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ABSTRACT
In postmenopausal rheumatoid arthritis (RA), both the estrogen deficiency and the

inflammatory disease contribute to the development of generalized osteoporosis. This

leads to an increased risk of fracture, with high morbidity and mortality. More than

50% of women with postmenopausal RA suffer from osteoporosis. Hormone

replacement therapy (HRT) is used to treat postmenopausal osteoporosis. HRT has

also been shown to ameliorate RA, with decreased joint destruction, reduced

inflammation, increased bone density and better patient health assessment.

Unfortunately, longterm hormonal treatment is associated with severe side effects,

and is no longer recommended.

The aims of this thesis were to establish a murine model for studies of osteoporosis in

postmenopausal RA. To investigate the relative contributions of estrogen deficiency

and inflammation to osteoporosis development in arthritic disease. To examine

whether treatment with raloxifene, a selective estrogen receptor modulator, would

have the same beneficial anti-arthritic and anti-osteoporotic effects as estrogen.

Furthermore, we wanted to compare the mechanisms for these effects between

estrogen and raloxifene.

We found that lack of endogenous estrogen and arthritic disease contributed equally

and additively to osteoporosis development in collagen-induced arthritis, a murine

model of human RA. Arthritic ovariectomized mice lost 55% of their trabecular bone

mineral density (BMD) compared with cycling healthy mice.

Raloxifene potently decreased the frequency and severity of arthritis, protected the

joints from erosions, and preserved the BMD. These effects were sustained when

treatment was given both as prophylaxis and in established disease, and during

longterm treatment.

Raloxifene down-regulated the expression of TNF! and RANKL mRNA in the

spleen. These molecules are important mediators of bone loss after menopause and in

RA. In contrast to estrogen, raloxifene did not affect the effector phase of the disease,

as demonstrated in collagen-antibody induced arthritis.

Many estrogenic effects are mediated via the classical estrogen receptors and binding

to the estrogen response elements, which regulate gene transcription. We found that

raloxifene activated this pathway at 1/4 of the intensity of estrogen.

In conclusion, our results show that estrogen deficiency and inflammation contribute

equally to bone loss in arthritis. Furthermore, raloxifene has potent anti-arthritic and

anti-osteoporotic effects, and is possibly a valuable addition to conventional treatment

of postmenopausal RA.
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ABBREVIATIONS

BMD Bone mineral density

CAIA Collagen-antibody induced arthritis

CIA Collagen induced arthritis

COMP Cartilage oligomeric matrix protein

DHEA Di-hydro-epi-androstendione

E1 Estrone

E2 17"-estradiol

E3 Estriol

ER Estrogen receptor

ERE Estrogen response element

HLA Human leukocyte antigen

HRT Hormone replacement therapy

IGF-1 Insulin-like growth factor 1

IL Interleukin

M-CSF Macrophage colony-stimulating factor

MHC Major histocompatibility complex

OPG Osteoprotegerin

RA Rheumatoid arthritis

RANKL Receptor activator of NF#B ligand

SERM Selective estrogen receptor modulator

TGF" Transforming growth factor "

TNF! Tumour necrosis factor !
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INTRODUCTION

The concept of osteoimmunology is a synthesis of research on the immune system

and bone metabolism, and has evolved since many studies have highlighted the

cellular and molecular common pathways in these two fields.

The immune system develops within the bone compartment, and cytokines produced

by immune cells in turn control bone homeostasis. Also, precursor cells can develop

both into inflammatory immune cells, and cells involved in bone remodeling.

Autoinflammatory diseases, such as rheumatoid arthritis (RA),  induce massive

activation of the immune system, and simultaneously lead to bone loss.

It is well established that estrogen affects bone growth and skeletal maturation in both

men and women, and that loss of estrogen results in osteoporosis. This occurs in

women after menopause. Estrogen treatment compensates for the loss of natural

hormones, but is no longer recommended for longterm therapy due to the risk of

serious side effects. This has led to the development of other substances with

estrogen-like benefits, but with less serious side effects. One such substance is

raloxifene, a selective estrogen receptor modulator (SERM), which is approved for

the treatment of postmenopausal osteoporosis.

Estrogen is also involved in the regulation of the immune system, suppressing T- and

B-lymphopoiesis, while stimulating immunoglobulin production, and influencing the

course of inflammatory diseases. RA has a female to male ratio of 3:1. During

pregnancy (when estrogen levels are high) 75% of patients are ameliorated. The

disease incidence increases after menopause, when ovarian estrogen production

ceases. Hormone replacement therapy (HRT) reduced disease severity, joint

destruction and bone loss. Anti-arthritic effects of estrogen have been shown in

animal models as well. We therefore investigated if raloxifene exerts anti-arthritic and

anti-osteoporotic effects, and if estrogen and raloxifene act via different molecular

pathways.

This frame story aims to describe what is known today about the intricate relationship

between the immune system and osteoporosis development during postmenopausal

RA, and how increased knowledge of estrogen receptor modulation can help us find

better therapies that regulate both autoimmune joint destruction and bone loss.
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OSTEOIMMUNOLOGY

The term ”Osteoimmunology” was established in 2000 by Joseph Arron and

Yongwon Choi[1], introducing a new way to view the interconnections between

immunology and bone metabolism.

The immune system

The immune system has evolved to protect the body from infections caused by

different microbes (bacteria, mycobacteria, viruses and prions). The immune system

has developed two parts that work in concert with each other, the innate and the

adaptive immune system.

The innate immune system is fast, non-specific and reacts in the same way each time

it encounters a certain microbe or its products. The adaptive immune system is

slower, and takes several days to become active the first time it confronts a pathogen.

On the other hand, it becomes specifically designed to eradicate that microbe. It

remembers and recognizes the microbe, and knows how to react the next time the

body is infected.

The specificity of the immune cells is constantly checked during development, and

fawlty cells are destroyed. In autoimmune diseases the immune system becomes

incorrectly activated, and develops an immune reaction that becomes directed towards

the inividual itself. This may result in disease development and tissue damage.

Hematopoietic stem cells develop inside the bone compartment, and are the

precursors of all the cells of the immune system in mammals. The innate (native)

immune system is composed of epithelial barriers, the complement system, cytokines,

plasma proteins and monocytes, macrophages, neutrophils and natural killer cells.

Monocytes circulate in the blood, and are recruited to inflammatory sites. In the

tissue they differentiate into macrophages. Macrophages become activated by

microbes, T-cell cytokines and CD40-ligand, and when activated they phagocytose

microbes, produce proinflammatory cytokines and present antigen to T-cells.

Neutrophils are the most  frequent white blood cells in the circulation, and are

recuited to inflammatory sites, where they phagocytose and digest microbes. Natural

killer cells are a special kind of lymphocytes, that kill tumour cells and cells infected

with microbes, and produce interferon-! to activate phagocytes.
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The adaptive (acquired)  immune system consists of two parts, humoral immunity

and cell-mediated immunity. Humoral immunity is directed at extracellular

microbes. B-lymphocytes can mature into antibody-secreting plasmacells.

