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ABSTRACT 
 
Cognitive function studied in animal models of schizophrenia 
 
Erik Pålsson 
Department of Pharmacology, Institute of Neuroscience and Physiology, The 
Sahlgrenska Academy at Göteborg University, POB 431, 405 30 Göteborg, 
Sweden 
 
Cognitive dysfunction is considered a core deficit of schizophrenia, which 
currently lacks effective pharmacological treatment. In order to identify novel and 
more effective drug treatments, translational experimental animal models of 
cognitive dysfunction are required. Schizophrenia-like symptoms can be induced 
in humans by phencyclidine (PCP). PCP also induces schizophrenia-like 
behavioural changes in experimental animals and several of these effects can be 
ameliorated by pre-treatment with nitric oxide (NO) synthase inhibitors. This 
suggests an important role of NO in the effects of PCP. The general aim of the 
present thesis was to further investigate the effects of PCP, and the role of NO in 
these effects, in translational experimental animal models of cognitive dysfunction. 
Three behavioural models in rodents with relevance to schizophrenia were used. 
Pre-attentive information processing and non-associative learning were studied 
using the prepulse inhibition and habituation of the acoustic startle response 
models respectively. Additionally, selective attention was investigated using latent 
inhibition in taste aversion conditioning. Systemic administration of PCP to mice 
caused a deficit in habituation of the acoustic startle response. This effect of PCP 
was attenuated by pre-treatment with the NO synthase inhibitor NG-nitro-L-
arginine methyl ester (L-NAME). Furthermore, systemic administration of PCP 
potentiated latent inhibition in taste aversion conditioning. This effect could be 
normalized by pre-treatment with L-NAME. Finally, acute and sub-chronic 
inhibition of NO substrate (L-arginine) availability, using the amino acid L-lysine, 
attenuated the deficit in prepulse inhibition induced by PCP. In the present thesis 
PCP was shown to induce deficits in three translational animal models of 
cognitive dysfunction associated with schizophrenia. Additionally, blocking NO 
production ameliorated the deficits induced by PCP. These findings lend further 
support to the notion that drugs targeting central NO production could be of 
therapeutic value in the treatment of cognitive dysfunction in schizophrenia. In 
addition, they indicate that L-arginine availability may be an important regulatory 
mechanism of NO production in the brain. 

Key words: phencyclidine, nitric oxide, prepulse inhibition, habituation, latent 
inhibition, NMDA receptor, rat, mouse, schizophrenia, cognition
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This thesis is based on the following papers, which will be referred to in the 
text by their Roman numerals; 

 
I. Habituation of acoustic startle is disrupted by psychotomimetic drugs: 

differential dependence on dopaminergic and nitric oxide modulatory 
mechanisms.  Klamer D, Pålsson E, Revesz A, Engel JA, Svensson L. 
Psychopharmacology 2004 Nov;176(3-4):440-50. 

II. The effects of phencyclidine on latent inhibition in taste aversion 
conditioning: differential effects of preexposure and conditioning. Pålsson 
E, Klamer D, Wass C, Archer T, Engel JA, Svensson L. Behavioural 
Brain Research 2005 Feb 10;157(1):139-46. 

III. Antagonism of the nitric oxide synthase inhibitor, L-NAME, of the 
effects of phencyclidine on latent inhibition in taste aversion 
conditioning. Klamer D, Pålsson E, Wass C, Archer T, Engel JA, 
Svensson L. Behavioural Brain Research 2005 Jun 3;161(1):60-8. 

IV. The amino acid, L-lysine, blocks the disruptive effect of phencyclidine on 
prepulse inhibition in mice. Pålsson E, Fejgin K, Wass C, Engel JA, 
Svensson L, Klamer D. Manuscript. 
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LIST OF ABBREVIATIONS 
 
AMPA -amino-3-hydroxy-5-methyl-4-isoaxole propionic acid 
ASR   Acoustic startle response 
cAMP   Cyclic adenosine monophosphate 
CAT   Cationic amino acid transporter 
CER   Conditioned emotional response 
cGMP   Cyclic guanosine monophosphate 
CS   Conditioned stimulus 
CSF   Cerebrospinal fluid 
CTA   Conditioned taste aversion 
d-AMP   d-amphetamine 
eNOS   Endothelial nitric oxide synthase 
GTP   Guanosine triphosphate 
i.p.   Intraperitoneally 
iNOS   Inducible nitric oxide synthase 
LI   Latent inhibition    
L-NAME  NG-nitro-L-arginine methyl ester 
LTP   Long-term potentiation 
NAC   Nucleus accumbens 
PFC   Prefrontal cortex 
NMDA   N-methyl-D-aspartic acid 
nNOS   Neuronal nitric oxide synthase 
NO   Nitric oxide 
NOS   Nitric oxide synthase 
NPE   Non-preexposed 
PCP   Phencyclidine 
PE   Preexposed 
PET   Positron emission tomography 
PPI   Prepulse inhibition 
s.c.   Subcutaneously 
sGC   Soluble guanylyl cyclase 
US   Unconditioned stimulus 
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BACKGROUND 
 

Schizophrenia 
When the 20th century was still young Eugene Bleuler renamed the disease then 
known as dementia praecox, a term introduced by Emil Kraepelin. Bleuler chose 
to call the disorder schizophrenia, from the Greek words schizo (split) and phreno 
(mind), as it appeared to him that the key feature of the disease was a shattered 
mind (Bleuler 1911). Now, almost a century later science is still struggling to solve 
the puzzle of schizophrenia. More importantly, approximately 1% of the people in 
the world, irrespective of gender, class or ethnic background (Jablensky et al. 
1992), are struggling to cope with an illness that in ways lacks an effective 
treatment. Although the individual prognosis varies many patients face a lifetime 
of disability, stricken in the prime of life as schizophrenia usually manifests during 
young adulthood. Furthermore, around 10% of afflicted individuals will take their 
own life as a result of the disorder (Tandon 2005).  
 
Since no biological marker for schizophrenia has yet been found, diagnosis is 
based on the assessment of the symptoms of each patient. Over the years criterion 
based diagnostic instruments have been developed to aid clinicians. One of the 
most widely used is the fourth edition of the American Psychiatric Association’s 
Diagnostic and Statistic Manual (DSM-IV). In this diagnostic definition of 
schizophrenia, symptoms are divided into two main categories: positive and 
negative symptoms. The third category of cognitive deficits is recognized although 
not considered characteristic for diagnostic purposes. The positive symptoms are 
episodic in nature and associated with acute psychosis; they include hallucinations, 
delusions, disorganized speech and behaviour. Negative symptoms generally 
represent a loss of function and include social withdrawal, slowness of thinking 
and movement, emotional blunting and lack of drive. Both the negative symptoms 
and cognitive deficits are aspects of schizophrenia that are associated with the 
chronic state of the disorder. Generally, the specific symptomatology of 
schizophrenia varies significantly between patients and this heterogeneity 
complicates both diagnosis and research questions.   
 
Recent years have seen a shift in schizophrenia research towards recognizing 
cognitive dysfunction as a core deficit of schizophrenia. Consequently, a large 
body of research is now aimed at delineating the neurobiology of the cognitive 
deficits associated with schizophrenia. The cognitive deficits associated with 
schizophrenia span a number of cognitive domains, including abstraction, verbal 
memory, attention, working memory and executive functions (Andreasen 1995; 
Häfner and an der Heiden 2003), and are often quite pronounced with patients 
scoring more than one standard deviation lower than control subjects on cognitive 
tasks (Keefe et al. 2005). Importantly, cognitive functionality has been shown to 
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be a predictor of community outcome in both cross-sectional (Green 1996; Green 
et al. 2000) and longitudinal studies (Green et al. 2004). However, the specific 
cognitive deficits associated with schizophrenia vary substantially within the 
patient population (Fioravanti et al. 2005). A number of neurological signs and 
subtle cognitive deficits have been found in children who were later to develop 
schizophrenia (Ellison et al. 1998). Similarly, mild cognitive dysfunction and 
psychomotor abnormalities have been demonstrated in relatives to schizophrenic 
patients implying that the cognitive impairment is more than a reflection of a poor 
functionality as a result of other symptoms (Flyckt et al. 2000; Heydebrand 2006; 
Sitskoorn et al. 2004). It has been suggested that cognitive deficits could represent 
endophenotypes of schizophrenia but so far no pathognomonic deficit has been 
identified. Although present during the prodromal stage, the level of cognitive 
impairment seems to markedly worsen as the patient progresses to the fully 
manifested disorder (Lencz et al. 2006). However, further neuropsychological 
decline, as seen in neurodegenerative disorders, does not seem present in the 
general patient population (Heaton et al. 2001), although further studies are 
needed.  
 

Schizophrenia hypotheses 
It is widely accepted that the pathophysiology of schizophrenia is likely to be 
complex in nature. Not surprisingly, formulating a theoretical framework that can 
account for the observed heterogeneity has proved difficult. Two such models 
have recently been proposed, both of which suggest early disturbances in the 
development of the central nervous system (Glenthoj and Hemmingsen 1997; 
Lieberman et al. 1997; Weinberger 1987). These disturbances are proposed to give 
rise to a dysfunction of the glutamate system, compromising communication 
between cortical and sub-cortical structures. Later, this defiency in neural 
modulatory capacity and rigidity in neural circuitry leads to a dysbalance of the 
dopamine system during adolescence and manifestation of psychotic symptoms.  
In addition a framework encompassing neurodevelopmental abnormalities and 
dysfunctions in information processing has been put forward (Braff 1993). 
Broadly, abnormal neurodevelopmental processes are proposed to lead to 
dysfunction of neural circuits and neurotransmitter systems. In a domino effect, 
these dysfunctions lead to an impaired information processing, cognitive 
dysfunction and overt psychotic symptoms (Andreasen 2000).  
Models such as these are still incomplete but if schizophrenia is ever to be fully 
understood they must be formulated and tested as it is painstakingly clear that 
there is no magic bullet that will solve the enigma of schizophrenia in one well-
aimed shot.      
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DOPAMINE AND SCHIZOPHRENIA 

Dopamine remains the neurotransmitter most strongly associated with 
schizophrenia. Arvid Carlsson and co-workers first described the role of 
dopamine as a messenger molecule in the central nervous system in the late 1950s 
(Carlsson et al. 1957; Carlsson et al. 1958). Dopamine exerts its action through 
five different dopamine receptors that are G-protein coupled and modulate the 
activity of adenylyl cyclase and its second messenger cyclic adenosine triphosphate 
(cAMP). The D1 and D5 receptors stimulate while the D2, D3 and D4 receptors 
inhibit adenylyl cyclase (Garau et al. 1978; Gingrich and Caron 1993; Kebabian 
and Calne 1979; Kebabian and Greengard 1971).  
During the last fifty years dopamine has been implicated in a number of 
physiological processes e.g. motor control, reward mechanisms and cognition but 
also in pathophysiologial conditions such as Parkinson’s disease (Carlsson 1959; 
Ehringer and Hornykiewicz 1960), drug abuse (Engel 1977; Engel et al. 1992; 
Koob 1992; Wise 1996) and schizophrenia (Carlsson and Lindqvist 1963; Seeman 
et al. 1976). 
 
The link between dopamine and schizophrenia rests heavily on the fact that all 
antipsychotic drugs with proven clinical effect block dopamine receptors and 
there is a correlation between clinical potency and affinity for the D2 receptor 
among these drugs (Nordstrom et al. 1993; Seeman et al. 1976). In addition the 
dopamine releasing agent d-amphetamine (d-AMP) can induce a paranoid 
psychosis in healthy individuals (Angrist and Gershon 1970; Randrup and 
Munkvad 1967) as well as an exaggerated dopamine response in drug free 
schizophrenic patients (Breier et al. 1997; Laruelle et al. 1996). This heightened 
dopamine response exacerbates positive but not negative symptoms, an effect 
likely due to an increased D2 receptor stimulation (Breier et al. 1997; Laruelle et al. 
1996). This selective effect on positive symptoms indicates that increased 
dopaminergic activity cannot be the only neurochemical substrate of 
schizophrenia as was originally suggested (Keefe et al. 1999). Both negative 
symptoms and cognitive deficits have been related to the prefrontal cortex (PFC), 
a brain region that has been shown to be hypoactive in schizophrenic patients (see 
general discussion). Since the PFC receives significant dopaminergic input, it was 
hypothesized that instead of dopamine hyperactivity this region would suffer from 
dopamine hypoactivity in schizophrenic patients. This would lead to a reduced 
stimulation of D1 receptors, the predominant form of dopamine receptor in the 
frontal cortex (Goldman-Rakic et al. 2000; Goldman-Rakic and Selemon 1997; 
Jentsch et al. 1997b; Jentsch et al. 1999b). Furthermore, it has been demonstrated 
that reduced prefrontal activity leads to increased striatal dopaminergic 
transmission in schizophrenic patients (Meyer-Lindenberg et al. 2002). 
Thus the predominant view today is that schizophrenia is associated with an 
imbalance in the dopamine system that ultimately results in a heightened reactivity 
in mesolimbic dopamine neurons, associated with an increased D2 receptor 
stimulation and positive symptoms, coupled with a reduced activity in the 
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dopamine neurons projecting to the frontal cortex, in turn associated with D1 
receptor hypostimulation and negative symptoms and cognitive dysfunction 
(Davis et al. 1991; Weinberger 1987).         
 

GLUTAMATE AND SCHIZOPHRENIA 

The association between dopamine and schizophrenia is supported by empirical 
data but whether a dysfunctional dopamine system is a primary causative factor in 
the pathophysiology of schizophrenia or rather a consequence of another 
dysfunction remains an open question. A prime candidate for another underlying 
dysfunction is the glutamate system. In the CNS, L-glutamate binds and activates 
four different types of receptors; -amino-3-hydroxy-5-methyl-4-isoaxole 
propionic acid (AMPA), kainate, N-methyl-D-aspartic acid (NMDA) and 
metabotropic glutamate receptors. The first three are ionotropic receptors that 
upon activation allow the passage of Na+, Ca2+ and K+ through the cell membrane 
while the metabotropic receptors are coupled to G-proteins and intracellular 
second messenger systems. The receptor type with the strongest association to 
schizophrenia is undoubtedly the NMDA receptor. It has been linked to long-
term potentiation (LTP), a cellular process believed to be crucial in learning and 
memory, and possesses several interesting biophysical properties. In order to be 
activated it requires the simultaneous binding of L-glutamate and L-glycine or D-
serine in conjunction with a depolarising event that will remove a Mg2+ that blocks 
the channel at resting potentials. Activation will lead to an influx of Ca2+ and to a 
lesser extent Na+ and K+. It is also subject to regulation by Zn2+ and polyamines 
(Ozawa et al. 1998; Thornberg and Saklad 1996). Constituting part of the 
neurochemical backbone of the central nervous system, the NMDA receptor is 
located throughout the brain with the highest densities in the frontal cortex, 
hippocampus and nucleus accumbens (NAC) (Monaghan and Cotman 1985).  
 
