
SOFTWARE PRACTICE IMPROVEMENT

Pouya Pourkomeylian

 iii

Gothenburg Studies in Informatics
Report 22, March 2002, ISSN 1400-741X

Software Practice Improvement

Pouya Pourkomeylian

Doctoral Dissertation

Department of Informatics
Göteborg University

Viktoriagatan 13, Box 620
SE-405 30 Göteborg, Sweden

www.informatics.gu.se

AstraZeneca R&D Mölndal, S-431 83 Mölndal, Sweden
pouya.pourkomeylian@astrazeneca.com

www.astrazeneca.com

 iv

 v

 To: Dana, Donya, and Golaleh

 vi

 vii

ABSTRACT

Software Process Improvement (SPI) is a systematic approach used to improve the capabilities of software
organisations. One basic idea in SPI is to assess the organisations’ current practice and improve their
software processes on the basis of the competencies and experiences of the practitioners working in the
organisation. Implementing improved software processes in practice is, however, difficult. The new
processes must be made available on different organisational levels and approached as frameworks for better
software practice.

A major challenge for a unit working with SPI efforts is to create strategies and mechanisms for managing
knowledge about software development. Knowledge Management (KM) insights are therefore potentially
useful in SPI efforts to facilitate the creation, modification, and sharing of software processes in an
organisation. A number of studies have, in fact, argued for and illustrated the usefulness of applying KM to
SPI. However, much needs to be done to further explore the practical use of KM in the context of SPI.

This thesis reports on research in which KM was used to reflect upon and inspire SPI efforts in a software
organisation over a two and a half-year period. The SPI efforts started with an assessment to establish the
current capability of the organisation’s software practices. On the basis of the findings of that assessment,
improvement efforts were planned and carried out to create new software processes. An implementation
strategy was developed and different activities were planned and conducted to implement the new processes
in different software projects. Further, two complementary approaches to KM, the codified and the
personalised, were used to develop a KM strategy and different facilities to support knowledge sharing and
continuous SPI efforts in the organisation.

The study can be classified as research in the field of Information Systems (IS), focusing on the practical use
of KM insights in SPI efforts and aiming to find answers to the following questions: 1) How can we make
SPI happen in practice? 2) What are the main challenges in SPI from a KM perspective? 3) How can KM
insights support SPI practice?

The study illustrates that SPI in practice is about managing software knowledge. The key findings are:

• To understand the main challenges in SPI from a practice point of view and make it happen in
practice we need to distinguish between processes and practices and between process knowledge and
practical knowledge and study the interaction between these types of knowledge as improvements
are made.

• SPI initiatives should emerge through personal growth, through knowledge creation, through
knowledge adaptation, and through knowledge transformation on the individual level.

• To address the practical issues of managing knowledge in SPI, the efforts should be organised as a
project supported by a KM strategy focusing on the most characteristic features of the organisation
in question and on improving practice in a stepwise manner. The strategy should include both
codified and personalised approaches and change as the software organisation matures.

Keywords: Software Process Improvement (SPI), Knowledge Management (KM).
Language: English
Number of pages: 142

 viii

 ix

ACKNOWLEDGEMENTS

Making this journey and reaching my goals over the last three years would not have been possible
without the support of many people. I am very grateful to all of them. The research was sponsored
by AstraZeneca R&D Mölndal, Sweden, in collaboration with the Viktoria Institute Gothenburg,
Sweden, and the Department of Computer Science at the University of Aalborg, Denmark.

The research effort required a high level of co-operation at AstraZeneca, where the research was
carried out, between the practitioners and myself and between myself and other SPI experts and
people in the company who helped me with relevant advice. I wish to thank the following: Ingegerd
Andersson, Jesper Arent, Marie Björkqvist, Laine Christensen, Elof Dimänes, Agneta Ekfelt,
Daniel Frick, Dulce Gonςalves, Göran Gudichsen, Daniel Johansson, Karlheinz Kautz, Ulla
Lagerman-Persson, Sara Lindahl, Lars Mathiassen, Katarina Nellgård, Hans O. Nilsson, Kerstin
Nilsson, Mikael Palmblad, Jan Skoog, Anita Vagelin, Michael Yousif, and all my Ph.D. colleagues
at the Viktoria Institute.

I wish especially to thank my manager at AstraZeneca, Anita Vagelin, for her support and
encouragement and the very useful discussions we had throughout the project. I wish to thank: my
co-authors in two of my papers, Lars Mathiassen, Jörgen Hörnell and Staffan Söderberg, all the
anonymous reviewers of the papers that form the basis of this research, Janet Vesterlund for her
help with my English, and all the personnel at the Viktoria Institute and the Department of
Computer Science in Aalborg, Denmark, for their kindness and help during the time I was there. I
would like to thank Bo Dahlbom for his valuable suggestions during the finalisation process of this
thesis. A special thanks goes to my supervisor, Lars Mathiassen, for his excellent suggestions and
criticisms and for his encouragement. I wish especially to thank my mother for the stable ground
she gave me in my life. Finally, doing this work would neither have been possible nor as interesting
and fruitful to me as it has been without the love, support and understanding of my family, my wife
Golaleh and our daughter Dana. I love you and thank you.

Göteborg, December 2001

Pouya Pourkomeylian

 x

 xi

CONTENTS

I IMPROVING SOFTWARE PRACTICES BY MANAGING KNOWLEDGE...1

1 RESEARCH AIMS ...1

2 THEORETICAL FRAMEWORKS ...5
2.1 SPI IDEAS... 5
2.2 SPI MODELS... 8

2.2.1 IDEAL..9
2.2.2 CMM..9

2.3 THEORY OF KNOWLEDGE MANAGEMENT ... 11

3 RESEARCH PROCESS..15
3.1 APPROACHES TO IS RESEARCH .. 15
3.2 COLLABORATIVE PRACTICE RESEARCH.. 17

3.2.1 Overall design..18
3.2.2 Action research..19
3.2.3 SPI as action research..21

3.3 DATA COLLECTION AND ANALYSIS.. 23
3.4 OPPORTUNITIES AND LIM ITATIONS... 24

4 INDUSTRIAL SUMMARY..26
4.1 THE DEVIS ... 26
4.2 THE CMM ASSESSMENT I ... 30
4.3 THE KNOWLEDGE MANAGEMENT FACILITIES ... 30

4.3.1 The Electronic Process Library (EPL) ..30
4.3.2 The networking facilities..31

4.4 THE CMM ASSESSMENT II.. 32
4.5 THE SPI UNIT ASSESSMENT... 33
4.6 PLANS FOR FURTHER IMPROVEMENTS.. 33

5 RESEARCH SUMMARY...35
5.1 KNOWLEDGE CREATION IN IMPROVING A SOFTWARE ORGANISATION...................................... 36
5.2 ANALYSING AN SPI PROJECT WITH THE MAP FRAMEWORK... 36
5.3 AN APPROACH TO INSTITUTIONALISATION OF SOFTWARE PROCESSES...................................... 37
5.4 MANAGING KNOWLEDGE IN A SOFTWARE ORGANISATION.. 38
5.5 KNOWLEDGE SHARING IN A SOFTWARE PROCESS IMPROVEMENT UNIT 39
5.6 SUMMARY.. 40

6 DISCUSSION...41
6.1 MAKING SPI HAPPEN IN PRACTICE... 41
6.2 KNOWLEDGE MANAGEMENT CHALLENGES IN SPI... 43
6.3 USING INSIGHTS FROM KNOWLEDGE MANAGEMENT IN SPI... 45
6.4 FURTHER RESEARCH... 46

REFERENCES ...48

II RESEARCH CONTRIBUTIONS ...53

KNOWLEDGE CREATION IN IMPROVING A SOFTWARE ORGANISATION ..55

ANALYSING AN SPI PROJECT WITH THE MAP FRAMEWORK ...71

 xii

AN APPROACH TO INSTITUTIONALISATION OF SOFTWARE PROCESSES ..89

MANAGING KNOWLEDGE IN A SOFTWARE ORGANIS ATION.. 103

KNOWLEDGE SHARING IN A SOFTWARE PROCESS IMPROVEMENT UNIT ... 121

III INDUSTRIAL CONTRIBUTIONS .. 135

 1

I IMPROVING SOFTWARE PRACTICES BY MANAGING
KNOWLEDGE

Pouya Pourkomeylian

1 RESEARCH AIMS

During the last decade Software Process Improvement (SPI) has been used in the software industry
as a systematic approach toward improving the capabilities of software organisations. SPI was
originally developed at the Software Engineering Institute (SEI) at Carnegie Mellon University and
is based on ideas presented by Humphrey (see Humphrey 1989). SPI offers three sets of ideas for
improving practice in software organisations: the management of SPI activities, the approach taken
to guide SPI initiatives, and the perspective used to focus attention on the SPI goal(s) (see Aaen et
al. 2001).

The first step in improving the capabilities of a software organisation is to understand the current
status of the software development practice in the organisation (Humphrey 1989). One way to do
this is to make an assessment based on a model as a road map. In the past years software
organisations have used different appraisal approaches to identify what should be improved. The
most popular assessment model is the Capability Maturity Model (CMM), which is a stepwise
approach to SPI developed by the SEI (Paulk et al. 1993). Other approaches include BOOTSTRAP
(Kuvaja 1994), SPICE (Thomson and Mayhew 1997), ami (ami 1992), TickIT (TickIT 1995), and
TRILLIUM (Thomson and Mayhew 1997). Common to all these approaches is that they apply
Total Quality Management (TQM) principles to SPI.

Following an assessment, further improvement activities should be planned and carried out to create
new or improved software processes. A process can be defined as a set of tasks and procedures that
when performed or executed attain a specific goal (Olson et al. 1989). Practice can be defined as the
time during which a process is put into action. Once the new or improved software processes are
created, the next challenge for those making SPI happen is to implement them in the organisation.
Different reports have pointed out difficulties in conducting SPI projects in practice (Goldenson and
Herbsleb 1995, Debou 1997). Success with SPI seems to depend on a complex mix of highly
interrelated factors acting in different phases during an SPI project. Factors such as scaling the SPI
initiative, setting realistic goals, the complexity of organisational changes, and the organisational
culture have made it difficult to achieve success in SPI initiatives (Goldenson and Herbsleb 1995,
Herbsleb et al. 1997, Mashiko and Basili 1997, Johansen and Mathiassen 1998). Still SPI has also
been shown to help organisations gain organisational benefits (Humphret et al. 1991, Wohlwend
and Rosenbaum 1994, Hayes and Zubrow 1995, Larsen and Kautz 1997).

An organisation’s software development practices are based on the knowledge and competencies of
its practitioners and managers (Arent and Nørbjerg 2000). Mathiassen et al. (2001) argue that SPI
efforts depend on the implicit, individual knowledge of practitioners in an organisation. To change
software development practices, the organisation should improve the practitioners’ existing
knowledge (both theoretical and practical) of its software practices. Knowledge about the new
processes should thus be made available on different organisational levels. However, until recently,

 2

according to Kautz and Nielsen (2001) there has been little theoretical and practical understanding
of how SPI knowledge can be transferred to all organisational levels.

One major challenge for a unit working with SPI efforts is hence to create strategies and
mechanisms for managing knowledge about software development. Other stud ies have argued for
and illustrated the usefulness of applying Knowledge Management (KM) to SPI. Arent and
Nørbjerg (2000) analysed how the organisational knowledge creation process can support SPI
initiatives. They point out the need for more complex models of knowledge creation and expansion
processes than provided by Nonaka and Takeuchi (1995). Baskerville and Pries-Heje (1999)
investigated and suggest how KM is used as underlying theory to develop a set of key process areas
as a supplement to the CMM in small or medium sized companies. Kautz and Thaysen (2001)
studied how knowledge, learning and IT support occur in small software organisations. They argue
that IT should not only be used to gather, store, and distribute information. According to them IT
should also support learning. Mathiassen et al. (2001) studied SPI from a knowledge creation
perspective. They argue that the general idea of SPI is to make knowledge explicit and to share
knowledge on different organisational levels. Kautz and Nielsen (2001) studied the role of
knowledge transfer in SPI implementation and developed a practical framework that can help
change agents understand SPI implementation as knowledge transfer. Arent et al. (2001) studied
SPI as an organisational learning process using Nonaka and Takeuchi’s (1995) concept. They
suggested two main strategies for learning: 1) the exploration strategy in which the key learning
processes are learning by sharing and learning by doing. These processes focus more on changing
practice (creating tacit knowledge) than on documenting practice (creating explicit knowledge), and
2) the exploitation strategy in which the focus is on learning by reflection and integration aiming to
create explicit knowledge across the organisation in the form of new standards processes and
guidelines. These studies indicate that the issues related to knowledge creation, modification and
sharing have important roles in SPI initiatives, but to understand where and how to use KM insights
to improve SPI practice we need to experiment with and further develop different KM insights in
SPI practice. This study has been an attempt in this direction.

SPI efforts are defined as activities carried out to: 1) understand the current status of the
organisation’s software practices, 2) develop a vision of the desired practices, 3) establish a list of
required actions in order of their priority, 4) produce a plan to accomplish the required actions, 5)
commit the resources and conduct the plan, and 6) start at step one again (Humphrey 1989). KM
activities in SPI are defined as activities focused on the creation, modification, and sharing of
knowledge about software development practice and process.

The thesis reports on research in which KM was systematically used to reflect upon and inspire the
SPI efforts in a software organisation in a multinational pharmaceutical company, AstraZeneca,
during a two and a half-year period. The SPI efforts started with a CMM-based assessment (in May
1999) focused on level 2 Key Process Areas (KPAs) to establish the current capability of the
organisation’s software practices. On the basis of the findings from the assessment, improvement
efforts were planned and made to create new software processes (for software validation, change
and version control, and software documentation). Further, 27 templates were developed to be used
for documenting the results of software projects. An implementation strategy was developed and
different activities were planned and conducted to implement the new processes in different
software projects. Further, two complementary approaches to KM were used to develop a KM strategy and
different facilities to support knowledge sharing and continuous SPI efforts in the organisation. A second
CMM-based assessment made in the organisation (in May 2001) showed that the organisation

 3

achieved improvements in all level two KPAs (see Appendix for a brief summary of some of the
chosen documents).

The study was organised as an SPI project in collaboration with practitioners working in the
software organisation (early 1999 – June 2001). An SPI unit was created to support the SPI efforts
and develop strategies and facilities for sharing knowledge about the new practices and processes in
the organisation. I have been the driving force in the SPI efforts and the head of the SPI unit.
Through these activities, I was able to learn the concept of SPI, understand the organisation’s
software problems and gain first-hand experience of all the SPI efforts carried out at the software
organisation. My experience as SPI manager and practitioner has been inspired in this study by
conceptual and theoretical material from a number of sources, as illustrated in table 1. These
sources have also helped me evaluate my practice and distil key learning points.

Topic References
Software Process
Improvement

(Humphrey 1989), (Zahran 1998), (Paulk et al. 1993), (Aaen et al.
2001), (Arent and Iversen 1996), (Mathiassen et al. 2001)

Knowledge Management
and Networking

(Nonaka and Takeuchi 1995), (Hanssen et al. 1999), (Scarbrough, H.
and Swan, J., ed. 1999), (Scarbrough et al. 1999), (Seufert et al. 1999),
(Augier et al. 1999)

Research Approaches (Patton 1990), (Galliers 1992), (Mathiassen 2000), (Dick 1997 a, 1997b,
and 1997c), (Galliers and Land 1987)

Table 1. Overview of primary sources of inspiration

My research can be classified as a study in the field of Information Systems (IS) and can basically
be seen as a case study based on action research, although some of the research activities were done
using other approaches such as field experiments and practice studies. The goal of the research is to
support both academia and practice, thus adopting two purposes: 1) to add to the body of
knowledge about how KM is used and can be used to support SPI efforts in practice, 2) to provide
benefits to further SPI efforts at AstraZeneca, where this study was conducted. This has been dealt
with by exploring answers to the following questions:

1. How can we make SPI happen in practice?
2. What are the main challenges in SPI from a KM perspective?
3. How can KM insights support SPI practices?

I chose Software Practice Improvement as the title of this thesis to move the focus from improving
processes to practical issues of improving software practices. Following the sequence of the
research questions I first describe the concept of SPI in order to present the major ideas and
challenges in SPI. Second, the KM insights chosen to be used in this study are described and
discussed. I further present our experiences from using KM insights in SPI in the AstraZeneca case.
Different experiences from different phases of our SPI effort are reported. Finally, I discuss each
research question in the light of our findings in the AstraZeneca case, and offer some practical
advice for how to conduct SPI in practice as a KM effort.

The thesis is divided into three main parts. Part I: Software Practice Improvement, includes six
chapters. Chapter one describes the research aims, Chapter two gives the underlying theoretical
frameworks for the thesis, Chapter three describes the underlying research approaches, and Chapter
four reports on the case in which this research was conducted. Chapter five is a survey of the five

 4

papers that form the basis for this thesis, and Chapter six presents the results and offers discussions
based on the material presented in the previous chapters. Part II: Research Contributions, includes
the five papers that have been published within this project. Part III: Industrial Contributions,
presents a brief description of the project’s industrial contributions.

 5

2 THEORETICAL FRAMEWORKS

The central concept underlying this research is SPI. Different approaches originating from insights
on KM were used in the study to support the SPI efforts. In this section I give a brief description of
SPI ideas (see Aaen et al. 2001, Mathiassen et al. 2001). I present the CMM as a road map for
improving the capability of a software organisation’s maturity and the IDEAL model as a
framework for organising, planning, and carrying out SPI efforts. I further present the area of KM,
including one theory of organisational knowledge creation (Nonaka and Takeuchi 1995) and two
complementary approaches for knowledge sharing, i.e. the codified and the personalised approaches
(Hanssen et al. 1999, Swan et al. 1999).

2.1 SPI Ideas

To present the underlying concept of SPI I choose Aaen et al’s. (2001) MAP because it offers a
survey of the ideas within SPI that offer answers to specific practical concerns. According to those
authors, SPI addresses three fundamental concerns: the management of SPI activities, the approach
taken to guide the SPI initiatives, and the perspective used to focus attention on the SPI goal(s).

Managing SPI: Organising SPI efforts is one of the key elements that influence SPI management. It
is important that someone within the organisation is assigned responsibility and given the necessary
resources for the SPI efforts. An SPI organisation should be dedicated and adapted to the whole
organisation. One way to establish a dynamic SPI organisation for improving software practices is
to staff the SPI organisation with part-time participants, i.e. as a project. Another way would be to
centralise the SPI efforts in a separate group or method department. Experience has shown that it is
better to decentralise SPI efforts than to have one centralised SPI organisation that encompasses the
whole organisation (Aaen et al. 2001, Mathiassen et al. 2001). There are several risks in having a
centralised SPI group: 1) the group can become a bureauc ratic method department, 2) the group
might produce solutions that practitioners do not accept, 3) the group runs the risk of becoming
alienated and having its results met with indifference in other parts of the organisation. On the other
hand, according to Aaen et al. (2001), organising SPI efforts as dedicated, localised efforts offers
many benefits. One is that it allows SPI experts to collaborate closely with practitioners to define
the work procedures that fit their concerns. Another benefit is that resource adaptation can be taken
into account. When the SPI effort is established as a localised project, the allocation of appropriate
resources will be an integral part of the organisation. But organising SPI efforts as projects includes
some risks as well. On the basis of our experience one risk can be that the SPI activities will be
confounded in the scope of the project’s definition. Another risk can be that the project manager
and the project members can be too focused on the deliverables, schedules, and deadlines that they
do not have the necessary time for reflection (see Pourkomeylian 2001b).

The second key element influencing SPI management is planning. An action plan should be
developed to stand as the basis for defining and starting an SPI project, or a number of projects, to
implement changes. Many improvement programs have failed as the simple result of no action
being taken after appraisals have been made (Paulk 1996). Aaen et al. (2001) mention several
advantages of creating a plan for the SPI effort: 1) it creates a common understanding about the
goals, schedules, and results, 2) it makes it easier to break the SPI project down into a sequence of
limited tasks that have specific operational targets, 3) it supports prioritisation and co-ordination, 4)
it helps management and SPI project members to form and meet specific commitments, and 5) it
serves as a mechanism for communicating progress to ensure proper visibility and understanding of
the SPI project. However, several things can go wrong even when there is a plan. Plans can be

 6

uncoordinated, meaning that they are not adjusted to other ongoing organisational concerns. As a
result, key practitioners can be unavailable when they are needed. Another risk can be that a plan
can kill practitioners’ motivation and commitment. Planning had impacts on our SPI efforts both as
supportive tool and as a risk factor creating feelings of stress (see Pourkomeylian 2001b).

The third key element that affects SPI management is getting feedback on improved or new
software processes. There are different approaches to measuring SPI efforts (Zahran 1998).
Experience has shown that it is not always easy to measure and collect data from SPI efforts.
According to Johansen and Mathiassen (1998), measurement activities should be treated as a project
in itself. One alternative way to measure effects of SPI efforts is to try to achieve abstract goals,
such as go for level 3 or 4 in the CMM model or rely on people’s perception of the effects. Among
the opportunities that collecting appropriate feedback may provide in the SPI effort is giving
legitimacy to the effort and the resources spent by pointing to the positive outcomes in qualitative
terms. Another opportunity may be that measurements can serve as an important contribution to
creating organisational commitment and motivation. One risk related to measurement according to
Aaen et al. (2001) is that it may be difficult to argue for the measurements’ validity. Another
problem is ensuring verifiability in order to establish that measurements are trustworthy, accurate,
and reliable. In our case we did not defined how to measure feedback during the improvement
phase of our project. We used the direct feedback of the practitioners working with the
improvement efforts (see Pourkomeylian 2001b). Later on during the implementation phase of the
project we defined different ways of measuring feedback (see Pourkomeylian 2001c).

Approaches to SPI: this aspect of SPI addresses how to design SPI efforts. One key element is that
SPI is an evolutionary process in which improvements are implemented incrementally over time
rather than in a few dramatic transformations. The incremental improvements are continuous,
concerted, and cumulative: they follow cycles of assessing, experimenting, and rolling out, and they
are oriented toward the individual, project, and organisational levels (see Humphrey 1989, Aaen et
al. 2001, Mathiassen et al. 2001,). An evolutionary approach to SPI has several benefits. One of the
important success factors in the SPI approach is the active involvement of the practitioners in
identifying, designing, and implementing improvements. Experience-based learning through the SPI
effort’s life span is another important success factor. Finally, the evolutionary approach allows
keeping and leveraging the best elements of existing processes (see Paulk 1996, Aaen et al. 2001,
Mathiassen et al. 2001). One risk related to the evolutionary approach is the slowness of the
improvements. People working with SPI might even find themselves in a situation in which they
cannot measure any effect because of measurement uncertainties. This was one of the challenges in
our case, especially during the improvement phase of our project (see Pourkomeylian 2001b).

Another key element related to approaches to SPI is the use of best practice models of software
processes as norms or benchmarks for assessing the capability of the software organisation. Such
models are also used to formulate a strategy for bridging the gap between norm and practices.
Examples of such models are CMM, Bootstrap and SPICE (see Paulk et al. 1993, Kuvaja 1994,
Thomson and Mayhew 1997). These models can support organisations in comparing experiences
and achievements in process improvement efforts. Norms can also provide criteria for setting
priorities for improvement areas and implementing stepwise improvements that focus on a limited
number of areas at a time. SPI models, according to Aaen et al. (2001), have been criticised for
focusing too narrowly on SPI objectives and not enough on business goals. One risk in using norms
as models can be that the organisations will follow norms for the sake of recognition rather than
because they actually need to improve their processes. In our case we used a modified CMM
assessment to establish the capability of our software practices. For further improvement efforts we

 7

relied on our practitioners’ ideas and experiences to create new software processes (see
Pourkomeylian 2001a, 2001b).

The final key element related to approaches to SPI is commitment, which is the explicit or implicit
agreement among participants to strive for shared goals and results. Senior management must
actively support the change initiative with leadership, resources, and strategic management (see
Aaen et al. 2001, Mathiassen et al. 2001). If the whole organisation shows commitment to SPI,
individuals will be motivated to share experiences, try out new processes, and work together to
reach goals. An alternative approach is to base the improvement activities on power. Paulk (1996)
argues that a top-down approach instructing everyone to follow the new processes is seldom
successful. Another possibility is improvement through individual initiatives. Aaen et al. (2001)
argue that this might lead to improvements in individual competencies, without sponsorship and co-
ordination, and that such initiatives easily lead to islands of excellence rather than improved
organisational capabilities. Aaen et al. (2001) argue that commitment can go too far. People can
become so dedicated to solving problems that they lose sight of the original goals. This can further
lead to a loss of perspective on the organisation’s long-term improvement visions. People involved
in our SPI effort were highly committed to the project. They were all practitioners working with
software engineering practices and were interested in solving our software practice problems. But
sometimes we needed to remind each other about the scope of our project and try to focus on the
goals of our efforts (see Pourkomeylian 2001b).

Perspectives of SPI: the focus of SPI is on software engineering practice (see Humphrey 1989).
Aaen et al. (2001) summarise the view in the literature on this practice from three basic
perspectives. The first perspective of SPI is that it is focused on software processes. According to
Humphrey (1989) software processes are the set of tools, methods, and practices an organisation
uses to produce software products. SPI’s total process perspective is holistic, covering all software
engineering practices and based on the idea that improved processes can lead to better products and
projects (see Zahran 1998, Humphrey 1989, Mathiassen et al. 2001, Aaen et al. 2001). The benefit
of this view is that technology and people are understood in their practical organisational context.
Of course the holistic approach adds complexity to SPI activities. The involvement of the
organisation’s best practitioners in the SPI effort is thus a critical success factor. But there is a
conflict between their SPI responsibilities and their software development responsibilities. Another
risk comes in underestimating the “people” element and adopting an instrumental view of
practitioners. This can result in a lack of participation and further commitment (see Aaen et al.
2001, Mathiassen et al. 2001). On the basis of my experience as quality manager, having a holistic
view on software processes can expand the scope of the areas to be improved and this requires more
detailed planning and more resources for conducting the improvement efforts.

Another key element related to perspectives on SPI is people’s competencies. A successful SPI
effort requires competency development in relation to the newly created software processes. The
goal of developing competencies is to empower people to expertly use, modify, and adopt the
software processes in their software projects in a way suited to their needs. Aaen et al. (2001) argue
that competence building can create strong commitment to projects and processes. Because people
understand and appreciate the process, they are empowered to use their discretion in adapting the
processes to meet the needs of both the situation and their customers. One possible risk mentioned
by Aaen et al. (2001) is that the protection of an individual’s or group’s interests obstructs
organisational or project goals. In our case the competence development activities included
transformation of knowledge about software development to different organisational levels and

 8

teaching practitioners the new processes and coaching them to adapt the new processes to fit their
needs. Of course this was a time-demanding process (see Pourkomeylian 2001a, 2001b, 2001c).

The third key element in SPI perspectives is the context of software engineering activities. This
context provides a ground for improvement efforts on a general level, as well as for customisations
for specific needs. The context provides an environment for making it clear who does what, why,
when, and how. The context according to Aaen et al. (2001) is where individual and organisational
competencies merge. Through training, documented guidelines, the repertoire of methods and tools,
and other kinds of support, the software process is stabilised into a whole that allows for both the
adaptation of existing practices and the adoption of new processes to suit the situation. Such a
context helps organisations identify best practices and ease the introduction of new employees into
it. It also supports systematic reuse and the development of a professional software engineering
culture (see Aaen et al. 2001, Mathiassen et al. 2001). One risk related to development of the
context is according to Aaen et al. (2001) that an improvement effort does not effect practice, i.e.
the practices remain unchanged. Reuse can lead to carrying out activities because they are part of
tradition rather than because they are needed. There is also a risk that the software processes can be
defined such that competencies are externalised in procedures and discretionary behaviour is not
permitted. This has led to the criticism that SPI causes organisations to become rigid and
bureaucratic. However, documented SPI experiences indicate that such criticisms are misplaced in
all but a few organisations (Herbsleb et al. 1997). In our case we created an SPI unit responsible to
facilitate the implementation of new processes in each software project to improve the practice (see
Pourkomeylian 2001c).

To sum up, the management of SPI initiatives is based on three ideas: 1) the SPI activities are
organised in a dynamic fashion, 2) all improvement efforts are carefully planned, and 3) feedback
on effects of software engineering practices is ensured. The approach to SPI initiatives is guided by
three additional ideas: 1) SPI is evolutionary in nature, 2) SPI is based on idealised, normative
models of software engineering, and 3) SPI is based on a careful creation and development of
commitments between the actors involved. Finally, the perspective in SPI is dominated by three
ideas: 1) SPI is focused on software processes, 2) the practitioners’ competencies are seen as the
key resource, and 3) SPI aims to change the context of the software operation to create sustainable
support for the actors involved. The holistic view underlying SPI is to focus on software processes
as social institutions with a complex interplay of people, methods, tools, and products (Aaen et al.
2001, Mathiassen et al. 2001).

2.2 SPI Models

A popular model in the field of SPI that is suitable for assisting in organising, planning, and
collecting feedback for implementing organisational changes is the IDEAL model (McFeeley
1996). We used the IDEAL model in AstraZeneca’s case to organise, plan, and carry out our SPI
efforts. We chose to use IDEAL because it is a widely recognised and used model, it is easy to
understand and use, it has a strong focus on organisational learning, and it suits our practices.

The most popular and widely used model of the mature software organisation is the CMM, which is
a framework that sets out the key factors in an effective software process and describes an
evolutionary improvement path from an ad hoc, immature process to a mature, disciplined process
(see Paulk et al. 1993). The CMM has received some criticism (Bach 1994), but we used it because
it was widely recognised and used in SPI efforts, it can be supplemented with other ideas, it allows
for flexibility, and it suited our needs.

 9

2.2.1 IDEAL

As is shown in figure 1, the IDEAL model considers five phases (Initiating, Diagnosing,
Establishing, Acting, and Learning) of an SPI initiative that provide a continuous loop through the
steps necessary for software process improvement.

Figure 1. The IDEAL Model (McFeeley 1996)

The intention of the IDEAL model is to present a single picture that is easy to use and helps people
remember what to do to establish and conduct successful improvement activities and keep in mind
the infrastructure needed to turn the results of an assessment into action. Once the first cycle of SPI
has been completed, there is a need to regularly repeat the whole process.

The initial improvement infrastructure of the SPI effort is established in the initiating phase. The
roles and responsibilities in the SPI effort are defined, and the initial resources for conducting the
SPI project are assigned. An SPI plan is created in this phase to guide the SPI project through the
completion of the Initiating, Diagnosing, and Establishing phases. In the diagnosing phase,
appraisal activities are planned and carried out on the basis of a model as a road map to establish a
baseline for the organisation’s current software problems. In the next phase (establishing), strategies
are developed for pursuing the improvement suggestions identified in the diagnosing phase. An SPI
action plan draft is completed in accordance with the organisation’s vision and lessons learned from
past improvement efforts. Some measurable goals are also developed and included in the final
version of the SPI action plan. Metrics necessary to monitor progress are defined. Commitments are
made for resources and training for the people working with the improvement efforts. In the acting
phase, the suggestions for improvement gathered during the diagnosing phase are planned and
carried out in the organisation. Plans are developed to execute pilot projects to test and evaluate the
software process created. The objective of the learning phase is to make the next pass through the
IDEAL model more effective. By this time, the solutions have been developed and documented, the
lessons have been learned and documented, the metrics on performance have been collected, and
goals have been achieved (McFeeley 1996).

2.2.2 CMM

The CMM describes the process capability of software organisations in five levels. The higher the
process maturity, the lower the risk, and the higher productivity and quality become. The idea is
that an organisation at a higher maturity level will perform better than one at a low maturity level.
The model provides a roadmap for moving from an ad hoc process culture to a culture of process

 10

discipline in which there is continuous process improvement. Each maturity level in the CMM is
composed of several KPA and each KPA is organised into five sections called common features.
The common features specify the key practices that, when collectively addressed, accomplish the
goals of the key process area. Figure 2 illustrates the CMM’s five maturity levels.

Figure 2. The CMM model and the five maturity levels (Paulk et al. 1993)

The first level is the initial level, which has no requirements. This level is consequently often
described as an ad hoc level. The software process capability of a level 1 organisation is
unpredictable because the software process is constantly being changed or modified as work
progresses. Schedules, budgets, functionality, and product quality are generally unpredictable.
Organisations that are on this level have no established, basic project management processes, and
success in software projects depends entirely on the project team and personal initiatives. There are
few stable software processes, and performance does not depend on the organisational features.
There are no KPAs on this level. After conducting our first CMM-based assessment we realised that
our organisation had some of the characteristic features of being a level one organisation (see
Pourkomeylian 2001a).

The second level is the repeatable level. Here, the focus is on getting software project management
under control to track costs, schedules, and functionality. The necessary process discipline should
also be in place to repeat earlier successes in projects with similar applications and to avoid past
failures. The software process capability of level 2 organisations can be characterised as disciplined
because the planning and tracking of the software project is stable and earlier successes can be
repeated. Our CMM-based assessment was focused on level 2 KPAs, although we did not exactly
focused on improving those KPAs. Neither did we focus on reaching level two. We selected our
own focus areas based on the organisation’s requirements and practitioners’ ideas (see
Pourkomeylian 2001a, 2001b).

Level 3 is the defined level, and the focus is on standardising the processes used in the software
projects across the entire organisation. This requires the creation of defined processes as a basis for
consistent implementation and better understanding. All projects use an approved, tailored version

Capability Maturity Model - CMM

Initial (1)

Repeatable (2)
•Software configuration management

•Software quality assurance
•Software subcontract management

•Software project tracking and oversight
•Software project management

•Requirements management

Defined (3)
•peer reviews

•Intergroup coordination
•Software product engineering
•Integrated sw management

•Training program
•Organization process definition

•Organization process focus

Managed (4)
•Software quality management

•Quantitative process management

Optimizing (5)
• Process change management

•Technology change management
•Defect prevention

Capability Maturity Model - CMM

Initial (1)

Repeatable (2)
•Software configuration management

•Software quality assurance
•Software subcontract management

•Software project tracking and oversight
•Software project management

•Requirements management

Defined (3)
•peer reviews

•Intergroup coordination
•Software product engineering
•Integrated sw management

•Training program
•Organization process definition

•Organization process focus

Managed (4)
•Software quality management

•Quantitative process management

Optimizing (5)
• Process change management

•Technology change management
•Defect prevention

 11

of the organisation’s standard software process for developing and maintaining software. The
software process capability of level 3 organisations can be characterised as standard and consistent
because both software engineering and management activities are stable and repeatable. At level 3
management has good insight into the technical progress of all projects. Costs, schedules, and
functionality are under control, and software quality is tracked. In our project we created a few
software processes to be used as frameworks for better practice (see Pourkomeylian 2001a, 2001b,
2001c).

The most significant quality improvements, according to the CMM, can begin when the
organisation at level 4 (the managed level) has initiated comprehensive quantitative measurements
to ensure that the software processes operate within statistically predictable limits. At this level, the
software process capability of the organisation can be characterised as predictable because the
process is measured and operates within measurable limits. Detailed measures of the software
process and product quality are collected. Both the products and software processes are
quantitatively understood and controlled. On level 3 the software products are expected to be of a
predictably high quality.

At level 5 (optimised level), the entire organisation is focused on continued process improvement
based on quantitative data from level 4. The software process capability of level 5 organisations can
be characterised as being in a state of continuous improvement. Improvement occurs both by
incremental advancements in the existing process and by innovations using new technologies and
methods. At this level, the organisation is typically characterised by a focus on continuous process
improvement.

2.3 Theory of Knowledge Management

Dahlbom and Mathiassen (1993) approach knowledge from two different views: 1) a positivistic
perspective in which knowledge is like information that can be collected and processed as objective
artefacts that can be measured, bought, classified and stored in people, books, or computers, 2) a
hermeneutic perspective in which knowledge is not an artefact, but something a person can have.
My understanding of what knowledge is agrees with Nonaka and Takeuchi’s (1995) definition.
They consider knowledge to be preceded by information and, in this process, interpretation,
reflection, and action take place. Using Dahlbom and Mathiassen’s terminology, knowledge is
basically hermeneutic but should be supported by partial positivistic elements.

My understanding of management efforts in KM relies on the creation, modification, and sharing of
knowledge through different organisational levels, i.e. individual, group, and organisation (see
Shariq 1999, Scarbrough and Swan 1999, Zack 1999). On the basis of this understanding, and
because of the nature of our SPI case at AstraZeneca, I chose two KM approaches to support the
SPI initiatives: 1) the theory of organisational knowledge creation to support the creation of
knowledge and the modification of knowledge to fit it for use in different projects (see Nonaka and
Takeuchi 1995) and 2) the approaches of codification and personalisation of knowledge to support
the sharing of knowledge on different organisational levels (see Hanssen et al. 1999).

Nonaka and Takeuchi’s concept (1995) has received some criticism (see Tsoukas 1996, Cook and
Brown 1999), but I chose to use the concept for several reasons: 1) it is a well-known approach, 2)
it has already been used in SPI with some success (see Arent and Nørbjerg 2000, Arent et al. 2001),
3) it deals with different types of knowledge (tacit and exp licit) and activities that relate to the
creation of knowledge on different organisational levels. The theory of organisational knowledge

 12

creation (Nonaka and Takeuchi 1995) was used early in the SPI effort to help us understand the
nature of SPI from the perspective of organisational knowledge creation. The first step in our SPI
effort focused on creating knowledge about the current maturity of the organisation’s software
practices. The SPI efforts were further focused to create new software processes based on
practitioners’ experiences and knowledge about the software practice. With Nonaka and Takeuchi’s
concept we identified which type of knowledge was created by whom, where, when, and how
during the improvement activities. Using this concept helped us to understand the knowledge
creation process in our SPI effort and design facilities to support customisation of new processes for
individual software projects (see Pourkomeylian 2001a, 2001c).

Nonaka and Takeuchi’s (1995) approach is based on the distinction between explicit and tacit
knowledge. Explicit knowledge is knowledge that is transmittable in formal, systematic languages.
It can be articulated in formal languages, including grammatical statements, mathematical
expressions, specifications, manuals, and so forth. It can be transmitted across individuals formally
and easily. Tacit knowledge is personal and context-specific, and is therefore difficult to formalise
and communicate. It is personal knowledge that is embedded in individual experience and that
involves intangible factors such as personal belief, perspective, and value system. Tacit knowledge
is difficult to communicate and share in the organisation and must thus be converted into words or
numbers that anyone can understand. This distinction is important, especially in software
organisations where the tacit knowledge of the professionals must interact closely with various
forms of explicit knowledge. The very idea in software engineering is to explicate knowledge in the
form of programs to be executed on computers. Software developers spend great effort developing
programs, specifications, and models, while at the same time participating in close people-to-people
interactions as members of software teams.

According to Nonaka and Takeuchi (1995) organisational knowledge is created during the time the
“conversion” takes place, i.e. from tacit to explicit and back again into tacit. Knowledge conversion
is a “social” process between individuals and is not confined to one individual. Assuming that
knowledge is created through the interaction between tacit and explicit knowledge, four different
modes of knowledge conversion are possible (Figure 3).

1. From tacit knowledge to tacit knowledge (socialisation that creates sympathised knowledge).

The socialisation mode usually starts with building a “field” of interaction. This field facilitates
the sharing of members’ experiences and mental models. Socialisation involves the sharing of
tacit knowledge between individuals. In our case this happened in SPI-workshops, SPI
meetings, and customisation meetings when we discussed issues to find solutions for software
problems (see Pourkomeylian 2001a, 2001c, Mathiassen and Pourkomeylian 2001).

2. From tacit knowledge to explicit knowledge (externalisation that creates conceptual
knowledge). The externalisation mode is triggered by meaningful “dialogue or collective
reflection,” in which using an appropriate metaphor or analogy helps team members to articulate
hidden tacit knowledge that is otherwise difficult to communicate. Externalisation requires the
expression of tacit knowledge and its translation into comprehensible forms that can be
understood by others. In our case externalisation activities were focused on illustration of the
new processes in a way that was easy to understand and easy to share (see Pourkomeylian
2001a, 2001c, Mathiassen and Pourkomeylian 2001).

3. From explicit knowledge to explicit knowledge (the combination that creates systematic
knowledge). The combination mode is triggered by “networking” newly created knowledge and
existing knowledge from other groups in the organisation, thereby crystallising them into a new
product or service. In our case the combination activities were focused on making the new

 13

processes more complete on the basis of practical use (see Pourkomeylian 2001a, 2001c,
Mathiassen and Pourkomeylian 2001, Pourkomeylian et al. 2001).

4. From explicit knowledge to tacit knowledge (internalisation that creates operational
knowledge). “Learning by doing” triggers internalisation. The internalisation of newly created
knowledge is the conversion of explicit knowledge into the organisation’s tacit knowledge. In
practice, internalisation relies on two dimensions. First, explicit knowledge must be embodied
in action and practice. Second, there is a process of embodying the explicit knowledge by using
simulations or experiments to trigger learning by doing processes. To implement the new
processes in practice we encouraged practitioners to use them as frameworks for better practice.
We offered them different services such as training and coaching to teach them how to adopt the
new processes into their software projects (see Pourkomeylian 2001a, 2001c).

