supporting highly mobile vesicles in 

astrocytes. At an early stage after neurotrauma, GFAP
–/–

Vim
–/– mice show a greater loss of 

synapses compared to wildtype. At a later stage, however, GFAP
–/–

Vim
–/– mice show highly 

improved synaptic regeneration compared to wildtype controls. Thus, reactive astrocytes 

seem to be protective at an early stage after neurotrauma but inhibit regeneration later on. 
 

Keywords: astrocytes, intermediate filaments, GFAP, vimentin, reactive gliosis, brain 

ischemia, neurotrauma 
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POPULÄRVETENSKAPLIG SAMMANFATTNING 
 

Astrocyter, den mest förekommande celltypen i nervsystemet, får allt mer 

uppmärksamhet inom forskningen. Astrocyter kan tillskrivas en rad olika funktioner 

såsom kontroll av blodflödet, induktion och stabilisering av synapser 

(nervcellskontakter) och upptag av kemiska ämnen som har frisatts i synapser för att 

förhindra överaktivering av nervceller. Tillsammans med kapillärerna i hjärnan 

bildar astrocyter blod-hjärnbarriären, vilken hindrar många blodburna substanser 

från att ta sig in i hjärnvävnaden. Det har även föreslagits att astrocyter kan inducera 

nybildning av nervceller från stamceller och att astrocyter själva kan vara stamceller. 

Vid skador på hjärnvävnad aktiveras astrocyter. De blir reaktiva; får tjockare utskott 

(förgreningar) och ett ökat uttryck av GFAP och vimentin, två proteiner som bygger 

upp intermediärfilament som i sin tur bildar nätverk och utgör en del av cellskelettet. 

Huruvida reaktiva astrocyter är av godo eller ondo vid olika sjukdomstillstånd är till 

mestadels oklart.  

I denna avhandling har vi undersökt betydelsen av reaktiva astrocyter i två 

skademodeller: hjärninfarkt, där blodtillförseln till delar av hjärnan stoppas, och 

hjärntrauma där vissa nervbanor i hjärnan klipps av. Vi har studerat detta i möss vars 

astrocyter saknade GFAP och vimentin och därmed också intermediärfilament. 

Dessa möss uppvisar dessutom mindre grad av astrocytaktivering vid skada.  

Vi fann att astrocyter uttrycker intermediärfilament-proteinet synemin efter 

hjärntrauma, och att synemin påverkar sammansättningen av intermediärfilament-

nätverket. Vi föreslår därför att synemin kan vara en ny markör för reaktiva 

astrocyter. Vid hjärninfarkt hade mössen som saknade GFAP och vimentin större 

infarktvolym än kontrollmössen, vilket tyder på att reaktiva astrocyter skyddar 

hjärnvävnaden och begränsar infarkten. Astrocyter lagrar och frisätter kemiska 

ämnen som påverkar hjärnfunktionen. En del av dessa ämnen frisätts genom 

diffusion genom cellmembranet medan andra transporteras och frisätts av vesiklar 

(blåsor i celler) Vi fann att avsaknaden av GFAP och vimentin påverkade 

transporten av vesiklar inuti astrocyter. Detta kan påverka astrocyternas sätt att 

kommunicera med andra celltyper och kan leda till ändrad hjärnfunktion. Vid ett 
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tidigt stadium efter hjärntrauma hade mössen som saknade GFAP och vimentin färre 

synapser än kontrollmössen. Efter en längre tids återhämtning visade mössen som 

saknade GFAP och vimentin en högre grad av återbildning av synapser. Detta tyder 

på att reaktiva astrocyter är skyddande i ett tidigt skede efter hjärntrauma men 

hämmar återbildningen av synapser vid ett senare stadium.  

Reaktiva astrocyter kan alltså vara både av godo och av ondo för återhämtning efter 

skada. Mer forskning behövs för att klargöra när astrocytaktivering bör förstärkas 

respektive dämpas. 
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INTRODUCTION 
 

Astrocytes 
 Astrocytes are the most abundant cell type in the central nervous system 

(CNS), in the human brain outnumbering the neurons by several fold (Bignami, 

1991). Astrocytes are receiving more and more attention in research. Increasing 

amount of evidence now suggests that astrocytes play an active role in the brain. 

Astrocytes communicate with other cell types in the CNS, such as endothelial cells, 

neurons, oligodendrocytes, microglia and ependymal cells. Astrocytes are involved 

in a wide range of activities both in the developing and adult CNS. They induce and 

maintain blood-brain barrier properties in endothelial cells, which is important for 

keeping the homeostasis of the CNS (Janzer and Raff, 1987; Ballabh et al., 2004). 

Astrocytes control the extracellular homeostasis of K+ and other ions. Astrocytes 

induce and stabilize neuronal synapses (Ullian et al., 2001; Christopherson et al., 

2005) and control blood flow (Zonta et al., 2003; Takano et al., 2006) as well as 

recycle of neurotransmitters, such as glutamate, GABA or glycine. Astrocytes are 

interconnected through gap junctions into a syncytium that communicates via the 

spreading of Ca2+ waves (Verkhratsky and Kettenmann, 1996). Moreover, it has 

been speculated that astrocytes induce neurogenesis from neural stem cells (Song et 

al., 2002) and act as neural stem cells themselves (Laywell et al., 2000; Seri et al., 

2001). 

 

Intermediate filaments 
 The cytoskeleton is a web of fibers that is important for cell shape and 

movement and a host of other functions. The individual fiber systems of the 

cytoskeleton are microtubules, intermediate filaments (IFs) and actin filaments. The 

function of IFs is still largely unknown. More than 50 IF proteins have been 

identified and are divided into six classes based on the sequence homology.  
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Table 1. The major IF proteins and examples of where they are expressed. 

IF protein class IF protein Cell type/tissue 

I 

II 

III 

 

 

 

IV 

V 

VI 

acidic keratins 

basic keratins 

GFAP 

vimentin 

desmin 

peripherin 

neurofilament (NF)-L, -M, -H 

lamin A, B and C 

nestin 

synemin 

epithelial cells 

epithelial cells 

astrocytes 

astrocytes, mesenchyme 

muscle cells 

neurons 

neurons 

nuclear envelope 

astrocytes, neural stem cells 

astrocytes, muscle 

 

  

IFs are composed of different IF proteins depending on the cell type as well 

as developmental and activation state of the cell (Fuchs and Cleveland, 1998). 

Monomers of IF proteins contain a well conserved α-helical rod domain flanked by 

globular N- and C-terminal domains. Formation of IFs starts by pairing of two 

monomers into a dimer. Two dimers form a tetramer that associates with other 

tetramers into ropelike IFs. The assembly and disassembly of IFs through 

phosphorylation and dephosphorylation affects the equilibrium between the pool of 

unpolymerized IF proteins and the assembled IF network. One well-described 

function of IFs is the mechanical stability and resilience they provide to muscles and 

skin. It was first shown in mice that the expression of mutant keratin caused 

abnormalities resembling the human skin disease epidermolysis bullosa (Vassar et 

al., 1991). Point mutations in keratin and desmin genes were then identified in 

patients with epidermolysis bullosa and myopathies, respectively (Coulombe et al., 

1991; Lane et al., 1992; Goldfarb et al., 1998).  
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Astrocyte intermediate filaments 
 The composition of astrocyte IFs depends on developmental stage and degree 

of activation of astrocytes. Immature astrocytes have IFs composed of vimentin, 

nestin and synemin (Bignami et al., 1982; Pixley and de Vellis, 1984; Dahlstrand et 

al., 1995; Sultana et al., 2000). During maturation, the expression of nestin is 

replaced by glial fibrillary acidic protein (GFAP) and in mature non-reactive 

astrocytes, IFs are formed by GFAP and vimentin. Upon astrocyte activation (see 

below), astrocytes upregulate GFAP and vimentin and re-express nestin. 