In the 1950s an effective yet troublesome anaesthetic agent called phencyclidine 
(PCP, “angel dust”) was briefly introduced. The trouble lay in the unpleasant 
psychic side effects of the drug and its use was soon discontinued. However, PCP 
re-emerged as a recreational drug in certain social strata. A number of such users 
were admitted to psychiatric clinics diagnosed with schizophrenia. Clinical studies 
confirmed that PCP could induce a psychotic state very similar to schizophrenia in 
healthy individuals (Allen and Young 1978; Luby et al. 1959; Pearlson 1981; 
Yesavage and Freman 1978) and when given to schizophrenic patients it 
exacerbated their symptoms (Itil et al. 1967). It was suggested that the 
pharmacological effects of PCP were mediated by its non-competitive inhibition 
of the NMDA receptor and this hinted at a possible hypoglutamatergic 
mechanism in the pathophysiology of schizophrenia (Javitt and Zukin 1991; 
Lodge and Anis 1982). Later, the PCP-analogue ketamine was also reported to 
produce symptoms in healthy volunteers that resemble those seen in 
schizophrenia as well as worsen aspects of the disorder in schizophrenic patients 
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(Abi-Saab et al. 1998; Krystal et al. 2003; Krystal et al. 1994; Lahti et al. 1995). In 
agreement with the effects of PCP, a study by Kim and co-workers reported 
reduced levels of glutamate in the cerebrospinal fluid of schizophrenic patients 
(Kim et al. 1980). However, later studies could not replicate this finding (Gattaz et 
al. 1982; Perry 1982), although a post mortem study did show reduced levels of 
glutamate in the prefrontal and hippocampal regions of schizophrenic patients 
(Tsai et al. 1995). Interestingly, the endogenous NMDA receptor antagonist 
kynurenic acid has been shown to be elevated in CSF (cerebrospinal fluid) and 
post mortem brain samples of schizophrenic patients, further supporting an 
involvement of the glutamate system in the pathophysiology of schizophrenia 
(Erhardt et al. 2001; Nilsson et al. 2005; Schwarcz et al. 2001).   
Additionally, it has been reported that glycine, the co-agonist of glutamate at the 
NMDA receptor, is lowered in plasma from schizophrenic patients (Sumiyoshi et 
al. 2004) and glycine or glycine site agonists have been tried as adjuvant treatment 
of schizophrenia in combination with antipsychotics with some success (Javitt 
2006). Genetic studies have not shown any direct link between schizophrenia and 
the NMDA receptor but a number of genes that have been associated with 
schizophrenia e.g. Neuregulin 1, RGS4 and dysbindin, code for proteins that are 
known to interact with the NMDA receptor (Chowdari et al. 2002; Chumakov et 
al. 2002; Moghaddam 2003; Stefansson et al. 2003; Straub et al. 2002).  
 

DOPAMINE AND GLUTAMATE 

Interestingly, dopaminergic and glutamatergic neurons in the brain communicate 
extensively with each other. This ties in with a concept of schizophrenia as a 
neural circuits dysfunction disorder, emphasising the importance of 
communication between brain regions. In a model (figure 1) proposed by Carlsson 
and collaborators (1999b), the PFC modulates the activity of midbrain dopamine 
neurons via both an activating and an inhibitory pathway. The activating pathway 
consists of direct projections to midbrain dopaminergic neurons, which in turn, 
project back to the cortex, and indirect projections to mesolimbic dopamine 
neurons. The inhibitory pathway is indirect and involves GABAergic neurons. 
This dual modulation of PFC dopamine activity has been demonstrated in rodents 
(Jackson et al. 2001). Furthermore, it seems that there is glutamate mediated tonic 
inhibitory regulation of mesolimbic dopaminergic neurons and a concomitant 
excitatory regulation of mesoprefrontal dopaminergic neurons (Takahata and 
Moghaddam 2000). This neural circuit model predicts that a loss of NMDA 
receptor function in the PFC would result in a reduced activity in neurons 
projecting to the cortex as well as unpredictable effects on baseline activity in 
mesolimbic dopamine projections. However, the loss of glutamatergic regulatory 
activity would render the mesolimbic dopaminergic neurons more vulnerable to 
stressors. Or in other words, predispose them to dysfunction. This model is based 
mainly on rodent findings but does find some support in primate and human 
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studies (Laruelle et al. 2003) and illustrates the potential consequences of neural 
circuit dysfunctions in schizophrenia. 
 
 
Figure 1. Proposed model of modulation of dopaminergic activity by cortical projections (adapted 
from Laruelle et al, 2003).   

 

NEURODEVELOPMENT   

The importance of genetic factors in the pathophysiology of schizophrenia is 
evident from twin and family studies and the heritability of schizophrenia is 
estimated to 70-85%. The genetic risk depends on the degree of biological 
relatedness, i.e. first-degree relatives of an affected individual have a higher risk of 
developing schizophrenia than do second-degree relatives (Lewis and Levitt 2002). 
Similarly, a monozygotic twin is at greater risk than a dizygotic twin. This genetic 
liability seems to be transmitted in a polygenic, non-Mendelian fashion. A number 
of loci as well as gene variants have been associated with schizophrenia (Norton et 
al. 2006). However, many such findings have not been replicated. Aside from 
methodological issues, one explanation to some of these non-replications may be 
that there are several pathogenetic paths that all terminate in a similar 
manifestation of symptoms. Thus, different patterns of genetic predisposition 
would be expected in different populations. Despite the high heritability, the 
concordance of schizophrenia among monozygotic twins is only about 50% 
(Lewis and Levitt 2002).  This suggests that environmental factors play an 
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important role in the pathophysiology of schizophrenia. Indeed, a number of 
environmental factors that increase the risk of schizophrenia have been identified.  
These include, but are not limited to, maternal nutritional status, maternal 
infection, season of birth, urban birth and obstetrical complications (Dean and 
Murray 2005). Several of the identified risk factors are associated with pre- or 
perinatal life. Consequently, neurodevelopmental insults may be involved in the 
pathophysiology of schizophrenia. Associations between schizophrenia and genes 
involved in neurodevelopmental processes support this idea (Rapoport et al. 
2005). The concept of neurodevelopmental pathology in schizophrenia is not new 
since already the work of e.g. Kraepelin and Bleuler, pointed out that premorbid 
signs of schizophrenia could be detected early in life. However, more specific 
conceptualizations of schizophrenia as a disorder of neurodevelopment appeared 
in the 1980s. Weinberger (1987) suggested that schizophrenia could involve a 
fixed brain lesion during brain development which remains silent until certain 
brain maturational events bring it “on line”. Other investigators proposed that this 
was only applicable to a subset of individuals with schizophrenia (Murray et al. 
1992). In contrast, Feinberg (1982) thought that the central pathogenic process 
was altered cortical synaptic pruning during adolescence. Thus, both early and late 
disturbances in neurodevelopment have been suggested to be involved in the 
pathophysiology of schizophrenia. However, these views can be united into single 
theory, suggesting that disturbances in both early and late processes in 
neurodevelopment interact in the pathophysiology of schizophrenia (Rapoport et 
al. 2005). These disturbances in turn, could be caused by an interaction of genetic 
predisposition and environmental factors. The exact mechanism by which subtle 
pre- or perinatal disturbances could interact with brain maturation during 
adolescence to generate the manifest disorder remains unknown. The identified 
genetic and environmental risk factors are small in effect size and an increased 
understanding of their interactions is likely needed in order to understand the role 
of neurodevelopment in schizophrenia.  
Additionally, it should be noted that not only the dopaminergic and glutamatergic 
systems have been associated with schizophrenia. A number of other hypotheses 
on the pathophysiology of schizophrenia, that address the role of 
neurodevelopment and neuronal connectivity, have been proposed, see e.g. (Berger 
et al. 2006; Davis et al. 2003; Lewis et al. 2005).     
 

Pharmacological treatment of schizophrenia  
A major breakthrough in the treatment of schizophrenia came during the 1950s 
when chlorpromazine was introduced (Delay et al. 1952). In 1958 haloperidol was 
added as a treatment option for schizophrenia and it was five years later that 
Carlsson and Lindqvist (1963) suggested that chlorpromazine and haloperidol 
blocked central dopamine receptors and that this effect was responsible for the 
antipsychotic action of these agents. Since then, all novel antipsychotics 
introduced share the common denominator of being D2 receptor blockers. PET 
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(positron emission tomography) studies indicate that a receptor occupancy of 70% 
is needed to induce an antipsychotic effect (Wiesel 1994). This type of treatment 
has been found to reduce symptom severity in many patients, although a 
significant population are non-responders. Specifically, positive symptoms are 
greatly alleviated while negative symptoms and cognitive deficits are relatively 
unaffected. Antipsychotic drugs are usually divided into two categories: first-
generation (typical) and second-generation (atypical) antipsychotics. First-
generation compounds, e.g. haloperidol and chlorpromazine, are distinguished by a 
highly potent D2 receptor antagonism and a propensity to cause extrapyramidal 
side effects and dysphoria (Farde et al. 1992; Lewander 1994). The introduction of 
clozapine gave birth to the term atypical antipsychotics. PET studies indicate that 
clozapine exerts an antipsychotic effect at a D2 receptor occupancy of around 50% 
(Farde et al. 1994). This may explain the reduced propensity of clozapine to cause 
extrapyramidal side effects. Clozapine has been suggested to be more effective in 
treatment refractory patients and in treating negative symptoms and certain 
cognitive deficits (Lieberman 1996). Apart from its D2 receptor antagonism, 
clozapine also shows a high affinity for a number of other receptors, e.g. 
adrenergic and serotonergic receptors, which are thought to contribute to the 
clinical profile of clozapine (Marcus 2005). A number of other second-generation 
compounds have been introduced since clozapine. They generally cause less 
extrapyramidal side effects but are prone to cause hyperprolactinemia and weight 
gain. Their binding profile for non-D2 receptors vary and it remains unclear how 
non-D2 receptor interactions may contribute to clinical effect.   
 
Recently, a novel second-generation antipsychotic, aripiprazole, was introduced. 
Aripiprazole is a partial dopamine receptor agonist (Tamminga and Carlsson 2002) 
and its receptor binding profile is suggested to normalize both hyper- and hypo-
dopaminergic states, but whether this is actually the case in the clinical setting is 
uncertain. Aripiprazole binds to several receptor types and to date most data 
would indicate a similar efficacy as other compounds and that any advantage 
would be in tolerability (Christensen et al. 2006; Kasper et al. 2003; Pigott et al. 
2003). This is not to be belittled, but after more than 50 years of drug 
development no novel rationale for the treatment of schizophrenia has been 
successfully introduced in the clinic. Consequently, there is considerable room for 
improvement, especially when it comes to treatment of negative and cognitive 
symptomatology (Hagan and Jones 2005). 
    

Deficits in pre-attentive information processing and selective 
attention 
As already described there have been a number of attempts to outline a unified 
theory explaining the symptoms manifested in schizophrenic patients. The 
experiments presented within these pages have been especially influenced a 
hypothesis suggesting that impairments in pre-attentive filtering, i.e. the 



 15

preconscious processing of external and internal stimuli, and attention may 
constitute core deficits of schizophrenia. A relative inability to filter or gate 
information could result in sensory flooding and a subsequent cognitive 
fragmentation. The breakdown of basal cognitive mechanisms would spill over 
and lead to a deterioration of higher order cognitive functions producing the 
manifested symptoms of schizophrenia (Braff et al. 1978; Braff 1993; Freedman et 
al. 1987; McGhie and Chapman 1961).  
 

Animal models of schizophrenia 
The pivotal question could be put like this: Animals do not become schizophrenic, 
how then can the study of them tell us anything about a disorder that seems so 
uniquely human? It is true that animal models cannot fully mimic the complexity 
nor manifest all the symptoms of schizophrenia. However if the disorder can be 
disassembled into mechanisms like a sensitized mesolimbic dopamine system or a 
deficit in information processing, animal models can provide considerable 
information. More generally, animal models remain a necessity to 1) test theories 
of the disorder 2) uncover pathophysiological mechanisms and 3) develop new 
treatment strategies. Naturally, the potential as well as the shortcomings of every 
animal model must be kept in mind when one studies a multi-faceted reality. One 
way to address this issue is to evaluate the construct, face and predictive validity of 
a model. 
 

Animal models of psychiatric disorders can be classified as having 
construct-, face-, or predictive validity (Willner 1984) 
 
Construct validity Similar underlying neurophysiological concept  
Face validity Similar endpoint measurements in clinical and 

experimental models 
Predictive validity Similar pharmacological profile in clinical and 

experimental studies 
  
When modelling schizophrenia in an experimental animal at least two things 
should be considered. Firstly, brain function must be altered to resemble 
schizophrenia pathophysiology. This can be accomplished using e.g. acute or 
chronic administration of psychotomimetic drugs, interference with 
neurodevelopmental processes and genetic manipulation. Secondly at least one 
measurable parameter related to schizophrenia is needed. This thesis will focus on 
the PCP model and the behavioural parameters of prepulse inhibition (PPI) of the 
acoustic startle response (ASR), habituation of the ASR and latent inhibition (LI). 
However, the reader should be aware that a number of other approaches are 
available when using animal models to study schizophrenia.            
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DEFICITS IN PREPULSE INHIBITION OF THE ACOUSTIC STARTLE RESPONSE 

Pre-attentive sensory information processing can be assessed by the PPI of the 
ASR paradigm. PPI is defined as the reduction in reflex response to an intense 
stimulus when this stimulus is immediately preceded (30-500 ms) by a weaker 
prestimulus (Graham 1975; Hoffman and Ison 1980). The prestimulus, set to an 
intensity low enough as not to elicit a measurable startle response by itself, evokes 
a short lasting inhibitory process in the brain which is manifested by the 
attenuated response to the following more intense stimulus (figure 2). 
 