Antibodies bind to microbes (or toxins) and stop them from entering cells and tissues,

and make them more vulnerable to phagocytosis by macrophages. Cell-mediated

immunity is directed at intracellular microbes. If microbes have been phagocytised,

helper T-lymphocytes activate macrophages to kill them. In the case of intracellular

microbes like viruses, cytotoxic T-lymphocytes kill the infected cells to eliminate the

invader. Helper T-lymphocytes express CD4 on the surface, and recognize peptides

displayed on MHCII, while cytotoxic T-lymphocytes express CD8 and recognize

peptides on MHCI. A major difference between B-lymphocytes and T-lymphocytes is

that B-cells recognize carbohydrates and lipids as well as proteins. B-cells develop in

the bone marrow, and mature cells are mostly found in lymphoid follicles in

secondary lymphoid tissues (spleen and lymph nodes) and in the bone marrow. T-

cells mature in the thymus, and are found in lymphoid follicles, in the circulation and

at sites of infection. Recently it was shown that naive antigen-specific T-cells also

home to the bone marrow, where they can become activated by dendritic cells[2].

There are two more subsets of T-lymphocytes that influence autoimmune diseases,

the pro-inflammatory Th17-cells, which produce IL-17[3], and the regulatory T-

cells, which  modulate the inflammatory response[4].

Antigen-presenting cells (APC) present peptides to T-cells. They are the dendritic

cells, macrophages and B-cells, and they all express co-stimulatory molecules as well

as MHC on their surface. MHC, the major histocompatibility complex, are molecules

in which peptides are presented. MHCI is present on all nucleated cells, and presents

intracellular peptides. MHCII is present on APCs and presents extracellular peptides

(that have been endocytosed). The MHC in humans is called the human leukocyte

antigen (HLA), and each individual expresses a specific repertoire of HLA molecules.

The capacity of a certain HLA to present a specific peptide can influence the

individual disposition for a disease. This is one mechanism for genetic susceptibility

to RA.
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Figure 1. Overview of the immune system
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Several cytokines can function as mediators of immune reactions.

TNF" (tumour necrosis factor ") is a pro-inflammatory cytokine mainly produced by

activated macrophages and T-cells. It helps activate and recruit neutrophils and

monocytes to infection sites, induces chemokine secretion from macrophages, and

stimulates endothelial cells to express adhesion molecules and produce chemokines.

Large amounts of TNF" cause systemic effects (fever and acute phase protein

production in the liver), and may cause septic shock. TNF" is highly invoved in the

pathogenesis of RA.

IL-1# (interleukin 1#) is also a pro-inflammatory cytokine produced primarily by

activated macrophages and endothelium. It has similar actions as TNF". There are

two isoforms of IL-1 (" and #), with the same biological activity.

IL-6 is produced by many cell types, including activated macrophages, T-cells,

fibroblasts and endothelium. It functions in both innate and adaptive immunity,

stimulating synthesis of acute phase proteins and proliferation and differentiation of

T-cells and B-cells in humans. It also has anti-inflammatory functions, for example

preventing formation of autoreactive B-cells in mice[5]. It is involved in the

pathogenesis of RA and bone loss (reviewed in [6]).

IL-7 is produced by many cell types, including bone marrow stromal cells,

macrophages, synovial fibroblasts and endothelium. It stimulates proliferation and

survival of T- and B-cell precursors.

IL-17 is a pro-inflammatory cytokine mainly produced by Th17 cells. Receptors for

IL-17 are found on most cells. It induces production of TNF", IL-1 and RANKL.

TGF# (transforming growth factor #) is an anti-inflammatory cytokine produced by

activated T-cells, macrophages and other cells. It opposes the actions of pro-

inflammatory cytokines, and inhibits T-cell proliferation and differentiation, and

macrophage activation. It also stimulates the development of regulatory T-cells and

osteoblasts.
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Bone

The skeleton functions as support for the body and movement, protection for inner

organs, production of blood cells and storage for minerals (calcium and phosphate).

Bone consists of inorganic matrix (mostly hydroxyapatite), organic matrix (collagen I,

osteocalcin, bone sialoprotein and other bone proteins), and cells (osteoblasts,

osteocytes, osteoclasts). There are two different types of bone, trabecular

(=cancellous/spongy) bone and cortical (=compact/dense) bone. Trabecular bone

contributes only to 20% of the total skeleton, but has 10 times the surface area of

compact bone because of its porous appearance with much room for blood vessels and

bone marrow. Due to this vast surface area, trabecular bone is metabolically more

active. It is found in the metaphysis of long bones, vertebrae and pelvis. Cortical

bone makes up 80% of the skeleton, and is the compact, hard outer layer of bones,

with much less metabolic activity.

                   

Figure 2. Longitudinal section through femur
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The cellular component of bone consists of osteoblasts, osteocytes, bone-lining cells

and osteoclasts. Osteoblasts originate from pluripotent mesenchymal stem cells, that

can also develop into adipocytes, myocytes and chondrocytes[7]. Important factors

for the differentiation into osteoblasts are BMPs (bone morphogenetic proteins) and

TGF#, as well as signalling via Wnt (a family of proteins that initiate transcription

factor formation)[8-10]. Osteoblasts are the cells responsible for bone formation.

They secrete the bone proteins of the matrix, including osteocalcin, collagen type I

and osteonectin. They are also responsible for the mineralization of the matrix, via

ALP (alkaline phosphatase) expressed on their surface. Serum levels of osteocalcin is

a marker of ongoing bone formation, since some osteocalcin leaks into the circulation,

and its half-life in serum is only 5 minutes.

After the matrix (osteoid) is produced by the osteoblasts, it progressively hardens as

calcium salts are deposited. Some osteoblasts become surrounded by the matrix, are

trapped as the matrix hardens around them, and develop into osteocytes. In compact

bone, the osteocytes lie in lacunae, concentrically arranged around a Haversian canal

with blood vessels, nerves and lymphatic tissue, and communicate with each other via

their processes, that lie in canaliculi. The osteocytes sense loading of the bone, and

are important for regulation of bone remodeling, so that bone strength increases or

decreases appropriately[11-14]. Bone-lining cells develop from mature osteoblasts,

and lie on the bone surface. They produce several cytokines that help regulate bone

remodeling.

Osteoclasts are responsible for bone resorption. They develop from hematopoietic

stem cells, which can also become dendritic cells, monocytes and macrophages. In the

presence of M-CSF (macrophage colony-stimulating factor) and RANKL (receptor

activator of NF$B ligand), preosteoclasts fuse to form multinucleated osteoclasts, and

then become activated. Osteoclasts can not be formed without both M-CSF and

RANKL present, and mice deficient in either factor develop an osteopetrotic

phenotype[15-17]. RANKL is also essential for osteoclast survival[18]. Mature

osteoclasts express TRAP (tartrate-resistant acid phosphatase), cathepsin K, #3-

integrin and calcitonin receptor.

During resorption, collagen I is degraded, and some fragments (C-terminal

telopeptides) are released into the circulation. Although type I collagen is not
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restricted to bone, but is also found in skin, tendons, vessels and cornea, levels of C-

terminal telopeptides in serum are a useful marker of bone resorption (CTX-I in

humans, RatLaps in mice).

Figure 3. Development of bone cells
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Bone remodeling

Bone remodeling is constantly going on, at a rate of total exchange of the skeleton in

an adult about every 10 years.