Linking
Explicit

Knowledge

(Socialization)
Sympathized
Knowledge

(Externalization)
Conceptual
Knowledge

(Internalization)
Operational
Knowledge

(Combination)
Systemic

Knowledge

Tacit Knowledge

Explicit Knowledge

Tacit Knowledge Explicit Knowledge

To

Dialogue

Learning by Doing

Field
Building

Figure 3. Knowledge created via the four modes (Nonaka and Takeuchi 1995)

As our SPI efforts continued, we needed a further KM approach that could help us create facilities
for sharing knowledge and experiences about the new processes and practices. We used the concept
of codification and personalisation of knowledge described by Hanssen et al. (1999) to create
strategies and mechanisms for knowledge sharing through IT-based facilities for sharing codified
knowledge and through networks for sharing personalised knowledge. I chose this concept because:
1) it is a concept that is easy to understand, 2) it addresses practical issues, 3) it applies easily to
practice, 4) it is suited to AstraZeneca’s case (as a pharmaceutical company the quality rules should
be addressed explicitly in Standard Operation Procedures (SOPs)), and 5) codification is one key
element of SPI.

Two main strategies have been in focus in KM theory and practice: 1) the cognitive model and 2)
the community model presenting two different approaches to managing knowledge in organisations
(Swan et al. 1999). The cognitive model relies on the codification of knowledge objects that are
stored in databases from which they can easily be accessed and used by anyone in the organisation
(Swan et al. 1999). This is what Hansen et al. (1999) call the codification strategy and it
corresponds to the positivistic view of knowledge according to Dahlbom and Mathiassen’s (1993)
definition. In contrast, the community model provides a perspective in which knowledge is closely
tied to the person who creates it and is mainly shared through direct person-to-person contacts
(Swan et al. 1999). This is called the personalisation strategy (Hansen et al. 1999) and it
corresponds to Dahlbom and Mathiassen’s hermeneutic view of knowledge.

The focus in the codification or the cognitive model is on elaborating ways to codify valuable
knowledge from individuals and to store and reuse it through the use of IT. Knowledge is extracted

 14

from the person who originally created it, is made independent of the person, and is reused for
various purposes. The computer is seen as a storage facility that can be shared between individuals,
and knowledge is codified and later used through “people-to-electronic documents”. This approach
allows many people to search for and retrieve codified knowledge without having to contact the
person who originally developed it. Here, IT and the so-called knowledge agents who are
responsible for codifying and storing documents are seen as critical success factors (Hansen et al.
1999, Swan et al. 1999, Swan et al. 2000). This approach to knowledge is contradictory to Kautz
and Thaysen’s (2001) definition of knowledge and use of IT. They see knowledge as more than an
objective codifiable commodity. They argue that knowledge might be individual but that it is
socially constructed. They further argue that IT should not only be used to gather, store, and
distribute information. It should support learning.

The personalisation or community approach sees the KM issues as socially constructed through
interaction between individuals in which collaboration and dialogue, not codified knowledge in
databases, are in focus. Knowledge that has not been codified, and probably could not be, is
transferred through collaboration, in brain-storming sessions and through person-to-person
conversations in networks. A network is seen as a medium for knowledge sharing, both on a
personal and on an organisational level (see Augier and Vendelo 1999, Swan et al. 1999). IT can
play a role in this approach, even though it is not seen as a critical factor for success. The computer
is not viewed simply as a storage facility but, more importantly, as a medium for interaction and
collaboration. According to Hansen et al. (1999), an organisation’s KM strategy should rely on the
organisation’s competitive strategy. They argue that an organisation should take an 80%-20%
strategy, i.e. they should choose a primary and a secondary strategy.

In summary, knowledge can be approached both from a positivist perspective, in which knowledge
can be collected stored and trans ferred, and from a hermeneutic perspective, in which knowledge is
something that one has and not something one receives. Knowledge is in this thesis preceded by
information and, in this process, interpretation, reflection, and action take place. Knowledge is
basically viewed from a hermeneutic perspective supported by partial positivistic elements.
Management efforts in KM rely on the creation, modification, and sharing of knowledge through
different organisational levels (individual, group, and organisation). To support an understanding of
the creation and modification of knowledge in SPI we used a KM approach (Nonaka and Takeuchi
1995) focused on the interaction between explicit (referring to knowledge that is transmittable in
formal, systematic languages) and tacit (knowledge that is personal, context-specific, and difficult
to formalise and communicate) knowledge. According to this approach, knowledge is created
during the time that “conversion” takes place, i.e. from tacit to explicit and back again to tacit. To
support the sharing of knowledge in different organisational levels we used another KM approach
(Hansen et al. 1999), which is focused on two main strategies: 1) the cognitive model (the
codification approach), which relies on the codification of knowledge objects that are stored in
databases and shared through IT-based solutions, and 2) the community model (the personalisation
approach) in which knowledge is closely tied to the person who creates it and is mainly shared
through networking.

 15

3 RESEARCH PROCESS

Because of the practice-oriented nature of this study and my involvement in both practice and
research I basically used case study based on action research as the main approach, although some
of the research activities were done using other approaches such as field experiments and practice
studies.

To put this research into context as a contribution to IS, I start this section with a brief presentation
of approaches to IS research (see Galliers and Land 1987, Galliers 1992) and explain my cho ice of
research approach for this study. I further present SPI as a particular form of research and explain
how I used SPI in practice for planning, organising, conducting, and documenting research
activities using action research, field experiments, and practice study approaches (e.g. surveys and
interviews). I further discuss the strengths and weaknesses of each approach. Finally, I present the
data collection process followed in this study and discuss some difficulties in doing this research.

3.1 Approaches to IS Research

According to Galliers and Land (1987), IS is a meta-subject that spans many disciplines in the
social sciences, in business, and, sometimes, in the natural sciences. IS, as Galliers and Land (1987)
define it, is an applied discipline and no t a pure science. Thus the measure of the success of research
is whether our knowledge has been improved to the extent that it can be applied in practice. They
further argue that, if the results of IS research fail to be applicable in the real world, then our
endeavours are irrelevant.

Many researchers have discussed different research approaches to the field of IS (see McFarlan
1984, Mumford et al. 1986, Galliers 1992, Mathiassen 2000). Galliers and Land (1987) distinguish
between two tendencies in IS research: 1) the traditional, empirical, positivistic research approaches
such as laboratory experiments and surveys, which are inspired by the natural sciences, and 2) the
interpretative research approaches such as field experiments, qualitative case studies, and action
research.

Traditional empirical research originally dominated IS research. As much as 85 percent of
published IS research undertaken by leading U.S. institutions used to be of the traditional kind
(Vogel and Wetherbe 1984). The field of IS has grown and become much broader as concerns IS
and its relations to the organisation and the people it serves (Land 1986). Galliers and Land (1987)
consider that both IS academicians and practitioners have begun to realise that it is appropriate to
extend the focus of IS research to include behavioural and organisational considerations. They
consider further that this wider view brings with it added complexity, greater imprecision, the
possibility of different interpretations of the same phenomena, and the need to take these issues into
account when considering an appropriate research approach. The problems inherent in IS research
that arise from this view of the subject and that call for new approaches are described in McFarlan
(1984).

Galliers and Land (1987) point out that the scientific paradigm is not the only, nor indeed always
the most appropriate, basis for IS research. Greater thought regarding the choice of research method
is required, as is a wider interpretation of what is seen as acceptable research. In choosing a
research approach for the field of IS, Galliers and Land (1987) advise that one first should consider
the nature of the information systems and then look at what one hopes to gain from undertaking
research in the area.

 16

More recently, Mingers and Stowell (1997) and Mingers (2001) have argued that IS is more than
simply the development of computer-based solutions. IT is now so fundamental within society that
IS as a discipline must concern itself with the general evolution of human communication. Thus, it
has to draw upon a wide range of disciplines that encompass very different research traditions. This
puts IS in a position similar to other management areas such as organisational studies, which are
also characterised by a plurality of research paradigms, each with particular research methods.
Mingers (2001) argues that research results will be richer and more reliable if different research
methods, preferably from different (existing) paradigms, are routinely combined.

The focus of our study was to improve software practices at AstraZenaca through SPI research
using KM insights. We organised, planned, and conducted activities in two very closely interrelated
ways to reach our objectives: 1) research practice and 2) industrial practice (see figure 4). Following
Galliers and Land (1987) and Mingers (2001) the research approach used in this study is therefore
basically interpretative and based on action research in combination with field experiments and
qualitative practice studies based on surveys. This position will be further elaborated in the
following.

As illustrated in figure 4, this research relates industrial practice and research practice within SPI.
Three main areas directly support (full arrows) our SPI practice at AstraZeneca: 1) SPI frameworks,
2) KM frameworks, 3) SPI experiences in other organisations. The results of the research contribute
directly to SPI frameworks and indirectly (dashed arrow) to KM frameworks in the form of new SPI
and KM knowledge. The main goal was to support the industrial practice of SPI by gathering state-
of-the-art insights from IS, SPI, and KM to improve software practice at AstraZeneca. To do this, I
visited SEI in Pittsburgh to learn more about the CMM and the IDEAL model. I attended an
international SPI conference to share my experiences from our SPI project with other practitioners
and researchers and to learn from the experiences of other companies doing SPI. I followed
different industrial courses and seminars (e.g. software validation, configuration management, and
project management) to better understand the concept of software engineering. I read reports of
both successes and failures in SPI in other organisations in order to understand the opportunities
and challenges in SPI in practice. I also studied the research approaches used in other SPI projects,
which helped me in my selection of an approach for this study. The SPI insights helped me to
organise, plan, and conduct our SPI project to improve practices at AstraZeneca.

I studied different KM theories (Nonaka and Takeuchi 1995, Hanssen et al. 1999, Swan et al. 1999)
and read different KM reports done in the field of IS and SPI (Baskerville and Pries-Heje 1999,
Stelzer et al. 1998, Halloran 1999, Arent et al. 2001, Arent and Nørbjerg 2000, Kautz and Nielsen
2001, Kautz and Thaysen 2001). I attended two international KM conferences (at which I presented
two papers) to share our practical experiences in using KM in our SPI project with other researchers
and to learn from others’ experiences in applying KM in IS. Using KM insights in this study helped
us develop an adapted KM strategy including two complementary approaches to KM and develop
mechanisms for facilitating knowledge sharing in the SPI unit at AstraZeneca.

 17

SPI
at

AstraZeneca

SPI
in

other organisations

KM
Frameworks

SPI
Frameworks

IS Research

Industrial Practice

Research Practice

Supports

Supports

Creates new
Creates new

Supports

Figure 4. Relation between research and practice in the AstraZeneca case

The results of a problem analysis done in early 1999 in one of AstraZeneca’s largest software
development groups in Mölndal, Sweden (Development IS, DevIS), showed a need for improving
software practices and providing guidelines for understanding the SOPs addressing different
authorities’ quality requirements. The director of DevIS initiated an improvement project called
Software Process Improvement at DevIS (SPID, headed by me as project manager). The purpose
was to understand the existing problems, improve the organisation’s software processes and
practices, and provide guidance to better understand the authorities’ quality rules. At that time, I
worked at DevIS as quality manager responsible for issues related to IS/IT quality at AstraZeneca.
Owing to the nature of our improvement project and my involvement in both industrial practice and
research practice, I chose an action research approach as the main approach, which helped me to
integrate research and practice. We could introduce change at the same time the research was going
on, and we could involve other practitioners in our project. However, as the study proceeded and
the focus of our activities changed to other issues, such as creating new processes and testing them
in software projects or studying and evaluating current networking facilities at AstraZeneca, we
understood that it was necessary for us to use other approaches as well. We thus combined our main
research approach (action research) with other approaches - field experiments and surveys - to be
able to address other activities.

The research approach, which explains the use of action research in combination with field
experiments and practice studies, is collaborative practice research, which is presented and
discussed by Mathiassen (2000).

3.2 Collaborative Practice Research

Mathiassen (2000) describes the main concern in collaborative practice research as establishing well
functioning relations between research and practice. Improving practices is the distinguishing
feature of collaborative practice research and action research in general (Baskerville et al. 1996,

 18

Mathiassen 2000). Ideally, a collaborative researcher focuses on keeping the research process
tightly connected to practice to get first-hand information and in-depth insight. At the same time,
the researcher must structure and manage the research process in ways that produce rigorous and
publishable results. To achieve these goals, the collaborative research approach is based on action
research in combination with practice studies and field experiments. It hence follows the
recommendations suggested by Mingers (2001) and Mingers and Stowell (1997).

3.2.1 Overall design

To structure the research process in the organisation as an action research effort I used the IDEAL
model (see McFeeley 1996). The model can be used to guide the development of a long-range,
integrated plan for initiating and managing an SPI project. I organised, planned, and conducted
different SPI activities in order to implement new software processes and KM strategies and
mechanisms in the whole organisation.

I used practice studies to focus and structure the research process and findings. A modified CMM-
based assessment (see Appendix, the CMM questionnaire) was used twice: 1) first to gather data on
the current capability of the software practices at DevIS, and 2) second to evaluate the impact of the
use of the new software processes in software projects. The findings from the first assessments were
integrated with findings from other quality efforts made in the organisation, and a software process
improvement proposal report was created (see Appendix, the software process improvement report
1999) as the basis for decision making among senior management in the area of improvement
activities. Another assessment (see Appendix, the SPID Questionnaire) was made (May 2001)
before ending the research project in the organisation to evaluate the effects of the SPI unit’s
services to practitioners and software projects. The results of the second assessment and the SPI unit
assessment were integrated in a final report submitted to the steering committee of the project (see
Appendix, the final project report for SPID 2001). Finally, an interview-based ana lysis was made to
evaluate the organisation’s current knowledge sharing practices and suggest strategies and
mechanisms for further activities for sharing knowledge in the SPI unit.

The research has also used a qualitative field experiment approach to focus on specific issues, such
as creating and verifying new software processes (see Appendix, the software guidelines),
developing IT-based solutions for knowledge sharing (see Appendix, the Electronic Process Library
(EPL)), and developing and testing templates for documenting the results of software projects (see
Appendix, templates). Using this approach we developed and tested new software processes in the
organisation. We illustrated the new processes both as documents (guidelines) and process maps.
To support the documentation process in software projects we developed 27 templates and made
them available through the EPL. To support knowledge sharing in the organisation we developed
and implemented KM strategies and mechanisms. To support the implementation of the new
processes in all software projects we developed and offered new services such as training,
customisation meetings, and feedback measurement.

The approaches used in this SPI research and practice are listed in table 2.

SPI Research SPI Practice
Action Research • Conducting an SPI project in two

and a half years using the IDEAL
Model

• Implementing new processes in the
whole organisation

 19

• Implementing strategies and
mechanisms for managing
knowledge in the SPI unit

Practice Studies • Evaluating the current maturity level
of the organisation, the CMM
Assessment I

• Analysing the current knowledge
sharing practices in the organisation

• Self-assessment, i.e. assessing the
results of the SPI effort, the CMM
assessment II

• SPI unit assessment
Field Experiments • Creating three new software

guidelines
• Creating 27 templates for

documenting software projects
• Creating process maps
• Developing a process library and

illustrating the process maps in an
IT-based system (the EPL)

• Developing KM strategies and
mechanisms

• Developing new services for the SPI
unit for facilitating the
implementation of processes in the
whole organisation

Table 2. Approaches in research and practice

3.2.2 Action research

Dick (1997a, p 2) defines action research as follows:

“Action research is a process by which change and understanding can be pursued at the
one time. It is usually described as cyclic, with action and critical reflection taking place in
turn. The reflection is used to review the previous action and plan the next one”.

Action research is a research paradigm through which the researcher is able to develop knowledge
or understanding as a part of practice. The most characteristic features of action research are:

1. Cyclic, i.e. similar steps tend to recur in similar sequences during the life span of the research. A

typical action research cycle includes planning, acting, observing, and reflecting (and then
planning again). The later cycles are used to challenge and refine the results achieved in the
earlier cyc les. A typical cycle is as shown in figure 5.

 20

Plan

Action

Observe

Reflect

Figure 5. A typical cycle in action research

In our study we followed the cyclic process (plan, act, observe, and reflect) during the whole SPI
project. We developed an SPI plan, which addressed different steps needed to create each
software process. For each software process we then repeated the cyclic steps (planned
improvement efforts, performed SPI workshops, observed and analysed our actions, and
critically reflected on the results of our efforts, which gave input to our next steps). To
implement new processes in the software projects we developed an implementation strategy
including actions, schedules, deliverables, roles, and responsibilities in order to structure the
implementation efforts. Stepwise actions were then taken to implement the new processes in
each project through cyclic efforts. Our implementation activities consisted of offering different
services such as training, advisory/coaching, and customisation meetings through which we
customised the new processes for each software project (see Pourkomeylian 2001c).

2. Reflective, i.e. the researcher regularly and systematically critiques what he/she is doing in the
field study. Critical reflection on the research process and the outcomes are important elements
of each reflective cycle. Reflection was an important factor in our project. Reflection on the
research process was formally structured through regular meetings both with my supervisor and
my manager at AstraZeneca. We reviewed plans and the outcomes of our actions and refined
plans for the next actions (if needed). We also encouraged reflection- in-action (see Schön
1987), especially during the implementation of new processes in software projects. We
encouraged practitioners to critically use the new processes in their projects and reflect- in-their-
actions while using the processes to try to modify them to fit to their situation. We asked them
to evaluate the usefulness of the processes in practice and give us feedback on further
improvements (see Pourkomeylian 2001a, 2001c).

3. Participative, i.e. the practitioners are active participants and are involved in the research
activities as co-researchers. The practitioners and the researcher plan the first or subsequent
steps together, which are then carried out. The researcher meets with the practitioners to
recollect and critically examine their experiences. On the basis of the same process, they decide
what the next steps should be, what information is needed or the desired outcome to be pursued,
and what method to use. In our case all the SPI efforts were organised, planned, and performed
in direct co-operation with practitioners. The new processes were created on the basis of
practitioners’ ideas and experiences about software practice. To implement the processes in a

 21

project, I together with the practitioners from the software project through a customisation
meeting decided the steps needed for the project to adapt the processes to their conditions. I then
followed the project (through follow-up meetings) to see how the customisation activities
worked for that project. In the follow-up meetings we discussed (the practitioners and myself)
how they followed the steps agreed at the first meeting, what went right, and what did not.
Then, on the basis of the outcome of the project, we discussed the next steps and planned for
further implementation efforts for the project (see Pourkomeylian 2001c). I as a researcher
together with my supervisor organised, planned, and conducted the research activities during the
life span of the research. We divided the research activities into five phases as is recommended
in the IDEAL model and reported on the project in five published papers presented in different
international conferences and journals.

4. Qualitative, i.e. most action research is qualitative. Action research deals more often with
qualitative data than with quantitative data. Qualitative data are data collected on the basis of
people’s personal ideas, opinions, feelings, and/or experiences about a specific question or
problem area. Qualitative data can be collected in three ways: 1) in-depth, open-ended
interviews, 2) direct observation, and 3) written documents (Patton 1990). Qualitative inquiries
often deal more with language than with numbers. In our case all the data collected were based
on practitioners’ personal experiences from software practices at AstraZeneca. We collected
their opinions about: current software practices, knowledge sharing through networking
facilities at the company, the impact of the new software processes on the software practices,
and the impact of the SPI unit’s services (such as training, advisory efforts/coaching, and
customisation meetings both among practitioners and the software projects) (see Pourkomeylian
2001c).

Good action research uses multiple cycles (Dick 1997c). Within each cycle, the researcher should
use multiple data sources and try to disprove the interpretations arising from earlier cycles. Action
research is often seen as giving answers specific to particular questions that cannot be generalised to
apply to other questions. This means that one is often not able to generalise from action research.
Claims can often only be made about the particular situation studied. This may be seen as one of the
major disadvantages of action research (Dick 1997b). Another important weakness in the action
research approach according to Mathiassen (2000) is the limited support provided to help structure
the research process and findings. To see how we addressed these issues see section 3.4.

3.2.3 SPI as action research

Following the IDEAL model a project organisation was designed during the initiating phase of the
project. The organisation consisted of a steering group (including six software managers)
responsible for making decisions about the project and the results and for dedicating resources to
the project, a reference group (consisting of five project managers and developers and one SPI
consultant) responsible for working with improvement activities for creating new or modified
software processes, an SPI working group (consisting of two external consultants and myself)
responsible for leading the SPI improvement activities and documenting the results, and finally an
SPI expert, responsible for giving advice to the steering committee. I was appointed project
manager of the SPI project and my supervisor SPI expert. Several meetings were held with the
director of DevIS to discuss SPI and different improvement strategies.

During the diagnosing phase that used a practice study approach to establish the current maturity
level of the software organisation, a modified CMM assessment based on a method called QBA
(Questionnaire Based Assessment (Arent and Iversen 1996)) was made (May 26th 1999) that
focused on three different software development projects chosen from two different software

 22

development groups. The following KPAs were studied in the assessment: 1) Software Project
Planning, 2) Requirements Management, 3) Software Project Tracing and Oversight, 4) Software
Quality Assurance, and 5) Software Configuration Management. The data collected were analysed
statistically (by an external consultant and myself), and proposals were developed for improving
software development projects based on the results of an analysis of the qualitative data collected in
the assessment, the software process improvement literature, and other quality improvement
findings from earlier quality activities done in the organisation (see Appendix, the software process
improvement report 1999).

Further, in the establishing phase of the project, a local research group (consisting of the director of
the software organisation, my supervisor, and myself) was formed to draw up improvement
strategies, plan for research on SPI in the organisation, and establish the necessary resources for the
SPI research and practices. The research group met twice a year throughout the two and a half-year
period to plan and organise SPI initiatives and the related research and discuss difficulties and
problems.

In the acting phase, to focus on the creation of software processes and on KM strategies and
mechanisms, I used a field experiment approach in combination with practice studies. The field
experiment approach provides direct access to practices that are partly controlled by the researcher
(Mathiassen 2000). Using this approach I created an implementation plan in direct collaboration
with practitioners. Further, the reference group was formed and began to plan and carry out
improvement activities over a period of four months, resulting in the creation of new software
processes.

The implementation plan was created through a Participatory Implementation Workshop (PIW-
workshop) to address the implementation activities necessary to initiate the new processes in the
whole organisation (see Andersson and Nilsson 2001). Two external consultants were invited to
hold a PIW workshop at the software organisation to help us identify the most important factors
needed for creating an implementation strategy for new software processes. The workshop was held
in May 2000 at AstraZeneca. One SPI consultant, one project manager, all involved in SPID, the
two external PIW consultants, and myself participated in the workshop (see Pourkomeylian 2001c,
Appendix, the implementation plan for SPID improvements 2000).

After presenting the new software processes and the institutionalisation model to management, the
steering committee accepted the new software processes and decided to implement them throughout
the organisation. The implementation activities were scheduled between June 2000 and June 2001.
A practice study approach was used to study the current KM practices of the organisation (January
– February 2001). Seven already established networks were examined by interviewing members of
the networks. On the basis of the results of the interviews, a KM strategy including both codified
and personalised approaches and mechanisms was developed to support knowledge sharing efforts
in the SPI unit (see Mathiassen and Pourkomeylian 2001, Pourkomeylian et al. 2001).

Finally, in the learning phase we evaluated the effects of using the new software processes and the
services that the SPI unit offered by making different assessments in May 2001. The first was a
CMM-based assessment (studying four software projects using the same CMM-based assessment as
was used in 1999). The second assessment (see Appendix, the SPID questionnaire) was a self-
developed questionnaire focusing on areas such as: 1) the training sessions in which new software
processes were introduced in the organisation, 2) the SPI unit itself (what the practitioners knew
about the SPI unit and its services), 3) the customisation meetings in which the SPI unit together

 23

with practitioners adapted a process for their software project, 4) the software processes (whether
they worked in practice), and 5) the software templates (how usable they were). The results of the
second assessment and the evaluation of the SPI unit were analysed and summarised in a report
presented to the steering committee on June 18th, 2001. The project delivered the second version of
the software processes as planned, based on the practical use of the processes in software projects.

3.3 Data Collection and Analysis

On a more specific level, the data collection strategy adheres to four basic criteria: 1) systematic
gathering of data through documenting SPI meetings, 2) data collection through interviews, 3)
multiple sources of data (e-mail data collected), and 4) participatory observation. We documented
all meetings and collected e-mails, memos, reports, project specifications and project plans (table 3
shows the range of data collection). This multiple source data collection strategy helped us in the
systematic gathering and reliable recording and transcription of data, which in turn helped ensure
the validity of our empirical findings.

Data source Explanation
Meeting notes Project meeting notes from SPI meetings
Minutes of Meetings Project meeting protocols from SPI meetings
Electronic Messages Improvement suggestions, questions from practitioners
SPI Documents SPI plans, schedules, improvement report, implementation

report, final project report
Company Documents Standard Operation Procedures (SOPs), Software

Guidelines
Maturity Assessments CMM reports (I&II)
Feedback Training, customisation meetings, electronic messages
Direct involvement Leading the improvement and implementation activities

over two and a half years
Interview notes and
records

Report from the interviews and tape recording

SPI unit Assessment The SPI unit report

Table 3. List of data sources

The data had different sources: meetings notes from the SPI meetings, project meeting protocols
from SPI meetings, e-mails from practitioners giving us feedback on different matters, all project-
related documents such as project plans and schedules, all company-related and relevant documents
such as SOPs and quality guidelines, the results of the CMM assessments, feedback collected
through training and customisation meetings with practitioners, data collected through direct
involvement in all the project activities during the three years, interview notes, tape recordings of
interviews, and data collected from the SPI unit assessment.

Due to the large amount of data collected in the project, we decided first to obtain an overall picture
of the data by source ordering and then to make a rough sorting into categories. On this basis
relevant documents were selected for further analysis. The data collected were then analysed in
different ways according to their type and the purpose of the analysis.

The data collected in the two CMM assessments and the SPID assessment were analysed by the
external consultants and myself. The results of all activities were presented to those responsible in

 24

the company (often the steering committee of the project). Having responsible people read
everything that related to them formed the validation of the analyses before publication. Comments
on the analyses were used to improve them before submission for final publication.

Since the research project was an ongoing longitudinal study, we were not able to say at any point
in time that data were complete. We continued to work with gathering data based on the practical
use of the software processes to continuously improve them. Deciding when to stop looking at
practices and start making analyses and reporting results was a constant dilemma.

3.4 Opportunities and limitations

Having different roles (researcher and project manager) in this research project improved my skills
in both. As a practitioner I had the benefit of having access to practice. I was aware of the history
and the background of the problem area and I could encourage people to participate in the research
project. As I matured in my role as researcher, I learned how to use different tools to approach the
problem area, changing focus when needed and systematically studying the problem area, collecting
and analysing data and reporting results.

There were, however, some problems related to having two roles. First, as the project manager, I
sometimes felt stress to deliver practical results on time (see Pourkomeylian 2001b). Second, as
quality manager at the company, I was interested in solving many problems and in expanding the
scope of the project, which posed a great challenge with respect to maintaining a useful scope in the
project (the steering committee and the reference group of the project helped keep the improvement
activities within the defined scope of the project). Third, I had to write and report the results of each
activity in two different ways: one to the steering committee of the project and another in an
academic context. This was a very time-consuming effort considering my other responsibilities at
the company. Last but not least it was difficult to critically approach my own actions, especially
having two roles and striving to reach goals in both research and practical areas. What would be the
results of the SPI project if I did not have my internal role as quality manager at AstraZeneca or my
researcher role? Would the project have any success at all? These are questions that I am not able to
answer. But I have consistently sought to limit my own bias by confronting my practice and
findings with the research results of others and by iterating my own research findings based on
valuable feedback from the reviewers of my papers.

Each of the approaches used in this study had specific strengths and weaknesses. The action
research approach was chosen because of its strong integration of research and practice. However it
offered limited support for structuring the research processes and the findings (Patton 1990, Galliers
1992, Mathiassen 2000). To address this issue I used the IDEAL model to organise, plan, and
conduct all research activities during the life span of the research. Moreover, we decided to test all
processes and services created in practice (testing new processes, templates, and implementation
services: training and customisation meetings to all projects at DevIS). These field experiments
helped me to focus on specific issues and practical results. Finally, by using a practice study
approach, we focused on the practice of software engineering and KM. To integrate this research
and practice we used the findings of the assessments and the interviews for further activities to
achieve other planned targets (e.g. the result of the first assessment was used to establish the current
maturity level of DevIS and support decision making and choice of improvement efforts).

The most fundamental problem related to data analysis was, however, the problem of
generalisation, in particular because I had only one case to study. Patton (1990) argues that applied

 25

research seeks limited generalisations. Applied research findings are typically limited to a certain
time, place, and condition. The generalisation issue in applied research concerns the effectiveness of
specific interventions on specified cases under specifiable conditions. However, this still permits the
researcher to seek patterns that cut across different cases in a number of different places and in a
number of different groups. In my study I have learned from other SPI and KM experiences in
different organisations (Wohlwend and Rosenbaum 1994, Goldenson and Herbsleb 1995, Hayes
and Zubrow 1995, Herbsleb et al. 1997, Mashiko and Basili 1997, Larsen and Kautz 1997,
Johansen and Mathiassen 1998, Arent and Nørbjerg 2000, Arent et al. 2001, Kautz and Nielsen
2001) and provided useful knowledge to improve the software practices at AstraZeneca. I have
subsequently used general texts on SPI and CMM research and on KM in general to test the
relevance of the findings of this research and to place my own findings in a broader IS research
context (see figure 4). As I mentioned earlier, the goal of my research was to support both academia
and practice. The practice-oriented results of this research have been in use within DevIS. To use
these results in other organisations a certain degree of modification is needed. However, I believe
that the academic contribution of my study can together with other research findings from different
research projects contribute to the creation of more general knowledge for approaching SPI from a
KM perspective (see the “creates new” arrow in figure 4).

 26

4 INDUSTRIAL SUMMARY

The study was done at AstraZeneca R&D Mölndal. AstraZeneca is a research-driven
pharmaceutical company with a range of products designed to fight disease in different areas of
medical need. The company was formed in April 1999 by the merger of Astra AB and Zeneca
Group PLC. AstraZeneca’s research base and product portfolio is designed for seven areas of
medical need – cancer, cardiovascular, central nervous system, gastrointestinal, infection, pain
control and anesthesia, and respiratory. AstraZeneca has more than 50,000 employees worldwide. It
has research and development (R&D) centers in Sweden, UK and the USA and R&D headquarters
in Södertalje, Sweden. The company has some 10,000 R&D personnel and a US $2 billion R&D
investment in 1999, extensive global sales and a marketing network employing over 25,000 people,
and 12,000 people employed in production in 20 countries.

4.1 The DevIS

The R&D IS function supports the R&D organisation in AstraZeneca with IS/IT support. The R&D
IS (December 2001) is a global organisation divided into four global functions. The global
Discovery IS and Global Development IS are responsible for supporting the core business
(Discovery and Clinical R&D) with IS support (developing, purchasing, and maintaining software
solutions). The Global Technical Computing & Information Services is globally responsible for
supporting the whole R&D organisation (both the core business areas and the R&D IS functions)
with a technical IS/IT infrastructure. The Global Information Architecture develops and maintains
the standards, guidelines, and principles related to seamless information integration capabilities.
Each global IS function is represented locally in different sites around the world (see figure 6).

R&D IS HEAD

Global Information
Architecture

Global
Tech Comp &
Info Services

Global Development ISGlobal Discovery IS

Local Information
Architecture

Group

Local Information
Architecture

Group

Local Tech Comp &
Info Services

Group

Local Tech Comp &
Info Services

Group

Local Development IS
GroupLocal Development IS

Group

Local Discovery IS
GroupLocal Discovery IS

Group

Figure 6. The R&D IS organisation

This research started in early 1999 before the merger between the two companies in an IS
organization called Clinical Research and Information Management (CRIM) at the former Astra
Hässle in Sweden and continued later in the new IS organisation, which then changed its name to
DevIS, which is one of the local Development IS Groups within the Global Development IS
function. DevIS supports clinical and pharmaceutical projects, Regulatory Affairs and Product

 27

Strategy and Licenses at AstraZeneca R&D Mölndal. DevIS is also responsible for influencing the
development of the global clinical research processes and IS/IT tools at AstraZeneca. DevIS
comprises more than 90 people including contractors, most of whom have backgrounds in IS/IT.

Many regula tory authorities require pharmaceutical companies and their software organisations to
comply with GXP (Good Manufacturing Practice, Good Clinical Practice, and Good Laboratory
Practice) rules. GXP rules are the authorities’ quality requirements to pharmaceutical companies for
ensuring patient health, the quality of processes (e.g. clinical studies or software development) and
the quality of products (e.g. tablets or software). One fundamental requirement is that DevIS must
be able to show the authorities, in documented evidence, that software development activities (e.g.
software change control, software validation, and data processing and storage) are being performed
in compliance with quality requirements. Therefore every software project regulated by GXP
requirements should carefully apply all quality rules and be able to show by documented evidence
that the software is compliant with the related GXP requirements. The company long ago adopted
SOPs that explicitly describe how the company’s software quality rules should be addressed in
software projects. These SOPs should be applied in all software projects regulated by GXP
requirements.

Employees of DevIS are basically engaged with software development, software maintenance, and
software operation activities. The software development activities occur in three forms: 1)
development of totally new software products (software development), 2) developing or changing
existing software products (software maintenance), 3) implementing globally developed or
purchased software locally at AstraZeneca Mölndal. A typical software development project at
DevIS is scheduled to take between six months and one year and includes analysis, design,
construction, testing, and validation. Software maintenance activities can cons ist of changes in the
code or developing a completely new application for existing software products. Software products
in DevIS include the software and all related documentation (e.g. user requirement specification,
test plan, validation plan, validation report, user manuals etc.).

The Problem Area
In early 1999 the results of an informal problem analysis showed that CRIM’s software project
practice needed improvement. There was also a need to provide guidelines to understand the SOPs
and the GXP rules. Many practitioners working in different software projects pointed to this subject
for improvement by sending e-mails to an analysis group responsible for gathering software
professionals’ ideas for improvement. Management at that time did not have detailed knowledge of
the depth of the problem or how to improve the software project practice (see Pourkomeylian
2001a).

At that time we did not know how and where to start improvement efforts. However, I had heard
about successful results in other organisations using SPI and the CMM for improving the
capabilities of software organisations. After further study of the SPI literature the need of using two
approaches for the improvement activities became clearer: 1) a structured and systematic model for
planning organising, analysing, and improving software practices, 2) a model for focusing
specifically on software project problems. After meetings with the director of DevIS and an SPI
expert (my supervisor) to discuss different approaches to improvement activities we decided to start
an SPI project, (SPID), using the IDEAL model for planning, organising, and running SPI activities,
and using the CMM to focus on level 2 key process areas (see McFeeley 1996, Goldenson and
Herbsleb 1995, Hayes and Zubrow 1995).

 28

The first step was to establish SPID’s organisation. The SPID organisation, illustrated in figure 7,
was established in April 1999.

The Steering
Committee

The SPI Working
Group

The Reference
Group

The SPI Expert

The Project Manager

Figure 7. The SPI Organisation

The structure of the organisation later changed when the project finalised the improvement phase
and entered the implementation phase (see figure 8).

The second step in SPID was to diagnose the current maturity level of DevIS’s software projects
through a CMM-based assessment (see Appendix, the questionnaire). On the basis of the results of
the assessment, I produced an improvement report in October 1999 addressing six improvement
activities, with a specific focus on software documentation and software validation to satisfy one
important quality requirement, namely that the pharmaceutical industry must document all software
engineering activities to comply with health authority regulations. In the case of inspections the
company must be able to show documented evidence that a specific task, e.g. that implementation
of change in a software product, has been done in accordance with predefined standard procedures.

The steering committee of SPID decided to give priority to software documentation, software
validation, and software change management processes through:

• Creation of a template library including templates for the documentation of software

development activities such as: user requirement specification, design specification, test plan,
and validation plan.

• Creation of a software documentation process including a minimum documentation level for
documenting the results of software projects.

• Defining processes for software validation, software change management, and document
version control.

As the next step, an improvement plan was created by me, and the SPI working group started to
work on improvement activities, which resulted in the creation of three new guidelines: a software
documentation guideline, a software validation guideline, a software change control and document

 29

version control guideline - and developed the template library (see Pourkomeylian 2001a). The
newly created software guidelines were presented to the steering committee and further modified on
the basis of the committee’s feedback (see Appendix for a brief description of some of the chosen
documents). We further conducted a MAP analysis to better understand the nature of our SPI
project and to be able to plan and conduct further SPI activities (see Aaen et al. 2001,
Pourkomeylian 2001b).

An implementation plan was created and presented to the steering committee. The steering
committee of the project accepted the refined software processes and the implementation plan and
decided to implement the processes throughout DevIS (see Pourkomeylian 2001c).

The acceptance of the software processes and the decision to implement them throughout the whole
organisation was a first important milestone for the initiative. The implementation activities were
scheduled to take place between August 2000 and June 2001. One important aim was to change the
context in which the new software processes should operate. Therefore, among other activities, a
trainee program was scheduled for all practitioners at DevIS. The implementation phase also
included further improvement activities in which the processes would be enhanced on the basis of
experience of using them in practice. The implementation phase aimed to result in a new version of
the software processes in June 2001 (see Pourkomeylian 2001c).

To do this, SPID’s organisation changed as shown in figure 8.

The Steering
Committee

The SPI Unit

The SPI Expert

The Project Manager

Software Project

Practitioners
Figure 8. The organisation of SPID (through implementation)

An implementation group including one SPI consultant (the SPI Unit) and myself was responsible
for conducting all implementation activities (e.g. training, customisation meetings, advisory,
feedback measurement, and project follow-up). The practitioners and the software projects were the
main targets for the implementation activities. The practitioners participated in different training

 30

sessions to learn the new processes and the members of new software projects started to use the SPI
unit’s services and implement the new software processes in their projects (see Pourkomeylian
2001c).

4.2 The CMM Assessment I

One focused SPI practice was to make a CMM assessment to establish the current maturity of
software practices at DevIS. A modified CMM assessment (see Appendix, the CMM questionnaire)
based on QBA (see Arent and Iversen, 1996) was made on May 26th 1999 for three different
software development projects chosen from two different software development groups. These
projects were chosen on the basis of special criteria:

• Software development or maintenance project which includes development of new applications

and have been finished and resulted a system
• Typical software development project at DevIS
• Not a “one-man” project
• Developer working with software development for at least 3 man months.
• Have a clear role as project leader or program manager and developer

The approach was chosen for the assessment part of this study because the CMM’s level two KPAs
focus on the areas that fit the problem area studied in DevIS. Further, the modified version of QBA
helped us to use the terminology used in DevIS and to focus more on the organisation’s goals than
simply routinely following the CMM questionnaire. The results of the first assessment showed that
DevIS at that time was a level one organisation and improvements in all KPAs were needed (see
Pourkomeylian 2001a).

4.3 The Knowledge Management Facilities

One great challenge during the implementation phase of the project was to transfer new knowledge
about the new software processes to all practitioners in the organisation. To facilitate this we
developed a KM strategy based on two complementary approaches, i.e. the codified and the
personalised to support knowledge sharing within and outside the SPI unit (see Swan et al. 1999,
Hansen et al. 1999). On the basis of this strategy the SPI unit developed two KM mechanisms to
support the creation, modification, and transfer of knowledge within and outside of the SPI unit (see
Mathiassen and Pourkomeylian 2001, Pourkomeylian et al. 2001).

4.3.1 The Electronic Process Library (EPL)

To make the SOPs, guidelines, and templates easy to understand and easy to access we decided to
illustrate them as process maps. An informal project team including one leader, a developer, two
Human Computer Interaction (HCI) experts and two process consultants worked together to create
the process maps and develop a process library and illustrate it through the SPI unit’s homepage on
the company’s intranet. Figure 9 illustrates the EPL (see Appendix, the EPL).

 31

Figure 9. The Electronic Process Library (EPL)

The EPL offers several services to the practitioners. By using the EPL one can easily find
knowledge (by knowing his/her role in a software project) about all phases in the System
Development Lifecycle, his/her responsibility in each phase, the deliverables for which the person
is responsible and the documents that should be produced in each phase. By doing this we
illustrated codified knowledge stored in paper documents as process maps and offered facilities to
access answers to the “what” questions, i.e. what are my responsibilities as developer in the design
phase? What are the deliverables? Which documents shall I produce?

The EPL also offers possibilities for on-line documentation and shows examples of best practices
from earlier software projects. It furthermore shows the names of other persons who have
experience in different issues (e.g. software validation, test or software change management) from
earlier software projects. In this way we tried to facilitate the knowledge transfer between
practitioners. Another service of the EPL is a searching mechanism that makes it possible for the
practitioners to find useful knowledge about the SOPs and the guidelines. We also developed a
Frequently Asked Questions (FAQ) forum through the SPI unit’s homepage to make the most
common questions and answers about the SOPs, the processes, and the quality rules available to all
practitioners (see Mathiassen and Pourkomeylian 2001, Appendix, The EPL).

4.3.2 THE NETWORKING FACILITIES

To be able to solve practical problems in software projects, practitioners need more than answers to
“what” questions. We should offer them customised solutions and hands-on support to help solve
specific problems. To answer the “how” questions and facilitate the creation and transformation of
knowledge related to the software processes, the SPI unit developed additional networking
facilities. We participated in different networking forums: 1) between the SPI unit and the software
projects: to facilitate the implementation of software processes in each software project the SPI unit
arranged “customisation meetings” with each newly started software project, 2) at the
organisational level: the SPI unit arranged training sessions for practitioners, managers, system

 32

owners and other staff to create knowledge and collect feedback about the new processes, 3) within
the SPI unit: to share knowledge and experiences among the members of the SPI unit about
experiences from different software projects, new quality rules, and different customised solutions,
4) at the global level: the SPI unit is a part of a global network for quality and compliance at
AstraZeneca. In this way the SPI unit participates in networking activities with other quality and
compliance groups within AstraZeneca to share knowledge and experiences from SPI activities and
new quality and compliance rules (see Pourkomeylian et al. 2001).