Figure 2. Schematic drawing showing normal and impaired prepulse inhibition of the acoustic 
startle response. 

 

Human studies 

PPI is readily observed in humans (Graham 1975) and provides a means to 
quantify complex sensorimotor gating processes in the brain. In 1978 Braff and 
colleagues showed that PPI was disrupted in schizophrenic patients (Braff et al. 
1978), i.e. patients displayed lower levels of PPI -interpreted as a less efficient 
gating mechanism- than control subjects. These findings have been replicated a 
number of times (Braff et al. 1992; Grillon et al. 1992; Kumari et al. 2000; Parwani 
et al. 2000; Weike et al. 2000) and extended to include studies of drug-naïve 
patients (Ludewig et al. 2003a; Mackeprang et al. 2002). However, an impaired PPI 
response is not pathognomonic to schizophrenia as this deficit is also found in 
other brain disorders, e.g. obsessive-compulsive disorder (Swerdlow et al. 1993), 
Huntington’s disease (Swerdlow et al. 1995), Tourette’s syndrome and attention 
deficit hyperactivity disorder (Castellanos et al. 1996). 
The effects of antipsychotic medication on PPI deficits in schizophrenic patients 
have been studied extensively. Unfortunately, the results are not entirely uniform. 
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A number of studies support a positive effect of antipsychotic medication on PPI 
deficits with a superior efficacy of second-generation antipsychotics (Kumari and 
Sharma 2002; Kumari et al. 1999; Leumann et al. 2002). However, there are 
studies that do not support these findings (Quednow et al. 2006; Weike et al. 
2000). Interestingly, some studies demonstrate a significant improvement in 
symptom severity without a concomitant restoration of PPI (Duncan et al. 2003; 
Mackeprang et al. 2002; Parwani et al. 2000), although a recent study does not 
support this observation (Minassian et al. 2006). However, taken together with the 
fact that PPI-deficits have been reported in first-degree relatives of schizophrenic 
patients (Cadenhead et al. 2000) it is possible that PPI is a stable trait marker of 
impaired sensory information processing. A recent publication states the heritable 
variance in PPI to over 50% (Anokhin et al. 2003) and it has been hypothesized 
that separate anatomical substrates might underlie a state- versus a trait-dependent 
PPI-deficit (Swerdlow et al. 2000a). 
 

Animal studies 

PPI is well preserved across species and can be tested using similar parameters in 
both animals and humans (Swerdlow and Geyer 1998). This provides some 
interesting opportunities for cross-species explorations of pre-attentive 
information processing. There are a variety of pharmacological, anatomical and 
genetic manipulations of neurotransmitter systems or brain regions hypothesized 
to be involved in the pathophysiology of schizophrenia that will induce an 
impaired PPI in the laboratory setting.  Both PCP and d-AMP have been shown 
to cause a decrease in PPI in experimental animals. A number of antipsychotics 
reverse this deficit in monkeys (Linn et al. 2003), rats (Bakshi and Geyer 1995; 
Bakshi et al. 1994; Depoortere et al. 1997; Johansson et al. 1995; Swerdlow et al. 
1994) and mice (Curzon and Decker 1998; Fejgin et al. 2006; Ouagazzal et al. 
2001). There seems to be a differential effect of first and second-generation 
antipsychotics in that the former primarily block the deficit induced by dopamine 
receptor agonists while the latter seem to ameliorate deficits induced both by 
dopamine receptor agonists and NMDA receptor antagonists. However there are 
studies that do not support this general view (Geyer et al. 2001; Johansson et al. 
1995; Swerdlow et al. 1998).  
 

The primary prepulse inhibition circuit 

The primary acoustic startle circuit constitutes a very small number of synaptic 
couplings as pointed out by the very short latency, 8 ms in the rat, of the 
electromyographic response after tone onset (Ison et al. 1973). Extensive 
anatomical tracing, lesion and electrical stimulation experiments indicate that the 
primary acoustic startle circuit in the rat consists of the auditory nerve, the ventral 
cochlear nucleus, the nucleus of the lateral lemniscus, the caudal pontine reticular 
nucleus, spinal interneurons and lower motor neurons (Davis et al. 1982). Despite 
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its relative simplicity, the ASR can be modified as exemplified by habituation and 
PPI. In the PPI situation the prepulse may intersect with the ASR at the pontine 
reticular nucleus, which receives projections from the peduculopontine nucleus. 
This nucleus is in turn modulated by a number afferents descending from the 
forebrain circuitry (Koch 1999; Swerdlow et al. 2001). 
PPI is generally not considered to involve learning mechanisms i.e. increases or 
decreases in response following repeated testing. Rather it has been viewed as a 
hard-wired sensorimotor gating process. The data to date indicate that PPI is 
modulated by the cortico-striato-pallido-thalamic neural circuitry (Koch 1999; 
Swerdlow et al. 1994) and a deficit in this circuit is hypothesized to result in a 
sensory over-stimulation of the cerebral cortex (Carlsson et al. 1999a; Carlsson 
and Carlsson 1990; Glenthoj 1995). A modified circuit was recently proposed 
where the thalamus plays a more central role (Zhang 1999). All sensory signals 
must pass through the thalamus before reaching the cortex where they activate a 
number of inhibitory feedback loops to a number of subcortical regions, including 
the striatum and thalamus, possibly recruiting these regions in sensorimotor 
gating.  
 

Dopaminergic influence on prepulse inhibition 

Both indirect (d-AMP) and direct (apomorphine) dopamine receptor agonists 
dose-dependently decrease PPI in rats and mice when administered systemically 
(Johansson et al. 1995; Mansbach et al. 1988; Ralph et al. 2001; Swerdlow et al. 
1986; Varty et al. 2001). A similar effect following administration of d-AMP has 
been shown in humans (Hutchison and Swift 1999), although a subsequent study 
failed to replicate this finding (Swerdlow et al. 2002).  
As already mentioned, the mesocorticolimbic dopamine system is intimately 
involved in the regulation of PPI and systemic administration of d-AMP increases 
dopamine levels paralleled in time and duration by a decrease in PPI in rats 
(Zhang et al. 2000). Other studies have tried to determine which dopamine 
receptor subtypes are involved in the PPI modulating effect of dopamine. An 
apomorphine-induced deficit in PPI was reversed by the D2 receptor antagonists 
haloperidol and raclopride, but not by the D1 receptor antagonist SCH 23390 
(Mansbach et al. 1988; Swerdlow et al. 1991). Also, a selective D2 agonist, 
quinpirole, but not a selective D1 agonist, SKF 38393 disrupted PPI (Peng et al. 
1990) and this effect of quinpirole was reversed by haloperidol (Wan and 
Swerdlow 1993). These studies point to a major role of the D2 receptor in the 
modulation of PPI in rats. In addition, it seems that this receptor exerts a tonic 
effect on PPI as administration of haloperidol and raclopride increases PPI per se 
(Depoortere et al. 1997; Johansson et al. 1995). Under certain experimental 
conditions PPI has been shown to be reduced by systemic (Swerdlow et al. 1991; 
Swerdlow et al. 2005; Wan et al. 1996) and intra-medial PFC (Ellenbroek et al. 
1996; Shoemaker et al. 2005; Swerdlow et al. 2005) administration of D1 receptor 
antagonists. The importance of the medial PFC in this effect is supported by a 
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study showing that reduction of medial PFC dopamine levels decreases PPI 
(Bubser and Koch 1994). It has been suggested that D1 blockade in the medial 
PFC leads to a reciprocal increase in dopamine in the NAC and a decreased PPI. 
In addition, a recent study showed that local administration of the D1 receptor 
antagonist SCH 23390 into the PFC can potentiate the PPI disruptive effect of 
systemically administered apomorphine (de Jong and van den Buuse 2006). 
However, the mechanism of D1 receptor mediated modulation of PPI remain 
inconclusive as one study showed that a disruption of PPI following SCH 23390 
administration was insensitive to amelioration by haloperidol (Swerdlow et al. 
2005) and dopaminergic lesions in the medial PFC in rats have produced 
inconsistent results (Swerdlow et al. 2006).  
Recent data from receptor knockout mice lacking differing subtypes of the 
dopamine receptor have suggested that the D2 subtype is essential for the PPI 
disruption induced by d-AMP (Ralph et al. 1999; Ralph-Williams et al. 2002) while 
the D1 subtype is necessary for the effects of apomorphine. These data also point 
to a potential difference in the dopaminergic regulation of PPI in mice and rats.  
In addition there are strain specific differences in the effects of pharmacological 
manipulations in the PPI model and methodological issues such as basal level of 
PPI, prepulse intensity and inter-stimulus interval (Dulawa and Geyer 2000; Ralph 
et al. 2001; Swerdlow and Geyer 1998; Swerdlow et al. 2000b; Varty et al. 2001) 
has to be considered.   
 

Glutamatergic influence on prepulse inhibition    

A large body of evidence point to a central role of glutamatergic 
neurotransmission as a modulator of PPI in experimental animals. The non-
competitive NMDA receptor antagonist PCP and its analogues, MK-801 and 
ketamine, dose-dependently disrupt PPI in rodents (Brody et al. 2003; Curzon and 
Decker 1998; Johansson et al. 1995; Mansbach and Geyer 1989; 1991). PCP also 
decreases PPI in non-human primates (Linn and Javitt 2001; Linn et al. 2003). 
Data from human studies using ketamine are more inconsistent, published studies 
include observations of decreased, increased or no change in PPI (Abel et al. 2003; 
Duncan et al. 2001; Karper et al. 1994; van Berckel et al. 1998; Vollenweider et al. 
2000). Clearly, further studies are needed to clarify these effects.  
Glutamate transmission influences the neural substrates of PPI in a complex 
manner (Swerdlow et al. 2001). Glutamate and dopamine have been shown to 
interact at the level of the NAC to regulate PPI. Local infusion of AMPA into the 
NAC disrupts PPI and this effect can be blocked by systemic administration of 
haloperidol (Wan et al. 1995). A lesion in the medial PFC has been shown to 
render rats insensitive to the disruptive effect of MK-801 on PPI while not 
affecting the response to apomorphine (Schwabe and Koch 2004). Possibly, 
descending glutamatergic projections from the PFC increases dopamine 
transmission in the NAC leading to a disruption of PPI. However, local infusion 
of AP-5 and 7-chlorokynurenate (a synthetic analogue of an endogenous NMDA 
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receptor antagonist) also reduce PPI without affecting dopamine levels in the 
NAC as measured by microdialysis (Kretschmer and Koch 1997). This suggests 
that manipulations of the glutamatergic system can affect PPI without increasing 
dopamine transmission. The interaction between glutamate and dopamine was 
also shown to differ between the core and shell subregions of the NAC (Wan and 
Swerdlow 1996), and the functional differences between the NAC subregions may 
provide an explanation to the somewhat contradictory data. 

DEFICITS IN HABITUATION OF THE ACOUSTIC STARTLE RESPONSE 

A likely consequence of impaired pre-attentive sensory information processing 
would be a relative inability to screen out irrelevant stimuli (Geyer and Braff 1987) 
leading to a deficit in habituation response (figure 3). Habituation refers to the 
decrease in response that is observed when an identical stimulus is presented 
repeatedly, and it is considered to be the simplest form of learning (Petrinovich 
and Peeke 1973). Interestingly, a deficit in this form of non-associative learning 
has been demonstrated in schizophrenic patients, including drug-naïve patients 
(Akdag et al. 2003; Bolino et al. 1992; Braff et al. 1992; Ludewig et al. 2003a; 
Meincke et al. 2004; Parwani et al. 2000; Taiminen et al. 2000).  
 
 
Figure 3. Schematic drawing showing normal and impaired habituation (adapted from Geyer 
and Braff, 1987). 

 
Time 

 
 
The neural circuit that mediates habituation of ASR primarily involves the giant 
neurons of the caudal pontine formation that in turn project directly onto motor 
neurons in the spinal cord (Davis 1980; Fendt et al. 2001). Thus, different brain 
circuits most likely control habituation and PPI (Koch 1999). An association 
between a deficit in habituation of the eye-blink response and negative and 
cognitive symptomatology has been demonstrated in one study (Taiminen et al. 
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2000), while another found no such association (Meincke et al. 2004). 
Additionally, antipsychotic drug treatment has not been shown to normalize a 
deficit in habituation response (Bolino et al. 1992; Meincke et al. 2004; Taiminen 
et al. 2000). Further studies are clearly needed to elucidate the role of the observed 
habituation deficit in the pathophysiology of schizophrenia.  
 

DEFICITS IN LATENT INHIBITION 

Imagine trying a new brand of soda just before going on a rollercoaster ride that 
makes you violently ill. Now, when being offered that brand of soda you might 
recoil in disgust as it triggers the memory of being ill. You have been conditioned 
to a stimulus (soda) and consequence (illness) contingency. However if you 
instead drank a soda that you had tasted numerous times before without any 
adverse consequences before that ill-fated ride, the association between taste and 
illness would be much less likely to occur. This would constitute LI, a 
phenomenon first described by Lubow and Moore (Lubow and Moore 1959). LI 
is usually defined as the retardation in learning a conditioned stimulus (CS, e.g. a 
flavour) and unconditioned stimulus (US, e.g. nausea) contingency when the 
subject has prior experience of the CS. It is a psychological phenomenon that has 
been documented in all mammals tested and it seems to generalize well across 
sensory modalities (Lubow 1973). 
 