Bone-lining cells prepare a bone surface for degradation. Preosteoclasts are attracted

to the site, fuse and mature into osteoclasts. Activated osteoclasts attach to the bone

with their ruffled border, and seal off the area creating an acid microenvironment,

ideal for bone resorption.

The osteoclasts form resorption pits on the surface of trabeculae in trabecular bone. In

cortical bone a tunnel is formed. Osteoblasts produce new bone matrix to fill in the

resulting gaps. The whole remodeling cycle takes about 90 days, 10 days for

resorption and 80 days for bone formation.

In a healthy adult, the rate of bone resorption is balanced to the rate of bone

formation, resulting in maintained bone strength. In a growing person there is a net

increase in bone formation. The coupling of bone resorption and formation

determines the bone mineral density, and hence the bone strength. A net increase in

bone formation results in osteopetrosis (pathologically increased bone mass), while a

net increase in resorption results in osteoporosis (low bone mass).

The rate of bone remodeling is controlled by several factors, including loading of the

bone (sensed by osteocytes), parathyroid hormone, estrogen, growth hormone, and

different cytokines.

The bone mineral density (BMD) increases until approximately 30 years of age, both

in men and in women. At this point, the individual has reached peak bone mass. Men

generally have higher peak bone mass than women, and this difference persists as the

BMD declines. Women experience a period of rapid bone loss following menopause,

but then the rate of bone loss slows again, and from 65 years the decline is equal in

men and women (figure 5).
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Figure 4. Bone remodeling. Mature osteoclasts resorb bone, forming a resorption pit.
Osteoblasts fill in the pit with bone matrix that becomes calcified.

Osteoporosis

Osteoporosis can develop when there is a net decrease in bone formation. This may be

due to either increased bone resorption, decreased bone formation, or a combination

of both. The result is decreased bone strength and increased risk of fracture.

According to the WHO classification of 1994, osteoporosis is defined as BMD lower

than 2.5 SD (standard deviations) below the young adults mean value (T-score)[19].

Osteopenia is a BMD value between 1 and 2.5 SD below the T-score. BMD is often

measured by DXA (dual energy x-ray absorptiometry).

The prevalence of osteoporosis in Sweden is 2-3% among women in their 50’s, and

increases to approximately 50% in women over 80. Similar frequencies are found in

other countries[20]. Age-related osteoporosis is due to decreased production of

vitamin D, decreased uptake of calcium, and decreased concentrations of sex

hormones and growth factors.

The risk of fracture also increases with age[20-22]. Other risk factors are low BMD,

smoking, inactivity, low weight (BMI<22), earlier fracture and having a mother with

a fracture[23]. Osteoporotic fractures are an important cause of morbidity and

mortality[24], and the incidence of fractures is likely to rise due to longer life

expectancy after the age of 50[25].
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Anti-osteoporosis therapies today are directed at either stimulating bone formation

(parathyroid hormone and strontium ranelate), or inhibiting bone resorption

(bisphosphonates, strontium ranelate, hormone replacement therapy with estradiol

(HRT) and selective estrogen receptor modulators (SERM))[26]. In addition, both

bisphosphonates and estrogen inhibit osteocyte apoptosis[27]. All patients also

receive a supplement of calcium and vitamin D3. HRT and SERM will be described

later.

              

                Figure 5. Bone mineral density (BMD) in men and women

Cartilage

Articular cartilage is mainly composed of collagen fibers that give tensile strength,

and proteoglycans that bind water to give compressive stiffness. The main collagen in

articular cartilage is type II collagen, which is secreted by chondrocytes as a

procollagen, and then cleaved. It makes up the major part of collagen fibrils. Several

other proteins are found in cartilage. COMP (cartilage oligomeric matrix protein) is a

pentameric protein that stabilizes the collagen network. It is found in cartilage, and is

also secreted from synovial fibroblasts. Serum levels of COMP can be used as a

marker of ongoing cartilage degradation[28-30].
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Interplay between the immune system and bone

The location of bone marrow inside the trabecular bone creates the physical

opportunity for interaction between immune cells, bone cells and their products. The

first interactive molecule to be recognized was RANKL (receptor activator of NF$B

ligand), also called TRANCE (TNF-related activation induced cytokine), or OPGL

(osteoprotegerin-ligand)[16, 31].

RANKL is produced by activated T-lymphocytes[32], B-lymphocytes[33],

osteoblasts[34], bone-lining cells[35], macrophages[36], synovial fibroblasts[37],

chondrocytes[38], endothelium[39] and neutrophils[40], and is either soluble or

bound to the cell membrane. RANKL regulates communication between T-cells and

dendritic cells, dendritic cell survival, lymph node formation and formation of

lactating mammary glands[41-43]. It promotes osteoclast differentiation and

activation by binding to RANK, its receptor on pre-osteoclasts and osteoclasts[44]. It

stimulates mature osteoclasts to resorb bone[45], and inhibits osteoclast

apoptosis[18]. In addition to supporting osteoclastogenesis by RANKL expression, B-

lymphocyte lineage cells can also serve as osteoclast precursors[33]. The proliferation

and differentiation of B-cells are inhibited by the RANKL decoy receptor OPG[46].

Interestingly, both RANK- and RANKL-knock out mice develop grave osteopetrosis,

since they have no osteoclasts[41, 44]. These mice can develop severe serum transfer

induced arthritis without any bone destruction[47].

Several factors can induce RANKL expression on osteoblasts, including vitamin D3,

PTH, IL-1, TNF", estrogen deficiency and treatment with glucocorticoids[48]. The

levels of IL-1 and TNF" are known to increase in many inflammatory conditions,

thus providing a link between activation of the immune system and increased bone

resorption.

In addition to RANKL, osteoblasts and bone marrow stromal cells also produce OPG

(osteoprotegerin)[49]. OPG acts as a decoy receptor, binding and neutralizing soluble

or membrane-bound RANKL, thus preventing osteoclastogenesis and bone

resorption, and increasing apoptosis of osteoclasts. OPG-deficient mice develop early

osteoporosis[50]. Estrogen induces OPG expression in human osteoblastic cells in

vitro[51], and OPG-treatment counteracted the development of osteoporosis after

ovariectomy in rats[49].  OPG also counteracted bone erosions in several murine
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arthritis models[52-54]. The OPG/RANKL ratio determines the net degree of

osteoclast activation.

Regulatory T-cells have been demonstrated to suppress osteoclast formation in vitro

via direct cell-cell contact[55].

Several cytokines and growth factors influence bone metabolism.

TNF" stimulates osteoporosis development by increasing RANKL production in

bone-lining cells, leading to an increased number of osteoclasts[35, 56], by

stimulating osteoclast activity[57], and by increasing the apoptosis of osteoblasts[58].

Production of TNF" is elevated during inflammatory diseases and after ovariectomy,

increasing bone resorption[59]. Interestingly, treatment with monoclonal anti-TNF"

antibodies has been shown to preserve the BMD in patients with RA[60-63]. IL-1#

stimulates pre-osteoclast fusion[64], osteoclast activation and survival[65], and

increases osteoblast apoptosis[58], thus contributing to bone loss. IL-1 receptor

antagonist is used to hamper inflammation, and also inhibits osteoclast differentiation

and bone resorption[66].