4.4 The CMM Assessment II

To identify the effects of the SPI activities the second CMM-based assessment was made at DevIS
on May 21st 2001 using the same CMM-based questionnaire that was used in assessment I. Four
software projects were chosen for the assessment on the basis of special criteria:

• Software development, maintenance or legacy system validation project which has used the

newly created software processes (the software guidelines and templates)
• Typical software development project at DevIS
• Not a “one-man” project
• Have a clear role as project leader or program manager and developer
• Have used the services offered by the SPI unit (e.g. training and customisation meetings)

Seven project managers and developers from four projects answered the questionnaire, and the data
collected from the assessment were analysed by two SPI consultants and myself. I developed
proposals for further improvements and presented them to the steering committee (see Appendix,
the final project report for SPID).

Although we did not focus especially on achieving CMM level 2, our improvement activities had
effects on the level 2 KPAs (table 3). These assessments should be approached as “improvement
indicators”, i.e. the improvement percentage is an indicator that some degree of improvement has
been achieved according to a qualitative measurement of what practitioners working with the
processes have experienced in their software projects.

The Key Process Areas (KPA) The CMM I

1999
The CMM II

2001
Improvement

Indicators
Software Requirement Management 50% 58% 16%
Software Project Planning 53% 57% 8%
Software Project Tracking and Oversight 38% 51% 34%
Software Quality Assurance 46% 59% 28%
Software Configuration Management 30% 57% 90%

Table 4. Improvement indicators

This assessment indicates that, in general, we have achieved improvements in all areas. The most
visible improvement was achieved within Configuration Management, Project Tracking and
Oversight, and Software Quality Assurance. It is also worth noting that our organisation today has a
more homogenous maturity level than it had two years ago.

 33

4.5 The SPI Unit Assessment

To find out whether the services offered by the SPI unit had led to a change of practices in software
engineering, the SPI unit made (May 21st 2001) a self-assessment asking the same persons in the
four software projects involved in the CMM assessment II about five different areas of the SPI
unit’s services (see Appendix, the SPID questionnaire): 1) the training program: how it changed the
practitioners’ understanding about the new processes and the quality rules, 2) customisation
meetings: whether this service simplifies the documentation process in their software projects, how
the feedback to the SPI unit has worked and whether it has led to changes in the software processes
or templates, 3) the new software guidelines (the software documentation guideline, the software
validation guideline, and the software change and version control guideline): how they helped
practitioners understand the software documentation, software validation, and software change
management issues, 4) the templates: how they simplified the documentation process in software
projects.

The data from this assessment were collected and analysed by two SPI consultants and myself. The
results of the analysis were documented and reported to the steering committee by myself (see
Appendix, the final project report for SPID 2001). The results show that the SPI unit’s services in
general increased practitioners’ understanding about the three areas in focus, i.e. software
documentation, software validation, and software change management. It has in some cases caused
changes in practice as well. This change has had different forms:

1. Increased practitioners’ understanding of quality requirements and how to document a software

project.
2. Simplified the choice of which documents should be produced in a software project.
3. Established new routines in software projects.
4. Caused a sharper focus on validation issues in software projects.
5. Simplified the validation and test activities.
6. Cultivated a culture to give feedback to the SPI unit about the usability and usefulness of the

processes and templates.

One of the most important effects of the implementation efforts has been that these efforts have
cultivated a commitment towards continuous improvement among practitioners. 72% of
practitioners said that the software project’s feedback to the SPI unit has led to changes in
templates. This shows that practitioners have been actively involved in improving the templates on
the basis of practical use. The results of the analysis also showed that the templates, the Software
Change and Version Control, and the training program need further improvement (see Appendix,
the final project report for SPID).

4.6 Plans for Further Improvements

On the basis of the findings in CMM-assessment II and the SPI unit assessment I wrote a final
report and presented it to the steering committee of the project to finalise the first cycle of the SPID
project (June 19th of 2001). I presented the results of the project and reported the project as
finalised. My suggestion to the steering committee for further improvement activities focused on the
following points:

• Developing and establishing a Requirement Management guideline for addressing among other

things tractability issues and review activities.

 34

• Developing and establishing a Project Management Guideline for addressing among other
things the project planning and tracking issues including project planning, project review, reuse
of project experiences, and change management (focusing on the project plan)

• Improving and establishing the Quality Review efforts.
• Improving the change and version control process and supporting the process with a change and

version control tool.
• Improving the training program.

The steering committee of SPID accepted the results of the project, announced the project as
finalised (June 19th of 2001), and decided to go on with further SPI activities in the organisation on
that basis (see Appendix, the final project report for SPID 2001).

 35

5 RESEARCH SUMMARY

This chapter summarises the five papers including the research approaches used seen from
academic viewpoints. Table 4 shows the details of each paper. The full text of each paper and the
complete list of co-authors are given in part II.

No Title Authors Publication Primary approach (Galliers

1992)
1 Knowledge Creation in

Improving a Software
Organisation

Pourkomeylian IFIP WG8.6 Fourth Working
Conference on Diffusing
Software Product and Process
Innovations, April 7-10, 2001,
Banff, Canada

Action research

2 Analysing an SPI Project
with the MAP
Framework

Pourkomeylian SJIS, Scandinavian Journal of
Information Systems 2001

Practice study

3 An Approach to
Institutionalisation of
Software Processes

Pourkomeylian Tenth International
Conference on Information
Systems Development,
September 5-7, 2001, London,
England

Field experiment

4 Managing Knowledge in
a Software Organisation

Mathiassen and
Pourkomeylian

Submitted to the Journal of
Knowledge Management.
Earlier version (Knowledge
Management in a Software
Process Improvement Unit)
published in Managing
Knowledge Conference April
10-11, 2001, University of
Leicester, England

Practice Study

5 Knowledge sharing in a
Software Process
Improvement Unit

Pourkomeylian,
Hörnell, and
Söderberg

The Second European
Conference on Knowledge
Management, November 8-9,
2001, Bled, Slovenian

Practice Study

Table 5. Overview of research papers

 36

5.1 Knowledge Creation in Improving a Software Organisation

Pourkomeylian, P. (2001a). Knowledge Creation in Improving a Software Organisation. IFIP
WG8.6 Fourth Working Conference on Diffusing Software Product and Process Innovations, Banff,
Canada.

This paper reports the results of the improvement efforts in SPID analysed as an organisational
knowledge creation process. The study explains how knowledge is created through transformation
between tacit and explicit knowledge and through interaction between different organisational
levels of actors.

The academic practice underlying this paper can be characterised as action research as I joined with
the practitioners to contribute to the SPI project by planning and making the assessment and leading
the improvement activities to create new software processes in the organisation.

The paper discusses on a general level how the knowledge creation process in our SPI project takes
place. Who are the actors involved in this process and on what organisational level does this
knowledge creation process take place? The paper uses Nonaka and Takeucchi’s (1995) theories on
organisational knowledge creation. From the perspective of this framework the paper argues that
certain types of knowledge in an SPI project deal with the fundamentals of SPI such as:
management of SPI initiatives, how such an initiative should be guided, and issues related to SPI’s
focus on target(s) (see Aaen et al. 2001). Other types of knowledge deal with Software Engineering
(SE-knowledge) such as: project planning, quality assurance, change control, and configuration
management (see Pressman 1997).

The paper concludes that: “ two related knowledge domains, SPI-, and SE-knowledge are involved
in the knowledge creation process in an SPI project. The project manager of the SPI project,
software managers, and assisting consultants are the key actors involved in the creation of SPI-
knowledge. The software engineers and the SPI project manager are the key actors involved in the
creation of SE-knowledge. The knowledge creation process in the case of SPI-knowledge happens
mostly on the individual level and sometimes on the group level. The knowledge creation process in
the case of SE-knowledge happens mostly on the group level and sometimes on the organisational
level.” The main contribution of the paper is an analysis of our SPI effort from an organisational
knowledge creation perspective and an illustration of how the knowledge creation process occurred
in our SPI project. It further helped us understand the need for having strategies and mechanisms
for managing knowledge through the SPI effort’s life span.

5.2 Analysing an SPI Project with the Map Framework

Pourkomeylian, P. (2001b). Analysing an SPI Project with the MAP Framework. Scandinavian
Journal of Information Systems, Vol. 13, pp. 147-165.

The purpose of the second paper was to analyse the SPID project on the basis of the MAP
framework (see Aaen et al. 2001) in order to better organise, plan, and carry out further SPI efforts.
By knowing the nature of our SPI efforts we better understood the risks and opportunities involved
and could better manage further SPI efforts.

 37

The research approach underlying the academic practice of this paper can best be characterised as
practice study, since the researcher reflects on the project and analyses it on the basis of the MAP
framework.

In August 2000 an SPI expert and I analysed the SPI project in the software organisation. For this
purpose, we used the MAP framework. The goal was to identify the concrete elements of the SPI
effort and to identify crucial SPI features that we had missed or could emphasise further. For each
fundamental SPI element, the SPI expert and I determined whether and to what extent the ideas had
been applied and followed during the course of the SPI project. We discussed the reasoning behind
utilising or not utilising each specific SPI idea and evaluated the effects that pursuing or not
pursuing an idea would have on the SPI effort. We also identified actual pitfalls in every SPI idea. I
completed the MAP analysis in February 2001 for improvement activities carried out after August
2000. Finally, we assessed the usefulness of the MAP for understanding and implementing SPI
initiatives.

Having applied the framework to analyse an initiative in a beginner organisation, it is argued that a
novice organisation can succeed in its SPI initiation if it gains and maintains management and
practitioner commitment, starts with a focus on a few carefully selected software processes that
need improvement, and uses the existing knowledge about the software practices in the
organisation. The study led to a number of lessons relevant to future SPI projects in novice
organisations and confirms the research underlying the MAP framework.

The paper concludes that: “A first SPI initiative should always be organised as projects with
specific goals, deliverables, and resources. A novice organisation should focus on the SPI concept
rather than on model-based recommendations like those of the CMM. It is highly recommended that
a MAP analysis be made early in the initiation phase of the first SPI initiative to understand the
most characteristic features of the SPI project.” The main contribution of the paper was that it
helped us focus our SPI efforts on learning about our problems and improving a few processes
through small, stepwise learning cycles rather than blindly following CMM with the intent of
reaching an abstract level of maturity.

5.3 An Approach to Institutionalisation of Software Processes

Pourkomeylian, P. (2001c). An Approach to Institutionalisation of Software Processes. Tenth
International Conference on Information Systems Development, London, England.

This paper presents how we worked in a practical way with the institutionalisation of new software
processes in DevIS and how we cultivated a change process in a stepwise manner to facilitate the
implementation of processes in the organisation.

The research approach underlying this paper can best be characterised as field experiments based on
action research, since we created and adopted a change process suitable for DevIS’ conditions and
implemented it in practice, measuring feedback to identify weaknesses, problems, and further
improvement areas. I was involved in a practical way in the efforts to organise, plan, and carry out
the change process to institutionalise the new software processes in the organisation and add
benefits to the SPI project.

The institutionalisation approach used in this study was created in a PIW-workshop (Andersson and
Nilsson 2001) that included a risk analysis to identify the most important risks and the measures

 38

needed to address them. Our implementation strategy was based on a direct introduction of the new
software processes in the entire organisation. It consisted of three main elements: 1) a training
program for all practitioners in the organisation, 2) process adaptation for all software projects, and
3) feedback measurement and continuous improvements of software processes. The heart of our
institutionalisation model was the SPI unit, which was specifically responsible for the development
and maintenance of the organisation’s software processes. The unit also helped every software
project to adapt the new software processes in their project, to interpret the contents of the SOPs,
and to follow up the software projects evolved. The continuous improvement activities resulted in
the creation of the second version of the software guidelines.

The paper concludes that: “Process institutionalisation should come through personal growth
through learning and should start in a small way to first reach process internalisation. Software
process implementation should be carried out stepwise through detailed planning and follow-up.
Management should encourage practitioners to reflect- in-action for creating variation-in-action,
support the creation of an infrastructure to help in the adaptation of the software processes for every
software project, and address continuous improvement. New roles should be defined for coaching
practitioners and teaching them new software processes on both the group and individual levels.”
The main contribution of the paper was that it helped us understand that improving the
organisation’s current software engineering practice is a matter of cultivating change through
knowledge sharing and learning.

5.4 Managing Knowledge in a Software Organisation

Mathiassen, L. and Pourkomeylian, P. (2001). Managing Knowledge in a Software Organisation.
Submitted to the Journal of Knowledge Management. An earlier version: “Knowledge Management
in a Software Process Improvement Unit” was published in the International Conference on
Managing Knowledge: Conversations and Critiques, University of Leicester, England.

This paper explores the practical usage of state-of-the-art insights on KM to support innovation in
DevIS. Two complementary strategies for KM, the codified and the personalised, are presented
together with practical insights on how to apply these to organisational practice (see Hanssen et al.
1999, Swan et al. 1999). In this paper, we describe and evaluate current KM practices related to SPI
at AstraZeneca using the framework of Hanssen et al. (1999) and Swan et al. (1999). On the basis
of this evaluation we discuss the choice of KM strategy to support further initiatives in the SPI unit.
The paper further reviews the conventional wisdom from the SPI literature on how to manage
knowledge in software organisations in the light of DevIS’ case.

The research approach underlying this paper can best be characterised as practice study. On the
basis of an analysis and interpretation of AstraZeneca’s case we developed a KM strategy and
mechanisms to support the creation and modification of knowledge and knowledge sharing in the
SPI unit.

The paper argues that the SPI unit should adopt a KM strategy based on two complementary
approaches, i.e. the codified and the personalised to support knowledge sharing within and outside
the SPI unit. We conclude that is advisable for SPI efforts to explicitly address their KM strategy.
Each software organisation has to find its own balance between personalised and codified
approaches. This balance needs to be dynamically adjusted as the organisation matures, and the KM
strategy should differentiate between different types of SPI services. We should, however, be
cautious when attempting to generalise the specific findings of this study. This is first because SPI

 39

initiatives and software organisations are different, but also because the SPI initiative at
AstraZeneca has reached a certain level of maturity and the choice of KM strategy is most probably
dependent on the maturity level of the software organisation in question.

The paper further presents a review of conventional approaches to SPI (the IDEAL and the CMM)
in the light of KM strategies and our specific experiences, thereby providing some concerns for
consideration in other SPI initiatives. The IDEAL model (McFeeley 1996) and the CMM (Paulk et
al. 1993) are expressions of KM strategies. KM is not explicated as part of the models but is
implicitly integrated into the ways in which software organisations are advised to professionalise
their practices.

The paper concludes that: “ A KM strategy should be defined early in the SPI project. A KM
strategy for SPI should include both codified and personalised strategies. The KM strategy of an
SPI initiative should change as the software organisation matures. This leaves us with the basic
conclusion that SPI is knowledge creation and management within software organisations. It is
advisable to explicitly address the KM strategy issue, but each organisation must find its own
balance between personalised and codified strategies and this balance needs to be dynamically
adjusted as the software organisation matures.” The main contribution of the paper to our project
was that it helped us develop different strategies and facilities to address different KM challenges
within our SPI unit.

5.5 Knowledge Sharing in a Software Process Improvement Unit

Pourkomeylian, P., Hörnell, J. and Söderberg, S. (2001). Knowledge Sharing in a Software Process
Improvement Unit. The Second European Conference on Knowledge Management, Bled,
Slovenian.

This paper presents an analysis of current networking facilities in AstraZeneca Mölndal to improve
and further develop the SPI unit’s knowledge sharing efforts. Further, it presents an improved
mechanism for supporting the knowledge sharing activities in the SPI unit based on the results of
the analysis of the current networking practice and state-of-the-art advice on networking.

The research approach underlying the academic practice of this paper can best be characterised as
practice study. We analysed and evaluated the current networking facilities in DevIS through
interviews of practitioners in the organisation and used the results, together with knowledge from
state-of-the-art KM, to propose strategies and mechanisms for knowledge sharing through
networking.

The paper presents a theoretical framework focused on networking based on the works of among
others, Hanssen et al. 1999, Swan et al. 1999, Scarbrough and Swan 1999, Zack 1999, and Seufert
et al. 1999, to analyse the current networking facilities at DevIS focusing on issues such as: 1) the
structure of networking, 2) the problems with networking, and 3) the critical success factors in
networking.

On the basis of our analysis of seven networks and the insights on networking from the literature
the paper argues that networking efforts should be based on the overall business goals of the SPI
unit. The knowledge sharing efforts should be supported by a networking strategy, which addresses
the issues related to the practice of knowledge sharing. The networking strategy should be
communicated to all practitioners through different levels of the organisation and different types of

 40

networking facilities should be developed to support different needs from the SPI unit’s different
customers. Networking should be an integrated part of practitioners’ daily work. The main
contribution of the paper to our project was that it helped us understand the current networking
practices in our organisation and deve lop networking facilities to support sharing of personalised
knowledge within and outside the SPI unit.

5.6 Summary

Looking at the two purposes of this research (to support the body of knowledge and the software
engineering practice at AstraZeneca), we can see that they were both addressed in all of the papers.
All papers have contributed to the body of knowledge on SPI and to some extent to the body of
knowledge on organisational change and KM (see Figure 4). In parallel, AstraZeneca was already
involved in the practice and research that form the basis for each paper, having as its goal to
improve the practice of software engineering.

The figure below illustrates the dual nature of the research project and provides an overview of the
approaches that were used in producing the five papers presented in this chapter. The research
project in general can be approached as a case study based on action research and supported by
practice studies and field experiments. The interventions are all based on action research ideas but
have been influenced by other approaches as well, as described above and illustrated in figure 10.
The SPI practices in this study also followed approaches that can be characterised using the same
framework of research approaches.

Figure 10. Overview of research approaches

The SPID Project (Project Level)
Action ResearchThe SPID Project (Project Level)

Action Research

SPI: Analysing and
evaluating the SPI projectSPI: Analysing and

evaluating the SPI project

SPI: Diagnosing and
Improving processesSPI: Diagnosing and

Improving processes

SPI: Institutionalising the
software processesSPI: Institutionalising the

software processes

SPI: Developing KM
mechanisms for managing

codified knowledge

SPI: Developing KM
mechanisms for managing

codified knowledge

SPI: Analysing and evaluating
current networking facilities
suggesting networking efforts

SPI: Analysing and evaluating
current networking facilities
suggesting networking efforts

Action
Research

Acade-
mic

Paper
I

Practice
Study

Acade-
mic

Paper
II

Field
experiment

Acade-
mic

Paper
III

Practice
Study

Acade-
mic

Paper
IV

Practice
Study

Acade-
mic

Paper
V

The SPID Project (Project Level)
Action ResearchThe SPID Project (Project Level)

Action Research

SPI: Analysing and
evaluating the SPI projectSPI: Analysing and

evaluating the SPI project

SPI: Diagnosing and
Improving processesSPI: Diagnosing and

Improving processes

SPI: Institutionalising the
software processesSPI: Institutionalising the

software processes

SPI: Developing KM
mechanisms for managing

codified knowledge

SPI: Developing KM
strategies and mechanisms for

 managing knowledge

SPI: Analysing and evaluating
current networking facilities
suggesting networking efforts

SPI: Analysing and evaluating
current networking facilities
suggesting networking efforts

Action
Research

Acade-
mic

Paper
I

Practice
Study

Acade-
mic

Paper
II

Practice
Study

Acade-
mic

Paper
II

Field
experiment

Acade-
mic

Paper
III

Field
experiment

Acade-
mic

Paper
III

Practice
Study

Acade-
mic

Paper
IV

Practice
Study

Acade-
mic

Paper
IV

Practice
Study

Acade-
mic

Paper
V

Practice
Study

Acade-
mic

Paper
V

 41

6 DISCUSSION

In this section I discuss the research questions in the light of our findings in the AstraZeneca case
and offer some practical advice for how to conduct SPI in practice using insight from knowledge
management. I further present areas for further research.

6.1 Making SPI happen in practice

The results of the SPID project have been documented as three industrial reports, three guidelines,
27 templates, better practices, process maps, an Electronic Process Library (EPL) illustrating all
processes (presented at AstraZeneca to the steering committee of the SPI project and practitioners,
see part III), and five academic papers (presented at different international conferences and journals,
see part II) to create new knowledge at AstraZeneca and in academia.

Today (December 2001), the SPID project has been finalised (June 19th of 2001) and the SPI unit
has been established (five people) at the company level at AstraZeneca in Mölndal to support
practitioners with both customising the new processes and the templates and to work with issues
related to quality and compliance in general. The SPI activities are planned and carried out as small
improvement cycles in the software organisation led by the SPI unit. The revised versions of the
software processes and templates are being used in more than 20 software projects in DevIS and
some other IS departments in Mölndal and are appreciated by practitioners working in these
software projects. The SPI unit measures and documents the feedback and further improvement
suggestions from the practical use of the new processes and templates in these software projects on
an ongoing basis. An improvement culture has been cultivated and is maturing in the organisation
and we have been encouraged by management to spread the approach of software practice
improvement to the whole global organisation.

Our studies illustrate that improving an organisation’s software practice is a knowledge
management issue. It addresses the current capability of the organisation’s software practices, the
creation of new processes on the basis of practitioners’ ideas, and the modification and
transformation of knowledge about the new processes to be implemented and continuously
improved in the organisation as a whole. Our experiences suggest that, to better understand SPI and
making it happen in practice, we need to approach it as a KM effort and focus more on issues
related to improving practices, i.e. Software Practice Improvement. To do this, we need to
distinguish between processes and practices and between process knowledge and practical
knowledge and study the interaction between these types of knowledge as improvements are made.

Process knowledge is always explicit and can be codified, while practical knowledge is mostly tacit
and personalised, although it can also be explicit and codified to some extent. The knowledge
creation in SPI occurs when the conversion (see Nonaka and Takeuchi 1995, Arent et al. 2001)
takes place, from practical knowledge to process knowledge and back again to practical knowledge.
Some knowledge will, of course, remain tacit in individual skills and organisational capabilities (see
Mathiassen et al. 2001). An SPI effort can thus be approached as a KM effort through which both
practical knowledge and process knowledge are created, modified, and shared by different actors on
different organisational levels, using different approaches (see Arent and Nørbjerg 2000, Arent et
al. 2001, Mathiassen et al. 2001, Pourkomeylian 2001a).

Analysing AstraZeneca’s SPI effort from a KM point of view, two related knowledge domains
(SPI- and SE-knowledge) are involved during the SPI project’s life span. During the initiating phase

 42

of the SPI effort, primarily SPI-knowledge was created, modified, and shared on the individual and,
sometimes, on the group level. This knowledge was about SPI in general, such as: what SPI is and
how it should be organised, planned, and carried out. This knowledge was adapted to the
organisation’s situation and shared with decision makers and practitioners to create a general
understanding about SPI. In the diagnosing phase knowledge about the current maturity level of the
software practices was created through an assessment. The results were combined with other
findings in earlier quality efforts and completed with suggestions for improvement to be shared with
management and other practitioners. In the establishment phase of the SPI effort, mostly SPI-
knowledge about resources needed to conduct the SPI activities was created on an individual and
sometimes a group level. A shift towards SE-knowledge in the acting phase of our SPI effort took
place as new processes were created on the basis of practitioners’ ideas and experiences. This
knowledge was mainly created on the group level and sometimes on the organisational level
through different SPI workshops. Knowledge about the new processes was then transferred to all
practitioners on different organisational levels. To facilitate the implementation of the new
processes in software projects the processes were modified to fit each software project’s specific
conditions (size, staffing, task, quality requirements, organisation, and complexity). Finally, in the
learning phase, knowledge and experiences from the SPI effo rt and software processes were
documented in order to make this available to all practitioners (see Pourkomeylian 2001a, 2001c).

Practising SPI as a KM effort helped us understand SPI as three parallel activities addressing the
creation, modification, and transformation of knowledge in the organisation (see table 6):

1. Creation: the objective of the creation activities is to create new or improved SPI- and SE-
knowledge. The main actors involved in creating knowledge are: the SPI project manager,
management, practitioners, and the SPI expert. The knowledge creation efforts occur mostly
on the individual and group levels. Approaches that can be used to facilitate knowledge
creation are: assessments, SPI-meetings, SPI-workshops, customisation meetings, and, in
some cases, training sessions.

2. Modification: the modification activities in SPI are focused on modifying both SPI- and SE-
knowledge. The SPI-knowledge should be modified to fit the organisation’s conditions (e.g.
modify the CMM assessment to fit the organisation’s requirements). The SE-knowledge
should also be modified to fit the organisation and the individual software projects. The
actors involved in the modification efforts are: the SPI project manager, management, the
SPI expert, the SPI specialists, and practitioners (project members). The modification efforts
occur mostly on the individual and group level (project). SPI-meetings and customisation
meetings can be used to structure the modification activities.

3. Sharing: the objective of the sharing activities in SPI is to facilitate the communication of
both SPI- and SE-knowledge between all organisational levels. The actors involved in this
effort are: the SPI project manager, management, practitioners, and SPI specialists. Among
approaches that can be used to support knowledge sharing in SPI are: SPI-meetings, group
and department meetings, IT-based solutions (to support sharing of codified knowledge),
networking facilities (to support sharing of personalised knowledge), customisation
meetings, and training sessions.

KM activity Objectives Actors Organisational

level
Approaches

Creation Create new or improved
Knowledge (SPI- and SE-
knowledge)

SPI project
manager
Management
Practitioners

Individual
Group
(Organisation)

Assessments
SPI-meetings
SPI-workshops
Customisation

 43

SPI experts meetings
(Training sessions)

Modification Modify SPI-knowledge to
fit the organisation’s
condition
Modify new processes to fit
each software project

SPI project
manager
Management
SPI expert
SPI
specialists
Practitioners
(project
members)

Individual
Group (project)
(Organisational)

SPI-meetings
Customisation
meetings

Sharing Share SPI- and SE-
knowledge on different
organisational levels

SPI project
manager
Management
Practitioners
SPI
specialists

Individual
Group (project)
Organisational

SPI-meetings
Group &
department
meetings
IT-based solutions
Networking
facilities
Customisation
meetings
Training sessions

Table 6. The KM process in SPI

In summary, SPI is about managing software knowledge. To make SPI happen in practice we need
to focus not only on processes, but equally important on issues related to improving practices. To do
this, we need to distinguish between processes and practices and between process knowledge and
practical knowledge and study the interaction between these types of knowledge as expressed in the
creation, modification, and sharing of knowledge across individual, project, and organisational
levels.

6.2 Knowledge Management challenges in SPI

Facilitating the interaction efforts and making it happen is crucial for succeeding in creating
knowledge in SPI (Arent and Nørbjerg 2000, Pourkomeylian 2001a). The quality of the knowledge
created is dependent on the quality of practitioners’ knowledge about the software practices in the
organisation and the success of the conversion from practical knowledge to process knowledge
(Nonaka and Takeuchi 1995, Arent and Nørbjerg 2000, Arent et al. 2001, Mathiassen et al. 2001).
It is important that people with relevant competence and experience participate in SPI-workshops.
Organising, planning, and gathering people for SPI-workshops is a time-consuming process. It is
difficult and to a certain extent impossible to capture practitioners’ knowledge about practices
within a focused area (e.g. software change control), agree upon a common understanding about
how to do change control, and externalise such insights in the form of explicit knowledge (process
knowledge). Another challenge appears through implementation efforts, where the explicitly
documented knowledge is adapted and used by practitioners in practice. There is a gap between
what is described in a guideline and implementing the actions in practice through modification and
adaptation of knowledge. The modification effort is iterative, leading to new knowledge to be used
in the specific projects (see Arent and Nørbjerg 2000, Pourkomeylian 2001b, Arent et al. 2001,
Pourkomeylian 2001c).

In our experience one key factor and a great challenge in SPI is knowledge sharing. Different types
of knowledge should be shared between actors on different organisational levels (Kautz and Nielsen

 44

2001, Pourkomeylian et al. 2001, Mathiassen and Pourkomeylian 2001). If the knowledge sharing
activities are not addressed in an SPI project as planned activities there is a risk that the knowledge
sharing issues will not be addressed at all. This might cause problems in gaining management and
practitioner commitment and acceptance, for the results of the project and for the SPI effort as a
whole.

To improve practice, software organisations must learn about SPI (Kautz and Nielsen 2001).
Several studies argue that routines and procedures are learnt and developed in practice, and not
solely from formal (explicit) procedures (Brown and Duguid 1991, Mathiassen et al. 1997). In our
experience learning SPI is about creating, adapting, and transferring software knowledge to
different organisational levels. From this point of view, SPI initiatives should emerge through
personal growth, through knowledge creation, through knowledge adaptation, and through
knowledge transformation to first reach internalisation in practice (see Pourkomeylian 2001c).

To make it happen one strategy can be to support learning by sharing knowledge and learning
through reflection- in-action (see Schön 1987). This is what Arent et al. (2001) call the exploration
strategy, which is focused on changing practice by creating personalised knowledge. This strategy
should be initiated at the project level, in which individuals learn new ways of working through
observation or imitation. It requires some mechanisms to collect and share experiences, to identify
better practices, and subsequently to transfer this knowledge across the organisation. This strategy
results in quick but still uncoordinated improvements at the project level and provides weak support
for organisational learning (Arent et al. 2001). In AstraZeneca’s case we combined process
knowledge with knowledge about the specific conditions in each software project to create new
practices in software projects (through customisation meetings). This was experienced as difficult
and time-consuming, especially when a project team goes through a customisation process for the
first time. The technical complexity of projects in combination with the complexity of quality rules
often forced us to hold several meetings to come to a joint decision. This process became easier
when people had experience from earlier customisation meetings. In these meetings we encouraged
practitioners to create variations on the basis of the general software processes and reflect- in-their-
actions and adapt the customised processes during the project’s life span (Pourkomeylian 2001c).

The other strategy is based on learning by reflection and integration through documenting practice.
This is creation of explicit knowledge across the organisation in the form of new procedures or
guidelines. This is what Arent et al. (2001) call the exploitation strategy. There are some risks
involved with this strategy, e.g. it delays actual changes in software projects. Further, there is no
guarantee that the new processes will actually be useful when finally implemented. One way to
avoid these risks is to release unfinished processes as early as possible and allow for fast publication
and refinement through use. This means that the SPI unit must be prepared to improve and refine
the new processes based on experiences from practice. The SPI unit must also set up feedback
channels and plan for rewriting and republishing new guidelines for the processes. This is a very
time–demanding process (see Pourkomeylian 2001c). The strength of this strategy is its ability to
produce explicit knowledge in the form of procedures and guidelines across the organisation by
reflection on and integration of existing practices. IT-based solutions (in our case the EPL) can be
used to facilitate sharing of this knowledge between different organisational levels (see Mathiassen
and Pourkomeylian 2001). Our SPI effort included both exploration and exploitation strategies to
facilitate the knowledge sharing efforts in the organisation (see Pourkomeylian 2001c, Mathiassen
and Pourkomeylian 2001, Pourkomeylian et al. 2001).

 45

In summary, one key factor and a great challenge in SPI is knowledge sharing. SPI initiatives
should emerge through personal growth, through knowledge creation, through knowledge
adaptation, and through knowledge transformation to first reach internalisation in practice. It is
difficult and to a certain extent impossible to capture practitioners’ knowledge about practice. The
focus should rather be on capturing a common agreement on the “what” issues (e.g. what do we
mean by project planning?) and a general framework for the “how” issues (e.g. how should we do
project planning?). Modification of processes in each project is a time-consuming process but a
very effective effort for implementing new processes in practice. Developing different knowledge
sharing strategies and mechanisms is a time-demanding task and should be planned early in the SPI
project.

6.3 Using insights from Knowledge Management in SPI

We used the concept of Nonaka and Takeuchi (1995) to understand and address the knowledge
creation and modification issues in SPI. To support knowledge sharing between different
organisational levels we used Hanssen et al.’s (1999) concept of codified and personalised
knowledge. The knowledge sharing efforts in our project were guided by different strategies and
mechanisms depending on the different types of SPI services to support both codified and
personalised knowledge (see Mathiassen and Pourkomeylian 2001, Pourkomeylian et al. 2001).
Because knowledge is basically hermeneutic and only partially supported by positivistic elements, a
KM strategy for SPI should be expected to focus on the personalised approach. This was not
entirely the case at AstraZeneca, however. We considered differences between the services
provided by our SPI unit and adopted specialised strategies based on the characteristic features of
our services. We believe that each SPI unit has to find its own balance between the personalised and
codified approaches. This balance needs to be dynamically adjusted as the SPI unit matures.
Considering the different nature of the IDEAL model and the CMM we suggested that improvement
and innovation oriented services should be based mainly on personalised approaches whereas
maintenance and diffusion of processes, procedures, and templates are more open to approaches
that are essentially codified. This can be explained as follows.

The CMM is in itself codified knowledge of software practices presented and described on different
levels of detail, with goals and key practices for each key process area. The very idea is to reuse this
knowledge across software organisations to assess capabilities and to guide action. To reach level 2
(repeatable), organisations are advised to implement specific key process areas. The new processes
should, however, not be implemented in a standardised fashion. Rather, it is recommended that each
software project finds its own way to reach the goals expressed in CMM. The strategy is in this
phase therefore mainly personalised and supplemented with some codified knowledge from CMM
and state-of-the-art SE-knowledge. To continue further towards level 3 (defined), the focus changes
to a standardisation of software processes across the software organisation. Processes have to be
explicitly defined and maintained and new meta-processes should be created to support their
adaptation to specific projects. As the organisation approaches level 3 the main KM strategy is
codified and even the customisation of this knowledge to specific software projects is itself codified
(see Mathiassen and Pourkomeylian 2001).

In the case of AstraZeneca, our goal was not to reach any particular level in the CMM. We focused
on learning SPI, on improving (creating) and implementing a few software processes in the
organisation, and on increasing practitioners’ understanding about company quality rules and
requirements. As a pharmaceutical company we must have SOPs (written documents) in place that
address quality regulations in software projects. In this sense, most of the knowledge created in our

 46

project had the character of being codified (written documents). In addition, we aimed to develop
and implement process knowledge across the organisation. To do this we adopted a KM strategy
based on a primary, codified approach and a supplementary, personalised approach to support
sharing of codified knowledge at DevIS.

We codified knowledge that should and could be codified (such as guidelines, procedures or quality
rules). IT-based solutions were used to support fast accessibility and availability of the codified
knowledge on different organisational levels to all practitioners. The codified knowledge was
structured and presented in a way that, in combination with IT, supported learning (see
Pourkomeylian 2001c). To support the sharing of knowledge that cannot or should not be codified
(e.g. how to customise the newly created processes to fit to software projects) we established
networking facilities on the basis of a personalised strategy. Hence, we created a framework for
software processes using a codified strategy and focused on and supported software practices using
a personalised strategy.

Codifying, structuring, and presenting knowledge using IT-based solutions demands a great deal of
time and resources. The IT-based solution is a software application that should be developed and
maintained. If these activities are not planned in the SPI project from the beginning, raising extra
resources in the middle of the project may be a tough task. Establishing networking facilities to
support sharing of knowledge about practices can also be problematic if the activity is not based on
an organised and planned networking strategy. The networking efforts should be based on the
organisation’s business goals and supported by management (see Mathiassen and Pourkomeylian
2001, Pourkomeylian et al. 2001).

In summary, we have found it useful to let SPI projects focus on the SPI and KM concepts rather
than on model-based recommendations like those of the CMM. Further, the projects should aim to
understand the most characteristic features of the organisation in question and improve a few
processes in a stepwise manner. The SPI project should have a project specification including plans,
schedules, deliverables, resources, roles and responsibilities and an overall KM strategy. A MAP
analysis can be used to facilitate understanding the most characteristic features of the organisation’s
SPI effort (see Aaen et al. 2001, Mathiassen et al. 2001, Pourkomeylian 2001b). To facilitate the
creation, modification, and sharing of knowledge in the SPI project, a KM strategy should be
developed early in the project. It should be based on the organisation’s bus iness goals and address
issues related to both codified and personalised knowledge.

6.4 Further Research

Other studies have argued for and illustrated the usefulness of applying KM to SPI (see Baskerville
and Pries-Heje 1999, Arent and Nørbjerg 2000, Kautz and Nielsen 2001, Kautz and Thaysen 2001,
Mathiassen et al. 2001, Arent et al. 2001). What we did in addition to these studies was to
systematically explore on a practical level how an SPI initiative could be informed by applying KM
insights as an integral part of the effort. Our studies have, as described above confirmed that for
making SPI happen in practice it is useful to apply KM insights in SPI. Doing so provides a deeper
understanding of some of the key challenges involved and it guides actions in a number of useful
ways. The key contribution of our studies is that it provides additional insights of how this can be
achieved on a practical level and that it points in direction of further research within this area.

Capturing practitioners’ practical knowledge about practice is not an easy task. To address this issue
we used different approaches like SPI-meetings, SPI-workshops, customisation meetings, and in

 47

some cases training sessions. This was a difficult and rather time-demanding effort (see
Pourkomeylian 2001a, 2001b, 2001c). This gives rise to further questions: How can we make this
process more efficient? How do we know that we have captured enough and relevant knowledge?

Once new knowledge is created, one great challenge is transferring knowledge to different
organisational levels. Codification has been suggested as a strategy to facilitate this effort.
Interesting issues for further studies are: Which knowledge should be codified? What techniques
should be used? How to illustrate codified knowledge?

Not surprisingly, codification is not the answer to all knowledge sharing problems. A personalised
strategy can be used to address issues related to transformation of personalised knowledge. But,
which knowledge is personalised knowledge? Where is the borderline between codified and
personalised knowledge in SPI and how to recognise this line?

In this study we have used the IDEAL model to structure our SPI effort, the CMM model to focus
on specific areas, and the MAP framework to understand the nature of SPI. These models do not,
however, explicitly address the practical issues of managing knowledge in SPI. The following
question can be the point of departure for further research:

• How to address KM issues in CMM, IDEAL and the MAP framework to support practical

issues of creation, modification, and knowledge sharing in SPI?

My ambition in this thesis has not been to provide complete coverage to make SPI more effective
by implementing KM insights, but rather to understand the complexity of SPI by approaching it
from a KM perspective in practice. I hope to have opened a practical and theoretical discussion to
stimulate further investigations of KM as a facilitator for improving SPI practice in AstraZeneca
and in other software organisations.

 48

REFERENCES

Aaen, I., Arent, J., Mathiassen, L. and Ngwenyama, O. (2001). A Conceptual MAP of Software
Process Improvement. Scandinavian Journal of Information Systems, Special Issue on Trends in the
Research on Software Process Improvement in Scandinavia, Vol. 13, pp. 123-146.

Ami (1992). Ami, application of metrics in industry, A Qualitative Approach to Software
Management. CSSE South Bank University, London, pp. 1-35.

Andersson, I. and Nilsson, K. (2001). Diagnosing Diffusion Practices within a Software
Organisation. IFIP WG8.6 Fourth Working Conference on Diffusing Software Product and Process
Innovations, Banff, Canada.

Arent, J. and Iversen, J. (1996). Development of a Method for Maturity Assessments in Software
Organizations based on the Capability Maturity Model. Aalborg University: Department of
Computer Science.

Arent, J. and Nørbjerg, J. (2000). Organizational Knowledge Creation: A Multiple Case Analysis.
Proceedings of Hawaii International Conference on Systems Science.

Arent, J., Pedersen, M. H. and Nørbjerg, J. (2001). Strategies for Organizational Learning in SPI.
In: Mathiassen, L., Pries-Heje, J. and Ngwenyama, O. (Eds.): Improving Software Organisations -
From Principles to Practice, Addison-Wesley.

Augier, M. and Vendelo, M. T. (1999). Networks, Cognition and Management of Tacit Knowledge.
Journal of Knowledge Management, Vol. 3, No. 4, pp. 252-261.

Bach, J. (1994). The Immaturity of the CMM. American Programmer, Vol. 7, No. 9, pp. 13-18.

Baskerville, R. and Pries-Heje, J. (1999). Managing Knowledge Capability and Maturity. In:
Larsen, T., J., Levine, L., and DeGross, J., I. (Eds.): Information Systems: Current Issues and
Future Change. Norwell, MA: IFIP/Kluwer Academic Publisher.

Baskerville, R. and Wood-Harper, A. T. (1996). A Critical Perspective on Action Research as a
Method for Information Systems Research. Journal of information technology, Vol. 11.

Brown, J. S. and Duguid, P. (1991). Organisational Learning and Communities-of-Practice: Toward
a Unified View of Working, Learning and Innovation. Organization Science, Vol. 2, No. 1, pp. 40-
57.

Cook, S. D. N. and Brown, J. S. (1999). Bridging Epistemologies: The Generative Dance between
Organisational Knowledge and Organisational Knowing. Organisation Science, Vol. 10, No. 4, pp.
381-400.

Dahlbom, B. and Mathiassen, L. (1993). Computer in Context, The Philosophy and Practice of
System Design. Blackwell Publishers.

Dick, B. (1997a). Action learning and action research. [On line] available at:
http://www.scu.edu.au/schools/sawd/arr/actlearn.html

 49

Dick, B. (1997b). Action research FAQ: “frequently asked questions” file. [On line] available at:
http://www.scu.edu.au/schools/sawd/arr/arfaq

Dick, B. (1997c). A beginners guide to action research. [On line] available at:
http://www.scu.edu.au/schools/sawd/arr/guide.html

Debou, C. (1997). SPI Success Factors: Toward More Business Orientation. Software Process
Newsletter, IEEE Computer Society, No. 10, pp. 15-18.

Galliers, R. D. (1992). Choosing an Information Systems Research Approach. Information Systems
Research: Issues, Methods, and Practical Guidelines, R. D. Galliers, ed., Blackwell Scientific
Publications, Oxford, pp. 144-162.

Galliers, R. D. and Land, F. L. (1987). Choosing Appropriate Information Systems Research
Methodologies. Communications of the ACM, Vol. 30, No. 11, pp. 900-902.