 The traditional view of astrocytes as star-shaped cells was largely based on 

immunostaining with antibodies against GFAP. This reveals bundles of IFs in the 

cell body and the major processes but does not visualize the fine cellular processes 

(Bushong et al., 2002; Ogata and Kosaka, 2002). Bushong et al. (2002) showed that 

instead of being star-shaped, astrocytes have a “bushy” appearance as sometimes 

proposed many decades ago based on the visualization of astrocytes by 

impregnation techniques. Visualization of astrocytes with antibodies against GFAP 

reveals only approximately 15% of the total volume that astrocytes access. 

 

Reactive gliosis 
 Astrocytes become activated (this process is known as reactive gliosis) in 

CNS pathologies, such as neurotrauma, ischemia, tumors or neurodegeneration. This 

process is triggered by cell death, the inflammatory response and plasma proteins. 

Reactive astrocytes undergo morphological changes and the expression of various 

molecules is altered. (Eddleston and Mucke, 1993; Ridet et al., 1997; Eng et al., 

2000). Two well known features of reactive gliosis are hypertrophy of astrocyte 

processes and upregulation of GFAP and vimentin and re-expression of nestin (Eng 

and Ghirnikar, 1994; Eng et al., 2000), three proteins that form astrocyte IFs. A 

number of molecules have been implicated to induce reactive gliosis, for example 

transforming growth factor-β (TGF-β), interleukin 1 (IL-1), interferon-γ (IFN-γ), 

basic fibroblast growth factor 2 (FGF2) and endothelin-1 (Giulian et al., 1988; Yong 

et al., 1991; DiProspero et al., 1997; Lagord et al., 2002; Rogers et al., 2003). 

Reactive astrocytes migrate towards the injury and participate in the formation of a 
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glial scar, which consists predominately of reactive astrocytes and proteoglycans. 

The glial scar might provide beneficial functions for stabilizing fragile CNS tissue 

after injury, such as secluding the injury site from healthy tissue, however, axons 

cannot regenerate beyond the glial scar (Silver and Miller, 2004). 

 

Transgenic mouse models to study reactive gliosis 
 Several mouse models in which astrocytes can be eliminated have been 

generated to study the role of astrocytes in CNS pathologies. In transgenic mice 

expressing the herpes simplex virus thymidine kinase under the control of the GFAP 

promoter, treatment with ganciclovir led to the ablation of dividing astrocytes and 

severe developmental abnormalities (Delaney et al., 1996). Using the same approach 

to eliminate reactive astrocytes adjacent to a brain stab injury, another study showed 

vastly increased infiltration of leukocytes, impaired blood brain barrier repair and 

increased neuronal degeneration (Bush et al., 1999).  

Another approach to study the function of astrocytes in health and diseases is 

the ablation of the GFAP and vimentin genes in mice (Colucci-Guyon et a., 1994; 

Pekny et a., 1995; Eliasson et al., 1999). Mice lacking GFAP and/or vimentin 

develop and reproduce normally. Non-reactive astrocytes in mice deficient for 

GFAP (GFAP
–/–) are devoid of IFs since vimentin cannot self-polymerize into IFs. 

Reactive astrocytes in GFAP
–/– mice have decreased amount of IFs, which are 

composed of vimentin and nestin. Astrocytes in mice lacking vimentin (Vim
–/–) also 

have decreased amount of IFs, which are formed only by GFAP since GFAP and 

nestin cannot co-polymerize. Astrocytes of mice lacking both GFAP and vimentin 

(GFAP
–/–

Vim
–/–) are completely devoid of IFs (Eliasson et al., 1999; Table 2). 

GFAP
–/–

 and Vim
–/– mice show normal wound healing in the CNS, while  

GFAP
–/–

Vim
–/– mice show attenuated reactive gliosis following CNS injury (Pekny 

et al., 1999). These findings suggest that IF upregulation is an important step in 

reactive gliosis and that reactive astrocytes are needed for proper wound healing in 

the brain and in the spinal cord. 
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Table 2. IFs in reactive and non-reactive astrocytes in mice of different genotypes 

(from Eliasson et al., 1999). 

Mice Composition of IFs 

Non-reactive astrocytes      Reactive astrocytes 

IF amount and appearance 

in reactive astrocytes 

wildtype GFAP, vimentin GFAP, vimentin, 

nestin 

Normal amount and 

appearance 

GFAP
–/–

 No IFs vimentin, nestin Decreased amount, normal 

appearance 

Vim
–/–

 GFAP GFAP Decreased amount, tighter 

bundling 

GFAP
–/–

Vim
–/–

 no IFs no IFs - 

 

 

Stroke 
 Stroke can be divided into two major categories: hemorrhagic and ischemic.  

Ischemic stroke, which account for approximately 80% of all stroke cases, is caused 

by occlusion of a blood vessel resulting in total or partial blockage of blood supply 

to a part of the brain. Ischemic stroke can arise from thrombosis, embolism or 

systemic hypoperfusion. Thrombosis is the formation of a blood clot or thrombus. 

This will gradually narrow the lumen of the blood vessel and impede the blood flow. 

Embolism occurs when an embolus (a particle such as a blood clot, fat or a plaque 

broken off from an atherosclerotic blood vessel) migrates from one part of the body 

and causes blockage of blood flow in another part of the body. Systemic 

hypoperfusion is the reduction of blood flow to all parts of the body, caused by e.g. 

cardiac arrest or myocardial infarction. 

 

Cerebral ischemia and astrocytes 
 Cerebral ischemia is an ischemic condition where the brain or parts of the 

brain do not receive enough blood flow to maintain a normal delivery of oxygen and 

nutrients, leading to cell dysfunction and death. The neurological outcome is 

determined by the extent of neural cell death, which depends on the severity and 

duration of the ischemia and the brain areas affected (Lipton, 1999). The affected 
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brain area will develop an infarct core, which is generally considered to be beyond 

rescue, and a surrounding ischemic penumbra, defined as the ischemia border zone 

that remains metabolically active but electrically mostly silent (Astrup et al., 1981). 

The ischemic penumbra has some residual blood supply via collaterals, making it a 

potentially rescuable area upon reperfusion (Astrup et al., 1981).  

 Astrocyte changes are among the earliest and most dramatic responses to 

ischemic injury (Petito and Babiak, 1982). Astrocytes in the infarct core are dead, 

while astrocytes in the ischemic penumbra are viable and undergo reactive gliosis in 

the periphery of the penumbra. The lack of blood flow causes malfunction of ion 

pumps on astrocytes and subsequent disturbed ion homeostasis with increased Ca2+ 

levels intracellularly and extracellularly elevated K+ levels. As discussed by 

Nedergaard and Dirnagl (2005), astrocyte malfunction may act as a determining 

factor of neuronal death in ischemia and cause a stepwise expansion of the infarct 

volume. For example, reduced glutamate uptake by astrocytes leads to increased 

extracellular glutamate level and triggers excitotoxic neuronal death (Anderson and 

Swanson, 2000). Reduced ability of astrocytes to take up K+, which accumulates 

during neuronal depolarization, may initiate waves of peri-infarct depolarizations, or 

spreading depression, that further increase the infarct (Nedergaard and Hansen, 

1993). The disturbed ion homeostasis also leads to passive influx of water into cells, 

causing astrocyte swelling and cytotoxic edema. Moreover, disruption of the blood 

brain barrier causes vasogenic edema, which further decreases the blood flow and 

may increase the intracranial pressure and the infarct. Glycogen is the main energy 

reserve in the brain and is stored predominantly in astrocytes (Ignacio et al., 1990; 

Dringen et al., 1993). During energy crisis, glycogen is metabolized to lactate, 

which is released from astrocytes and taken up by neurons as an energy substrate 

(Hamprecht et al., 1993; Hamprecht and Dringen, 1995). Thus, astrocytes are 

important as energy source supplier for neurons in situations of energy failure such 

as ischemia. 