IL-6 has pro-osteoporotic properties. It has been shown to increase after ovariectomy,

and serum IL-6 levels can predict bone loss in postmenopausal women[67-69].

Soluble IL-6 receptor acts as an agonist, by binding to IL-6, and then interacting with

the same signal-transduction pathways as the membrane bound receptor[70]. Soluble

IL-6 receptor increases after menopause, and this increase can be prevented and

reversed with HRT[71]. This prevention was recently also reported in women with

postmenopausal RA[72]. Mice deficient in IL-6 did not develop ovariectomy-induced

bone loss[73]. IL-7 induces TNF" and RANKL secretion from T-cells, increased B-

lymphopoiesis and bone loss[74, 75]. IL-7 knock out mice have increased bone

volume and decreased B-lymphopoiesis[75]. IL-17 stimulates differentiation of

osteoblasts[76], and increases the RANKL/OPG ratio[77].

TGF# is stored in an inactive form in the bone matrix[78]. Its effects are anti-

osteoporotic, inhibiting bone resorption and fusion and proliferation of pre-

osteoclasts, and increasing osteoclast apoptosis[79, 80]. It also stimulates osteoblast

proliferation and differentation[78].
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Figure 6. Interplay between the immune system and bone
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RHEUMATOID ARTHRITIS

Rheumatoid arthritis (RA) is a progressive systemic autoimmune disease with a

prevalence of 0.5-1%[81, 82]. The first case report was published by Syndenham in

1676, but the disease was not recognized until 1859, when Garrod defined it. The

disease is depicted in Dutch art from the 17th century, and examination of 5000 years

old skeletons found in North America show characteristic rheumatoid changes[83].

RA is characterized by symmetrical polyarthritis with synovitis. The synovium, which

lines the joints, is infiltrated by macrophages, T-cells and B-cells. Chronic

inflammation leads to destruction of joint cartilage and bone.

The overall incidence of RA is 20-40/100 000/year in women and 10-20/100 000/year

in men, based on studies from the United States, Europe and Asia[82, 84-86]. The

female to male incidence ratio is 4-5:1 before 50 years of age, and 2:1 for patients

with later onset[81, 87]. The peak incidence in women coincides with menopause, and

the peak incidence for men occurs at 60-70 years of age[82, 88].

Genetic studies have found that the major genetic susceptibility for RA is associated

with the HLA-DR4/shared epitope[89, 90]. Indeed, HLA-DR4 transgenic mice are

susceptible to collagen induced arthritis[91]. Interestingly, the predisposing effect of

gender is strongest in individuals who do not have the shared epitope, and virtually

absent in homozygous individuals[92]. The proportion of disease-associated HLA-

alleles in RA patients is not gender-specific[93].

Pathogenesis of RA

The pathogenesis of RA is largely unknown, with genetic and environmental factors

influencing disease development and progression. The clinical diagnosis is based

upon certain criteria established in 1987, and may encompass several variations of

arthritis.

From studies of animal models of RA it has been shown that mice expressing the H2q

haplotype can develop arthritis upon immunization with collagen type II (CII)

(collagen-induced arthritis). In humans it has been proposed that certain HLA-DR4

molecules present peptides of CII, which is present in joint cartilage, resulting in

susceptibility to develop RA.

T-lymphocytes are important in the pathogenesis of arthritis as activators of B-

lymphocytes and other cells, like synovial macrophages, via cytokine production
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(IFN! and TNF"). In one study on B10q mice (which are highly susceptible to CIA),

lack of CD4+ T-cells resulted in decreased susceptibility to disease and lower levels

of CII antibodies, whereas lack of CD8+ T-cells did not significantly affect the

disease[94]. In contrast, another study in DBA/1 mice revealed that CD8+ cells were

necessary for disease development, while lack of CD4+ cells did not decrease the

susceptibility to CIA[95]. These data suggest that CD4+ and CD8+ T-lymphocytes

may play differential roles in CIA depending on the genetic background of mouse

strains.

IL-17-producing CD4+ helper T-cells (Th17-cells) have been shown to be pathogenic

in CIA. IL-17 enhances the development of CIA, and IL-17 deficiency  protects

against CIA development[96-98]. IL-17 also promotes bone erosion by disrupting the

OPG/RANKL balance[99]. IL-17 in synovial fluid from RA patients was found to

stimulate osteoclastogenesis[100].

B-lymphocytes are important in the pathogenesis of RA and CIA, by producing

antibodies to CII, and for T-cell activation[101]. Indeed, B-lymphocyte deficient mice

are resistant to CIA[102].

Anti-CII antibodies bind to the articular cartilage and initiate complement activation,

which recruits inflammatory cells to the site[103]. First, neutrophils are recruited, and

then monocytes and lymphocytes. Antibodies to CII have been detected in serum and

synovial fluid of patients with RA[104, 105], and CII antibody-producing B-cells

have been found in synovial fluid and synovial tissue[106, 107]. Transfer of CII-

antibodies can induce arthritis in mice[103]. Administration of B-cell depleting anti-

CD 20 antibodies is approved for treatment of RA[108, 109].
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Murine models of RA

Several different mouse models of RA are available. However, it has become clear

that the human disease is much more complex than each of these models.

Systemic, erosive arthritis models:

Collagen II induced arthritis (CIA) is a well-established murine model for human

RA. It was first established in rats in 1977, and then in mice[110, 111]. It is similar to

RA in several ways. MHCII molecules present similar peptides of CII in RA as in

CIA, and B- and T-lymphocyte responses are directed to corresponding epitopes. The

patterns of synovial infiltration and histological joint destruction are similar. One

major difference is that while CIA is transient, and represents the acute phase of the

disease, RA is chronic.

Collagen-antibody induced arthritis (CAIA) involves only the effector phase of the

disease, bypassing the priming phase. It is induced by intravenous injection of a

mixture of monoclonal antibodies directed towards different epitopes on CII. The

arthritic disease can be aggravated by an intraperitoneal injection of LPS[112].

B10q-ncf1-/- mice develop chronic arthritis after immunization with heterologous CII,

due to a defect in NADPH oxidase, resulting in reduced oxidative burst[113].

K/BxN transgenic mice spontaneously develop arthritis after 3 weeks of age[114].

Both T-cells and B-cells are involved in the pathogenesis. These mice produce

antibodies against glucose-6-phosphate isomerase (GPI). The relevance of this

molecule in RA is not yet clear. Transient arthritis can be induced by serum

transfer[115].

TNF" transgenic mice express human TNF" , which leads to development of

arthritis[116].

HLA-DR4 transgenic mice develop arthritis after immunization with CII[91].

MRL/lpr mice constitute a model for SLE (systemic lupus erythematosus), and

spontaneously develop a milder form of arthritis[117].

One-joint, localized arthritis models:

Antigen-induced arthritis is induced by intra-articular injection of an antigen after the

animal has previously been sensitized to the antigen. Methylated bovine serum

albumin or ovalbumin are often used, not joint-specific antigens like CII[118].