There is still debate over what LI reflects in terms of cognitive function (figure 4). 
The most popular theory states that LI is a measure of selective attention and that 
during CS pre-exposure the test subject learns to ignore this stimulus, thus 
decreasing its associability (Lubow 1997; Pearce and Hall 1980). Based on a large 
number of animal studies, Weiner and Feldon have suggested an alternative 
“switching” theory of LI (Weiner 1990; Weiner and Feldon 1997). According to 
this theory a CS + no US association is learnt during pre-exposure that continues 
to control behaviour during the conditioning phase. In order to behaviourally 
express the CS + US association the animal must switch from the CS + no US 
strategy to the new CS + US one. Another theory, that takes the effect of context 
into account, suggests that learning the CS + US pairing is not disrupted in LI 
paradigms but rather the expression of this learning (Escobar et al. 2002). Context 
is essentially the learning situation and can comprise both external and internal 
cues. A context + CS association learnt during pre-exposure masks the CS + US 
relationship subsequently learnt but does not interfere with learning per se. This 
theory serves well to explain LI disruption due to a long delay between learning 
and test phases. In short, the main controversy concerns whether LI reflects 
attention processes during pre-exposure that retards learning during conditioning, 
or if LI is to be seen as a failure to express associations learned during 
conditioning due to pre-exposure (Escobar et al. 2002; Lubow 1997). 
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Human studies 

LI entered schizophrenia research when Solomon (Solomon et al. 1981) and 
Weiner (Weiner et al. 1984) suggested that decreased LI might provide an animal 
model of the widely described inability of schizophrenic patients to ignore 
irrelevant stimuli. It was then shown that acute schizophrenic patients indeed 
displayed a lowered level of LI (Baruch et al. 1988) i.e. they learned the preexposed 
CS + US contingency faster than healthy controls. This finding has been 
replicated in a number of studies (Guterman et al. 1996; Kathmann et al. 2000; 
Rascle et al. 2001; Vaitl et al. 2002) but has also been confounded by negative 
findings (Leumann et al. 2002; Swerdlow et al. 1996) and reports of abnormally 
strong LI in chronic schizophrenic patients (Cohen et al. 2004; Rascle et al. 2001). 
In parallel to these findings it has been shown that low to moderate doses of d-
AMP lowers LI in healthy control subjects (Gray et al. 1992; Swerdlow et al. 
2003). A critical review of the work done suggests that there is a dichotomy 
between acute and chronic schizophrenic patients in that the former show 
reduced LI and the latter intact or increased LI (Gray and Snowden 2005). An 
explanation for this discrepancy may be the effect of antipsychotic medication. 
Antipsychotic drugs have been shown to increase LI in both human (Williams et 
al. 1996; Williams et al. 1997) and animal studies (Dunn et al. 1993; Shadach et al. 
1999; Weiner et al. 1996b). The clinical picture is also scattered by differences in 
experimental protocols, making the exact relationship of LI and schizophrenia 

Figure 4. Hypotheses on the latent inhibition effect. 
Preexposure Conditioning  LI mechanism 

 
SELECTIVE ATTENTION MODEL 

Learned inattention to 
the CS 

Reduced strength of CS 
and US pairing due to 
inattention to CS. 

Less association between 
CS and US. 

 
SWITCHING MODEL 

CS + no US association 
is formed. 

Learning CS + US 
association requires a 
switch from the CS + no 
US association. 

Switch mechanism 
retards formation of the 
CS + US association. 

 
CONTEXT MODEL 

CS + context association 
is formed. 

 

Normal formation of the 
CS + US association. 

The CS + context 
association masks 
expression of the CS + 
US association. 

   
Mechanism proposed to be impaired in acute schizophrenia  
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unclear. Possibly, a relative lack of LI is a state marker associated with the acute 
phase of the disorder, rather than a trait marker of schizophrenia 
psychopathology. However, several studies have shown decreased LI in otherwise 
healthy subjects scoring high on questionnaires measuring schizotypy (Braunstein-
Bercovitz and Lubow 1998; Della Casa et al. 1999; Lubow and De la Casa 2002; 
Lubow et al. 2001) indicating that deficits in LI may indeed be trait dependent. To 
validate this supposition the confounding effects of antipsychotic medication 
would have to be disentangled. Others have suggested that the chronic state is 
associated with a potentiated LI (Rascle et al. 2001). A similar abnormality of LI 
has been observed in patients with obsessive-compulsive disorder (Swerdlow et al. 
1999) and in rats treated with NMDA receptor antagonists (see below). 

Animal studies 

The test procedures used in experimental animals differ substantially from those 
used in clinical studies, complicating the comparison of data. Human studies 
currently require the use of a masking task to prevent the test subject from 
deductively solving the test (Lubow and Gewirtz 1995), although alternatives to 
masking are being explored (Escobar et al. 2003). Two procedures are routinely 
used in experimental animals, the conditioned emotional response (CER) model 
and the conditioned taste aversion (CTA) model (Welzl et al. 2001). The CER 
model is by far the most common and uses an electric foot shock as the US and a 
tone or a light as the CS. The measured parameter is the time to complete a 
certain number of licks from a water bottle in the presence of the CS. CTA on the 
other hand utilizes an aversive pharmacological agent lithium chloride (LiCl) as the 
US and a sweet (sucrose or saccharine) solution as the CS. In this case the 
measured parameter is the amount of sweet solution ingested during a test session. 
There are a number of parameters to be considered when designing and analyzing 
LI experiments: 
1) The properties of the CS must be considered and normally neutral stimuli are 
used to mimic human studies and to reduce the potential confounding factor that 
rewarding or aversive stimuli may represent. In CTA the use of a neutral stimulus 
is not possible and while both sucrose and saccharine can produce LI, stimuli with 
more complex taste properties are unsuitable and can produce the opposite 
outcome i.e. latent facilitation (Bennett et al. 1996).  
2) Similarly, the choice of US warrants consideration, the foot-shock in the CER 
model and LiCl in CTA, are approaches with little similarity to human study 
protocols. Yet LI using CTA has been demonstrated in humans (Arwas et al. 
1989).  
3) The impact of experimental manipulations, pharmacological or otherwise, on 
the experience of the CS and US must also be addressed; e.g. it has been shown 
that the administration of d-AMP may influence the perceived intensity of foot-
shock in rats (Killcross et al. 1994) and rewarding drugs, such as d-AMP, can 
induce conditioned taste avoidance per se (Parker 1995).  
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4) Furthermore the amount of pre-exposure to the CS and the number of CS + 
US pairings during conditioning exert opposite effects on the level of LI. More 
pre-exposure to the CS increases LI while more CS + US pairings decrease it.  
5) Another important parameter is that of context. A change in e.g. test 
environment between pre-exposure and conditioning effectively disrupts LI, 
demonstrating a key role of context in the LI effect.  
6) Lastly, the time frame of the experiments must be considered, as it has been 
shown that e.g. long delays between conditioning and testing can both disrupt 
(Rosas and Bouton 1997) and enhance LI (De la Casa and Lubow 2002) per se.   
 

The latent inhibition circuitry 

The primary locus of LI in experimental animals seems to be the NAC. This brain 
region constitutes an interface between motivational and motor systems and plays 
a vital role during the conditioning stage of LI (Young et al. 2005). Local 
administration of d-AMP into the NAC during conditioning disrupts LI (Solomon 
and Staton 1982) whereas administration of haloperidol or lesions in dopaminergic 
terminals in the NAC leads to persistent LI (Gray et al. 1997; Joseph et al. 2000). 
Measurements of extra-cellular dopamine levels confirm these findings as 
conditioning is associated with an increase in dopamine levels in the NAC and 
preexposure to the CS abolishes this increase (Young et al. 1993). The NAC can 
be functionally subdivided in a core and shell region and several studies indicate 
that these regions exert differential effects on LI (Gal et al. 2005; Weiner et al. 
1996a).  
 
Lesions in the hippocampus have been shown to both disrupt (Schmajuk et al. 
1994; Solomon and Moore 1975) and spare (Clark et al. 1992) LI. Further studies 
have revealed that a hippocampal lesion renders LI insensitive to manipulation of 
context (Holt and Maren 1999; Honey and Good 1993). The disruption of LI after 
hippocampal lesions seems to be due to the destruction of axons passing through 
the hippocampus (Weiner 2003). These axons likely originate in the entorhinal 
cortex, as supported by lesions in this region (Coutureau et al. 1999). In summary, 
the hippocampus plays an important role in the contextual modulation of LI and 
the entorhinal cortex in the general expression of LI.  
Both the medial PFC and the basolateral amygdala provide extensive input to the 
NAC and disturbances of both regions can modify ventral striatal dopamine 
function (Groenewegen et al. 1996; Groenewegen et al. 1999; Louilot et al. 1985). 
Indeed, the basolateral amygdala seems to be involved in evaluating the impact of 
reinforcement in LI (Cardinal et al. 2002; Holland et al. 2000). The role of the 
medial PFC however, remains elusive. No study has been able to detect a change 
in LI following medial PFC lesions (Lacroix et al. 1998; Lacroix et al. 2000b) or 
local administration of dopamine agonists and antagonists (Broersen et al. 1999; 
Ellenbroek et al. 1996; Lacroix et al. 2000a). However, lesions in the orbitofrontal 
PFC has been shown to produce abnormally persistent LI (Schiller and Weiner 
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2004; Schiller et al. 2006). Thus, the described LI circuitry primarily involves the 
NAC, the hippocampus and entorhinal cortex, the basolateral amygdala and 
possibly also regions of the PFC. 
 

Dopaminergic influence on latent inhibition 

Numerous studies show that LI can be disrupted by the systemic administration 
of d-AMP to rats in an inverse dose-related manner (Ellenbroek et al. 1997; 
Solomon et al. 1981; Weiner et al. 1987; Weiner et al. 1984; 1988). This parallels 
data from human studies in which also only low to moderate doses of d-AMP 
disrupts LI (Gray et al. 1992; Swerdlow et al. 2003). Initially it was suggested that 
d-AMP had to be administered at least twice, both before preexposure and 
conditioning phases, to disrupt LI. It was then shown that d-AMP could disrupt 
LI when administered only before conditioning provided that the rats either were 
sensitized by a d-AMP injection 24 hours earlier (Weiner et al. 1988) or if the 
conditioning session took place at least 45 minutes after the administration of d-
AMP (Gray et al. 1997). It has been hypothesized that the dopamine release 
induced by d-AMP needs to be Ca2+ dependent to disrupt LI and that with 
repeated administration or the passage of time the d-AMP effect on dopamine 
release goes from being relatively Ca2+ independent to Ca2+ dependent. The direct 
dopamine agonist apomorphine does not disrupt LI and this lack of effect extends 
to the D1 agonist SKF 38393 and the D2 agonist quinpirole (Feldon et al. 1991). 
Haloperidol increases LI with remarkable consistency across studies (Moser et al. 
2000) and this seems to generalize to a number of other antipsychotic agents 
(Dunn et al. 1993), although this is based on a single study. The noteworthy 
exception is clozapine where most studies have shown an increase in LI after 
clozapine administration (Moran et al. 1996; Trimble et al. 1998) but a number of 
negative findings (Dunn et al. 1993) and reports of disrupted LI after high doses 
of clozapine (Christison et al. 1991) complicate matters. Generally though, both 
first and second-generation antipsychotics reverse d-AMP-induced disruption of 
LI (Gosselin et al. 1996; Millan et al. 1998; Warburton et al. 1994), supporting the 
involvement of D2-receptors in the effect of d-AMP on LI.    
 

Glutamatergic influence on latent inhibition 

Early reports on the effects of NMDA receptor antagonists on LI indicated that 
neither PCP nor MK-801 disrupts LI (Schroeder et al. 1998; Turgeon et al. 2000; 
Turgeon et al. 1998; Weiner and Feldon 1992). Since only acute schizophrenic 
patients show lowered LI it was hypothesized that disruption of LI modelled 
mainly positive symptomatology associated with acute psychosis and aberrations 
primarily in dopamine signalling. A few studies did find that high doses of PCP 
and MK-801 (Turgeon et al. 2000; Turgeon et al. 1998) and continuous delivery of 
PCP (Schroeder et al. 1998) disrupted LI in rats. However, NMDA receptor 
antagonists are known to induce perseverative behaviour or impair the ability to 
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alter behavioural strategy (Carlsson and Carlsson 1989; Moghaddam et al. 1997; 
Svensson 2000) and in analogy might not disrupt LI but rather potentiate it, 
reflecting an inability to disregard from the context of preexposure when 
subjected to conditioning (Weiner and Feldon 1992). In line with this it has been 
shown that MK-801-treatment leads to a persistent LI (Gaisler-Salomon and 
Weiner 2003), i.e. LI is still displayed under conditions that disrupt LI in control 
rats. The mechanism of LI potentiation by NMDA receptor antagonists can at 
present only be speculated upon. Conditioning-based potentiated LI has been 
associated with reduced dopamine transmission in the NAC whereas LI disruption 
seems to require impulse dependent dopamine release within the NAC 
(Warburton et al. 1996). A number of studies show that PCP increases accumbal 
dopamine release (Adams and Moghaddam 1998; Jentsch et al. 1997a; Johansson 
et al. 1998), however this is likely due to an increase in tonic activity in ventral 
tegmental area dopaminergic neurons accompanied by a decrease in phasic activity 
(Svensson 2000). An alternative mechanism may be an increase of glutamate 
release in the PFC, as this effect has been related to perseverative behaviour in rats 
(Adams and Moghaddam 1998).   
 

The phencyclidine model of schizophrenia 
As mentioned PCP was developed as an anaesthetic agent but was withdrawn due 
to its side effects that included hallucinations and a psychotic state that 
incorporated the full symptomatology of schizophrenia (Allen and Young 1978; 
Javitt and Zukin 1991; Luby et al. 1959; Pearlson 1981; Yesavage and Freman 
1978). The observation that PCP could induce positive symptoms, negative 
symptoms and cognitive deficits associated with schizophrenia launched PCP-
administration as a model of schizophrenia. It seemed likely that PCP altered brain 
function in a manner resembling the schizophrenic brain and that the PCP-model 
could unmask some of the pathophysiology of the disorder (Farber 2003; Olney et 
al. 1999; Thornberg and Saklad 1996). Administration of PCP to rodents and non-
human primates causes certain behavioural abnormalities similar to those 
observed in schizophrenic patients e.g. information processing deficits (Geyer et al. 
1984; Mansbach and Geyer 1989) and cognitive dysfunction related to the frontal 
cortex (Adams and Moghaddam 1998; Jentsch et al. 1997b). In addition, PCP 
induces hyperlocomotion, behavioural stereotypy and social withdrawal, all of 
which are thought to be relevant for clinical aspects of schizophrenia (Jentsch and 
Roth 1999; Lipska and Weinberger 2000). 
 