Goldenson, D. R. and Herbsleb, J. D. (1995). After the Appraisal: A Systematic Survey of Process
Improvement, its Benefits, and Factors that Influence Success. The Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, Technical Report CMU/SEI-95-TR-009.

Halloran, P. (1999). Organizational Learning from the Perspective of a Software Process
Assessment and Improvement Program. Proceedings of Hawaii International Conference on
Systems Science, Los Alamitos, CA: IEEE Computer Society Press.

Hansen, T., Morten, N. and Tierney, T. (1999). What’s Your Strategy for Managing Knowledge?
Harvard Business Review, pp. 106-116.

Hayes, W. and Zubrow, D. (1995). Moving On Up: Data and Experience Doing CMM-Based
Process Improvement. The Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
Technical Report CMU/SEI-95-TR-008.

Herbsleb, J., Zubrow, D., Goldenson, D., Hayes, W. and Paulk, M. C. (1997). Software Quality and
the Capability Maturity Model. Communications of the ACM, Vol. 40, No. 6, pp. 30-40.

Humphrey, W. (1989). Managing the Software Processes. Addison-Wesley.

Humphrey, W. S., Snyder, T. R. and Willis, R. R. (1991). Software Process Improvement at Hughes
Aircraft. IEE Software, Vol. 8, No. 4, pp. 11-23.

Johansen, J. and Mathiassen, L. (1998). Lessons learned in a National SPI Effort. EuroSPI 98
Gothenburg, Sweden, November 16-18, pp. 5.1-17.

Kautz, K. and Nielsen, P. A. (2001). Knowing and Implementing SPI. In: Mathiassen, L., Pries-
Heje, J. and Ngwenyama, O. (Eds.): Improving Software Organisations - From Principles to
Practice, Addison-Wesley.

Kautz, K. and Thaysen, K. (2001). Knowledge, Learning and IT Support in a Small Software
Company. Proceedings of the European Conference on Information Systems, Bled, Slovenia.

 50

Kuvaja, P. and Bicego, A. (1994). BOOTSTRAP - a European assessment methodology. Software
Quality Journal, Vol. 3, pp. 117-127.

Land, F. F. (1986). Social Aspects of Information Systems. In Management Information Systems:
The Technology Challenge. N. Piercy, Ed. Croom Helm.

Larsen, E. Å. and Kautz, K. (1997). Quality Assurance and Software Process Improvement in
Norway. Software Process - Improvement and Practice, Vol. 3, No. 2, pp. 71-86.

Mashiko, Y. and Basiili, V. R. (1997). Using the GQM Paradigm to Investigate Influent ial Factors
for Software Process Improvement. Journal of Systems and Software, Vol. 36, pp. 17-32.

Mathiassen, L. (2000). Collaborative Practice Research. Proceedings of the IFIP TC 8 WG 8.2
Working Conference on Organizational and Social Perspectives on Information Technology,
Aalborg, Denmark.

Mathiassen, L., Munk-Madsen, A., Nielsen, P. A. and Stage, J. (1997). ”Methods” in Reflective
System Development. Vol. 2. Aalborg University: Department of Computer Science, pp. 349-365.

Mathiassen, L. and Pourkomeylian, P. (2001). Knowledge Management in a Software Process
Improvement Unit. International Conference on Managing Knowledge: Conversations and
Critiques, University of Leicester, England.

Mathiassen, L., Pries-Heje, J. and Ngwenyama, O. (Eds.) (2001). Improving Software
Organisations - From Principles to Practice. Addison-Wesley.

McFarlan, F. W. (1984). The Information Systems Research Challenges. Harvard Business School
Press.

McFeeley, B. (1996). IDEAL. A User’s Guide for Software Process Improvement. The Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, Handbook CMU/SEI-96-HB-001.

Mingers, J. and Stowell, F. (1997). Information Systems, An Emerging Discipline? McGraw-Hill.

Mingers, J. (2001). Combining IS Research Methods: Towards a Pluralist Methodology.
Information Systems Research, Vol. 12, No. 3, September 2001, pp. 240-259.

Mumford, E., Hirschheim, R. A., Fitzgerald, G. and Wood-Harper A. T. (Eds.) (1986). Research
Methods in Information Systems. Amsterdam, North Holland.

Nonaka, I. and Takeuchi, H. (1995). The Knowledge-Creating Company. Oxford University Press.

Olson, T., Humphrey, W. and Kitson, D. (1989). Conducting SEI-assisted Software Process
Assessments. The Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
Technical Report CMU/SEI-90-TR-7.

Patton, M. Q. (1990). Qualitative Evaluation and Research Methods. Sage Publications.

 51

Paulk, M. (1996). Effective CMM-Based Process Improvement. 6th International Conference on
Software Quality, Ottawa, Canada.

Paulk, M., Curtis, B., Chrissis, M. and Weber, C. (1993). Capability Maturity Model for Software
Version 1.1. The Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Technical
Report CMU/SEI-96-TR-24.

Pressman, R. S. (1997). Software Engineering, a practitioner’s approach. Fourth edition, McGraw-
Hill, International Editions, Software Engineering Series.

Pourkomeylian, P. (2001a). Knowledge Creation in Improving a Software Organization.
Proceedings from IFIP WG8.6 Fourth Working Conference on Diffusing Software Product and
Process Innovations, Banff, Canada.

Pourkomeylian, P. (2001b). Analysing an SPI Project with the MAP Framework. Scandinavian
Journal of Information Systems, Special Issue on Trends in the Research on Software Process
Improvement in Scandinavia, Vol. 13, pp. 147-165.

Pourkomeylian, P. (2001c). An Approach to Institutionalisation of Software Processes. Proceedings
from Tenth International Conference on Information Systems Development, London, England.

Pourkomeylian, P., Hörnell, J. and Söderberg, S. (2001). Knowledge Sharing in a Software Process
Improvement Unit. Proceedings from The Second European Conference on Knowledge
Management, Bled, Slovenian.

Scarbrough, H. and Swan, J. (1999). Knowledge Management and the Management Fashion
Perspective. Proceedings from, The British Academy of Management Conference on Managing
Diversity, Manchester, England.

Scarbrough, H. and Swan, J., ed. (1999). Case Studies in Knowledge Management. London:
Institute of Personnel and Development.

Scarbrough, H., Swan, J. and Preston, J. (1999). Knowledge Management: A Literature Review.
London: Institute of Personnel and Development.

Schön, D. A. (1987). Educating the Reflective Practitioner. Jossey-Bass Publishers.

Seufert, A., Bach, A. and Von Krogh, G. (1999). Towards Knowledge Networking. Journal of
Knowledge Management, Vol. 3, No. 3, pp. 183-185.

Shariq, S. Z. (1999). How does Knowledge Transform as it is Transferred? Speculations on the
Possibility of a Cognitive Theory of Knowledge. Journal of Knowledge Management, Vol. 3, No. 4,
pp. 243-251.

Stelzer, D., Mellis, W. and Herzwurm, G. (1998). Technology Diffusion in Software Development
Processes: The contribution of Organizational Learning to Software Process Improvement. In
Larsen, T. and McGuire, E. (Eds.): Information Systems Innovation and Diffusion: Issues and
Directions, Idea Group Publisher.

 52

Swan, J., Newell, S. and Robertson, M. (2000). Limits of IT-Driven Knowledge Management
Initiatives for Interactive Innovation Processes: Towards a Community-Based Approach.
Proceedings of the 33rd Hawaii International Conference on System Sciences.

Swan, J., Newell, S., Scarbrough, H. and Hislop, D. (1999). Knowledge Management and
Innovation: Networks and Networking. Journal of Knowledge Management, Vol. 3, No. 3, pp. 262-
275.

TickIT (1995). TickIT, Guide to Software Quality Management System Construction and
Certification using ISO 9001:1994. Issue 1.0, DISC TickIT Office.

Thomson, H. E. and Mayhew, P. (1997). Approaches to Software Process Improvement. Software
Process-Improvement and Practice, Vol. 3, No. 1, pp. 3-17.

Tsoukas, H. (1996). The Firm as Distributed Knowledge System: A Constructionist Approach.
Strategic Management Journal, Winter Special Issue, Vol. 17, pp. 11-25.

Vogel, D. R. and Wetherbe, J. C. (1984). MIS research A profile of leading journals and university.
Data Base 16, 3.

Wohlwend, H. and Rosenbaum, S. (1994). Schlumberger’s Software Improvement Program. IEEE
Transactions on software engineering, Vol. 20, No. 11, pp. 833-839.

Zack, M. H. (1999). Developing a Knowledge Strategy. California Management Review, Vol. 41,
No 3, pp. 125-145.

Zahran, S. (1998). Software Process Improvement: Practical Guidelines for Business Success.
Addison-Wesley.

 53

II RESEARCH CONTRIBUTIONS

The versions of the papers included in this thesis are, except for minor corrections identical to the
published papers.

 54

 55

KNOWLEDGE CREATION IN IMPROVING A SOFTWARE
ORGANISATION

Pouya Pourkomeylian

Abstract: Software Process Improvement (SPI) is a systematic approach for improving the
capabilities of a software organisation. This study shows the results of a collaborative
research initiative in which an SPI project was conducted and analysed as organisational
knowledge creation. The study explains how knowledge is created through transformation
between tacit and explicit knowledge and through interaction between different
organisational levels of actors. On the basis of our findings it is suggested that two types
of knowledge are created in an SPI project based on completely different knowledge
creation behaviour.

Keywords: Software Process Improvement (SPI), Organisational Knowledge Creation (OKC).

1 INTRODUCTION

Software development has existed as a discipline for more than forty years but has not yet become a
disciplined process. Software projects are almost always later than expected, the costs of developing
software are higher than planned, and the functionality and the quality of the final products
(software and documentation) are lower than expected. Software organisations have used different
methods for improving software processes. The most recent approach for improving software
processes is Software Process Improvement (SPI), which is a systematic approach toward changing
software development practice.

The first step in improving software processes is to understand the current status of the software
development process (Humphrey 1989). One way of doing this is to make an assessment based on a
model as a road map. During the past years software organisations have used different appraisal
approaches to identify what should be improved in their software processes. The most popular
assessment model is the Capability Maturity Model (CMM), which is a normative approach to
software process improvement developed by the Software Engineering Institute (SEI) (Paulk 1993).
Other approaches include BOOTSTRAP (Kuvaja 1994), SPICE (Thomson and Mayhew 1997), ami
(ami 1992), TickIT (TickIT 1995), and TRILLIUM (Thomson and Mayhew 1997). Common for all
these approaches is that they apply Total Quality Management (TQM) principles to SPI. After
making an assessment further improvement activities should be planned and performed to create
new or modified software processes.

Different reports have pointed out difficulties in performing SPI projects in practice (Goldenson and
Herbsleb 1995, Debou 1997). An SPI effort is successful when the new or modified software
processes are created and used in the organisation’s daily practice and have been proven to function
in achieving their goals. Success with SPI seems to depend on a complex mix of highly interrelated
factors acting in different phases in an SPI project. Different factors such as scaling the SPI
initiative, setting realistic goals, the complexity of organisational changes, and the organisational
culture have made it difficult to achieve success in SPI initiatives (Goldenson and Herbsleb 1995,
Herbsleb et al. 1997, Mashiko and Basili 1997, Johansen and Mathiassen 1998). But SPI has also

 56

been shown to be able to help organisations gain organisational benefits (Wohlwend and
Rosenbaum 1994, Hayes and Zubrow 1995, Larsen and Kautz 1997).

An organisation’s software development practices are based on the existing knowledge of
practitioners and managers about the software development practice (Arent and 2000). To change
software development practices the organisation should improve the practitioners’ existing
knowledge (both tacit and explicit) of the software practices. The created new or modified
knowledge should then be transferred to all organisational levels to become part of the practitioners’
daily work. Creating new or modified software processes in this way is a knowledge Nørbjerg
creation process in which different actors at different organisational levels are involved in creating
different types of knowledge.

Some recent reports have reflected on the importance of creating and managing knowledge and
learning issues for SPI initiatives. Arent and Nørbjerg (2000) analysed how organisational
knowledge creation process and learning can support SPI initiatives. Stelzer et al. 1998 studied how
principles and technologies from organisational learning can apply to SPI initiatives and become
enablers of SPI success. Halloran (1999) investigated the relationship between an SPI approach and
organisational learning. These studies indicate that the concept of knowledge creation and learning
can support SPI initiatives. We believe that the concept of organisational knowledge creation has
much to offer the SPI community, especially in the following three questions: 1) What types of
knowledge are created as the result of performing an SPI project? 2) Which actors are involved in
the knowledge creation process? 3) How do they interact to create knowledge?

As a framework to support the analysis of the SPI project this study has chosen Nonaka and
Takeuchi’s theory (see Nonaka and Takeuchi 1995) because their theory explicitly deals with the
fundamental process of knowledge creation and supports an understanding of the interaction
between individuals, groups, and organisations in the knowledge creation process. This approach
has demonstrated its usefulness in relation to SPI in a study by Arent and Nørbjerg (Arent and
Nørbjerg 2000) analysing the learning process in SPI.

1.1 The Research Approach

Using a collaborative practice research approach (see Mathiassen 2000) this study has combined
action research in combination with field experiment, and practice study aiming to change practice.
Improving practice is the distinguishing feature of collaborative practice research and action
research in general (Baskerville et al. 1996, Mathiassen 2000). The action research approach is
chosen for this study because of its strong support in: 1) integrating research and practice, 2)
involving practitioners in the problem being studied, 3) giving the possibility of introducing change
at the same time the research is going on.

In this study an SPI project was done during the period of April 1999 to June 2000. Several
practitioners (software engineers) were involved during both the evaluation of software projects and
the improvement of software processes. The SPI-group including: software engineers, assisting
consultants, and the author (leading the SPI project) working with improving software processes
became a forum for evaluating the Software Engineering (SE) and the SPI practices, for creating
and experimenting with new or modified software processes, and for learning about SPI in practice.
Action research in this study was set up to improve three main software processes using the IDEAL
model (see section 2.1). Field experiments were set up as controlled research efforts in which the
created software processes were tested in one selected software pilot project to show the effects of

 57

the created processes. Focused practice studies were initiated to learn about the current maturity
level of the software organisation.

One focused SPI practice was to make a CMM assessment to establish the current maturity of
software processes. To collect data about the current capability of software processes at the
software organisation a modified CMM assessment based on a method called Questionnaire Based
Assessment (QBA) (see Arent and Iversen 1996) was made for three different software
development projects chosen from two different software development groups. The following Key
Practice Areas (KPAs) were included in the assessment to identify software process problems: 1)
Software Project Planning, 2) Requirements Management, 3) Software Project Tracing and
Oversight, 4) Software Quality Assurance, 5) Software Configuration Management.
Project managers and developers of three selected software development projects answered the
CMM-based questionnaire. The collected data were statistically analysed and proposals were
developed for improving software development projects on the basis of the results of analysed
qualitative data collected from the assessment, the software process improvement literature, and
other quality improvement findings from earlier quality activities in the software organisation. The
SPI-group met at least eight times throughout the 14-month period for planning and organising SPI
initiatives and discussing difficulties and problems. The new and modified software processes will
be implemented in the whole organisation starting in August 2000. The results and lessons learned
during the improvement phase have been documented. These lessons have been both interpretative,
i.e. helped us to understand the practice, and normative, i.e. helped us to design new or modified
software processes and improve the practice. Knowledge gained and experience from doing this
research in practice have created new research activities for further studies. The author actively
participated in the practical work with SPI in the organisation, such as conducting the CMM-based
assessment, running and participating in workshops and seminars, performing interviews and
analysing results.

The section below discusses the software process improvement and organisational knowledge
creation concepts and presents the framework for the analysis. Section 3 presents the case. Section 4
presents a map of the knowledge creation process in the SPI project and discusses the findings
according to the three questions mentioned above, and section 5 concludes the paper by presenting
the lessons learned and pointing out areas for further research.

2 BACKGROUND

Software Process Improvement (SPI) was originally developed at the Software Engineering
Institute (SEI) at the Carnegie Mellon University and was based on ideas presented by Humphrey
(see Humphrey 1989). According to Aaen et al. (2001) SPI is based on a number of ideas that offer
answers to specific concerns. SPI has three fundamental concerns: the management of SPI
activities, the approach taken to guide the SPI initiatives, and the perspective used to focus
attention on the SPI goal(s).

The management of SPI initiatives is based on three ideas: 1) the SPI activities are organised in a
dynamic fashion, 2) all improvement efforts are carefully planned and 3) feedback on effects on
software engineering practices is ensured. The approach to SPI initiatives is guided by three
additional ideas: 1) SPI is evolutionary in nature, 2) SPI is based on idealised, normative models of
software engineering and 3) SPI is based on a careful creation and development of commitments
between the involved actors. Finally the perspective forward the SPI goal is dominated by three
ideas: 1) SPI is focused on software processes, 2) the practitioners’ competencies are seen as the

 58

key resource and 3) SPI aims to change the context of the software operation to create sustainable
support for the actors involved. The basic idea in SPI is to focus on software processes as social
institutions with a complex interplay of people, methods, tools and products (Aaen et al. 2001).
SPI is focused on improving software processes based on practitioners’ ideas and experiences. This
involves capturing practitioners’ tacit knowledge (know-how) and transferring it to explicit
knowledge, which should then be combined with the organisation’s other explicit knowledge
prepared for use in practice by all practitioners in different organisational levels.

2.1 The IDEAL Model

A popular model in the field of SPI that is suitable for assistance in managing SPI initiatives for
implementing organisational changes is the IDEAL model (see McFeeley 1996). As shown in figure
1 the IDEAL model considers five phases (Initiating, Diagnosing, Establishing, Acting and
Learning) of a software process improvement initiative, which provide a continuous loop through
the steps necessary for software process improvement (McFeeley 1996).

Figure 1. The IDEAL Model (McFeeley 1996)

Once the first cycle of SPI has been completed there will be a need to regularly repeat the entire
process. However, the ultimate goal in organisations should be to succeed in achieving process
implementation in the whole organisation. This should lead to the creation of a process culture in
which process discipline prevails. Our intention in using the IDEAL model was to establish
successful improvement activities and infrastructures for SPI initiatives within the software
organisation. This study includes the Initiating, Diagnosing, Establishing, and some parts of the
Acting and Learning phases.

2.2 Organisational Knowledge Creation

Nonaka and Takeuchi (1995) use two dimensions of knowledge creation to explain the process of
organisational knowledge creation: 1) the ontological and 2) the epistemological.
The ontological dimension focuses on individual knowledge creation. The organisation supports
creative individuals or provides a context for them in which to create knowledge. Organisational
knowledge creation is understood as a process that “organisationally” amplifies the knowledge
created by individuals and crystallises it as a part of the knowledge network of the organisation.
This process takes place within an expanding “community of interaction”, which crosses intra- and
inter-organisational levels and boundaries.

 59

For the epistemological dimension Nonaka and Takeuchi (1995) draw on Michael Polanyi’s (1966)
distinction between explicit knowledge and tacit knowledge. Explicit knowledge refers to
knowledge that is transmittable in formal, systematic languages. It can be articulated in formal
languages including grammatical statements, mathematical expressions, specifications, manuals and
so forth. It can be transmitted across individuals formally and easily. Tacit knowledge is personal,
context-specific, and therefore difficult to formalise and communicate. It is personal knowledge
embedded in individual experience and involves intangible factors such as personal belief,
perspective, and the value system. Tacit knowledge is difficult to communicate and share in the
organisation and must thus be converted into words or numbers that anyone can understand.
Nonaka and Konno (1998) describe two dimensions to tacit knowledge. The first dimension is the
technical dimension, which encompasses the kind of informal personal skills or crafts often referred
to as “know-how”. The second dimension is the cognitive dimension, which consists of beliefs,
values, ideals and mental models that are deeply ingrained and which we often take for granted.
They argue further that this cognitive dimension of tacit knowledge shapes the way we perceive the
world. This kind of knowledge could also be defined as procedural knowledge used in problem
solving and decision making (Nonaka and Takeuchi 1995, Firebaugh 1989). According to Nonaka
and Takeuchi (1995) organisational knowledge is created during the time the “conversion” takes
place, i.e. from tacit to explicit and back again into tacit. The interaction between these two forms
of knowledge is the key dynamic of knowledge creation in the organisation.

Knowledge Conversion

Knowledge conversion is a “social” process between individuals and is not confined to one
individual. Assuming that knowledge is created through the interaction between tacit and explicit
knowledge four different modes of knowledge conversion are possible (Figure 2). The content of
the knowledge created by each mode of knowledge conversion is naturally difficult, which creates
different contents of knowledge (Nonaka and Takeuchi 1995):

1. From tacit knowledge to tacit knowledge (socialisation that creates sympathised knowledge).

The socialisation mode usually starts with building a “field” of interaction. This field facilitates
the sharing of members’ experiences and mental models. Socialisation involves the sharing of
tacit knowledge between individuals.

2. From tacit knowledge to explicit knowledge (externalisation that creates conceptual
knowledge). The externalisation mode is triggered by meaningful “dialogue or collective
reflection,” in which using appropriate metaphor or analogy helps team members to articulate
hidden tacit knowledge that is otherwise hard to communicate. Externalisation requires the
expression of tacit knowledge and its translation into comprehensible forms that can be
understood by others.

3. From explicit knowledge to explicit knowledge (combination that creates systematic
knowledge). The combination mode is triggered by “networking” newly created knowledge and
existing knowledge from other groups in the organisation, thereby crystallising them into a new
product or service.

4. From explicit knowledge to tacit knowledge (internalisation that creates operational
knowledge). “Learning by doing” triggers internalisation. The internalisation of newly created
knowledge is the conversion of explicit knowledge into the organisation’s tacit knowledge. In
practice, internalisation relies on two dimensions. First, explicit knowledge must be embodied
in action and practice. Second, there is a process of embodying the explicit knowledge by using
simulations or experiments to trigger learning by doing processes.

 60

Linking
Explicit

Knowledge

(Socialization)
Sympathized
Knowledge

(Externalization)
Conceptual
Knowledge

(Internalization)
Operational
Knowledge

(Combination)
Systemic

Knowledge

Tacit Knowledge

Explicit Knowledge

Tacit Knowledge Explicit Knowledge

To

Dialogue

Learning by Doing

Field
Building

Figure 2. Contents of knowledge created via the four modes (Nonaka and Takeuchi 1995)

This study is focused on the process issues of knowledge creation in SPI, the actors involved, and
the conversion of new or modified knowledge between different organisational levels. We interpret
changes in practitioners’ understanding of the software processes, and changes in practice as
indicators of new tacit knowledge, and new guidelines, policies, and manuals as new explicit
knowledge.

3 THE CASE

This study was performed at AstraZeneca one of the world’s leading pharmaceutical companies.
AstraZeneca is a research-driven organisation with a range of products designed to fight disease in
different areas of medical need. The company was formed in April 1999 by the merger of Astra AB
and Zeneca Group PLC. AstraZeneca has a strong research base and powerful product portfolio,
designed in seven areas of true medical need – cancer, cardiovascular, central nervous system,
gastrointestinal, infection, pain control and, and respiratory. AstraZeneca is globally number three
(1999) in ethical pharmaceuticals and has more than 50,000 employees worldwide. It has research
and development (R&D) centers in Sweden, UK and the USA and R&D headquarters in Södertalje,
Sweden. The company has some 10,000 R&D personnel and a US $2 billion R&D investment in
1999, extensive global sales and marketing network, employing over 25,000 people, and 12,000
people employed in production in 20 countries.

3.1 The Software Organisation

AstraZeneca has four departments that supply global IT services to the whole company: one in the
UK, one in the USA, one in Sweden and one to provide IT support for research and development
for the whole organisation. In addition to this, there are five global supplier managers who have the
responsibility of controlling the needs of IT services in the business functions in the company.
Furthermore, there is a company staff with central IT departments for solving problems related to
technology adoptions, infrastructure, security, integration, and strategies. Beyond all this, there are
IT functions that support the local marketing company in the respective countries. There are in total
2,500 persons working with IT-related questions in AstraZeneca.

 61

This research started before the merger between the two companies in an IS organisation called
Clinical Research and Information Management (CRIM) at the former Astra Hässle in Sweden and
continued later in the new IS organisation, which then changed its name to Development IS
(DevIS). DevIS supports clinical and pharmaceutical projects, Regulatory Affairs and Product
Strategy and Licenses at AstraZeneca R&D Mölndal. DevIS is also responsible for influencing the
development of the global clinical research processes and IS/IT tools in AstraZeneca. DevIS
comprises 90 people including contractors, most of whom have backgrounds in IS/IT.

Many regulatory authorities require that pharmaceutical companies and their software organisations
comply with GXP (Good Manufacturing Practice, Good Clinical Practice, and Good Laboratory
Practice) rules. GXP rules are the authorities’ quality requirements to pharmaceutical companies for
ensuring patient health, the quality of processes (e.g. clinical studies or software development) and
the quality of products (e.g. tablets or software). As a software organisation in the pharmaceutical
business, DevIS must address many quality requirements. One fundamental requirement is that
DevIS must be able to show the authorities, by documented evidence, that software development
activities (e.g. software change control, software validation, and data processing and storage) are
being performed in compliance with quality requirements. Therefore every software project
regulated by GXP requirements should carefully apply all quality rules and be able to show by
documented evidence that the software is compliant with the related GXP requirements. The
company long ago adopted standard operation procedures that explicitly describe the company’s
software quality rules. These standard operation procedures should be applied in all information
systems regulated by GXP requirements.

Employees of DevIS are basically engaged with software development, software maintenance and
software operation activities. The software development activities occur in two forms: 1)
development of totally new software products (software development) and 2) developing or
changing existing software products (software maintenance). A typical software development
project at DevIS is scheduled to take between six months and one year and includes analysis,
design, construction, testing, and validation. Software maintenance activities can consist of changes
in the code or developing a completely new application for existing software products. Software
products in DevIS include the software and all related documentation (e.g. user requirement
specification, test plan, validation plan, validation report, user manuals etc.).

3.2 The Problem Area

The results of a problem analysis performed in early 1999 in one software development group
within DevIS showed a need for improving software project disciplines and providing guidelines to
understand the standard operation procedures and GXP rules. The director of DevIS initiated an
improvement project called Software Process Improvement at DevIS (SPID) to understand the
existing problems and improve the organisation’s software processes. The following figure
illustrates a rich picture of the SPID project.

 62

Figure 3. The rich picture of SPID (see Checkland and Scholes 1990)

The SPID project was initiated, organised, planned, and performed during the period of April 1999
to May 2000 and aimed to improve DevIS’ software processes. A maturity assessment using a
modified CMM-based (Capability Maturity Model) assessment method, QBA (see Arent and
Iversen 1996), showed that DevIS was by then a level one organisation and addressed improvement
possibilities in all analysed KPAs (Key Practice Areas). An improvement report based on the
assessment’s findings and other findings from earlier improvement initiatives at DevIS addressed
six improvement activities. The steering committee of SPID gave priority to the following
improvement activities (improvement decision) from the improvement report:

1. To establish a minimum documentation level for documenting the results of software projects

and create the software documentation process.
2. To improve processes for software validation, software change management, and document

version control.
3. To create a template library including templates for documentation of software development

activities, such as: user requirement specification, design specification, test plan, and validation
plan.

The SPI group including (5 software engineers, 2 assisting consultants, and the author) started
planning and performing improvement activities over a four-month period. This initial phase of
SPID was scheduled to be finished in June 2000. The implementation activities for implementing
the newly created software processes in the whole organisation start in August 2000.

4 DISCUSSION

This section discusses SPID on the basis of knowledge creation framework described earlier in this
paper. We present a map illustrating the knowledge creation process in SPID including the software
process improvement steps, the knowledge creation processes, the knowledge created, and the
actors and the organisational levels involved.

During the initiating phase, we realised that the standard CMM maturity assessment developed by
the SEI (see Zubrow et. al. 1994) was too general for our situation. We adapted a simplified CMM-
based assessment method, QBA (see Arent and Iversen 1996), that focuses on level two and
modified it to fit DevIS’s terminology and needs. The assessment indicated that we needed to focus
more on software validation, change, and version control, and on creating templates rather than on
processes related to project management (e.g. software project planning, software project tracking

Starting

This paper

Implementation plan

Implementation activities

Problems

Initiating, organising,
 planning the SPID project

SMs

SPI-group

The assessment report

Other findings

Performing the CMM assessment

Improvement
decision

Improvement
plan

Improvement
activities

New software
processes

Creating New or Modified Software Processes in SPID Implementing New or Modified Software Processes in the organization
Further activities

Evaluation Results

 63

and oversight). The software organisation aimed to create only a few processes based on
practitioners’ experiences and the organisation’s quality requirements. The SPI-group working with
improvement activities spent a grate deal of time studying and understanding the CMM, the
organisation’s quality requirements, the organisation’s existing standards, and the software
engineering literature to create its own understanding of what is needed to create the new processes.
However, we succeeded by following the IDEAL model in organising and planning for the
performance of the improvement activities (the I, D, E and partly A, and L steps in IDEAL) in a
systematic way. This allowed us to see very early in the project the starting point, the finishing
point and all activities included in reaching our targets. We followed IDEAL’s main steps very
naturally and learned how to systematically go about creating the new or modified software
processes. However, the path from knowing what to do to doing it in practice was neither easy nor
clear.

4.1 The knowledge creation process in SPID

According to the organisational knowledge creation framework presented earlier in this paper, the
organisational knowledge creation process starts at the socialisation phase at the group level and
continues to the externalisation phase, aiming to create new explicit knowledge based on the
interaction between tacit and explicit knowledge. The created explicit knowledge will, then be
combined with other already existing explicit knowledge in the organisation. The new or modified
knowledge is subsequently put into practice through learning by doing to become tacit knowledge.
In our software process improvement project the first organisational knowledge creation process
started in the socialisation phase creating sympathised knowledge about the SPI concept through
interaction between tacit to tacit knowledge. The author arranged meetings with the management to
introduce the concept of SPI (creating SPI-knowledge). These meetings were held on an individual
level between the director of the software organisation, other software managers, and the author
aiming to learn about the SPI and the possibilities for gaining benefits by doing an SPI project.
Other meetings with the same contents were held with the SPI-group for similar purposes. The
created tacit SPI-knowledge then became explicit SPI-knowledge through a dialogue in the
externalisation phase in which conceptualised knowledge was created mostly by the author, the
software managers, and the assisting consultants. The author arranged other meetings to identify the
initial improvement infrastructure needed to carry out the project. The created SPI-knowledge in
this phase was mostly in the form of project specifications including information about the SPI plan,
resources needed, role descriptions, goals, and responsibilities. The created explicit SPI-knowledge
(the project specification) was then combined with other existing knowledge and experience in
improving software processes, and other improvement models at the software organisation to create
systematic knowledge. In this phase (combination), knowledge was created mostly at the individual
and group levels through a dialogue between all actors. The operational SPI-knowledge was then
created through practising software process improvement activities. The author, the software
engineers, the software managers, and the assisting consultants were all involved in making SPI
happen in the organisation. In this phase the created explicit SPI-knowledge became tacit SPI-
knowledge through practice. This means that, in our software process improvement project, all
organisational knowledge creation phases involved all actors in individual and almost group levels
in the creation of SPI-knowledge.

The other organisational knowledge creation process in our project deals with creating SE-
knowledge (Software Engineering Knowledge). This process also started in the socialisation phase
through externalisation, and combination to create SE-knowledge. A modified CMM assessment
done in three software projects involving three software project managers and two software

 64

developers to identify the current level of software process problems. The results and the
recommendations of the assessment were identified and documented. This action led to the creation
of the first explicit SE-knowledge about the current maturity level of the organisation based on the
results of the assessment. The author and the assisting consultants were involved in creating this
knowledge. This knowledge was then combined and integrated with other organisational
requirements, and findings from earlier improvement activities. The author interpreted the
authorities’ and organisation’s quality requirements on software development practice and created
explicit knowledge about the quality requirements in an individual level. The created knowledge
about the quality requirements, earlier improvement findings, and assessment findings were
summarised on an improvement suggestion report created by the author and the assisting
consultants and presented to management for a decision. The created explicit SE-knowledge was
then transferred to group levels when the author held presentations to give results of the assessment
in different meetings for different groups. This explicit SE-knowledge was then used by the SPI-
group as input to create the minimum baseline level for documentation and other new software
processes.

The next step involved the process of capturing practitioners’ ideas about software practices and
forming them into explicit knowledge. The author arranged meetings in which the software
engineers and project managers shared their experiences and ideas about the software processes (in
the socialisation phase). We focused in this phase on creating a common understanding of the
software process problems and get agreeing on the ideal software processes. In the next phase
(externalisation) we focused on creating explicit knowledge about the new software processes based
on the practitioners’ ideas. We created some drafts for the new processes and discussed and
changed the contents of the processes several times until we could agree upon an acceptable level.
This explicit SE-knowledge was created by the SPI-group at the individual and group levels. The
software managers were not involved in creating SE-knowledge. This phase was one of the most
important and also one of the most difficult phases in our SPI project. This suggests that such a
project should not create new processes and standards detached from practices. New or modified
processes should be created based on practitioners’ experiences from practice. This suggestion is
supported in several studies that indicate that routines and standards are learned and developed in
practice, not from formal explicit standards procedures (Brown and Duguid 1991, Arent and
Nørbjerg 2000).

The following tables illustrate the knowledge creation process in our project: *: Total, ~: Partly, - :
Nothing.
SPID: Software Process Improvement at Development IS (our SPI project)
SPIer: Software Process Improver, (the author)
SMs: Software Managers
SPICs: Software Process Improvement Consultants: (the assisting consultants)
SEs: Software Engineers
OKCL: Organisational Knowledge Creation Level
Ind.: Individual, Gro.: Group, Org.: Organisational
OKCP: Organisational Knowledge Creation Process
Soc: Socialisation, Ext.: Externalisation, Comb.: Combination, Intern.: Internalisation

 65

SPI Phases SPI Activities Organizational Knowledge Creation Processes
SPI-Knowledge & SE-Knowledge

OKCP
Soc.Ext.Comb.Intern.

OKCL
Ind.Gro. Org

Roles
SPIer,SMs,SPICs,SEs

The SPIer arranged meetings with management for introducing the concept of SPI (SPI-
knowledge). These meetings held on an individual level between the director of the software
organization and other SMs and theSPIer and were aimed at learning about the SPI and the

possibilities for gaining organizational benefits by doing an SPI project. Similar other meetings with
same contents were held with the SPI-group for similar purposes. SPI-knowledge was created .

 * * ~ * * ~ - * * ~ ~

The SPIer arranged other meetings to identify the initial improvement infrastructure
needed for performing the SPID project. These meetings were held both with the director of the

software organization and with the SPIer’s supervisor, and other researchers working with SPI. SPI-
knowledge was created .

 * * ~ * * ~ - * * * -

Initiating • Establishing the SPI project. *
• Establishing the initial improvement

infrastructure. *
• Defining the roles and responsibilities

for the infrastructure. *
• Assigning the initial resources for

performing the SPI project. *
• Creating an SPI plan. *
• Defining the goals of the SPI project.

*
• Establishing the steering-, and SPI-

groups. *

The researcher created a project specification including information about the SPI plan,
resources needed, role descriptions, goals, and responsibilities. The management established a steering

committee and a reference group for the SPID. The SPID project was established. The created
knowledge in this phase was dominated by SPI-knowledge.

 * * ~ * * ~ ~ * * * -

The SPIer in collaboration with an SPI consultant and a member of the SPI-group
worked for two months to establish a modified CMM assessment survey. An SPI action plan was

initiated.Explicit SPI-knowledge was created.

 * * * * * * ~ * ~ * *

The CMM assessment was done on three software projects. The results and the
recommendations were identified and documented. Knowledge about the software problems and the
improvements was created based on practitioners’ earlier experiences of software development on an

individual level. The improvement report was written . Explicit SE-knowledge was created.

 * * * * * * ~ * - * *

Diagnosing • Initiating the SPI action plan. ~
• Doing appraisal activities

(assessment). *
• Identifying results and

recommendations from appraisal
activities (suggested improvement
measurement). *

• Discussing the identified results and
recommendations from appraisal
activities with the SMs. *

The explicit SE-knowledge created based on the results and the recommendations from
appraisal activities were networked with the steering committee and also partly to the software

organization. The created knowledge in this phase was dominated by SE-knowledge.

 * * * * * * ~ * * ~ -

The issues that the steering committee decided to address with its improvement activities
were prioritized. The SPIer developed strategies for pursuing the improvement suggestions and further

developed an action plan, and measurable goals, which were discussed with the steering committee.
An action plan was created. Explicit SPI-knowledge was created.

 * * ~ * * ~ - * * - -

The management created a technical working group (the SPI-group). The SPIer made
commitments for resources and training provided for the SPI-group. The created knowledge about the

software problems, improvement suggestions, and action plan were networked between the steering
committee, and the SPI-group. Explicit SPI-knowledge was created. The created knowledge in

this phase was dominated by SPI-knowledge

 * * * * * * - * ~ - *

Establishing • Giving priority to the issues that the
organization has decided to address
with its improvement activities. *

• Developing strategies for pursuing the
improvement suggestions. *

• Completing the SPI action plan draft.
*

• Developing measurable goals. *
• Developing the final version of the

SPI action plan. *
• Defining metrics necessary to monitor

progress. -
• Making commitments for resources

and training provided for the SPI-
group. *

Acting • Planning and performing the
suggested improvement measures.*

• Developing plans to execute pilots to
test improvement measures. -

• Perform appraisal activities (testing
new processes) to evaluate the
improvement measures. -

The SPI-group created explicit SE-knowledge about the new and modified software processes. The
suggested improvement measures were planned and performed. The new and modified processes

were created. New explicit SE-knowledge was created .

 * * * * * * - * - * *

The SPIer documents the lessons learned from the SPID. The documented knowledge will be
transferred to other software development groups. Practitioners will get trainees in how to use the

new and modified software processes and encourage learning these processes by practicing them in
their daily work. The created explicit SE-knowledge will become tacit SE-knowledge in the

whole organization.

 * * * * * * * * * * *Learning • Learning and documenting the
lessons. *

• Collecting the metrics on
performance and goal achievement. ~

• Establishing a project database that
can be used as a source of
information for personnel involved in
the next pass through the IDEAL
model for further software process
improvement initiatives. *

• Proposal continues research
activities. *

The SPIer arranged other meetings to identify the initial improvement infrastructure needed for
implementing the new processes. These meetings were held with the director of the software

organization and with the SPIer’s supervisor, and other researchers working with SPI.

 * ~ ~ * * ~ - * * * -

Figure 4. The organisational knowledge creation process in SPID

5 LESSONS LEARNED

We have analysed a software process improvement project from an organisational knowledge
creation perspective using a framework based on Nonaka and Takeuchi (1995) of organisational
knowledge creation process. From the perspective of this framework we believe that it is useful to
view such a project as an organisational knowledge creation process. On the basis of our
experiences from this study we believe that certain types of created knowledge within an SPI
project deal with the fundamentals of Software Process Improvement (SPI-knowledge) such as:
management of SPI initiatives, issues related to how such an initiative should be guided, and issues
related to SPI’s focus on target(s) (see Aaen et al. 2001). Others deal with issues related to Software
Engineering practice (SE-knowledge) such as: project planning, quality assurance, change control,
and configuration management (see Pressman 1997).

To illustrate the knowledge creation process we have applied the Nonaka and Takeuchi’s
framework to one SPI project and created a map illustrating: the software process improvement
phases, the activities, the created knowledge, the actors involved, and the organisational levels on
which knowledge is created. On the basis of our experiences from this study we suggest a number
of lessons relevant for future software process improvement projects, the SPI practice, and the
effect of organisational knowledge creation on SPI.

 66

Lesson one : Two related knowledge domains (Software Process Improvement (SPI)-, and Software
Engineering (SE)-knowledge) are involved in the knowledge creation process in an SPI project.
Two types of knowledge, i.e. SPI-, and SE-knowledge, play an essential role in SPI activities and
the knowledge creation practice involved in an SPI project. The knowledge creation behaviour is
completely different in these two knowledge domains.

Lesson two: a: The project manager of the SPI project, software managers, and assisting
consultants are the key actors involved in the creation of SPI-knowledge. The most involved actors
in creating SPI-knowledge during the very initial phase of the project are the SPI project manager,
and the software managers. The SPI-knowledge is created mostly during the initiating, establishing,
and learning phases. The SPI project manager is most involved in creating SPI-knowledge. The
assisting consultants and the software managers contribute to combining the SPI-knowledge with
their ideas and experience. Later on in the project other actors will become involved in the
knowledge creation process.

Lesson two: b: The software engineers and the SPI project manager are the key actors involved in
the creation of SE-knowledge. The SE-knowledge is created primarily during the diagnosing,
acting, and learning phases. During the diagnosing phase the SPI project manager, the software
engineers, and the assisting consultant are involved. Later on in the project only the SPI project
manager and the software engineers are involved in the creation of SE-knowledge. SE-knowledge is
created on the basis of software engineers’ experience and ideas about software processes. The
software managers are not involved in any phases of the project for creating SE-knowledge.

Lesson three: a: The knowledge creation process in the case of SPI-knowledge happens mostly on
the individual level and sometimes on the group level. The very first SPI-knowledge is created on
an individual level through interaction between the SPI project manager, and the assisting
consultants. This knowledge is then transferred to the group level in which the software managers
are involved.

Lesson three: b: The knowledge creation process in the case of SE-knowledge happens mostly on
the group level and sometimes on the organisational level. SE-knowledge about current software
process problems and new software processes is created on the basis of software engineers’ ideas on
a group level. This knowledge is then transferred to other organisational levels.