CpG motifs in bacterial DNA induce transient arthritis when injected intra-

articularly[119].
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Bone changes in RA

RA is characterized by different skeletal manifestations including bone erosions[120],

periarticular osteopenia[121] and generalized osteoporosis[122-126]. Joint

inflammation causes production of pro-inflammatory cytokines that induce osteoclast-

development and activation, leading to focal bone loss. In addition, the inflamed

synovium acts like an endocrine organ, releasing these factors into the bloodstream

and causing generalized bone loss. The prevalence of generalized osteoporosis in

postmenopausal RA is more than 50%, resulting in increased risk of fractures[122-

128]. The prevalence of osteoporosis is also elevated in men with RA, compared to a

healthy reference population[129].

Osteoclasts were identified in subchondral bone in arthritic joints of RA patients in

1984[130], and have since been further characterized. They possess the phenotype of

mature osteoclasts, expressing TRAP, cathepsin K and calcitonin receptor[131, 132].

They are also found in bone erosions of mice with collagen-induced arthritis[133].

Several factors enhance osteoclastogenesis and osteoclast function in arthritis:

R A N K L  is found at sites of bone erosion and in synovial tissue from RA

patients[134]. The RANKL/OPG ratio is increased in active RA, and correlates with

increased bone resorption[135]. Increased levels of RANKL were found in mouse and

rat CIA[136-138], and RANKL knock-out mice were protected from bone erosions in

serum-transfer induced arthritis[47]. Neutrophils are abundant in joints of RA

patients, and express membrane-bound RANKL, RANK and OPG[40]. OPG is the

naturally occuring decoy receptor for RANKL, and treatment with OPG has been

found to reduce bone loss in experimental arthritis[52-54, 139], as well as in

postmenopausal arthritis in women[140].

TNF" increases the number of pre-osteoclasts[141, 142], directly promotes osteoclast

differentiation from precursors[143-145], increases the expression of RANK in pre-

osteoclasts[146], and increases the RANKL expression in bone-lining cells and bone

marrow stromal cells[147].

IL-1# stimulates pre-osteoclast fusion[64], and osteoclast activation and survival[65].

IL-6 and the soluble IL-6 receptor are found at higher levels in serum and synovial

fluid of patients with RA than healthy controls, and have been correlated with the

degree of joint destruction[126, 148, 149].
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IL-7 is elevated in the joints of RA patients[150], and stimulates the production of

new T-cells and B-cells, activation and differentiation of mature T-cells and increases

the RANKL expression, thus enhancing osteoclastogenesis[74, 75, 151].

IL-17 induces RANKL expression and decreases OPG expression in osteoblasts and

increases RANKL, IL-1, IL-6 and TNF" expression in synoviocytes[100, 152]. It

enhances the development of CIA, and IL-17 deficiency protects against CIA[96-98].

Osteoblasts are also affected by the inflammatory process: IL-1# and TNF" both

induce osteoblast apoptosis, and other molecules influence their survival and function

by inhibiting BMPs[9, 58, 153].

Figure 7. Bone changes in RA
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ESTROGEN

The female sex hormone estrogen has many physiological effects, affecting the

development and maturation of the reproductive system, the skeleton, and the

immune, nervous, and cardiovascular systems. There are 3 different estrogens in

humans. Estrone (E1) is the least abundant. It is produced by the ovary and liver, and

is the predominant estrogen after menopause. 17#-estradiol (E2) is the most potent

hormone. It is produced by the granulosa cells of the ovary, and to some degree by the

adrenal cortex, adipose tissue and testicles via aromatization of testosterone. The

ovarian production of E2 ceases after menopause. In serum E2 is bound to sex

hormone binding globulin or albumin, and only the free hormone (2-3%) is

biologically active. In premenstrual girls, the serum E2 level is <50 pg/ml, and after

menopause <27 pg/ml. During the fertile period it varies between 27 and 460 pg/ml,

depending on the menstrual phase. Men have serum estradiol levels <54 pg/ml. In

mice the measured serum level varies between studies, but is about 50-400 pg/ml in

fertile mice, 1000-2000 pg/ml during pregnancy and <30 pg/ml after ovariectomy.

Estriol (E3) is produced by the placenta during pregnancy, but is otherwise present

throughout life at a low concentration in both men and women. It is also the main

estrogen metabolite in urine. Some metabolites of estrogen are excreted in the bile,

and then reabsorbed in the intestine[154].

Estrogen receptors and signaling

The classical estrogen receptors ER"  and ER# were cloned in 1986 and 1996,

respectively[155, 156]. They are attached to receptor-associated proteins, and loosely

bound in their locations in the cytosol or nucleus[157]. The distribution of ER" and

ER# varies in different tissues. After binding to estrogen, they form a receptor dimer

and translocate into the cell’s nucleus[158]. There, they form a complex with co-

regulatory proteins and bind to the estrogen response element (ERE) to initiate

transcription[159]. This is the classical transcription pathway. The EREs are located

in the promoter regions of different genes that are regulated by estrogens[160].

The estrogen/ER-complex can also start transcription by binding to alternative

transcription factors (AP-1, SP-1 and NF$B), which bind non-ERE sites. This is

called non-classical transcription[161-163].
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There are cell membrane associated estrogen receptors. GPR30 is a newly discovered

G-protein-coupled receptor, and some studies have indicated that ER" may also be

cell membrane associated[164-168]. Binding of these receptors leads to rapid

activation or repression of intracellular signaling pathways (calcium mobilization and

PI3K activation), leading either to non-genomic signaling or transcriptional activity

via this indirect pathway.

In addition, estrogen receptors can be activated through phosphorylation, in the

absence of estrogen, by dopamine, insulin-like growth factor-1, epidermal growth

factor and cyclic AMP[169-172].

Figure 8. Estrogen signaling. 1) Classical transcription pathway 2) Non-classical

transcription pathway 3) Membrane associated estrogen receptors, non-genomic

response 4) Membrane associated estrogen receptors, indirect transcription pathway.

(The drawing was a kind gift from Ulrika Islander)

ER

ERE

ER

AP-1

ER ER

c-Jun c-Fos

TF

1 2

Signaling
cascades

Rapid responses

3

4

ER



ESTROGEN

26

Menopause and hormone replacement therapy

At menopause, most of the ovarian production of sex hormones ceases, although

some production of testosterone, androstendione, DHEA, estrone and estradiol has

been shown 10 years after menopause. Ovariectomy of postmenopausal women

significantly decreased serum levels of estrone and testosterone, revealing some

remaining ovarian sex hormone production even after menopause[173]. After

menopause estrone is the predominant estrogen in serum at 15-80 pg/ml, whereas

estradiol is present at <27 pg/ml, and estriol at the same levels as throughout life, 3-11

pg/ml[154].

Mice do not lose the production of sex hormones with age. Therefore ovariectomy of

mice is used to mimic menopause, to enable studies of the effects of estrogen

deficiency.

Hormone replacement therapy (HRT) with estradiol after menopause was first started

in 1941, and was successful since the clinical symptoms from loss of estrogen could

be abated. The use of estrogen further increased during the 60’s and 70’s, but in 1975

a study showed the relationship between estrogen treatment and endometrial cancer,

which led to decreased use. The finding that addition of progesterone protects from

endometrial cancer resulted in increased use once more. In 1984 HRT was

recommended as treatment of postmenopausal osteoporosis. The pharmacological use

of estrogens is reviewed in [174].