NEUROCHEMICAL EFFECTS OF PHENCYCLIDINE 

The psychotomimetic effect of PCP is attributed to, i.a. its action at the 
glutamatergic NMDA receptor. PCP acts as a non-competitive inhibitor of this 
receptor via a binding site inside the channel complex (Javitt and Zukin 1991; 
Lodge and Anis 1982). Somewhat paradoxically, PCP has been shown to increase 
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glutamate release in the PFC and NAC (Adams and Moghaddam 1998). This 
glutamatergic hyperstimulation may explain some of the behavioural effects of 
PCP (Moghaddam and Adams 1998) and could be caused by a loss of inhibitory 
drive, via a blockade of NMDA receptors on GABAergic interneurons, and 
ensuing disinhibition of primary corticolimbic neurons leading to a complex 
circuit dysbalance (Farber 2003; Olney et al. 1999; Thornberg and Saklad 1996).  
Several studies also indicate that PCP alters the activity of dopaminergic, 
noradrenergic and serotonergic neurotransmitter systems, particularly in the 
frontal cortex and NAC (Adams and Moghaddam 1998; Jentsch et al. 1997a; 
Jentsch et al. 1999a; Johansson et al. 1998). The receptor binding profile of PCP 
also includes D2- and 5-HT2-receptor agonistic properties (Callado et al. 2000; 
Kapur and Seeman 2002; Seeman and Lasaga 2005),  receptor affinity (Sonders 
et al. 1988) and dopamine transporter inhibition (Rothman 1994). Additionally, 
PCP has been shown to increase intracellular Ca2+, likely by inhibition of voltage-
gated K+ channels or release from intracellular stores (Bartschat and Blaustein 
1986; 1988; Mattson et al. 1992). As a whole, these observations suggest that the 
neurochemical effects of PCP depend on several neurotransmitter systems and 
brain regions implicated in current hypotheses on the pathophysiology of 
schizophrenia. 
 

Nitric oxide 
Nitric oxide (NO) was first recognized as the endothelial-derived relaxing factor in 
the cardiovascular system and as a mediator of the tumoricidal and bactericidal 
action of macrophages (Hibbs et al. 1987; Palmer et al. 1987). Later, evidence for a 
neural role of NO emerged, linking it to LTP and thus to learning and memory 
(Bredt and Snyder 1989; Garthwaite et al. 1989). NO serves as a messenger 
molecule in a number of physiological processes and possesses several interesting 
qualities. Being a gas, it can diffuse freely through cell membranes and may serve 
as a retrograde messenger in synaptic plasticity events such LTP. As it cannot be 
stored in the cell, release is dependent on ongoing synthesis. NO has a half-life of 
seconds and as a free radical it can react directly with proteins and also form 
several cytotoxic moieties (Dawson et al. 1992). In the brain, NO coexists with 
classical neurotransmitters and is probably involved in the modulation of neuronal 
signal transmission. In vivo data suggests that NO can modulate every major 
neurotransmitter system, i.e. dopamine, glutamate, 5-HT, noradrenalin and GABA 
(Kano et al. 1998; Prast and Philippu 2001; Segovia and Mora 1998; Smith and 
Whitton 2000; 2001; Wegener et al. 2000), hypothesized to be involved in the 
pathophysiology of schizophrenia (Carlsson et al. 2001; Roth et al. 2004; 
Tamminga et al. 2003).  
NO is formed by a two-step oxidation reaction between the amino acid L-arginine 
and molecular O2 catalyzed by nitric oxide synthase (NOS) (figure 5).  
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Figure 5. Schematic drawing of nitric oxide synthesis and signal transduction. 

 
Three isoforms of the NOS enzyme have been described, NOS-1 or neuronal 
NOS (nNOS), NOS-2 or endothelial NOS (eNOS) and NOS-3 or inducible NOS 
(iNOS), which differ in their cellular localization and regulatory mechanisms 
(Steinbusch et al. 2000). The nNOS isoform is predominantly present in neurons, 
eNOS in endothelial cells and iNOS in macrophages. Activation of nNOS and 
eNOS is dependent on above ambient Ca2+ levels whereas the activation of iNOS 
is not (Ruan et al. 1996). The latter has been described as inducible whereas the 
former two are constitutive. However, it has been shown that iNOS is indeed 
constitutively expressed and the expression of both eNOS and nNOS can be 
induced, thus this division becomes more a matter of degree than principle. In the 
brain NO is proposed to be a key link between NMDA receptor mediated 
increases in cytoplasmic Ca2+ and activity dependent long-term changes such as 
differentiation and synaptic plasticity (Karatinos et al. 1995; Snyder and Ferris 
2000).   
 
Once released NO binds to the heme moiety of soluble guanylyl cyclase (sGC) to 
cleave guanosine triphosphate (GTP) to cyclic guanosine monophosphate (cGMP) 
and organic phosphate. The cGMP cascade affects e.g. phosphodiesterase and 
protein kinase activity. Known targets of cGMP-dependent protein kinases 
include DARPP-32 (Tsou et al. 1993), the inositol 1,3,4-triphosphate receptor 
(Koga et al. 1994), G-substrate (Detre et al. 1984), NOS (Bredt et al. 1992) and the 
GABAA receptor (Leidenheimer 1996). NO exerts its action mainly through 
cGMP, but also through direct nitration of proteins, phosphoinositides and 
cAMP.  
 
G-protein-coupled receptors have also been shown to regulate NO. Hormones 
and neurotransmitters can activate these receptors and thereby stimulate 
intracellular Ca2+ mobilization, via the phospholipase C/inositol triphosphate 
systems and thus increase cGMP and cAMP levels via NO production.   
The distribution of nNOS in the brain has been studied extensively in several 
different species, including rats, mice and humans. Generally the localization of 
nNOS in rodents is restricted to limited populations of neurons in the cerebral 
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cortex, hypothalamus, brain stem, cerebellum, basal forebrain, striatum, 
hippocampus, olfactory bulb and thalamus (Cork et al. 1998; Forstermann et al. 
1990; Hara et al. 1996; Kidd et al. 1995; Vincent and Hope 1992). In humans, the 
highest levels of NOS activity are found in the cerebral cortex, limbic system, 
striatum and the brain stem (Blum-Degen et al. 1999; Downen et al. 1999; 
Egberongbe et al. 1994). There are apparent differences in the distribution and 
activity of nNOS across mammalian species. Nevertheless, the distribution of 
nNOS suggests an extensive neuromodulatory role for NO in the brain. 
 

NITRIC OXIDE AND SCHIZOPHRENIA 

A tentative link between NO metabolism and schizophrenia was first made in 
Russia in the 1960s (Averbukh et al. 1966), but it was not until the early 1990s that 
work began in detail. Histochemists had introduced NADPH diaphorase 
histochemistry as a tool to label neuronal populations expressing NOS (Vincent et 
al. 1982) and the importance of NO was beginning to sink in, it was even named 
“molecule of the year 1992”. Overall, the human data supporting a role of NO in 
the pathophysiology of schizophrenia have found both increases and decreases in 
NO levels (Bernstein et al. 2005). Thus both possibilities must be taken into 
consideration when discussing NO as a potential pathophysiological agent in 
schizophrenia. 
 

Genetic associations between nitric oxide and schizophrenia 

A single nucleotide polymorphism (Shinkai et al. 2002) as well as a repeat 
polymorphism (Reif et al. 2006) in the nNOS gene have been associated with 
schizophrenia, although the former finding was not replicated in a second study 
(Liou et al. 2002). Interestingly, the repeat polymorphism also impacted on 
prefrontal functioning in schizophrenic patients demonstrating a functional role 
for this gene variant (Reif et al. 2006). Two independent studies have also found 
significant associations between single nucleotide polymorphisms in the CAPON 
(a protein closely linked to nNOS) gene and schizophrenia (Brzustowicz et al. 
2004; Zheng et al. 2005).  
 

Biochemical links between nitric oxide and schizophrenia 

An increase in nNOS mRNA in PFC samples from schizophrenic patients has 
been shown (Baba et al. 2004), but a decrease in nNOS activity in the same brain 
region has also been reported (Xing et al. 2002). Supporting the latter lowered NO 
metabolites (nitrite and nitrate) were found in the CSF of schizophrenic patients 
(Ramirez et al. 2004) but again higher levels of metabolites have been found in the 
caudate nucleus (Yao et al. 2004). Furthermore, higher levels of NOS protein have 
been demonstrated in the cerebellar vermis (Karson et al. 1996). In addition, a 
number of studies have investigated NOS activity using blood samples and the 
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predominant finding is an increase in NOS activity, NO or metabolite levels in the 
blood of schizophrenic patients (Das et al. 1996; Das et al. 1995; Herken et al. 
2001; Taneli et al. 2004; Zoroglu et al. 2002). However, the demonstration of 
lower nNOS activity and NO metabolite levels in schizophrenic patients 
complicate these findings (Srivastava et al. 2001; Suzuki et al. 2003). Additional 
observations include increased levels of ADMA (Das et al. 1996), an endogenous 
NOS-inhibitor, and lowered levels of arginase (Yanik et al. 2003), which competes 
with NOS for substrate, in blood samples from schizophrenic patients.  
 

Histochemical correlates of nitric oxide dysfunction in schizophrenia 

An increase in NADPH-expressing neurons in the brain stem and elevated levels 
of nNOS in the cerebellar vermis of schizophrenic patients has been reported 
(Bernstein et al. 2001). Furthermore, a displacement of prefrontal and temporal 
lobe cortical grey and white matter neurons has been demonstrated, with fewer 
neurons in superficial and more in deep layers in schizophrenic patients (Akbarian 
et al. 1993a; Akbarian et al. 1996; Akbarian et al. 1993b). Finally, a reduction in 
NOS containing neurons in the hypothalamus has been shown (Bernstein et al. 
2000; Bernstein et al. 1998). Collectively, this data supports an abnormal NO 
system in the brain of schizophrenic patients that may be linked to aberrations in 
neurodevelopment.      
 

NITRIC OXIDE SYNTHASE INHIBITORS BLOCK THE BEHAVIOURAL EFFECTS OF 

PHENCYCLIDINE 

As described the mechanism of action of PCP is not fully understood but several 
studies show that the NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME) 
can block the effects of PCP on PPI, locomotion and stereotyped behaviour in 
rats (Johansson et al. 1997; Johansson et al. 1998; Klamer et al. 2005b; Klamer et 
al. 2005c). Recently, the effect of L-NAME was replicated in mice using the PPI 
model (Klamer et al. 2001). L-NAME was also shown to attenuate PCP-induced 
alterations in the dopaminergic and serotonergic systems in rats (Johansson et al. 
1998). A recent study indicated that L-NAME might be more effective in 
ameliorating the effects of PCP on locomotor activity and PPI as compared to 
similar effects induced by the PCP-analogue MK-801 (Klamer et al. 2005c). As the 
main difference between PCP and MK-801 is the higher affinity of the latter for 
the NMDA receptor complex it was suggested that L-NAME possibly interfered 
with the binding of PCP at the NMDA receptor. However, receptor-binding data 
did not show any interaction of L-NAME with the MK-801-sensitive NMDA 
receptor binding of PCP, indicating that the effect of L-NAME on PCP-induced 
behavioural changes cannot be explained by interactions at the NMDA receptor 
(Klamer et al. 2005c). In addition, selective nNOS inhibitors also attenuate 
behavioural effects of PCP in rats (Johansson et al. 1999; Wiley 1998) and mice 
(Klamer et al. 2004b). Transgenic mice lacking the nNOS gene show less 
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hyperlocomotion (Bird et al. 2001; Wiley et al. 1999) and an increase in PPI 
(Klamer et al. 2005a) in response to PCP. Since the effects of PCP likely 
encompass several neurotransmitter systems it is possible that PCP modulates PPI 
bidirectionally, the net effect usually being a decrease in PPI. Tentatively, PCP is 
disconnected from its PPI decreasing mechanism in nNOS knockout mice, 
yielding an increase in PPI instead. The mechanism of the interaction between 
PCP and the NO-system remains to be elucidated though a recent study showed a 
significant increase in hippocampal cAMP levels after both local and systemic 
PCP administration (Klamer et al. 2005b). This increase was temporally correlated 
to the disruptive effects of PCP on PPI and could be blocked by pre-treatment 
with L-NAME. Interestingly, the NOS and guanylyl cyclase inhibitor methylene 
blue have been shown to have clinical effect as adjuvant therapy in schizophrenic 
patients (Deutsch et al. 1997) and block PCP-induced behaviours in mice (Klamer 
et al. 2004a). These observations suggest that NO plays a role in the 
pharmacological effects of PCP and possible also in schizophrenia.             
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AIM OF THESIS 
The general aim of the thesis was to further investigate the effect of PCP in animal 
models of cognitive function and the involvement of NO in these effects. 
Specific aims 
 

I. To investigate if inhibition of NOS could attenuate the deficits in 
habituation of acoustic startle induced by psychotomimetic drugs. 