 The most common cause of ischemic stroke in human is occlusion of the 

middle cerebral artery (MCA) (Chambers et al., 1987; Saito et al., 1987; Virley, 
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2005). The MCA is one of the three branches of the internal carotid artery and 

supplies the cerebral cortex, basal ganglia and internal capsule.  

 Despite intense efforts, both experimentally and clinically, few therapeutic 

strategies exist to fight the consequences of cerebral ischemia. Today, only a small 

fraction of stroke patients are offered specific treatment, which includes 

thrombolysis with recombinant tissue plasminogen activator (tPA). A number of 

clinical trials based on neuroprotective strategies, including administration of 

glutamate receptor antagonists and blockers of voltage-gated Ca2+- and Na+-

channels have so far been unsuccessful. Exploration of non-neuronal mechanisms in 

ischemic injuries seems highly appropriate and glial cells constitute a promising 

target for new treatments (Nedergaard and Dirnagl, 2005; Rothstein et al., 2005). 

 

Exocytosis and vesicle transport in astrocytes 
 Exocytosis is the release of molecules, stored in vesicles, through the cell 

membrane. For example, in neuronal synapses, exocytosis is Ca2+ triggered and 

serves interneuronal signaling. Constitutive exocytosis serves the release of 

extracellular matrix components or plasma membrane proteins that are to be 

incorporated into the plasma membrane. 

 Astrocytes release many neuroactive substances such as neurotransmitters, 

neurotrophins, eicosanoids and neuropeptides by which they signal and respond to 

the environment (Volterra and Bezzi, 2002). Astrocytes can initiate intercellular 

communication by elevation of intracellular Ca2+ concentration, caused by intrinsic 

Ca2+ oscillations or by stimulation of receptors, for example by neurotransmitters 

released during synaptic activity (Pasti et al., 1997; Kang et al., 1998; Zhang et al., 

2003). One consequence of such increase in intracellular Ca2+ is the release of 

glutamate (Parpura et al., 1994; Bezzi et al., 1998) by which astrocytes modulate 

neuronal excitability and synaptic functions (Newman, 2003). It has been shown that 

astrocytes express several SNARE proteins, key elements in exocytosis (Parpura et 

al., 1995; Zhang et al., 2004). Moreover, astrocytes have been shown to contain a 

vesicular compartment that is involved in the uptake and regulated exocytosis of 

glutamate (Bezzi et al., 2004).  
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 The mechanisms of vesicle transport through the cytoplasm to exocytotic 

sites on the plasma membrane remain largely undefined. In neurons and excitable 

secretory cells, this transport involves an interaction with the cytoskeleton, in 

particular microtubules and actin filaments. It is not known whether vesicle mobility 

in astrocytes also involves cytoskeleton components. Vesicle mobility can be 

studied by using fluorescently tagged atrial natriuretic peptide, proANP-Emd (Han 

et al., 1999), to label single exocytotic vesicles containing native ANP (Krzan et al., 

2003; Kreft et al., 2004; Potokar et al., 2005). ANP is a member of the natriuretic 

peptide family and plays an important role in the regulation of blood pressure 

homeostasis and salt and water balance. Besides its location in myocytes, ANP has 

also been identified in neurons (McKenzie et al., 1990) and astrocytes (McKenzie, 

1992). In myocytes, ANP is stored in vesicles and released by exocytosis (Klein et 

al., 1993) triggered by muscarinic and vasopressin receptor activation (Sonnenberg 

and Veress, 1984). In the brain, ANP regulates the Na+ balance and blood pressure 

(Buckley et al., 1994) and is upregulated in astrocytes in brain infarction (Nogami et 

al., 2001). In astrocytes, ANP is released by Ca2+-dependent exocytosis (Krzan et 

al., 2003). 

 By labeling exocytotic vesicles with proANP-Emd (Han et al., 1999), it was 

shown that exocytotic vesicles in astrocytes display two types of mobility: 

nondirectional mobility, which probably involves free diffusion, and directional 

mobility, which may involve the cytoskeleton, as in secretory cells (Tvarusko et al., 

1999; Potokar et al., 2005). 
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MATERIALS AND METHODS 
 

The following materials and methods were used in the papers included in this thesis. 

Some of the methods are described more in detail below. 

 

Induction of focal brain ischemia, measurement of infarct volume, comparison of 

cerebrovascular architecture and monitoring of blood pressure and heart rate 

Entorhinal cortex lesion 

Electrically induced brain injury 

Electron microscopy 

Astrocyte-enriched primary cultures from wildtype and GFAP
–/–

Vim
–/– mice 

RNA preparation from cultures, brains and lesioned brain parts 

DNA array analysis 

Reverse transcription and quantitative real-time PCR 

Depolarization of actin filaments, microtubules and IFs, transfection of astrocytes 

with proANP-EMD, vesicle tracking 

Transfection of SW13-c12 cells with GFAP, vimentin and/or synemin, binding and 

cosedimentation assays 

Dye filling of astrocytes in brain slices 

Immunohistochemical analysis of the distribution of synemin, endothelin B receptor 

and S100 

Immunocytochemical analysis of the distribution of endothelin B receptor, vinculin, 

vimentin, and GFAP 

Preparation of total, cytoskeletal and cytosolic protein samples, SDS-PAGE, 

Western blot analysis and densitometry 

Scrape loading/dye transfer 

Glutamate uptake assay 

ELISA  
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Mice 
 The GFAP and vimentin genes in mice were disrupted via targeted mutation 

in embryonic stem cells (Colucci-Guyon et al., 1994; Pekny et al., 1995). Mice 

deficient for GFAP and vimentin (GFAP
–/–

Vim
–/–) were obtained by cross-breeding 

of mice lacking GFAP and mice lacking vimentin (Eliasson et al., 1999; Pekny et 

al., 1999b). 

 

Primary astrocyte-enriched cultures 
 Primary astrocyte-enriched cultures were prepared from 1-2 days old mice 

(Pekny et al., 1998). Whole mouse brains were dissected out, freed of meninges 

under a dissection microscope and mechanically disintegrated when forced through 

an 80 µm nylon mesh into medium consisted of DMEM (D5671; Sigma-Aldrich, St 

Louis, MO, USA) containing 10% fetal calf serum (Invitrogen, Paisly, UK), 2 mM 

L-glutamine and penicillin-streptomycin (Invitrogen). The cultures were maintained 

at 37oC and 5% CO2 with the first medium change on day four after plating and 

thereafter every three days.  