These lessons agree with Nonaka and Takeuchi’s suggestion of starting the organisational
knowledge creation process at the socialisation phase on the team level. However, in our SPI
project, creating SPI-knowledge started in the socialisation phase on the individual level and then
passes through almost all other organisational knowledge creation phases to the group level.
Creating SE-knowledge in our project also started in the socialisation phase mostly on the group
level and then passes through almost all other organisational knowledge creation phases to the
organisational level. If an SPI project ends before an implementation of the new software processes
in the whole organisation (as it did for us) then the internalisation of the SE-knowledge might
happen only during a test period in a pilot project (if any) in the improvement phase. The
organisational knowledge creation process for SE-knowledge passes to the organisational leve l first
when the created software processes are implemented in the whole organisation to become a part of
all practitioners’ daily work.

The implementation of newly created software processes is an issue of implementing changes in
practitioner’s daily work. These changes should be organised, planned, and implemented in the

 67

whole organisation to be a part of the organisation’s daily practice. As mentioned before, one great
challenge for DevIS is to find a way to implement the new or modified software processes in the
organisation. An important question for further research is how can theories such as organisational
learning and change management support, understand, and enhance implementation initiatives of
new processes at DevIS?

ACKNOWLEDGEMENT

This research was sponsored by AstraZeneca R&D Mölndal in Sweden in collaboration with the
Viktoria Institute and the Institute of Computer Science in Aalborg, Denmark.

REFERENCES

Aaen, I., Arent, J., Mathiassen, L. and Ngwenyama, O. (2001). A Conceptual MAP of Software
Process Improvement. Scandinavian Journal of Information Systems, Special Issue on Trends in the
Research on Software Process Improvement in Scandinavia, Vol. 13, pp. 123-146.

Ami (1992). Ami, application of metrics in industry, A Qualitative Approach to Software
Management. CSSE South Bank University, London, pp. 1-35.

Arent, J. and Iversen, J. (1996). Development of a Method for Maturity Assessments in Software
Organizations based on the Capability Maturity Model. Aalborg University: Department of
Computer Science.

Arent, J. and Nørbjerg, J. (2000). Organizational Knowledge Creation: A Multiple Case Analysis.
Proceedings of Hawaii International Conference on Systems Science.

Baskerville, R. and Wood-Harper, A. T. (1996). A Critical Perspective on Action Research as a
Method for Information Systems Research. Journal of information technology, Vol. 11.

Brown, J. S. and Duguid, P. (1991). Organisational Learning and Communities-of-Practice: Toward
a Unified View of Working, Learning and Innovation. Organization Science, Vol. 2, No. 1, pp. 40-
57.

Checkland, P. and Scholes, J. (1990). Soft System Methodology in Action. John Wiley & Sons.

Debou, C. (1997). SPI Success Factors: Toward More Business Orientation. Software Process
Newsletter, IEEE Computer Society, No. 10, pp. 15-18.

Firebaugh, M. W. (1989). Artificial Intelligence – A Knowledge-Based Approach. PWS-KENT
Publishing Company.

Goldenson, D. R. and Herbsleb, J. D. (1995). After the Appraisal: A Systematic Survey of Process
Improvement, its Benefits, and Factors that Influence Success. The Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, Technical Report CMU/SEI-95-TR-009.

Halloran, P. (1999). Organizational Learning from the Perspective of a Software Process
Assessment and Improvement Program. Proceedings of Hawaii International Conference on
Systems Science, Los Alamitos, CA: IEEE Computer Society Press.

 68

Hayes, W. and Zubrow, D. (1995). Moving On Up: Data and Experience Doing CMM-Based
Process Improvement. The Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
Technical Report CMU/SEI-95-TR-008.

Herbsleb, J., Zubrow, D., Goldenson, D., Hayes, W. and Paulk, M. C. (1997). Software Quality and
the Capability Maturity Model. Communications of the ACM, Vol. 40, No. 6, pp. 30-40.

Humphrey, W. (1989). Managing the Software Processes. Addison-Wesley.

Johansen, J. and Mathiassen, L. (1998). Lessons learned in a National SPI Effort. EuroSPI 98
Gothenburg, Sweden, November 16-18, pp. 5.1-17.

Kuvaja, P. and Bicego, A. (1994). BOOTSTRAP - a European assessment methodology. Software
Quality Journal, Vol. 3, pp. 117-127.

Larsen, E. Å. and Kautz, K. (1997). Quality Assurance and Software Process Improvement in
Norway. Software Process - Improvement and Practice, Vol. 3, No. 2, pp. 71-86.

Mashiko, Y. and Basiili, V. R. (1997). Using the GQM Paradigm to Investigate Influential Factors
for Software Process Improvement. Journal of Systems and Software, Vol. 36, pp. 17-32.

Mathiassen, L. (2000). Collaborative Practice Research. Proceedings of the IFIP TC 8 WG 8.2
Working Conference on Organizational and Social Perspectives on Information Technology,
Aalborg, Denmark.

McFeeley, B. (1996). IDEAL. A User’s Guide for Software Process Improvement. The Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, Handbook CMU/SEI-96-HB-001.

Nonaka, I. and Konno, N. (1998). The Concept of “Ba”: Building a Foundation for Knowledge
Creation. California Management Review, Vol. 40, No.3, pp. 40-54.

Nonaka, I. and Takeuchi, H. (1995). The Knowledge-Creating Company. Oxford University Press.

Paulk, M., Curtis, B., Chrissis, M. and Weber, C. (1993). Capability Maturity Model for Software
Version 1.1. The Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Technical
Report CMU/SEI-96-TR-24.

Polanyi, M. (1996). The Tacit Dimension. Doubleday. Garden City.

Pressman, R. S. (1997). Software Engineering, a practitioner’s approach. Fourth edition, McGraw-
Hill, International Editions, Software Engineering Series.

Stelzer, D., Mellis, W. and Herzwurm, G. (1998). Technology Diffusion in Software Development
Processes: The contribution of Organizational Learning to Software Process Improvement. In
Larsen, T. and McGuire, E. (Eds.): Information Systems Innovation and Diffusion: Issues and
Directions, Idea Group Publisher.

TickIT (1995). TickIT, Guide to Software Quality Management System Construction and
Certification using ISO 9001:1994. Issue 1.0, DISC TickIT Office.

 69

Thomson, H. E. and Mayhew, P. (1997). Approaches to Software Process Improvement. Software
Process-Improvement and Practice, Vol. 3, No. 1, pp. 3-17.

Wohlwend, H. and Rosenbaum, S. (1994). Schlumberger’s Software Improvement Program. IEEE
Transactions on software engineering, Vol. 20, No. 11, pp. 833-839.

Zubrow, D., Hayes, W., Siegel, J. and Goldenson, D. (1994). Maturity Questionnaire. Special
Report CMU/SEI-94-SR-7, Software Engineering Institute.

 70

 71

ANALYSING AN SPI PROJECT WITH THE MAP FRAMEWORK

Pouya Pourkomeylian

Abstract: Software Process Improvement (SPI) is a recognised systematic approach for
improving the capability of software organisations. Initiatives of this kind have met a
number of difficulties such as: scaling the SPI initiatives, setting realistic goals, coping
with the complexity of organisational changes, and dealing with the organisational
culture. Organisations with no previous experience of SPI might therefore run the risk of
the first initiative being the last. This paper gives the results of a collaborative research
project in which the first SPI initiative in an organisation was analysed according to a
framework that maps the characteristic features of SPI, (the MAP framework). On the
basis of our findings it is argued that the first SPI initiative: 1) should be organised as a
project aiming to improve a few software processes, 2) should satisfy organisational goals
rather than routinely follow a normative model for reaching a maturity level, and 3)
should include a MAP analysis early in the project to better understamd the nature of SPI
activities.

Keywords : Software Process Improvement (SPI)

1 INTRODUCTION

Software Process Improvement (SPI) is a systematic approach to improve software processes in
organisations. The approach was developed by the Software Engineering Institute (SEI), inspired by
the work of Watts Humphrey (1989). The basic idea of SPI is to focus on software processes as
social institutions with a complex interplay of people, methods, tools, and products (Aaen et al.
2001).
An SPI initiative is cyclic in nature and includes different phases 1) Initiating, 2) Diagnosing, 3)
Establishing, 4) Acting and 5) Learning as expressed in the IDEAL model (McFeeley 1996). In the
initiating phase preparations are made to carry out the SPI effort. It includes plans, schedules, and
infrastructure. The next step is devoted to diagnosing the current maturity level of the organisation’s
software processes. This information will become the basis for focused improvement projects in the
next step. Each project creates new or enhanced software processes, which are verified and
eventually implemented in the whole organisation to improve the software engineering practices.
The final phase is focused on continued improvement, including measurements of the newly created
software processes and documenting lessons learned from the SPI efforts (McFeeley 1996, Zahran
1998).

Many organisations have been inspired by the concept of SPI and started SPI initiatives. Achieving
success with SPI has however proven to be a difficult challenge. Many organisations do not succeed
in their improvement activities and others have problems with the implementation of new processes
in the organisation (Tryde et al. 2001). Different factors such as scaling the SPI initiative, setting
realistic goals, coping with the complexity of organisational changes, and dealing with the
organisational culture have made it hard to achieve success in SPI initiatives (Goldenson and
Herbsleb 1995, Herbsleb et al. 1997, Mashiko and Basiili 1997, Johansen and Mathiassen 1998).

 72

For an organisation with no earlier experience in SPI - a novice organisation - the first initiative
may consequently run the risk of being the last.

According to Aaen et al. (2001), organisations that start SPI efforts should consult and find
inspiration and guidance in the literature. They argue that these organisations can avoid the pitfalls
that have led to failure in other organisations by learning from successful initiatives. However,
following this advice is not easy: the SPI literature is extensive and it is growing and there are no
authoritative sources outlining the underlying rationale for SPI.

A large body of knowledge about SPI has become available in recent years, including specific
models (Paulk et al. 1993, Kuvaja 1994), concepts to support practical use of the models (McFeeley
1996, Zahran 1998), experience reports (Goldenson and Herbsleb 1995, Johansen and Mathiassen
1998), and critical evaluations (Curtis 1994). A survey of SPI literature and a list of the key ideas in
SPI are presented by Aaen et al. (2001). They provide a conceptual map that describes three
fundamental aspects of SPI defined through nine elementary ideas. According to the authors, SPI is
based on these ideas, which offer specific answers to specific concerns. SPI has three fundamental
concerns: the management of SPI, the approach taken to guide the SPI initiatives, and the
perspective used to focus attention on the SPI goals, thus the MAP. It addresses among others the
following crucial questions: (1) What are the characteristic features of SPI initiatives? And (2) What
are the key benefits and risks related to SPI initiatives?

According to Aaen et al. (2001), the management of SPI initiatives builds on three ideas: 1) the SPI
activities are organised as dedicated efforts, 2) all improvement efforts are carefully planned, and 3)
feedback on effects on software engineering practices is ensured. The approach to SPI initiatives is
guided by three additional ideas: 1) SPI is evolutionary in nature, 2) SPI is based on idealised,
normative models of software engineering, and 3) SPI is based on a careful creation and
development of commitment between the actors involved. Finally, the perspective on the SPI target
is dominated by three ideas: 1) SPI is focused on software processes, 2) the practitioners’
competencies are seen as the key resources, and 3) SPI aims at changing the context of the software
operation to create sustainable support for the actors involved. The MAP defines the objectives, but
also points to a number of pitfalls for each idea.

Using the MAP, this study analyses an ongoing SPI project undertaken as the first SPI initiative in
an organisation with the aim of identifying key success factors in SPI initiation in a novice
organisation. On the basis of his experiences the author will argue that such an analysis may help
other novice organisations in finding ways to increase their chances of successfully planning,
organising, and running SPI activities and of minimising the risks of failure. This study tries to find
answers to the following question:

What are the key success factors for a first SPI effort?

The next section briefly discusses the research approach. Section 3 introduces the case and section 4
presents the results of the analysis of the SPI initiative and discusses the findings with regard to the
research question stated above. Section 5 concludes the paper by presenting the key success factors
in the SPI effort in the organisation.

 73

2 THE RESEARCH APPROACH

The research presented here covers an ongoing SPI effort that started in April 1999 and whose first
full cycle is planned to end in June 2001. So far in this period, the SPI effort as a whole has been
established, a CMM based assessment has been performed, the first three software processes have
been locally piloted, and an implementation plan to put these and further new processes into
practice in the whole organisation has been developed. At the time of writing, in March 2001,
implementation activities are in full operation aiming at rolling out the newly created software
processes in the entire organisation (see Pourkomeylian 2001c).

The author has been the project manager and the main driving force behind the SPI endeavour and
has actively participated in the activities to initiate, organise, plan, and conduct the initiative during
the two-year period. In this study he reflects on the SPI initiative and tries to provide lessons useful
for understanding the field of SPI in general and in practice. The evaluation of this case is based on
the author’s subjective observations of the SPI effort, his experience as project manager, and
informal discussions between the author and employees participating in the SPI effort both during
the effort and after performing certain improvement activities.

This paper is one of the results of a collaborative practice research project (see Mathiassen 2000)
between a research institution and the software development organisation at AstraZeneca Mölndal
in Sweden. The basic approach in collaborative practice research is action research, but more
traditional practice studies and experiments are applied to serve specific needs. This paper can be
viewed as a case study in which a theoretical framework, the MAP (see Aaen et al. 2001), is used to
analyse the SPI initiative and to provide guidance for success in planning, organising, and carrying
out SPI activities.

Mapping the SPI effort
In August 2000 an SPI expert and the author analysed the SPI project in the software organisation.
For this purpose we used the MAP framework. The goal was to identify the concrete elements of
the SPI effort with regard to the MAP framework and whether it had missed any crucial SPI
features. For each fundamental concept and its accompanying ideas, the SPI expert and the author
determined whether and to what extent these ideas had been applied and followed in concrete
situations during the course of the SPI project. We elucidated the reasoning behind utilising or not
utilising each specific SPI idea and evaluated the effects that pursuing or not pursuing an idea had
had on the SPI effort. We also identified actual pitfalls for every SPI idea. The author completed the
MAP analysis in February 2001 for improvement activities carried out after August 2000. Finally,
we implicitly assessed the usefulness of the MAP for understanding and implementing SPI
initiatives.

3 THE CASE

This study was conducted at AstraZeneca, one of the world’s leading pharmaceutical companies.
AstraZeneca is a research-driven organisation with a large range of medical products designed to
fight diseases. The company employs over 25,000 people, some 10,000 as R&D personnel and
12,000 people in production in 20 countries. It has an extensive global sales and marketing network
and had a R&D investment in 1999 of about US $2 billion.

The study was performed within an IS organisation called Development IS in AstraZeneca R&D
Mölndal in Sweden. DevIS supports clinical and pharmaceutical projects, regulatory affairs and

 74

product strategy and licenses at AstraZeneca R&D Mölndal. DevIS is also responsible for the
development of the global clinical research processes and IS/IT tools in AstraZeneca. DevIS
comprises 110 people including contractors, most of whom have backgrounds in IS/IT. DevIS
employees are basically involved in software development, software maintenance, and software
operation activities. The software development activities occur in two forms: 1) development of
totally new software products - original software development - and 2) further development, change
or adaptation of existing software products - software maintenance. A typical DevIS software
development project is scheduled to take between six months and one year and includes analysis,
design, construction, testing, and validation. DevIS software products include software and all
related documentation, e.g. user requirement specification, test plan, validation plan, validation
report, user manuals etc..

Many regulatory authorities require that pharmaceutical companies and their software organisations
comply with GXP (Good Manufacturing Practice, Good Clinical Practice, and Good Laboratory
Practice) rules. GXP rules are the authorities’ quality requirements to pharmaceutical companies for
ensuring patient health, the quality of processes (e.g. clinical studies or software development) and
the quality of products (e.g. tablets or software). As a software organisation in the pharmaceutical
business, DevIS must address many quality requirements. One fundamental requirement is that
DevIS must be able to show the authorities, by documented evidence, that software development
activities (e.g. software change control, software validation, and data processing and storage) are
being performed in compliance with quality requirements. Therefore every software project
regulated by GXP requirements should carefully apply all quality rules and be able to show by
documented evidence that the software is compliant with the related GXP requirements. The
company long ago adopted standard operation procedures that explicitly describe the company’s
software quality rules. These standard operation procedures should be applied for all information
systems regulated by GXP requirements.

The Problem Area

An informal problem analysis made in early 1999 in one of DevIS’s software development units
showed that DevIS’s software project practice needed improvement. There was also a need of
providing guidelines to understand the standard operation procedures and GXP rules. Many
practitioners working in different software projects pointed to this subject for improvement by
sending email to an analysis group responsible for the gathering software professionals’ ideas for
improvement. Management at that time did not have detailed knowledge of the depth of the
problem and how to improve the software project practice. The director of DevIS thus initiated a
project to analyse and understand the problems of software project practice and, if possible, to
improve the software project discipline.

Early in 1999 the author worked as Quality Manager of DevIS, responsible for quality issues. At
that time we did not know how and where to start improvement efforts. However, the author had
heard about successful results from other organisations using SPI and the CMM (Capability
Maturity Model) for improving the capabilities of software organisations. After further study of the
SPI literature the need of using two approaches for the improvement activities became clearer: 1) a
structured and systematic model for planning organising, analysing, and improving software
practices, 2) a model for focusing specifically on software project problems. After meetings with
the director of DevIS and an SPI expert discussing different approaches to improvement activities
we decided to start a SPI project, later called SPID (Software Process Improvement at DeveIS),
using the IDEAL model for planning, organising, and running SPI activities, and using the CMM to

 75

focus on level 2 key process areas (see McFeeley 1996, Goldenson and Herbsleb 1995, Hayes and
Zubrow 1995).

The first step was to establish the SPI project’s organisation. The SPID organisation was established
in April 1999 and included: one project manager - the author, responsible for planning and running
the project; a steering committee headed by the director of DevIS and three software managers
responsible for dedicating resources to the project, making decisions about the project’s focus and
approving the results; a reference group including three project managers and two software
developers responsible for improving the software processes; and an SPI working group including
two SPI consultants and the author, responsible for documenting the SPI project.

The second step in SPID was to diagnose the current maturity level of DevIS’s software projects. A
maturity assessment was performed in May 1999 using a modified CMM-based assessment method,
QBA (Arent and Iversen 1996), which has a focus on the CMM level 2 key process areas. An
external SPI consultant helped us to conduct the assessment and to summarise the results. Three
completed software projects were the focus of the assessment (see for more detail, Pourkomeylian
2001a), which was especially concerned with project and requirements management and addressed
improvement possibilities in all key process areas analysed - requirements management, project
planning, project tracking and oversight, quality assurance, and configuration management.
Software subcontract management which is also a CMM level 2 key process area was out of the
focus of the assessment because this key process area was not widely used in DevIS’s software
project.

On the basis of the results of the assessment, the author produced an improvement report in October
1999 addressing six improvement activities, with a specific focus on software documentation and
software validation to satisfy a most important demand, namely that the pharmaceutical industry has
to document all software engineering activities to comply with health regulations. In the case of
inspections the company must be able to show documented evidence that a specific task, e.g. that
implementation of change in a software product has been performed in accordance with predefined
standard procedures.

The steering committee of SPID decided to give priority to software documentation and software
validation processes through:
• Creation of a template library including templates for the documentation of software

development activities such as: user requirement specification, design specification, test plan,
and validation plan.

• Creation of a software documentation process including a minimum documentation level for
documenting the results of software projects.

• Defining processes for software validation, software change management, and document
version control.

As the next step an improvement plan was created by the author and the SPI working group started
to work on improvement activities. This group planned and performed improvement activities over
a period of four months, which resulted in the creation of new software process guidelines - a
software documentation guideline, a software validation guideline, a software change control and
document version control guideline - and developed the template library. The newly created
software processes were presented to the steering committee and further modified based on the
committee’s feedback on improvements.

 76

An implementation plan was created to address the implementation activities necessary to initiate
the new processes in the whole organisation. The plan was developed through a Participatory
Implementation Workshop (PIW) (Andersson and Nilsson 2000). Two external consultants were
invited to hold a PIW workshop at the software organisation to help us identify the most important
factors needed for creating an implementation strategy for the newly created software processes.
The PIW workshop was held in May 2000 at AstraZeneca. The author, one SPI consultant, one
project manager, all involved in SPID, and the two external PIW consultants participated in the
workshop (see for more detail, Pourkomeylian 2001c). The implementation plan was then presented
to the steering committee. The steering committee of the project accepted the refined software
processes and the implementation plan and decided to implement the processes throughout DevIS.

The acceptance of the software processes and decision to implement them throughout the whole
organisation were a first success of the initiative. The implementation activities have been
scheduled to take place between August 2000 and June 2001. One important aim was to change the
context in which the new software processes should operate in. Therefore, among others a trainee
program was scheduled for all practitioners at DevIS. The implementation phase also includes
further improvement activities in which the processes will be enhanced on the basis of experience
of using them in practice. This phase will result in a new version of the software process guidelines
in June 2001.

Now, at the time of writing in March 2001, the SPID is in the implementation phase adapting the
newly created software processes in every software project and continuously improving the
processes and templates based on experience from practical use. An SPI unit has been established at
the company level at AstraZeneca in Mölndal to support practitioners when they apply the new
processes and use the templates. Thus, the project has reached far with respect to gaining
management and practitioners’ commitment. The processes and templates are being used in 12
software projects and are appreciated by practitioners working in these software projects. The SPI
unit measures and documents the feedback and further improvement suggestions from the practical
use of the new processes and templates in these software projects.

4 THE FINDINGS

It was however a long way and some of the difficulties might have been avoided if the organisation
would have been prepared. Thus, this section discusses the most characteristic features of SPI that
affected the SPID project on the basis of the MAP framework (see Aaen et al. 2001). Table 1
summarises the concrete SPID activities as evaluated from a MAP perspective.

 77

C
o
n
c
e
r
n

Idea Aspiration/
Objective

Followed Reason Concrete situation in the
SPID project

Evaluation of the
Situation/

Created effect

Experienced problems

Organisation Create a dedicated
effort adapted to
the conditions of
the organisation.

Yes To create a dedicated
effort adjusted to the
DevIS conditions.

SPID is organised as a project
like all other software projects
at DevIS having a specific
budget and resources. The SPID
organisation consists of a
reference group, a steering
committee, a working group,
and a project manager.

Achieved management
commitment.
Achieved resource
dedication.

Inadequate resources.
Difficult co-ordination.
Weak emphasis.

Plan Plan goals,
activities,
responsibilities,
and co-ordination.

Yes To co-ordinate the
project and to know:
Where to go, who does
what and when, and
what are the results.

An SPI plan has been created to
identify the milestones,
deliverables, responsibilities,
and activities needed in the
project. The plan is a
framework for action rather
than a procedure to follow.

Established clear roles,
responsibilities, and
deliverables
Provision of sufficient
budget and resources
for the project.

Feeling of some stress with
regard to deadlines.

M
a
n
a
g
e
m
e
n
n
t

o
f

S
P
I

Feedback Measure and
assess benefits.

No To establish a special
reference group that
consists of experienced
project managers and
software developer who
can give feedback on
the improvements as we
go along.

The SPID hasn’t defined in
detail how feedback on
improvements should be
measured.

Spend time on other
aspects.
Uncertain whether the
project is on the right
track.

Impossibility to measure and
document quality and
progress of the project.

 78

Evolution Learn by experience
and employ
stepwise
improvements.

Yes To learn SPI by doing
it.
To adapt the concept
of SPI to the
organisation to apply
stepwise
improvements.

SPID aims at learning from the SPI
concept and at improving a few
software processes in an evolutionary
way by:
Identifying the current software
process problems and
identifying the minimum
documentation requirements
SPID has created
processes for
change management and
software validation, documentation
and templates.

Learned SPI and used an
adapted concept suitable to
the organisation.
Made the whole scope of the
project visible.
Maintained the organisation’s
view of process improvement.

Slowness of the initiative
caused frustration and
tiredness.
Inertia of the improvement
process.

Norm Seek guidance in
ideal processes.

No To focus on a specific
area both for
diagnosing the current
problems and
improving the
software processes.

SPID used a modified CMM-based
assessment to identify the current
maturity level of the organisation
without the aim to reach any maturity
level in the CMM.
SPID based the improvement strategy
on the assessment findings and earlier
experiences of software problems.

Gained management and
practitioners’ commitment to
the project by “not just
aiming to reach an abstract
level in a model”.
Succeed in understanding the
current problems and
improved some software
processes.
Spend a great deal of time on
modifying the CMM-based
model.

Incoherent improvement.
No long-term vision.

A
p
p
r
o
a
c
h

t
o

S
P
I

Commitment Ensure dedication
and legitimacy.

Yes To gain
management’s and
practitioners’ support
and commitment.

SPID kept management and
practitioners informed about the
project’s status and maintained their
commitment by having continuously
communication with both groups.
SPID had the management’s support
and the practitioners’ commitment to
co-operate in the creation of new
software processes during the whole
project.

Ensured resources for the
project.
Developed a good platform
for implementation.
Spending too much time on
one specific problem.

Time consuming.

 79

Process Integrate people,

management, and
technology.

Yes To agree upon
processes including
roles, tasks, and
deliverables.

SPID defined processes by first
focusing on the products of the
process, i.e. the documents;
the focus then changed to identify the
activities and development tasks
necessary for creating the documents.
SPID as the next step focused on
roles responsible for each task and
then defining the process in focus.

Achieved identification of
documents.
Achieved definition of
processes:
Software documentation
Software validation
Software change and version
control

Time consuming.

Competence Empower people
through competence
building.

No To create and transfer
SPI and software
engineering
knowledge to all
practitioners.

In SPID, practitioners’ experiences
and ideas were the main input to the
improvement activities. The
practitioners shared their experiences
in improvement meetings. The
creation and transfer of SPI and
software engineering knowledge has
been limited to the SPID’s
organisation.
The other practitioners have not yet
become involved in the competence
building process.

Empowered SPID’s members
through competence building.
Facilitate the improvement
activities.
Facilitate the acceptance
decision (management
acceptation of the new
processes).

Necessity of much effort to
transfer the same
knowledge to all other
practitioners in the whole
organisation.
Time consuming.

P
e
r
s
p
e
c
t
i
v
e

i
n

S
P
I

Context Establish suitable
efforts.

Yes To create a supporting
SPI group helping
software projects to
adapt the newly
created processes and
continuously improve
the processes on the
basis of practical use.

At the time of writing in March 2001
SPID had created a support
organisation including three SPI
specialists to assist software projects
in adapting the software processes in
their projects; the members of the
supporting group act as coaches, not
controllers.

Facilitated the adaptation of
the new created processes in
practice by having a support
group.

Time and resource
demanding.

Table 1 SPID activities based on the MAP

80

4.1 The management of SPID

The SPI activities are organised as dedicated efforts.

SPID was organised as a project with its own specific budget and resources. An initial improvement
infrastructure, i.e. project organisation including roles and responsibilities, was established early in
the project in April 1999. Organising SPID as a project gave the organisation the possibility to
allocate resources to it as with any other project at DevIS. This helped to gain the management’s
commitment. It further helped to structure the project’s organisation and the responsibilities.
Organising SPI initiatives as regular software projects has been supported earlier by Johansen and
Mathiassen (1998), Zahran (1998), and Arent and Nørbjerg (2000).

Organising SPID as a project brought problems as well. The people who worked in the reference
group were very busy with other projects at the same time, which sometimes meant that someone
would not deliver what s/he was responsible for at a meeting. This was a minor problem, however,
because the practitioners’ commitment to the project was very high and would deliver as soon as
possible. All the members of the reference group were experienced project managers and software
developers challenging software process problems every day. There was a strong desire to solve the
problems once and for all. Another problem related to organising SPID was co-ordinating the
resources and meetings with both the management and the improvement team. This was very time
consuming. The action demanded a great deal of planning time.

All improvement efforts are carefully planned.

Early in the project an SPI plan was developed by the author to define the goals, deliverables,
milestones, and schedules of the project. Planning the project so explicitly helped us (the SPID
organisation) to understand what to do, when to do which activity and who should do the different
activities in the project. This supported a focus on the project schedule and the deliverables. On the
other hand, it sometimes caused stress, especially for the project manager, because he pressured
himself to deliver results on time.

Another problem of this detailed planning was that the whole SPI group including the reference
group and the SPI working group sometimes felt it was prisoner of the schedules and deliverables,
yet it did not let its thoughts and ideas be stopped or disturbed by the details of the plans. The group
tried continuously to “reflect- in-action” (Schön 1987) and changed some plans and some
deliverables in a few cases. These changes were either necessitated by other ongoing improvement
activities in the company that affected the project or a feeling in the group that the respective
changes in a specific plan and its deliverables would yield better results in the end. The plan was to
develop a framework for action rather than a procedure to follow in detail. Having a framework for
action helped the group to be more motivated and engaged in the project.

Feedback on effects on software engineering practices is ensured.

Routines for gathering feedback about how to measure improvement in the newly created software
processes were originally not defined explicitly as it was assumed that the reference group of
experienced project managers and software engineers would give feedback on the improvements as

81

the project went along, and so was the case. In the SPI plan it was simply stated that the results of
the project, the new software processes, should be tested in two software projects before
implementation in the entire organisation. However, during the implementation phase of the project
(implementing the new processes in the organisation, June 2000-June 2001), a qualitative feedback
measurement mechanism has been established based on the implementation plan of the project. This
mechanism is gathering feedback on the use of the processes and the templates through three
communication channels: 1) training sessions, by asking practitioners what they think about the new
processes 2) customisation meetings, in which the SPI group helps practitioners to adapt the
processes to their project, and 3) through email, by gathering practitioners’ further improvement
suggestions; specially according to practical use of templates in software projects (see
Pourkomeylian 2001c).

The fact that no explicit routines for providing feedback on improvements were defined in detail did
not seriously affect SPID’s initiation, diagnosing and improvement activities. Between April 1999
and June 2000 the project focused on diagnosing the software project discipline, identifying current
problems, suggesting improvement areas and improving a few processes. By not defining feedback
the SPI group could spend time on other issues such as reading the SPI and software engineering
literature and AstraZeneca’s and the authorities’ quality requirements. The problem was that the SPI
group did not know whether the new software processes worked in practice; it was not possible for
the group to measure and document quality and progress. However, there were three experienced
project managers and two software engineers in the reference group who had experience in software
validation and change control. They provided continuous feedback on the new software processes
during the project’s life span. In the short term this created an informal control mechanism that
checked whether the improvement activities were focused on the right solutions. In the long term,
however not defining feedback routines can cause problems such as uncertainty about initiatives
and misdirection of the project as a whole with the risk of not getting the desired results (Aaen et al.
2001).

4.2 Approaches to SPID

SPI is evolutionary in nature.

In SPID it was decided to improve a few software processes in an evolutionary way by taking one
step at a time, which helped to concentrate on a few software processes at a time. As the SPI group
could see the whole scope of the project, it did not get lost in the complexity of improving many
software processes. Focusing on a few software processes did pose a problem, however, as these
software processes were all part of the whole picture (which includes other processes such as:
software test process and software configuration management process), which was beyond the
scope of the project. The SPI group spent much time discussing the differences and the relations
between life cycles, software development models, the software validation process and software
change control. As the group continued its discussions it was noted that there were more areas that
needed improvements. The members of the SPI group still regularly needed to remind each other of
the scope of the project to keep focusing on the main goal of the project and not try to solve all the
problems in one shot. The perfo rmance increases were limited and not visible during the project. As
it could not be measured, the extent to which these processes were useful in practitioners’ work was
unknown. Today (March 2001) we continuously get feedback from the projects using the processes
and the templates. This and the lengthy discussions on reaching agreement on a common process

82

sometimes created a feeling in the group of burnout and not to being able to maintain its
commitment to follow an evolutionary approach. As we all were aware of the nature of an
evolutionary approach and were interested in solving our software process problems we kept
maintaining our commitments to the project. Aaen et al. (2001) have also reported this issue to be a
pitfall for SPI efforts.

SPI is based on idealised, normative models of software engineering.

The SPID goals were neither to reach any maturity level of the CMM nor to improve many software
processes. To understand the current level of software process problems a modified CMM-based
assessment was adopted and carried out in the organisation. As the goal was not to reach a maturity
level, it was decided not to follow the normative CMM recommendations for improvement
activities. Rather than trying to fulfil the requirements of the CMM, the SPI group derived
inspiration from the concept of SPI, namely improving software processes in a systematic way.

Both management and practitioners reacted positively to the fact that the project did not aim to
reach a certain maturity level of the CMM. Reaching a level in a normative model was too abstract
for these groups at that time. However, solving the organisation’s problems by seeking inspiration
in a well-established model was appreciated. Still a great deal of time was spent on adopting the
assessment to fit the organisation’s terminology.
Focusing on solving the organisation’s problems rather than simply following a model to reach a
level led to greater motivation and enthusiasm among practitioners and management whether the
improvement activities were focused on the right solutions. In the long term, however not defining
feedback routines can cause problems such as uncertainty about initiatives and misdirection of the
project as a whole with the risk of not getting the desired results (Aaen et al. 2001).

SPI is based on a careful creation and development of commitment between the actors involved.

SPID’s improvement strategy, to proceed in an evolutionary manner, was based on the assessment’s
findings, company’s quality goals, and practitioners’ and management’s commitment to the project.
A key factor in succeeding to improve the new processes was that management and practitioners
both were committed to the project and concerned about its results. This commitment was gained
and maintained through continuously planned meetings to inform and discuss the concepts of SPI
and software engineering and the progress made in SPID during the project. With the
management’s commitment the project had a sponsor that dedicated the necessary resources to the
project.

Even though commitment was vital for SPID, it was carried too far in some situations. The SPI
group sometimes became so dedicated to solving problems that it lost sight of the original focus of
the project and started to discuss other related issues such as life cycle and software development
models. This led to a loss of time and created stress when deadlines approached. However, the SPI
group members continued to remind each other of the goal of the project, that is to focus on
improving the software documentation process, the software validation processes, and the software
change control and document version control processes during their meetings and tried to avoid
loosing that focus. Aaen et al. (2001) have also reported this issue to be a pitfall for SPI efforts.

83

4.3 Perspectives in SPID

SPI is focused on software processes.

At the time the SPID started in April 1999 DevIS lacked a detailed description of all software
processes. This meant that different interpretations of any given simple software process activity
existed in all the different software projects. For instance, practitioners knew that a software product
should be validated before it was put into operation, but the interpretation of the software validation
process varied in different projects.

From the earlier problem analysis activity performed in early 1999 it was known that a description
of the software documentation process was lacking in the organisation. General knowledge about
which documents should be created as products of software projects supported the identification of
the tasks needed to create the documents. This knowledge existed in the organisation and in the SPI
group in different interpretations and needed to explicitly be documented as an agreed common
process. After the definition of the software documentation process the focus changed and was
concentrated on two already existing processes that should be improved, namely software validation
and software change control.

A benefit of focusing on the documentation process was that we agreed on one of the most
important processes related to quality and compliance issues from both the company’s and
authority’s point of view. Thus the creation of a software documentation process helped the
organisation to view documents as one specific, explicit and important type of software product.
The result of the process is summarised in a general documentation matrix that includes the names
of all necessary documents and the names of the roles responsible for producing, reviewing, and
approving each document. This matrix is now used by practitioners in software projects as a general
documentation model for identifying all necessary documents to be produced in the project. The
number of different documents needed in a project depends on several factors such as authority
requirements, complexity and size of the software project, and the project’s organisation. The
documentation matrix was also used as a major input for the definition of the software validation
and change control processes.

A problem of focusing on certain software processes was, as explained above, that the SPI group
did not have the whole picture (a process map) including other software processes. It could not see
the relations between the processes in the focus on improvements and other processes such as
software configuration management or other models such as software development models. Many
hours of discussion were required to separate different issues from the project’s main target and to
focus on the defined goals.

One problem that Aaen et al. (2001) mention in focusing on processes is the danger of losing the
customer perspective. In SPID, we addressed the issue that the software developers in the reference
group represented the user community and they gave their input to the process improvement
activities from their own point of view.

The practitioners’ competencies are seen as the key resources.

One input to the improvement work were the SPI group’s competencies, ideas and experiences as
well as the software engineering literature and the company’s standard procedures. Still, the major

84

practical input were the practitioners’ - the reference group’s software project managers’ and
software developers’ - experience and ideas based upon their practice. In several meetings the
practitioners working in the SPID shared their ideas about and experience with software
documentation, validation, and change control. According to the members of the SPI group, their
competence in both SPI and the area of software engineering developed during the course of the
project. Although not all the practitioners could built up practical competence at that time,
competence building was still a key part of the implementation activities as all practitioners were
trained in new software processes and learned the new software processes by applying them and the
new templates in their practical works.

One problem of focusing on practitioners’ competencies to improve software processes was that the
entire project was dependent on their input. If a majority of practitioners could not attend a meeting
it had to be cancelled and the project stood still until it was possible to schedule another meeting.
This problem has also been identified by Johansen and Mathiassen (1998).

Another problem in using practitioners’ ideas and experiences as input to improvements was that
the members of the reference group had different experience from different software projects. They
had different interpretations of any specific software process or task. Much time was therefore
needed to discuss different views and experiences related to each software task or process. There
was however an advantage that we (the SPI group) knew that all the different interpretations of a
given task or process that were discussed had already been used in practice and shown some degree
of usability.

The meetings in which the SPID and the reference group discussed different interpretations of a
specific task also supported experience sharing and competence building. However, during
improvement activities, only the members of the project were able to make gains through
competence building. Other practitioners were not actively involved in improvement activities and
thus could not participate in sharing experience. There was a risk that the project members could
become sort of elite group that had knowledge about the new processes. This might have had a
negative impact on other practitioners and create resistance against using the new processes. Some
effort has been put into giving information about the results of the project on a continuous basis
throughout the project for keeping other practitioners informed.

SPI aims at changing the wider context of the software operation to create sustainable support
for involved actors.

To support the implementation of the new software processes throughout the organisation, the SPID
project created an infrastructure in which the processes could be implemented and continuously
improved, although this was not part of the early deliverables defined in the project plan. The closer
the SPI group came to the end of the originally scheduled improvement activities the more it
realised the need for a support group to take over the new software processes and implement them
in the organisation. This need was not clear to the SPID group at the start of the initiative. Now a
supporting group including three SPI specialists helps with the adoption of the processes in every
software project. This is a time and resource consuming process, but it has resulted in successful
adoption of the new processes in 12 software projects, which is a small amount of all projects
running in the company. Aaen et al. (2001) argue that there is a risk that a group like this could be
experienced by practitioners as a controlling function or bureaucracy. To reduce this risk the
members of the supporting group act as coaches and discussion partners to assist the software

85

projects in adopting the processes rather than controlling the implementation of the processes in
projects.

5 LESSONS LEARNED

This study analysed an SPI project based on the characteristic features of SPI as identified by Aaen
et al. (2001). Having applied the framework to analyse an initiative in a beginner organisation, the
author is convinced that a novice organisation can succeed in its first SPI initiation as DevIS did, if
it gains and maintains management and practitioners’ commitment, starts with a small focus on a
few carefully selected software processes that need improvement, and uses the existing knowledge
about the software processes in the organisation. This study has led to a number of lessons relevant
to future SPI projects in novice organisations and the wider SPI practice and confirms the research
which builds the basis for the MAP framework.

Lesson one: A first SPI initiative should always be organised as projects with specific goals,
deliverables, and resources.
Organising the SPI initiative as a project and having a flexible plan as a framework for conducting
the activities was essential for managing improvement activities in our first SPI initiative. By
carrying out the SPI effort as a project the initiative received the same status as all other software
development projects in the organisation. This – automatically - led to resource dedication and
management commitment, which were crucial factors for the SPI project as they are in all other
projects. Organising the SPI effort as a project required some degree of administration and time. A
detailed plan including goals, schedules, roles, responsibilities, and deliverables was created and a
project organisation including project manager, steering committee, reference group, and a working
SPI group was established. This helped the project members to be able to see the start and the end
of the first SPI initiative and to have a common understanding of deadlines and deliverables in the
project.

Lesson two: A novice organisation should focus on the SPI concept rather than on model-based
recommendations like those of the CMM.
A first SPI initiative as all succeeding ones should start by diagnosing the problems and thus only
implicitly the current maturity level of the organisation. A model like the CMM can offer much
help in doing this. However, for improving software processes, it seems more promising to rely on
the organisation’s actual goals and to focus on the related SPI activities and to improve a few
software processes based on these organisational goals rather than simply follow a model like the
CMM. This happened in the SPID project and helped gain management and practitioners’
commitment to the project so that there was an appreciation of SPI as a systematic concept and a
background for improving the software processes. In the long run, however this kind of strategy
might lead to a lack of an overall long term vision for continuous software process improvement
initiatives. Here, more direct guidelines from models like the CMM might be helpful.

Lesson three: It is highly recommended that a MAP analysis be made early in the initiation phase
of the first SPI initiative to understand the most characteristic features of the SPI project.
AstraZeneca did not have access to the MAP framework at the start of the SPI initiative. The MAP
analysis was performed little over half way through the project to investigate whether any important
features were missing in SPID, to reflect about the course of the initiative and to eventually take
corrective action. As a result of the MAP analysis, we are planning a feedback measurement

86

activity based on the results of practical use of the processes in these 12 software projects. We have
also initiated discussions with management for long-term improvements.

An analysis early in a SPI effort might provide better opportunities for a novice organisation to
understand the most important features of its first SPI initiative and as a consequence might lead to
better planning, organising and risk management of the first SPI activities.

ACKNOWLEDGEMENT

This research was sponsored by AstraZeneca R&D Mölndal in Sweden in collaboration with the
Viktoria Institute Gothenburg in Sweden and the Department of Computer Science at the University
of Aalborg in Denmark.