II. To study the effects of PCP and d-AMP on LI using CTA. 
III. To investigate if a NOS inhibitor could block the potentiating effect 

of PCP on LI using CTA. 
IV. To study if inhibition of NOS substrate (L-arginine) availability could 

serve as a novel means to block NO-dependent and PCP-induced 
disruption of PPI. 
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MATERIAL AND METHODS 

Animals 
Male Sprague-Dawley rats (B&K Universal AB, Sollentuna, Sweden, paper II and 
III), 250-300g, and male NMRI mice (B&K Universal AB, Sollentuna, Sweden, 
paper I and IV or Charles River, Sulzfeld, Germany, paper IV), 28-40 g, were 
used. The rodents arrived at the animal facilities at least five days prior to the start 
of the experiments. The rats were housed one per cage (26 x 42 x 15 cm) and the 
mice maximum eight per cage (Sealsafe IVC 2l, 365 x 207 x 140 mm) in a colony 
room under constant temperature (20±1°C) and humidity (55%). Food (Standard 
feed, Harlan Teklad, Norfolk, England) and tap water were available ad libitum all 
the time the animals spent in their home cages. The daylight cycle was maintained 
artificially (dark 18.00-06.00 hours). Experiments were performed during the light 
phase. All experiments were carried out in accordance with the Guide for the Care 
and Use of Laboratory Animals as adopted by the NIH, and was approved by the 
Ethics Committee for Animal Experiments, Göteborg, Sweden  
 

Drugs 
Drugs used in the experiments: d-AMP (dextroamphetamine sulphate) (RBI, 
Natick, USA), haloperidol (Sigma-Aldrich, Germany), L-NAME (RBI, Natick, 
USA), LiCl (Sigma Ultra, Sigma Chemicals CO, Stockholm, Sweden), L-lysine 
(Sigma-Aldrich, Germany), (+)MK-801 hydrogen maleate (dizocilpine) (RBI, 
Natick, MA, USA) and PCP (1-(1-phenylcyclohexyl)piperidine HCl) (RBI, Natick, 
USA). d-AMP, L-NAME, L-lysine and PCP were dissolved in saline (0.9% NaCl 
dissolved in distilled water), LiCl was dissolved in distilled water and haloperidol 
was dissolved with a minimal amount of glacial acetic acid (10 μl/mg) and then 
diluted with lukewarm 5.5% D-glucose, to a final pH of around 6. Saccharine 
(Sigma Chemical CO, USA) was dissolved in tap water. Injections were given 
subcutaneously (s.c.) to rats in a volume of 2 ml/kg (d-AMP, L-NAME, PCP) or 5 
ml/kg (LiCl) and intraperitoneally (i.p.) to mice in a volume of 10 ml/kg. 
 

Prepulse inhibition and habituation of acoustic startle 

APPARATUS 

Acoustic startle recordings were only performed in mice in the present thesis. A 
MOPS 2b startle response recording system (Metod och Produkt, Svenska AB, 
Göteborg, Sweden) was used (figure 6). Each mouse was placed in a small wire-
mesh cage (5.5 x 10 x 5.5 cm) made of stainless steel, which was suspended at one 
point at the top to a piston in such way that it could freely move under the piston. 
A sudden movement of the rodent inside the cage caused a displacement of the 
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piston, the acceleration of which was converted to an analogue signal by a moving 
coil transducer. This signal was sampled and digitalised with a 12-bit digital 
resolution by a microcomputer, which also served to control the delivery of 
acoustic stimuli. Startle amplitude was defined as the maximum signal amplitude 
(digital units) that occurred during the first 40 ms after delivery of the startle-
eliciting stimulus. Three cages were used simultaneously and each cage was housed 
in a separate, dimly lit and sound-attenuated cabinet (52 x 42 x 38 cm). The cages 
were calibrated for equal sensitivity before test and mice tested more than once 
were always tested in the same cage. The acoustic signal consisted of white noise 
delivered to the rodent by two high-frequency loudspeakers built into the ceiling 
of the cabinet. A continuous acoustic signal provided a background white noise 
level of 62 dB (A) inside the cabinet. 
 
 
Figure 6. Schematic drawing of the apparatus used in the prepulse inhibition and habituation 
acoustic startle experiments. 

 

TESTING PROCEDURE 

Habituation of acoustic startle  

The mice were placed in the startle cages in the enclosure for a 10-min 
accommodation period exposed to the 62 dB background noise only. After the 
accommodation period they were presented with 20 pulse-alone trials. The time 
interval between the trials was always 10 s. Pulse intensity was set to 105 dB and 
the duration of each pulse was 20 ms. After the pre-test, the mice were matched 
and randomized into homogenous groups according to their mean startle response 
amplitude. 
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The mice used in the habituation test were again placed in the startle cages in the 
enclosures for a 10-min accommodation period exposed to the 62 dB background 
noise only. After this period they were presented with 121 pulse-alone trials. The 
time interval between the trials was always 10 s. Pulse intensity was set to 105 dB 
and the duration of each pulse was 20 ms. 
 

Prepulse inhibition of acoustic startle 

The mice were first placed in the startle cages for a 10 min acclimatization period 
as described above. After this period, they were presented with a series of five 
startle pulse-alone trials followed by a series of five prepulse-alone trials. The 
pulse-alone trials served only to accustom the mice to the sudden change in 
stimulus conditions and were omitted from the data analysis and the prepulse-
alone trials were analysed only to ensure that these stimuli did not evoke any 
startle responses on their own. Thereafter the mice were presented, three times 
repeatedly, with a series of five prepulse + pulse trials followed by a series of five 
pulse-alone trials, i.e., a total of 30 trials. The time between trials was always 10 s 
and the time between any series of trials was 70 s. Startle pulse intensity was set to 
105 dB and prepulse intensity to 70 dB. The prepulse was 60 ms in duration and 
presented immediately before the startle pulse, which was 20 ms in duration. The 
startle pulse was set to 105 dB, since this intensity was found to evoke a robust 
startle response that showed a minimum of habituation and at the same time did 
not cause a ceiling effect. Similarly, prepulse intensity was set to 70 dB (8 dB 
above background noise) to produce a robust PPI. The mice were subjected to a 
pre-test containing no drug treatments. After the pre-test the mice were matched 
into homogenous groups using their mean PPI and startle response amplitudes. 
 

STATISTICAL ANALYSIS  

Habituation of acoustic startle  

The first startle pulse response was omitted from statistical analysis due to marked 
variability. Hence, 120 startle pulse trials were used in the analysis. The 120 pulses 
were divided into six blocks, each block containing 20 pulses. The mean response 
amplitude for the first 20 startle response trials (block number 1) was calculated 
for each mouse and treatment condition and used to assess possible drug-induced 
changes in basal startle response reactivity. Habituation, the change in mean 
response amplitude over time, was calculated using the formula: 
 
Habituation= [block number x/block number 1 * 100] - 100  
 
Using this formula, a 0% value denotes no difference in startle response amplitude 
between block number 1 and block number x, and consequently no habituation. 
Negative values indicate a decreased response over time, i.e. a habituation of the 
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ASR. Habituation was also calculated as the difference in startle response between 
block number 1 and block number 6. The statistical analysis using this definition 
was compared with habituation over time to avoid false positive or false negative 
significances. Statistical analysis was performed by factorial ANOVA with 
treatment as between-subjects factor followed by Fisher’s PLSD test for 
difference between groups. Two-tailed levels of significance were used and p<0.05 
was considered statistically significant. 
 

Prepulse inhibition of acoustic startle 

The mean response amplitude for startle pulse-alone trials (P) was calculated for 
each mouse and treatment condition and was used in the statistical analysis to 
assess drug-induced changes in startle reactivity. The mean response amplitude for 
prepulse + pulse trials (PP) was also calculated and used to express the percent 
PPI using the formula: 
 

PPI (%) = 100 - [(PP/P)  100] 
 
Using this formula, a 0% value denotes no difference between the pulse-alone and 
prepulse + pulse response amplitudes and consequently no PPI. Statistical analysis 
was performed by one- or two-way ANOVA followed by Bonferroni's Multiple 
Comparison Test for difference between treatment conditions. Two-tailed levels 
of significance were used and p<0.05 was considered statistically significant. 
  

Latent inhibition 

WATER BOTTLES 

Water was presented to the rats in a standard 500 ml plastic bottle with a metal 
nozzle. Saccharine (0.1%) was presented in a standard 300 ml plastic bottle with a 
metal nozzle equipped with a metal ball that produced a distinctive clicking sound 
(noisy bottle) during licking. All bottles were individually marked to assure 
identification.  

 

EXPERIMENTAL DESIGN 

LI was assessed using a CTA procedure in which the taste of saccharine was 
conditioned to nausea induced by LiCl. All experiments except Experiment 1 used 
four groups of animals with eight animals in each group. After arrival at the animal 
facility the rats were allowed to acclimatize for five days with unlimited access to 
drinking water. They were then put on a 5-day limited access schedule, gradually 
reducing access to drinking water to 1 hr (09.30-10.30) per day. All experiments 
were performed with the rats in their home cages. A 3-preexposure/ 2-
conditioning trials experimental design was used followed by 3 test trials (figure 7). 
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At preexposure two groups of rats were given access to 0.1% saccharine in noisy 
bottles (preexposed (PE) rats) and two groups to water bottles (non-preexposed 
(NPE) rats) for 30 minutes. All bottles were then replaced with water bottles for 
60 minutes. During conditioning trials all rats were given access to noisy 
saccharine bottles only. After 30 minutes the rats were injected with LiCl (0.3 
mol/l, 5 ml/kg) and the saccharine bottles were replaced with water bottles for 60 
minutes. During test trials all rats were given access to noisy saccharine bottles for 
30 minutes. The bottles were then replaced with water bottles for 60 minutes. On 
days in between sessions the animals were allowed to drink water for 1 h (09.30-
10.30). The bottles were weighed, with an accuracy of 0.1 g, before and after each 
drinking period to assess the amount of liquid consumed (converted to ml). 
 
 
Figure 7.  Experimental design used in the latent inhibition experiments. 

 

STATISTICAL ANALYSIS 

Statistical analysis was performed by ANOVA with treatment and preexposure as 
between-subjects factors and trial as within-subjects factor followed by Fisher’s 
PLSD test for pair wise comparisons. Each experiment was divided into three 
parts: Preexposure (3 trials), Conditioning (2 trials) and Test (3 trials), and each 
part was analysed separately in the ANOVA analysis. A separate 2-way analysis of 
Test 3 was also performed with treatment and preexposure as between-subjects 
factors. A few data points were lost due to leaking bottles and omitted from the 
statistical analysis. Two-tailed levels of significance were used and p<0.05 was 
considered as statistically significant. 
 



 38

RESULTS AND DISCUSSION 

Paper I 

Habituation of acoustic startle is disrupted by psychotomimetic 
drugs: differential dependence on dopaminergic and nitric oxide 
modulatory mechanisms. 

A deficit in information processing has been considered a central feature in 
schizophrenia, which might lead to stimulus overload and cognitive fragmentation 
(Braff 1993; Geyer and Braff 1987). In line with this general idea, schizophrenic 
patients display a relative inability to gate or filter incoming stimuli. A functional 
outcome of this deficit is a reduced habituation response to repeated acoustic 
stimuli compared to control subjects (Bolino et al. 1992; Braff et al. 1992; Geyer 
and Braff 1982). 
 
Habituation is defined as a decrease in response to an identical stimulus when it is 
presented repeatedly. It has been viewed as the simplest form of learning 
(Petrinovich and Peeke 1973). In paper I, habituation is measured as the reduction 
in ASR to repeated startle-eliciting stimuli presented to mice. The dual-process 
theory (Groves and Thompson 1970) postulates the existence of two opposite 
processes, habituation and sensitization, the sum of which will determine the 
direction of a change in response after repeated stimulus presentations. In the 
present study, PCP (4 mg/kg), MK-801 (0.4 mg/kg) and d-AMP (5 mg/kg) had 
no effect on ASR reactivity per se but impaired habituation (figure 8). 
These psychotomimetic drugs have been shown to produce sensitization in 
experimental animals and it is conceivable that the effect seen in the present study 
is due to increased sensitization rather than decreased habituation. The deficit in 
habituation observed here is in accordance with previous studies showing deficits 
in habituation due to an increased availability of dopamine or NMDA receptor 
hypofunction (Davis et al. 1975; Geyer et al. 1984; Kokkinidis 1986; Wang et al. 
2003).  
 
Habituation of acoustic startle may represent an animal model for certain aspects 
of information processing and non-associative learning, situated somewhere 
between PPI and more complex models of cognitive function. It has been 
demonstrated that drug naïve schizophrenic patients exhibited a significant deficit 
in PPI as well as a deficit in habituation of acoustic startle (Ludewig et al. 2003b), 
further supporting that deficits in PPI and habituation could serve as behavioural 
markers of information processing deficits in schizophrenia (Ludewig et al. 2003b; 
Nuechterlein et al. 1994). 
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Figure 8. MK-801, d-amphetamine and phencyclidine induced a deficit in habituation of the 
acoustic startle response (for details, see paper I).  

 
 
NITRIC OXIDE SYNTHASE INHIBITION REVERSES THE IMPAIRMENT IN 

HABITUATION INDUCED BY PSYCHOTOMIMETIC DRUGS 
The NOS inhibitor, L-NAME, blocked the deficits in habituation induced by 
PCP, MK-801 and d-AMP at a dose that did not affect ASR or habituation per se 
(figure 9). This suggests that psychotomimetic drugs with different modes of 
action may converge on an intracellular pathway involving NO. This concept of 
converging signalling is supported by the fact that transgenic mice lacking a 
downstream signalling protein, DARPP-32, do not respond to PCP, d-AMP and 
lysergic acid (LSD) when tested for PPI and repetitive movements (Svenningsson 
et al. 2003).  
 
As expected, haloperidol (0.4 mg/kg) was effective in blocking the impairment in 
habituation induced by the indirect dopamine agonist, d-AMP. This is in 
agreement with the effects of d-AMP on PPI and other behavioural studies. 
Notably, the reduced habituation after PCP administration was also blocked by 
haloperidol pre-treatment, which is not the case in the PPI model. However, 
habituation and PPI of acoustic startle are most likely modulated by different 
brain circuits (Koch 1999) and changes in PPI have been shown to occur 
independent of changes in startle amplitude (Johansson et al. 1995; Olivier et al. 
2001; Ouagazzal et al. 2001; Swerdlow and Geyer 1998). In addition the effect of 
MK-801 was not blocked by haloperidol suggesting a difference in dependence on 
D2 signalling between PCP and MK-801 in their effects on habituation of acoustic 
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startle. This discrepancy is not easily explained as recent data indicate that both 
compounds can act as D2 receptor agonists, although an earlier study would 
suggest that MK-801 has little effect on the dopaminergic system (Callado et al. 
2000) whereas interactions between PCP and D2-receptors (Kapur and Seeman 
2002) and the dopamine transporter (Rothman 1994; Rothman et al. 1989) have 
been reported. The finding that L-NAME, but not haloperidol reverses the deficit 
in habituation induced by MK-801 suggests that this effect does not primarily 
involve the dopaminergic system, but rather other neurotransmitters e.g. NO. The 
present findings suggest that targeting a common intracellular pathway, instead of 
dopamine receptors, may be an alternative approach to block the effect of 
psychotomimetics. Further, the observed effect of L-NAME on a PCP-induced 
impairment in pre-attentive sensory information processing and non-associative 
learning should be tested in models of higher order learning and selective 
attention. If the present findings can be extended to cover a wider range of 
cognitive functionality this would significantly strengthen the proposed NO-
dependence for the schizophrenia-like behavioural effects of PCP. 
 