 

Induction of focal brain ischemia and measurement of infarct volume 
 Proximal MCA transection. Focal cerebral ischemia was induced by proximal 

MCA transection as described (Chiamulera et al., 1993; Fotheringham et al., 2000) 

with slight modifications. Mice were anesthetized with isofluorane in oxygen, and 

body temperature was maintained at 37°C with a heating pad. Under the operating 

microscope, the left MCA was exposed, occluded at two points by bipolar 

coagulation, and transected to ensure permanent disruption. The proximal end of the 

MCA was coagulated approximately 2.5 mm from the MCA/anterior cerebral artery 

branch (as determined after brain dissection). After surgery, mice were housed in 

single cages, which were placed on a heating pad for 1 hr before being returned to 

their normal environment. For measurement of infarct volume, 0.5 mm thick fresh 

frontal brain slices were incubated for 30 min in 0.125% triphenyltetrazolium 

chloride solution (T4375, Sigma) in buffer containing 1.35% dimethylsulfoxide, 2 
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mM MgCl2, 0.1 M Na2HPO4, and 0.1 M NaH2PO4 (pH 7.4) at 37oC, and fixed in 4% 

buffered formaldehyde (pH 7.4) (Fotheringham et al., 2000). In each brain slice, the 

infarcted area in white matter was measured with a Nikon SMZ-U stereomicroscope 

and image-analysis software (Easy Image, Bergström Instrument, Göteborg, 

Sweden). The infarct volume was calculated by integrating infarct areas on all 

adjacent brain slices with detectable infarction.  

 Distal MCA transection. Distal MCA transection was performed as described 

(Welsh et al., 1987; Nagai et al., 1999) in two independent series of experiments. 

One set of experiments was performed in wildtype and GFAP
–/–

Vim
–/– mice. The 

second set of experiments was performed in wildtype, GFAP
–/–, Vim

–/–
, and  

GFAP
–/–

Vim
–/– mice. Briefly, mice were anesthetized by intraperitoneal injection of 

ketamine (75 mg/ml, Apharmo, Arnhem, Netherlands) and xylazine (5 mg/ml, 

Bayer, Leverkusen, Germany), and body temperature was maintained at 37°C with a 

heating pad. Under the operating microscope, the MCA was ligated at point with 10-

0 Ethylon nylon thread (Neuilly, France) and transected distally to the ligation point. 

After surgery, the mice were returned to their cages, which were placed on a heating 

pad (37°C) for 1 hr. 7 days after MCA transaction, deeply anesthetized mice were 

perfused through the left ventricle with 4% phosphate-buffered formaldehyde (pH 

7.4). The brains were postfixed overnight and embedded in paraffin. 8 µm thick 

frontal sections were stained with hematoxylin and erythrosine. Infarcted areas were 

assessed by delineating the ischemic region, which could be clearly discriminated by 

its lighter appearance and high proportion of cells with pycnotic nuclei. The 

infarcted area was measured on all sections (320 µm apart) on which it was 

detectable (4-10 sections per mouse) as described above, and the total infarct 

volume was calculated. 

 

Entorhinal cortex lesion 
 Unilateral entorhinal cortex lesion was performed on anesthetized mice by 

insertion of a retractable wire knife (Scoutenwire knife; Kopf, Tujunga, CA, USA) 

(Stone et al., 1998) into the entorhinal cortex (0.2 mm anterior, 3.6 mm lateral of 
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lambda, and 1 mm ventral from dura). The extended knife was lowered 2 mm 

ventrally twice at angles 30° and -135° to avoid the hippocampus. The wound was 

closed and the mice were kept in heated cages until they recovered from anesthesia. 

 The unilateral entorhinal cortex lesion (Matthews et al., 1976; Caceres and 

Steward, 1983; Steward and Vinsant, 1983) interrupts the axonal connections (the 

perforant path) between the entorhinal cortex and the projection area in the outer 

molecular layer of the dentate gyrus of the hippocampus, where degenerating 

neurons trigger reactive gliosis. The distance between these two regions allows 

assessment of both the response of astrocytes and regeneration in the hippocampus, 

which is not directly affected by the lesion. 

 

Electrically induced brain injury 
 Electrically induced brain injury of the cerebral cortex was performed as 

described before (Enge et al., 2003). Deeply anesthetized mice were placed in a 

stereotactic frame (Kopf), a hole was drilled through the skull and a fine-needle 

electrode was inserted through the skull 2.25 mm laterally of bregma and lowered 

1.0 mm (measured from the meningeal level) into the cortex of the right hemisphere. 

A second electrode was attached to the root of the tail. Using Lesion maker (Ugo 

Basile, Comerio, Italy), a direct current of 5 mA was applied for 10 s. The mice 

were kept in heated cages until they recovered from anesthesia.  

 

RNA preparation from astrocyte cultures, brains and cortical lesions 
 When confluent, the astrocyte cultures were harvested by scraping in RNase-

free PBS and centrifuged at 500 x g for 5 min at 4°C. The supernatant was discarded 

and the cell pellet stored at -70°C. TRIZOL Reagent (Invitrogen) was added to each 

sample - frozen cell pellets, whole brains or lesioned frontotemporal cortex. The cell 

pellets were homogenized by vortexing, the tissues were homogenized by Polytron 

PT 2100 (Kinematica AG, Switzerland) at 4°C and extracted four times by 

phenol/chloroform. Glycogen (co-precipitant) and isopropanol were added to 

precipitate the RNA. The pellet was washed with 80% ethanol, dried, resuspended in 
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RNase-free water and stored at -70°C. The purity of the RNA was assessed by gel 

electrophoresis on 1% agarose gel containing MOPS buffer (CPG Inc. NJ, USA) 

and 1 M formaldehyde. 

 

DNA array analysis 
 Confluent primary astrocyte cultures were harvested by scraping in RNase-

free PBS and centrifuged at 500 x g for 5 min at 4°C. The supernatant was discarded 

and the cell pellet stored at -70°C. TRIZOL Reagent (Gibco BRL, Gaithersburg, 

MD, USA) was added to the frozen cell pellet, which was homogenized by 

vortexing and extracted four times by phenol/chloroform. Glycogen (co-precipitant) 

and isopropanol were added to precipitate the RNA. The pellet was washed with 

80% ethanol, dried, resuspended in RNase-free water and treated with DNase I at 

37°C for 30 min. The yield was measured by a spectrophotometer at 260 nm and the 

purity was assessed by gel electrophoresis on 1% agarose gel containing 1 M 

formaldehyde. The poly A+ RNA enrichment was performed using streptavidin 

magnetic beads and biotinylated oligo(dT). cDNA probes were generated using a 

mixture of gene-specific primers, MMLV (Moloney Murine Leukemia Virus) 

reverse transcriptase and 33P-labeled dATP (10mCi/ml, BF1001, Amersham). The 

arrays (Atlas cDNA Expression Arrays, Clontech) were hybridized with the cDNA 

probe over night at 68°C and exposed to phosphor screens (Molecular Dynamics, 

Buckinghamshire, UK) overnight. The screens were scanned in a Storm instrument 

(Storm 820, Molecular Dynamics) and the image was analyzed using AtlasImage 

1.5 (Clontech).  

 

Reverse transcription and quantitative real-time PCR 
 cDNA was generated using the iScript cDNA Synthesis Kit (Bio-Rad 

Laboratories, Hercules, CA, USA) with a mixture of random hexamers and 

oligo(dT) primers, according to the manufacturer’s instructions, the incubation time 

at 42°C was increased from 30 to 60 min. The reverse transcription was run in 
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duplicates in 10 µl reactions (59) using 1.5 µg of total RNA extracted from primary 

astrocyte cultures, brains or tissue from cortical lesions.   