REFERENCES

Aaen, I., Arent, J., Mathiassen, L. and Ngwenyama, O. (2001). A Conceptual MAP of Software
Process Improvement. Scandinavian Journal of Information Systems, Special Issue on Trends in the
Research on Software Process Improvement in Scandinavia, Vol. 13, pp. 123-146.

Andersson, I. and Nilsson, K. (2001). Diagnosing Diffusion Practices within a Software
Organisation. IFIP WG8.6 Fourth Working Conference on Diffusing Software Product and Process
Innovations, Banff, Canada.

Arent, J. and Iversen, J. (1996). Development of a Method for Maturity Assessments in Software
Organizations based on the Capability Maturity Model. Aalborg University: Department of
Computer Science.

Arent, J. and Nørbjerg, J. (2000). Organizational Knowledge Creation: A Multiple Case Analysis.
Proceedings of Hawaii International Conference on Systems Science.

Curtis, B. (1994). A Mature View of the CMM. American Programmer, Vol. 7, No.9, pp. 19-27.

Goldenson, D. R. and Herbsleb, J. D. (1995). After the Appraisal: A Systematic Survey of Process
Improvement, its Benefits, and Factors that Influence Success. The Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, Technical Report CMU/SEI-95-TR-009.

Hayes, W. and Zubrow, D. (1995). Moving On Up: Data and Experience Doing CMM-Based
Process Improvement. The Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
Technical Report CMU/SEI-95-TR-008.

Herbsleb, J., Zubrow, D., Goldenson, D., Hayes, W. and Paulk, M. C. (1997). Software Quality and
the Capability Maturity Model. Communications of the ACM, Vol. 40, No. 6, pp. 30-40.

Humphrey, W. (1989). Managing the Software Processes. Addison-Wesley.

Johansen, J. and Mathiassen, L. (1998). Lessons learned in a National SPI Effort. EuroSPI 98
Gothenburg, Sweden, November 16-18, pp. 5.1-17.

87

Kuvaja, P. and Bicego, A. (1994). BOOTSTRAP - a European assessment methodology. Software
Quality Journal, Vol. 3, pp. 117-127.

Mashiko, Y. and Basiili, V. R. (1997). Using the GQM Paradigm to Investigate Influential Factors
for Software Process Improvement. Journal of Systems and Software, Vol. 36, pp. 17-32.

Mathiassen, L. (2000). Collaborative Practice Research. Proceedings of the IFIP TC 8 WG 8.2
Working Conference on Organizational and Social Perspectives on Information Technology,
Aalborg, Denmark.

McFeeley, B. (1996). IDEAL. A User’s Guide for Software Process Improvement. The Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, Handbook CMU/SEI-96-HB-001.

Paulk, M., Curtis, B., Chrissis, M. and Weber, C. (1993). Capability Maturity Model for Software
Version 1.1. The Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Technical
Report CMU/SEI-96-TR-24.

Pourkomeylian, P. (2001a). Knowledge Creation in Improving a Software Organization.
Proceedings from IFIP WG8.6 Fourth Working Conference on Diffusing Software Product and
Process Innovations, Banff, Canada.

Pourkomeylian, P. (2001c). An Approach to Institutionalisation of Software Processes. Proceedings
from Tenth International Conference on Information Systems Development, London, England.

Schön, D. A. (1987). Educating the Reflective Practitioner. Jossey-Bass Publishers.

Tryde, S., Nielsen A. D. and Pries-Heje, J. (2001). Implementing SPI: An Organizational Approach.
In: Mathiassen, L., Pries-Heje, J. and Ngwenyama, O. (Eds.): Improving Software Organisations -
From Principles to Practice, Addison-Wesley.

Zahran, S. (1998). Software Process Improvement: Practical Guidelines for Business Success.
Addison-Wesley.

88

89

AN APPROACH TO INSTITUTIONALISATION OF SOFTWARE
PROCESSES

Pouya Pourkomeylian

Abstract: Software Process Improvement (SPI) has been shown to be a useful approach for improving an
organisation’s software capabilities. One great challenge for organisations wrestling with SPI is how to
institutionalise the newly created software processes in the whole organisation. Institutionalisation of
software processes is a matter of cultivating organisation-wide change, which has proven to be no small
challenge for many organisations. Different factors such as the complexity of organisational change and
culture, the human factor (resistance to change) and lack of a supporting organisation for change have caused
problems in making change happen in organisations. These problems may cause delays, poor quality, cost
overruns in software projects and even resistance to using new created software processes. This paper
presents the results of a collaborative research study in which an institutionalisation model was created and
implemented and analysed on the basis of a framework of organisational change management.

Keywords: Software Process Institutionalisation, Organisational Change Management.

1 INTRODUCTION

The Software industry has had a focus on Software Process Improvement (SPI) for a number of
years. SPI was developed by the Software Engineering Institute (SEI), inspired by the work of
Watts Humphrey (Humphrey 1989). The concept of SPI has caught on in many organisations that
have started SPI initiatives for improving the capabilities of their software processes. An SPI
initiative starts with an assessment to establish the maturity level of the organisation. The most
popular assessment model is the Capability Maturity Model (CMM), which was also developed by
the SEI of Carnegie Mellon University (see Paulk et al. 1993).

The next step after making an assessment in an SPI initiative is to organise and plan for software
process improvement activities based on the organisation’s requirements and practitioners’ ideas on
improving the capabilities of the organisation. After conducting software process improvement
activities, the main challenge for an organisation is to implement the newly created software
processes into the entire organisation to become part of practitioners’ daily work.

Many organisations do not succeed in their improvement activities, while others have difficulties
with implementation and institutionalisation of new processes in the organisation (Tryde et al.
2001). In general one can consider that different factors such as scaling the SPI initiative, setting
realistic goals, the complexity of organisational changes, and the organisational culture have caused
difficulties in succeeding in SPI initiatives (Goldenson and Herbsleb 1995, Herbsleb et al. 1997,
Mashiko and Basili 1997, Johansen and Mathiassen 1998).

Without software processes implemented across the organisation, every practitioner will follow his
or her own way of carrying out the task (Zahran 1998). Adherence to a common process is likely to
be ad hoc and sometimes chaotic. This may cause delays, poor quality and cost overruns in software
projects. On the other hand, when a practitioner performs tasks naturally and painlessly by

90

following an adapted process, one might deduce that such a person is a professional. He or she has
been properly trained to follow a well-defined and adapted process that is performed repeatedly.
According to Zahran (1998), such a person has “internalised” the process and is capable of
performing the process activities professionally and “painlessly”. While process internalisation is at
the individual level, process institutionalisation is at the team and organisation level and concerns
ensuring that software process improvement is continuous and is embedded in the organisation’s
culture. Software process institutionalisation is a matter of building an infrastructure and culture
that support methods, practices, and procedures in the whole organisation (Paulk et al. 1995). This
will involve creating new roles and responsibilities, continuing management sponsorship,
introducing new organisational policies and procedures, and establishing the measurement and
enforcement mechanisms.

Implementing newly created software processes in an organisation is a matter of changing the
current way of working and bringing about a new way. The management of change is of critical
importance for the success of implementing new software processes in an organisation. One of the
main reasons for its criticality is that it involves a wide spectrum of domains that may need to be
changed, such as: cultural changes, behavioural changes, organisational changes, technological
changes, and environmental changes. According to Burnes (1992) it is shown that theories that
underpin models of change management can be distinguished by their respective concentration on
individual, group and organisation wide issues. These levels have been in focus in the SPI literature
through “internalisation” and “institutionalisation” of software process implementation Zahran
(1998). According to Burnes (1992) and Weinberg (1997) change comes in many shapes and sizes,
though most forms can be categorised as either radical or incremental. Radical change often relates
to large-scale, organisation wide change programmes involving the rapid and wholesale overturning
of old ways and old ideas and their replacement with new and unique ones. Radical change is
however characterised by its speed, scale and break with the past. On the other hand, an incremental
change process can only bring an ad hoc, local improvement in performance (Burnes 1992). It is
clear that changing, even in a small way, can be complex and difficult. The literature abounds with
examples of changes that have gone wrong, some disastrously so (Burnes and Weekes 1989, Kelly
1982).

One main reason for not succeeding in implementing change in organisations has been the factor of
resistance to change. The instinctive human reaction to change is usually a rejection of the new
change and preference for the status quo. This rejection may cause problems in implementing
change in organisations (Zahran 1998, Weinberg 1997, Beer 1987, Jacobsen and Thorsvik 1989).
Our experience tells us that, because of the rejection to change and for other reasons, many process
improvement activities do not lead to a full internalisation or institutionalisation of the new
processes in the organisation. Practitioners’ resistance to change can have different reasons.
Jacobsen and Thorsvik (1989) mentioned some factors that can cause resistance to change, such as:
Expectations: a change in the working processes fails to satisfy practitioners’ expectation; New
knowledge: implementing the newly created processes in the organisation might require individuals
to have new knowledge; Risks and insecurity: using the new processes can bring risks and lead to
the creation of an insecure environment in the organisation; Power: changing from one way of
working to another might change the stable power and influence balance in the organisation and
therefore cause resistance to change. Other reasons for resistance to change might be: Wrong
process level: the level of the software processes is not suitable to the situation (they are too
complex or too simple); Not being involved in the improvement process: the new processes have
just come from the top and non of the practitioners has been involved in the improvement activities;

91

Bad timing: the implementation time is not suitable, practitioners have no time to become involved
in a change process; Lack of supporting infrastructure: lack of a support for the practical
implementation of the processes in the organisation.

On the basis of our experience we know that these factors might cause two main type of behaviour
among individuals in an organisation: 1) Total resistance to use of and complete failure to use the
newly created processes, 2) Partial use of the processes in some cases with individual
interpretations (which often are not complete or correct) of them and use of them as long as this
does not cause problems (extra work) in the software projects. Another completely different
behaviour might be that practitioners create routines for the software processes or standards and
insist on following them in detail, causing bureaucratic behaviour and leading to inertia and
surprises in new, unknown situations outside the boundaries of the processes. On the basis of our
experience, we know that such behaviour can lead to problems in software projects, such as: delays,
poor quality, cost overruns, and even distrust in management and future SPI initiatives. We agree
with Weinberg (1997) that, because human systems do not change unless the individuals change,
and individual’s commitment to change comes through understanding and learning the new
situation. Therefore, to understand the nature of resistance to change and the practice of
institutionalisation and internalisation, we have focused in this study on the emotional reactions of
practitioners and the need of an infrastructure as a facilitator of change.

Using a change framework based on four change models described by Weinberg (1997), this study
analyses one institutionalisation approach in an SPI project in a software organisation. The attempt
was find answers to one main question: what are the most crucial factors in a software process
institutionalisation model from an understanding and learning perspective?

The section below presents the research approach. Section 3 presents the case and the research
project. Section 4 describes the theoretical concept including software process institutionalisation,
change management, and reflection-in-action. Section 5 presents the institutionalisation model.
Section 6 discuses the theoretical interpretation made on the basis of our findings, and section 7
concludes the paper by presenting the lessons learned and pointing out areas for further research.

2 RESEARCH METHOD

This study uses a collaborative practice approach (see Mathiassen 2000) to analyse an
institutionalisation model in an SPI project done in a software organisation. In this study we have
combined action research with case studies and field experiments. The action research approach
involved the author in gaining first-hand experience from the SPI project, the software organisation,
and the institutionalisation practice and allowed him to develop knowledge and understanding as
part of practice. The action research approach is chosen for this study because of its strong support
in integrating research and practice, involving practitioners in the institutionalisation practice and
introducing change at the same time that the research was going on in the software organisation.
Case studies are particularly useful for understanding a special subject in great depth, where one can
identify cases rich in information, in the sense that a great deal can be learned from a few examples
of the phenomenon in question (Patton 1990). This approach was chosen for this study to help us
focus on some cases (software projects using newly created software processes) and to provide us
with techniques to structure the research process and its findings. Field experiments in this research
were set up as controlled research efforts in which different elements of our institutionalisation
model were implemented in the entire organisation. The institutionalisation efforts included trainees

92

for all practitioners in the organisation, implementing the processes in ten software projects
qualitative measurements of the effects of the processes and work with continuous improvement.

The author has been the driving force in the primary SPI initiative that led to the creation of the
software processes and has actively participated in activities to initiate, organise, plan, and conduct
the SPI initiative over a period of two years (see Pourkomeylian 2001). He was also the driving
force in the creation and implementation of the institutionalisation model in the software
organisation. In this study the author reflects on the institutionalisation process and tries to make
conclusions about lessons useful for understanding the field of software process institutionalisation
from the perspective of implementing change.

3 THE CASE

This study was conducted as part of an SPI research project started in 1999 at AstraZeneca R&D
Mölndal in an IS organisation called Development IS (DevIS) aiming to improve the capability of
the software organisation. AstraZeneca is one of the world’s leading pharmaceutical companies
with a formidable range of products designed to fight disease in important areas of medical need.
DevIS supports clinical and pharmaceutical projects, Regulatory Affairs, and Product Strategy and
Licenses at AstraZeneca R&D Mölndal. DevIS is also responsible for influencing the development
of the global clinical research processes and IS/IT tools at AstraZeneca.

DevIS employs 100 people including contractors, most of whom have backgrounds in IS/IT.
Employees of DevIS are basically engaged in software development, software maintenance, and
operation activities. The software development activities occur in two forms: 1) development of
totally new software products (software development) and 2) developing or changing existing
software products (software maintenance). A typical software development project at DevIS is
scheduled to take between six months and one year and includes analysis, design, construction,
testing, implementation, and validation. Software maintenance activities can consist of changes in
the code or developing a completely new application for existing software products. Software
products in DevIS include the software and all related documentation (e.g. user requirement
specification, test plan, validation plan, validation report, user manuals etc.).

The SPID Project

The results of a problem analysis done in early 1999 in one of DevIS’ largest software development
groups showed a need for improving software project discipline and providing guidelines for
understanding the standard operation procedures addressing different authorities’ quality
requirements. The director of DevIS initiated an improvement project called Software Process
Improvement at DevIS (SPID, headed by the author as project manager) whose purpose was to
understand the existing problems and improve the organisation’s software processes. The first phase
of the SPID project was initiated, organised, planned, and performed during the period from April
1999 to May 2000 and intended to improve DevIS’s software processes.

A maturity assessment using a modified CMM based (Capability Maturity Model) assessment
method (QBA, see Arent and Iversen 1996) was done and showed that DevIS was by then a level
one organisation and addressed improvement possibilities in all analysed KPAs (Key Process
Areas, level 2). An improvement report based on the assessment’s findings and other findings from
earlier improvement initiatives at DevIS addressed six improvement activities. The steering

93

committee of SPID gave priority to the following improvement activities: 1) To establish a
minimum documentation level for documenting the results of software projects and create the
software documentation process. 2) To improve processes for software validation, software change
management, and document version control. 3) To create a template library including templates for
documentation of software development activities, such as: user requirement specification, design
specification, test plan, and validation plan.

An improvement plan was created and an SPI-group (including the author, two SPI consultants and
five software engineers) was created and started planning and performing improvement activities
over a period of four months, which resulted in creation of new software process guidelines. Based
on the results of a performed Participatory Implementation Workshop (PIW) see (Andersson and
Nilsson 2001) an implementation plan was created which was the basis of the creation of an
institutionalisation model. The aim of the workshop was to based on the software organisation’s
requirements together with some practitioners from the software organisation suggest an adapted
institutionalisation model for implementing the newly created software processes in the
organisation. After presentation of the newly created software processes and the institutionalisation
model for the management the steering committee of the project accepted the new software
processes and decided to implement the newly created processes within the whole organisation. The
implementation activities are scheduled to be arrayed out between June 2000 and June 2001.

4 THEORETICAL CONCEPT

4.1 Change Approach

The choice of change approach depends on the organisation’s nature, resources, and problems
(Zahran 1998). An organisation may thus adapt one or more change approaches to drive change.
Weinberg (1997) presents different change approaches with different effects in changing
organisations daily work.

The Diffusion Model
This model focuses on change as something that simply happens. According to this model, in many
instances, a change seems to come about throughout an organisation without any specific
management action (no planning and no control, change just happens when it happens). The
strength of this model is its attention to change as a process. The weakness of the model is the
abdication of control over that process to a passive, mysterious “force of nature”.

The Hole-in-the-Floor Model
The Hole- in-the-Floor, or Engineering, Model attempts to correct the weakness of the Diffusion
Model by adding control of the change process. According to this model experts develop the
“perfect” solutions and the change plan consists of “drilling a hole in the floor”. The new solutions
will then be “dropped” through the hole with the intent that practitioners will use it happily ever
after. The difference between this model and the Diffusion Model is that, according to this model,
change happens if and only if all preparations are correct. This model is often proffered by experts
who believe that organisations behave logically i.e. that everyone will undoubtedly recognise the
benefits of their proposal to change, immediately accept the proposed change and be willing to
change the way they work. Its strength of this model is the emphasis on planning. Its weakness is
that the planning leaves out many essential factors, most notably the human factor.

94

The Newtonian Model
One way to introduce the human factor to the hole- in-the-floor model is to use the Motivational
Model, which has also been called the Newtonian Model (named after Isaac Newton’s laws of
motion). This model predicts that change happens faster when you push harder. The larger the
system you want to change, the harder you must push. Likewise the faster the change you want, the
harder you must push. Force and acceleration are two factors that have directions. The model thus
implies that, to change in a certain direction, you must push in that direction. According to this
model, what is missing in the hole- in-the floor model is the push. In this respect the model does
recognise that people have a choice in what they do and that their choice can be influenced (by
pushing them) as part of the change process. Typical pushes include offering bonuses, threatening
loss of jobs, or rewarding with challenging assignments. But one should remember that push works
both ways. Many changes are set up to fail because the force pushing for them is overbalanced by
other forces that push against them. The strength of this model is the explicit introduction of the
human element in the form of motivation. The weakness is the totally inadequate model of
humanity that’s used: that people can be pushed around like billiard balls.

The Learning Curve Model
It has been observed that people are not usually able to respond with instant efficiency when change
is first introduced. Moreover, once they do respond, it takes time to learn to respond as well as the
planners would hope and thus to realise the intended benefits of the change. This model predicts
that change occurs along a curve characteristic of the people making the change. The curve is
obtained by averaging performance over many individuals and thus may smooth out significant
individual variations. The model says that all changes follow some sort of learning curve.
Moreover, the actual values of the curve are affected by a number of psychological factors, such as
relevant skill, motivation, and aptitude. This suggests the possibility of influencing the course of the
change by personnel selection and training, which certainly represents a set-up in realism as in the
Newtonian Model. This model is quite useful for predicting the time scale of large-scale change but
it does not go far enough as a practical tool for managing change person-by-person in a real
organisation. The strength of the model is its incorporation of the adaptive human element in
change. The weakness is the averaging out of details of individual human beings.

In summary, what these models together predict is that change should happen as a controlled
process pushed by management through detail planning focusing on teaching practitioners new
processes on a group level.

4.2 Reflection-in-Action as a Facilitator to Change

The newly created software processes in an SPI initiative have the character of “facts”,
“procedures”, “rules”, and “theories”, which all are static. The documented software processes can
be seen as explicit knowledge (see Schön 1987, Nonaka and Takeuchi 1995, Nonaka and Kanno
1998, Arent Nørbjerg 2000, Pourkomeylian 2001).

If we assume that all the practitioners in an organisation are willing to use this explicit knowledge
in their daily work and that the management is also committed to supporting the institutionalisation
process for implementing the newly created processes in the entire organisation, the main challenge
will be to make practitioners understand and learn how to use the processes in practice (Nonaka and
Takeuchi 1995, Schön 1987). To do this, the practitioners need what Schön calls knowing-in-action,
which is dynamic and refers to the sort of know-how we reveal in our intelligent action publically

95

observable or physical performance. In both cases, the knowing is in the action. Knowing- in-action
is tacit (see Schön 1987, Nonaka and Takeuchi 1995) but it works as long as the situation falls
within the boundaries of what we have learned to treat as normal. We all desire to structure this
knowledge and reshape it and make routines for using it to do our daily tasks faster and easier.
When we have learned how to do something, we can execute a smooth sequence of activity,
recognition, decision, and adjustment without thinking about it. But a familiar routine can produce
an unexpected result, such as that an error simply resists correction or the usual actions do not
produce the usual outcomes.

We find something odd about these situations because, for some reason, we have to look at them in
a new way. Such experiences, pleasant and unpleasant, contain an element of surprise. Something
fails to meet our expectations. In an attempt to preserve the constancy of our usual patterns of
knowing- in-action, we may respond to surprise by brushing it aside, selectively ignoring the signals
that produce it. Or we may respond to it by reflection. According to Schön (1987) we may do so in
one of two ways. We may reflect on our action, thinking back on what we have done in order to
discover how our knowing- in-action may have contributed to an unexpected result or we may stop
in the midst of our action and think (see Arendt 1971). In non-of these ways, our reflection has no
direct connection to present action; we do not interrupt the process of our action. In an action-
present, a period of time that is variable with the context and during which we can still make a
difference in the situation at hand, our thinking serves to reshape what we are doing while we are
doing it. In cases like this, according to Schön (1987), we reflect-in-action to change a present
situation.

5 THE INSTITUTIONALISATION APPROACH

The institutionalisation approach used in this study was created through a Participatory
Implementation Workshop (PIW) (see Andersson and Nilsson 2001). Two external consultants
were invited to hold a PIW workshop at the software organisation to help us identify the most
important factors needed for creating an implementation strategy for the newly created software
processes. The PIW workshop was conducted on May 18, 2000, at AstraZeneca. The author, one
SPI consultant, one project manager (all involved in the software process improvement efforts that
led to the creation of new software processes), and the two external PIW consultants participated
the workshop. The group together approached several important areas and discussed: the scope of
the implementation, what is to be implemented (the product), the target groups, the success criteria,
roles and responsibilities, the organisation of implementation activities, the implementation
activities, and the implementation strategy. The workshop ended with a risk analysis identifying the
most important risks and the measures needed for them.

The group agreed on an implementation strategy that meant a “direct introduction” of the newly
created software processes in the entire organisation with tests of processes in some pilot projects.
The reason for choosing the “direct introduction” approach was that no software process guidelines
were in use at the time except for standard operation procedures. The new software processes were
created on the basis of the ideas and experiences of experienced project managers and software
developers (see Pourkomeylian 2001). The processes were already needed in some software
projects and used by two others in the software organisation. The consequences of choosing such a
“direct introduction” strategy were that we had to: Plan very carefully to make everything work the
same day that improved software processes were introduced. Ensure that all necessary roles and

96

functions were in place. Communicate new changes to the entire organisation. Ensure that the
supporting organisation was in place. Plan and carry out the training program.

On the basis of the results of the PIW workshop the author developed a report for the
implementation of the new software processes in the organisation. The report included the
institutionalisation model, detailed descrip tion of all roles and responsibilities, the main steps
needed to make the institutionalisation process complete, time schedule, costs, and an organisation
for creating an infrastructure for supporting the whole process. The report was presented to the
management on May 29, 2000. The management agreed upon the content of the plan and decided to
implement the new software processes in the whole organisation. This meant that the processes
were to be institutionalised in the entire organisation within one year and that the second version of
the software processes would be delivered by the end of June 2001.

Our institutionalisation model consists of three main elements: 1) a training program for all
practitioners in the organisation, 2) process adaptation for all software projects, and 3) feedback
measurement and continuous improvements of software processes. The heart of our
institutionalisation model is the Software Process Improvement Unit (SPIU). This unit is
specifically responsible for the development and maintenance of the organisation’s software process
guidelines and consists of the author and two SPI consultants responsible for arranging and offering
training to all practitioners in the organisation. The unit also helps every software project to adapt
the new software process guidelines into the project and correctly interpret the contents of the
standard operation procedures and follow up the software projects. The SPIU is also responsible for
measuring feedback and continuously improving the software processes and standard operation
procedures. The continuous improvement activities according to our model will result in the
creation of the second version of the software process guidelines.

5.1 The Training Program

Human systems do not change unless the individuals in it change, and an individual’s commitment
to change comes through understanding and learning the new situation (Weinberg 1997). Our first
initiative to reduce resistance and motivating practitioners in using the processes was therefore to
introduce the software process guidelines, the institutionalisation model, and the contents of the
standard operation procedures to them. We arranged a training program to develop the skills and
knowledge of practitioners so they could do their work effectively and efficiently. Our training
program involved identifying the training needs of the organisation, software projects, authorities’
requirements, and practitioners. We then developed and carried out training to address the needs
identified. The training program was held during October 2000.

Our target in the training program was to open a window to start communicating with practitioners,
line managers, system owners, and quality assurance (QA) people and to gain their trust while
introducing the software process guidelines to them and teaching them the main general message of
the new processes. We also wanted to present the SPIU to them as a coaching function that was
supposed to help software projects in using the software process guidelines in practice. The training
program consisted of three occasions for software process guideline trainees and three occasions for
standard operation procedures, three hours for each occasion. Three one-hour training sessions were
also offered to managers and system owners. A total of 107 persons received training by the SPIU.
On the training occasions we sought feedback from the practitioners about software process
guidelines and how the processes correspond with their way of working. These ideas were then put

97

into an improvement database as potential improvement possibilities. We also measured
practitioners’ understanding of: the role and purpose of the SPIU, their own roles and
responsibilities, the standard operation procedures, and the software engineering process before and
after the training. It showed that the training sessions had helped to raise practitioners’ awareness of
the following aspects.

5.2 The Process Adaptation

Another initiative to reduce resistance and motivate practitioners to use the software process
guidelines was to create an infrastructure for supporting the practical use of the software processes.
By practical use of these processes we mean that every software project should be able to easily
adapt the processes and use them in the daily work in his or her project. We knew by experience
that if practitioners do not understand the processes, or if they have doubts as to whether they have
made the correct interpretation of the processes, then the risk of not using or misusing the processes
will be high. Another risk was that they could see the processes as the sole truth and simply follow
them blindly in every situation. The problem was then the surprise of not being able to solve
unknown situations outside the boundaries of the defined processes (see Schön 1987).

Our answer to these problems was the SPIU itself and the infrastructure we created to adapt the
processes into every software project. To gain practitioners’ trust and motivate them to use the help
offered by the SPIU we started to act as coaches. This meant that we became a helping function, a
supporting, advising function for the software projects rather than a quality control group. To do
this we needed to be very familiar with the content of both the standard operation procedures and
the software process guidelines, to understand the business and our software projects, and to be able
to open and maintain a dialogue with the project managers and developers working in the software
projects. To succeeding in our role as coaches and not controllers, we needed to see both the
standard operation procedures and the software process guidelines as frameworks, not as procedures
that should be followed blindly. We treated each project as a unique case with unique requirements
and conditions. We analysed every project on the basis of its specific conditions, such as size,
project organisation, schedules, authority requirements, and complexity, and created a specific
process design for every project, which was approved by the project team and the SPIU within the
boundaries of the standard operation procedures and the software process guidelines.

We did this through so called customisation meetings. The meetings consisted of two parts: an
introductory meeting and follow-up meetings. The introductory meetings aimed to establish a
documentation matrix based on the project’s conditions in collaboration with the project manager
and one developer in the software project. The documentation matrix showed which document
should be created as a product of the software project. The matrix also showed what role should be
responsible for the creation, review, and approval of the documents and addressed the activities
necessary to create these documents. The meetings often took two hours and resulted in a
documented agreement between the SPIU and the project manager about how to work in the
project. At the introductory meetings we discussed questions such as how to validate the software,
how to manage changes, and how to document the results in the specific project. The follow-up
meetings aimed at measuring the extent to which the project had succeeded in following the tailored
processes. Further, these meetings aimed at checking for problems in following the processes in
practice and finding out whether these problems occurred in other projects, which might be an
indication of a common problem and thus something that should be improved. The SPIU also
helped the projects with reviewing the documents created during the projects’ life span. In this way

98

we created a frequently used communication channel with all projects which used our services in
the organisation and tried to encourage practitioners to reflect in their actions during the projects’
life span and tailor the processes to their software projects in a way that suited their conditions. We
encouraged every project to make variations in the processes to adapt them in every project within
the boundaries of the standard operation procedures and software process guidelines.

The customisation meetings helped us to see how these processes actually work in practice and
motivated the practitioners to be more positive toward using the SPIU and the software process
guidelines. The following are some comments made by the practitioners in the customisation
meetings:

“ A good way of working, to adapt the documentation process to our little project.”
“These templates are most suitable for use in “real” software development projects, in our case we need to change or
take away some headlines”.
“ We need more support for the Training Plan document. We do not know what should be written there”.
“ The templates work well as check lists”.

The majority of variations made to adapt the software process guidelines in software projects were
in creating different documentation matrixes for different projects. In small projects we often
combined two or three documents into one document. Another type of variations was caused by
differences in the project organisations. In small projects one person often had more than one role
and responsibility. For both small and large projects, however, the same steps were taken in doing
change control and validation.

We tried to implement the software processes in the software projects by encouraging the
practitioners to reflect- in-their actions to continuously adapt the software processes and the standard
procedures into the different situations in the software projects. The practitioners in the software
projects thus learned the new processes by doing them in practice. By reflecting- in-action, they
actually used their knowing- in-action for doing the “work”, instead of just following the “routines”.
They reflected- in-action to change the practice in order to manage the unknown situation outside
the defined routines they normally followed. By reflecting- in-action and using the guidelines and
standards as a framework the practitioners created “variations- in-action” in practice different from
case to case depending on situation in the software project and brought about continuous
improvement in their daily work processes. But this was not an easy task neither for the SPIU nor
for the practitioners. One big challenge for the SPIU was to continuously communicate the idea of
reflection- in-action with the practitioners and encourage them in doing it in practice when
interpreting the guidelines and standards as frameworks.

5.3 Feedback Measurement and Continuous Improvement

The institutionalisation processes were the first time the new software processes were presented to
the practitioners and put into practice. In the training program and the process adaptation period we
noticed that some activities in the processes and some headlines in some templates needed changes
and/or improvements. For this reason we added a qualitative measurement mechanism to our
institutionalisation model to capture all signals that addressed needs for improvements. With this
mechanism we could make qualitative measurements at three main points: 1) during the training
program, by asking practitioners about their ideas about the possibility of using the processes in
practice, and 2) during process adaptation, by implementing the processes in software projects and
following and measuring the results, 3) by practitioners sending email to the SPIU. We documented

99

all possible suggestions for improvements vo iced at the three measurement points and checked
them during the practice implementation of the processes in different software projects. A typical
improvement suggestion was as follows:

“ Some headlines in the templates are not clear enough. You don’t know whether you are writing the right text under
the right headline”.
“We need some examples to know for instance what a test plan should look like.”
“How should we create user requirement specifications? What are the steps needed?”

6 THEORETICAL INTERPRETATION

This study analysed an institutionalisation process from an organisational change perspective using
an institutionalisation model. From the perspective of this model we argue that change should not
be forced or pushed in the organisation. It should be cultivated. Our approach differs from the more
traditional approaches described in the theoretical part of this paper. We decided to start change in
small areas and spread it step by step to all parts of the organisation. This approach is reminiscent of
the diffusion model (see Weinberg 1997) but differs from it in that our model included factors such
as planning, control, support, and measurement and continuous improvement. We did not simply
drop changes into the organisation, as in the hole- in-the-floor model (see Weinberg 1997). We kept
awareness of the human factor and took care of the important issue of resistance to change. We
established different communication channels with the practitioners and helped them in practice by
being there when they needed help. We did not take the role of an expert or a controller. We chose
to be coaches for practitioners and to support them with their problems in using the new processes.
Our ambition was to motivate the practitioners to use the processes by showing them the practical
use of the system. We never tried to push or use management directives as forcing factors to drive
the change unlike the Newtonian model (see Weinberg 1997) we encouraged the practitioners to
reflect not only on their actions but in their actions for changing the ongoing practice in order to
adapt the processes to their specific situation. In this way, it was possible for practitioners to avoid
just following a routine and being surprised when facing unknown situations. We encouraged them
instead to reflect-in-action (see Schön 1987) and act to create variations in order to adapt the newly
created software processes to their specific software projects. Our model even completed the
learning curve model (see Weinberg 1997) by supporting the individual learning of practitioners
during the customisation meetings and individual support during the period of process adaptation
into software projects. The learning process started on an individual level through training and
continued to a group level (in software projects). In September 2000 only two software projects
used our services. Today (March 2001) 11 software projects are clients of the SPIU using the
software process guidelines. The SPIU has also gained organisational acceptance in the company.
The processes are known among the practitioners and they are practising the idea of reflecting- in-
action.

We could have speeded up the processes by using more “push” from the management. This was
however a consciously strategy that we chose at that time. More “push” from the management may
have negative effects. We let the practitioners learn and understand the benefits of using the
processes and the supporting services of the SPIU in a more natural way rather than in a strictly
formal way. The internalisation of the processes and even the implementation of software processes
in software projects took its time but, on the other hand, the practitioners’ attitude toward the
processes is positive and the change has been cultivated and is maturing.

100

7 CONCLUSION

This study gives a number of lessons relevant for future software process institutionalisation
projects and the SPI practice:

Lesson one: Process institutionalisation should come through personal growth through learning
and should start small to first reach process internalisation. Our model focused on making the
practitioners understand the new processes and learn how to use them in practice. We offered them
training and made the processes and the templates accessible for them. We started the
implementation process in the software organisation on an individual level through training and
continued to a group level in a few software projects.

Lesson two: Software process implementation should be carried out stepwise through detailed
planning and follow-up. Our institutionalisation model included a plan with a detailed description of
roles, responsibilities, activities, schedules, resources, and deliverables. Without planning and
following up the steps we could never have managed to carry out the different activities in a
structured way.

Lesson three: Management should encourage practitioners to reflect-in-action for creating
variation-in-action, support the creation of an infrastructure to help in the adaptation of the
software processes for every software project and address continuous improvement. To support the
practice implementation of software processes in all projects the management supported the
creation of an infrastructure to help every project to adapt a specific process suitable to the project’s
requirements.

Lesson four: New roles should be defined for coaching practitioners and teaching them new
software processes on both the group and individual levels. During the implementation process the
change agents (the SPIU) had a coaching role. We offered training to teach the practitioners the new
processes and to support learning on an individual level. We also supported learning on a group
level by offering coaching services through the “customisation meetings” to trying teach
practitioners how to go about in practice, for instance, validating their software product by letting
them doing it and being there for them for advice and support.

ACKNOWLEDGEMENT

This research was sponsored by AstraZeneca R&D Mölndal in Sweden in collaboration with the
Viktoria Institute Gothenburg in Sweden and the Institute of Computer Science Aalborg in
Denmark.

REFERENCES

Arent, J. and Iversen, J. (1996). Development of a Method for Maturity Assessments in Software
Organizations based on the Capability Maturity Model. Aalborg University: Department of
Computer Science.

Andersson, I. and Nilsson, K. (2001). Diagnosing Diffusion Practices within a Software
Organisation. IFIP WG8.6 Fourth Working Conference on Diffusing Software Product and Process
Innovations, Banff, Canada.

101

Arent, J. and Nørbjerg, J. (2000). Organizational Knowledge Creation: A Multiple Case Analysis.
Proceedings of Hawaii International Conference on Systems Science.

Arendt, H. (1971). The Life of the Mind. Vol. 1: Thinking. San Diego, Harcourt Brace Jovanovich.

Beer, M. (1987). Revitalising Organisations: Change process and Emergent Model. Harvard
Business School.

Burnes, B. (1992). Managing Change, A strategic approach to organisational development and
renewal. Pitman Publishing.

Burnes, B. and Weekes, B. (1989). AMT: Strategy for Success? NEDO, London.

Goldenson, D. R. and Herbsleb, J. D. (1995). After the Appraisal: A Systematic Survey of Process
Improvement, its Benefits, and Factors that Influence Success. The Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, Technical Report CMU/SEI-95-TR-009.

Herbsleb, J., Zubrow, D., Goldenson, D., Hayes, W. and Paulk, M. C. (1997). Software Quality and
the Capability Maturity Model. Communications of the ACM, Vol. 40, No. 6, pp. 30-40.

Humphrey, W. (1989). Managing the Software Processes. Addison-Wesley.

Jacobsen, D. I. and Thorsvik, J. (1998). Hur moderna organisationer fungerar, Introduktion i
organisation and ledarskap, Studentlitteratur, Lund, Sweden, (in Swedish).

Johansen, J. and Mathiassen, L. (1998). Lessons learned in a National SPI Effort. EuroSPI 98
Gothenburg, Sweden, November 16-18, pp. 5.1-17.

Kelly, J. E. (1982). Scientific Management, Job Redesign, and Work Performance. Academic Press,
London.

Mashiko, Y. and Basiili, V. R. (1997). Using the GQM Paradigm to Investigate Influential Factors
for Software Process Improvement. Journal of Systems and Software, Vol. 36, pp. 17-32.

Mathiassen, L. (2000). Collaborative Practice Research. Proceedings of the IFIP TC 8 WG 8.2
Working Conference on Organizational and Social Perspectives on Information Technology,
Aalborg, Denmark.

Nonaka, I. and Konno, N. (1998). The Concept of “Ba”: Building a Foundation for Knowledge
Creation. California Management Review, Vol. 40, No.3, pp. 40-54.

Nonaka, I. and Takeuchi, H. (1995). The Knowledge-Creating Company. Oxford University Press.

Patton, M. Q. (1990). Qualitative Evaluation and Research Methods. Sage Publications.

102

Paulk, M., Curtis, B., Chrissis, M. and Weber, C. (1993). Capability Maturity Model for Software
Version 1.1. The Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Technical
Report CMU/SEI-96-TR-24.

Paulk, M., Weber C., Curtis B. and Chrissis M. B. (1995). The Capability Maturity Model:
Guidelines for Improving the Software Processes. Addison Wesley.

Pourkomeylian, P. (2001). Knowledge Creation in Improving a Software Organization. Proceedings
from IFIP WG8.6 Fourth Working Conference on Diffusing Software Product and Process
Innovations, Banff, Canada.

Schön, D. A. (1987). Educating the Reflective Practitioner. Jossey-Bass Publishers.

Tryde, S., Nielsen A. D. and Pries-Heje, J. (2001). Implementing SPI: An Organizational Approach.
In: Mathiassen, L., Pries-Heje, J. and Ngwenyama, O. (Eds.): Improving Software Organisations -
From Principles to Practice, Addison-Wesley.

Weinberg, G. M. (1997). Quality Software Management, Anticipating Change. Vol. 4, Dorset
House Publishing.

Zahran, S. (1998). Software Process Improvement: Practical Guidelines for Business Success.
Addison-Wesley.

103

MANAGING KNOWLEDGE IN A SOFTWARE ORGANISATION

Lars Mathiassen & Pouya Pourkomeylian

Abstract. This paper explores the practical usage of insights on knowledge management (KM)
to support innovation in a software organisation. The organisation has for some time
engaged in software process improvement (SPI) initiatives to improve its operation. The
paper applies two complementary approaches to KM, the codified and the personalised, to
evaluate current KM practices and to improve its SPI practices. Based on the insights from
the case we review key principles within SPI and evaluate the applied KM approaches. We
conclude that it is advisable for SPI efforts to explicitly address KM issues. Each software
organisation has to find its own balance between personalised and codified approaches, this
balance needs to be dynamically adjusted as the organisation matures, and the adopted KM
approach should differentiate between different types of SPI services.

Keywords: Software Process Improvement, Knowledge Management Strategy, Codification,

Personalisation.

1 INTRODUCTION

Software projects are often late and users are often dissatisfied with the quality of software systems.
This has for a long time been the public view of the software profession and most software
professionals would agree. It is not surprising, therefore, that software organisations actively seek
ways to improve their performance. The most widely used contemporary approach is called
software process improvement (SPI). Many organisations pursue SPI initiatives and a number of
success stories are reported (Humphrey et al. 1991, Brodman and Johnson 1995, Herbsleb et al.
1994, Goldenson and Herbsleb 1995, Haley 1996, Larsen and Kautz 1997, Mathiassen et al. 2001).
But there are also many less successful cases (Goldenson and Herbsleb 1995, Debou 1997,
Herbsleb et al. 1997, Mashiko and Basili 1997). This research effort seeks to increase our
understanding of such innovation efforts in software organisations through application of
approaches to organisational learning and change (Steltzer et al. 1998, Halloran 1999). More
specifically we apply insights from knowledge management (KM) to inform SPI efforts in a large
software organisation. The outcome is a revised improvement approach for the software
organisation in question and general lessons on how to use KM insights to improve innovation in
software organisations.

1.1 Software Process Improvement

SPI is a structured approach to improve a software organisation’s capability to deliver quality
services in a competitive way. SPI initiatives are evolutionary and inspired by experiences from
quality management. An SPI initiative is cyclic in nature and includes different phases—1)
Initiating, 2) Diagnosing, 3) Establishing, 4) Acting and 5) Learning—as expressed in the IDEAL
model, see Figure 1 (McFeeley 1996). The initiating phase prepares the SPI initiative by developing
plans, schedules, and infrastructure. The next step is focused on diagnosing the current maturity
level of the organisation’s software operation. This information forms the basis for focused

104

improvement projects in the next step. Each project creates new or improved software processes,
which are verified and implemented within the organisation to improve engineering practices. The
final phase is focused on learning lessons from the SPI efforts (McFeeley 1996, Zahran 1998).