Figure 9. L-NAME blocked a psychotomimetic-induced deficit in habituation of the acoustic 
startle response (for details, see paper I).  
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Paper II  

The effects of phencyclidine on latent inhibition in taste aversion 
conditioning: differential effects of preexposure and conditioning. 

LI is one procedure for studying selective attention (Lubow 1973), an aspect of 
cognitive function with greater complexity as compared to habituation of ASR. LI 
is usually defined as the retardation in learning a conditioned stimulus (CS, e.g. a 
flavour) and unconditioned stimulus (US, e.g. nausea) contingency when the 
subject has prior experience of the CS (see introduction). Several studies have 
shown that LI is altered by compounds that increase dopaminergic 
neurotransmission and putatively by compounds that decrease glutamatergic 
neurotransmission (Mohammed et al. 1986; Thornberg and Saklad 1996; Weiner 
2003). Much interest for these studies derive from recent concepts of the 
pathophysiology of schizophrenia in which a weakened glutamatergic activity 
together with an exaggerated responsiveness in the dopaminergic systems are 
thought to constitute a major pathophysiological mechanism (Carlsson et al. 
1997). Furthermore, since information processing and attention deficits are 
frequently observed in schizophrenia, the LI procedure has been used in attempts 
to model these deficits and investigate their dependency on dopaminergic and 
glutamatergic activity.  
 
In the present study PCP (2 mg/kg) was found to potentiate LI when 
administered during conditioning i.e. preexposed PCP-treated animals consumed 
significantly more saccharine solution than saline treated counterparts during test 
sessions (figure 10). This “super”-LI effect has been associated with the chronic 
phase of schizophrenia (Rascle et al. 2001) although the effects of antipsychotic 
medication constitute a potential confounder (Williams et al. 1996; Williams et al. 
1997). In contrast, d-AMP (1 and 0.33 mg/kg) did not alter LI in the present study 
but seemed to disrupt learning of the CS + US contingency during conditioning. 
Specifically, both preexposed and non-preexposed d-AMP-treated animals 
consumed significantly more saccharine solution than their saline treated 
counterparts during test sessions. An ancillary finding was that both compounds 
disrupted LI when administered during the preexposure phase, as there was no 
significant difference in intake during test sessions between PE and NPE rats. 
 
LI has been explained by attention, switching and recall mechanisms (see figure 4) 
(Gray and Snowden 2005). The disruptive effect of PCP and d-AMP on LI in 
paper II when administered only during preexposure, could be explained by a lack 
of attention to the CS during preexposure. However, drug effects on saccharine 
intake and the potential role of the drug to act as a contextual cue confound the 
observed effect. Similarly, the disruptive effect of d-AMP on conditioned learning 
makes it difficult to ascertain any specific effects on LI. The potentiation of LI 
observed after administration of PCP during conditioning could be explained by a 
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deficit in switching or recall. NMDA receptor antagonists are known to induce 
perseverative behaviour or impair the ability to alter behavioural strategy (Carlsson 
and Carlsson 1989; Moghaddam et al. 1997; Svensson 2000), which in our study 
translates to an increased tendency to let the CS-no US pairing of the preexposure 
phase guide behaviour during test phases as compared to control animals. 
Conclusively, LI using the CTA model could provide a useful model to study 
behavioural effects of PCP on cognitive flexibility and selective attention. 
However, it may be less well suited to study effects related to alterations in 
dopaminergic activity as suggested by the confounding effects of d-AMP on 
conditioned learning. 
 
 
Figure 10. Phencyclidine potentiated latent inhibition (for details, see paper II) 

 
 
 



 43

Paper III 

Antagonism by the nitric oxide synthase inhibitor, L-NAME, of 
PCP-induced effects on latent inhibition in taste aversion 
conditioning. 
 
Previous studies have shown that the NOS inhibitor L-NAME, can block the 
effects of PCP but not d-AMP on PPI and locomotor activity in rodents 
(Johansson et al. 1997; Klamer et al. 2001; Klamer et al. 2005b; Klamer et al. 
2005c). This finding has been interpreted as a potential antipsychotic effect of 
NOS inhibition with a preferential effect on negative symptoms and cognitive 
dysfunction (Klamer 2004). As discussed in paper II, we found that PCP (2 
mg/kg) increases LI in CTA whereas d-AMP (1 and 0.33 mg/kg) disrupts 
conditioned learning. LI has been considered to reflect aspects of attention and 
cognitive flexibility (Weiner 2003), and the study presented in paper III was 
conducted to investigate the effects of NOS inhibition in this context. 
In analogy with the findings using the PPI and locomotor activity models, L-
NAME (10 mg/kg) was found to attenuate PCP (2 mg/kg)-induced increase in LI 
(figure 11) while the same dose had no effect on the impairment induced by d-
AMP (0.5 mg/kg). Additionally, L-NAME (10 mg/kg) per se exerted a disruptive 
effect on LI (see below).  
 
Findings in schizophrenic patients using a LI procedure show that LI is disrupted 
during the acute phase of the disorder, but replaced by normal or potentiated LI 
during the chronic phase (Gray and Snowden 2005). Disruption of LI has been 
linked to a hyperdopaminergic state since d-AMP can disrupt LI in healthy 
controls and experimental animals (Weiner 2003). Possibly potentiation of LI is 
indicative of cognitive dysfunctionality that entails an inability to change 
behavioural strategy in response to altered contingencies. Such an inability has 
been demonstrated in schizophrenic patients using e.g. the Wisconsin Card Sorting 
Test. Unfortunately, the presence of a potentiated LI in chronic schizophrenic 
patients is difficult to ascertain since treatment with D2-antagonists is known to 
potentiate LI and many studies are designed to detect disruption of LI rather than 
potentiation. However, one study has shown that LI correlates with the negative 
dimension in both acute and chronic schizophrenic patients (Rascle et al. 2001). 
This indicates that a potentiated LI in schizophrenic patients may reflect a 
cognitive dysfunction. 
 
The disruptive effect of L-NAME on LI observed in the present paper is difficult 
to reconcile with the notion of potentiated LI as a consequence of administration 
of antipsychotics. This effect however, is most likely linked to D2 receptor 
blockade and L-NAME does not seem to primarily interact with the dopaminergic 
system in its effects on LI, since it did not block the effect of d-AMP. As the 
present experiments use a CTA paradigm as opposed to a CER paradigm, 
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methodological differences may well account for the observed discrepancies. 
Further studies using antipsychotic drugs in our experimental setup are needed to 
clarify this notion. We have demonstrated that several behavioural effects of PCP 
can be attenuated by directly blocking the NOS enzyme (see introduction), thus 
interfering with NO production. However this may not be the only, or indeed the 
best, means to decrease NO signalling. NO utilizes several second messenger 
systems, all constituting potential targets for pharmacological interventions. In 
addition, data is accumulating indicating substrate availability as an important 
regulatory mechanism in NO production (Bae et al. 2005; Closs et al. 1997). A 
transport system, termed y+, seems to be critical in mediating the influx of L-
arginine across the blood-brain barrier (O'Kane et al. 2006). This implies that 
interference with the transport of L-arginine may have functional effects on NO 
levels in the brain. 
 
 
Figure 11. L-NAME attenuates a phencyclidine-induced potentiation of latent inhibition (for 
details, see paper III). 
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Paper IV 

The amino acid, L-lysine, reduces the disruptive effect of 
phencyclidine on prepulse inhibition in mice. 

NO is produced from the amino acid L-arginine and O2 in a reaction catalyzed by 
NOS. L-arginine and L-lysine share a membrane bound transport system, the 
cationic amino acid transporter (CAT) (White et al. 1982). Studies have shown 
that saturation with L-lysine can inhibit transport of L-arginine (Closs et al. 1997), 
deplete intra-cellular stores of L-arginine (Closs et al. 1997) and reduce NO 
production (Carter et al. 2004) in vitro. The main finding of Paper IV was that sub-
chronic (200 and 800 mg/kg) (figure 12) and acute (800 mg/kg) pre-treatment 
with L-lysine attenuated the effects of PCP on PPI.  
 
 
Figure 12. Sub-chronic pre-treatment with L-lysine dose-dependently attenuated a 
phencyclidine-induced disruption of prepulse inhibition of the acoustic startle response (for details, 
see paper IV). 

 
 
A competitive antagonism of L-arginine transport across the blood-brain barrier 
and a depletion of L-arginine supply may explain these findings. A relative lack of 
substrate for NO production would prevent a hypothesized PCP-induced increase 
in NO levels and thus the disruptive effect of PCP on PPI. Notably, the intra- and 
extra-cellular concentrations of L-arginine normally exceed the saturation level of 
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the NOS enzyme, although administration of exogenous L-arginine has been 
shown to elevate NO production in several studies (Arnal et al. 1995; Wu and 
Meininger 2000). This paradox remains unresolved and the importance of 
substrate transport as a regulator of NO production warrants further study. In 
particular inter-species and inter-organ differences in amino acid transporter 
expression could help to clarify the “L-arginine paradox”. There are several 
isoforms of the CAT enzyme and a number of other transport proteins that can 
shuttle L-arginine across the cell membrane, albeit with lesser specificity than CAT 
(Closs et al. 2004).  
 
It cannot be excluded that other mechanisms may contribute to the effect 
observed in paper IV as both L-lysine and L-arginine can be converted to 
metabolites with neuromodulatory properties e.g. -aminoadipic acid (Wu et al. 
1995) and agmatine (Halaris and Piletz 2003). However, preliminary data indicate 
that the attenuation of the PCP (5 mg/kg)-induced deficit in PPI by subchronic L-
lysine (200 mg/kg) pre-treatment can be reversed by an acute administration of L-
arginine (800 mg/kg, unpublished data) supporting a proposed depletion of NOS 
substrate as the active mechanism. These observations further support an 
important role of NO in the behavioural effects of PCP.  
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GENERAL DISCUSSION 

Animal models of cognitive dysfunction 
There are a number of different experimental animals available for the study of 
cognitive dysfunction in schizophrenia, ranging from mice to non-human 
primates. Although, generally advantageous some important issues are raised. Not 
only are the minds of rats and monkeys structurally and functionally different 
from our own, they are also different from each other. This makes cross-species 
comparisons both vital and difficult as the literature on the study of cognitive 
function contains a number of non-replications across species. In addition, there 
are documented behavioural differences between strains within a particular 
species. Despite this, significant progress has been made on the neurobiology of 
cognition. There are in fact many commonalities across species and even 
complicated aspects of cognitive function such as working memory can be 
modelled in both non-human primates and rats. Mice are useful for primary 
screening, mainly due to genetic manipulation, but remain somewhat limited in 
their behavioural repertoire. Rats and non-human primates are well suited for 
studies using more complicated cognitive models such as the 5-choice serial 
reaction time task or attentional set-shifting paradigms (Hagan and Jones 2005). 
Again, making cross-species comparisons can disclose important information on 
the evolutionary stability or diversity of cognitive functions.  
 
Our aim has been to establish a ladder of cognitive models that encompasses 
several integrative levels of cognitive function (figure 13). While covering far from 
all of the cognitive deficits linked to schizophrenia it does provide a means to 
study cognition of different levels. Importantly, the original finding that L-NAME 
can block the behavioural effects of PCP has been extended to all the models in 
figure 13. Most recently, impairments in spatial reference and working memory 
induced by PCP were shown to be sensitive to pre-treatment with L-NAME 
(Wass et al. 2006; Wass et al. 2005).  Naturally, it still remains to be shown that 
these behavioural data can be translated into clinically effective treatments. 
However, they do indicate that the cognitive dysfunction induced by PCP seems 
to involve NO signalling across several levels of cognitive task complexity.  
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Figure 13. Overview of translational experimental animal models of cognitive function. 

 

HABITUATION OF ACOUSTIC STARTLE 

All three psychotomimetics tested led to a robust decrease in habituation of 
acoustic startle. Thus, the habituation of acoustic startle model does not 
differentiate dopaminergic (d-AMP) from glutamatergic (MK-801, PCP) 
pharmacological manipulation. This may have implications for its utility in 
identifying novel treatments for cognitive dysfunction in schizophrenia (see 
below). The fact that haloperidol blocked the effects of PCP on habituation was 
unexpected, as first-generation antipsychotics are relatively poor at blocking PCP-
induced deficit in PPI. Again, there seems to be differences in the pharmacological 
profile of PCP and MK-801. The lower dose of L-NAME was only effective 
against a MK-801-induced disruption of habituation while the higher dose of L-
NAME blocked the effect of all three psychotomimetics. This is opposite to what 
was observed in an earlier study in the rat where L-NAME was more effective in 
attenuating PCP-induced deficits as compared to MK-801(Klamer et al. 2005c). 
This discrepancy between PCP and MK-801 remains difficult to adequately 
explain at present, but raises the issue of dissimilarities in pharmacological effect 
of these compounds. However, the results of paper I indicate that not only the 
behavioural effects of PCP, but also those of MK-801 and d-AMP, may involve 
alterations in NO signalling.  
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LATENT INHIBITION 

Compared to the habituation model, our LI setup seems more successful in 
discriminating between the psychotomimetic effects of d-AMP and PCP. 
However, the usefulness of the LI paradigm needs to be explored further. 
Disruption of LI is present only during the acute phase of the disorder and may 
primarily be related to positive symptomatology. Potentiated LI, as have been 
reported in chronic patients, has not been studied in depth. Few studies are 
designed to detect this effect and antipsychotic medication constitutes a major 
confounding factor. In rats, a lesion in the orbital PFC has been shown to 
produce abnormally persistent LI (Schiller and Weiner 2004). Recently, this 
potentiation of LI was normalized by treatment with clozapine but not by 
haloperidol (Schiller et al. 2006). This suggests that potentiated LI may be an index 
of certain PFC-dependent cognitive dysfunction that may respond more readily to 
treatment with second-generation antipsychotics.  
 