 Gene specific SYBR-Green based PCR assays were designed for 

microtubule-associated protein-2 (MAP-2), endothelin B receptor (ETBR), connexin 

43 (Cx43) and plasminogen activator inhibitor-1 (PAI-1). Formation of expected 

PCR products was confirmed with agarose gel electrophoresis and melting curve 

analysis. Real-time PCR experiments were run on a Rotor-Gene 3000 (Corbett 

Research, Sydney, Australia) and analyzed as described elsewhere (Pfaffl, 2001; 

Stahlberg et al., 2004). All gene expression data were normalized against total RNA 

concentration (Bustin, 2000). Statistical significance between GFAP
–/–

Vim
–/– mice 

and wild-type mice was tested with Student’s t-test. 

 Quantitative real-time PCR for synemin was performed with a TaqMan assay 

utilizing a fluorigenic probe conjugated to TAMRA and 6FAM. GAPDH served as 

endogenous control, using the primers and probe provided by ABI. Quantitative 

PCR was performed with an ABI Prism 7700 and data were analyzed with the ABI 

7700 Sequence Detection System using the comparative CT method. Values are 

expressed as means ± SEM of three to four separate experiments; differences were 

analyzed by t-test or one-way ANOVA.  

 

Transfection with pro-ANP-Emd and tracking of vesicles 
 Cells were transfected with DNA proANP-Emd using FuGene transfecting 

reagent (Roche, Mannheim, Germany) as recommended by the manufacturer.  

Vesicle tracking was analyzed with custom software (ParticleTR, Celica, 

Slovenia). We estimated current time (time from the beginning of tracking for a 

single vesicle), step length (displacement of a vesicle in the time interval 300 ms), 

track length (the total length of the analyzed vesicle pathway), velocity, maximal 

displacement and the directionality index (maximal displacement/total track length) 

of vesicles as described previously (Wacker et al., 1997; Potokar et al., 2005). The 

analysis of vesicle mobility was performed for epochs of 15 s. Statistical 

significance was determined with the two-tailed t-test for equal variances.  
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Dye filling of astrocytes 

 75 µm horizontal brain slices were stored in PBS at 4°C and examined with 

an Olympus BX50WI microscope using infrared-differential interference contrast 

optics [Olympus, Melville, NY; 60X water objective numerical aperture (NA) 1.4]. 

Astrocytes in the outer molecular layer of the dentate gyrus of the hippocampus 

were identified by the shape and size of their somata and filled with 5% aqueous 

lucifer yellow (Sigma-Aldrich) using 1 s pulses of negative current (0.5 Hz) for 1–2 

min. For immunolabeling of GFAP in the dye-filled astrocytes, the slices were 

washed in PBS and permeabilized for 1 hr at room temperature in PBS containing 

1% BSA, 0.25% Triton X-100, and 3% normal donkey serum followed by 

incubation with guinea pig antibodies against GFAP (Sigma-Aldrich; 1:100) for 48 

hr at 4°C in PBS containing 1% BSA, 0.1% Triton X-100, and 0.3% normal donkey 

serum. After several washes in PBS, donkey anti-guinea pig antibodies conjugated 

with Rhodamine Red-X (Jackson ImmunoResearch, West Grove, PA; 1:300) was 

added to the slices, incubated overnight at 4°C, and then mounted in gelvatol 

(Harlow and Lane, 1988). The slices were examined using a Radiance2000 laser 

scanning confocal system (Bio-Rad, Hercules, CA) attached to a Nikon E600FN 

microscope (Kanagawa, Tokyo, Japan) with a 60X oil immersion objective (NA 

1.4). Image visualization and analysis were performed using Imaris 3.3 (Bitplane, 

Zurich, Switzerland) and ImageJ (National Institutes of Health, Bethesda, MD) 

software. Quantification of neuropil volume reached by a dye-filled astrocyte was 

performed on three-dimensional reconstructed cells using Imaris 3.3 software. The 

number and character of cell processes reaching outside a 40 µm wide circle 

centered around the soma was assessed by using ImageJ software on superimposed 

serial images. 
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RESULTS AND DISCUSSION 
 

Paper I – Synemin is Expressed in Reactive Astrocytes in Neurotrauma and 
Interacts Differentially with Vimentin and GFAP Intermediate Filament 
Networks 
 

Synemin is upregulated in wildtype reactive astrocytes in neurotrauma 

 To assess whether synemin is expressed in reactive astrocytes, we used the 

entorhinal cortex lesion model and examined reactive astrocytes in partially 

deafferented dentate gyrus of the hippocampus. In wildtype mice, synemin 

immunoreactivity was detected in reactive astrocytes at 4 and 14 days after 

entorhinal cortex lesion, while it was not detected in non-reactive astrocytes.  

We propose that synemin expression is part of the response of astrocytes to 

neurotrauma and possibly also to other brain and spinal cord pathologies. Thus, 

along with nestin (Dahlstrand et al., 1992) and endothelin B receptor (Rogers et al., 

1997), synemin might be a useful marker of reactive astrocytes.  

 

Synemin immunoreactivity is undetectable in GFAP
–/–

Vim
–/– astrocytes, 

synemin protein expression is very low in GFAP
–/–

Vim
–/– and Vim

–/– neonatal 
brains  

 In GFAP
–/–

Vim
–/– mice, synemin immunoreactivity was undetectable in 

astrocytes in partially deafferented hippocampus 4 and 14 days after entorhinal 

cortex lesion.  

Western blot analysis of total protein extracts from neonatal brains of 

wildtype mice revealed bands of 210 and 170 kDa, corresponding to α- and β-

synemin, respectively. Brains of GFAP
–/–

Vim
–/– mice had about 95% lower levels of 

α-synemin and no detectable amount of β-synemin. Quantitative real-time PCR 

analysis showed comparable cerebral levels of synemin mRNA between wildtype 

and GFAP
–/–

Vim
–/– mice and between cultured reactive astrocytes from wildtype, 

GFAP
–/–

Vim
–/–, GFAP

–/–
 and Vim

–/–
 mice. In contrast, Western blot analysis showed 
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that synemin was present at levels comparable to wildtype in astrocytes expressing 

vimentin (wildtype and GFAP
–/–

 cultures of reactive astrocytes) but undetectable in 

the absence of vimentin (Vim
–/–

 and GFAP
–/–

Vim
–/– cultures of reactive astrocytes). 

 These findings indicate that the levels of synemin protein in Vim
–/– astrocytes 

are regulated post-transcriptionally. This may be a general mechanism by which IF 

protein levels are regulated in the absence of polymerization partners, as post-

transcriptional regulation is also responsible for decreased nestin, NF-L and keratin 

protein levels after the genetic ablation of vimentin, NF-M and of specific keratin 

pair members, respectively (Reichelt et al., 1997; Elder et al., 1998; Magin et al., 

1998; Eliasson et al., 1999; Jacomy et al., 1999; Tao et al., 2003).  

 

More dispersed and less bundled IF network in synemin-positive cells 

 Synemin was present in some GFAP-positive and in some GFAP-negative 

cells. In synemin-containing cells, whether GFAP-positive or negative, the IF 

network appeared more dispersed and less bundled than in synemin-negative cells. 

In both GFAP-positive and negative cells and in GFAP
–/–

 cultures, synemin was 

distributed throughout the IF network.  

 This suggests that synemin may regulate bundling of IF networks. The degree 

of bundling of the IF network might affect some properties of astrocytes, such as 

cell motility. Indeed, we have previously demonstrated reduced motility of  

GFAP
–/–

Vim
–/– astrocytes compared to wildtype (Lepekhin et al., 2001).  