Figure 1. The IDEAL model for SPI (McFeeley 1996)

SPI initiatives typically use normative models to assess current software practices and provide
guidance for how to prioritise improvements. The most popular model is the Capability Maturity
Model (CMM), see Figure 2 (Humphrey 1989, Paulk et al. 1993). The CMM describes five levels
of maturity expressed through a set of Key Process Areas (KPAs) that should be in place for each
level. At the initial level, software projects proceed in an ad hoc fashion and depend on the
technical skills and heroic efforts of individuals. At the repeatable level, project management
disciplines are established to enhance each project’s ability to set and meet reasonable time and
budget commitments. At the defined level, organisation wide processes are used throughout the
organisation and tailored to individual projects. At the managed level, software processes are
monitored quantitatively and adjusted to better meet product quality goals. Finally, at the optimising
level, quantitative data are used to continuously improve the organisation’s processes (Goldenson
and Herbsleb 1995, Hayes and Zubrow 1995).

Initial (1)

Repeatable (2)
•Software configuration management

•Software quality assurance
•Software subcontract management

•Software project tracking and oversight
•Software project management

•Requirements management

Defined (3)
•peer reviews

•Intergroup coordination
•Software product engineering
•Integrated sw management

•Training program
•Organization process definition

•Organization process focus

Managed (4)
•Software quality management

•Quantitative process management

Optimizing (5)
• Process change management

•Technology change management
•Defect prevention

Figure 2. The five Maturity Levels in CMM (Paulk et al. 1993)

105

The IDEAL model and the CMM capture some of the general approaches to SPI. In practice there is
plenty of room for interpretation of the models and for supplementing with other types of
knowledge (Mathiassen et al. 2001). A discussion of the characteristic features of SPI practices is
presented in (Aaen et al. 2001).

1.2 Knowledge Management

Software engineering is a highly knowledge intensive activity and software organisations constantly
need to adopt new technologies and improve their practices. KM has therefore been used to inform
practices within software organisations in general and SPI initiatives in particular. Arent and
Nørbjerg (2000) analysed how organisational knowledge creation processes can support SPI
initiatives. Baskerville and Pries-Heje (1999) investigated KM as a source for developing
supplementary key process areas to the CMM in small and medium sized companies. Kautz and
Thaysen (2001) studied how knowledge, learning and IT support occur in small software
organisations. Kautz and Nielsen (2001) analysed the role of knowledge transfer in SPI
implementation and developed a framework to support implementation practice. Arent et al. (2001)
studied SPI as an organisational learning process and suggested two main strategies for learning: 1)
the exploration strategy focused on knowledge sharing and learning by doing, and 2) the
exploitation strategy aiming to create explicit knowledge in the form of standard processes and
guidelines. These studies demonstrate the relevance and usefulness of applying KM to software
organisations. It is, however, far from clear how software organisations can take advantage of KM
insights on a practical level and, as part of that, develop a KM strategy to guide their SPI efforts.

Some KM approaches are based on the distinction between explicit and tacit knowledge, e.g.
(Nonaka and Takeuchi 1995). The very idea in software engineering is to explicate knowledge in
the form of programs to be executed on computers and software engineers spend great efforts
specifying programs and models while at the same time participating in close people-to-people
interactions as members of software teams. Explicit knowledge related to SPI is of two types: 1)
Software engineering knowledge, e.g. about software quality assurance or software configuration
management, and 2) SPI-knowledge, e.g. the IDEAL model and the CMM (Pourkomeylian 2001a).
Tacit knowledge is personal, it is embedded in individual experience, and it involves intangible
factors such as personal beliefs, perspectives, and underlying values (Nonaka and Takeuchi 1995).
Tacit knowledge plays a major role in SPI because a deep appreciation of software practice is
needed to assess present capabilities, to design useful new processes, and to implement these
processes as part of the software operation. While the tacit-explicit dichotomy provides valuable
understanding of SPI issues (Arent and Nørbjerg 2000, Arent et al. 2001, Pourkomeylian 2001a) it
has certain weaknesses when it comes to strategically positioning KM within specific SPI
initiatives. Most importantly, the key idea in SPI is not merely to explicate knowledge. SPI
initiatives rest on the ambitious idea of creating and sharing knowledge on an organisational level
across different individuals, projects, and departments. The emphasis in SPI is hence on the creation
of generic, codified knowledge and on the tailoring of this knowledge to specific projects.

Consequently, we explore the strategic influence of KM on SPI practices based on a different,
fundamental distinction within KM. Some approaches focus on capturing, distributing, and
effectively using codified knowledge across organisations, while others emphasise creation,
acquisition, and transfer of personal knowledge as part of modifying organisational behaviour
(Shariq 1999, Scarbrough and Swan 1999, Zack 1999). The cognitive-based model relies on
codification of knowledge objects, which are stored in databases, from where they can be accessed

106

and used by anyone in the organisation (Swan et al. 1999). This model corresponds to what Hansen
et al. (1999) call the codification approach to KM. In contrast, the community-based model
provides a perspective in which knowledge is closely tied to communities of practice (Brown and
Duguid 1991) and knowledge is mainly shared through direct person-to-person interaction (Swan et
al. 1999). This model corresponds to what is called the personalisation approach to KM (Hansen et
al. 1999).

1.3 Research Approach

This paper is one of the results of a collaborative practice research project (Mathiassen 2000)
carried out in the software organisation at AstraZeneca, Mölndal, Sweden. An SPI effort has been
performed from the initiating phase to implementing new, organisation wide software processes.
The present study is focused on the issue of KM within this SPI project and aims to find answers to
the following questions: 1) Which KM practices will support continued SPI efforts at AstraZeneca?
2) How can organisations in general develop a KM strategy to support their SPI activities?

The paper presents a case study in which a theoretical framework from KM (based on Hansen et al.
1999 and Swan et al. 1999) is used to evaluate current KM practices and to provide guidance for
improving SPI practices. Data about current SPI practices were collected from a number of sources:
SPI assessments, SPI schedules, the SPI implementation plan, previous research on the SPI
initiative (Pourkomeylian 2001a, 2001b, 2001c, Pourkomeylian et al. 2001) and direct participation
in the organisation’s SPI efforts. These sources were systematically interpreted and evaluated using
the KM framework and the result of this analysis was combined with the stated objectives of the
SPI effort at AstraZeneca to develop an improved approach to KM. The KM framework and the
experiences from the case study were then used to review conventional SPI ideas as presented in the
literature. These more general findings were finally combined with the insights from the specific
case to propose guidance on how to facilitate KM in future SPI initiatives.

Section 2 presents the adopted KM frameworks, and Section 3 presents the organisational context
of the case. The ongoing SPI initiative is described and evaluated from a KM point of view in
Section 4, and a KM strategy is proposed to support further SPI activities. Section 5 discusses the
practical implementation of this KM strategy. Finally, Section 6 concludes the argument by
discussing KM in relation to SPI in general.

2 KNOWLEDGE MANAGEMENT FRAMEWORK

The codification or the cognitive KM model focuses on ways to codify experiences, to store the
resulting knowledge objects, and to reuse them through the use of Information Technology (IT)
(Hansen et al. 1999, Swan et al. 1999). Knowledge is extracted from the persons who originally
created it, made independent of those persons, and reused for various purposes. The computer is
seen as a facility for storing and sharing knowledge objects through individual- to-electronic
interactions. This allows many people to search for and retrieve the same knowledge without having
to contact the person who originally developed it. IT and the so-called knowledge agents who are
responsible for codifying and storing documents are seen as critical success factors.

In contrast, the personalisation or community KM model sees knowledge as socially constructed
(Hansen et al. 1999, Swan et al. 1999). Knowledge is intrinsically related to individual behaviour
and it varies between different communities of practice. The focus is on interaction and dialog

107

between individuals. Knowledge is created and transferred through collaboration, in brain storming
sessions, and through person-to-person conversations. IT can be used as a medium for collaboration
and knowledge sharing, but collaboration and trust across different groups of actors are seen as the
critical success factors for KM.

An organisation’s KM strategy should in general reflect its business situation and strategy (Hansen
et al. 1999, Zack 1999). Hansen et al. (1999) suggest that deve lopment of a KM strategy requires
answers to the following questions. First, how does the organisation create value for customers; is
reuse of codified knowledge essential because the organisation is repetitively dealing with similar
problems, or, do people seek advice from colleagues to deepen their understanding of the issues and
to create highly customised solutions to unique problems? Second, what kind of economic model
underpins the value created? The codification approach relies on the “economics of reuse” saving
work, reducing communication costs, and allowing an organisation to take on more projects. The
personalisation approach relies on “expert economics” focusing on collaboration between highly
skilled people and on giving advice that is critically dependent on tacit knowledge. This process of
sharing expert knowledge is time consuming, expensive, and slow. Third, what kind of knowledge
do people need to deliver the services of the organisation? For an organisation relying on reusing
knowledge objects the individual-to-electronic approach makes most sense. In such organisations
people should have the profile of implementers rather than inventors. In contrast, organisations
using a personalisation approach need to hire more inventors with the analytic and creative skills
required to solve unique business problems (Hansen et al. 1999). Table 1 illustrates the two
approaches.

 Codification Approach Personalisation Approach
Competitive

Strategy
Provide mature, relatively
standardised products or services to
customers

Provide new and innovative products and
services to meet customers’ unique needs

Economic
Model

Invest once in a knowledge asset and
reuse it many times

Use highly customised solutions designed
to solve specific problems

Knowledge
Management

Strategy

Develop IT-based networks that
codifies, stores, disseminates, and
allows reuse of knowledge

Develop networking activities for linking
people so that personal knowledge can be
shared

Information
Technology

Invest heavily in IT to connect
people with reusable codified
knowledge

Invest moderately in IT to facilitate
interaction and exchange of personal
knowledge

Human
Resources

Hire implementers. Train people in
groups and using IT-based learning.
Reward people for using and
contributing to document databases.

Hire problem solvers that can tolerate
ambiguity. Train people through one-on-
one mentoring. Reward people for sharing
knowledge with others.

Table 1. Two, contrasting KM approaches (Adapted from Hansen et al. 1999)

Hansen et al. (1999) suggest more specifically that an organisation should explore the following
questions to develop its KM strategy:

1. Does the organisation offer standardised or customised services? Organisations that offer

standardised services do not vary much, if at all. A KM approach based on codification and
reuse of knowledge fits these organisations. Organisations that provide customised services

108

need a different approach. These organisations should consider a personalisation approach to
support varying customer needs.

2. Does the organisation have mature or innovative services? A strategy based on mature services

typically benefits most from a reuse model. The processes for developing and selling such
services involve well-defined and well-understood tasks and knowledge that can be codified. A
strategy based on service innovation, on the other hand, is best supported by a personalisation
approach. People in organisations seeking innovation need to share information that would get
lost in codified form.

3. Do the people rely on codified or personal knowledge to solve problems? When the employees

rely on codified knowledge, such as standard procedures, guidelines, or templates, to do their
work, the individual-to-electronic approach makes most sense. Personal knowledge such as
scientific expertise, operational know-how, and technical expertise, is difficult to communicate
in writing. It is acquired through personal experience. When people needs personal knowledge
to help solve problems, the person-to-person approach works best.

An organisation’s answers to these questions indicate which primary (80%) and secondary (20%)
KM approach to adopt (Hansen et al. 1999). Making a 50%-50% decision is seldom useful because
the most characteristic features of the organisation need to be emphasised and supported.

Zack (1999) argues in a similar fashion that organisations should develop a KM strategy that
reflects the organisation’s business situation and strategy. The approach taken is, however,
different. First, the organisation’s KM practice is compared to its competitors. Second, an analysis
is performed of the organisation’s strategic gap (between what an organisation must do to compete
and what it is actually doing) and the organisation’s knowledge gap (between what an organisation
must know and what it actually knows). Based on those insights a strategy is developed
emphasising whether the organisation primarily is creator or user of knowledge, and whether the
primary sources of knowledge are internal or external.

Software organisations that engage in SPI efforts focus on improving software capabilities in an
evolutionary fashion based on current practices. The perspective is in most cases internal and the
intention is not primarily to position the organisation in relation to competitors. The analysis
suggested by Hansen et al. (1999) is therefore considered more appropriate in this particular
domain. The two dimensions of a KM strategy suggested by Zack (1999), i.e. creator vs. user of
knowledge and internal vs. external knowledge sources, relate directly to the third question above.

3 ORGANISATIONAL CONTEXT

AstraZeneca is a research-driven pharmaceutical organisation with some 10,000 R&D personnel
and a US $2 billion R&D investment in 1999. The collaborative research project was initiated in
1999 within Development IS (DevIS) to improve the software operation within the organisation
(Pourkomeylian 2001a). DevIS provides IT-support to clinical and pharmaceutical projects,
regulatory affairs, and product strategy and licenses at AstraZeneca R&D, Mölndal.

Many regulatory authorities require that pharmaceutical companies and their software organisations
comply with GXP (Good Manufacturing Practice, Good Clinical Practice, and Good Laboratory
Practice) rules. GXP rules are the authorities’ quality requirements to pharmaceutical companies for

109

ensuring patient health, the quality of processes (e.g. clinical studies or software development) and
the quality of products (e.g. tablets or software). Every software project regulated by GXP
requirements should carefully apply all quality rules and be able to show by documented evidence
that the software is compliant with the related GXP requirements.

The company has adopted Standard Operation Procedures (SOPs) that explicitly describe its
software qua lity rules. In January 2001 a special unit was created called Mölndal R&D IS Quality
and Compliance (Q&C) responsible to lead all SPI activities within the company and co-ordinate all
quality and compliance issues at the site level. It is this SPI Unit that is the focus of this study. The
SPI initiatives leading to the formation of the unit are reported in (Pourkomeylian 2001b).

The primary customers of the SPI Unit are the software engineers and managers in DevIS. They are
basically engaged with software development, software maintenance and software operation
activities. Software in DevIS include the programs and all related documentation.

A maturity assessment using a modified CMM assessment method showed that DevIS was by then
a CMM level 1 organisation. The steering committee of the SPI initiative gave priority to creation
of a template library including templates for documentation of software development activities and
improvement of the following processes: 1) the software validation, 2) the software change
management, and 3) the document version control. The implementation phase includes further
activities in which the created processes are improved on the basis of experiences of using them in
practice (Pourkomeylian 2001c). This phase has resulted in a new version of the software processes
in June 2001 and an assessment evaluating the effects of the SPI project in the organisation
(Pourkomeylian et al. 2001).

4 KNOWLEDGE MANAGEMENT PRACTICE

We proceed by describing and evaluating current KM practices related to the SPI efforts using the
framework of Hansen et al. (1999). Based on this evaluation we discuss design of a KM strategy to
support further initiatives in the SPI Unit.

4.1 Evaluation of current practice

An overview of the current KM practices in the SPI Unit is provided in Figure 3. The SPI Unit
plans and performs continuous efforts to improve software processes and practices. New or
improved processes are documented together with procedures, guidelines, and templates to support
software development at DevIS. The SPI Unit also plans and performs other Q&C related projects,
e.g. developing a new register of software for the entire company which integrates the existing
information stored in different registers in various departments at AstraZeneca R&D, Mölndal.

A main challenge is to implement new processes in the entire organisation as part of the engineers’
daily work. To do this the SPI Unit helps every software project to adapt new processes to the
project’s situation. The SPI Unit arranges customisation meetings at the start of every software
project to discuss key factors that might have some impact on the project. Examples of factors are
the quality requirements and the project’s organisation and size. The result of such meetings is a
matrix that illustrates which documents should be produced during the project’s life span and who
should produce, review, and approve which document. During such meetings the SPI Unit and the
project team discuss if and how software validation should be performed and how change control

110

should be performed and documented during the project’s life span. After the customisation
meeting the SPI Unit and the project team agree on a tailored process for producing, reviewing, and
approving documents and for performing software validation and change control in that specific
project. The agreement is documented and stored by the SPI Unit and a copy is sent to the project
team. The SPI Unit engages in follow up meetings to evaluate the degree to which the project
follows the tailored processes. The SPI Unit collects feedback from projects concerning the
usability of the processes and the templates to support further improvement efforts.

Another service that the SPI Unit offers is supporting the software projects, engineers, and
managers with Q&C advice. The questions are of different types and complexity, from how to use a
specific template for documenting results to explanation of new rules and policies. The SPI Unit
also helps software projects taking practical Q&C responsibility. A member of the SPI Unit can act
as quality assurance expert engaged by the software project to review the project and the produced
documentation.

When introducing new or modified software processes the SPI Unit arranges and performs training
sessions for all engineers that might be affected by the processes. The feedback from the
participants is documented and stored in a database. This feedback together with the feedback from
the practical use of processes is used as input to new improvement activities.

Finally, the SPI Unit plans and conducts customised audits to vendors that offer services or
products to AstraZeneca or are candidates to do so. This audit service is usually based on a request
from a software project or a software department. The results of the audit are documented and
feedback is given both to the vendor and the organisation that ordered the vendor audit.

Some of these services are of a standardised and mature type such as performing vendor audits and
offering training. In vendor audit and training you perform more and less the same steps and re-
apply the same material or templates in doing them. The focus and contents of both the audit and
training might differ from case to case. But quite often there is only little variation. In contrast,
other services are of a more customised and innovative type like offering Q&C consulting to
different customers regarding different problems.

Software People Vendors

Training

Feedback

Feedback

Services
• Process Tailoring
• Q&C Consulting
• Project Review

Audit

Services or
Products

Application &
Evaluation

SPI and
Q & C
Projects

Projects

Codified Knowledge

Software Projects

•
Standard Procedures

•
Software Processes

•
Guidelines

•Templates
•

Best Practices

•

Project Documents

The SPI Unit

Figure 3. The SPI Unit’s services

111

The variation in the SPI Unit’s services requires access to two types of knowledge for being able to
deliver high quality services to the organisation. Some of the services are primarily based on
codified knowledge within different areas, such as authority requirements, standard procedures, and
guidelines. Others require professionalism in form of know-how, such as planning and performing
SPI activities and consulting on Q&C issues. Only rarely are the services of an either-or nature, but
they each have an emphasis towards one of the extremes.

Table 2 summarises the characteristic features of the SPI Unit’s services. The evaluation is based on
Hansen et al.’s (1999) three main questions. 1) Do the organisation offer standard or customised
services? 2) Are the services mature or innovative? 3) Do the practitioners need codified or personal
knowledge to deliver the services to the organisation?

Service Standardised or
Customised

Mature or
Innovative

Codified or
Personal

Software Processes Standardised (adaptable) Innovative P (C)
Q&C Guidelines Standardised Mature C (P)
Process Tailoring Customised Innovative P(C)
Q&C Consulting Customised Innovative P (C)
Project Review Standardised Mature C (P)
Training Standardised (variations) Mature C (P)
Vendor Audit Standardised (variations) Mature C (P)

Table 2. Evaluation of the SPI Unit’s services

4.2 Design of KM strategy

The question is then which KM strategy the SPI Unit should adapt. As illustrated in Table 2, the
SPI Unit’s services differ from each other in being standardised or customised, in being mature or
innovative, or in being based primarily on codified or personal knowledge. Establishing one
uniform KM strategy for the SPI Unit covering all the services might therefore be unwise. Some
level of differentiation between services seems appropriate. In addition, as suggested by Hansen et
al. (1999), we should, for each group of services, adapt a main KM approach supported by a
secondary approach to improve current KM practices in the SPI Unit.

A personalised approach supported by some level of codification will support the KM practises
related to the following services: software processes, process tailoring, and Q&C consulting. In
each of these cases standards do play a role, but the services are customised to the organisation or to
the situation at hand, and they all require innovative skills and extensive use of personal knowledge.
All of these services are, for these reasons, time consuming and in this sense expensive. Codified
knowledge is used as a supplementary approach to provide potentially useful process models,
guidelines, and templates. In this way, codified knowledge is used to inform the activities while the
activity itself is enacted mainly based on personal innovative skills and know-how. There is some
variation between the three services. The development of software processes is inherently
dependent on personalised knowledge while there might be opportunities to further base process
tailoring and Q&C consulting on codified knowledge. In considering this option it is, however,
important to keep in mind that both of these activities in their current form involves close customer
dialog, joint problem-solving, and knowledge sharing. The resulting feedback to the SPI Unit plays
an important role in tuning the established codified knowledge base and in identifying new areas for
improvement. The main KM approach for these services should therefore be personalised to support
knowledge sharing and networking.

112

In contrast, Q&C guidelines, project review, training, and vendor audit should primarily be based
on a codified KM approach supported by personal know-how as a secondary approach. These
services are all of a standardised nature, even though they might lead to customised results or
include certain variations. They have a more mature character than the services mentioned above.
The amount of codified knowledge involved is high, but some level of personalised knowledge is
still required to cope with variations. All these services require software and quality skills and they
are time consuming. One way of improving the current practices is to further codify software and
quality knowledge within requirement specification, software design, architectural design, and
application integration.

5 FROM STRATEGY TO ACTION

The KM strategy explicates some of the tacit assumptions underpinning current SPI practices. But it
also points in direction of new or modified initiatives. The SPI Unit needs to focus more on
personalised approaches and it needs to explore further the interactions between codified and
personalised approaches. Taking the full consequence of the KM approach is not a simple task and
the SPI Unit should carefully reconsider its approach to KM in the light of its new initiatives.

Swan et al. (1999) distinguishes between a network model and a ne tworking model to knowledge
management and innovation. Networks based on IT are useful for sharing and storing codified
knowledge whereas it is necessary to encourage and develop face-to-face networking amongst
different groups and actors to share personalised knowledge. Using these terms, the KM strategy of
the SPI Unit needs to rethink and improve its IT-based networks and it needs to increase its
networking activities to strengthen personalised approaches to KM. In the following, we outline the
SPI Unit’s initiatives in response to this challenge.

5.1 Improved network facilities

The SPI Unit has now developed an Electronic Process Library (EPL) on the Intranet to increase the
availability of the current base of codified knowledge. The Unit collaborated with web-experts to
design the network, see Figure 4, and the SPI Unit now manages it. The EPL is continuously
updated and developed to serve as a shared, centralised medium amongst software engineers,
software managers, and SPI experts. In addition to processes, guidelines and templates this network
includes the current SPI project specification, plan, and implementation report as well as the latest
CMM assessment report. The emphasis is on codified knowledge, but the network has also been
developed to include facilities to support sharing of personal knowledge.

113

Figure 4. The SPI Unit’s Electronic Process Library

Electronic search facilities have been developed to support easy and personalised access to the
codified knowledge base. This is supplemented with a personalised approach where the Intranet can
be used to find SPI experts or software engineers with relevant experiences. Once contacts are
made, person-to-person meetings can be arranged to organise joint problem solving, to transfer
experiences, or to provide advice.

Offering advice on processes and procedures in the organisation is a daily challenge for the SPI
Unit. Often, the same advice is offered to different projects for solving similar problems. Therefore
a FAQ (Frequently Ask Question) system has been made available on the network to make the most
common questions and answers available to all practitioners. This facility is updated dynamically to
reflect changes in codified knowledge and experienced problems.

Finally, the EPL is to be expanded to support creation and exchange of personalised knowledge
amongst software engineers and SPI experts interested in quality and compliance issues and new
software technologies. As part of this, state-of-the-art papers and reports on these and other issues
will be made available to stimulate discussions and learning.

5.2 Improved networking activities

The KM strategy suggests that the major weakness of current SPI practices at AstraZeneca is the
SPI Unit’s insufficient focus on networking activities to support sharing of personalised knowledge
amongst software engineers, software managers, and SPI experts. To further strengthen such
practices the Unit decided to review the literature on networking (Augier and Vendelo 1999, Swan
et al. 1999, Davenport et al. 1998, Dixon 1998, Seufert et al. 1999, Alavi 1999) and to evaluate
networking experiences within other areas at AstraZeneca. The key findings from these activities
are documented in detail in (Pourkomeylian et al. 2001).

According to the literature networking activities support knowledge sharing within some area of
interest, they operate on both personal and organisational levels, they basically rely on informal
structures, and they are activated by a need. Formal structures such as an electronic team room or an
Intranet that communicates common values and ideas throughout the organisation are often needed
to support the efforts. To facilitate innovation, an organisation needs both internal and external
networking activities.

114

Seven networking activities (called competence networks) were recently established at AstraZeneca
to facilitate knowledge sharing. These networks are open to all practitioners. Each network focuses
on a specific area such as: Internet/Intranet technology, project management, Total Quality
Management, and human computer interaction. We interviewed people working with these
networks to understand how they work and why some are successful and others fail. We learned
that the existing networking activities typically are informal, they are internal, and different IT-
based solutions are used to facilitate interaction. A dedicated network co-ordinator, a strong
commitment to participation, a critical mass of participants, an explicit purpose for each network,
management support, and a balance between junior and senior participants are seen as key success
factors by the participants (Pourkomeylian et al. 2001). The SPI Unit has used these insights and
experiences to enhance and further develop its networking activities.

First, a number of structured networking activities are in place. These are mostly organised as
formal meetings aiming to solve problems related to software engineering in specific projects or to
share knowledge and experience gained in different software projects. An example is the
customisation meetings in which different software engineering issues, such as how to validate
software and how to design test facilities for testing, are discussed between the SPI Unit and
members of a software project. The results of this kind of meeting are joint solutions of a specific
problem in a specific project. Another example is SPI workshops at which the SPI Unit and other
practitioners create new or improve existing software processes through dialog and knowledge
sharing. To improve an existing process or create a new process, the SPI Unit invites different
people to SPI workshops to discuss problems, experiences, and possible approaches in a specific
area. The focus of these meetings is on collaborative creation of knowledge. Input should come
from the experiences of the SPI Unit’s members, experiences of the practitioners, codified
knowledge stored in the EPL, and state-of-the-art knowledge about software engineering.

Second, less structured networking activities without formal co-ordination efforts are now
encouraged and facilitated by the SPI Unit. These networking efforts are activated on an ad-hoc
basis by a need for sharing knowledge and experience. An example is an internal network in the SPI
Unit through which the members of the unit share knowledge and experience about different
software issues. Another example is external networking activities in which members of the SPI
Unit share knowledge with other SPI experts and researchers via conferences, e-mail, or telephone.
Individuals use these networks when they need inspiration or information in a specific area. Input is
the participant’s experiences and knowledge, state-of-the-art knowledge on software engineering,
and in some cases information in the EPL.

The SPI Unit must continue to develop its networking activities for several reasons. This approach
supports implementation of processes and procedures, it is crucial in maintaining a strong service
orientation towards the software engineers and managers, and it is useful in creating the dialog and
exchange needed to prioritise future improvement initiatives. The SPI Unit should also consider to
expand its horizon and engage more actively in company wide networking. This can ensure a
satisfactory and uniform Q&C level globally and it can stimulate exchange and learning across
various sites within AstraZeneca.

115

6 DISCUSSION

We have analysed the SPI initiative at AstraZeneca, Mölndal in the light of theories of KM (Hansen
et al. 1999, Swan et al. 1999). We should be cautious when attempting to generalise the
experiences, because SPI initiatives and software organisations are different, and because the SPI
initiative at AstraZeneca has reached a certain level of maturity. We can, however, increase the
usefulness of our findings by positioning them in a broader research and practice context. This final
section will therefore evaluate conventional approaches to SPI, suggest lessons to other software
organisations on the design of KM strategies for SPI, and review the applied KM theories in the
light of our experiences.

The IDEAL model (McFeeley 1996, see Figure 1) and the CMM (Paulk et al. 1993, see Figure 2)
are expressions of KM strategies. KM is not explicated as part of the models, but software
engineering is a knowledge intensive activity and KM is implicitly integrated into SPI ideas and
practices (Mathiassen et al. 2001).

First, the IDEAL model offers a continuous, evolutionary learning cycle for diagnosing current
software practices, prioritising improvement actions, acting, and learning. This approach is
primarily based on a personalised approach where the uniqueness of the software organisation is in
focus, where commitments in social networks is the driving force, where each improvement project
has to develop customised solutions, and where extensive practitioner participation is
recommended. Codified knowledge plays a minor role in this model.

Second, the CMM offers an abstract, idealised model of a software organisation and its evolution as
it matures. The model is codified knowledge of software practices presented and described on
different levels of detail, i.e. five levels, specific key process areas on each level, and goals and
practices for each key process area. The idea is to reuse this knowledge across software
organisations to assess capabilities and to guide action. Personalised knowledge plays no role in the
model itself.

Third, to reach level 2 (repeatable) software organisations are advised to implement specific key
process areas (requirement management, project planning, project tracking and oversight,
subcontract management, quality assurance, and configuration management). The processes should,
however, not be implemented in a standardised fashion. It is recommended that each software
project finds its own way to reach the goals expressed in CMM. The approach is in this phase
therefore mainly personalised supplemented with some codified knowledge from CMM and state-
of-the-art software engineering knowledge.

Finally, the focus changes from experiments on the project level to standardisation of processes
across the software organisation when the SPI efforts continue towards level 3 (defined). Processes
are explicitly defined and maintained and new processes are created to support the adaptation of the
codified knowledge base to specific projects. As we approach level 3 the main KM approach
becomes codified and the customisation of this knowledge to specific software projects is itself
codified as a separate level 3 process.

This general KM strategy, that underpins SPI, can be combined with specific experiences from the
SPI Unit at AstraZeneca to arrive at a number of lessons for how software organisations can use
KM insights to guide their SPI efforts:

116

• A KM approach should be defined early in the SPI project. Software organisations are

knowledge- intensive in nature and SPI initiatives are particular forms of knowledge creation,
sharing, and management. The conventional approaches to SPI builds on standardised KM
strategies that do not necessarily fit the needs of each individual organisation. Hansen et al.’s
(1999) framework can, as demonstrated by the presented case, be used to diagnose the
characteristics of each individual initiative and on that basis form a dedicated KM approach.
This approach should reflect the emerging SPI organisation’s mission and needs (Hansen et al.
1999, Zack 1999).

• A KM strategy for SPI should include both codified and personalised approaches. Both our

specific experiences and the SPI literature indicate that combined approaches are needed. The
question is how. Hansen et al. (1999) propose a 80%-20% approach. We have found that one
also needs to consider differences between the services provided by an SPI unit and design
specialised strategies based on the characteristic features of the services. Looking at the
different nature of the IDEAL model and the CMM we suggest that improvement and
innovation oriented services should mainly be based on personalised approaches whereas
maintenance and diffusion of processes, procedures, and templa tes are more open to approaches
that are mainly codified.

• The KM strategy of an SPI initiative should change as the software organisation matures. The

difference in the underlying KM approach of CMM between level 2 and level 3 emphasises the
dynamics involved in KM strategies for SPI. On a general level, the idea is to mature the
software organisation’s processes. It is therefore fair to say that technologies like CMM
generate a push towards a codified approach. The nature of SPI is, however, learning and
change. Practising SPI requires innovation and creativity despite all the codified support
provided through various models. This fundamental nature of any improvement or change
initiative generates a fundamental pull towards a personalised approach.

Our study has confirmed that it is relevant, and quite useful, to supplement SPI knowledge with
insights from KM (Arent and Nørbjerg 2000, Baskerville and Pries-Heje 1999, Kautz and Thaysen
2001, Kautz and Nielsen 2001, Arent et al. 2001). Our emphasis has been on the issue of KM
strategy. We have found the distinction between the codified and the personalised approaches well
suited to understand the problems and challenges involved in managing knowledge in software
organisations and it has helped us identify key challenges in supporting innovation at AstraZeneca.

Our experiences suggest that the key strengths of Hansen et al.’s framework (1999) are its focus on
the issue of KM strategy, its simple and useful analytical approach to design a strategy, and its
emphasis on a mixed KM strategy linked to the organisation’s situation and overall business
strategy. We found the key weakness of the framework to be insufficient guidance on how to
operationalise and implement a specific KM strategy.

Swan et al.’s framework (1999) builds on an elaborate and practical view of innovation (Robertson
et al. 1996). Technology diffusion, e.g. an SPI effort, is seen as a highly interactive and partly
unpredictable process consisting of a series of episodes in which different groups iterate decisions
related to the technology. These episodes include: 1) agenda formation driven by the particular
needs of different groups; 2) selection of approaches based on a range of alternative options; 3)
implementation supported by organisation wide adoption and training activities; and 4) usage of the

117

technology tailored to the specific circumstances of different groups. We have found that this view
describes SPI practices well, it helps maintain focus on the importance of networking activities, and
it supports efforts to turn KM strategies into action. The weakness of the framework in relation to
SPI and software organisations is that it tends to see the cognitive-based approach and the
community-based approach as alternatives arguing for the latter and contrasting it to the former.

This leaves us with the main conclusion. SPI is a particular form of knowledge creation, sharing,
and management and it is advisable to explicitly address the underlying KM strategy. Each software
organisation has to find its own balance between personalised and codified approaches, this balance
needs to be dynamically adjusted as the organisation matures, and the KM strategy should
differentiate between different types of SPI services. The frameworks of Hansen et al. (1999) and
Swan et al. (1999) complement each other well in providing guidance to this process. They build on
the same basic approach to KM and they compensate for each others weaknesses.

ACKNOWLEDGEMENT

This research was sponsored by AstraZeneca R&D, Mölndal, Sweden in collaboration with the
Viktoria Institute, Gothenburg, Sweden and the Institute of Computer Science, Aalborg, Denmark.

REFERENCES

Aaen, I., Arent, J., Mathiassen, L. and Ngwenyama, O. (2001). A Conceptual MAP of Software
Process Improvement. Scandinavian Journal of Information Systems, Special Issue on Trends in the
Research on Software Process Improvement in Scandinavia, Vol. 13, pp. 123-146.

Alavi, M. (1999). Knowledge Management and Knowledge Management Systems. Journal of AIS,
Vol. 1, No.1, pp. 1-35.

Arent, J. and Nørbjerg, J. (2000). Organizational Knowledge Creation: A Multiple Case Analysis.
Proceedings of Hawaii International Conference on Systems Science.

Arent, J., Pedersen, M. H. and Nørbjerg, J. (2001). Strategies for Organizational Learning in SPI.
In: Mathiassen, L., Pries-Heje, J. and Ngwenyama, O. (Eds.): Improving Software Organisations -
From Principles to Practice, Addison-Wesley.

Augier, M. and Vendelo, M. T. (1999). Networks, Cognition and Management of Tacit Knowledge.
Journal of Knowledge Management, Vol. 3, No. 4, pp. 252-261.

Baskerville, R. and Pries-Heje, J. (1999). Managing Knowledge Capability and Maturity. In:
Larsen, T., J., Levine, L., and DeGross, J., I. (Eds.): Information Systems: Current Issues and
Future Change. Norwell, MA: IFIP/Kluwer Academic Publisher.

Brodman, J. G. and Johnson, D. L. (1995). Return on Investment (ROI) from Software Process
Improvement as Measured by US Industry. Software Process Improvement and Practice, Vol. 1 No.
1, pp. 35-47.

Brown, J. S. and Duguid, P. (1991). Organisational Learning and Communities-of-Practice: Toward
a Unified View of Working, Learning and Innovation. Organization Science, Vol. 2, No. 1, pp. 40-
57.

118

Davenport, T. H., De Long, D. W. and Beers, M. C. (1998). Successful Knowledge Management
Projects. Sloan Management Review, Winter, pp. 43-57.

Dixon, N. M. (1998). The Responsibilities of Members in an Organisation that is Learning. The
Learning Organisation, Vol. 5, No. 4, pp. 161-162.

Debou, C. (1997). SPI Success Factors: Toward More Business Orientation. Software Process
Newsletter, IEEE Computer Society, No. 10, pp. 15-18.

Goldenson, D. R. and Herbsleb, J. D. (1995). After the Appraisal: A Systematic Survey of Process
Improvement, its Benefits, and Factors that Influence Success. The Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, Technical Report CMU/SEI-95-TR-009.

Haley, T. J. (1996). Software Process Improvement at Raytheon. IEEE Software, Vol. 13, No. 6, pp.
33-41.

Halloran, P. (1999). Organizational Learning from the Perspective of a Software Process
Assessment and Improvement Program. Proceedings of Hawaii International Conference on
Systems Science, Los Alamitos, CA: IEEE Computer Society Press.

Hansen, T., Morten, N. and Tierney, T. (1999). What’s Your Strategy for Managing Knowledge?
Harvard Business Review, pp. 106-116.

Hayes, W. and Zubrow, D. (1995). Moving On Up: Data and Experience Doing CMM-Based
Process Improvement. The Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
Technical Report CMU/SEI-95-TR-008.

Herbsleb, J., Carleton, A., Rozum, J., Siegel, J. and Zubrow, D. (1994). Benefits of CMM-Based
Software Process Improvement: Initial Results. The Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, Technical Report CMU/SEI-94-TR-13.

Herbsleb, J., Zubrow, D., Goldenson, D., Hayes, W. and Paulk, M. C. (1997). Software Quality and
the Capability Maturity Model. Communications of the ACM, Vol. 40, No. 6, pp. 30-40.

Humphrey, W. (1989). Managing the Software Processes. Addison-Wesley.

Humphrey, W. S., Snyder, T. R. and Willis, R. R. (1991). Software Process Improvement at Hughes
Aircraft. IEE Software, Vol. 8, No. 4, pp. 11-23.

Kautz, K. and Nielsen, P. A. (2001). Knowing and Implementing SPI. In: Mathiassen, L., Pries-
Heje, J. and Ngwenyama, O. (Eds.): Improving Software Organisations - From Principles to
Practice, Addison-Wesley.

Kautz, K. and Thaysen, K. (2001). Knowledge, Learning and IT Support in a Small Software
Company. Proceedings of the European Conference on Information Systems, Bled, Slovenia.

119

Larsen, E. Å. and Kautz, K. (1997). Quality Assurance and Software Process Improvement in
Norway. Software Process - Improvement and Practice, Vol. 3, No. 2, pp. 71-86.

Mashiko, Y. and Basiili, V. R. (1997). Using the GQM Paradigm to Investigate Influential Factors
for Software Process Improvement. Journal of Systems and Software, Vol. 36, pp. 17-32.

Mathiassen, L. (2000). Collaborative Practice Research. Proceedings of the IFIP TC 8 WG 8.2
Working Conference on Organizational and Social Perspectives on Information Technology,
Aalborg, Denmark.

Mathiassen, L., Pries-Heje, J. and Ngwenyama, O. (Eds.) (2001). Improving Software
Organisations - From Principles to Practice. Addison-Wesley.

McFeeley, B. (1996). IDEAL. A User’s Guide for Software Process Improvement. The Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, Handbook CMU/SEI-96-HB-001.

Nonaka, I. and Takeuchi, H. (1995). The Knowledge-Creating Company. Oxford University Press.

Paulk, M., Curtis, B., Chrissis, M. and Weber, C. (1993). Capability Maturity Model for Software
Version 1.1. The Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Technical
Report CMU/SEI-96-TR-24.

Pourkomeylian, P. (2001a). Knowledge Creation in Improving a Software Organization.
Proceedings from IFIP WG8.6 Fourth Working Conference on Diffusing Software Product and
Process Innovations, Banff, Canada.

Pourkomeylian, P. (2001b). Analysing an SPI Project with the MAP Framework. Scandinavian
Journal of Information Systems, Special Issue on Trends in the Research on Software Process
Improvement in Scandinavia, Vol. 13, pp. 147-165.

Pourkomeylian, P. (2001c). An Approach to Institutionalisation of Software Processes. Proceedings
from Tenth International Conference on Information Systems Development, London, England.

Pourkomeylian, P., Hörnell, J. and Söderberg, S. (2001). Knowledge Sharing in a Software Process
Improvement Unit. Proceedings from The Second European Conference on Knowledge
Management, Bled, Slovenian.

Robertson, M., Swan, J. and Newel, S. (1996). The Role of Networks in the Diffusion of
Technological Innovation. Journal of Management Studies, Vol. 33, No. 3, pp. 333-359.

Scarbrough, H. and Swan, J. (1999). Knowledge Management and the Management Fashion
Perspective. Proceedings from, The British Academy of Management Conference on Managing
Diversity, Manchester, England.

Seufert, A., Bach, A. and Von Krogh, G. (1999). Towards Knowledge Networking. Journal of
Knowledge Management, Vol. 3, No. 3, pp. 183-185.

120

Shariq, S. Z. (1999). How does Knowledge Transform as it is Transferred? Speculations on the
Possibility of a Cognitive Theory of Knowledge. Journal of Knowledge Management, Vol. 3, No. 4,
pp. 243-251.

Swan, J., Newell, S., Scarbrough, H. and Hislop, D. (1999). Knowledge Management and
Innovation: Networks and Networking. Journal of Knowledge Management, Vol. 3, No. 3, pp. 262-
275.

Stelzer, D., Mellis, W. and Herzwurm, G. (1998). Technology Diffusion in Software Development
Processes: The contribution of Organizational Learning to Software Process Improvement. In
Larsen, T. and McGuire, E. (Eds.): Information Systems Innovation and Diffusion: Issues and
Directions, Idea Group Publisher.

Zack, M. H. (1999). Developing a Knowledge Strategy. California Management Review, Vol. 41,
No 3, pp. 125-145.

Zahran, S. (1998). Software Process Improvement: Practical Guidelines for Business Success.
Addison-Wesley.

121

KNOWLEDGE SHARING IN A SOFTWARE PROCESS IMPROVEMENT
UNIT

Pouya Pourkomeylian, Jörgen Hörnell, Staffan Söderberg

Abstract: The Software Process Improvement (SPI) unit of a multinational pharmaceutical
company, AstraZeneca, recently adopted a Knowledge Management (KM) strategy based
on two complementary approaches, i.e. the codified and the personalised to support
knowledge sharing within and outside the SPI unit. The SPI unit has developed IT-based
solutions to make codified knowledge available and accessible to all practitioners in the
organisation. The SPI unit has also initiated some basic networking efforts to facilitate the
sharing of personalised knowledge between the relevant actors. To improve and further
develop its knowledge sharing facilities the SPI unit decided to conduct a survey of the
organisation’s experiences with a number of competence networks that had been in
operation for some years. This paper combines the results of this survey with insight from
the literature on networks as facilities for knowledge sharing. On the basis of this analysis
we propose that: 1) the SPI unit’s business goals should be the driving forces behind the
knowledge sharing approach, 2) both structured and non structured networks should be
developed to support knowledge sharing within and outside the SPI unit, 3) knowledge
sharing should become an integrated part of the SPI unit’s daily work.