In 2002 the Women’s Health Initiative study, which was the biggest study ever of the

long-term effects of hormone replacement treatment, was prematurely interrupted due

to severe side effects. The combination of conjugated equine estrogen and

progesterone was shown to increase the risk of coronary heart disease, stroke and

deep vein thrombosis, in addition to the previously known risk of breast and uterine

cancer[175, 176]. One and a half years later the group taking only conjugated equine

estrogen was also terminated due to increased risk of stroke and no evidence for

cardiopulmonary benefits. The million women study found increased risk of breast

cancer in women taking estrogen and progesterone in combination[177]. Since then,

the use of HRT has decreased worldwide[174], and the search for other drugs with the

beneficial effects of estrogen, but without the side effects, continues.
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SERM

Selective estrogen receptor modulators (SERM) are nonsteroidal molecules which

bind to the estrogen receptors and display estrogen-like effects in some tissues, but

antagonistic effects in other tissues. The tissue selectivity of a SERM depends on the

relative amount of ER" and ER# in that tissue, the affinity of the SERM, and upon

the availability of co-activators and co-repressors.

Tamoxifene acts as an estrogen antagonist in breast tissue, and is approved for

treatment of estrogen receptor positive breast cancer, but has agonistic effects on

endometrium[178]. Raloxifene binds with high affinity to ER", and acts estrogen-like

in bone and on serum lipids[179-181], but as an antagonist in uterus and breast

tissue[182, 183]. It is approved as treatment for postmenopausal osteoporosis[174].

ICI 182780 is a pure ER antagonist, without any known agonistic properties, used as

adjuvant treatment for ER-positive breast cancer[184].

Figure 9. Molecular structure of 17#-estradiol and raloxifene

Estrogen, raloxifene and the immune system

Estrogen affects the immune system in multiple ways. The estrogen receptors ER"

and ER# are found in cells of both the innate and the adaptive immune system, in

both sexes[185].

Women have stronger humoral and cell-mediated immune responses to infections

than men[186]. In contrast, women have 30% lower innate immune response, as

measured in vitro by TNF" secretion after stimulation of whole blood with LPS[187].

Because of these dual effects on the immune system, estrogen may have an

ameliorating or an enhancing influence in different autoimmune diseases. RA and

multiple sclerosis (as well as their murine equivalents collagen-induced arthritis and

experimental autoimmune encephalitis) are both ameliorated by endogenous and
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exogenous estrogen[188-191]. In contrast, estrogen has been shown to aggravate

systemic lupus erythematosus (SLE) in murine models, and to induce flares and

increased antibody production in patients with SLE[192-196]. Interestingly, the

arthritic disease is ameliorated, and the lupus-like disease aggravated, by estradiol in

MRL/lpr mice that spontaneously develop SLE[197].

Estrogen inhibits neutrophil function and adhesion to endothelium, and the number of

neutrophils in peripheral blood[198-201]. NK cell activity is decreased[202]. Estrogen

induces apoptosis in human monocytes, and also modulates the proinflammatory

cytokine release from activated monocytes and macrophages [203, 204]. Serum levels

of IL-1, IL-6 and TNF" are increased after menopause, and decreased by HRT[205,

206].

The adaptive immune system is affected in differential ways by estrogen. Treatment

with estradiol causes thymic involution, and reduces T-lymphopoiesis[207-209].

Contribution of the GPR30 membrane receptor to estrogen induced thymocyte

apoptosis was recently shown[210].

The number of regulatory T-cells was found to be comparable between men and

women, but it was found that the levels of estrogen present during pregnancy could

stimulate proliferation and differentiation of regulatory T-cells[211, 212]. These

effects were inhibited by ICI 182780, a specific inhibitor of estrogen receptors[212].

B-lymphopoiesis is down-regulated by estrogen, and both B- and T-lymphopoiesis are

increased after ovariectomy[213]. In spite of this, estrogen induces increased antibody

production from mature B-cells, and stimulates B-cell survival[202, 214-216].

Interestingly, raloxifene had the same effects as estradiol on B-lymphopiesis, but did

not stimulate immunoglobulin production in spleen cells[217].

The delayed type hypersensitivity reaction (DTH) is mediated by both T-lymphocytes

and macrophages, and is reduced by estrogen[218, 219]. In contrast to estradiol,

raloxifene did not affect DTH, and did not induce thymic involution[220].

Raloxifene decreased the serum levels of IL-6 in arthritic mice, but did not affect IL-6

in non-arthritic mice (paper II). Raloxifene, but not estrogen, decreased the expression

of TNF" and RANKL mRNA in spleen from arthritic mice (paper II).
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Estrogen, raloxifene and bone

The classical estrogen receptors ER" and ER# are present in osteoblasts, osteocytes,

osteoclasts and chondrocytes, mediating estrogen effects on bone[221-223]. Indeed,

the classical transcription pathway has been demonstrated to be activated in

osteoblasts, osteocytes and chondrocytes exposed to estradiol[224].

Estrogen induces the longitudinal growth of bone during puberty in both men and

women, and is also responsible for the closure of the growth plates when longitudinal

growth ceases after puberty[225, 226]. In adults, estrogen has important influence on

bone remodeling. The development of postmenopausal osteoporosis is to a large

extent due to estrogen deficiency. At first there is a phase of rapid bone loss,

dominated by increased bone resorption and trabecular thinning, leading to loss of

connection between trabeculae. Then a slower rate of bone loss is sustained,

dominated by decreased bone formation and trabecular thinning[227, 228]. Studies of

the mechanisms behind postmenopausal osteoporosis are often conducted in

ovariectomized mice. It is, however, important to remember that bone loss in estrogen

deprivation is strain specific, and some mechanisms may not apply to humans[229].

Ovariectomy of female DBA/1 mice resulted in loss of 22% of the trabecular BMD,

but did not affect cortical BMD (paper I).

Estrogenic effects on bone are likely to be mediated by both direct effects on the

different cells, and changes of the cytokine milieu of the bone compartment.

The net effects of estrogen deprivation are increased bone resorption due to a higher

number of activated osteoclasts[230], deeper resorption pits due to increased

osteoclast survival[79], and increased bone formation that is not sufficient to

compensate for the resorption. Estrogen deficiency augments the osteoblast

formation, but simultaneously increases osteoblast apoptosis[231]. The serum levels

of osteocalcin were still increased 8 weeks after ovariectomy of DBA/1 mice,

revealing increased bone formation. The serum levels of RatLaps were not elevated,

most likely due to a new steady state in bone resorption this long after ovariectomy

(paper I).

Estradiol treatment of arthritic mice increased both trabecular and cortical BMD as

compared to vehicle-treated controls (papers II and IV).

The response in bone to strain is decreased by estrogen deficiency, due to reduced

ER" activity in osteocytes[232].
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The serum levels of IL-1, IL-6, TNF" and M-CSF were found to be increased after

natural or surgical menopause in women, and decreased upon hormone therapy[205,

233-235]. Ovariectomy also leads to an increase in proinflammatory cytokines in

mice[59, 67, 236]. These cytokines reduce osteoblast activity[237, 238], increase

osteoclast formation[35, 56, 151], and inhibit osteoclast apoptosis[65, 239].

In early menopausal women it was demonstrated that the expression of RANKL was

upregulated on T-cells, B-cells and preosteoblastic marrow stromal cells[240].