 

Synemin binds unpolymerized GFAP and vimentin equally well but interacts 
differently with GFAP and vimentin IFs 

 Our finding that synemin protein is stable in GFAP
–/–, but not in  

GFAP
–/–

Vim
–/–

 or Vim
–/–, astrocytes raised the question of whether synemin can 

interact with GFAP. Overlay and dot-blot assays showed that synemin bound to 

unpolymerized GFAP and vimentin equally well. 
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 When synemin was mixed with GFAP or vimentin in conditions that allowed 

assembly of IFs, synemin was mostly recovered in the pellet after 

ultracentrifugation. Subjecting synemin alone to this treatment resulted in recovery 

of synemin in the supernatant.  

 These results did not rule out the possibility that synemin cosediments with 

GFAP because it binds to GFAP IFs rather than copolymerizes with GFAP. This 

possibility was examined by mixing synemin with GFAP or vimentin IFs assembled 

in the absence of synemin (“pre-formed” IFs). After incubation with pre-formed 

vimentin IFs, most of the synemin was recovered in the supernatant. However, after 

incubation with pre-formed GFAP IFs, most of the synemin was recovered in the 

pellet. This suggests that, in vitro, synemin interacts with GFAP IF like an 

associated protein rather than like a polymerization partner.  

 

Synemin needs vimentin in order to incorporate into GFAP-containing IF 
networks 

 To further investigate how synemin associates with GFAP networks, we 

performed transfection experiments in SW13-cl2 adrenocortical carcinoma cells, 

which are devoid of cytoplasmic IFs. When SW13-cl2 cells were transiently 

transfected with GFAP and synemin cDNA, synemin did not incorporate into the 

filamentous portion of a GFAP network, in contrast to its known capacity to form 

filamentous network with vimentin (Bellin et al., 1999; Titeux et al., 2001).  

 To investigate whether vimentin affects the incorporation of synemin into 

GFAP networks, SW13-cl2 cells were stably transfected with GFAP (SW13-cl2/G) 

or vimentin (SW13-cl2/V) cDNA. In SW13-cl2/G cells transiently transfected with 

vimentin cDNA or in SW13-cl2/V cells transiently transfected with GFAP cDNA, 

immunofluorescence staining with anti-GFAP and anti-vimentin yielded identical 

patterns, consistent with the ability of GFAP and vimentin to coassemble into 

heteropolymeric networks (Quinlan and Franke, 1983; Wang et al., 1984).  

 After transient transfection of SW13-cl2/G cells with synemin cDNA, 

synemin failed to incorporate into the GFAP network but instead formed numerous 
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punctate aggregates throughout the cytoplasm. However, after cotransfection of 

these cells with vimentin and synemin cDNA, synemin was incorporated into the 

vimentin/GFAP IF network in >90% of the cotransfected cells. In SW13-cl2/V cells 

cotransfected with GFAP and synemin, synemin and GFAP integrated within the 

same IF network.  

These results suggest that one function of vimentin in astrocytes is to permit 

the incorporation of synemin into GFAP-containing IFs. 

 

Taken together, these findings demonstrate that neurotrauma induces synemin 

expression in reactive astrocytes and that synemin needs vimentin in order to 

integrate into IF networks. Integration of synemin into IFs seems to lead to more 

dispersed and less bundled IFs and these might affect functional properties of 

reactive astrocytes, such as cell motility. 

 

 

Paper II – Protective Role of Reactive Astrocytes in Brain Ischemia 
 

Larger infarct volume in GFAP
–/–

Vim
–/– than in wildtype mice after MCA 

transection  

 Seven days after permanent focal brain ischemia induced by middle cerebral 

artery (MCA) transection, the infarct volume was 2-3.5-fold larger in GFAP
–/–

Vim
–/– 

mice than in wildtype controls. Apart from astrocytes, vimentin is also expressed in 

endothelial cells. In Vim
–/– mice, endothelial cells are devoid of IFs and astrocytes 

have decreased amount of IFs, as have reactive astrocytes in GFAP
–/– mice. To 

assess whether partial deficiency of IFs in astrocytes or a deficiency of IFs in 

endothelial cells also affects the infarct volume, we examined single GFAP
–/– and 

Vim
–/– mice and found that they had comparable infarct volume as wildtype mice. 

Medium blood pressure and heart rate at MCA transection and during 60 minutes 

thereafter did not differ between wildtype and GFAP
–/–

Vim
–/– mice. The lines of 

anastomoses between branches of MCA and anterior cerebral artery were also 
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comparable in wildtype and GFAP
–/–

Vim
–/– mice. This implies that the increased 

infarct size after MCA transection in GFAP
–/–

Vim
–/– mice is a consequence of the 

absence of IFs in astrocytes.  

 These results are consistent with the findings that healing after brain or spinal 

cord trauma was prolonged and regeneration improved in GFAP
–/–

Vim
–/– mice, 

which lack IFs in reactive astrocytes, but not in GFAP
–/–

 or Vim
–/–

 mice, which have 

only a partial IF deficiency (Pekny et al., 1999a; Menet et al., 2003; Wilhelmsson et 

al., 2004).  

 

Absence of ETBR-immunoreactivity in astrocytes in the ischemic penumbra of 
GFAP

–/–
Vim

–/– mice  

 The expression of endothelin B receptor (ETBR) by astrocytes in the injured 

CNS was proposed as one of the steps leading to astrocyte activation and reactive 

gliosis (Ishikawa et al., 1997; Baba, 1998; Koyama et al., 1999; Peters et al., 2003). 

In the ischemic penumbra and in the corpus callosum, 7 days after MCA transection, 

ETBR were highly expressed by reactive astrocytes in wildtype mice but were 

essentially undetectable in astrocytes of GFAP
–/–

Vim
–/– mice. Similarly, ETBR were 

readily detectable in cultured wildtype astrocytes where, most interestingly, the 

ETBR-immunoreactivity co-localized with bundles of IFs. In contrast, ETBR-

immunoreactivity was undetectable in the cytoplasm of GFAP
–/–

Vim
–/– astrocytes. 

These findings suggest that IFs might be required for production, stability or 

distribution of ETBR in reactive astrocytes. 

 

IFs determine ETBR distribution in reactive astrocytes  

 To determine whether IFs are required for production, stability or distribution 

of ETBR in reactive astrocytes, we performed quantitative real-time PCR and 

Western blot analyses on cultured astrocytes from GFAP
–/–

Vim
–/– and wildtype mice. 

In the GFAP
–/–

Vim
–/– astrocytes, the amounts of ETBR mRNA was increased by 43% 

compared to wildtype, whereas the amount of ETBR protein was comparable. Thus, 
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in the absence of IFs, astrocytes contain normal amount of ETBR, which do not 

associate with IFs but seem to be distributed throughout the cell.  

 

Endothelin-3-induced blockage of gap junctions is attenuated in GFAP
–/–

Vim
–/– 

astrocytes 

 Endothelins are blockers of astrocyte gap junctional communication in 

culture (Giaume et al., 1992; Blomstrand et al., 1999) or in acute brain slices 

(Blomstrand et al., 2004). To determine if the altered cytoplasmic distribution of 

ETBR affects astrocyte gap junctional communication and thus the function of the 

astrocyte network, we stimulated ETBR with its selective ligand, endothelin-3. We 

found no difference in basal astrocyte gap junctional communication between 

wildtype and GFAP
–/–

Vim
–/– astrocytes. However, endothelin-3-mediated inhibition 

of astrocyte gap junctional communication was less prominent in GFAP
–/–

Vim
–/– 

astrocytes compared to wildtype. Gap junctions are made of connexins, with 

connexin 43 being the predominant gap junction protein in astrocytes (Saez et al., 

2003). We used quantitative real-time PCR to compare connexin 43 mRNA levels in 

primary cultures of astrocytes. We found that connexin 43 was upregulated by 44% 

in GFAP
–/–

Vim
–/–

 compared to wildtype astrocytes, which further supports the link 

between astrocyte IFs and gap junctional communication.  