One advantage of the PPI and habituation of acoustic startle as well as the LI 
model is that they translate relatively well between the pre-clinical and clinical 
setting.  In addition, the neural circuitries of all three models are relatively well 
described. This brings us to the question of the anatomical substrate of cognitive 
functionality. Clearly, this involves a network consisting of several brain regions 
that will differ in character depending on the cognitive task at hand.  
 

AMINO ACID TRANSPORT AND METABOLISM IN SCHIZOPHRENIA 

It is theoretically conceivable that subtle alterations in the trafficking and 
metabolism of amino acids could impair the function of neurotransmitter systems 
and constitute a risk factor for schizophrenia. There are two studies to date that 
have demonstrated an increased frequency of schizophrenia in populations where 
pregnant mothers were exposed to famine (St Clair et al. 2005; Susser and Lin 
1992). Tentatively, prenatal malnutrition, and consequently a deficit in availability 
of several essential amino acids e.g. L-arginine, L-tyrosine and L-tryptophan, 
increases the risk of developing mental disorders, such as schizophrenia.  
 
Indeed, there is some evidence that aberrations in transport and metabolism of 
amino acids may be linked to schizophrenia. L-tyrosine serves as the substrate for 
the biosynthesis of both dopamine and noradrenalin. Interestingly, alterations in 
L-tyrosine transport in schizophrenic patients have been reported (Flyckt et al. 
2001; Hagenfeldt et al. 1987; Wiesel et al. 1994) and a low Km for L-tyrosine has 
been positively correlated to poor cognitive functioning in schizophrenic patients 
(Wiesel et al. 2005). Additionally a lack of dietary L-tyrosine seems to attenuate 
dopamine signalling and aspects of cognitive function (Harmer et al. 2001; 
McLean et al. 2004). The essential amino acid L-tryptophan is the substrate for the 
neurotransmitter 5-HT, but it can also be converted to kynurenic acid using a 
different metabolic pathway. Kynurenic acid is synthesized in brain tissue and 
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functions as a NMDA- and nicotinic 7-receptor antagonist. Kynurenic acid 
levels have been shown to be elevated in the cerebrospinal fluid (Erhardt et al. 
2001; Nilsson et al. 2005) and post mortem brain samples (Schwarcz et al. 2001) 
of schizophrenic patients. In addition, increased levels of kynurenic acid disrupts 
PPI in rats (Erhardt et al. 2004) and alters the firing pattern of midbrain 
dopaminergic neurons (Erhardt and Engberg 2002), resembling that seen after 
administration of NMDA receptor antagonists.  
Taken together the above observations indicate that the transport and metabolism 
of amino acids may serve as an alternative approach in finding the neurochemical 
basis of schizophrenia symptomatology and to find new treatment possibilities. 

The prefrontal cortex and schizophrenia 
A brain region that has received special interest in the context of cognitive 
function is the PFC. Selective damage to this part of the brain impairs function 
across several cognitive domains. The PFC has been suggested to orchestrate 
higher levels of information processing and is extensively interconnected with 
many other brain structures (Goldberg 2002) including the basal ganglia. Ingvar 
and Franzen (1974) published an imaging study demonstrating hypofrontality in 
schizophrenic patients. The study was performed during a resting state and has 
never been replicated, but numerous studies have shown hypofrontality in 
schizophrenic patients on a number of working memory and executive function 
tasks (Andreasen et al. 1992; Spitzer 1993; Weinberger et al. 1986; Yurgelun-Todd 
et al. 1996). This finding has been interpreted as a relative inability of 
schizophrenic patients to activate the PFC during tasks that require working 
memory. Most studies have focused on the dorsolateral PFC but a recent meta-
analysis indicates that abnormal activation patterns may not be restricted to this 
region, but may include e.g. the anterior cingulate region (Glahn et al. 2005). 
Furthermore, some studies have found no difference (Honey et al. 2002) or even 
increased activation (Callicott et al. 2000; Manoach et al. 1999) in the dorsolateral 
PFC of schizophrenic patients during working memory tests.  
 

NO AND THE PREFRONTAL CORTEX 

Neurons expressing nNOS constitute only 0,5-2% of the total number of cortical 
neurons, but are found in networks with extensive connections (Vincent and 
Kimura 1992). These cortical NOS neurons have been shown to be mainly 
GABAergic (Chesselet and Robbins 1989; Gabbott and Bacon 1995) and are 
scattered throughout lamina II-VI and the subcortical white matter. nNOS is 
primarily expressed presynaptically (Faber-Zuschratter and Wolf 1994) but 
released NO might also diffuse and interact with postsynaptic targets. Others and 
we have shown that NO seems to be a key mediator in several behavioural effects 
of PCP, although the exact mechanism of this NO-dependent effect has not been 
elucidated. In this context, precise dopamine and NMDA receptor interactions 
play an important role for cognitive dysfunction involving the PFC (Yang and 
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Chen 2005). Interestingly the NMDA receptor is closely coupled to nNOS via the 
PSD-95 protein and activation of the NMDA receptor leads to NO and cGMP 
formation (Brenman and Bredt 1997). Furthermore several studies show that NO 
is involved in the modulation of dopamine release (Spatz et al. 1995; Strasser et al. 
1994; Zhu and Luo 1992) and a recent study showed that the D1 and NMDA 
receptors have synergistic effects on cGMP production in striatal neurons (Tukey 
et al. 2005).  
 
A number of studies have found abnormalities in subpopulations of GABAergic 
neurons in the dorsolateral PFC in schizophrenic patients (Akbarian et al. 1995; 
Benes et al. 1996; Hashimoto et al. 2003; Mirnics et al. 2000), suggesting that 
neural disinhibition and lack in cortical tuning may play a role in the 
pathophysiology underlying cognitive impairment in schizophrenia (Lewis et al. 
2005). In analogy, it has been suggested that PCP inhibits GABAergic neurons in 
the PFC by blocking NMDA receptors on these neurons. The resulting lack of 
inhibitory tonus decreases the signal to noise ratio in the PFC and could explain 
the increase in glutamate levels observed in the PFC in rats after systemic PCP 
administration (Adams and Moghaddam 1998). The PCP-induced increase in 
glutamate release could in turn result in an increase in NO production.  
 
Furthermore, the neuronal localisation of nNOS seems to differ with respect to 
brain region. As noted above, nNOS expression in the cortex seems restricted to 
GABAergic interneurons, whereas localisation in the cerebellum also includes 
cholinergic interneurons and in the hippocampal CA1 region nNOS is expressed 
in pyramidal neurons. This indicates a potential difference in the functional role of 
nNOS depending on brain region. If the “pro-cognitive” effect of NOS inhibitors 
in animal models of schizophrenia can be related to a particular brain region it 
may be possible to identify more specific targets for future drug development. 
Interestingly, NO dependent cGMP production in the PFC may be independent 
of NMDA receptor activation. Instead it has been shown that inhibition of 
GABAA and GABAB receptors in the PFC increases NO-dependent cGMP 
signalling (Ishizuka et al. 2000; Pepicelli et al. 2004).  
 
We have found that systemic administration of PCP leads to an increase in extra-
cellular cGMP levels in the medial PFC of mice as measured by microdialysis. This 
increase in cGMP levels is blocked by pre-treatment with a NOS inhibitor 
(unpublished data). In addition, inhibition of cGMP production in the mouse 
medial PFC dose-dependently attenuates the effects of PCP on PPI (unpublished 
data). However, it was also found that an ibotenic acid lesion in the mouse medial 
PFC did not alter basal PPI levels or interfere with a PCP-induced disruption of 
PPI but rendered this deficit insensitive to amelioration by pre-treatment with L-
NAME (unpublished data). Thus, a functional medial PFC does not seem to be 
required for the disruptive effect of PCP on PPI in the mouse but appears to be 
critical for a NO-dependent modulation of such an effect. Preliminary findings 
using a NO-sensitive micro-electrochemical sensor developed by the research 
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group of professor John Lowry, National University of Irleand Maynooth, indicate 
that systemic administration of PCP leads to an increase in NO levels in the rat 
PFC (figure 14, unpublished data). This further supports the notion of an 
interaction between PCP and NO situated in the PFC.  
 
Figure 14. Phencyclidine increases nitric oxide levels in the prefrontal cortex of rats. 

 
Ultimately, there seems to be a complex interaction of glutamate, dopamine and 
GABA in controlling the activity of cortical pyramidal neurons and disturbances 
in recurrent networks may consequently provide an explanation for the cognitive 
deficits of schizophrenia (Goldman-Rakic 1999; Rao et al. 2000; Trantham-
Davidson et al. 2004; Tseng and O'Donnell 2004). NO is well positioned to play 
an important role in such interactions, putatively positioned at key synapses in the 
PFC and with the ability to modulate glutamatergic, dopaminergic and 
GABAergic activity. In conclusion, a prefrontal NO/sGC/cGMP signalling 
pathway may constitute an interesting target for novel pharmacological treatments 
aimed at restoring cognitive function in schizophrenic patients. 

Developing cognitive enhancers 
As mentioned, the cognitive deficit observed in schizophrenic patients is 
heterogeneous and it remains uncertain whether any specific form of cognitive 
impairment can explain the symptoms of the disorder. Nonetheless improvement 
of cognitive function has become an important goal in the treatment of 
schizophrenia. A number of compounds have been shown to enhance cognition 
in animal models but the transition into the clinical setting has proven a difficult 
hurdle (Hagan and Jones 2005). One problem may be that the clinical goal is to 
identify agents that normalize an impaired functionality, not agents that improve 
cognitive function per se. This necessitates a clear understanding of the deficits 
within the patients and access to good translational animal model of these deficits. 
Clearly this approach warrants a consensus on how the cognitive dysfunction 
associated with schizophrenia should be categorized and understood. Even 
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further, it is not clear whether improved cognitive performance also translates into 
significant clinical effects.  
 
Recently the MATRICS (Measurement and Treatment Research to Improve 
Cognition in Schizophrenia, www.matrics.ucla.edu) initiative launched by the 
NIMH tried to identify the cognitive domains affected in schizophrenia and the 
result was a list of 7 primary domains; attention/vigilance, speed of processing, 
working memory, verbal learning and memory, reasoning and problem solving 
and social cognition (Robbins 2005). Of these only verbal learning and memory 
are downright impossible to model in animals and they might be approximated by 
e.g. visual learning and memory tests. The MATRICS program was launched to 
identify means to make research into cognitive enhancers for schizophrenia more 
effective. This includes a division between psychosis and cognitive deficits as 
pharmacological target areas (Geyer 2006). The underlying premise being that 
rather than looking for an antipsychotic agent that is also a cognitive enhancer, 
one should focus on finding pro-cognitive therapies that can be used in adjunct 
with existing antipsychotic drugs. However, this also infers that animal models 
aimed specifically at predicting antipsychotic efficacy become less useful. Thus, 
some behavioural models such as the conditioned avoidance response and 
locomotor activity models may be less suited to detect compounds capable of 
restoring cognitive functionality in schizophrenic patients. This line of reasoning is 
relevant to animal models based primarily on the dopaminergic hyperactivity 
hypothesis, such as the acute administration of d-AMP. Evidence to date links 
increased dopamine transmission to positive symptoms in schizophrenia rather 
than cognitive dysfunction (Abi-Dargham 2004).  
 
Predictive validity for animal models of schizophrenia commonly relies on the 
effect of known antipsychotic drugs in the model compared to the patient 
population. The problem with cognitive enhancers is that there are no positive 
controls, i.e. drugs effective in ameliorating cognitive dysfunction in schizophrenic 
patients, in the clinical setting. Ascertaining whether an animal model will have 
any predictive validity in identifying “pro-cognitive” drugs will thus be difficult. A 
compromise may be to use models that respond to second-generation 
antipsychotics, but not to first-generation as certain compounds such as clozapine, 
seem to have at least a modest positive effect on cognitive deficits (Woodward et 
al. 2005).   
 
Another problem is that the cognitive deficits associated with schizophrenia span 
a number of cognitive domains and display a great deal of heterogeneity across the 
patient population. Thus, the questions arise whether one “pro-cognitive” 
compound suffices or if different profiles of cognitive dysfunction require tailored 
pharmacological treatment? If a pathophysiological core deficit can be identified 
that is linked to a number of specific deficits, a single drug may indeed be of 
benefit to most patients.  As no single cognitive deficit is unique to schizophrenia 
there is a certain commonality in dysfunction to other brain disorders. Can these 
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deficits have similar pathophysiology or are they merely similar endpoints of 
differential pathological processes? On a broader scale one might speculate as to 
whether a future pro-cognitive drug that is effective in schizophrenia patients will 
also be effective in treating cognitive deficits of e.g. dementias. Possibly, the 
fundamental issue is whether schizophrenia should be regarded as psychotic 
disorder accompanied by negative symptoms and cognitive deficits, or as a 
cognitive disorder accompanied by psychotic episodes. The latter view might 
petition for a return to the term dementia praecox as defined by Kraepelin; then 
again to define schizophrenia we need to more fully understand the 
neurobiological basis of the disorder. Hopefully, the development of “pro-
cognitive” pharmacological treatments will provide both aid for the patients and 
insight into the pathophysiological mechanisms of schizophrenia.    
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CONCLUDING REMARKS 
The development of “pro-cognitive” drugs aimed at treating the disabling 
cognitive dysfunctionality associated with schizophrenia is a difficult task. The 
cognitive dysfunction varies in both severity and nature between patients, and so 
far no effective pharmacological treatment exists in the clinic. Despite this, the 
potential benefit of such drugs is large enough to warrant a directed and thorough 
research effort. We have found that NOS inhibition is effective in ameliorating 
schizophrenia-like cognitive dysfunction in experimental animals. This is 
supported by the findings in the present thesis and the thesis of Daniel Klamer 
(2004). This suggests that the NO system could be an interesting target for “pro-
cognitive” drugs. However, to fully evaluate this idea a more detailed 
understanding of how NO can impact on neuronal activity and networks is 
needed. To this end translational animal models used in conjunction with 
biochemical measurements of neuronal activity and transmitter release will play an 
important role. This could further elucidate the potential role of NO in the 
pathophysiology and the treatment of cognitive dysfunction in schizophrenia.      
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