The number of osteoclasts and their precursors have been shown to increase after

ovariectomy[236]. Indeed, TNF"-knock out mice do not develop osteoporosis after

ovariectomy[241], and anti-TNF" treatment has been shown to preserve BMD in RA

patients[60-62], and in CIA in mice[242]. In contrast, mRNA levels of TNF" in the

spleen of arthritic mice did not decrease in estradiol-treated mice (paper II).

In osteoblasts, estrogen has been shown to increase the expression of OPG, BMP-6,

TGF# and IGF-1, which results in osteoblast formation and increased osteoclast

apoptosis[51, 79, 243-246]. In osteoclasts, estrogen directly decreases the secretion of

lysosomal enzymes[247], and down-regulates the sensitivity to RANKL[248].

Estrogen stimulates proliferation and differentiation of regulatory T-cells, and these

have been shown to suppress osteoclast formation[55, 211, 212]. In contrast, estrogen

withdrawal in women is associated with increased osteocyte apoptosis[249].

Osteocytes inhibit osteoclast activity through TGF#, and estrogen enhances this

function[250].

Raloxifene is approved for treatment of postmenopausal osteoporosis. Raloxifene has

been shown to influence the serum levels of IL-6, TNF", TGF#, as well as bone

turnover markers in women with postmenopausal osteoporosis[251]. It inhibits IL-6

production by osteoblasts[252]. Serum OPG levels were found to be higher in

postmenopausal women after raloxifene treatment[253], and the RANKL/OPG ratio

was decreased by raloxifene treatment of osteoblastic cells in vitro[254]. Raloxifene

also decreased osteocyte apoptosis both in vivo and in vitro[255-257]. Raloxifene

treatment of arthritic mice resulted in increased trabecular and cortical BMD. These

effects were also reflected in increased serum osteocalcin levels (bone formation) and

decreased levels of RatLaps (bone resorption) (papers II, III and IV).
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Estrogen, raloxifene and RA

The peak incidence of RA in women coincides with the time of menopause[88]. Mice

subjected to ovariectomy display higher frequency and increased severity of collagen-

induced arthritis, as compared to sham-operated mice[190 and paper I]. This could

indicate a protective action of endogenous estrogen both in RA and in experimental

arthritis.  Several studies have shown that estrogen can affect both the incidence and

the progression of RA in humans[188, 258], and in animal models[190, 259-261].

Exposure to oral contraceptives has been shown to reduce the risk of developing

RA[262, 263].

In 75% of women with RA the disease activity diminishes during pregnancy, when

the levels of female sex hormones are high[258, 264-266]. In contrast, the disease is

often aggravated after delivery[264, 267]. Breastfeeding has been shown to increase

the risk for RA, which may be due to pro-inflammatory effects of prolactin, the

lactation hormone[268]. The mechanisms behind these effects are not fully

established. The same effects have also been found in arthritic mice, with

amelioration of arthritis during pregnancy and aggravation after delivery[269-273].

Serum levels of estrogen in male RA patients have been found normal in some

studies, and increased in others, whereas the levels of testosterone were found to be

lower than in controls[274, 275]. Increased levels of estradiol and decreased levels of

androgens have been found in synovial fluid of both men and women with RA[276].

This could be due to increased peripheral conversion of androgens to estrogens, since

pro-inflammatory cytokines have been shown to stimulate the peripheral aromatase

activity[277, 278]. Increased estradiol decreased IL-6 production in synoviocytes

from postmenopausal women[279].

Treatment with anti-TNF" antibodies in RA was shown not to influence the hormonal

homeostasis, which was stable independently of the inflammatory level[280, 281]. In

contrast, serum levels of DHEAS increased in patients treated for two years, which

could be due to improved adrenal function[281].

Use of non-contraceptive hormones in the perimenopausal period was negatively

correlated to development of RA in a study of 490 women with RA and controls[282].

Some later studies failed to confirm this[262, 283-286], while others found an anti-

arthritic effect of HRT[287-291]. A prospective two-year trial of 88 postmenopausal

women with RA found that HRT (2mg estradiol and 1mg noretisterone) ameliorated
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clinical disease, protected joints from destruction, and increased bone mineral density

(BMD)[188]. Estradiol-treatment of CIA in mice also suppressed disease

progression[190, 259, 292, papers II and IV], and blocking of the estrogen receptors

enhanced the disease[293].

Because of the possible side effects of HRT treatment, longterm therapy is no longer

recommended, and there is need to find other substances with the disease-modifying

effects of estrogen, but without the side effects. Raloxifene-treatment of

ovariectomized mice resulted in lower frequency of collagen-induced arthritis,

suppressed disease severity and preserved joint histology (paper II). These effects

were also seen during longterm treatment, when therapy was started in established

disease (paper III).

Both estrogen deficiency and arthritic disease have deteriorating effects on bone

density. HRT ameliorated both the arthritic disease and the development of

osteoporosis in RA[188, 288, 290, 294]. Treatment with estrogen also counteracted

osteoporosis development in arthritic mice and rats[260, 295]. Raloxifene treatment

increased both trabecular and cortical BMD in CIA and CAIA in mice (papers II, III

and IV).
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ACTIONS OF ESTROGEN IN ARTHRITIS AND OSTEOPOROSIS

Figure 10. Actions of estrogen on the bone changes in RA
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CONCLUDING REMARKS

Osteoimmunology has become an established scientific area. It is necessary to study

the interplay between the immune system and bone when developing new therapies,

both for RA and osteoporosis. The role of estradiol in autoimmune diseases is very

complex. It has stimulatory and inhibiting effects on different parts of the immune

system, and some functions may not be the same in vivo as in vitro.

To increase our understanding of these intricate mechanisms many questions still

need to be adressed.

The role of co-activators and co-repressors needs to be further studied. The

conformational change of a hormone receptor when binding to a ligand, and the

presence of diverse co-stimulatory molecules in the actual tissue, are what regulate

transcription. Modulation of these molecules could provide new targets for treatment.

Further understanding of target cells and transcription pathways for estrogen could

enable the generation of tissue specific stimulators and inhibitors.

Our data shows that raloxifene activates the classical transcription pathway to a lesser

extent than estradiol. This needs to be investigated more. Does raloxifene activate

other pathways, and could these be specifically modulated?

The complex molecular mechanisms of osteoporosis development after menopause or

ovariectomy need to be further investigated, to elucidate the contribution of T- and B-

lymphocytes and cytokines. Identification of cytokines mediating bone loss could

provide potent targets for therapy.

Increased knowledge of the RANKL/OPG pathway could open the possibility to

regulate it to avoid excess bone resorption, while physiological bone remodeling

could still take place.

We are currently conducting studies of immune modulation via the estrogen receptors

in conjunction with other steroid receptors, such as the glucocorticoid receptor.
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MAIN CONCLUSIONS FROM THE THESIS

Paper I

In this paper we investigated the relative contribution of inflammation and estrogen

deficiency to the development of osteoporosis in experimental postmenopausal

arthritis. We found that both arthritic disease and estrogen deficiency induced by

ovariectomy contributed to a similar extent to osteoporosis, and that these effects

were additive. We concluded that collagen-induced arthritis in ovariectomized DBA/1

mice is a relevant model for further studies of osteoporosis in postmenopausal RA.