 Astrocyte gap junctional communication was proposed to promote secondary 

expansion of focal ischemic injury since open astrocyte gap junctions can mediate 

the propagation of cell death signals or undesirable backflow of ATP from living to 

dying cells (Rawanduzy et al., 1997; Budd and Lipton, 1998; Cotrina et al., 1998; 

Lin et al., 1998). Thus, less efficient ETBR-mediated inhibition of astrocyte gap 

junctional communication in GFAP
–/–

Vim
–/– mice may contribute to larger infarct 

volume in these mice after focal brain ischemia. 
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Reduced glutamate transport in GFAP
–/–

Vim
–/– mice 

 Astrocytes are responsible for the clearance of glutamate released from 

neurons. The ability of astrocytes to remove glutamate was proposed to reduce the 

infarct size by limiting the excitotoxic cell death (Nedergaard and Dirnagl, 2005). In 

order to determine if glutamate transport is altered in GFAP
–/–

Vim
–/– mice, we 

examined total glutamate uptake and glutamate uptake mediated by glutamate 

transporter 1 (GLT-1), the primary glutamate transporter in astrocytes, in freshly 

dissected hemicortices of wildtype and GFAP
–/–

Vim
–/– mice. We found that both 

total and GLT-1-mediated glutamate uptake was reduced in GFAP
–/–

Vim
–/– mice 

compared to wildtype controls.  

 Glutamate that is taken up in astrocytes is converted by glutamine synthase to 

glutamine. Despite similar levels of glutamine synthase (Wilhelmsson et al., 2004) 

in wildtype and GFAP
–/–

Vim
–/– astrocytes, the latter have increased levels of 

glutamine (Pekny et al., 1999a). Thus, we can speculate that the reduced ability of 

the GFAP
–/–

Vim
–/–

 mice to remove glutamate from the ischemic brain tissue is a 

consequence of intracellular glutamine accumulation and leads to increased 

ischemic infarcts. 

 

tPA inhibitor PAI-1 is downregulated in GFAP
–/–

Vim
–/– astrocytes  

 To further address on a molecular level the effect of attenuated reactive 

gliosis, we performed the DNA array analysis and compared the expression of 1200 

genes between primary astrocytes derived from wildtype and GFAP
–/–

Vim
–/– mice. 

Only a single gene, plasminogen activator inhibitor (PAI-1), an inhibitor of tissue 

plasminogen activator (tPA), fulfilled the criteria of a threefold or higher 

downregulation in GFAP
–/–

Vim
–/– compared to wildtype astrocytes.  

 Quantitative real-time PCR analysis of PAI-1 mRNA levels in primary 

GFAP
–/–

Vim
–/– and wildtype astrocytes maintained in the presence of either 1% or 

10% of serum, the latter mimicking some aspects of reactive gliosis, revealed a 69% 

and 86% reduction in GFAP
–/–

Vim
–/– astrocytes in the presence of 1% and 10% 

serum, respectively. 
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 PAI-1 inhibits tPA, which has a neurotoxic effect in the ischemic penumbra, 

probably mediated through activation of microglia and activation of NMDA 

receptors (Sheehan and Tsirka, 2005). Mice deficient in tPA develop smaller infarcts 

than wildtype controls in a transient focal ischemia model and administration of tPA 

to both tPA-deficient and wildtype mice leads to increased infarct volume (Tsirka et 

al., 1995). Similarly, mice overexpressing PAI-1 show reduced infarcts compared to 

wildtype controls after focal brain ischemia (Nagai et al., 2005). Thus, reduced 

levels of PAI-1 mRNA could enhance the neurotoxic effects of tPA in the ischemic 

penumbra of GFAP
–/–

Vim
–/– mice.  

 

Taken together, these results indicate that reactive astrocytes are protective in brain 

ischemia and limit the extent of the infarct. The absence of IFs in reactive astrocytes 

seems to compromise several functional aspects of astrocytes, such as astrocyte gap 

junctional communication, uptake of glutamate and protection against tPA-mediated 

neurotoxicity. 

 

 

Paper III – Cytoskeleton and Vesicle Mobility in Astrocytes 
 

Microtubule disassembly predominantly affects directional mobility 

 To address the role of microtubules in vesicle transport in astrocytes, we 

depolymerized microtubules with nocodazole (Vasquez et al., 1997) in rat astrocytes 

transfected with the proANP-Emd DNA in order to label single vesicles (Han et al., 

1999; Krzan et al., 2003; Potokar et al., 2005). Vesicles were previously 

characterized, based on their translocation, as directional (translocation for more 

than 1 µm) or nondirectional (translocation for less than 1 µm) (Potokar et al., 

2005). In untreated cells, vesicles displayed both directional and nondirectional 

mobility. In cells with depolymerized microtubules, however, vesicles displayed 

only nondirectional mobility. Microtubule depolymerization significantly reduced 

the mobility of vesicles, including their average velocity, track length (the length of 
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the pathway that vesicle traveled in 15 s), and maximal displacement (a measure for 

the net translocation of vesicles in 15 s). These results show that microtubules play a 

role in directional mobility of vesicles in astrocytes and are compatible with this 

function of microtubules documented in other cell types. 

 

Actin filaments contribute to vesicle mobility 

 To examine the role of actin filaments, we depolymerized actin filaments 

with the Clostridium spiroforme toxin in astrocytes transfected with proANP-Emd. 

Vesicles in untreated cells displayed both directional and nondirectional mobility. 

After depolymerization of actin filaments, vesicles displayed only nondirectional 

mobility. Average velocity, track length, and maximal displacement of the vesicles 

were decreased in cells with depolymerized actin filaments. These findings indicate 

that actin filaments participate in directional mobility of vesicles in astrocytes. 

 

IFs affect the directional mobility of vesicles 

 Although they are not thought to participate in vesicle transport, IFs interact 

with microtubules (Chang and Goldman, 2004) and play an important role in 

astrocyte motility (Lepekhin et al., 2001). To determine if they contribute to vesicle 

mobility, we depolymerized IFs in rat astrocytes with the phosphatase inhibitor 

calyculin A. This treatment reduced vesicle mobility. The average velocity, track 

length, and maximal displacement of vesicles were all significantly lower in cells 

with depolymerized IFs. 

Since the reduced mobility could reflect a nonspecific action of calyculin A 

that affected the phosphorylation of other substrates (Chang and Goldman, 2004), 

we analyzed proANP-Emd-labeled vesicles in astrocytes from wildtype and  

GFAP
–/–

Vim
–/– mice, which are devoid of IFs (Eliasson et al., 1999). In wildtype and 

GFAP
–/–

Vim
–/– astrocytes, the mean track lengths and the mean maximal 

displacements of vesicles, displaying both directional and nondirectional mobility, 

were similar. However, the fraction of vesicles displaying directional mobility was 
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lower in GFAP
–/–

Vim
–/– astrocytes compared to wildtype controls (21% vs. 34%), 

suggesting a role for IFs in vesicle mobility. In GFAP
–/–

Vim
–/–

 cells, we found five 

times less vesicles with track length higher than 9 µm compared to wildtype cells. 

Thus, it is possible that IFs act as a scaffold representing a conduit for highly mobile 

vesicles.  