Keywords : Software Process Improvement (SPI), Knowledge Sharing, Networking.

1 INTRODUCTION

Perspectives on organisations are changing from seeing them as strictly structured and manageable
systems to treating them as networks in which people are not simply data processors but also
knowledge creators and innovators (Seufert et al. 1999, Nonaka and Kenney 1991). In such settings
the focus shifts from products and systems as units of analysis to people, organisations, and the
social processes that bind them together in ongoing relations (Webster 1992). Such organisations
perceive knowledge creation, modification and transfer as taking place in the context of a network
rather than seeing Knowledge Management (KM) merely as a process of capturing, distributing,
and effectively using the most valuable knowledge (see Shariq 1999, Scarbrough and Swan 1999,
Zack 1999).

Two main strategies for knowledge management has been identified: 1) the cognitive model and 2)
the community model (Swan et al. 1999). The cognitive model relies on the codification of
knowledge objects stored in databases from which they can be accessed and easily used by anyone
in the organisation (Swan et al. 1999). This is what Hansen et al. (1999) call the codification
strategy focusing on “codified knowledge“. In contrast, the community model provides a
perspective in which knowledge is closely tied to the person who creates it and is shared chiefly
through direct person-to-person contacts (Swan et al. 1999). This is called the personalisation
strategy, focusing on “personalised knowledge“ (Hansen et al. 1999).

122

The most widely used contemporary approach for creating new knowledge and improving practice
within the software industry is called Software Process Improvement (SPI). An SPI effort typically
starts with establishing the current maturity level of the organisation and aims at improving the
software processes on the basis of organisationa l goals and practitioners’ competencies and
experience (see Arent 2000). Recent reports have reflected upon the use of KM insights in SPI.
Arent and Nørbjerg (2000) and Pourkomeylian (2001a) analysed how organisational knowledge
creation processes can support SPI initiatives. Stelzer et al. 1998 studied how principles and
technologies from organisational learning can be applied to SPI initiatives and become enablers of
SPI success. Halloran (1999) investigated the relationship between an SPI approach and
organisational learning. Mathiassen and Pourkomeylian (2001) explored how KM strategies can be
applied to an SPI unit. Kautz and Thaysen (2001) studied how knowledge, learning and IT support
occur in small software organisations. These studies indicate that KM insights are indeed useful in
the context of SPI initiatives.

Within the KM there has been an increasing interest in the personalised dimension of knowledge,
which is perhaps most difficult to manage as it cannot be formally communicated and is embedded
in the routines and practices of the organisation (see Nonaka and Takeuchi 1995, Augier and
Thanning 1999). Networks have been proposed by many researchers as facilitators for managing the
creation and transformation of personalised knowledge (Seufert et al. 1999, Davenport et al. 1998,
Swan et al. 1999, Augier et al. 1999). The focus of the present study is therefore on the issues of
knowledge sharing for facilitating the creation, modification and transfer of personalised knowledge
to find answers to: How can knowledge sharing be approached within and outside an SPI unit?

The paper is one of the results of an SPI research project carried out in a software organisation that
is a part of an R&D IS organisation at AstraZeneca, Mölndal, a multinational pha rmaceutical
company based in Sweden. An SPI effort was started in April 1999 and an SPI unit created in June
2000 to support the implementation of new software processes in the organisation. An earlier study
done in this research project demonstrated a need to adapt and implement KM strategies for the SPI
unit (see Mathiassen and Pourkomeylian 2001). To support KM efforts, the SPI unit adopted a KM
strategy based on two complementary approaches, i.e. the codified and the personalised. Some IT-
based solutions were developed to support fast accessibility to and availability of the codified
knowledge among members of the SPI unit and other practitioners working with software
engineering in the organisation. The SPI unit also initiated some basic networking effo rts to
facilitate the sharing of personalised knowledge between the relevant actors.

In addition to these initiatives the organisation established some years ago seven informal structured
focusing forums (called competence networks) as facilitators of knowledge sharing. These networks
are open to all practitioners and their idea is to facilitate the sharing of personalised knowledge
among practitioners. Each network focuses on a specific interest area such as: internet/intranet
technology, project management, Total Quality Management (TQM), and Human Computer
Interaction (HCI). A person responsible for co-ordinating networking activities heads each network.
Some of these networks have worked well (are still working), some simply died, and others are
somewhere in between.

To understand how to improve and further develop facilities for supporting the sharing of
personalised knowledge within and outside the SPI unit we (the authors, all members of the SPI
unit) needed to learn from the experiences of people working with these networks. We thus decided
to analyse these networks to understand how they work and why some are successful and others

123

fail. We planned and conducted interviews with members of the networks to understand the
challenges in our own organisation of knowledge sharing through networking. We then combined
the results of the analysis with insights on networking from the literature to propose a way to
improve knowledge sharing in and outside our SPI unit.

Section 2 presents the research approach. Section 3 gives the organisational context of the case.
Experience with already established network facilities is described in section 4 and networking
insight in the literature is reviewed in section 5. Section 6 discusses the results of the analysis in the
light of the theoretical framework presented in section 5 and proposes improvements and further
development of the networking facilities for the SPI unit.

2 THE RESEARCH APPROACH

The study combines the results of a survey in which the experiments with networking at
AstraZeneca, Mölndal, were analysed with insights on networking in the literature to guide the
implementation of knowledge sharing facilities for the SPI unit. The paper is one of the results of a
collaborative practice research project (see Mathiassen 2000). The basic approach is action
research, but more traditional practice studies and experiments are applied to serve specific needs in
the collaboration. The paper can be seen as a survey in which a theoretical framework for
knowledge sharing is used to evaluate current knowledge sharing practices. The purpose is to
provide guidance for improving the applied personalised strategy in the SPI unit (see Seufert et al.
1999, Swan et al. 1999, Augier et al. 1999, and Davenport et al. 1999).

We studied and analysed seven (of a total of seven) competence networks in the organisation that
have been in use for more than three years. To gather data on the current state of knowledge sharing
through these networks, we conducted qualitative interviews (see Patton 1990). To make sure that
the interviews covered all aspects of interest as regards knowledge sharing we developed a
structured interview guide. Our focus was on how the networks are organised, how they work, what
the difficulties are in sharing knowledge through these networks, and what the success factors are in
those networks that functioned well. Sixteen members (almost two persons from each network with
a total 35 registered members) of these networks were interviewed (1.5-2 hours per interview). The
interviewees held different roles in the networks, both as members and as network co-ordinators (a
person who has co-ordinating responsibility for the network activities, such as calling members to
meetings and so on). The persons were selected so as to capture the different view of how the
networks operate and function.

Because we were interested in improving the networking facilities in the SPI unit, we chose to focus
our study on three main areas. 1) The structure of the networks, i.e. how the networks were
organised and operated. 2) The challenges, i.e. which were the difficulties of knowledge sharing
through the networks. 3) The success criteria, i.e. which were the success criteria for sharing
knowledge through networks. The results of the interviews were documented (by taking notes and
recording the interviews on tape) and analysed in the light of the theoretical framework presented in
section 5.

The findings of the analysis are used to inform further networking initiatives in the SPI unit.

124

3 THE CASE

AstraZeneca is a research-driven pharmaceutical company with some 10,000 R&D personnel and
an R&D investment of US $2 billion in 1999. The study was planned and carried out as a part of an
SPI effort in a software organisation called Development IS (DevIS) which is part of the R&D
operation in Mölndal in Sweden. The aim of the SPI effort is to improve the capability of the
software organisation.

The SPI project was started in April 1999 (and ended in June 2001) with the purpose of improving
DevIS’s software processes. The SPI effort was planned and carried out on the basis of the results
of an assessment that established the current maturity level of the organisation. The steering
committee of the SPI initiative gave priority to the following improvement activities given in the
assessment report. 1) Establish a minimum documentation level for documenting the results of
software projects and create a software documentation guideline. 2) Improve processes for software
validation, software change management and document version control and create guidelines to
support these processes. 3) Create a template library including templates for documentation of such
software development activities as: user requirement specification, design specification, test plan,
and validation plan. The implementation phase of the project included further activities in which the
processes were improved on the basis of experiences of using them in practice. This phase resulted
in a new version of the software process guidelines in June 2001 and an evaluation of the effects of
the SPI effort in the organisation so far.

The company long ago adopted Standard Operation Procedures (SOPs) that explicitly describe the
company’s software quality rules. A special unit was created in January 2001 called R&D IS
Quality and Compliance (the SPI unit) which was made responsible for leading all SPI activities in
the company and co-ordinating all quality and compliance issues at the site level. The SPI unit
consists of six persons, all with experience in software engineering, software process improvement,
and quality and compliance. One of the authors is the project manager of the SPI effort and the
other two are members of the SPI project team. The SPI initiatives that led to the formation of the
SPI unit are reported in (Pourkomeylian 2001b).

The primary customers of the SPI unit are the employees of DevIS. They are basically engaged in
software development, software maintenance, and software operation activities. The software
engineering activities occur in three forms: 1) development of totally new software products
(software development), 2) developing or changing existing software products (software
maintenance), and 3) implementing locally software products which are globally developed or
purchased. A typical software development project at DevIS is scheduled to take between six
months and one year and includes analysis, design, construction, testing, and validation. Software
maintenance activities consist of changes in the code or developing a completely new application
for existing software products. Software products in DevIS include the software and all related
documentation (e.g. user requirement specification, test plan, validation plan, validation report, and
user manual).
Knowledge about the company’s SOPs, software process guidelines and templates has been
codified (as an Electronic Process Library (EPL)) by the SPI unit and made available and accessible
to all practitioners in the company by means of IT (see Mathiassen and Pourkomeylian 2001). The
SPI unit also collaborates with actors on two different levels for sharing personalised knowledge. 1)
Internally within the SPI unit, individuals and small groups of individuals collaborate to share
knowledge and experience of different software projects and different SPI efforts. 2) Externally the

125

SPI unit has established network facilities with software projects to support them in customising
software processes in each software project (Customisation Meeting). Another area in focus with
respect to external networking is the SPI working groups. These groups consist of people with
different skills gathered together (invited by the SPI unit to SPI workshop sessions) to discuss
software process problems or improve or create new software processes through dialogue and
knowledge sharing. Another external networking facility through which the SPI unit shares
knowledge is a global Quality and Compliance Network in the AstraZeneca group.

4 NETWORKING EXPERIENCES

Today, there are seven internal competence networks in the company that have been in operation
for a number of years as facilitators for sharing personalised knowledge between practitioners.
In this section we present the results of interviews with members of these network facilities to show
how they function seen from the participants’ point of view. The results have been divided into the
three main areas: 1) the structure of these networks, 2) the challenges of knowledge sharing through
networking, and 3) the criteria for implementing a successful network facility. Some of the
participants’ ideas have been cited below.

4.1 Networks and their structure

“A forum for people with the same interest or tasks”.
“Different people with different roles or tasks within the same competence area”.
“The networks can be informal if a few people are networking, but they should still be formalised to
support the existence of the network. Formalisation of networks also supports the distribution of
information about the ideas of networks”.
“The networks should be informal (being initiated by a need), but they should have some formal
meetings as connection nodes”.

On the basis of a common interpretation among the practitioners interviewed, a network facility at
AstraZeneca R&D Mölndal is understood as a number of people having the same area of interest
and interacting with each other to be able to share knowledge and information. This understanding
agrees well with what Augier et al. (1999) and Swan et al. (1999) define as a network.

The seven networks are built on a more formal basis and are divided into different competence
areas, for example Lotus Notes, Internet, and Total Quality Management. Each network is co-
ordinated by a network co-ordinator responsible for planning and calling network members to
networking meetings. In each network the person who is more interest in networking and the
network’s focus area becomes the network co-ordinator. The results of each meeting are often
documented and made available to all practitioners in the company. The network meetings are held
on a regular basis, and the location and frequency of the meetings are most often decided by the co-
ordinator of each network. Some meetings in some networks are more structured than others. Some
have an agenda with different subjects tha t will be discussed during the meeting, and others are
based mainly on open discussion with no formal agenda.

Most of the practitioners interviewed preferred the network to have an informal character while they
felt that meetings should be more structured with a formal agenda for each meeting. Network
members should not feel part of the bureaucracy of a formal organisation. Each individual should be

126

able to choose whether he or she wishes to participate in any particular meeting. For this to be
possible, members should know the purpose of each meeting in advance.

All seven networks had an internal focus in the company. Today there are other networks with a
global focus. An example is the Quality and Compliance network, which includes different quality
managers from different sites at AstraZeneca collaborating to share knowledge.

Different IT or technical solutions such as telephones, e-mail, videoconferencing and discussion
forums were considered an important extension of face-to-face meetings, especially when members
were in different geographic locations (see Alavi 1999, Scarbrough and Swan 1999, Scarbrough et
al. 1999, Hansen et al. 1999).

4.2 Challenges of Networking

“Lack of one person who co-ordinates all network activities”.
“Not having time dedicated for networking”.
“Some people are not as committed as they should be, they are just listeners”.

A lack of a dedicated network leader to co-ordinate meetings, assemble members and ensure that
there are regular meetings to address interesting topics and a lack of time on the part of both
network members and network co-ordinators made it difficult for networks to function well. Some
network co-ordinators also saw a lack of commitment on the part of participants as an issue.
Members of some networks were only listeners and did not participate in discussions. On the other
hand some members felt that they could not put more time into networking because of their regular
work. They mentioned a need for more time to be formally dedicated by their managers for
networking. They felt that management should encourage networking and provide resources to
support the creation and transfer of knowledge and experience in the company.

None of the networks followed a defined network strategy that addressed how networking should
take place. Almost all interviewees mentioned the need of a networking strategy to support and
address different issues such as organisation, participation, and knowledge sharing. The issue of
adopting a network strategy has been treated by Seufert et al. (1999).

4.3 Critical Success Factors

“You have to show interest in networking, otherwise you get nothing back. What the network is
focused on is important. It should be relevant to the interests of the participants”.
“Networks have to be for everyone, free to participate. It works much better if you have a critical
mass of interested people”.
“It must be possible for us to participate in meetings without giving up our coffee breaks”.

The ability to discuss software problems and perhaps find solutions through sharing information
and knowledge was considered to be a major driving force for participating in the networks. It is
important that the knowledge flowing through the network is relevant to the participants. The
knowledge should contribute to their work; otherwise, it is difficult to motivate spending time on
networking. Basically, the purpose of networking must be visible to those involved in the networks.
The practitioners considered it important to have a network that is open to everyone with different
levels of experience, i.e. a network should consist of both experienced and junior persons. This

127

supports the creation and transfer of personalised knowledge from more experienced practitioners to
junior participants.

The seven existing networks function both on an individual level (between the individuals in a
network) and on a group and organisational level (between a group of individuals in the same
network and/or between different networks). The networks consist of practitioners with different
skills from different IS organisations at AstraZeneca R&D Mölndal (there are four local IS
departments with the company).

It is important according to the interviewees, that a network is built around a critical mass of people
with extensive knowledge. Otherwise, it is difficult to create and transfer relevant knowledge
through the network. While the number of participants in a network is important, the common view
of the respondents is that the total number should be kept within the range of 10-15 persons so that
it is possible to create relations and initiate discussions at meetings.

The interviewees also identified a dedicated network leader with time and resources to co-ordinate
network activities as a critical success factor for networking. Finally management support of
networking efforts was emphasised. It is very important that management provides the necessary
conditions for networking (such as time for networking and tools for facilitating the knowledge
sharing activities).

To summarise the interviewees stand points, networks in AstraZeneca are understood as groups of
people having the same area of interest interacting with each other for knowledge sharing. None of
the networks are based on a networking strategy. The structure of networks is informal while most
networking activities are co-ordinated in a more structured and formal way. All the seven networks
operate internally in the company and different IT-based solutions are used to facilitate networking
efforts. Not having a dedicated network co-ordinator and lack of commitment were identified as
issues by the interviewees. According to the interviewees, success in networking depends on
additional factors, such as knowing the purpose of the network and having a critical mass for
networking, management commitment, and a balance between junior and senior members.

5 INSIGHT INTO NETWORKING

To learn about general insights into knowledge sharing through networks we studied the relevant
literature. We decided to focus on Augier et al. 1999, Swan et al. 1999, Davenport et al. 1998,
Dixon 1998, and Seufert et al. 1999 because they address our concerns related to networking, i.e.
the structure of the networks, the challenges of networking, and the criteria for success in
networking. This section presents insights from these source.

One way to describe networks is as media for knowledge sharing on both a personal and an
organisational level (Augier et al. 1999 and Swan et al. 1999). One important aspect of networks is
their structure. Does a network have a rigid structure like that of an organisation? Does it have a
clear hierarchy? The answer to these questions is in most cases no, because networks represent
loose couplings among the entities they include. A network is then by definition an informal
structure in contrast to other more formal aspects of organisations (see Augier et al. 1999).

Networks can be external or internal, i.e. they can involve participants outside the organisation or
can be strictly delimited by company boundaries (see Swan et al. 1999). Swan et al. (1999) suggest

128

that, in order to be innovative (to facilitate the diffusion and adoption of new ideas), an organisation
needs both internal and external networks. External networking can provide employees with
alternative viewpoints and insights that might be useful for their organisation, but there must be
internal networking in order to gain acceptance for and to share knowledge to add value to the
company. Internal networks are not just for the distribution of new ideas that may later be
transformed into organisational knowledge. They are also necessary for bringing together the
different skills needed to take maximum advantage of any potential innovation and for
implementing them throughout the company (see Swan et al. 1999).

Davenport et al. (1998) and Seufert et al. (1999) discuss an appropriate architecture or
infrastructure in a network initiative. They argue that it is not only the informal network (i.e. the
people connected by loose couplings) that is important, but also the more formalised parts. These
are made up of formal structures, for example an electronic team room or an intranet that
communicates common values and ideas. In general, it is important to make use of modern
communication technologies as a support for the network (especially if the network is distributed
over different time zones and physical locations).

One possible problem in knowledge sharing according to Dixon (1998) is the issue of resistance by
management since the transfer of knowledge also means a transfer of power. Davenport et al.
(1998) suggest in addition that management can be less supportive of a network initiative because
network members spend too much resources networking. Dixon (1998) points out that all members
must recognise their roles and responsibilities in the network in order for the network to function.

According to Seufert et al. (1999) three things are of particular importance in implementing a
successful network: 1) Interconnect different levels and areas of knowledge. Different levels and
areas of knowledge must be connected, since new knowledge is created from several sources of
older knowledge. A network strategy should therefore consider different kinds of knowledge as well
as different dimensions of the organisation (e.g. individuals, groups, and departments). 2)
Interconnect knowledge work processes and knowledge network architectures. An appropriate
architecture, or infrastructure, is also crucial. Both informal and formal structures are required since
knowledge creation and transfer can occur in a physical meeting room, an electronic distributed
team room, or in a “mental room”, i.e. through common values and ideas. 3) Interconnect
knowledge work processes and facilitating conditions. The facilitating conditions are very important
and include the organisational structure, management systems, and the corporate culture. This may
imply establishing a corporate culture that does not suffer from the “not invented here” syndrome.

Summarising insight on networking in Augier et al. 1999, Swan et al. 1999, Davenport et al. 1998,
Dixon 1998, and Seufert et al. 1999, one can see networks as media for knowledge sharing on both
a personal and organisational level. Networks are basically informal structures and should be
activated by a need. Formal structures such as an electronic team room or an intranet that
communicates common values and ideas throughout the organisation are needed to support the
knowledge sharing efforts. To facilitate the diffusion and adoption of new ideas, an organisation
needs both internal and external networks. Successful network facilities should interconnect: 1)
different levels and areas of knowledge, 2) knowledge work processes and knowledge network
architectures, and 3) knowledge work processes and facilitating conditions.

129

6 DISCUSSION AND PROPOSAL TO KNOWLEDGE SHARING
APPROACH

This section discusses networking experiences at AstraZeneca (section 4) in the light of the
literature on networking (section 5) and proposes improvements to knowledge sharing facilities in
the SPI unit.

6.1 Discussion

Formalisation: One possible reason why people prefer more formal meeting structures at
AstraZeneca Mölndal is that management has not formally addressed networking as an appointed
facility for knowledge sharing. The networks have been initiated by the participants. As there has
been no “push” from management to facilitate knowledge sharing via networking the meetings must
have a more formal form in order to survive.

Externalisation: The seven networks studied at AstraZeneca in Mölndal have their major focus in
the company. However there are other globally organised networks at the company that have
members from different AstraZeneca sites (e.g. the Quality and Compliance Network). Our
understanding of why the seven networks studied do not have an external orientation is that external
networks (global networks) require more active involvement of management. For each global
network, there is a network leader who has been appointed by management with dedicated time to
facilitate networking. The seven networks studied have no (management appointed) person who is
responsible for expanding the network globally.

Purpose: What we found in the interviews was an unclear understanding from the practitioners’
point of view of why a network exists. We believe that this problem occurs because of lack of a
networking strategy. Adopting a networking strategy that addresses a clear purpose of the
networking, means for communication and the role and responsibility of management may help to
reduce this problem (see Davenport et al. 1998, Hanssen et al. 1999).

Commitment: Another challenge identified by the practitioners is a lack of commitment to
networking efforts among network co-ordinators and members. This was also the most frequent
answer of interviewees to why networks do not work. In our understanding, there is however a
commitment from both the members and the network co-ordinators for networking. But because of
lack of dedicated time for networking their capacity for participating in networking efforts is
limited. We believe that a networking strategy that addresses the important issue of resources spend
on networking could help to reduce this problem.

Co-ordination: One interesting finding as regards network co-ordinators is that all interviewees in
our study considered a leader or co-ordinator to be absolutely critical for the network, not only for
its start-up but for its continuation as well. This is somewhat contradictory to what Davenport et al.
(1998) consider to be an indicator of success, namely that the network must be an organisational
initiative and not an individual project. The seven studied networks are, however, mainly individual
projects. Many networking efforts are planned and organised by the network co-ordinators.
Important questions such as: how to initiate network facilities, what is the purpose of networking,
how to provide time for networking, and how to relate networking to individual and company goals
are not addressed within AstraZeneca Mölndal. That makes the network co-ordinator’s role crucial
for the establishment and survival of networks.

130

Resistance: We did not find any indicators of resistance by management (see Dixon 1998) to be an
issue in this study. By participating in a network and sharing knowledge you might however reduce
your relative power as an employee. To motivate people to participate despite this possible
drawback, they must receive something in return - either the understanding that they themselves
gain knowledge and thereby power or some kind of reward according to a system implemented on a
company level. This again relates to the issue of motivation for participation. There must be some
evidence that the network can help employees in their jobs or to develop general competencies of
importance to their profession. One way to do this is for the entire company to acknowledge the
value of networking and commit to the idea of knowledge sharing. This is what Seufert et al. (1999)
and Davenport et al. (1998) mean when they talk about the need for facilitating conditions and a
knowledge friendly culture. Our study did not find any indications that there should be major
obstacles to develop such a culture further at AstraZeneca in Mölndal.

Critical mass: We encountered several opinions about the size of a network. Most interviewees said
that a network should not be ”too big”. A maximum of about 10-15 persons was suggested because
a larger network lacks the necessary personal touch and becomes a group of anonymous
participants. On the other hand, some of the participants said that the minimum limitation for a
network is two persons and that there is no upper limit. The participants’ different feelings about the
size of a network are very likely related to their standpoints on the structure of the networks.
Planning and organising meetings with more than 10-15 people require a great deal of planning and
hence a more formal structure. In contrast, networking through e-mail, telephones, and video
conferencing systems on a more ad-hoc basis does not require extensive planning.

Adding value: The interviewees saw, as mentioned, the notion of adding value as a critical success
factor. Attention to both individuals and company goals is an important factor for implementing
successful knowledge sharing facilities. If both the members of networks and the management
understand how networking can help satisfy personal goals and business goals, it may be easier to
gain commitment on all levels (see Dixon 1998 and Davenport et al. 1998). This issue should be
addressed in any networking strategy that is adopted.

6.2 Improving knowledge sharing in the SPI unit

The networking efforts of the SPI unit should be based on the overall business goals of the
organisation combined with an understanding of the needs and behaviours of the relevant
individuals related to the unit. These overall concerns should be expressed in a networking strategy
that should be communicated to all practitioners on different levels of the organisation. Different
types of networking facilities should be developed to support the different needs of the unit’s
customers and networking should be developed further as an integral part of the unit’s daily work.

Based on these insights and existing facilities for networking in relation to the SPI unit figure 2
illustrates an overall design of the networking facilities.

131

EPL
for

Codified Knowledge

Structured Networks

SPI unit’s internal networks

Non-structured Networks

Sharing experiences

Feedback
Co-ordinating

Input

Input

Further improvement

Input

The Networking Strategy

Feedback

Supports
Addresses

Addresses networking issues

SPI unit’s
Business Goals

Feedback

Figure 1. Proposed design of knowledge sharing facilities for the SPI unit

The main task in the SPI unit is to manage knowledge about software engineering practices at
AstraZeneca. Our KM strategy combines a codified approach and a personalised approach (see
Mathiassen and Pourkomeylian 2001). An IT-based facility has been implemented to support the
sharing of codified knowledge within and outside the SPI unit (the Electronic Process Library,
EPL). The SPI unit needs to further develop a number of structured and non-structured networking
facilities to implement its KM strategy. The networking strategy should address the following
issues: What types of networking facilities are needed for different customers? How should the
networks be organised? How much time should the practitioners put into networking efforts? How
does networking add value to practitioners and to the organisation? the networking strategy should
then be communicated to all members of the SPI unit.

Structured networks are co-ordinated by the SPI unit, organised mostly as formal internal and
external meetings aiming to solve problems related to software engineering in specific projects or to
share knowledge and experience gained in different software projects. An example is customisation
meetings in which different software engineering issues, such as how to validate software and how
to design test facilities for testing, are discussed between the SPI unit and members of a software
project. The results of this kind of meeting are joint solutions of a specific problem in a specific
project. Another example of structured network facilities is SPI workshops at which the SPI unit
and other practitioners create new or improve existing software processes through dialog and
knowledge sharing. To improve an existing process or create a new process, the SPI unit invites
different people to SPI workshops to discuss problems, experiences and possible approaches in a
specific area. The focus of these meetings is the creation of knowledge. Input at these meetings
should come from the experiences of the SPI unit’s members, experiences of the practitioners,

132

codified knowledge stored in the Electronic Process Library (EPL), and state-of-the-art knowledge
about software engineering.

Non-structured networks are networking facilities without a formal organisation. Less co-ordination
efforts are made in such networks. Networking efforts are activated on an ad-hoc basis by a need for
sharing knowledge and experience. An example is the internal network in the SPI unit through
which the members of the unit share knowledge and experience internally about different software
issues. Another example is external networking activities in which the members of the SPI unit
share knowledge with other practitioners via e-mail or telephone. There is less need for co-
ordinating efforts in these networks and individuals use the network when they need information in
a specific area. Input to non-structured networking facilities should be the participant’s experiences
and in some cases information in the EPL. The role of the SPI unit’s members in non-structured
networks should be that of participants.

The SPI unit has gained important insights from studying experiences with networking at
AstraZeneca in Mölndal and the literature on networking to support sharing of personalised
knowledge. In summary, these activities suggest that the SPI unit should:

• Identify further external networking facilities to support all its customers.
• Develop structures for collecting, analysing and evaluating feedback from both structured

and non-structured networking facilities to improve its networking strategy.
• Internally develop structured and non-structured networks to support the creation of

knowledge through the experience gained in different software projects.
• Use the EPL and other IT-based media (e.g. e-mail and intranet) to share knowledge

internally and externally.

ACKNOWLEDGEMENT

This research was sponsored by AstraZeneca R&D Mölndal, Sweden in collaboration with the
Viktoria Institute Gothenburg, Sweden, and the Institute of Computer Science, Aalborg, Denmark.

REFERENCES

Alavi, M. (1999). Knowledge Management and Knowledge Management Systems. Journal of AIS,
Vol. 1, No.1, pp. 1-35.

Arent, J. (2000). Normative Software Process Improvement. Ph.D. Thesis, Aalborg University:
Department of Computer Science.

Arent, J. and Nørbjerg, J. (2000). Organizational Knowledge Creation: A Multiple Case Analysis.
Proceedings of Hawaii International Conference on Systems Science.

Augier, M. and Vendelo, M. T. (1999). Networks, Cognition and Management of Tacit Knowledge.
Journal of Knowledge Management, Vol. 3, No. 4, pp. 252-261.

Davenport, T. H., De Long, D. W. and Beers, M. C. (1998). Successful Knowledge Management
Projects. Sloan Management Review, Winter, pp. 43-57.

133

Dixon, N. M. (1998). The Responsibilities of Members in an Organisation that is Learning. The
Learning Organisation, Vol. 5, No. 4, pp. 161-162.

Halloran, P. (1999). Organizational Learning from the Perspective of a Software Process
Assessment and Improvement Program. Proceedings of Hawaii International Conference on
Systems Science, Los Alamitos, CA: IEEE Computer Society Press.

Hansen, T., Morten, N. and Tierney, T. (1999). What’s Your Strategy for Managing Knowledge?
Harvard Business Review, pp. 106-116.

Kautz, K. and Thaysen, K. (2001). Knowledge, Learning and IT Support in a Small Software
Company. Proceedings of the European Conference on Information Systems, Bled, Slovenia.

Mathiassen, L. (2000). Collaborative Practice Research. Proceedings of the IFIP TC 8 WG 8.2
Working Conference on Organizational and Social Perspectives on Information Technology,
Aalborg, Denmark.

Mathiassen, L. and Pourkomeylian, P. (2001). Knowledge Management in a Software Process
Improvement Unit. International Conference on Managing Knowledge: Conversations and
Critiques, University of Leicester, England.

Nonaka, I. and Kenny, M. (1991). Towards a new theory of innovation management: a case study
comparing canon, Inc. and Apple Computer, Inc. Journal of Engineering and Technology
Management, Vol.8, pp. 67-73.

Nonaka, I. and Takeuchi, H. (1995). The Knowledge-Creating Company. Oxford University Press.

Patton, M. Q. (1990). Qualitative Evaluation and Research Methods. Sage Publications.

Pourkomeylian, P. (2001a). Knowledge Creation in Improving a Software Organization.
Proceedings from IFIP WG8.6 Fourth Working Conference on Diffusing Software Product and
Process Innovations, Banff, Canada.

Pourkomeylian, P. (2001b). Analysing an SPI Project with the MAP Framework. Scandinavian
Journal of Information Systems, Special Issue on Trends in the Research on Software Process
Improvement in Scandinavia, Vol. 13, pp. 147-165.

Scarbrough, H. and Swan, J. (1999). Knowledge Management and the Management Fashion
Perspective. Proceedings from, The British Academy of Management Conference on Managing
Diversity, Manchester, England.

Scarbrough, H. and Swan, J., ed. (1999). Case Studies in Knowledge Management. London:
Institute of Personnel and Development.

Scarbrough, H., Swan, J. and Preston, J. (1999). Knowledge Management: A Literature Review.
London: Institute of Personnel and Development.

134

Seufert, A., Bach, A. and Von Krogh, G. (1999). Towards Knowledge Networking. Journal of
Knowledge Management, Vol. 3, No. 3, pp. 183-185.

Shariq, S. Z. (1999). How does Knowledge Transform as it is Transferred? Speculations on the
Possibility of a Cognitive Theory of Knowledge. Journal of Knowledge Management, Vol. 3, No. 4,
pp. 243-251.

Stelzer, D., Mellis, W. and Herzwurm, G. (1998). Technology Diffusion in Software Development
Processes: The contribution of Organizational Learning to Software Process Improvement. In
Larsen, T. and McGuire, E. (Eds.): Information Systems Innovation and Diffusion: Issues and
Directions, Idea Group Publisher.

Swan, J., Newell, S., Scarbrough, H. and Hislop, D. (1999). Knowledge Management and
Innovation: Networks and Networking. Journal of Knowledge Management, Vol. 3, No. 3, pp. 262-
275.

Webster, F. E. (1992). The changing role of marketing in the corporation. Journal of Marketing,
Vol. 56.

Zack, M. H. (1999). Developing a Knowledge Strategy. California Management Review, Vol. 41,
No 3, pp. 125-145.

135

III INDUSTRIAL CONTRIBUTIONS

The industrial contributions of this thesis are described in a number of documents. The documents
are collected in a separate volume and are available only for the committee of this thesis for reasons
of confidentiality. The following gives a brief description of each document.

1. The Project Specification *: This document was created by me early 1999 and was the contract

between the project and the sponsor of the project, defining the conditions under which the
project should be executed.

2. The CMM Questionnaire *: This document consists of questions about how system
development activities occur within DevIS at AstraZeneca in Mölndal.

3. The Software Process Improvement Report 1999 *: This document summarises the main
suggestions for improvements as results of the quality improvement activities carried out at
DevIS. These activities include the SPI initiatives (the CMM assessment) and other quality
efforts made at DevIS.

4. The Software Guidelines: Three guidelines were created as the results of the SPID project: 1)
Document Description Guideline: the purpose of this document is to describe the contents of
minimum documentation requirements needed in a system development project, 2) Software
Validation Guideline: the purpose of this document is to support practitioners in understanding
the basics of software validation, 3) Change and Version Control Guideline: the purpose of this
document is to describe the change control process in the system development and maintenance
projects.

5. The Templates *: 27 templates were created to support the documenting of the results of
software development activities in software projects.

6. The Implementation Plan: The purpose of this document is to describe the implementation plan
for SPID improvements.

7. The EPL *: The EPL includes among others software guidelines, the process maps, SOPs, and
better practices.

8. The Projects: The SPI unit supports 21 software projects (October 2001) to customise the new
processes to fit their conditions within AstraZeneca in Mölndal. The projects are of different
characters such as: development, change or maintenance activities, and software validation
activities. A list of all projects that the unit supports is available through the EPL.

9. The SPID Questionnaire *: This document consists of questions about how the SPI unit’s
services supported the implementation efforts in DevIS.

10. The Networking Questionnaire *: This document consists of questions about how networking
facilities work in DevIS.

11. The Final Project Report for SPID 2001 *: This document summarises the results of the SPID
project and is focused on reporting the final results of the improvement activities performed
within the scope of the project.

The contents of the documents with * are illustrated as follows:

The Project Specification
The following issues are addressed in this document:

• Project sponsor/System owner

136

• Project Manager (i.e. PGM)
• Background
• Project Deliverables
• Objectives and Expected Effects
• Conditions and Limitations
• Scope
• Dependencies
• Project Plan
• Project organisation
• Costs and Resources
• Risk Assessment and Proposed Measures
• Reuse of Existing Knowledge and Experience
• Quality Assurance
• System Classification
• Project Completion
• References

The CMM Questionnaire
The questionnaire is divided into the following sections:

1. Requirement Management (including 14 questions)
2. Software Project Planning (including 12 questions)
3. Software Project Tracking and oversight (including 16 questions)
4. Software Quality Assurance (including 12 questions)
5. Software Configuration Management (including 15 questions)
6. Conclusion (including 4 questions)

The Software Process Improvement Report 1999
The document includes the following sections:

1 Introduction
1.1 Background and purpose
1.2 Contents of Document
2 The CMM assessment
2.1 Assessment
2.1.1 Basic introduction to CMM
2.1.2 Questionnaire
2.1.3 Analysis
2.2 CRIM’s Maturity Profile
2.3 Requirement Management (Kravhantering)
2.3.1 Strengths
2.3.2 Weaknesses
2.4 Software Project Planning (Projektplanering)
2.4.1 Strengths
2.4.2 Weaknesses
2.5 Software Project Tracking and Oversight (Projektuppföljning)
2.5.1 Strengths

137

2.5.2 Weaknesses
2.6 Software Quality Assurance (Kvalitetssäkring)
2.6.1 Strengths
2.6.2 Weaknesses
2.7 Software Configuration Management (Konfigurationshantering)
2.7.1 Strengths
2.7.2 Weaknesses
2.8 Respondents' profile
2.8.1 Respondents' improvement priority
2.8.2 Respondents' improvement suggestions
2.8.3 Respondents' response to assessment
3 The software quality manual (SQM)
3.1 Rules
3.2 Best Practices
3.3 Models
3.4 Sources
3.5 Strengths
3.6 Weaknesses
4 Improvement suggestions
4.1 Findings
4.1.1 Change Control
4.1.2 Collect and Reuse Data and Experiences
4.1.3 Documented Processes
4.1.4 Minimum Documentation Requirement
4.1.5 Continued Development and Implementation of sqm
4.2 Action Plan

The Templates
The following templates were created to support the documentation of software projects:

1. Project Specification
2. Quality Plan
3. Validation Plan
4. User Requirement Specification
5. Project Plan
6. Training Plan
7. Validation Protocol 1
8. Functional Specification
9. Installation Requirement Specification
10. System Technical Design Specification
11. Test Plan
12. User Requirement Test Specification
13. Functional Test Specification
14. Installation Test Specification
15. User requirement Test Report
16. Functional Test Report
17. Installation Test Report
18. Logistic Plan

138

19. Test Report
20. Validation Protocol 2
21. Maintenance Documentation
22. User Documentation
23. Change Plan
24. Validation Protocol 3
25. Project Report
26. Validation Report
27. Termination Plan

The EPL
The following are some figures illustrating the EPL:

Figure I. The SPI unit's home page

139

Figure II. The System Development Life cycle

Figure III. The design process

140

Figure IV. The FAQ

Figure V. Documenting on-line through the EPL

141

The SPID Questionnaire
The questionnaire is divided into the following sections:

1. The training efforts (including 3 questions)
2. The SPI unit’s feedback and support (including 5 questions)
3. The software validation guideline (including 4 questions)
4. The document description guideline (including 3 questions)
5. The templates (including 4 questions)
6. The change and version control guideline (including 7 questions)
7. The training efforts (including 3 questions)

The Networking Questionnaire
The following is a selection of the 19 questions included:

1. What is a network?
2. When shall we use networks?
3. Why shall we use networks?
4. What is the management role in networking?
5. How should networks be organised?

The Final Project Report for SPID 2001
The document consists of the following sections:

1 Introduction
1.1 Background and purpose
1.2 The products
1.3 Contents of document
2 The CMM assessments I & II
2.1 Assessment I
2.2 Assessment II
2.2.1 What should be improved?
2.3 The comparison between assessment I & II
3 Evaluation of implementation measures
4 Lessons learned and further improvement suggestions
5 Conclusion

142

Gothenburg Studies in Informatics, Report 22, March 2002, ISSN 1400-741X

1. Ulf Sundin. A logic programming approach to information modelling and database design, May

1990. (Licentiate Thesis).
2. Thanos Magoulas and Kalevi Pessi. En studie om informationsystemsarkitekturer (in Swedish),

February 1991. (Licentiate Thesis).
3. Peter Nordenstam. Individualbaserade relativt öppna informationssystem (in Swedish), February

1990. (Licentiate Thesis).
4. Bo Dahlbom and Lars Mathiassen. Struggling with quality; The philosophy of developing

computer systems, August 1991. (Revised edition: Computer in context; The philosophy and
practice of system design, Oxford: Blackwell, 1993).

5. Börje Langefors. Essay on infology. Summing up and planning for the future, Edited by Bo
Dahlbom, August 1993.

6. Bo Dahlbom (Ed.). The infological equation. Essay in honour of Börje Langefors, March 1995.
7. Bo Dahlbom, Frederik Kämmerer, Fredrik Ljungberg, Jan Stage and Carsten Sørensen.

Proceedings of the 18th Information Systems Research Seminar in Scandinavia, June 1995.
8. Bo Dahlbom, Fredrik Ljungberg, Urban Nuldén, Kai Simon, Jan Stage and Carsten Sørensen.

Proceedings of the 19th Information Systems Research Seminar in Scandinavia, June 1996.
9. Agneta Ranerup. Användarmedverkan med representanter (in Swedish), August 1996. (Doctoral

Thesis).
10. Ole Hanseth. Information technology as infrastructure, November 1996. (Doctoral Thesis).
11. Fredrik Ljungberg. Networking, September 1997. (Doctoral Thesis).
12. Jan Ljungberg. From workflow to conversation, October 1997. (Doctoral Thesis).
13. Thanos Magoulas and Kalevi Pessi. Strategisk IT-management (in Swedish), March 1998.

(Doctoral Thesis).
14. Fredrik Ljungberg (Ed.). Informatics in the next millennium. Essays in honour of Bo Dahlbom,

June 1999.
15. Urban Nuldén. E-ducation, May 1999. (Doctoral Thesis).
16. Lars Erik Holmquist. Breaking the Screen Barrier, May 2000. (Doctoral Thesis).
17. Nina Lundberg. IT in Healtcare – Artifacts, Infrastructures and Medical Practices, May 2000.

(Doctoral Thesis).
18. Henrik Fagrell. Mobile Knowledge, October 2000. (Doctoral Thesis).
19. Staffan Björk. Flip Zooming – The development of an information visualization technique,

October 2000. (Doctoral Thesis).
20. Johan Redström. Designing Everyday Computational Things, May 2001. (Doctoral Thesis).
21. Dick Stenmark. Designing the new intranet, March 2002. (Doctoral Thesis).
22. Pouya Pourkomeylian. Software Practice Improvement, March 2002. (Doctoral Thesis).

Gothenburg Studies in Informatics
Department of Informatics
Göteborg University
Viktoriagatan 13, Box 620
SE – 405 30 Göteborg, Sweden
E-mail: reports@informatics.gu.se
WWW: www.informatics.gu.se