Paper II

It is known that estradiol can ameliorate arthritic disease, and protect against

osteoporosis, but longterm treatment is associated with serious side effects. Therefore,

we investigated if the SERM (selective estrogen receptor modulator) raloxifene had

the same effects. We found that raloxifene potently inhibited the frequency and

severity of arthritis, joint destruction and loss of bone mineral density, as compared to

controls. These results suggest that raloxifene could be a valuable addition to the

treatment regimen of postmenopausal RA. In addition, raloxifene treatement down-

regulated the expression of TNF" and RANKL mRNA i spleen cells from arthritic

mice.

Paper III

This study was planned as a follow-up of the previous studies. We wanted to examine

whether treatment with raloxifene would ameliorate arthritis and osteoporosis

development in mice with an established arthritic disease, and if these effects would

be sustained during longterm treatment. We found that raloxifene had a very potent

anti-arthritic effect, even when treatment was started after 50% of the mice had

developed arthritis. Indeed, in the raloxifene-treated group only 60% of the mice ever

acquired disease. This study encourages the planning of a clinical trial with addition

of raloxifene to the already established treatment of patients with postmenopausal

RA.



MAIN CONCLUSIONS

36

Paper IV

In this paper we found that in contrast to estradiol, raloxifene did not affect the

effector phase of arthritic disease in collagen-antibody induced arthritis. Despite this,

both raloxifene and estradiol treatment counteracted osteoporosis.

In addition, while estradiol potently activated the classical signaling pathway via ER

and ERE, raloxifene only activated the ERE at about 1/4 of the intensity of estradiol.

This indicates differential effector mechanisms between the two substances, and may

explain how one substance can suppress a certain type of inflammation, while the

other does not. This needs to be further addressed.

This paper will be extended with ongoing experiments on B10q-ncf1-/- mice, which

develop chronic arthritis.
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POPULÄRVETENSKAPLIG SAMMANFATTNING

Osteoimmunologi är ett nytt begrepp, som började användas år 2000 för att belysa de

många samband som finns mellan immunsystemet och vårt skelett. Immunsystemets

celler utvecklas inne i skelettet, och många processer som påverkar immunsystemet

har även effekter på skelettet, och tvärtom. Att klargöra detta samröre ökar förståelsen

för sjukdomsprocesser som drabbar skelettet och/eller immunsystemet. Med sådan

insikt uppkommer nya möjligheter att utveckla effektiva läkemedel.

Immunsystemet har utvecklats för att skydda oss från olika typer av infektioner. För

det mesta fungerar detta utmärkt, men ibland blir försvaret missriktat och angriper

istället den egna kroppen. Dessa attacker kan leda till vävnadsskada och utveckling av

så kallade autoimmuna sjukdomar.

Ledgångsreumatism (RA, reumatoid artrit) är en autoimmun sjukdom som drabbar ca

1% av världens befolkning. Sjukdomen orsakar ledförstörelse, och inflammationen

bidrar till att benskörhet (osteoporos) utvecklas. Det är 3 gånger fler kvinnor än män

som drabbas, och de flesta av dessa insjuknar i samband med eller efter klimakteriet.

Vid klimakteriet minskar kroppens produktion av könshormonet östrogen, vilket ofta

leder till benskörhetsutveckling, även hos i övrigt friska kvinnor. Benskörhet ökar

risken för benbrott, och behandling av osteoporos syftar till att minska denna risk.

Behandling med östrogen hämmar benskörhetsutvecklingen och gör att skelettets

styrka ökar. Flera studier har visat att långtidsbehandling med östrogen tyvärr kan

medföra risk för allvarliga biverkningar, och användandet av östrogen har därför

minskat. Många forskningsgrupper arbetar med alternativa medel, som har

östrogenets gynnsamma effekter men inte dess biverkningar. En sådan medicin är

raloxifen (Evista®), som sedan 1997 är godkänd för behandling av osteoporos efter

klimakteriet.

Vid ledgångsreumatism efter klimakteriet dominerar två faktorer som bidrar till

benskörhetsutveckling, inflammation och brist på könshormoner.

Vi var intresserade av att undersöka till hur stor del dessa respektive faktorer bidrar,

och undersökte därför benskörhetsutvecklingen vid ledgångsreumatism hos möss som

antingen hade kvar eller saknade naturliga könshormoner. Vi fann att både
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östrogenbrist och inflammation gav lika mycket förlust av bentätheten, och att de

möss som hade båda faktorerna förlorade så mycket som 55% av sin bentäthet.

Det är tidigare känt att behandling med östrogen vid ledgångsreumatism efter

klimakteriet mildrar sjukdomen. Efter två års östrogenbehandling sågs minskad

sjukdomsaktivitet med lägre sänka, färre svullna leder, mindre ledförstörelse på

röntgen och förbättrad bentäthet. Eftersom långtidsbehandling med östrogen inte

längre rekommenderas på grund av biverkningar (tex bröstcancer, livmodercancer och

stroke) ville vi undersöka om raloxifen kunde ha samma gynnsamma effekter som

östrogen mot både ledgångsreumatism och benskörhet.

Möss med ledgångsreumatism behandlades med raloxifen eller östrogen löst i olja.

Raloxifen var lika effektivt som östrogen mot sjukdomen, med färre sjuka djur,

mildare sjukdom och mindre ledförstörelse. Dessutom hade de möss som fått

behandling bibehållen hög bentäthet. Samma gynnsamma effekter mot

ledgångsreumatism och benskörhet sågs även vid långtidsbehandling av djur med

etablerad sjukdom.

Nedbrytningsprodukter från ben och brosk kan mätas i blodet. Mängden av dem

minskade av raloxifen-behandling, vilket tyder på att mindre ben och brosk förstördes

än i de obehandlade djuren. En markör för benuppbyggnad mättes också, och den

ökade av behandlingen.

Vi ville även undersöka om det finns några skillnader i hur östrogen respektive

raloxifen utövar sina effekter. Därför mätte vi olika markörer för inflammation i

blodet och i mjälten. Både östrogen och raloxifen minskade mängden IL-6 (en

inflammationsmarkör) i blodet. Raloxifen-behandling minskade uttrycket i mjälte av

två molekyler (TNF och RANKL) som kraftigt bidrar till både inflammation och

benskörhetsutveckling, men det gjorde inte östrogen-behandling.

När östrogen kommer till en cell binder hormonet till östrogenreceptorn som vandrar

in i cellkärnan, där produktionen av olika proteiner påverkas. Detta kallas för den

klassiska signaleringsvägen. Vi kunde visa att även raloxifen delvis fungerar via den
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här signaleringsvägen, genom att använda möss med en specialinsatt gen som

aktiveras samtidigt som den klassiska signaleringsvägen, och då tillverkar ett protein

som kan mätas.

Sammanfattningsvis visar de här studierna att både östrogenbrist och inflammation

bidrar vardera lika mycket, och på ett additivt sätt, till benskörhetsutvecklingen i en

djurmodell för ledgångsreumatism efter klimakteriet.

Behandling med raloxifen var mycket effektiv mot både ledgångsreumatism och

benskörhetsutveckling, och skulle kunna vara ett värdefullt tillägg till den vanliga

behandlingen av ledgångsreumatism efter klimakteriet.
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