 

Lack of astrocyte IFs affects the microtubular system 

 Next, we addressed whether genetic ablation of astrocyte IFs triggered a 

compensatory response from the microtubular system. We used quantitative real-

time PCR to assess the expression of microtubule-associated protein-2 (MAP-2), 

which was previously implicated in reactive gliosis (Geisert et al., 1990). MAP-2 

expression was 52% higher at postnatal day 1 (P1) GFAP
–/–

Vim
–/– brains and 45% 

higher in primary astrocyte-enriched cultures prepared from P1 GFAP
–/–

Vim
–/– 

brains compared to wildtype brains and astrocyte cultures, respectively. To establish 

whether the elevated MAP-2 expression in GFAP
–/–

Vim
–/– persists in adult animals 

in a pathological context, we used the electrically induced cortical lesion as a 

neurotrauma model. Four days after injury, in the tissue surrounding the lesion, 

MAP-2 expression was 64% higher in GFAP
–/–

Vim
–/– mice compared to wildtype. 

Thus, genetic ablation of astrocyte IFs seems to trigger a partial compensatory 

response of the microtubular system. 

 MAP-2 was proposed to have a direct effect on stabilization of microtubules 

and their crosslinking as well as crosslinking of microtubules with IFs (Itoh et al., 

1997). Thus, the increased MAP-2 expression in IF-free astrocytes may be a 

compensatory response to the IF absence and it might explain the relatively minor 

difference between the mobility of vesicles in GFAP
–/–

Vim
–/– and wildtype 

astrocytes. 
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Paper IV – Absence of Glial Fibrillary Acidic Protein and Vimentin Prevents 
Hypertrophy of Astrocytic Processes and Improves Post-Traumatic 
Regeneration 
 

Absence of IFs attenuates hypertrophy of astrocyte processes 

 We used antibodies against glutamine synthase to visualize astrocytes in the 

molecular layer of the dentate gyrus of the hippocampus. To confirm the astrocyte 

specificity of the antibodies, we co-stained astrocytes of wildtype mice with GFAP 

antibodies and found that glutamine synthase was expressed only in astrocytes. 

ELISA showed comparable levels of glutamine synthase in primary cultures of 

wildtype and GFAP
–/–

Vim
–/– astrocytes, and glutamine synthase was distributed 

homogenously in both types of cells. Thus, antibodies against glutamine synthase 

could be used to evaluate the morphological appearance of astrocytes.  

The degree of hypertrophy of astrocyte processes was assessed by measuring 

the longest process in astrocytes in the molecular layer of the dentate gyrus of the 

hippocampus at 4 and 14 days after entorhinal cortex lesion. On the unlesioned side, 

the length of astrocyte processes was similar in wildtype and GFAP
–/–

Vim
–/– mice. 

On the lesioned side, however, reactive astrocytes in wildtype mice showed more 

prominent signs of hypertrophy with glutamine synthase-positive processes longer 

than in GFAP
–/–

Vim
–/– mice at both 4 and 14 days after lesion.  

 By using antibodies against another astrocyte marker, S100, we found again 

significantly longer processes in wildtype compared with GFAP
–/–

Vim
–/– reactive 

astrocytes at 4 days after entorhinal cortex lesion, and this trend was present also at 

14 days. Thus, the degree of hypertrophy of astrocyte processes was significantly 

altered in the absence of IFs.  

 

Absence of IFs alters the morphology but not the volume of brain tissue 
accessed by individual astrocytes 

 To further evaluate the effect of the absence of IFs on hypertrophy of cellular 

processes of reactive astrocytes and to determine whether this has an impact on the 
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volume of tissue they access, we performed dye-filling followed by three-

dimensional reconstruction of astrocytes in situ (Bushong et al., 2002). Dye filling 

reveals the terminal processes that failed to be visualized by immunostaining and 

shows the true action radius of individual astrocytes, with a bushy appearance. We 

found no difference in the volume of tissue accessed by wildtype and GFAP
–/–

Vim
–/– 

reactive astrocytes in the molecular layer of the dentate gyrus of the hippocampus on 

the lesioned side. However, the appearance of GFAP
–/–

Vim
–/– reactive astrocytes was 

clearly different from wildtype. GFAP
–/–

Vim
–/– reactive astrocytes had 37% fewer 

long processes that could be followed over a 20 µm radius as well as 83% fewer 

processes that remained straight for most of their length. Thus, the absence of IFs 

does not affect the volume of tissue accessed by reactive astrocytes but affects the 

morphology of their cellular processes.  

 

Increased regeneration in GFAP
–/–

Vim
–/– mice after entorhinal cortex lesion 

To assess the extent of synaptic loss and regeneration after entorhinal cortex lesion, 

we quantified synaptic complexes in the outer molecular layer of the dentate gyrus 

of the hippocampus by electron microscopy. On the injured side,  

GFAP
–/–

Vim
–/– mice had only one-fourth as many synaptic complexes as wildtype 

mice by day 4. These findings indicate that the absence of astrocyte IFs exacerbates 

the loss of synaptic complexes early after entorhinal cortex lesion. Between day 4 

and 14, the number of synaptic complexes on the lesioned side showed a mild 

tendency towards recovery in wildtype mice, consistent with findings in rats 

(Matthews et al., 1976; Steward and Vinsant, 1983), while the number of synaptic 

complexes in GFAP
–/–

Vim
–/– mice increased by 77%, reaching the levels measured 

on the contralateral side. 
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Upregulation of ETBR in wildtype, but not GFAP
–/–

Vim
–/–, mice after entorhinal 

cortex lesion 

 The upregulation of ETBR by astrocytes in the injured CNS was proposed to 

be one of the steps leading to astrocyte activation and hypertrophy (Ishikawa et al., 

1997; Baba, 1998; Koyama et al., 1999; Peters et al., 2003). By using antibodies 

against ETBR, we found weak and almost exclusively endothelial immunostaining in 

the molecular layer of the dentate gyrus of the hippocampus on the side contralateral 

to entorhinal cortex lesion, fully comparable between wildtype and GFAP
–/–

Vim
–/– 

mice. As expected, on the lesioned side at both 4 and 14 d after entorhinal cortex 

lesion, ETBR were highly upregulated in reactive astrocytes in wildtype mice. 

However, no signs of ETBR upregulation were found in astrocytes of GFAP
–/–

Vim
–/– 

mice. Thus, the upregulation of ETBR by reactive astrocytes is IF dependent and 

associated with post-traumatic regeneration. 

 

Taken together, these findings suggest that reactive astrocytes play a beneficial role 

in the acute stage after neurotrauma but inhibit synaptic regeneration later on. 
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CONCLUSIONS 
 

Paper I 
 

Synemin is expressed in reactive astrocytes in neurotrauma and we propose synemin 

as a new marker of reactive astrocytes. 

Synemin needs vimentin in order form IFs in astrocytes. 

 

Paper II 
 

Reactive astrocytes are protective in focal brain ischemia and limit the extent of the 

infarct. 

Our data suggest that the absence of astrocyte IFs in brain ischemia influences 

glutamate transport, ETBR-mediated control of gap junctions and expression of  

PAI-1, an inhibitor of tPA. 

 

Paper III 
 

Astrocyte IFs play a role in long-range directional vesicle mobility, probably by 

acting as a scaffold for the moving vesicles. 

 

Paper IV 
 

IFs are of major importance for hypertrophy of cellular processes in reactive 

astrocytes. 

Reactive astrocytes are protective at an early stage after neurotrauma but inhibit 

synaptic regeneration later on. 
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